1
|
Patrin Pontin K, Borges KA, Furian TQ, Zottis Chitolina G, de Castro Böhnmann R, Faria Rohde Depner R, Andretta I, Nogueira D, Wilsmann DE, Tonini da Rocha D, de Souza Moraes HL, Nascimento VPD. Copper nanoparticles effectively reduce Salmonella Enteritidis in broiler chicken diet and water. Avian Pathol 2025; 54:212-222. [PMID: 39319416 DOI: 10.1080/03079457.2024.2409446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
The use of copper nanoparticles (CuNP) in the diet of broiler chickens has been studied as a potential alternative to antibiotic growth promoters. This study aimed to analyse the antimicrobial properties of CuNP in the feed and water of broiler chickens against Salmonella Enteritidis and to assess the intestinal integrity and toxicity of CuNP supplementation in their diet. The antimicrobial activity of CuNP against S. Enteritidis was tested in microplates to evaluate three water samples with different mineral compositions and in an in vitro digestibility model that simulated the three primary intestinal compartments of birds to assess feed samples. To evaluate in vivo intestinal integrity and toxicity, the birds were divided into four groups (30 birds per group): (1) basal diet (control); (2) basal diet + CuNP (100 ppm); (3) basal diet + enramycin (10 ppm); and (4) basal diet + CuNP (100 ppm) + enramycin (10 ppm). Intestinal samples were collected for histomorphometric evaluation and lactic acid bacteria count, while chest muscle and whole blood samples were collected to determine copper content. A significant reduction in the S. Enteritidis count was observed in both in vitro treatments (water and feed) with CuNP inclusion, compared to the control group. No significant differences in histomorphometric measurements, weight gain, or total lactic acid bacterial counts were found compared to those in the control. These results demonstrate the effectiveness of CuNP in reducing the occurrence of S. Enteritidis and their non-interference with the intestinal integrity of broiler chickens, highlighting the potential of CuNP as an alternative antimicrobial agent in the poultry production chain.RESEARCH HIGHLIGHTSSupplementation with CuNP in feed and water reduced Salmonella Enteritidis count.Supplementation with CuNP did not affect intestinal integrity of broilers.CuNP did not affect weight gain or total lactic acid bacterial counts.The results demonstrate the potential of CuNP as alternative antimicrobials.
Collapse
Affiliation(s)
- Karine Patrin Pontin
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Karen Apellanis Borges
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thales Quedi Furian
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gabriela Zottis Chitolina
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Roberta de Castro Böhnmann
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Ines Andretta
- Laboratório de Ensino Zootécnico, Faculdade de Zootecnia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Danrlei Nogueira
- Laboratório de Ensino Zootécnico, Faculdade de Zootecnia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Daiane Elisa Wilsmann
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Daniela Tonini da Rocha
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Hamilton Luiz de Souza Moraes
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Vladimir Pinheiro do Nascimento
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
2
|
Ondrasek G, Shepherd J, Rathod S, Dharavath R, Rashid MI, Brtnicky M, Shahid MS, Horvatinec J, Rengel Z. Metal contamination - a global environmental issue: sources, implications & advances in mitigation. RSC Adv 2025; 15:3904-3927. [PMID: 39936144 PMCID: PMC11811701 DOI: 10.1039/d4ra04639k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
Metal contamination (MC) is a growing environmental issue, with metals altering biotic and metabolic pathways and entering the human body through contaminated food, water and inhalation. With continued population growth and industrialisation, MC poses an exacerbating risk to human health and ecosystems. Metal contamination in the environment is expected to continue to increase, requiring effective remediation approaches and harmonised monitoring programmes to significantly reduce the impact on health and the environment. Bio-based methods, such as enhanced phytoextraction and chemical stabilisation, are being used worldwide to remediate contaminated sites. A systematic plant screening of potential metallophytes can identify the most effective candidates for phytoremediation. However, the detection and prediction of MC is complex, non-linear and chaotic, and it frequently overlaps with various other constraints. Rapidly evolving artificial intelligence (AI) algorithms offer promising tools for the detection, growth and activity modelling and management of metallophytes, helping to fill knowledge gaps related to complex metal-environment interactions in different scenarios. By integrating AI with advanced sensor technologies and field-based trials, future research could revolutionize remediation strategies. This interdisciplinary approach holds immense potential in mitigating the detrimental impacts of metal contamination efficiently and sustainably.
Collapse
Affiliation(s)
- Gabrijel Ondrasek
- Faculty of Agriculture, The University of Zagreb 10000 Zagreb Croatia
| | - Jonti Shepherd
- Faculty of Agriculture, The University of Zagreb 10000 Zagreb Croatia
| | - Santosha Rathod
- ICAR-Indian Institute of Rice Research Hyderabad 500030 India
| | - Ramesh Dharavath
- Department of Computer Science and Engineering, Indian Institute of Technology (ISM) Dhanbad 826004 Jharkhand India
| | - Muhammad Imtiaz Rashid
- Center of Excellence in Environmental Studies, King Abdulaziz University 22252 Jeddah Saudi Arabia
| | - Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno 61300 Brno Czech Republic
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University Al-Khoud 123 Muscat Oman
| | - Jelena Horvatinec
- Faculty of Agriculture, The University of Zagreb 10000 Zagreb Croatia
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia Perth WA 6009 Australia
- Institute for Adriatic Crops and Karst Reclamation 21000 Split Croatia
| |
Collapse
|
3
|
Faghani G, Azarniya A. Emerging nanomaterials for novel wound dressings: From metallic nanoparticles and MXene nanosheets to metal-organic frameworks. Heliyon 2024; 10:e39611. [PMID: 39524817 PMCID: PMC11550055 DOI: 10.1016/j.heliyon.2024.e39611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/30/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The growing need for developing reliable and efficient wound dressings has led to recent progress in designing novel materials and formulations for different kinds of wounds caused by traumas, burns, surgeries, and diabetes. In cases of extreme urgency, accelerating wound recovery is of high importance to prevent persistent infection and biofilm formation. The application of nanotechnology in this domain resulted in the creation of distinct nanoplatforms for highly advanced wound-healing therapeutic approaches. Recently developed nanomaterials have been used as antibacterial agents or drug carriers to control wound infection. In the present review, the authors aim to review the recently published research on the effects of incorporating emerging nanomaterials into novel wound dressings and investigate their distinct roles in the wound healing process. It was determined that the metallic nanoparticles (NPs) exhibit antimicrobial and regenerative properties, metal oxide NPs regulate inflammation and promote tissue regeneration, MXene NPs enhance cell adhesion and proliferation, while metal-organic frameworks (MOFs) offer controlled drug delivery capabilities. Further research is required to fully understand the mechanisms and optimize the applications of these NPs in wound healing.
Collapse
Affiliation(s)
- Gholamreza Faghani
- Department of Mechanical Engineering, Khatam-Ol-Anbia (PBU) University, Tehran, Iran
| | - Amir Azarniya
- Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
4
|
Mustafa S, Abbas RZ, Saeed Z, Baazaoui N, Khan AMA. Use of Metallic Nanoparticles Against Eimeria-the Coccidiosis-Causing Agents: A Comprehensive Review. Biol Trace Elem Res 2024:10.1007/s12011-024-04399-8. [PMID: 39354182 DOI: 10.1007/s12011-024-04399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024]
Abstract
Coccidiosis is a protozoan disease caused by Eimeria species and is a major threat to the poultry industry. Different anti-coccidial drugs (diclazuril, amprolium, halofuginone, ionophores, sulphaquinoxaline, clopidol, and ethopabate) and vaccines have been used for their control. Still, due to the development of resistance, their efficacy has been limited. It is continuously damaging the economy of the poultry industry because under its control, almost $14 billion is spent, globally. Recent research has been introducing better and more effective control of coccidiosis by using metallic and metallic oxide nanoparticles. Zinc, zinc oxide, copper, copper oxide, silver, iron, and iron oxide are commonly used because of their drug delivery mechanism. These nanoparticles combined with other drugs enhance the effect of these drugs and give their better results. Moreover, by using nanotechnology, the resistance issue is also solved because by using several mechanisms at a time, protozoa cannot evolve and thus resistance cannot develop. Green nanotechnology has been giving better results due to its less toxic effects. Utilization of metallic and metallic oxide nanoparticles may present a new, profitable, and economical method of controlling chicken coccidiosis, thus by changing established treatment approaches and improving the health and production of chickens. Thus, the objective of this review is to discuss about economic burden of avian coccidiosis, zinc, zinc oxide, iron, iron oxide, copper, copper oxide, silver nanoparticles use in the treatment of coccidiosis, their benefits, and toxicity.
Collapse
Affiliation(s)
- Sahar Mustafa
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zohaib Saeed
- Department of Parasitology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Narjes Baazaoui
- Applied College Muhayil Assir, King Khalid University, 61421, Abha, Saudi Arabia
| | | |
Collapse
|
5
|
Anand K, Sharma R, Sharma N. Recent advancements in natural polymers-based self-healing nano-materials for wound dressing. J Biomed Mater Res B Appl Biomater 2024; 112:e35435. [PMID: 38864664 DOI: 10.1002/jbm.b.35435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/04/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
The field of wound healing has witnessed remarkable progress in recent years, driven by the pursuit of advanced wound dressings. Traditional dressing materials have limitations like poor biocompatibility, nonbiodegradability, inadequate moisture management, poor breathability, lack of inherent therapeutic properties, and environmental impacts. There is a compelling demand for innovative solutions to transcend the constraints of conventional dressing materials for optimal wound care. In this extensive review, the therapeutic potential of natural polymers as the foundation for the development of self-healing nano-materials, specifically for wound dressing applications, has been elucidated. Natural polymers offer a multitude of advantages, possessing exceptional biocompatibility, biodegradability, and bioactivity. The intricate engineering strategies employed to fabricate these polymers into nanostructures, thereby imparting enhanced mechanical robustness, flexibility, critical for efficacious wound management has been expounded. By harnessing the inherent properties of natural polymers, including chitosan, alginate, collagen, hyaluronic acid, and so on, and integrating the concept of self-healing materials, a comprehensive overview of the cutting-edge research in this emerging field is presented in the review. Furthermore, the inherent self-healing attributes of these materials, wherein they exhibit innate capabilities to autonomously rectify any damage or disruption upon exposure to moisture or body fluids, reducing frequent dressing replacements have also been explored. This review consolidates the existing knowledge landscape, accentuating the benefits and challenges associated with these pioneering materials while concurrently paving the way for future investigations and translational applications in the realm of wound healing.
