1
|
Gallardo LO, Aiger Vallés M, Cativiela-Campos B, Domingo-Valero L, Barrasa Á, Alique M, López-Granero C. Psychological repercussions of PM air pollution in human aging: a comprehensive review of urban and rural environments. Front Pharmacol 2025; 16:1517090. [PMID: 40034819 PMCID: PMC11872935 DOI: 10.3389/fphar.2025.1517090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/21/2025] [Indexed: 03/05/2025] Open
Abstract
Air pollution and its effects on population health are currently among the most important public health issues. It is well established that the impact of air pollution on health is exceedingly high, although it ignores its real scope and effects on the aging process because studies on air quality have largely focused on younger age groups. Herein, we emphasize the relevance of air quality to the behavioral aging process, taking into account the place of residence - rural or urban. We raise the following question: Can air quality and residential settings modulate cognitive, emotional and social behaviors during the aging? Some studies have analyzed the role of residential settings and air pollution in the context of a behavioral frame in elderly people. Based on the analyzed literature, this revision concluded that air pollutants affect cognitive function, increasing the risk of dementia as well as depression and anxiety emotional responses. In addition, social networks and inclusion can modulate and mitigate the effects observed during the aging in rural areas that are exposed to less contamination. Although there is no consensus, it seems that some observed behavioral effects are sex-dependent, as women are more vulnerable to air pollution. Additionally, we examined why older adults are vulnerable to the health effects of Particulate Matter (PM) exposure and highlighted the importance of social health in this context. Environmental agents could be the key to understanding the susceptibility and variability observed during aging in behavioral symptoms. Although cognitive decline is related to increased age, it is not a manipulated factor. Efforts should be centered on locating factors implicated in the aging process that could be susceptible to manipulation or variation, such as the choice of the place of residence and the air that we are breathing. Given the significant societal impact of PM, research and policy regulations should be closely aligned and collaborative.
Collapse
Affiliation(s)
- Laura O. Gallardo
- Department of Psychology and Sociology, University of Zaragoza, Teruel, Spain
| | | | | | | | - Ángel Barrasa
- Department of Psychology and Sociology, University of Zaragoza, Teruel, Spain
| | - Matilde Alique
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | |
Collapse
|
2
|
Fang J, Yu Y, Zhang G, Zhu P, Shi X, Zhang N, Zhang P. Uncovering the impact and mechanisms of air pollution on eye and ear health in China. iScience 2024; 27:110697. [PMID: 39262800 PMCID: PMC11387599 DOI: 10.1016/j.isci.2024.110697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/08/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024] Open
Abstract
Increasing air pollution could undermine human health, but the causal link between air pollution and eye and ear health has not been well-studied. Based on four-week-level records of eye and ear health over 1991-2015 provided by the China Health and Nutrition Survey, we estimate the causal effect of air pollution on eye and ear health. Using two-stage least squares estimation, we find that eye or ear disease possibility rises 1.48% for a 10 μg/m3 increase in four-week average PM2.5 concentration. The impacts can last about 28 weeks and will be insignificant afterward. Females, individuals aged 60 years and over, with high exposure environments, relatively poor economic foundations, and low knowledge levels are more vulnerable to such negative influences. Behavioral channels like more smoking activities and less sleeping activities could partly explain this detrimental effect. Our findings enlighten how to minimize the impact of air pollution and protect public health.
Collapse
Affiliation(s)
- Jingwei Fang
- Institute of Blue and Green Development, Shandong University, Weihai 264209, China
| | - Yanni Yu
- Institute of Blue and Green Development, Shandong University, Weihai 264209, China
- Department of Land Economy, University of Cambridge, Cambridge CB2 1TN, UK
| | - Guanglai Zhang
- School of Economics, Jiangxi University of Finance and Economics, Nanchang 330013, China
| | - Penghu Zhu
- Institute of Blue and Green Development, Shandong University, Weihai 264209, China
| | - Xin Shi
- School of Health Management, China Medical University, Shenyang 110122, China
| | - Ning Zhang
- Institute of Blue and Green Development, Shandong University, Weihai 264209, China
- Department of Land Economy, University of Cambridge, Cambridge CB2 1TN, UK
| | - Peng Zhang
- School of Management and Economics, The Chinese University of Hong Kong, Shenzhen 518172, China
- Shenzhen Finance Institute, Shenzhen 518038, China
| |
Collapse
|
3
|
Oshidari Y, Salehi M, Kermani M, Jonidi Jafari A. Associations between long-term exposure to air pollution, diabetes, and hypertension in metropolitan Iran: an ecologic study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2476-2490. [PMID: 37674318 DOI: 10.1080/09603123.2023.2254713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
Epidemiological studies on air pollution, diabetes, and hypertension conflict. This study examined air pollution, diabetes, and hypertension in adults in 11 metropolitan areas of Iran (2012-2016). Local environment departments and the Tehran Air Quality Control Company provided air quality data. The VIZIT website and Stepwise Approach to Chronic Disease Risk Factor Surveillance study delivered chronic disease data. Multiple logistic regression and generalized estimating equations evaluated air pollution-related diabetes and hypertension. In Isfahan, Ahvaz, and Tehran, PM2.5 was linked to diabetes. In all cities except Urmia, Yasuj, and Yazd, PM2.5 was statistically related to hypertension. O3 was connected to hypertension in Ahvaz, Tehran, and Shiraz, whereas NO2 was not. BMI and gender predict hypertension and diabetes. Diabetes, SBP, and total cholesterol were correlated. Iran's largest cities' poor air quality may promote diabetes and hypertension. PM2.5 impacts many cities' outcomes. Therefore, politicians and specialists have to control air pollution.
Collapse
Affiliation(s)
- Yasaman Oshidari
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Salehi
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jonidi Jafari
- Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Sivakumar B, Kurian GA. PM 2.5 toxicity in blood impairs cardiac redox balance and promotes mitochondrial dysfunction in rat heart that further aggravates ischemia reperfusion injury by modulating PI3K/AKT/mTOR/NF-kB signaling axis. J Biochem Mol Toxicol 2024; 38:e23718. [PMID: 38738849 DOI: 10.1002/jbt.23718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/26/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
According to the pathophysiological mechanisms linking particulate matter (PM2.5) exposure and cardiovascular diseases, PM2.5 may directly translocate into the blood stream and remote target organs and thereby induce cardiovascular effects. The toxicity of PM2.5 is known to induce oxidative stress in pulmonary tissue, but its impact on the redox state in heart (distant organ) is unknown and how it modulates the cardiac response to ischemia reperfusion (IR) remains unclear. In the present study, we evaluated the toxic effect of PM2.5 on cardiac physiology in the presence and absence of IR after introducing PM2.5 into the blood. Female Wistar rats were injected with diesel particulate matter (DPM) via i.p & i.v routes at a concentration of 10 µg/ml. The toxic impact of PM2.5 not only adversely affects the cardiac ultra-structure (leading to nuclear infiltration, edema, irregularities in heart muscle and nuclear infiltration), but also altered the cellular redox balance, elevated inflammation and promoted the upregulation of proapoptotic mediator genes at the basal level of myocardium. The results showed alterations in cardiac ultrastructure, elevated oxidative stress and significant redox imbalance, increased inflammation and proapoptotic mediators at the basal level of myocardium. Moreover, the cardioprotective pro survival signaling axis was declined along with an increased NF-kB activation at the basal level. IR inflicted further injury with deterioration of cardiac hemodynamic indices (Heart rate [HR], Left ventricular developed pressure [LVDP], Left ventricular end-diastolic pressure [LVEDP] and rate pressure product [RPP]) along with prominent inactivation of signaling pathways. Furthermore, the levels of GSH/GSSG, NADH/NAD, NADPH/NADP were significantly low along with increased lipid peroxidation in mitochondria of PM2.5 treated IR rat hearts. This observation was supported by downregulation of glutaredoxin and peroxiredoxin genes in the myocardium. Similarly the presence of oxidative stress inducing metals was found at a higher concentration in cardiac mitochondria. Thus, the toxic impact of PM2.5 in heart augment the IR associated pathological changes by altering the physiological response, initiating cellular metabolic alterations in mitochondria and modifying the signaling molecules.
Collapse
Affiliation(s)
- Bhavana Sivakumar
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Gino A Kurian
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
- School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, India
| |
Collapse
|
5
|
Guyatt AL, Cai YS, Doiron D, Tobin MD, Hansell AL. Air pollution, lung function and mortality: survival and mediation analyses in UK Biobank. ERJ Open Res 2024; 10:00093-2024. [PMID: 38686181 PMCID: PMC11057504 DOI: 10.1183/23120541.00093-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 05/02/2024] Open
Abstract
Background Air pollution is associated with lower lung function, and both are associated with premature mortality and cardiovascular disease (CVD). Evidence remains scarce on the potential mediating effect of impaired lung function on the association between air pollution and mortality or CVD. Methods We used data from UK Biobank (n∼200 000 individuals) with 8-year follow-up to mortality and incident CVD. Exposures to particulate matter <10 µm (PM10), particulate matter <2.5 µm (PM2.5) and nitrogen dioxide (NO2) were assessed by land-use regression modelling. Lung function (forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and the FEV1/FVC ratio) was measured between 2006 and 2010 and transformed to Global Lung Function Initiative (GLI) z-scores. Adjusted Cox proportional hazards and causal proportional hazards mediation analysis models were fitted, stratified by smoking status. Results Lower FEV1 and FVC were associated with all-cause and CVD mortality, and incident CVD, with larger estimates in ever- than never-smokers (all-cause mortality hazard ratio per FEV1 GLI z-score decrease 1.29 (95% CI 1.24-1.34) for ever-smokers and 1.16 (95% CI 1.12-1.21) for never-smokers). Long-term exposure to PM2.5 or NO2 was associated with incident CVD, with similar effect sizes for ever- and never-smokers. Mediated proportions of the air pollution-all-cause mortality estimates driven by FEV1 were 18% (95% CI 2-33%) for PM2.5 and 27% (95% CI 3-51%) for NO2. Corresponding mediated proportions for incident CVD were 9% (95% CI 4-13%) for PM2.5 and 16% (95% CI 6-25%) for NO2. Conclusions Lung function may mediate a modest proportion of associations between air pollution and mortality and CVD outcomes. Results likely reflect the extent of either shared mechanisms or direct effects relating to lower lung function caused by air pollution.
Collapse
Affiliation(s)
- Anna L. Guyatt
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- These authors are joint first authors
| | - Yutong Samuel Cai
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK
- National Institute for Health and Care Research Health Protection Research Unit in Environmental Exposures and Health, University of Leicester, Leicester, UK
- National Institute for Health and Care Research Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust, Research & Innovation, Leicester General Hospital, Leicester, UK
- These authors are joint first authors
| | - Dany Doiron
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of the McGill University, Montréal, QC, Canada
| | - Martin D. Tobin
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- National Institute for Health and Care Research Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust, Research & Innovation, Leicester General Hospital, Leicester, UK
| | - Anna L. Hansell
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK
- National Institute for Health and Care Research Health Protection Research Unit in Environmental Exposures and Health, University of Leicester, Leicester, UK
- National Institute for Health and Care Research Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust, Research & Innovation, Leicester General Hospital, Leicester, UK
| |
Collapse
|
6
|
López-Granero C, Polyanskaya L, Ruiz-Sobremazas D, Barrasa A, Aschner M, Alique M. Particulate Matter in Human Elderly: Higher Susceptibility to Cognitive Decline and Age-Related Diseases. Biomolecules 2023; 14:35. [PMID: 38254635 PMCID: PMC10813119 DOI: 10.3390/biom14010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
This review highlights the significant impact of air quality, specifically particulate matter (PM), on cognitive decline and age-related diseases in the elderly. Despite established links to other pathologies, such as respiratory and cardiovascular illnesses, there is a pressing need for increased attention to the association between air pollution and cognitive aging, given the rising prevalence of neurocognitive disorders. PM sources are from diverse origins, including industrial activities and combustion engines, categorized into PM10, PM2.5, and ultrafine PM (UFPM), and emphasized health risks from both outdoor and indoor exposure. Long-term PM exposure, notably PM2.5, has correlated with declines in cognitive function, with a specific vulnerability observed in women. Recently, extracellular vesicles (EVs) have been explored due to the interplay between them, PM exposure, and human aging, highlighting the crucial role of EVs, especially exosomes, in mediating the complex relationship between PM exposure and chronic diseases, particularly neurological disorders. To sum up, we have compiled the pieces of evidence that show the potential contribution of PM exposure to cognitive aging and the role of EVs in mediating PM-induced cognitive impairment, which presents a promising avenue for future research and development of therapeutic strategies. Finally, this review emphasizes the need for policy changes and increased public awareness to mitigate air pollution, especially among vulnerable populations such as the elderly.