Collapse
Affiliation(s)
- Kumar Anand
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Rishi Sharma
- Department of Physics, Birla Institute of Technology, Mesra, Ranchi, India
| | - Neelima Sharma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
6
|
Abdullah SS, Masood S, Zaneb H, Rabbani I, Akbar J, Kuthu ZH, Masood A, Vargas-Bello-Pérez E. Effects of copper nanoparticles on performance, muscle and bone characteristics and serum metabolites in broilers. BRAZ J BIOL 2024; 84:e261578. [DOI: 10.1590/1519-6984.261578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
Abstract Three hundred and twenty day old Hubbard broilers were randomly allocated to four treatments (8 replicates, 10 birds/pen) and were raised under standard management conditions. Birds in the first group served as control and were fed a corn based diet, while birds in the remaining three groups i.e.; A, B and C were fed with a basal diet supplemented with copper nanoparticles (CuNP) at 5, 10 and 15 mg /kg of diet respectively for 35 days. Supplementation of CuNP linearly increased (P≤0.05) body weight (BW), average daily weight gain (ADWG) and feed intake (FI) in broilers. Uric acid, glucose levels in blood and feed conversion ratio (FCR) reduced linearly (P≤0.05) with CuNP supplementation in diet. Supplementation of CuNP in the diet also linearly increased (P≤0.05) tibia weight, length, diameter, weight/length index (W/L) and Tibiotarsal index (TT index). Inclusion of CuNP in broilers diet linearly increased the measured parameters of muscle i.e.; pH, fiber diameter, fiber cross-sectional area, fascicle diameter, fascicle cross-sectional area (P≤0.05). Concentration of copper, iron, calcium and phosphorous in blood also increased line-arly (P ≤ 0.05) with CuNP supplementation. Overall, CuNP positively affected the growth performance, histological characteristics of muscles, bone strength and serum metabolites in broilers.
Collapse
Affiliation(s)
| | - S. Masood
- University of Veterinary and Animal Sciences, Pakistan
| | - H. Zaneb
- University of Veterinary and Animal Sciences, Pakistan
| | - I. Rabbani
- University of Veterinary and Animal Sciences, Pakistan
| | | | | | | | | |
Collapse
|
7
|
Li Y, Luo W, Liu Y, Lu Y, Geng W, Lin J. Copper-containing titanium alloys promote the coupling of osteogenesis and angiogenesis by releasing copper ions. Biochem Biophys Res Commun 2023; 681:157-164. [PMID: 37776747 DOI: 10.1016/j.bbrc.2023.09.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/11/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
Previous investigations have reported on the ability of copper (Cu)-bearing biomaterials to accelerate vascular formation and bone regeneration. However, few studies have explored the effects of Cu-bearing materials on the interactions between angiogenesis and osteogenesis. Therefore, in this study, we prepared Cu-containing alloys using selective laser melting (SLM) technology and investigated the impact of preosteoblasts seeded on Ti6Al4V-4.5Cu alloy on angiogenesis. Our results indicated that Ti6Al4V-4.5Cu alloys increased the expression of proangiogenic genes and proteins in preosteoblasts, which further stimulated vascular formation in endothelial cells. Besides, we discovered that the biological effects of the Ti6Al4V-4.5Cu alloy were partly attributed to the release of Cu ions. In short, our research demonstrated the ability of Ti6Al4V-4.5Cu alloys to promote the coupling of angiogenesis and osteogenesis by releasing Cu ions.
Collapse
Affiliation(s)
- Yanxi Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Wenqiong Luo
- The First People's Hospital of Liangshan Yi Autonomous Prefecture, Sichuan, 615000, China
| | - Yuqi Liu
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Yanjin Lu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, 350002, China
| | - Wei Geng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China.
| | - Jinxin Lin
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, 350002, China.
| |
Collapse
|
8
|
Guo J, Wang H, Li Y, Zhu S, Hu H, Gu Z. Nanotechnology in coronary heart disease. Acta Biomater 2023; 171:37-67. [PMID: 37714246 DOI: 10.1016/j.actbio.2023.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/17/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Coronary heart disease (CHD) is one of the major causes of death and disability worldwide, especially in low- and middle-income countries and among older populations. Conventional diagnostic and therapeutic approaches have limitations such as low sensitivity, high cost and side effects. Nanotechnology offers promising alternative strategies for the diagnosis and treatment of CHD by exploiting the unique properties of nanomaterials. In this review, we use bibliometric analysis to identify research hotspots in the application of nanotechnology in CHD and provide a comprehensive overview of the current state of the art. Nanomaterials with enhanced imaging and biosensing capabilities can improve the early detection of CHD through advanced contrast agents and high-resolution imaging techniques. Moreover, nanomaterials can facilitate targeted drug delivery, tissue engineering and modulation of inflammation and oxidative stress, thus addressing multiple aspects of CHD pathophysiology. We discuss the application of nanotechnology in CHD diagnosis (imaging and sensors) and treatment (regulation of macrophages, cardiac repair, anti-oxidative stress), and provide insights into future research directions and clinical translation. This review serves as a valuable resource for researchers and clinicians seeking to harness the potential of nanotechnology in the management of CHD. STATEMENT OF SIGNIFICANCE: Coronary heart disease (CHD) is the one of leading cause of death and disability worldwide. Nanotechnology offers new strategies for diagnosing and treating CHD by exploiting the unique properties of nanomaterials. This review uses bibliometric analysis to uncover research trends in the use of nanotechnology for CHD. We discuss the potential of nanomaterials for early CHD detection through advanced imaging and biosensing, targeted drug delivery, tissue engineering, and modulation of inflammation and oxidative stress. We also offer insights into future research directions and potential clinical applications. This work aims to guide researchers and clinicians in leveraging nanotechnology to improve CHD patient outcomes and quality of life.
Collapse
Affiliation(s)
- Junsong Guo
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Hao Wang
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Ying Li
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano-safety, Institute of High Energy Physics, Beijing 100049, China; CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Houxiang Hu
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China.
| | - Zhanjun Gu
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano-safety, Institute of High Energy Physics, Beijing 100049, China; Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Dürig J, Calcagni M, Buschmann J. Transition metals in angiogenesis - A narrative review. Mater Today Bio 2023; 22:100757. [PMID: 37593220 PMCID: PMC10430620 DOI: 10.1016/j.mtbio.2023.100757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
The aim of this paper is to offer a narrative review of the literature regarding the influence of transition metals on angiogenesis, excluding lanthanides and actinides. To our knowledge there are not any reviews up to date offering such a summary, which inclined us to write this paper. Angiogenesis describes the process of blood vessel formation, which is an essential requirement for human growth and development. When the complex interplay between pro- and antiangiogenic mediators falls out of balance, angiogenesis can quickly become harmful. As it is so fundamental, both its inhibition and enhancement take part in various diseases, making it a target for therapeutic treatments. Current methods come with limitations, therefore, novel agents are constantly being researched, with metal agents offering promising results. Various transition metals have already been investigated in-depth, with studies indicating both pro- and antiangiogenic properties, respectively. The transition metals are being applied in various formulations, such as nanoparticles, complexes, or scaffold materials. Albeit the increasing attention this field is receiving, there remain many unanswered questions, mostly regarding the molecular mechanisms behind the observed effects. Notably, approximately half of all the transition metals have not yet been investigated regarding potential angiogenic effects. Considering the promising results which have already been established, it should be of great interest to begin investigating the remaining elements whilst also further analyzing the established effects.
Collapse
Affiliation(s)
- Johannes Dürig
- University of Zürich, Faculty of Medicine, Pestalozzistrasse 3, 8032, Zurich, Switzerland
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Maurizio Calcagni
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Johanna Buschmann
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| |
Collapse
|
10
|
Yoshida YG, Yan S, Xu H, Yang J. Novel Metal Nanomaterials to Promote Angiogenesis in Tissue Regeneration. ENGINEERED REGENERATION 2023; 4:265-276. [PMID: 37234753 PMCID: PMC10207714 DOI: 10.1016/j.engreg.2023.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Angiogenesis-the formation of new blood vessels from existing blood vessels-has drawn significant attention in medical research. New techniques have been developed to control proangiogenic factors to obtain desired effects. Two important research areas are 1) understanding cellular mechanisms and signaling pathways involved in angiogenesis and 2) discovering new biomaterials and nanomaterials with proangiogenic effects. This paper reviews recent developments in controlling angiogenesis in the context of regenerative medicine and wound healing. We focus on novel proangiogenic materials that will advance the field of regenerative medicine. Specifically, we mainly focus on metal nanomaterials. We also discuss novel technologies developed to carry these proangiogenic inorganic molecules efficiently to target sites. We offer a comprehensive overview by combining existing knowledge regarding metal nanomaterials with novel developments that are still being refined to identify new nanomaterials.
Collapse
Affiliation(s)
- Yuki G. Yoshida
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hui Xu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jian Yang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
11
|
Nie H, Wang H, Zhang M, Ning Y, Chen X, Zhang Z, Hu X, Zhao Q, Chen P, Fang J, Wang F. Comprehensive analysis of cuproptosis-related genes in prognosis, tumor microenvironment infiltration, and immunotherapy response in gastric cancer. J Cancer Res Clin Oncol 2023; 149:5453-5468. [PMID: 36462036 DOI: 10.1007/s00432-022-04474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/09/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUNDS Cuproptosis is the most recently identified copper-dependent cell death form that influences tricarboxylic acid (TCA) cycle. However, the relationship between cuproptosis and clinical prognosis, tumor microenvironment infiltration (TME), and response to immunotherapy remains unclear. METHODS Single-sample gene-set enrichment analysis (ssGSEA) was employed to construct cuproptosisScore (cpS) and 1378 gastric cancer (GC) patients from five independent public datasets were classified into high- or low-cpS groups according to the median of cpS. Then the impacts of cuproptosis on tumor microenvironment infiltration (TME), biological function, response to immunotherapy, and clinical prognosis of GC were evaluated. RiskScore and nomogram were constructed using Lasso Cox regression algorithm to validate its predictive capability in GC patients. RESULTS Compared to patients with high cpS, patients with low cpS exhibited poorer prognosis, higher TNM stage, and stronger stromal activation. Meanwhile, the analysis of response to immunotherapy confirmed patients with high cpS could better benefit from immunotherapy and had a better susceptibility to chemotherapeutic drugs. Then, 9 prognosis-related signatures were collected based on differentially expressed genes (DEGs) of cpS groups. Finally, a riskScore model was constructed using the multivariate Cox (multi-Cox) regression coefficients of prognosis-related signatures and had an excellent capability of predicting 1-, 3-, and 5-year survival in GC patients. CONCLUSIONS This study revealed the role of curproptosis in TME, response to immunotherapy, and clinical prognosis in GC, which highlighted the significant clinical implications of curproptosis and provided novel ideas for the therapeutic application of cuproptosis in GC.
Collapse
Affiliation(s)
- Haihang Nie
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Clinical Center and Key Lab of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, 430071, China
| | - Haizhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Clinical Center and Key Lab of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, 430071, China
| | - Meng Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Clinical Center and Key Lab of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, 430071, China
| | - Yumei Ning
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Clinical Center and Key Lab of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, 430071, China
| | - Xiaojia Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Clinical Center and Key Lab of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, 430071, China
| | - Zhang Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Clinical Center and Key Lab of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, 430071, China
| | - Xinyi Hu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Clinical Center and Key Lab of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, 430071, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Clinical Center and Key Lab of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, 430071, China
| | - Pengfei Chen
- Department of Gastroenterology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000, China.
| | - Jun Fang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Clinical Center and Key Lab of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, 430071, China.
- Department of Gastroenterology, Renmin Hospital of Huangmei County, Huanggang, 435500, China.
| | - Fan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Clinical Center and Key Lab of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, 430071, China.
| |
Collapse
|
12
|
Effects of In Ovo Injection of Inorganic Salts of Zinc and Copper on Performance and Serum Biochemical Indices of Two Strains of Broiler Chickens. FOLIA VETERINARIA 2023. [DOI: 10.2478/fv-2023-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023] Open
Abstract
Abstract
This study was composed of two experiments which investigated the response of two strains (Arbor Acre and Cobb 500, respectively) of broiler chickens to in ovo injection of inorganic salts of zinc, copper and their combination. A total of 300 hatching eggs [only 148 (59.20 %) and 232 (90.27 %), respectively, were fertile] each of Arbor Acre and Cobb 500 strains of broiler chickens were used in both experiments. These eggs were distributed into four treatments: control, in ovo inorganic Zn (80 µg.egg−1), Cu (16 µg.egg−1) and combined Zn and Cu (80 µg.egg−1 Zn and 16 µg.egg−1 Cu). The data obtained in both experiments were subjected to Completely Randomized Design (CRD) at the 5 % probability level. The results showed increased hatchability (P < 0.05) in eggs injected with the combination of inorganic salts of Zn and Cu in Experiment I and daily intake was influenced in both experiments. The carcass traits, organ development and gut morphometry were not significantly influenced by the treatment groups. The total serum protein and albumin of the birds were significantly (P < 0.05) increased by in ovo injection of inorganic salts of Zn and Cu at day 49 in the Experiment I. The study concluded that in ovo injection of inorganic salts of Zn at 80 µg.egg−1 and/or Cu at 16 µg. egg−1 could be adopted to increase feed intake with: attendant enhanced growth, enhanced immune response, increased albumin and total protein contents of blood serum in the strains of broiler chickens used.
Collapse
|
13
|
Liu J, Lin S, Wu S, Lin Q, Fan Z, Wang C, Ye D, Guo P. Dietary supplementation with nano-composite of copper and carbon on growth performance, immunity, and antioxidant ability of yellow-feathered broilers. J Anim Sci 2023; 101:skad362. [PMID: 37899715 PMCID: PMC10630021 DOI: 10.1093/jas/skad362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/20/2023] [Indexed: 10/31/2023] Open
Abstract
New feed additives as antibiotics substitutes are in urgent need in poultry production. Nano-composite of copper and carbon (NCCC), a novel copper donor with stronger antibacterial properties, is expected to promote broiler growth and diminish the negative effects of excess copper (Cu). Hence, the purpose of this study is to investigate the effects of NCCC on growth performance, immunity, and antioxidant ability of yellow-feathered broilers. A total of 240 1-d-old male yellow-feathered broilers were selected and randomly divided into four groups, with five replications per group and 12 birds per replication. The CON group was fed corn-soybean basal diets, while the N50, N100, and N200 groups were supplemented with 50, 100, and 200 mg/kg of NCCC in basal diets, respectively. The trial lasted for 63 d. The results demonstrated that only 200 mg/kg NCCC addition significantly increased the Cu content in serum and feces, and liver Cu content linearly increased with NCCC dosage increment (P < 0.05). Meanwhile, NCCC supplementation did not alter the growth performance, slaughter performance, immune organ indexes, and liver antioxidant ability of broilers (P > 0.05), but optimized the serum cytokine pattern by elevating the level of serum IL-10 (P < 0.05), and there were linear and quadratic increases in serum IL-4 with NCCC dosage increment (P < 0.05). On the whole, in spite of no impact on growth performance, 50 mg/kg NCCC was optimal to supplement in chicken diets due to the rise of serum IL-10 level and no extra environmental pollution and tissue residues.
Collapse
Affiliation(s)
- Jing Liu
- Instituteof AnimalHusbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Shiying Lin
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuqin Wu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingjie Lin
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zitao Fan
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Changkang Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dingcheng Ye
- Instituteof AnimalHusbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Pingting Guo
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
14
|
Butler K, Brinker CJ, Leong HS. Bridging the In Vitro to In Vivo gap: Using the Chick Embryo Model to Accelerate Nanoparticle Validation and Qualification for In Vivo studies. ACS NANO 2022; 16:19626-19650. [PMID: 36453753 PMCID: PMC9799072 DOI: 10.1021/acsnano.2c03990] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
We postulate that nanoparticles (NPs) for use in therapeutic applications have largely not realized their clinical potential due to an overall inability to use in vitro results to predict NP performance in vivo. The avian embryo and associated chorioallantoic membrane (CAM) has emerged as an in vivo preclinical model that bridges the gap between in vitro and in vivo, enabling rapid screening of NP behavior under physiologically relevant conditions and providing a rapid, accessible, economical, and more ethical means of qualifying nanoparticles for in vivo use. The CAM is highly vascularized and mimics the diverging/converging vasculature of the liver, spleen, and lungs that serve as nanoparticle traps. Intravital imaging of fluorescently labeled NPs injected into the CAM vasculature enables immediate assessment and quantification of nano-bio interactions at the individual NP scale in any tissue of interest that is perfused with a microvasculature. In this review, we highlight how utilization of the avian embryo and its CAM as a preclinical model can be used to understand NP stability in blood and tissues, extravasation, biocompatibility, and NP distribution over time, thereby serving to identify a subset of NPs with the requisite stability and performance to introduce into rodent models and enabling the development of structure-property relationships and NP optimization without the sacrifice of large populations of mice or other rodents. We then review how the chicken embryo and CAM model systems have been used to accelerate the development of NP delivery and imaging agents by allowing direct visualization of targeted (active) and nontargeted (passive) NP binding, internalization, and cargo delivery to individual cells (of relevance for the treatment of leukemia and metastatic cancer) and cellular ensembles (e.g., cancer xenografts of interest for treatment or imaging of cancer tumors). We conclude by showcasing emerging techniques for the utilization of the CAM in future nano-bio studies.