Collapse
Affiliation(s)
- Caridad López-Granero
- Department of Psychology and Sociology, University of Zaragoza, 44003 Teruel, Spain; (C.L.-G.); (D.R.-S.); (A.B.)
| | - Leona Polyanskaya
- Faculty of Psychology and Educational Sciences, University of Coimbra, 3000-115 Coimbra, Portugal;
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Diego Ruiz-Sobremazas
- Department of Psychology and Sociology, University of Zaragoza, 44003 Teruel, Spain; (C.L.-G.); (D.R.-S.); (A.B.)
| | - Angel Barrasa
- Department of Psychology and Sociology, University of Zaragoza, 44003 Teruel, Spain; (C.L.-G.); (D.R.-S.); (A.B.)
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Matilde Alique
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
7
|
Bryan L, Landrigan P. PM 2.5 pollution in Texas: a geospatial analysis of health impact functions. Front Public Health 2023; 11:1286755. [PMID: 38106908 PMCID: PMC10722416 DOI: 10.3389/fpubh.2023.1286755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Background Air pollution is the greatest environmental threat to human health in the world today and is responsible for an estimated 7-9 million deaths annually. One of the most damaging air pollutants is PM2.5 pollution, fine airborne particulate matter under 2.5 microns in diameter. Exposure to PM2.5 pollution can cause premature death, heart disease, lung cancer, stroke, diabetes, asthma, low birthweight, and IQ loss. To avoid these adverse health effects, the WHO recommends that PM2.5 levels not exceed 5 μg/m3. Methods This study estimates the negative health impacts of PM2.5 pollution in Texas in 2016. Local exposure estimates were calculated at the census tract level using the EPA's BenMAP-CE software. In BenMAP, a variety of exposure-response functions combine air pollution exposure data with population data and county-level disease and death data to estimate the number of health effects attributable to PM2.5 pollution for each census tract. The health effects investigated were mortality, low birthweight, stroke, new onset asthma, new onset Alzheimer's, and non-fatal lung cancer. Findings This study found that approximately 26.7 million (98.9%) of the 27.0 million people living in Texas in 2016 resided in areas where PM2.5 concentrations were above the WHO recommendation of 5 μg/m3, and that 2.6 million people (9.8%) lived in areas where the average PM2.5 concentration exceeded 10 μg/m3. This study estimates that there were 8,405 (confidence interval [CI], 5,674-11,033) premature deaths due to PM2.5 pollution in Texas in 2016, comprising 4.3% of all deaths. Statewide increases in air-pollution-related morbidity and mortality were seen for stroke (2,209 - CI: [576, 3,776]), low birthweight (2,841 - CI: [1,696, 3,925]), non-fatal lung cancers (636 - CI: [219, 980]), new onset Alzheimer's disease (24,575 - CI: [20,800, 27,540]), and new onset asthma (7,823 - CI: [7,557, 8,079]). Conclusion This study found that air pollution poses significant risks to the health of Texans, despite the fact that pollution levels across most of the state comply with the EPA standard for PM2.5 pollution of 12 μg/m3. Improving air quality in Texas could save thousands of lives from disease, disability, and premature death.
Collapse
Affiliation(s)
- Luke Bryan
- Boston College, Chestnut Hill, MA, United States
| | - Philip Landrigan
- Boston College, Chestnut Hill, MA, United States
- Centre Scientifique de Monaco, Monaco, Monaco
| |
Collapse
|
8
|
Alfonso Albarracín KY, Altamar Consuegra A, Aguilar-Arias J. Particulate matter 10 µm (PM 10), 2.5 µm (PM 2.5) datasets gathered by direct measurement, low-cost sensor and by public air quality stations in Fontibón, Bogotá D.C., Colombia. Data Brief 2023; 49:109323. [PMID: 37456118 PMCID: PMC10344790 DOI: 10.1016/j.dib.2023.109323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Concentration of particulate matter directly affects air quality and human health. Three sources of information were used in this work to generate datasets on this matter at the Fontibón county in Bogota D.C., Colombia. The first source was a Davis AirLinkⓇ low-cost sensor air quality readings for PM2.5, PM10 and meteorological variables. The sensor was installed in the referred area, collecting air quality readings for PM2.5, PM10, as well as temperature, relative humidity, dew point, wet bulb, and heat index as meteorological variables during the months of May to August 2022. The second source was collecting by direct measurement the PM10 particles using a TischⓇ Hi- Vol equipment, evaluated the concentration of particulate matter PM10 in the same place for 27 days. Finally, raw data was provided by the Bogotá's Environmental District Bureau (SDA), validating in this work the data readings for the years 2021 and 2022 from the two meteorological stations located in the same county, named "Fontibón" and "Móvil Fontibón", including Air quality data for PM2.5, PM10, Carbon Monoxide (CO), Ozone, Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2) and the meteorological variables wind speed, wind direction, temperature, precipitation, relative humidity (RH) and Barometric pressure. A Machine Learning model was made to perform the mining and completeness of the missing data with an iterative imputation and with a regression model, and the Pearson, Spearman and Kendall correlation coefficients were calculated, using Python language.
Collapse
Affiliation(s)
| | | | - Jaime Aguilar-Arias
- Chemical and Environmental Engineering Department, Universidad Nacional de Colombia. Sede Bogotá D.C. 111321, Colombia
| |
Collapse
|
9
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
10
|
Bougea A, Papagiannakis N, Simitsi AM, Panagiotounakou E, Chrysovitsanou C, Angelopoulou E, Koros C, Stefanis L. Ambiental Factors in Parkinson's Disease Progression: A Systematic Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020294. [PMID: 36837495 PMCID: PMC9962232 DOI: 10.3390/medicina59020294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Background and Objectives: So far, there is little evidence of the ambient effect on motor and non-motor symptoms of Parkinson's Disease (PD). This systematic review aimed to determine the association between ambiental factors and the progression of PD. Materials and Methods: A systematic literature search of PubMed, Cochrane, Embase, and Web of Science was conducted up to 21 December 2021 according the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Results: Eight articles were used in the analyses. Long-term exposure to fine particles (particulate matter ≤ 2.5 μm; PM2.5) was positively associated with disease aggravation in two studies. Short-term PM2.5 exposure was positively associated with disease aggravation in three studies. Significant associations were found between PD aggravation and NO2, SO2, CO, nitrate and organic matter (OM) concentrations in two studies. Associations were more pronounced, without reaching statistical significance however, in women, patients over 65 years old and cold temperatures. A 1% increase in temperature was associated with a significant 0.18% increase in Levodopa Equivalent Dose (LED). Ultraviolet light and humidity were not significantly associated with an increase in LED. There was no difference in hallucination severity with changing seasons. There was no evidence for seasonal fluctuation in Unified Parkinson's Disease Rating Scale (UPDRS) scores. Conclusions: There is a link between air pollutants and temperature for PD progression, but this has yet to be proven. More longitudinal studies are warranted to confirm these findings.
Collapse
|
11
|
Akushevich I, Yashkin A, Ukraintseva S, Yashin AI, Kravchenko J. The Construction of a Multidomain Risk Model of Alzheimer's Disease and Related Dementias. J Alzheimers Dis 2023; 96:535-550. [PMID: 37840484 PMCID: PMC10657690 DOI: 10.3233/jad-221292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) and related dementia (ADRD) risk is affected by multiple dependent risk factors; however, there is no consensus about their relative impact in the development of these disorders. OBJECTIVE To rank the effects of potentially dependent risk factors and identify an optimal parsimonious set of measures for predicting AD/ADRD risk from a larger pool of potentially correlated predictors. METHODS We used diagnosis record, survey, and genetic data from the Health and Retirement Study to assess the relative predictive strength of AD/ADRD risk factors spanning several domains: comorbidities, demographics/socioeconomics, health-related behavior, genetics, and environmental exposure. A modified stepwise-AIC-best-subset blanket algorithm was then used to select an optimal set of predictors. RESULTS The final predictive model was reduced to 10 features for AD and 19 for ADRD; concordance statistics were about 0.85 for one-year and 0.70 for ten-year follow-up. Depression, arterial hypertension, traumatic brain injury, cerebrovascular diseases, and the APOE4 proxy SNP rs769449 had the strongest individual associations with AD/ADRD risk. AD/ADRD risk-related co-morbidities provide predictive power on par with key genetic vulnerabilities. CONCLUSION Results confirm the consensus that circulatory diseases are the main comorbidities associated with AD/ADRD risk and show that clinical diagnosis records outperform comparable self-reported measures in predicting AD/ADRD risk. Model construction algorithms combined with modern data allows researchers to conserve power (especially in the study of disparities where disadvantaged groups are often grossly underrepresented) while accounting for a high proportion of AD/ADRD-risk-related population heterogeneity stemming from multiple domains.
Collapse
Affiliation(s)
- Igor Akushevich
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Arseniy Yashkin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Svetlana Ukraintseva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Anatoliy I. Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Julia Kravchenko
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
12
|
Akushevich I, Kravchenko J, Yashkin A, Doraiswamy PM, Hill CV. Expanding the scope of health disparities research in Alzheimer's disease and related dementias: Recommendations from the "Leveraging Existing Data and Analytic Methods for Health Disparities Research Related to Aging and Alzheimer's Disease and Related Dementias" Workshop Series. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12415. [PMID: 36935764 PMCID: PMC10020680 DOI: 10.1002/dad2.12415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 03/18/2023]
Abstract
Topics discussed at the "Leveraging Existing Data and Analytic Methods for Health Disparities Research Related to Aging and Alzheimer's Disease and Related Dementias" workshop, held by Duke University and the Alzheimer's Association with support from the National Institute on Aging, are summarized. Ways in which existing data resources paired with innovative applications of both novel and well-known methodologies can be used to identify the effects of multi-level societal, community, and individual determinants of race/ethnicity, sex, and geography-related health disparities in Alzheimer's disease and related dementia are proposed. Current literature on the population analyses of these health disparities is summarized with a focus on identifying existing gaps in knowledge, and ways to mitigate these gaps using data/method combinations are discussed at the workshop. Substantive and methodological directions of future research capable of advancing health disparities research related to aging are formulated.