Collapse
Affiliation(s)
- Kimberly
S. Butler
- Molecular
and Microbiology, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - C. Jeffrey Brinker
- Department
of Chemical and Biological Engineering and the Comprehensive Cancer
Center, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Hon Sing Leong
- Department
of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto M5G 1L7, Canada
- Biological
Sciences Platform, Sunnybrook Hospital, Toronto M4N 3M5, Canada
| |
Collapse
|
15
|
Michalak I, Dziergowska K, Alagawany M, Farag MR, El-Shall NA, Tuli HS, Emran TB, Dhama K. The effect of metal-containing nanoparticles on the health, performance and production of livestock animals and poultry. Vet Q 2022; 42:68-94. [PMID: 35491930 PMCID: PMC9126591 DOI: 10.1080/01652176.2022.2073399] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 12/06/2022] Open
Abstract
The application of high doses of mineral feed additives in the form of inorganic salts increases the growth performance of animals, but at the same, due to their low bioavailability, can contaminate the environment. Therefore, there is a need to find a replacement of administering high doses of minerals with an equally effective alternative. The application of lower doses of metal-containing nanoparticles with the same effect on animal production could be a potential solution. In the present review, zinc, silver, copper, gold, selenium, and calcium nanoparticles are discussed as potential feed additives for animals. Production of nanoparticles under laboratory conditions using traditional chemical and physical methods as well as green and sustainable methods - biosynthesis has been described. Special attention has been paid to the biological properties of nanoparticles, as well as their effect on animal health and performance. Nano-minerals supplemented to animal feed (poultry, pigs, ruminants, rabbits) acting as growth-promoting, immune-stimulating and antimicrobial agents have been highlighted. Metal nanoparticles are known to exert a positive effect on animal performance, productivity, carcass traits through blood homeostasis maintenance, intestinal microflora, oxidative damage prevention, enhancement of immune responses, etc. Metal-containing nanoparticles can also be a solution for nutrient deficiencies in animals (higher bioavailability and absorption) and can enrich animal products with microelements like meat, milk, or eggs. Metal-containing nanoparticles are proposed to partially replace inorganic salts as feed additives. However, issues related to their potential toxicity and safety to livestock animals, poultry, humans, and the environment should be carefully investigated.
Collapse
Affiliation(s)
- Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Katarzyna Dziergowska
- Faculty of Chemistry, Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, Egypt
| | - Nahed A. El-Shall
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, El-Beheira, Egypt
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
16
|
Li Y, Lu Y, Qiu B, Ze Y, Li P, Du Y, Gong P, Lin J, Yao Y. Copper-containing titanium alloys promote angiogenesis in irradiated bone through releasing copper ions and regulating immune microenvironment. BIOMATERIALS ADVANCES 2022; 139:213010. [PMID: 35882157 DOI: 10.1016/j.bioadv.2022.213010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/14/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Poor vascularization was demonstrated as a factor inhibiting bone regeneration in patients receiving radiotherapy. Various copper-containing materials have been reported to increase angiogenesis, therefore might improve bone formation. In this study, a Ti6Al4V-1.5Cu alloy was prepared using selective laser melting (SLM) technology. The immunomodulatory and pro-angiogenic effects of the Ti6Al4V-1.5Cu alloys were examined. In vitro, Ti6Al4V-1.5Cu stimulated vascular formation by restraining inflammatory factors and provoking angiogenic factors in non-irradiated and irradiated macrophages. In vivo, the angiogenic effects of the Ti6Al4V-1.5Cu alloy were confirmed using an irradiated rat femur defect model. Moreover, we found that the biological effects of the Ti6Al4V-1.5Cu alloy were partially due to the release of copper ions and associated with PI3K-Akt signaling pathway. In conclusion, this study indicated the potential of the Ti6Al4V-1.5Cu alloy to promote angiogenesis by releasing copper ions and inhibiting inflammation in normal and irradiated tissues.
Collapse
Affiliation(s)
- Yanxi Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yanjin Lu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
| | - Bingrun Qiu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yiting Ze
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Peiran Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yu Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jinxin Lin
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China.
| | - Yang Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
17
|
Ghimire S, Zhang X, Zhang J, Wu C. Use of Chicken Embryo Model in Toxicity Studies of Endocrine-Disrupting Chemicals and Nanoparticles. Chem Res Toxicol 2022; 35:550-568. [PMID: 35286071 DOI: 10.1021/acs.chemrestox.1c00399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lab animals such as mice and rats are widely used in toxicity research of food additive and pharmaceutics, despite the well-recognized research limitation such as the inability to simulate human neurological diseases, faster absorption of chemicals, big variations among species, and high cost when using a large number of animals. The Society of Toxicology's guidance now focuses on minimizing discomfort and distress of lab animals, finding alternative ways to reduce animal number, replacing animals with in vitro models, and complying to the animal welfare policies. The chicken embryonic model can be a better alternative to mice and rats because of its abundant availability and cost-effectiveness. It can be studied in both laboratory and natural environment, with easy manipulation in ovo or in vivo. The objective of this review paper is to evaluate the use of chicken embryonic model in toxicity evaluation for endocrine-disrupting chemicals (EDCs) and nanoparticles (NPs) by different end points to determine more comprehensive toxic responses. The end points include chicken embryonic mortality and hatchability, developmental malformation analysis, hormonal imbalance, physiological changes in endocrine organs, and antiangiogenesis. Major research methodologies using chicken embryos are also summarized to demonstrate their versatile practice and valuable application in modern toxicity evaluation of EDCs and NPs.
Collapse
Affiliation(s)
- Shweta Ghimire
- University of Delaware, Department of Animal and Food sciences, Newark, Delaware 19716, United States
| | - Xinwen Zhang
- University of Delaware, Department of Animal and Food sciences, Newark, Delaware 19716, United States
| | - Jinglin Zhang
- University of Delaware, Department of Animal and Food sciences, Newark, Delaware 19716, United States
| | - Changqing Wu
- University of Delaware, Department of Animal and Food sciences, Newark, Delaware 19716, United States
| |
Collapse
|
18
|
Sun K, Fu R, Liu X, Xu L, Wang G, Chen S, Zhai Q, Pauly S. Osteogenesis and angiogenesis of a bulk metallic glass for biomedical implants. Bioact Mater 2022; 8:253-266. [PMID: 34541400 PMCID: PMC8424448 DOI: 10.1016/j.bioactmat.2021.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/05/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
Implantation is an essential issue in orthopedic surgery. Bulk metallic glasses (BMGs), as a kind of novel materials, attract lots of attentions in biological field owing to their comprehensive excellent properties. Here, we show that a Zr61Ti2Cu25Al12 (at. %) BMG (Zr-based BMG) displays the best cytocompatibility, pronounced positive effects on cellular migration, and tube formation from in-vitro tests as compared to those of commercial-pure titanium and poly-ether-ether-ketone. The in-vivo micro-CT and histological evaluation demonstrate the Zr-based BMG can significantly promote a bone formation. Immunofluorescence tests and digital reconstructed radiographs manifest a stimulated effect on early blood vessel formation from the Zr-based BMG. Accordingly, the intimate connection and coupling effect between angiogenesis and osteogenesis must be effective during bone regeneration after implanting Zr-based BMG. Dynamic gait analysis in rats after implanting Zr-based BMG demonstrates a tendency to decrease the pain level during recovery, simultaneously, without abnormal ionic accumulation and inflammatory reactions. Considering suitable mechanical properties, we provide a realistic candidate of the Zr61Ti2Cu25Al12 BMG for biomedical applications.
Collapse
Affiliation(s)
- K. Sun
- Institute of Materials, Shanghai University, Shanghai, 200444, China
| | - R. Fu
- Department of Neurology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200336, China
| | - X.W. Liu
- Sports Medicine Department of Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - L.M. Xu
- Institute of Materials, Shanghai University, Shanghai, 200444, China
| | - G. Wang
- Institute of Materials, Shanghai University, Shanghai, 200444, China
| | - S.Y. Chen
- Sports Medicine Department of Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Q.J. Zhai
- Institute of Materials, Shanghai University, Shanghai, 200444, China
| | - S. Pauly
- University of Applied Sciences Aschaffenburg, Würzburger Straße 45, D-63743, Aschaffenburg, Germany
| |
Collapse
|
19
|
Tai Z, Li L, Zhao G, Liu JX. Copper stress impairs angiogenesis and lymphangiogenesis during zebrafish embryogenesis by down-regulating pERK1/2-foxm1-MMP2/9 axis and epigenetically regulating ccbe1 expression. Angiogenesis 2022; 25:241-257. [PMID: 35034208 DOI: 10.1007/s10456-021-09827-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/03/2021] [Indexed: 01/07/2023]
Abstract
Molecular transport and cell circulation between tissues and organs through blood and lymphatic vessels are essential for physiological homeostasis in vertebrates. Despite the report of its association with vessel formation in solid tumors, the biological effects of Copper (Cu) accumulation on angiogenesis and lymphangiogenesis during embryogenesis are still unknown. In this study, we unveiled that intersegmental blood circulation was partially blocked in Cu2+-stressed zebrafish embryos and cell migration and tube formation were impaired in Cu2+-stressed mammalian HUVECs. Specifically, Cu2+-stressed embryos showed down-regulation in the expression of amotl2 and its downstream pERK1/2-foxm1-MMP2/9 regulatory axis, and knockdown/knockout of foxm1 in zebrafish embryos phenocopied angiogenesis defects, while FOXM1 knockdown HUVECs phenocopied cell migration and tube formation defects, indicating that excessive Cu2+-induced angiogenesis defects and blocked cell migration via down-regulating amotl2-pERK1/2-foxm1-MMP2/9 regulatory axis in both embryos and mammalian cells. Additionally, thoracic duct was revealed to be partially absent in Cu2+-stressed zebrafish embryos. Specifically, Cu2+-stressed embryos showed down-regulation in the expression of ccbe1 (a gene with pivotal function in lymphangiogenesis) due to the hypermethylation of the E2F7/8 binding sites on ccbe1 promoter to reduce their binding enrichment on the promoter, contributing to the potential mechanisms for down-regulation of ccbe1 and the formation of lymphangiogenesis defects in Cu2+-stressed embryos and mammalian cells. These integrated data demonstrate that Cu2+ stress impairs angiogenesis and lymphangiogenesis via down-regulation of pERK1/2-foxm1-MMP2/9 axis and epigenetic regulation of E2F7/8 transcriptional activity on ccbe1 expression, respectively.
Collapse
Affiliation(s)
- Zhipeng Tai
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lingya Li
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guang Zhao
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
20
|
Huo H, Wang S, Bai Y, Liao J, Li X, Zhang H, Han Q, Hu L, Pan J, Li Y, Tang Z, Guo J. Copper exposure induces mitochondrial dynamic disorder and oxidative stress via mitochondrial unfolded protein response in pig fundic gland. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112587. [PMID: 34352579 DOI: 10.1016/j.ecoenv.2021.112587] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Cu is a metallic element that widely spread over in the environment, which have raised wide concerns about the potential toxic effects and public health threat. The objective of this study aimed to investigate the impression of copper (Cu)-triggered toxicity on mitochondrial dynamic, oxidative stress, and unfolded protein response (UPRmt) in fundic gland of pigs. Weaned pigs were randomly distributed into three groups, fed with different Cu of 10 mg/kg (control group), 125 mg/kg (group I), and 250 mg/kg (group Ⅱ). The trial persisted for 80 days and the fundic gland tissues were collected for further researches. Moreover, the markers participated to mitochondrial dynamic, UPRmt,and oxidative stress in fundic gland were determined. Results revealed that vacuolar degeneration were observed in the treated groups contrast with control group, and the Cu level was boosted with the increasing intake of Cu. Besides that, the levels of CAT, TRX, H2O2, and G6PDH were reduced in group Ⅰ and group Ⅱ, the mRNA levels of NRF2, HO-1, SOD-1, CAT, SOD-2, GSR, GPX1, GPX4, and TRX in the treated groups were promoted contrast to control group. Furthermore, the protein expression of KEAP1 was dramatically decreased, and the protein expression of NRF2, TRX and HO-1 were markedly enhanced in group Ⅰ and Ⅱ at 80 days. Moreover, the mRNA and protein expression levels of MFN1, MFN2, and OPA1 down-regulated and protein level of DRP1 was increased with the adding levels of Cu. Nevertheless, the UPRmt-related mRNA levels of CLPP, HTRA-2, CHOP, HSP10, and HSP60 were enhanced dramatically in Cu treatment group compared with control group. In general, our current study demonstrated that excessive absorption of Cu in fundic gland were related with stimulating UPRmt, oxidative stress, and the NRF2 interceded antioxidant defense. These results could afford an updated evidence on molecular theory of Cu-invited toxicity.
Collapse
Affiliation(s)
- Haihua Huo
- College of Veterinary Medicine, South China Agriculture University, Guangzhou 510642, Guangdong, PR China
| | - Shuzhou Wang
- College of Veterinary Medicine, South China Agriculture University, Guangzhou 510642, Guangdong, PR China
| | - Yuman Bai
- College of Veterinary Medicine, South China Agriculture University, Guangzhou 510642, Guangdong, PR China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agriculture University, Guangzhou 510642, Guangdong, PR China
| | - Xinrun Li
- College of Veterinary Medicine, South China Agriculture University, Guangzhou 510642, Guangdong, PR China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agriculture University, Guangzhou 510642, Guangdong, PR China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agriculture University, Guangzhou 510642, Guangdong, PR China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agriculture University, Guangzhou 510642, Guangdong, PR China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agriculture University, Guangzhou 510642, Guangdong, PR China
| | - Ying Li
- College of Veterinary Medicine, South China Agriculture University, Guangzhou 510642, Guangdong, PR China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agriculture University, Guangzhou 510642, Guangdong, PR China.
| | - Jianying Guo
- College of Veterinary Medicine, South China Agriculture University, Guangzhou 510642, Guangdong, PR China.
| |
Collapse
|
21
|
Hassan HA, Arafat AR, Farroh KY, Bahnas MS, El-Wardany I, Elnesr SS. Histological alterations of small intestine and growth performance of broiler chicks after in ovo copper injection at 10 days of embryogenesis period. Anim Biotechnol 2021:1-8. [PMID: 34629030 DOI: 10.1080/10495398.2021.1985509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study aimed to assess impacts of early in ovo injection (at 10 days of incubation) of copper (sulfate, acetate, or nanoparticles) on histomorphometric parameters of small intestine and growth performance of post-hatched chicks. Fertile eggs (n = 462) were distributed to seven groups (3 replicates, 22 eggs in each). The first group as a control, the 2nd, 3rd and 4th groups injected with 100 µL deionized water containing 8 μg/egg of Cu (sulfate, acetate and nanoparticles, respectively), and the 5th, 6th and 7th groups injected with 100 µL deionized water containing 16 μg/egg of the same Cu sources above. Results illustrated that in ovo administration of Cu sulfate and Cu acetate significantly improved histological parameters of small intestine parts of newly hatched chicks compared with the control. Cu sulfate and nano-Cu significantly augmented body weight gain compared with the control. In ovo Cu injection showed a nonsignificant improvement in feed conversion ratio. The highest level (16 μg/egg) of different sources was better than the lowest level (8 μg/egg) in most results. In conclusion, it is recommended that in ovo injection of Cu (16 μg/egg) can improve the growth performance (Cu sulfate and nano-Cu) and the small intestine histomorphometry parameters (Cu sulfate and Cu acetate) of broiler chicks.
Collapse
Affiliation(s)
- Hanan A Hassan
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Ahmed R Arafat
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Khaled Y Farroh
- Nanotechnology and Advanced Materials Center Lab, Agriculture Research Central, Giza, Egypt
| | - Mohamed S Bahnas
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Ibrahim El-Wardany
- Department of Poultry Production, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Shaaban S Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| |
Collapse
|
22
|
Sharif M, Rahman MAU, Ahmed B, Abbas RZ, Hassan FU. Copper Nanoparticles as Growth Promoter, Antioxidant and Anti-Bacterial Agents in Poultry Nutrition: Prospects and Future Implications. Biol Trace Elem Res 2021; 199:3825-3836. [PMID: 33216319 DOI: 10.1007/s12011-020-02485-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/08/2020] [Indexed: 01/01/2023]
Abstract
Copper (Cu) is a vital trace mineral involved in many physiological functions of the body. In the poultry industry, copper sulfate is being used as a major source of Cu. Copper in the bulk form is less available in the body, and much of its amount excreted out with feces causing environmental pollution and economic loss. The application of nanotechnology offers promise to address these issues by making nanoparticles. Copper nanoparticles (Cu-NP) are relatively more bioavailable due to their small size and high surface to volume ratio. Although, there is limited research on the use of Cu-NP in the poultry industry. Some researchers have pointed out the importance of Cu-NP as an effective alternative of chemical, anti-bacterial agents, and growth promoters. The effect of Cu-NP depends on their size, dose rate and the synthesis method. Apart from there, high bioavailability Cu-NP exhibited positive effects on the immunity of the birds. However, some toxic effects of Cu-NP have also been reported. Further investigations are essentially required to provide mechanistic insights into the role of Cu-NP in the avian physiology and their toxicological properties. This review aims to highlight the potential effects of Cu-NP on growth, immune system, antioxidant status, nutrient digestibility, and feed conversion ratio in poultry. Moreover, we have also discussed the future implications of Cu-NP as a growth promoter and alternative anti-bacterial agents in the poultry industry.
Collapse
Affiliation(s)
- Muhammad Sharif
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | | | - Bilal Ahmed
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Faiz-Ul Hassan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
23
|
Elokil A, Darwish AM, Wei J, Barakat IAH, Mahrous KF, El-Kaiaty A, Li S, Zoheir KMA. Study the Effect of Microinjection of Zn, Fe, and Cu Loaded in Montmorillonite on Development Activities in Fertilized Chicken Eggs. Biol Trace Elem Res 2021; 199:3837-3845. [PMID: 33188460 DOI: 10.1007/s12011-020-02488-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
This study aims to reduce embryonic mortality, increase body weight, and improve immune system in chicken. A total of 240 eggs were assigned to three treatments (n = 60) and injected with cooper (Cu), zinc (Zn), and iron (Fe) loaded by montmorillonite (Mnt), and one untreated group (n = 60). Some hormones and enzymes related with growth were measured in terms of serum, and expression of some genes related to growth, immune, and programmed cell deaths that were determined in the liver and spleen of chicken by RT-qPCR. The embryonic death on the fifth and seventh days after injecting eggs with Fe-Mnt was less obvious than in other groups. The heaviest body weight was recorded for Fe-Mnt and Cu-Mnt treatment. Fe-Mnt treatment had higher serum GSH, SOD, GH, and Myostatin contents and lower MDA than those in the other treatments. Cu-Mnt treatment included the highest contents of CAT enzyme and IGF-1 hormone in serum. The highest expression of IGF-1, GH, BCL6, and SYK genes in liver tissue were recorded by Zn-Mnt, IGFBP2, FGF8, and IFNW1 genes by Cu-Mnt, and TC1RG1 and IFNW1 genes by Fe-Mnt in spleen tissue. In conclusion, Fe-Mnt was the best treatment for reducing embryonic mortality, and increasing body weight of chickens and expression of growth and immune genes, followed by Cu-Mnt treatment.