Collapse
Affiliation(s)
- Igor Akushevich
- Social Science Research InstituteBiodemography of Aging Research UnitDuke UniversityDurhamNorth CarolinaUSA
| | - Julia Kravchenko
- Duke University School of MedicineDepartment of SurgeryDurhamNorth CarolinaUSA
| | - Arseniy Yashkin
- Social Science Research InstituteBiodemography of Aging Research UnitDuke UniversityDurhamNorth CarolinaUSA
| | - P. Murali Doraiswamy
- Departments of Psychiatry and MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
| | | | | |
Collapse
|
13
|
Molot J, Sears M, Marshall LM, Bray RI. Neurological susceptibility to environmental exposures: pathophysiological mechanisms in neurodegeneration and multiple chemical sensitivity. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:509-530. [PMID: 34529912 DOI: 10.1515/reveh-2021-0043] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/13/2021] [Indexed: 05/23/2023]
Abstract
The World Health Organization lists air pollution as one of the top five risks for developing chronic non-communicable disease, joining tobacco use, harmful use of alcohol, unhealthy diets and physical inactivity. This review focuses on how host defense mechanisms against adverse airborne exposures relate to the probable interacting and overlapping pathophysiological features of neurodegeneration and multiple chemical sensitivity. Significant long-term airborne exposures can contribute to oxidative stress, systemic inflammation, transient receptor subfamily vanilloid 1 (TRPV1) and subfamily ankyrin 1 (TRPA1) upregulation and sensitization, with impacts on olfactory and trigeminal nerve function, and eventual loss of brain mass. The potential for neurologic dysfunction, including decreased cognition, chronic pain and central sensitization related to airborne contaminants, can be magnified by genetic polymorphisms that result in less effective detoxification. Onset of neurodegenerative disorders is subtle, with early loss of brain mass and loss of sense of smell. Onset of MCS may be gradual following long-term low dose airborne exposures, or acute following a recognizable exposure. Upregulation of chemosensitive TRPV1 and TRPA1 polymodal receptors has been observed in patients with neurodegeneration, and chemically sensitive individuals with asthma, migraine and MCS. In people with chemical sensitivity, these receptors are also sensitized, which is defined as a reduction in the threshold and an increase in the magnitude of a response to noxious stimulation. There is likely damage to the olfactory system in neurodegeneration and trigeminal nerve hypersensitivity in MCS, with different effects on olfactory processing. The associations of low vitamin D levels and protein kinase activity seen in neurodegeneration have not been studied in MCS. Table 2 presents a summary of neurodegeneration and MCS, comparing 16 distinctive genetic, pathophysiological and clinical features associated with air pollution exposures. There is significant overlap, suggesting potential comorbidity. Canadian Health Measures Survey data indicates an overlap between neurodegeneration and MCS (p < 0.05) that suggests comorbidity, but the extent of increased susceptibility to the other condition is not established. Nevertheless, the pathways to the development of these conditions likely involve TRPV1 and TRPA1 receptors, and so it is hypothesized that manifestation of neurodegeneration and/or MCS and possibly why there is divergence may be influenced by polymorphisms of these receptors, among other factors.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, North York, ON, Canada
| | | | | | - Riina I Bray
- Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Khreis H, Bredell C, Wai Fung K, Hong L, Szybka M, Phillips V, Abbas A, Lim YH, Jovanovic Andersen Z, Woodcock J, Brayne C. Impact of long-term air pollution exposure on incidence of neurodegenerative diseases: A protocol for a systematic review and exposure-response meta-analysis. ENVIRONMENT INTERNATIONAL 2022; 170:107596. [PMID: 36308811 DOI: 10.1016/j.envint.2022.107596] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Ambient air pollution is a pervasive and ubiquitous hazard, which has been linked to premature morbidity and a growing number of morbidity endpoints. Air pollution may be linked to neurodegeneration, and via this or other pathways, to neurodegenerative diseases. Emerging evidence suggests that air pollution may contribute to neurodegenerative diseases such as dementia, Parkinson's Disease (PD), Multiple Sclerosis (MS) and Motor Neuron Diseases (MND), although this evidence remains inconsistent and very limited for MS and MND. In addition, this evidence base is rapidly emerging and would benefit from a wide and critical synthesis, including a better understanding of heterogeneity. OBJECTIVES In this paper, we present a protocol for a systematic review and meta-analysis and specify our methods a priori. The main aim of the planned systematic review is to answer the question of whether long-term exposure (>1 year) to ambient (outdoor) air pollution (exposure, compared to lower exposure) increases the risk of adult (population) incidence of neurodegenerative diseases (outcomes) in epidemiological observational studies (study design). Another aim is to meta-analyze the associations between long-term exposure to ambient air pollutants and the risk of the selected outcomes and assess the shape of exposure-response functions. To set the stage for the proposed work, we also overview the existing epidemiological evidence in this protocol, but do not critically evaluate it, as these results will be fully presented in the planned systematic review. SEARCH AND STUDY ELIGIBILITY We will search the electronic databases Medline (via Ovid), Embase (via Ovid), Cochrane Library, Cinahl (via Ebscohost), Global Health (via Ebscohost), PsycINFO (via Ebscohost), Scopus, Web of Science (Core Collection), from inception to October 2022. Eligible studies must contain primary research investigating the link between 1-year + exposure to any outdoor air pollutant, from any source, and dementia, PD, MS, and MND, or dementia subtypes: Alzheimer's Disease, vascular dementia, and mixed dementia. The search strategy and eligibility criteria are pre-determined and described in full in this protocol. STUDY APPRAISAL AND SYNTHESIS METHODS Articles will be stored and screened using Rayyan QCRI. Title and abstract screening, full text review, data extraction, risk of bias assessment and data preparation for statistical analysis will be conducted independently by two reviewers using pre-defined forms and criteria, described in this protocol. All these steps will also be piloted and the forms and/or methods adapted if issues arise. Meta-analysis and assessment of the shape of the exposure-response functions will be conducted if four independent exposure-outcomes pairs are available, and the remainder of results will be synthesized in the forms of tables and via a narrative summary. Certainty in the body of evidence will be assessed using the OHAT approach. This protocol describes the planned analysis and synthesis a priori and serves to increase transparency and impact of this systematic review and meta-analysis.
Collapse
Affiliation(s)
- Haneen Khreis
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0SL, United Kingdom.
| | - Christiaan Bredell
- University of Cambridge School of Clinical Medicine, Cambridge CB2 0SL, United Kingdom
| | - Kwan Wai Fung
- University of Cambridge School of Clinical Medicine, Cambridge CB2 0SL, United Kingdom
| | - Lucy Hong
- University of Cambridge School of Clinical Medicine, Cambridge CB2 0SL, United Kingdom
| | - Magdalena Szybka
- University of Cambridge School of Clinical Medicine, Cambridge CB2 0SL, United Kingdom
| | - Veronica Phillips
- University of Cambridge Medical Library, University of Cambridge School of Clinical Medicine, Hills Rd, Cambridge CB2 0SP, United Kingdom
| | - Ali Abbas
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0SL, United Kingdom
| | - Youn-Hee Lim
- Section of Environmental and Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, 15 Øster Farimagsgade 5, 1014 Copenhagen, Denmark
| | - Zorana Jovanovic Andersen
- Section of Environmental and Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, 15 Øster Farimagsgade 5, 1014 Copenhagen, Denmark
| | - James Woodcock
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0SL, United Kingdom
| | - Carol Brayne
- Cambridge Public Health, University of Cambridge, Cambridge CB2 0SR, United Kingdom
| |
Collapse
|
15
|
Sayed TS, Maayah ZH, Zeidan HA, Agouni A, Korashy HM. Insight into the physiological and pathological roles of the aryl hydrocarbon receptor pathway in glucose homeostasis, insulin resistance, and diabetes development. Cell Mol Biol Lett 2022; 27:103. [PMID: 36418969 PMCID: PMC9682773 DOI: 10.1186/s11658-022-00397-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcriptional factor that mediates the toxicities of several environmental pollutants. Decades of research have been carried out to understand the role of AhR as a novel mechanism for disease development. Its involvement in the pathogenesis of cancer, cardiovascular diseases, rheumatoid arthritis, and systemic lupus erythematosus have long been known. One of the current hot research topics is investigating the role of AhR activation by environmental pollutants on glucose homeostasis and insulin secretion, and hence the pathogenesis of diabetes mellitus. To date, epidemiological studies have suggested that persistent exposure to environmental contaminants such as dioxins, with subsequent AhR activation increases the risk of specific comorbidities such as obesity and diabetes. The importance of AhR signaling in various molecular pathways highlights that the role of this receptor is far beyond just xenobiotic metabolism. The present review aims at providing significant insight into the physiological and pathological role of AhR and its regulated enzymes, such as cytochrome P450 1A1 (CYP1A1) and CYP1B1 in both types of diabetes. It also provides a comprehensive summary of the current findings of recent research studies investigating the role of the AhR/CYP1A1 pathway in insulin secretion and glucose hemostasis in the pancreas, liver, and adipose tissues. This review further highlights the molecular mechanisms involved, such as gluconeogenesis, hypoxia-inducible factor (HIF), oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Tahseen S. Sayed
- grid.412603.20000 0004 0634 1084Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, 2713, Doha, Qatar
| | - Zaid H. Maayah
- grid.412603.20000 0004 0634 1084Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, 2713, Doha, Qatar
| | - Heba A. Zeidan
- grid.498552.70000 0004 0409 8340American School of Doha, Doha, Qatar
| | - Abdelali Agouni
- grid.412603.20000 0004 0634 1084Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, 2713, Doha, Qatar
| | - Hesham M. Korashy
- grid.412603.20000 0004 0634 1084Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, 2713, Doha, Qatar
| |
Collapse
|
16
|
Tazerji SS, Nardini R, Safdar M, Shehata AA, Duarte PM. An Overview of Anthropogenic Actions as Drivers for Emerging and Re-Emerging Zoonotic Diseases. Pathogens 2022; 11:1376. [PMID: 36422627 PMCID: PMC9692567 DOI: 10.3390/pathogens11111376] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/05/2022] [Accepted: 11/15/2022] [Indexed: 08/05/2023] Open
Abstract
Population growth and industrialization have led to a race for greater food and supply productivity. As a result, the occupation and population of forest areas, contact with wildlife and their respective parasites and vectors, the trafficking and consumption of wildlife, the pollution of water sources, and the accumulation of waste occur more frequently. Concurrently, the agricultural and livestock production for human consumption has accelerated, often in a disorderly way, leading to the deforestation of areas that are essential for the planet's climatic and ecological balance. The effects of human actions on other ecosystems such as the marine ecosystem cause equally serious damage, such as the pollution of this habitat, and the reduction of the supply of fish and other animals, causing the coastal population to move to the continent. The sum of these factors leads to an increase in the demands such as housing, basic sanitation, and medical assistance, making these populations underserved and vulnerable to the effects of global warming and to the emergence of emerging and re-emerging diseases. In this article, we discuss the anthropic actions such as climate changes, urbanization, deforestation, the trafficking and eating of wild animals, as well as unsustainable agricultural intensification which are drivers for emerging and re-emerging of zoonotic pathogens such as viral (Ebola virus, hantaviruses, Hendravirus, Nipah virus, rabies, and severe acute respiratory syndrome coronavirus disease-2), bacterial (leptospirosis, Lyme borreliosis, and tuberculosis), parasitic (leishmaniasis) and fungal pathogens, which pose a substantial threat to the global community. Finally, we shed light on the urgent demand for the implementation of the One Health concept as a collaborative global approach to raise awareness and educate people about the science behind and the battle against zoonotic pathogens to mitigate the threat for both humans and animals.
Collapse
Affiliation(s)
- Sina Salajegheh Tazerji
- Department of Clinical Science, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran P.O. Box. 1477893855, Iran
- Young Researchers and Elites Club Science and Research Branch, Islamic Azad University; Tehran P.O. Box. 1477893855, Iran
| | - Roberto Nardini
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy
| | - Muhammad Safdar
- Department of Breeding and Genetics, Cholistan University of Veterinary & Animal Sciences, Bahawalpur 63100, Pakistan
| | - Awad A. Shehata
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
- Research and Development Section, PerNaturam GmbH, 56290 Gödenroth, Germany
- Prophy-Institute for Applied Prophylaxis, 59159 Bönen, Germany
| | - Phelipe Magalhães Duarte
- Postgraduate Program in Animal Bioscience, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco 52171-900, Brazil
| |
Collapse
|
17
|
Migliore L, Coppedè F. Gene-environment interactions in Alzheimer disease: the emerging role of epigenetics. Nat Rev Neurol 2022; 18:643-660. [PMID: 36180553 DOI: 10.1038/s41582-022-00714-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 12/15/2022]
Abstract
With the exception of a few monogenic forms, Alzheimer disease (AD) has a complex aetiology that is likely to involve multiple susceptibility genes and environmental factors. The role of environmental factors is difficult to determine and, until a few years ago, the molecular mechanisms underlying gene-environment (G × E) interactions in AD were largely unknown. Here, we review evidence that has emerged over the past two decades to explain how environmental factors, such as diet, lifestyle, alcohol, smoking and pollutants, might interact with the human genome. In particular, we discuss how various environmental AD risk factors can induce epigenetic modifications of key AD-related genes and pathways and consider how epigenetic mechanisms could contribute to the effects of oxidative stress on AD onset. Studies on early-life exposures are helping to uncover critical time windows of sensitivity to epigenetic influences from environmental factors, thereby laying the foundations for future primary preventative approaches. We conclude that epigenetic modifications need to be considered when assessing G × E interactions in AD.
Collapse
Affiliation(s)
- Lucia Migliore
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy. .,Department of Laboratory Medicine, Pisa University Hospital, Pisa, Italy.
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
18
|
Landrigan PJ, Fisher S, Kenny ME, Gedeon B, Bryan L, Mu J, Bellinger D. A replicable strategy for mapping air pollution's community-level health impacts and catalyzing prevention. Environ Health 2022; 21:70. [PMID: 35843932 PMCID: PMC9288863 DOI: 10.1186/s12940-022-00879-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Air pollution was responsible for an estimated 6.7 million deaths globally in 2019 and 197,000 deaths in the United States. Fossil fuel combustion is the major source. HYPOTHESIS Mapping air pollution's health impacts at the community level using publicly available data and open-source software will provide a replicable strategy for catalyzing pollution prevention. METHODS Using EPA's Environmental Benefits Mapping and Analysis (BenMAP-CE) software and state data, we quantified the effects of airborne fine particulate matter (PM2.5) pollution on disease, death and children's cognitive function (IQ Loss) in each city and town in Massachusetts. To develop a first-order estimate of PM2.5 pollution's impact on child IQ, we derived a concentration-response coefficient through literature review. FINDINGS The annual mean PM2.5 concentration in Massachusetts in 2019 was 6.3 μg/M3, a level below EPA's standard of 12 μg/M3 and above WHO's guideline of 5 μg/M3. In adults, PM2.5 pollution was responsible for an estimated 2780 (Confidence Interval [CI] 2726 - 2853) deaths: 1677 (CI, 1346 - 1926) from cardiovascular disease, 2185 (CI, 941-3409) from lung cancer, 200 (CI, 66-316) from stroke, and 343 (CI, 222-458) from chronic respiratory disease. In children, PM2.5 pollution was responsible for 308 (CI, 105-471) low-weight births, 15,386 (CJ, 5433-23,483) asthma cases, and a provisionally estimated loss of nearly 2 million Performance IQ points; IQ loss impairs children's school performance, reduces graduation rates and decreases lifetime earnings. Air-pollution-related disease, death and IQ loss were most severe in low-income, minority communities, but occurred in every city and town in Massachusetts regardless of location, demographics or median family income. CONCLUSION Disease, death and IQ loss occur at air pollution exposure levels below current EPA standards. Prevention of disease and premature death and preservation of children's cognitive function will require that EPA air quality standards be tightened. Enduring prevention will require government-incentivized transition to renewable energy coupled with phase-outs of subsidies and tax breaks for fossil fuels. Highly localized information on air pollution's impacts on health and on children's cognitive function has potential to catalyze pollution prevention.
Collapse
Affiliation(s)
- Philip J Landrigan
- Global Observatory on Pollution and Health, Boston College, Boston, MA, USA.
- Centre Scientifique de Monaco, Monaco, MC, Monaco.
| | - Samantha Fisher
- Global Observatory on Pollution and Health, Boston College, Boston, MA, USA
- Environmental; Epidemiology Program, City University of New York, New York, USA
| | - Maureen E Kenny
- Lynch School of Education and Human Development, Boston College, Boston, MA, USA
| | - Brittney Gedeon
- Morrissey College of Arts and Sciences, Boston College, Boston, MA, USA
| | - Luke Bryan
- Morrissey College of Arts and Sciences, Boston College, Boston, MA, USA
| | - Jenna Mu
- Morrissey College of Arts and Sciences, Boston College, Boston, MA, USA
| | - David Bellinger
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, USA
| |
Collapse
|
19
|
Indirect mediators of systemic health outcomes following nanoparticle inhalation exposure. Pharmacol Ther 2022; 235:108120. [PMID: 35085604 PMCID: PMC9189040 DOI: 10.1016/j.pharmthera.2022.108120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
The growing field of nanoscience has shed light on the wide diversity of natural and anthropogenic sources of nano-scale particulates, raising concern as to their impacts on human health. Inhalation is the most robust route of entry, with nanoparticles (NPs) evading mucociliary clearance and depositing deep into the alveolar region. Yet, impacts from inhaled NPs are evident far outside the lung, particularly on the cardiovascular system and highly vascularized organs like the brain. Peripheral effects are partly explained by the translocation of some NPs from the lung into the circulation; however, other NPs largely confined to the lung are still accompanied by systemic outcomes. Omic research has only just begun to inform on the complex myriad of molecules released from the lung to the blood as byproducts of pulmonary pathology. These indirect mediators are diverse in their molecular make-up and activity in the periphery. The present review examines systemic outcomes attributed to pulmonary NP exposure and what is known about indirect pathological mediators released from the lung into the circulation. Further focus was directed to outcomes in the brain, a highly vascularized region susceptible to acute and longer-term outcomes. Findings here support the need for big-data toxicological studies to understand what drives these health outcomes and better predict, circumvent, and treat the potential health impacts arising from NP exposure scenarios.
Collapse
|
20
|
Yun B, Sim J, Lee S, Cho A, Oh J, Kim S, Yoon JH. The relationship between occupational dust exposure and incidence of diabetes in male workers: A retrospective cohort study. Diabet Med 2022; 39:e14837. [PMID: 35352388 DOI: 10.1111/dme.14837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
AIM Previous studies have focused on the association between ambient particulate matter and diabetes. However, the relationship between subacute exposure to occupational dust and diabetes has not been explored. We aimed to assess this relationship. METHODS Men who worked in dust-related process factories between January 2013 and December 2017 were recruited from a Korea Health Worker Examination Common Data Model cohort. A history of physician-diagnosed diabetes, use of an anti-diabetic drug, or a fasting blood glucose level of ≥7 mmol/L were considered the criteria to diagnose diabetes. Multivariable time-dependent Cox analysis estimated hazard ratios (HRs) and 95% CIs for incident diabetes associated with exposure to occupational dust exposure; interactions with lifestyle factors were analysed. Sensitivity analyses used propensity score matching and landmark analysis. RESULTS Among 5141 male participants (median follow-up duration, 3.85 years), 349 participants had diabetes. Occupational dust exposure was related to an increased risk of diabetes in the time-dependent Cox analysis (entire cohort: HR 1.66 [95% CI 1.25-2.19], matched cohort: HR 1.65 [95% CI 1.22-2.24]). The findings showed the same direction in the landmark analysis (HR 1.42 [95% CI 1.01-1.99]). CONCLUSIONS A significant relationship exists between occupational dust exposure and increased risk of diabetes in male workers. Further studies should be conducted to confirm that occupational dust exposure is a possible risk factor for diabetes.
Collapse
Affiliation(s)
- Byungyoon Yun
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Juho Sim
- Department of Public Health, Graduate School, Yonsei University, Seoul, Republic of Korea
| | - Seunghyun Lee
- The Institute for Occupational Health, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ara Cho
- Department of Occupational Health, Graduate School of Public Health, Yonsei University, Seoul, Republic of Korea
| | - Juyeon Oh
- Department of information statistics, Wonju Christian Yonsei University, Wonju, Republic of Korea
| | - Seunghan Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin-Ha Yoon
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- The Institute for Occupational Health, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
21
|
Tham R, Wheeler AJ, Carver A, Dunstan D, Donaire-Gonzalez D, Anstey KJ, Shaw JE, Magliano DJ, Martino E, Barnett A, Cerin E. Associations between Traffic-Related Air Pollution and Cognitive Function in Australian Urban Settings: The Moderating Role of Diabetes Status. TOXICS 2022; 10:289. [PMID: 35736898 PMCID: PMC9228131 DOI: 10.3390/toxics10060289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 11/29/2022]
Abstract
Traffic-related air pollution (TRAP) is associated with lower cognitive function and diabetes in older adults, but little is known about whether diabetes status moderates the impact of TRAP on older adult cognitive function. We analysed cross-sectional data from 4141 adults who participated in the Australian Diabetes, Obesity and Lifestyle (AusDiab) study in 2011-2012. TRAP exposure was estimated using major and minor road density within multiple residential buffers. Cognitive function was assessed with validated psychometric scales, including: California Verbal Learning Test (memory) and Symbol-Digit Modalities Test (processing speed). Diabetes status was measured using oral glucose tolerance tests. We observed positive associations of some total road density measures with memory but not processing speed. Minor road density was not associated with cognitive function, while major road density showed positive associations with memory and processing speed among larger buffers. Within a 300 m buffer, the relationship between TRAP and memory tended to be positive in controls (β = 0.005; p = 0.062), but negative in people with diabetes (β = -0.013; p = 0.026) and negatively associated with processing speed in people with diabetes only (β = -0.047; p = 0.059). Increased TRAP exposure may be positively associated with cognitive function among urban-dwelling people, but this benefit may not extend to those with diabetes.
Collapse
Affiliation(s)
- Rachel Tham
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (A.J.W.); (A.C.); (A.B.)
- Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3053, Australia; (R.T.); (E.M.)
| | - Amanda J. Wheeler
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (A.J.W.); (A.C.); (A.B.)
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Alison Carver
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (A.J.W.); (A.C.); (A.B.)
| | - David Dunstan
- School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (D.D.); (J.E.S.); (D.J.M.)
| | | | - Kaarin J. Anstey
- School of Psychology, University of New South Wales, Randwick, NSW 2052, Australia;
- Neuroscience Research Australia (NeuRA), Sydney, NSW 2031, Australia
| | - Jonathan E. Shaw
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (D.D.); (J.E.S.); (D.J.M.)
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
- School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia
| | - Dianna J. Magliano
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (D.D.); (J.E.S.); (D.J.M.)
| | - Erika Martino
- Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3053, Australia; (R.T.); (E.M.)
| | - Anthony Barnett
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (A.J.W.); (A.C.); (A.B.)
| | - Ester Cerin
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia; (A.J.W.); (A.C.); (A.B.)
- School of Public Health, The University of Hong Kong, 7 Sassoon Rd., Pokfulam, Hong Kong, China
- Department of Community Medicine, UiT The Artic University of Norway, 9019 Tromsø, Norway
| |
Collapse
|
22
|
Choi HS, Kim JT, Seo JY, Linkov F, Shubnikov E, Lee HK. Correlation between total air pollutant emissions and incidence of type 1 diabetes in the Russian Federation. Clin Exp Pediatr 2021; 64:525-530. [PMID: 33539701 PMCID: PMC8498011 DOI: 10.3345/cep.2020.01501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/31/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Exposure to air pollution (gaseous pollutants and/or particulate matter) has been associated with the incidence, prevalence, and mortality of type 1 diabetes (T1D). PURPOSE To examine the quantitative relationship between air pollutant emissions and the incidence of T1D. METHODS We examined the association between the incidence of T1D and type 2 diabetes (T2D) in 2017 as well as that of T1D in patients younger than 15 years in 2016 with "emissions of air-polluting substances from stationary and mobile sources by regions of the Russian Federation in 2016" as reported by the Federal Diabetes Register of Russia downloaded from the Russian government website (http://www.mnr.gov.ru/docs/gosudarstvennye_doklady/o_sostoyanii_i_ob_okhrane_okruzhayushchey_sredy_rossiyskoy_federatsii/). RESULTS The incidence of T1D across all ages in each region of the Russian Federation correlated with the total air pollutants emitted in the region each year (r=0.278, P=0.013). The incidence of T2D was also correlated with the amount of air pollutants (r=0.234, P=0.037) and the incidence of T1D (r=0.600, P<0.001) in each country. Similarly, the incidence of T1D in patients younger than 15 years correlated with the total air pollutants emitted each year in each region (r=0.300, P=0.011). CONCLUSION The quantitative relationship between the total air pollutants emitted and the incidence of T1D and T2D in the Russian Federation suggests that air pollution contributes to the development of T1D and T2D.
Collapse
Affiliation(s)
- Hoon Sung Choi
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Jin Taek Kim
- Department of Internal Medicine, Eulji General Hospital, Eulji University School of Medicine, Seoul, Korea
| | - Ji-Young Seo
- Department of Pediatrics, Eulji General Hospital, Eulji University School of Medicine, Seoul, Korea
| | - Faina Linkov
- Department of Health Administration and Public Health, Rangos School of Health Sciences, Duquesne University, Pittsburgh, PA, USA
| | | | - Hong Kyu Lee
- Department of Internal Medicine, Eulji General Hospital, Eulji University School of Medicine, Seoul, Korea
| |
Collapse
|
23
|
Oxidative Stress Biomarkers in the Relationship between Type 2 Diabetes and Air Pollution. Antioxidants (Basel) 2021; 10:antiox10081234. [PMID: 34439482 PMCID: PMC8388875 DOI: 10.3390/antiox10081234] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022] Open
Abstract
The incidence and prevalence of type 2 diabetes have increased in the last decades and are expected to further grow in the coming years. Chronic hyperglycemia triggers free radical generation and causes increased oxidative stress, affecting a number of molecular mechanisms and cellular pathways, including the generation of advanced glycation end products, proinflammatory and procoagulant effects, induction of apoptosis, vascular smooth-muscle cell proliferation, endothelial and mitochondrial dysfunction, reduction of nitric oxide release, and activation of protein kinase C. Among type 2 diabetes determinants, many data have documented the adverse effects of environmental factors (e.g., air pollutants) through multiple exposure-induced mechanisms (e.g., systemic inflammation and oxidative stress, hypercoagulability, and endothelial and immune responses). Therefore, here we discuss the role of air pollution in oxidative stress-related damage to glycemic metabolism homeostasis, with a particular focus on its impact on health. In this context, the improvement of new advanced tools (e.g., omic techniques and the study of epigenetic changes) may provide a substantial contribution, helping in the evaluation of the individual in his biological totality, and offer a comprehensive assessment of the molecular, clinical, environmental, and epidemiological aspects.