Collapse
Affiliation(s)
- Abdelmotaleb Elokil
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Animal Production Department, Faculty of Agriculture, Benha University, Moshtohor, 13736, Egypt
| | - Ahmed M Darwish
- Cell Biology Department, National Research Centre, 33 Bohouth St., Dokki, Giza, Egypt
| | - Jianfu Wei
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Ibrahim A H Barakat
- Cell Biology Department, National Research Centre, 33 Bohouth St., Dokki, Giza, Egypt
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Karima F Mahrous
- Cell Biology Department, National Research Centre, 33 Bohouth St., Dokki, Giza, Egypt
| | - Ahmed El-Kaiaty
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Shijun Li
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Khairy M A Zoheir
- Cell Biology Department, National Research Centre, 33 Bohouth St., Dokki, Giza, Egypt.
| |
Collapse
|
24
|
Aminullah N, Prabhu TM, Naik J, Suresh BN, Indresh HC. Performance of Swarnadhara breeder hens supplemented with reduced levels of different copper forms. Vet World 2021; 14:1371-1379. [PMID: 34220143 PMCID: PMC8243697 DOI: 10.14202/vetworld.2021.1371-1379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Copper (Cu) is a vital mineral involved in various physiological and biochemical processes, growth, and productivity of animals and birds. Birds can absorb only a small fraction of Cu and most is excreted, contaminating soil and aquatic environment which is toxic for microorganisms, plants, animals, and humans. This study evaluated the possibility of use of organic and nanoparticles sources of Cu to reduce supplementation level without compromising the performance of breeder hens. Materials and Methods: A total of 224 Swarnadhara breeder hens were divided into seven treatment groups having four replicates in each. The basal diet (control) containing 20 ppm inorganic Cu (100% of standard recommendation) and six test diets containing 20, 15, and 10 ppm (100, 75, and 50% of standard recommendation) from Cu organic source, and 15, 10, and 5 ppm (75, 50, and 25%) from Cu nanoparticles (Cu-NP), were prepared and offered to respective treatment groups for a duration of 20 weeks. Results: The hen day egg production, hen housed egg production, feed conversion ratio egg mass, albumen index, yolk index, total fat content, and color score were not affected by the source and inclusion level of Cu. The feed intake was significantly (p<0.05) lower at 15 ppm and egg weight was significantly (p<0.05) higher at 10 ppm Cu-NP supplemental level, but was non-significant in other treatment groups compared to control. The body weight gain was significantly (p<0.05) higher at 20 ppm organic and 15 ppm Cu-NP inclusion. The egg shape index and Haugh unit were significantly (p<0.05) lower at 10 and 15 ppm of Cu-NP inclusion level, respectively. The shell thickness was improved (p<0.05) at 20 and 15 ppm organic and 15 and 10 ppm Cu-NP inclusion level. The egg fertility rate was shown to be significantly (p<0.05) higher at 20 ppm organic Cu inclusion group, but the hatchability based on total number of eggs set improved (p<0.05) at 20 and 15 ppm organic Cu inclusion level while all treatment groups were comparable to control. The hatchability of fertilized egg and chick’s quality significantly (p<0.05) improved, while embryonic and chick mortality after hatching before-sorting was significantly (p<0.05) reduced at 15 ppm of Cu-NP inclusion group. Conclusion: It was concluded that the inorganic Cu can be replaced with 50% of organic or 25% of nanoparticles form of Cu without jeopardizing the breeder hens’ productivity, egg quality characteristics, hatchability, and progeny.
Collapse
Affiliation(s)
- Noor Aminullah
- Department of Animal Nutrition, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Bengaluru, Karnataka, India
| | - T M Prabhu
- Department of Animal Nutrition, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Bengaluru, Karnataka, India
| | - Jaya Naik
- Department of Poultry Science, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Bengaluru, Karnataka, India
| | - B N Suresh
- Department of Livestock Farm Complex, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hassan, Karnataka, India
| | - H C Indresh
- Department of Poultry Science, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Bengaluru, Karnataka, India
| |
Collapse
|
25
|
Copper Preserves Vasculature Structure and Function by Protecting Endothelial Cells from Apoptosis in Ischemic Myocardium. J Cardiovasc Transl Res 2021; 14:1146-1155. [PMID: 33999373 DOI: 10.1007/s12265-021-10128-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/15/2021] [Indexed: 02/08/2023]
Abstract
The present study was undertaken to investigate whether Cu protects vasculatures from ischemic injury in the heart. C57/B6 mice were introduced to myocardial ischemia (MI) by permanent ligation of the left anterior descending (LAD) coronary artery. Two hours post-LAD ligation, mice were intravenously injected with a Cu-albumin (Cu-alb) solution, or saline as control. At 1, 4, or 7 days post-MI, hearts were collected for further analysis. A dramatic decrease in CD31-positive endothelial cells concomitantly with abundant apoptosis, along with obstruction of blood flow, was observed in ischemic myocardium 1 day post-MI. The early Cu-alb treatment protected CD31-positive cells from apoptosis, along with a preservation of micro-vessels and a decrease in infarct size. This early vasculature preservation ensured myocardial blood perfusion and protected cardiac contractile function until 28 days post-MI. This strategy of Cu-alb treatment immediately following MI would help develop a therapeutic approach for acute heart attack patients in a clinical setting.
Collapse
|
26
|
Matuszewski A, Łukasiewicz M, Niemiec J, Kamaszewski M, Jaworski S, Domino M, Jasiński T, Chwalibog A, Sawosz E. Calcium Carbonate Nanoparticles-Toxicity and Effect of In Ovo Inoculation on Chicken Embryo Development, Broiler Performance and Bone Status. Animals (Basel) 2021; 11:ani11040932. [PMID: 33805968 PMCID: PMC8064363 DOI: 10.3390/ani11040932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Intensive selection in broiler chicken flocks has led do several leg disorders. The injection of nanoparticles, with high specificity to the bone, into the egg is a potential method to improve bone quality. The objective of our study was to evaluate the potential effect of calcium carbonate nanoparticles injected to the egg on chicken embryo development and bone quality of broiler chickens after 42 day of life. The calcium carbonate nanoparticles were not toxic to embryo and even improved the bone quality of embryos and later broilers without negative impact on production results. Thus, the application of calcium carbonate nanoparticles to the egg may be the potential solution for improving the bone mineralization of broiler chickens. Abstract The use of intensive selection procedure in modern broiler chicken lines has led to the development of several skeletal disorders in broiler chickens. Therefore, current research is focused on methods to improve the bone quality in birds. In ovo technology, using nanoparticles with a high specificity to bones, is a potential approach. The present study aimed to evaluate the effect of in ovo inoculation (IOI) of calcium carbonate nanoparticles (CCN) on chicken embryo development, health status, bone characteristics, and on broiler production results and bone quality. After assessing in vitro cell viability, the IOI procedure was performed with an injection of 500 μg/mL CCN. The control group was not inoculated with CCN. Hatchability, weight, and selected bone and serum parameters were measured in embryos. Part of hatchlings were reared under standard conditions until 42 days, and production results, meat quality, and bone quality of broilers were determined. CCN did not show cytotoxicity to cells and chicken embryo and positively influenced bone parameters of the embryos and of broilers later (calcification) without negatively affecting the production results. Thus, the IOI of CCN could modify the molecular responses at the stage of embryogenesis, resulting in better mineralization, and could provide a sustained effect, thereby improving bone quality in adult birds.
Collapse
Affiliation(s)
- Arkadiusz Matuszewski
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences (WULS–SGGW), 02-787 Warsaw, Poland; (M.Ł.); (J.N.)
- Correspondence:
| | - Monika Łukasiewicz
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences (WULS–SGGW), 02-787 Warsaw, Poland; (M.Ł.); (J.N.)
| | - Jan Niemiec
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences (WULS–SGGW), 02-787 Warsaw, Poland; (M.Ł.); (J.N.)
| | - Maciej Kamaszewski
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, Warsaw University of Life Sciences (WULS–SGGW), 02-787 Warsaw, Poland;
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland; (S.J.); (E.S.)
| | - Małgorzata Domino
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS–SGGW), 02-787 Warsaw, Poland; (M.D.); (T.J.)
| | - Tomasz Jasiński
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS–SGGW), 02-787 Warsaw, Poland; (M.D.); (T.J.)
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, Groennegaardsvej 3, 1870 Frederiksberg, Denmark;
| | - Ewa Sawosz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland; (S.J.); (E.S.)
| |
Collapse
|
27
|
Hassan HA, Arafat AR, Farroh KY, Bahnas MS, El-Wardany I, Elnesr SS. Effect of in ovo copper injection on body weight, immune response, blood biochemistry and carcass traits of broiler chicks at 35 days of age. Anim Biotechnol 2021; 33:1134-1141. [PMID: 33509025 DOI: 10.1080/10495398.2021.1874964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The current study was conducted to investigate effects of copper (sulfate, acetate and nano) in ovo injection at 10 days of the embryogenesis period on body weight (BW), immunity, biochemical parameters and carcass traits of broiler chicks at 35 days of age. A total number of 462 fertile eggs were used in seven groups, each group containing 66 eggs in three replicates. The experimental design was as follows: the group 1 as a control, while groups 2, 3 and 4 injected with 8 μg/egg of Cu sulfate, Cu acetate and nano Cu, respectively, and groups 5, 6 and 7 injected with 16 μg/egg of Cu sulfate, Cu acetate and nano Cu, respectively. Results stated that BW was increased in Cu-injected groups, except groups of Cu acetate, but plasma constituents, carcass and relative weight of organs did not affect. Cu level (8 μg/egg) had better results than Cu level (16 μg/egg). No differences between among groups in relative weights of spleen and bursa and immune response. In conclusion, it is recommended that in ovo injection of different sources of Cu can augment the BW and did not harmfully affect immunity, carcass traits and biochemical parameters of broiler chicks.