Collapse
|
24
|
Dos Santos NV, Yariwake VY, Marques KDV, Veras MM, Fajersztajn L. Air Pollution: A Neglected Risk Factor for Dementia in Latin America and the Caribbean. Front Neurol 2021; 12:684524. [PMID: 34367051 PMCID: PMC8339300 DOI: 10.3389/fneur.2021.684524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
The risk of dementia and Alzheimer's disease in Latin America and the Caribbean (LAC) rises with increasing age and polluted air. Currently, at least 172 million people breathe unhealthy levels of air pollution in LAC countries. Several cohort studies have indicated that air pollution increases the risk of developing dementia and neurodegenerative diseases, but the mechanisms underlying the association are still not clear. Air pollution causes and aggravates five established risk factors for dementia (obesity, hypertension, stroke, diabetes mellitus, and heart diseases) and is linked to three other risk factors (physical inactivity, cognitive inactivity, and depression). Some of these risk factors could be mediating the association between air pollution and dementia. Reducing the risks for dementia is crucial and urgently needed in LAC countries. There is room for improving air quality in many urban areas in the LAC region and other low- and middle-income countries (LMICs), a routealready explored by many urban areas in developing regions. Moreover, reducing air pollution has proved to improve health outcomes before. In this article, we propose that despite the ongoing and valid scientific discussion, if air pollution can or cannot directly affect the brain and cause or aggravate dementia, we are ready to consider air pollution as a potentially modifiable risk factor for dementia in LAC and possibly in other LMICs. We suggest that controlling and reducing current air pollution levels in LAC and other LMIC regions now could strongly contribute.
Collapse
Affiliation(s)
- Nathália Villa Dos Santos
- Laboratório de Poluição Ambiental, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Departamento de Saude Ambiental, Faculdade de Saude Publica, Universidade de São Paulo, São Paulo, Brazil
| | - Victor Yuji Yariwake
- Laboratório de Poluição Ambiental, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Mariana Matera Veras
- Laboratório de Poluição Ambiental, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Laís Fajersztajn
- Laboratório de Poluição Ambiental, Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Topping M, Kim J, Fletcher J. Geographic variation in Alzheimer's disease mortality. PLoS One 2021; 16:e0254174. [PMID: 34197566 PMCID: PMC8248693 DOI: 10.1371/journal.pone.0254174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/22/2021] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Accumulating evidence suggests the possibility that early life exposures may contribute to risk of Alzheimer's Disease (AD). This paper explores geographic disparities in AD mortality based on both state of residence in older age as well as state of birth measures in order to assess the relative importance of these factors. METHODS We use a subset of a large survey, the NIH-AARP Diet and Health Study, of over 150,000 individuals aged 65-70 with 15 years of mortality follow-up, allowing us to study over 1050 cases of AD mortality. We use multi-level logistic regression, where individuals are nested within states of residence and/or states of birth, to assess the contributions of place to AD mortality variation. RESULTS We show that state of birth explains a modest amount of variation in AD mortality, approximately 4%, which is consistent with life course theories that suggest that early life conditions can produce old age health disparities. However, we also show that nearly all of the variation from state of birth is explained by state of residence in old age. CONCLUSIONS These results suggest that later life factors are potentially more consequential targets for intervention in reducing AD mortality and provide some evidence against the importance of macro-level environmental exposures at birth as a core determinant of later AD.
Collapse
Affiliation(s)
- Michael Topping
- Departments of Sociology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jinho Kim
- Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Health Policy and Management, Korea University, Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea
| | - Jason Fletcher
- Departments of Sociology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- La Follette School of Public Affairs, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Agricultural and Applied Economics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Population Health Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
26
|
Barnhill LM, Khuansuwan S, Juarez D, Murata H, Araujo JA, Bronstein JM. Diesel Exhaust Extract Exposure Induces Neuronal Toxicity by Disrupting Autophagy. Toxicol Sci 2021; 176:193-202. [PMID: 32298450 DOI: 10.1093/toxsci/kfaa055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The vast majority of neurodegenerative disease cannot be attributed to genetic causes alone and as a result, there is significant interest in identifying environmental modifiers of disease risk. Epidemiological studies have supported an association between long-term exposure to air pollutants and disease risk. Here, we investigate the mechanisms by which diesel exhaust, a major component of air pollution, induces neurotoxicity. Using a zebrafish model, we found that exposure to diesel exhaust particulate extract caused behavioral deficits and a significant decrease in neuron number. The neurotoxicity was due, at least in part, to reduced autophagic flux, which is a major pathway implicated in neurodegeneration. This neuron loss occurred alongside an increase in aggregation-prone neuronal protein. Additionally, the neurotoxicity induced by diesel exhaust particulate extract in zebrafish was mitigated by co-treatment with the autophagy-inducing drug nilotinib. This study links environmental exposure to altered proteostasis in an in vivo model system. These results shed light on why long-term exposure to traffic-related air pollution increases neurodegenerative disease risk and open up new avenues for exploring therapies to mitigate environmental exposures and promote neuroprotection.
Collapse
Affiliation(s)
| | | | | | | | - Jesus A Araujo
- Molecular Toxicology IDP.,Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095
| | | |
Collapse
|
27
|
Liu RM, Chong Z, Chen JC. Ozone and Particulate Matter Exposure and Alzheimer's Disease: A Review of Human and Animal Studies. J Alzheimers Dis 2021; 76:807-824. [PMID: 32568209 DOI: 10.3233/jad-200435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), an aging-related neurodegenerative disease, is a major cause of dementia in the elderly. Although the early-onset (familial) AD is attributed to mutations in the genes coding for amyloid-β protein precursor (AβPP) and presenilin1/presenilin 2 (PS1/PS2), the cause for the late-onset AD (LOAD), which accounts for more than 95% of AD cases, remains unclear. Aging is the greatest risk factor for LOAD, whereas the apolipo protein E4 allele (APOEɛ4) is believed to be a major genetic risk factor in acquiring LOAD, with female APOEɛ4 carriers at highest risk. Nonetheless, not all the elderly, even older female APOEɛ4 carriers, develop LOAD, suggesting that other factors, including environmental exposure, must play a role. This review summarizes recent studies that show a potential role of environmental exposure, especially ozone and particulate matter exposure, in the development of AD. Interactions between environmental exposure, genetic risk factor (APOEɛ4), and sex in AD pathophysiology are also discussed briefly. Identification of environmental risk factor(s) and elucidation of the complex interactions between genetic and environmental risk factors plus aging and female sex in the onset of AD will be a key to our understanding of the etiology and pathogenesis of AD and the development of the strategies for its prevention and treatment.
Collapse
Affiliation(s)
- Rui-Ming Liu
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zechen Chong
- Department of Genetics, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jiu-Chiuan Chen
- Department of Biostatistics and Data Science, The University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
28
|
Delgado-Saborit JM, Guercio V, Gowers AM, Shaddick G, Fox NC, Love S. A critical review of the epidemiological evidence of effects of air pollution on dementia, cognitive function and cognitive decline in adult population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143734. [PMID: 33340865 DOI: 10.1016/j.scitotenv.2020.143734] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 05/24/2023]
Abstract
Dementia is arguably the most pressing public health challenge of our age. Since dementia does not have a cure, identifying risk factors that can be controlled has become paramount to reduce the personal, societal and economic burden of dementia. The relationship between exposure to air pollution and effects on cognitive function, cognitive decline and dementia has stimulated increasing scientific interest in the past few years. This review of the literature critically examines the available epidemiological evidence of associations between exposure to ambient air pollutants, cognitive performance, acceleration of cognitive decline, risk of developing dementia, neuroimaging and neurological biomarker studies, following Bradford Hill guidelines for causality. The evidence reviewed has been consistent in reporting associations between chronic exposure to air pollution and reduced global cognition, as well as impairment in specific cognitive domains including visuo-spatial abilities. Cognitive decline and dementia incidence have also been consistently associated with exposure to air pollution. The neuro-imaging studies reviewed report associations between exposure to air pollution and white matter volume reduction. Other reported effects include reduction in gray matter, larger ventricular volume, and smaller corpus callosum. Findings relating to ischemic (white matter hyperintensities/silent cerebral infarcts) and hemorrhagic (cerebral microbleeds) markers of cerebral small vessel disease have been heterogeneous, as have observations on hippocampal volume and air pollution. The few studies available on neuro-inflammation tend to report associations with exposure to air pollution. Several effect modifiers have been suggested in the literature, but more replication studies are required. Traditional confounding factors have been controlled or adjusted for in most of the reviewed studies. Additional confounding factors have also been considered, but the inclusion of these has varied among the different studies. Despite all the efforts to adjust for confounding factors, residual confounding cannot be completely ruled out, especially since the factors affecting cognition and dementia are not yet fully understood. The available evidence meets many of the Bradford Hill guidelines for causality. The reported associations between a range of air pollutants and effects on cognitive function in older people, including the acceleration of cognitive decline and the induction of dementia, are likely to be causal in nature. However, the diversity of study designs, air pollutants and endpoints examined precludes the attribution of these adverse effects to a single class of pollutant and makes meta-analysis inappropriate.
Collapse
Affiliation(s)
- Juana Maria Delgado-Saborit
- Universitat Jaume I, Perinatal Epidemiology, Environmental Health and Clinical Research, School of Medicine, Castellon, Spain; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, UK; ISGlobal Barcelona Institute for Global Health, Barcelona Biomedical Research Park, Barcelona, Spain; Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, UK.
| | - Valentina Guercio
- Air Quality and Public Health Group, Environmental Hazards and Emergencies Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, UK
| | - Alison M Gowers
- Air Quality and Public Health Group, Environmental Hazards and Emergencies Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, UK
| | | | - Nick C Fox
- Department of Neurodegenerative Disease, Dementia Research Centre, University College London, Institute of Neurology, London, UK
| | - Seth Love
- Institute of Clinical Neurosciences, University of Bristol, School of Medicine, Level 2 Learning and Research, Southmead Hospital, Bristol, UK
| |
Collapse
|
29
|
Younan D, Wang X, Casanova R, Barnard R, Gaussoin SA, Saldana S, Petkus AJ, Beavers DP, Resnick SM, Manson JE, Serre ML, Vizuete W, Henderson VW, Sachs BC, Salinas J, Gatz M, Espeland MA, Chui HC, Shumaker SA, Rapp SR, Chen JC. PM 2.5 Associated With Gray Matter Atrophy Reflecting Increased Alzheimer Risk in Older Women. Neurology 2021; 96:e1190-e1201. [PMID: 33208540 PMCID: PMC8055348 DOI: 10.1212/wnl.0000000000011149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/20/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To examine whether late-life exposure to PM2.5 (particulate matter with aerodynamic diameters <2.5 µm) contributes to progressive brain atrophy predictive of Alzheimer disease (AD) using a community-dwelling cohort of women (age 70-89 years) with up to 2 brain MRI scans (MRI-1, 2005-2006; MRI-2, 2010-2011). METHODS AD pattern similarity (AD-PS) scores, developed by supervised machine learning and validated with MRI data from the Alzheimer's Disease Neuroimaging Initiative, were used to capture high-dimensional gray matter atrophy in brain areas vulnerable to AD (e.g., amygdala, hippocampus, parahippocampal gyrus, thalamus, inferior temporal lobe areas, and midbrain). Using participants' addresses and air monitoring data, we implemented a spatiotemporal model to estimate 3-year average exposure to PM2.5 preceding MRI-1. General linear models were used to examine the association between PM2.5 and AD-PS scores (baseline and 5-year standardized change), accounting for potential confounders and white matter lesion volumes. RESULTS For 1,365 women 77.9 ± 3.7 years of age in 2005 to 2006, there was no association between PM2.5 and baseline AD-PS score in cross-sectional analyses (β = -0.004; 95% confidence interval [CI] -0.019 to 0.011). Longitudinally, each interquartile range increase of PM2.5 (2.82 µg/m3) was associated with increased AD-PS scores during the follow-up, equivalent to a 24% (hazard ratio 1.24, 95% CI 1.14-1.34) increase in AD risk over 5 years (n = 712, age 77.4 ± 3.5 years). This association remained after adjustment for sociodemographics, intracranial volume, lifestyle, clinical characteristics, and white matter lesions and was present with levels below US regulatory standards (<12 µg/m3). CONCLUSIONS Late-life exposure to PM2.5 is associated with increased neuroanatomic risk of AD, which may not be explained by available indicators of cerebrovascular damage.