Collapse
Affiliation(s)
- Hanan A Hassan
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - A R Arafat
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - K Y Farroh
- Nanotechnology and Advanced Materials Center Lab, Agriculture Research Central, Giza, Egypt
| | - M S Bahnas
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - I El-Wardany
- Department of Poultry Production, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Shaaban S Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| |
Collapse
|
28
|
Ma H, Ma Z, Chen Q, Li W, Liu X, Ma X, Mao Y, Yang H, Ma H, Wang J. Bifunctional, Copper-Doped, Mesoporous Silica Nanosphere-Modified, Bioceramic Scaffolds for Bone Tumor Therapy. Front Chem 2020; 8:610232. [PMID: 33363114 PMCID: PMC7755992 DOI: 10.3389/fchem.2020.610232] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
In the traditional surgical intervention procedure, residual tumor cells may potentially cause tumor recurrence. In addition, large bone defects caused by surgery are difficult to self-repair. Thus, it is necessary to design a bioactive scaffold that can not only kill residual tumor cells but also promote bone defect regeneration simultaneously. Here, we successfully developed Cu-containing mesoporous silica nanosphere-modified β-tricalcium phosphate (Cu-MSN-TCP) scaffolds, with uniform and dense nanolayers with spherical morphology via 3D printing and spin coating. The scaffolds exhibited coating time- and laser power density-dependent photothermal performance, which favored the effective killing of tumor cells under near-infrared laser irradiation. Furthermore, the prepared scaffolds favored the proliferation and attachment of rabbit bone marrow-derived mesenchymal stem cells and stimulated the gene expression of osteogenic markers. Overall, Cu-MSN-TCP scaffolds can be considered for complete eradication of residual bone tumor cells and simultaneous healing of large bone defects, which may provide a novel and effective strategy for bone tumor therapy. In the future, such Cu-MSN-TCP scaffolds may function as carriers of anti-cancer drugs or immune checkpoint inhibitors in chemo-/photothermal or immune-/photothermal therapy of bone tumors, favoring for effective treatment.
Collapse
Affiliation(s)
- Hongshi Ma
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenjiang Ma
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qufei Chen
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wentao Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangfei Liu
- Department of Orthopaedic Surgery, Shanghai Zhongye Hospital, Shanghai, China
| | - Xiaojun Ma
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanqing Mao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Ma
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Buhr CR, Wiesmann N, Tanner RC, Brieger J, Eckrich J. The Chorioallantoic Membrane Assay in Nanotoxicological Research-An Alternative for In Vivo Experimentation. NANOMATERIALS 2020; 10:nano10122328. [PMID: 33255445 PMCID: PMC7760845 DOI: 10.3390/nano10122328] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022]
Abstract
Nanomaterials unveil many applicational possibilities for technical and medical purposes, which range from imaging techniques to the use as drug carriers. Prior to any human application, analysis of undesired effects and characterization of their toxicological profile is mandatory. To address this topic, animal models, and rodent models in particular, are most frequently used. However, as the reproducibility and transferability to the human organism of animal experimental data is increasingly questioned and the awareness of animal welfare in society increases at the same time, methodological alternatives are urgently required. The chorioallantoic membrane (CAM) assay is an increasingly popular in ovo experimental organism suitable for replacement of rodent experimentation. In this review, we outline several application fields for the CAM assay in the field of nanotoxicology. Furthermore, analytical methods applicable with this model were evaluated in detail. We further discuss ethical, financial, and bureaucratic aspects and benchmark the assay with other established in vivo models such as rodents.
Collapse
Affiliation(s)
- Christoph R. Buhr
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany; (C.R.B.); (N.W.); (R.C.T.); (J.E.)
| | - Nadine Wiesmann
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany; (C.R.B.); (N.W.); (R.C.T.); (J.E.)
- Department of Oral and Maxillofacial Surgery, -Plastic Surgery, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany
| | - Rachel C. Tanner
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany; (C.R.B.); (N.W.); (R.C.T.); (J.E.)
| | - Jürgen Brieger
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany; (C.R.B.); (N.W.); (R.C.T.); (J.E.)
- Correspondence: ; Tel.: +49-(0)-6131-17-3354
| | - Jonas Eckrich
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Rhineland-Palatinate, Germany; (C.R.B.); (N.W.); (R.C.T.); (J.E.)
| |
Collapse
|
30
|
Ozkan E, Mondal A, Singha P, Douglass M, Hopkins SP, Devine R, Garren M, Manuel J, Warnock J, Handa H. Fabrication of Bacteria- and Blood-Repellent Superhydrophobic Polyurethane Sponge Materials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51160-51173. [PMID: 33143413 DOI: 10.1021/acsami.0c13098] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biofilm and thrombus formation on surfaces results in significant morbidity and mortality worldwide, which highlights the importance of the development of efficacious fouling-prevention approaches. In this work, novel highly robust and superhydrophobic coatings with outstanding multiliquid repellency, bactericidal performance, and extremely low bacterial and blood adhesion are fabricated by a simple two-step dip-coating method. The coatings are prepared combining 1H,1H,2H,2H-perfluorooctyltriethoxysilane (FAS-17)-coated hydrophobic zinc oxide and copper nanoparticles to construct hierarchical micro/nanostructures on commercial polyurethane (PU) sponges followed by polydimethylsiloxane (PDMS) treatment that is used to improve the binding degree between the nanoparticles and the sponge surface. The micro/nanotextured samples can repel various liquids including water, milk, coffee, juice, and blood. Relative to the original PU, the superhydrophobic characteristics of the fabricated sponge cause a significant reduction in the adhesion of bacteria (Staphylococcus aureus) by up to 99.9% over a 4-day period in a continuous drip-flow bioreactor. The sponge is also highly resistant to the adhesion of fibrinogen and activated platelets with ∼76 and 64% reduction, respectively, hence reducing the risk of blood coagulation and thrombus formation. More importantly, the sponge can sustain its superhydrophobicity even after being subjected to different types of harsh mechanical damage such as finger-wiping, knife-scratching, tape-peeling, hand-kneading, hand-rubbing, bending, compress-release (1000 cycles) tests, and 1000 cm sandpaper abrasion under 250 g of loading. Hence, this novel hybrid surface with robustness and the ability to resist blood adhesion and bacterial contamination makes it an attractive candidate for use in diverse application areas.
Collapse
Affiliation(s)
- Ekrem Ozkan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Arnab Mondal
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Priyadarshini Singha
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Megan Douglass
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Sean P Hopkins
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Ryan Devine
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Mark Garren
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - James Manuel
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - James Warnock
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
31
|
Kargozar S, Singh RK, Kim HW, Baino F. "Hard" ceramics for "Soft" tissue engineering: Paradox or opportunity? Acta Biomater 2020; 115:1-28. [PMID: 32818612 DOI: 10.1016/j.actbio.2020.08.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/25/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
Tissue engineering provides great possibilities to manage tissue damages and injuries in modern medicine. The involvement of hard biocompatible materials in tissue engineering-based therapies for the healing of soft tissue defects has impressively increased over the last few years: in this regard, different types of bioceramics were developed, examined and applied either alone or in combination with polymers to produce composites. Bioactive glasses, carbon nanostructures, and hydroxyapatite nanoparticles are among the most widely-proposed hard materials for treating a broad range of soft tissue damages, from acute and chronic skin wounds to complex injuries of nervous and cardiopulmonary systems. Although being originally developed for use in contact with bone, these substances were also shown to offer excellent key features for repair and regeneration of wounds and "delicate" structures of the body, including improved cell proliferation and differentiation, enhanced angiogenesis, and antibacterial/anti-inflammatory activities. Furthermore, when embedded in a soft matrix, these hard materials can improve the mechanical properties of the implant. They could be applied in various forms and formulations such as fine powders, granules, and micro- or nanofibers. There are some pre-clinical trials in which bioceramics are being utilized for skin wounds; however, some crucial questions should still be addressed before the extensive and safe use of bioceramics in soft tissue healing. For example, defining optimal formulations, dosages, and administration routes remain to be fixed and summarized as standard guidelines in the clinic. This review paper aims at providing a comprehensive picture of the use and potential of bioceramics in treatment, reconstruction, and preservation of soft tissues (skin, cardiovascular and pulmonary systems, peripheral nervous system, gastrointestinal tract, skeletal muscles, and ophthalmic tissues) and critically discusses their pros and cons (e.g., the risk of calcification and ectopic bone formation as well as the local and systemic toxicity) in this regard. STATEMENT OF SIGNIFICANCE: Soft tissues form a big part of the human body and play vital roles in maintaining both structure and function of various organs; however, optimal repair and regeneration of injured soft tissues (e.g., skin, peripheral nerve) still remain a grand challenge in biomedicine. Although polymers were extensively applied to restore the lost or injured soft tissues, the use of bioceramics has the potential to provides new opportunities which are still partially unexplored or at the very beginning. This reviews summarizes the state of the art of bioceramics in this field, highlighting the latest evolutions and the new horizons that can be opened by their use in the context of soft tissue engineering. Existing results and future challenges are discussed in order to provide an up-to-date contribution that is useful to both experienced scientists and early-stage researchers of the biomaterials community.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran.
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea; Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 330-714, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 330-714, Republic of Korea.
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy.
| |
Collapse
|
32
|
Humayun A, Luo Y, Elumalai A, Mills DK. Differential antimicrobial and cellular response of electrolytically metalized halloysite nanotubes having different amounts of surface metallization. MATERIALS ADVANCES 2020; 1:1705-1715. [PMID: 35813570 PMCID: PMC9262339 DOI: 10.1039/d0ma00134a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We demonstrate an electrolytic method to metalize the outer surface of halloysite nanotubes (HNTs). Different metal HNT (mHNT) combinations (copper, silver, zinc) were produced with metal content in the 5-30 wt% range. mHNTs were characterized using a Scanning Electron Microscope (SEM), energy-dispersive spectroscopy (EDS), X-ray fluorescence (XRF), Fourier-transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD). Different amounts of surface/lumen metal content of a system can confer differing antimicrobial/cellular response; hence, it is essential to assess the antimicrobial/cellular response as a function of metal content. Cellular response after exposure to mHNTs was studied in Staphylococcus aureus and pre-osteoblasts, respectively. Coated mHNTs could easily be identified using the characterization methods, and contrasting bacterial and cellular responses were obtained, which we propose was due to the extent of metallization. These findings demonstrate the potential of this method for creating metal-coated HNTs and suggest they have potential as an implant coating solution.