Collapse
Affiliation(s)
- Diana Younan
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York.
| | - Xinhui Wang
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - Ramon Casanova
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - Ryan Barnard
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - Sarah A Gaussoin
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - Santiago Saldana
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - Andrew J Petkus
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - Daniel P Beavers
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - Susan M Resnick
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - JoAnn E Manson
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - Marc L Serre
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - William Vizuete
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - Victor W Henderson
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - Bonnie C Sachs
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - Joel Salinas
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - Margaret Gatz
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - Mark A Espeland
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - Helena C Chui
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - Sally A Shumaker
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - Stephen R Rapp
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| | - Jiu-Chiuan Chen
- From the Departments of Preventive Medicine (D.Y., J.C.C) and Neurology (X.W., A.J.P., H.C.C., J.-C.C.) and the Center for Economic and Social Research (M.G.), University of Southern California, Los Angeles; Departments of Biostatistics and Data Science (R.C., R.B., S.A.G., S.S., D.P.B., M.A.E.), Psychiatry and Behavioral Medicine (S.R.R.), Social Sciences & Health Policy (S.A.S., S.R.R.), and Neurology (B.C.S.), Wake Forest School of Medicine, Winston-Salem, NC; Laboratory of Behavioral Neuroscience (S.M.R.), National Institute on Aging, Baltimore, MD; Department of Environmental Sciences and Engineering (M.L.S., W.V.), University of North Carolina, Chapel Hill; Departments of Health Research and Policy (Epidemiology) and Neurology and Neurological Sciences (V.W.H.), Stanford University, CA; Department of Medicine (J.E.M.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Center for Cognitive Neurology, Department of Neurology (J.S.), New York University Grossman School of Medicine, New York
| |
Collapse
|
30
|
Abstract
OBJECTIVE We assessed long-term incidence and prevalence trends of dementia and parkinsonism across major ethnic and immigrant groups in Ontario. METHODS Linking administrative databases, we established two cohorts (dementia 2001-2014 and parkinsonism 2001-2015) of all residents aged 20 to 100 years with incident diagnosis of dementia (N = 387,937) or parkinsonism (N = 59,617). We calculated age- and sex-standardized incidence and prevalence of dementia and parkinsonism by immigrant status and ethnic groups (Chinese, South Asian, and the General Population). We assessed incidence and prevalence trends using Poisson regression and Cochran-Armitage trend tests. RESULTS Across selected ethnic groups, dementia incidence and prevalence were higher in long-term residents than recent or longer-term immigrants from 2001 to 2014. During this period, age- and sex-standardized incidence of dementia in Chinese, South Asian, and the General Population increased, respectively, among longer-term immigrants (by 41%, 58%, and 42%) and long-term residents (28%, 7%, and 4%), and to a lesser degree among recent immigrants. The small number of cases precluded us from assessing parkinsonism incidence trends. For Chinese, South Asian, and the General Population, respectively, prevalence of dementia and parkinsonism modestly increased over time among recent immigrants but significantly increased among longer-term immigrants (dementia: 134%, 217%, and 117%; parkinsonism: 55%, 54%, and 43%) and long-term residents (dementia: 97%, 132%, and 71%; parkinsonism: 18%, 30%, and 29%). Adjustment for pre-existing conditions did not appear to explain incidence trends, except for stroke and coronary artery disease as potential drivers of dementia incidence. CONCLUSION Recent immigrants across major ethnic groups in Ontario had considerably lower rates of dementia and parkinsonism than long-term residents, but this difference diminished with longer-term immigrants.
Collapse
|
31
|
Dimakakou E, Johnston HJ, Streftaris G, Cherrie JW. Is Environmental and Occupational Particulate Air Pollution Exposure Related to Type-2 Diabetes and Dementia? A Cross-Sectional Analysis of the UK Biobank. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249581. [PMID: 33371391 PMCID: PMC7767456 DOI: 10.3390/ijerph17249581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/02/2023]
Abstract
Human exposure to particulate air pollution (e.g., PM2.5) can lead to adverse health effects, with compelling evidence that it can increase morbidity and mortality from respiratory and cardiovascular disease. More recently, there has also been evidence that long-term environmental exposure to particulate air pollution is associated with type-2 diabetes mellitus (T2DM) and dementia. There are many occupations that may expose workers to airborne particles and that some exposures in the workplace are very similar to environmental particulate pollution. We conducted a cross-sectional analysis of the UK Biobank cohort to verify the association between environmental particulate air pollution (PM2.5) exposure and T2DM and dementia, and to investigate if occupational exposure to particulates that are similar to those found in environmental air pollution could increase the odds of developing these diseases. The UK Biobank dataset comprises of over 500,000 participants from all over the UK. Environmental exposure variables were used from the UK Biobank. To estimate occupational exposure both the UK Biobank’s data and information from a job exposure matrix, specifically developed for UK Biobank (Airborne Chemical Exposure–Job Exposure Matrix (ACE JEM)), were used. The outcome measures were participants with T2DM and dementia. In appropriately adjusted models, environmental exposure to PM2.5 was associated with an odds ratio (OR) of 1.02 (95% CI 1.00 to 1.03) per unit exposure for developing T2DM, while PM2.5 was associated with an odds ratio of 1.06 (95% CI 0.96 to 1.16) per unit exposure for developing dementia. These environmental results align with existing findings in the published literature. Five occupational exposures (dust, fumes, diesel, mineral, and biological dust in the most recent job estimated with the ACE JEM) were investigated and the risks for most exposures for T2DM and for all the exposures for dementia were not significantly increased in the adjusted models. This was confirmed in a subgroup of participants where a full occupational history was available allowed an estimate of workplace exposures. However, when not adjusting for gender, some of the associations become significant, which suggests that there might be a bias between the occupational assessments for men and women. The results of the present study do not provide clear evidence of an association between occupational exposure to particulate matter and T2DM or dementia.
Collapse
Affiliation(s)
- Eirini Dimakakou
- School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Riccarton, Edinburgh EH14-4AS, UK; (H.J.J.); (J.W.C.)
- Correspondence:
| | - Helinor J. Johnston
- School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Riccarton, Edinburgh EH14-4AS, UK; (H.J.J.); (J.W.C.)
| | - George Streftaris
- Maxwell Institute for Mathematical Sciences, School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh EH14-4AS, UK;
| | - John W. Cherrie
- School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Riccarton, Edinburgh EH14-4AS, UK; (H.J.J.); (J.W.C.)
- Institute of Occupational Medicine (IOM), Riccarton, Edinburgh EH14-4AP, UK
| |
Collapse
|
32
|
Lee S, Choi JY, Yoon JH, Lee W. Effect of Severe External Airborne Agents' Exposure on Dementia. J Clin Med 2020; 9:jcm9124069. [PMID: 33348601 PMCID: PMC7766205 DOI: 10.3390/jcm9124069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
The impact of occupational and environmental exposure to external airborne agents on cognitive function, especially in incidence of dementia, is understudied. The present study was conducted to elucidate the association between severe external airborne agents' exposure and incidence of dementia among an elderly population and to explore the effects of exposure to severe external airborne agents on preclinical dementia using the screening test of dementia. From the National Health Insurance Service-Health Screening Cohort (NHIS-HealS, 2002-2015), 514,580 participants were used for data analysis. We estimated the standardized incidence ratio (SIR) according to the exposure to external airborne agents. Of the total participants (n = 514,580), 1340 (0.3%) experienced severe external airborne agents exposure, and 26,050 (5.1%) had been diagnosed with dementia. The SIRs (95%CI) of dementia in Alzheimer's disease, vascular dementia, dementia in other diseases, and unspecific dementia were 1.24 (1.01-1.49), 0.88 (0.37-1.32), 1.16 (0.01-2.77), and 0.69 (0.36-1.02), respectively. The risk of testing positive in the dementia screening significantly increased with exposure to severe external airborne agents after adjusting for all confounding variables. This study found that exposure to severe external airborne agents is a potential risk factor for dementia, especially in Alzheimer's disease. It is essential to create international awareness regarding the effect of airborne agents' exposure on dementia.
Collapse
Affiliation(s)
- Seunghyun Lee
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan;
| | - Joon Yul Choi
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Jin-Ha Yoon
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
- The Institute for Occupational Health, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: (J.-H.Y.); (W.L.)
| | - Wanhyung Lee
- Department of Occupational and Environmental Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Korea
- Correspondence: (J.-H.Y.); (W.L.)
| |
Collapse
|
33
|
Espejo W, Celis JE, Chiang G, Bahamonde P. Environment and COVID-19: Pollutants, impacts, dissemination, management and recommendations for facing future epidemic threats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141314. [PMID: 32795798 PMCID: PMC7385928 DOI: 10.1016/j.scitotenv.2020.141314] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 05/04/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has become a global pandemic. Its relationship with environmental factors is an issue that has attracted the attention of scientists and governments. This article aims to deal with a possible association between COVID-19 and environmental factors and provide some recommendations for adequately controlling future epidemic threats. Environmental management through ecosystem services has a relevant role in exposing and spreading infectious diseases, reduction of pollutants, and control of climatic factors. Pollutants and viruses (such as COVID-19) produce negative immunological responses and share similar mechanisms of action. Therefore, they can have an additive and enhancing role in viral diseases. Significant associations between air pollution and COVID-19 have been reported. Particulate matter (PM2.5, PM10) can obstruct the airway, exacerbating cases of COVID-19. Some climatic factors have been shown to affect SARS-CoV-2 transmission. Yet, it is not well established if climatic factors might have a cause-effect relationship to the spreading of SARS-CoV-2. So far, positive as well as negative indirect environmental impacts have been reported, with negative impacts greater and more persistent. Too little is known about the current pandemic to evaluate whether there is an association between environment and positive COVID-19 cases. We recommend smart technology to collect data remotely, the implementation of "one health" approach between public health physicians and veterinarians, and the use of biodegradable medical supplies in future epidemic threats.
Collapse
Affiliation(s)
- Winfred Espejo
- Department of Animal Science, Facultad de Ciencias Veterinarias, Universidad de Concepción, P.O. Box 537, Chillán, Chile..
| | - José E Celis
- Department of Animal Science, Facultad de Ciencias Veterinarias, Universidad de Concepción, P.O. Box 537, Chillán, Chile
| | - Gustavo Chiang
- Center for Applied Ecology & Sustainability (CAPES), Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, Chile
| | - Paulina Bahamonde
- Center for Genomics, Ecology & Environment (GEMA), Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile.; Núcleo Milenio INVASAL, Concepción, Chile
| |
Collapse
|
34
|
Evaluation of the Suitability of an Existing Job-Exposure Matrix for the Assessment of Exposure of UK Biobank Participants to Dust, Fumes, and Diesel Exhaust Particulates. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17144919. [PMID: 32650426 PMCID: PMC7400423 DOI: 10.3390/ijerph17144919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/19/2022]
Abstract
Many epidemiological studies have shown an association between outdoor particulate air pollutants and increased morbidity and mortality. Inhalation of ambient aerosols can exacerbate or promote the development of cardiovascular and pulmonary diseases as well as other diseases, such as type 2 diabetes mellitus (T2DM) and neurodegenerative diseases. Occupational exposure to dust, fumes and diesel exhaust particulates can also cause adverse health outcomes and there are numerous occupations where workers are exposed to airborne particles that are similar to ambient air pollution. An individual’s job title has normally been identified as a major determinant of workplace exposure in epidemiological studies. This has led to the development of Job–Exposure Matrices (JEMs) as a way of characterising specific workplace exposures. One JEM for airborne chemical exposures is the Airborne Chemical Exposure Job–Exposure Matrix (ACE JEM), developed specifically for the UK Biobank cohort. The objective of this paper is to evaluate the suitability of the ACE JEM in assessing occupational aerosol exposure of participants in the UK Biobank. We searched the scientific literature to identify exposure data linked to selected jobs in the ACE JEM and compared these data with the JEM assessments. Additionally, we carried out an independent expert-based assessment of exposure to compare with the JEM estimates. There is good published evidence to substantiate the high dust and biological dust assignments in the JEM and more limited evidence for diesel exhaust particulates. There is limited evidence in the published literature to substantiate moderate or low exposure assignments in the JEM. The independent expert-based assessment found good agreement at the two extremes of exposure in the JEM (high and no exposure), with uncertainty in all other classifications. The ACE JEM assignments are probably reliable for highly exposed jobs and for jobs assigned as unexposed. However, the assignments for medium and low exposures are less reliable. The ACE JEM is likely to be a good tool to examine associations between occupational exposures to particulates and chronic disease, although it should be used with caution. Further efforts should be made to improve the reliability of the ACE JEM.
Collapse
|
35
|
Elbarbary M, Honda T, Morgan G, Kelly P, Guo Y, Negin J. Ambient air pollution exposure association with diabetes prevalence and glycosylated hemoglobin (HbA1c) levels in China. Cross-sectional analysis from the WHO study of AGEing and adult health wave 1. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1149-1162. [PMID: 32615056 DOI: 10.1080/10934529.2020.1787011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Over the past decades, air pollution has become one of the critical environmental health issues in China. The present study aimed to evaluate links between ambient air pollution and the prevalence of type 2 diabetes mellitus (T2DM) and the levels of glycosylated hemoglobin (HbA1c). A multilevel linear and logistic regression was used to assess these associations among 7,770 participants aged ≥50 years from the WHO Study on global AGEing and adult health (SAGE) in China in 2007-2010. The average exposure to each of pollutants (particulate matter with an aerodynamic diameter of ≤10 μm/≤2.5 μm/≤1 μm [PM10/PM2.5/PM1] and nitrogen dioxide [NO2]) was estimated using a satellite-based spatial statistical model. In logistic models, a 10 µg/m3 increase in PM10 and PM2.5 was associated with increased T2DM prevalence (Prevalence Odds Ratio, POR: 1.27; 95% CI: 1.11, 1.45 and POR: 1.23; 95% CI: 1.03, 1.46). Similar increments in PM10, PM2.5, PM1 and NO2 were associated with increase in HbA1c levels of 1.8% (95% CI: 1.3, 2.3), 1.3% (95% CI: 1.1, 1.5), 0.7% (95% CI: 0.1, 1.3), and 0.8% (95% CI: 0.4, 1.2), respectively. In a large cohort of older Chinese adults, air pollution was liked to both higher T2DM prevalence and elevated HbA1c levels.
Collapse
Affiliation(s)
- Mona Elbarbary
- Faculty of Medicine and Health, Sydney School of Public Health, The University of Sydney, Sydney, Australia
| | - Trenton Honda
- Department of Family and Preventive Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Geoffrey Morgan
- Faculty of Medicine and Health, Sydney School of Public Health, The University of Sydney, Sydney, Australia
- School of Public Health, University Centre for Rural Health, Lismore, Australia
| | - Patrick Kelly
- Faculty of Medicine and Health, Sydney School of Public Health, The University of Sydney, Sydney, Australia
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine at the School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Joel Negin
- Faculty of Medicine and Health, Sydney School of Public Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
36
|
Challenges to and facilitators of occupational epidemiology research in the UK. Health Policy 2020; 124:772-780. [PMID: 32482438 DOI: 10.1016/j.healthpol.2020.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 11/23/2022]
Abstract
This study investigated the challenges and facilitators of occupational epidemiology (OE) research in the UK, and evaluated the impact of these challenges. Semi-structured in-depth interviews with leading UK-based OE researchers, and a survey of UK-based OE researchers were conducted. Seven leading researchers were interviewed, and there were 54 survey respondents. Key reported challenges for OE were diminishing resources during recent decades, influenced by social, economic and political drivers, and changing fashions in research policy. Consequently, the community is getting smaller and less influential. These challenges may have negatively affected OE research, causing it to fail to keep pace with recent methodological development and impacting its output of high-quality research. Better communication with, and support from other researchers and relevant policy and funding stakeholders was identified as the main facilitators to OE research. Many diseases were initially discovered in workplaces, as these make exceptionally good study populations to accurately assess exposures. Due to the decline of manufacturing industry, there is a perception that occupational diseases are now a thing of the past. Nevertheless, new occupational exposures remain under-evaluated and the UK has become reliant on overseas epidemiology. This has been exacerbated by the decline in the academic occupational medicine base. Maintaining UK-based OE research is hence necessary for the future development of occupational health services and policies for the UK workforce.
Collapse
|
37
|
Tsatsakis A, Petrakis D, Nikolouzakis TK, Docea AO, Calina D, Vinceti M, Goumenou M, Kostoff RN, Mamoulakis C, Aschner M, Hernández AF. COVID-19, an opportunity to reevaluate the correlation between long-term effects of anthropogenic pollutants on viral epidemic/pandemic events and prevalence. Food Chem Toxicol 2020; 141:111418. [PMID: 32437891 PMCID: PMC7211730 DOI: 10.1016/j.fct.2020.111418] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
Occupational, residential, dietary and environmental exposures to mixtures of synthetic anthropogenic chemicals after World War II have a strong relationship with the increase of chronic diseases, health cost and environmental pollution. The link between environment and immunity is particularly intriguing as it is known that chemicals and drugs can cause immunotoxicity (e.g., allergies and autoimmune diseases). In this review, we emphasize the relationship between long-term exposure to xenobiotic mixtures and immune deficiency inherent to chronic diseases and epidemics/pandemics. We also address the immunotoxicologic risk of vulnerable groups, taking into account biochemical and biophysical properties of SARS-CoV-2 and its immunopathological implications. We particularly underline the common mechanisms by which xenobiotics and SARS-CoV-2 act at the cellular and molecular level. We discuss how long-term exposure to thousand chemicals in mixtures, mostly fossil fuel derivatives, exposure toparticle matters, metals, ultraviolet (UV)–B radiation, ionizing radiation and lifestyle contribute to immunodeficiency observed in the contemporary pandemic, such as COVID-19, and thus threaten global public health, human prosperity and achievements, and global economy. Finally, we propose metrics which are needed to address the diverse health effects of anthropogenic COVID-19 crisis at present and those required to prevent similar future pandemics. Developmental exposure to environmental factors can disrupt the immune system. Long-term low-dose exposure to chemical mixtures is linked to imunodeficiency Immunodeficiency contributes to chronic diseases and the current Covid-19 pandemics. Environmental chemicals and microorganisms share similar molecular pathomechanisms (AhR pathway). Understanding the underlying pathomechanisms helps to improve public health.
Collapse
Affiliation(s)
- Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece; Department of Analytical and Forensic Medical Toxicology, Sechenov University, 2-4 Bolshaya Pirogovskaya st., 119991 Moscow, Russia; Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA.
| | - Demetrious Petrakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece.
| | | | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Marco Vinceti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, I-41125 Modena, Italy.
| | - Marina Goumenou
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece
| | - Ronald N Kostoff
- School of Public Policy, Georgia Institute of Technology, Gainesville, VA, 20155, USA.
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, Medical School, University of Crete, 71003 Heraklion, Crete, Greece.
| | - Michael Aschner
- Department of Analytical and Forensic Medical Toxicology, Sechenov University, 2-4 Bolshaya Pirogovskaya st., 119991 Moscow, Russia; Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA.
| | - Antonio F Hernández
- Department of Legal Medicine and Toxicology, University of Granada School of Medicine, 180016 Granada, Spain.
| |
Collapse
|
38
|
Brucker N, do Nascimento SN, Bernardini L, Charão MF, Garcia SC. Biomarkers of exposure, effect, and susceptibility in occupational exposure to traffic-related air pollution: A review. J Appl Toxicol 2020; 40:722-736. [PMID: 31960485 DOI: 10.1002/jat.3940] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 01/05/2023]
Abstract
There is a well-recognized association between environmental air pollution exposure and several human diseases. However, the relationship between diseases related to occupational air pollution exposure on roads and high levels of traffic-related air pollutants (TRAPs) is less substantiated. Biomarkers are essential tools in environmental and occupational toxicology, and studies on new biomarkers are increasingly relevant due to the need to determine early biomarkers to be assessed in exposure conditions. This review aimed to investigate the main advances in the biomonitoring of subjects occupationally exposed to air pollution, as well as to summarize the biomarkers of exposure, effect, and susceptibility. Furthermore, we discuss how biomarkers could be used to complement the current application of methods used to assess occupational exposures to xenobiotics present in air pollution. The databases used in the preparation of this review were PubMed, Scopus, and Science Direct. Considering the significant deleterious effects on health associated with chronic occupational exposure to xenobiotics, this topic deserves attention. As it is difficult to avoid occupational exposure to TRAPs, biomonitoring should be applied as a strategy to reduce the toxic effects of workplace exposure.
Collapse
Affiliation(s)
- Natália Brucker
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil.,Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sabrina Nunes do Nascimento
- Laboratory of Toxicology (LATOX), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.,Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Letícia Bernardini
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Mariele Feiffer Charão
- Graduate Program on Toxicology and Analytical Toxicology, University Feevale, Novo Hamburgo, RS, Brazil
| | - Solange Cristina Garcia
- Laboratory of Toxicology (LATOX), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.,Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
39
|
Molfino A, Amabile MI, Muscaritoli M, Germano A, Alfano R, Ramaccini C, Spagnoli A, Cavaliere L, Marseglia G, Nardone A, Muto G, Carbone U, Triassi M, Fiorito S. Association Between Metabolic and Hormonal Derangements and Professional Exposure to Urban Pollution in a High Intensity Traffic Area. Front Endocrinol (Lausanne) 2020; 11:509. [PMID: 32849295 PMCID: PMC7431614 DOI: 10.3389/fendo.2020.00509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/25/2020] [Indexed: 01/28/2023] Open
Abstract
Rationale: Studies suggest a relation between exposure to air particulate matter (PM)2.5 pollution and greater cardiovascular morbidity, as well as increased risk for obesity and diabetes. We aimed to identify association(s) between nutritional and metabolic status and exposure to environmental pollution in a cohort of policemen exposed to high levels of air pollution. Methods: We considered adult municipal policemen, working in an urban area at high-traffic density with documented high levels of air PM2.5 (exposed group) compared to non-exposed policemen. Clinical characteristics, including the presence/absence of metabolic syndrome, were recorded, and serum biomarkers, including adiponectin, leptin, and ghrelin, were assessed. Results: One hundred ninety-nine participants were enrolled, 100 in the exposed group and 99 in the non-exposed group. Metabolic syndrome was documented in 32% of exposed group and in 52.5% of non-exposed group (P = 0.008). In the exposed group, we found a positive correlation between body mass index and serum leptin as well as in the non-exposed group (P < 0.0001). Within the exposed group, subjects with metabolic syndrome showed lower serum adiponectin (P < 0.0001) and higher leptin (P = 0.002) levels with respect to those without metabolic syndrome, whereas in the non-exposed group, subjects with metabolic syndrome showed only higher leptin levels when compared to those without metabolic syndrome (P = 0.01). Among the participants with metabolic syndrome, we found lower adiponectin levels in those of the exposed group with respect to the non-exposed ones (P = 0.007). When comparing the exposed and non-exposed groups, after stratifying participants for Homeostatic Model Assessment for Insulin Resistance >2.5, we found lower adiponectin levels in those of the exposed group with respect to the non-exposed ones (P = 0.038). Conclusions: Exposure to air PM pollution was associated with lower levels of adiponectin in adult males with metabolic syndrome.
Collapse
Affiliation(s)
- Alessio Molfino
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
- *Correspondence: Alessio Molfino
| | - Maria Ida Amabile
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Rossella Alfano
- Department of Public Health, University Federico II, Naples, Italy
| | - Cesarina Ramaccini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandra Spagnoli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | | | | - Antonio Nardone
- Department of Public Health, University Federico II, Naples, Italy
| | - Giuseppina Muto
- Department of Public Health, University Federico II, Naples, Italy
| | - Umberto Carbone
- Department of Public Health, University Federico II, Naples, Italy
| | - Maria Triassi
- Department of Public Health, University Federico II, Naples, Italy
| | - Silvana Fiorito
- Institute of Translational Pharmacology, CNR, Rome, Italy
- Silvana Fiorito
| |
Collapse
|
40
|
Yang BY, Fan S, Thiering E, Seissler J, Nowak D, Dong GH, Heinrich J. Ambient air pollution and diabetes: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2020; 180:108817. [PMID: 31627156 DOI: 10.1016/j.envres.2019.108817] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/10/2019] [Accepted: 10/08/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Air pollutants are suggested to be related to type 2 diabetes (T2D). Since several high quality papers on air pollutants and T2D have been published beyond the last reviews, an extended systematic review is highly warranted. We review epidemiological studies to quantify the association between air pollutants and T2D, and to answer if diabetes patients are more vulnerable to air pollutants. METHODS We systematically reviewed the databases of PubMed and Web of Science based on the guidelines of the Preferred Reporting Items for Systematic review and Meta-analysis (PRISMA). We calculated odds ratios (OR) or hazard ratios (HR) and their 95% confidence intervals (CI) to assess the strength of the associations between air pollutants [e.g., particulate matter with diameter ≤ 2.5 μm (PM2.5), particulate matter with diameter ≤ 10 μm (PM10), and nitrogen dioxide (NO2)] and T2D. We evaluated the quality and risk of bias of the included studies and graded the credibility of the pooled evidence using several recommended tools. We also performed sensitivity analysis, meta-regression analysis, and publication bias test. RESULTS Out of 716 articles identified, 86 were used for this review and meta-analysis. Meta-analyses showed significant associations of PM2.5 with T2D incidence (11 studies; HR = 1.10, 95% CI = 1.04-1.17 per 10 μg/m3 increment; I2 = 74.4%) and prevalence (11 studies; OR = 1.08; 95% CI = 1.04-1.12 per 10 μg/m3 increment; I2 = 84.3%), of PM10 with T2D prevalence (6 studies; OR = 1.10; 95% CI = 1.03-1.17 per 10 μg/m3 increment; I2 = 89.5%) and incidence (6 studies; HR = 1.11; 95% CI = 1.00-1.22 per μg/m3 increment; I2 = 70.6%), and of NO2 with T2D prevalence (11 studies; OR = 1.07; 95% CI = 1.04-1.11 per 10 μg/m3 increment; I2 = 91.1%). The majority of studies on glucose-homoeostasis markers also showed increased risks with higher air pollutants levels, but the studies were too heterogeneous for meta-analysis. Overall, patients with diabetes might be more vulnerable to PM. CONCLUSIONS Recent publications strengthened the evidence for adverse effects of ambient air pollutants exposure (especially for PM) on T2D and that diabetic patients might be more vulnerable to air pollutants exposure.
Collapse
Affiliation(s)
- Bo-Yi Yang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Institute and Clinic for Occupational, Social and Environmental Medicine, Hospital of the Ludwig-Maximilian University Munich, LMU Munich, Member, German Center for Lung Research (DZL Munich), CPC (Comprehensive Pneumology Center Munich), Germany; Institute of Epidemiology, Helmholtz Zentrum München- German Research Center for Environmental Health, Neuherberg, Germany
| | - Shujun Fan
- Guangzhou Center for Disease Control and Prevention, Guangzhu, 510440, China
| | - Elisabeth Thiering
- Institute of Epidemiology, Helmholtz Zentrum München- German Research Center for Environmental Health, Neuherberg, Germany; Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, Munich, Germany
| | - Jochen Seissler
- Diabetes Center, Medizinische Klinik und Poliklinik IV - Campus Innenstadt, Ludwig-Maximilians-University, Munich, Germany; Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
| | - Dennis Nowak
- Institute and Clinic for Occupational, Social and Environmental Medicine, Hospital of the Ludwig-Maximilian University Munich, LMU Munich, Member, German Center for Lung Research (DZL Munich), CPC (Comprehensive Pneumology Center Munich), Germany
| | - Guang-Hui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, Hospital of the Ludwig-Maximilian University Munich, LMU Munich, Member, German Center for Lung Research (DZL Munich), CPC (Comprehensive Pneumology Center Munich), Germany; Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
41
|
Abstract
Air pollution is a major, preventable and manageable threat to people's health, well-being and the fulfillment of sustainable development. Air pollution is estimated to contribute to at least 5 million premature deaths each year across the world. No one remains unaffected by dirty air, but the adverse impacts of air pollution fall most heavily upon vulnerable populations, such as children, women, and people living in poverty - groups to whom States have special obligations under international human rights law. The National Academies of Sciences and Medicine of South Africa, Brazil, Germany and the United States of America are calling upon government leaders, business and citizens to take urgent action on reducing air pollution throughout the world - to the benefit of human health and well-being, to the benefit of the environment and as a condition towards sustainable development. Air pollution is a cross-cutting aspect of many UN Sustainable Development Goals.
Collapse
|
42
|
Tsai TL, Lin YT, Hwang BF, Nakayama SF, Tsai CH, Sun XL, Ma C, Jung CR. Fine particulate matter is a potential determinant of Alzheimer's disease: A systemic review and meta-analysis. ENVIRONMENTAL RESEARCH 2019; 177:108638. [PMID: 31421449 DOI: 10.1016/j.envres.2019.108638] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/17/2019] [Accepted: 08/07/2019] [Indexed: 05/05/2023]
Abstract
Air pollution is a modifiable and preventable factor, and it is a possible risk factor for dementia. However, evidence from epidemiological studies is still limited. We conducted a systematic review and meta-analysis to summarize the epidemiological evidence for long-term effects of particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5) on dementia/Alzheimer's disease (AD). Our inclusion criteria for eligible studies were: longitudinal cohort study design, no overlap in study population, age of study subject ≥50 years, detailed description of exposure assessment for PM2.5, outdoor assessment of exposure to PM2.5, usage of a clear definition of dementia/AD, and accessibility of sufficient information for meta-analysis. Six databases were searched for eligible studies. The random-effect model was used to synthesize the associations between PM2.5 and dementia. After exclusion of all irrelevant studies, we analyzed the results of four cohort studies conducted in Canada, Taiwan, the UK, and the US during 2015-2018 among more than 12 million elderly subjects aged ≥50 years (N = 12,119,853). Our meta-analysis reveals that exposure to a 10 μg/m3 increase in PM2.5 was significantly and positively associated with dementia (pooled HR = 3.26, 95% CI: 1.20, 5.31). In subgroup analyses, exposure to a 10 μg/m3 increase in PM2.5 was found to be positively associated with AD (pooled HR = 4.82, 95% CI: 2.28, 7.36). Analysis of current epidemiological research on PM2.5 and dementia confirmed that exposure to PM2.5 was positively associated with a higher risk for dementia. However, it is to be noted that the included studies mainly relied on claim-based diagnosis and showed large differences in methods of exposure assessment, hence further epidemiological studies with well validated outcomes and with standardized exposure assessment models are required to ascertain the relationship between PM2.5 and dementia/AD.
Collapse
Affiliation(s)
- Tsung-Lin Tsai
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yu-Ting Lin
- Big Data Center, China Medical University Hospital and China Medical University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Bing-Fang Hwang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Shoji F Nakayama
- Exposure Dynamics Research Section, Centre for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Chon-Haw Tsai
- School of Medicine, China Medical University, Taichung, Taiwan; Department of Neurology, China Medical University Hospital, Taichung, Taiwan
| | - Xian-Liang Sun
- School of Medicine, Jiaxing University, Jiaxing, Zhejiang, China; JSPS International Research Fellow, Centre for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Chaochen Ma
- Exposure Dynamics Research Section, Centre for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Chau-Ren Jung
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan; Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, Tsukuba, Japan.
| |
Collapse
|
43
|
Royé D, Zarrabeitia MT, Riancho J, Santurtún A. A time series analysis of the relationship between apparent temperature, air pollutants and ischemic stroke in Madrid, Spain. ENVIRONMENTAL RESEARCH 2019; 173:349-358. [PMID: 30953949 DOI: 10.1016/j.envres.2019.03.065] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 05/04/2023]
Abstract
The understanding of the role of environment on the pathogenesis of stroke is gaining importance in the context of climate change. This study analyzes the temporal pattern of ischemic stroke (IS) in Madrid, Spain, during a 13-year period (2001-2013), and the relationship between ischemic stroke (admissions and deaths) incidence and environmental factors on a daily scale by using a quasi-Poisson regression model. To assess potential delayed and non-linear effects of air pollutants and Apparent Temperature (AT), a biometeorological index which represents human thermal comfort on IS, a lag non-linear model was fitted in a generalized additive model. The mortality rate followed a downward trend over the studied period, however admission rates progressively increased. Our results show that both increases and decreases in AT had a marked relationship with IS deaths, while hospital admissions were only associated with low AT. When analyzing the cumulative effects (for lag 0-14 days), with an AT of 1.7 °C (percentile 5%) a RR of 1.20 (95% CI, 1.05-1.37) for IS mortality and a RR of 1.09 (95% CI, 0.91-1.29) for morbidity is estimated. Concerning gender differences, men show higher risks of mortality in low temperatures and women in high temperatures. No significant relationship was found between air pollutant concentrations and IS morbi-mortality, but this result must be interpreted with caution, since there are strong spatial fluctuations of the former between nearby geographical areas that make it difficult to perform correlation analyses.
Collapse
Affiliation(s)
- Dominic Royé
- Department of Geography, University of Santiago de Compostela, Santiago de Compostela, Spain; Department of Geography, University of Porto, Porto, Portugal; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - María T Zarrabeitia
- Unit of Legal Medicine, Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain
| | - Javier Riancho
- Department of Neurology, Hospital Sierrallana-Instituto de Investigación Sanitaria (IDIVAL), Centro Investigación Biomédica en Red Enfermedades (CIBERNED), Santander, Spain
| | - Ana Santurtún
- Unit of Legal Medicine, Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain.
| |
Collapse
|
44
|
Shukla A, Bunkar N, Kumar R, Bhargava A, Tiwari R, Chaudhury K, Goryacheva IY, Mishra PK. Air pollution associated epigenetic modifications: Transgenerational inheritance and underlying molecular mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:760-777. [PMID: 30530146 DOI: 10.1016/j.scitotenv.2018.11.381] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/23/2018] [Accepted: 11/25/2018] [Indexed: 05/28/2023]
Abstract
Air pollution is one of the leading causes of deaths in Southeast Asian countries including India. Exposure to air pollutants affects vital cellular mechanisms and is intimately linked with the etiology of a number of chronic diseases. Earlier work from our laboratory has shown that airborne particulate matter disturbs the mitochondrial machinery and causes significant damage to the epigenome. Mitochondrial reactive oxygen species possess the ability to trigger redox-sensitive signaling mechanisms and induce irreversible epigenomic changes. The electrophilic nature of reactive metabolites can directly result in deprotonation of cytosine at C-5 position or interfere with the DNA methyltransferases activity to cause alterations in DNA methylation. In addition, it also perturbs level of cellular metabolites critically involved in different epigenetic processes like acetylation and methylation of histone code and DNA hypo or hypermethylation. Interestingly, these modifications may persist through downstream generations and result in the transgenerational epigenomic inheritance. This phenomenon of subsequent transfer of epigenetic modifications is mainly associated with the germ cells and relies on the germline stability of the epigenetic states. Overall, the recent literature supports, and arguably strengthens, the contention that air pollution might contribute to transmission of epimutations from gametes to zygotes by involving mitochondrial DNA, parental allele imprinting, histone withholding and non-coding RNAs. However, larger prospective studies using innovative, integrated epigenome-wide metabolomic strategy are highly warranted to assess the air pollution induced transgenerational epigenetic inheritance and associated human health effects.
Collapse
Affiliation(s)
- Anushi Shukla
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Neha Bunkar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajat Kumar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Koel Chaudhury
- School of Medical Science & Technology, Indian Institute of Technology, Kharagpur, India
| | - Irina Y Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russia
| | - Pradyumna K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW The literature on air pollution and brain health is rapidly expanding and it is a universal finding that greater exposure to air pollution is associated with worse outcomes, whatever the measure of brain health used (clinical dementia, neuroimaging correlates, or cognitive impairment). However, there are a number of important questions which the studies currently published are not able to answer: when in the life course does exposure to air pollution most have the most impact?; which pollutant(s) or components are most important?; and since dementia describes a heterogeneous group of conditions, which is most affected by exposure to air pollution? RECENT FINDINGS We briefly review and discuss the nine articles which have been published so far in 2018, so recently that they were not included in the four review articles also published this year. We highlight the variation in estimates of air pollution used but the consistency in deriving them from residential address (with or without some knowledge of an individual's previous home locations). SUMMARY We are now at the stage when the research agenda needs to be agreed and we believe these three questions should be the focus of future research.
Collapse
|
46
|
Abstract
Multiple global environmental changes (GECs) now under way, including climate change, biodiversity loss, freshwater depletion, tropical deforestation, overexploitation of fisheries, ocean acidification, and soil degradation, have substantial, but still imperfectly understood, implications for human health. Noncommunicable diseases (NCDs) make a major contribution to the global burden of disease. Many of the driving forces responsible for GEC also influence NCD risk through a range of mechanisms. This article provides an overview of pathways linking GEC and NCDs, focusing on five pathways: ( a) energy, air pollution, and climate change; ( b) urbanization; ( c) food, nutrition, and agriculture; ( d) the deposition of persistent chemicals in the environment; and ( e) biodiversity loss.
Collapse
Affiliation(s)
- Howard Frumkin
- Our Planet, Our Health Program, Wellcome Trust, London NW1 2BE, United Kingdom;
| | - Andy Haines
- Department of Public Health, Environments and Society and Department of Population Health, London School of Hygiene and Tropical Medicine, London WC1H 9SH, United Kingdom;
| |
Collapse
|