Collapse
Affiliation(s)
- Ahmed Humayun
- School of Biological Sciences and the Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Carson Taylor Hall, Room 128, Ruston, LA, 71272, USA. ; Tel: +1-318-257-2640
| | - Yangyang Luo
- School of Biological Sciences and the Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Carson Taylor Hall, Room 128, Ruston, LA, 71272, USA. ; Tel: +1-318-257-2640
| | - Anusha Elumalai
- School of Biological Sciences and the Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Carson Taylor Hall, Room 128, Ruston, LA, 71272, USA. ; Tel: +1-318-257-2640
- School of Biological Sciences, Louisiana Tech University, Ruston, LA, 71272, USA
| | - David K Mills
- School of Biological Sciences and the Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Carson Taylor Hall, Room 128, Ruston, LA, 71272, USA. ; Tel: +1-318-257-2640
- School of Biological Sciences, Louisiana Tech University, Ruston, LA, 71272, USA
| |
Collapse
|
33
|
Patra A, Lalhriatpuii M. Progress and Prospect of Essential Mineral Nanoparticles in Poultry Nutrition and Feeding-a Review. Biol Trace Elem Res 2020; 197:233-253. [PMID: 31828724 DOI: 10.1007/s12011-019-01959-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
Nanobiotechnology is a growing field in animal and veterinary sciences for various practical applications including diagnostic, therapeutic, and nutritional applications. Recently, nanoforms or nanoparticles (NP) of essential minerals have been explored for growth performance, feed utilization, and health status of animals. Various mineral NP, such as calcium, zinc, copper, selenium, and chromium, have been studied in different farm animals including poultry. Because mineral NP are smaller in size, and show different chemical and physical properties, they are usually absorbed in greater amounts from gastrointestinal tract and exert enhanced biological effects in the target tissues of animals. In various studies, mineral NP have been comparatively studied relating to its larger inorganic and organic particles in poultry. There are contradictory findings among the studies on comparative improvement of production performance and other mineral functions perhaps due to different sizes, shapes, and properties of NP, and interactions of minerals present in basal diets. There are not many studies correlating physical and chemical properties of mineral NP and their biological functions in the body. Nonetheless, it appears that mineral NP have potential for their uses as mineral supplements in preference to inorganic mineral supplements for their better absorption avoiding antagonistic interactions with other minerals, growth performance, and physiological functions, especially at lower doses compared with the doses that are recommended for their larger particles. Supplementation of mineral NP in diets could be a promising option in the future. This review summarizes the studies of different essential mineral NP used as mineral supplements for feed intake, growth performance, egg production and quality, and blood variables in poultry.
Collapse
Affiliation(s)
- Amlan Patra
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, 37 K.B. Sarani, Belgachia, Kolkata, 700037, India.
| | - Melody Lalhriatpuii
- National Dairy Research Institute, Eastern Regional Station, Kalyani, West Bengal, India
| |
Collapse
|
34
|
Kargozar S, Baino F, Hamzehlou S, Hamblin MR, Mozafari M. Nanotechnology for angiogenesis: opportunities and challenges. Chem Soc Rev 2020; 49:5008-5057. [PMID: 32538379 PMCID: PMC7418030 DOI: 10.1039/c8cs01021h] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis plays a critical role within the human body, from the early stages of life (i.e., embryonic development) to life-threatening diseases (e.g., cancer, heart attack, stroke, wound healing). Many pharmaceutical companies have expended huge efforts on both stimulation and inhibition of angiogenesis. During the last decade, the nanotechnology revolution has made a great impact in medicine, and regulatory approvals are starting to be achieved for nanomedicines to treat a wide range of diseases. Angiogenesis therapies involve the inhibition of angiogenesis in oncology and ophthalmology, and stimulation of angiogenesis in wound healing and tissue engineering. This review aims to summarize nanotechnology-based strategies that have been explored in the broad area of angiogenesis. Lipid-based, carbon-based and polymeric nanoparticles, and a wide range of inorganic and metallic nanoparticles are covered in detail. Theranostic and imaging approaches can be facilitated by nanoparticles. Many preparations have been reported to have a bimodal effect where they stimulate angiogenesis at low dose and inhibit it at higher doses.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, 917794-8564 Mashhad, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 101 29 Torino, Italy
| | - Sepideh Hamzehlou
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Masoud Mozafari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
35
|
Milan PB, Khamseh S, Zarrintaj P, Ramezanzadeh B, Badawi M, Morisset S, Vahabi H, Saeb MR, Mozafari M. Copper-enriched diamond-like carbon coatings promote regeneration at the bone-implant interface. Heliyon 2020; 6:e03798. [PMID: 32368647 PMCID: PMC7184533 DOI: 10.1016/j.heliyon.2020.e03798] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/17/2019] [Accepted: 04/14/2020] [Indexed: 12/26/2022] Open
Abstract
There have been several attempts to design innovative biomaterials as surface coatings to enhance the biological performance of biomedical implants. The objective of this study was to design multifunctional Cu/a-C:H thin coating depositing on the Ti-6Al-4V alloy (TC4) via magnetron sputtering in the presence of Ar and CH4 for applications in bone implants. Moreover, the impact of Cu amount and sp2/sp3 ratio on the interior stress, corrosion behavior, mechanical properties, and tribological performance and biocompatibility of the resulting biomaterial was discussed. X-ray photoelectron spectroscopy (XPS) revealed that the sp2/sp3 portion of the coating was enhanced for samples having higher Cu contents. The intensity of the interior stress of the Cu/a-C:H thin bio-films decreased by increase of Cu content as well as the sp2/sp3 ratio. By contrast, the values of Young's modulus, the H3/E2 ratio, and hardness exhibited no significant difference with enhancing Cu content and sp2/sp3 ratio. However, there was an optimum Cu content (36.8 wt.%) and sp2/sp3 ratio (4.7) that it is feasible to get Cu/a-C:H coating with higher hardness and tribological properties. Electrochemical impedance spectroscopy test results depicted significant improvement of Ti-6Al-4V alloy corrosion resistance by deposition of Cu/a-C:H thin coating at an optimum Ar/CH4 ratio. Furthermore, Cu/a-C:H thin coating with higher Cu contents showed better antibacterial properties and higher angiogenesis and osteogenesis activities. The coated samples inhibited the growth of bacteria as compared to the uncoated sample (p < 0.05). In addition, such coating composition can stimulate angiogenesis, osteogenesis and control host response, thereby increasing the success rate of implants. Moreover, Cu/a-C:H thin films encouraged development of blood vessels on the surface of titanium alloy when the density of grown blood vessels was increased with enhancing the Cu amount of the films. It is speculated that such coating can be a promising candidate for enhancing the osseointegration features.
Collapse
Affiliation(s)
- Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Khamseh
- Department of Nanomaterials and Nanocoatings, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, United States
| | - Bahram Ramezanzadeh
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, Tehran, Iran
| | - Michael Badawi
- Université de Lorraine and CNRS, LPCT, UMR 7019, 54506, Vandoeuvre-lès-Nancy, France
| | - Sophie Morisset
- IC2MP, UMR CNRS 7285, Université de Poitiers, 4 Rue Michel Brunet, Poitiers 86022, France
| | - Henri Vahabi
- Université de Lorraine, CentraleSupélec, LMOPS, F-57000 Metz, France
| | - Mohammad Reza Saeb
- Department of Resins and Additives, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran, Iran
| | - Masoud Mozafari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Wolf-Brandstetter C, Beutner R, Hess R, Bierbaum S, Wagner K, Scharnweber D, Gbureck U, Moseke C. Multifunctional calcium phosphate based coatings on titanium implants with integrated trace elements. Biomed Mater 2020; 15:025006. [DOI: 10.1088/1748-605x/ab5d7b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
37
|
Das B, Dadhich P, Pal P, Thakur S, Neogi S, Dhara S. Carbon nano dot decorated copper nanowires for SERS-Fluorescence dual-mode imaging/anti-microbial activity and enhanced angiogenic activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117669. [PMID: 31698154 DOI: 10.1016/j.saa.2019.117669] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Copper nanoparticles are explored significantly for their antimicrobial activity, especially for antibiotic-resistant strain infections. However, copper has severe toxic responses and mostly it is due to its generation capability of reactive oxygen species (ROS) molecules while interacting with in vitro or in vivo systems. In the current study, wire shaped copper nanostructures were synthesized via microwave irradiation with single step doping of carbon nanodots (CDs). The synthesized material (CuCs) was characterized by UV-Vis spectroscopy, fluorescence spectroscopy, FTIR, TEM, FESEM, XRD, DLS, and XPS. The fluorescence spectroscopy, microscopy and Raman spectroscopy results suggested CuCs to work well as a bi-modal imaging nanoprobe (fluorescence/SERS). The cell culture studies prove significant cytocompatibility and ROS scavenging property of the samples with respect to control. Further, CuCs-gelatin nanocomposite thin films were prepared and implanted into rodent deep wound model. The histological study has showed enhanced angiogenesis in the subcutaneous region. The results were validated by immuno-histochemistry. The ROS scavenging and enhanced angiogenesis were validated via gene expression studies and a HIF-α induced enhanced angiogenesis mechanism was also proposed for better wound healing.
Collapse
Affiliation(s)
- Bodhisatwa Das
- Department of Biomedical Engineering, Rutgers the State University of New Jersey, NJ, USA; School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India.
| | - Prabhash Dadhich
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| | - Pallabi Pal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| | - Shaila Thakur
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, India
| | - Sudarshan Neogi
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| |
Collapse
|
38
|
Kachooei SA, Rahmani R, Zareh N, Donyadideh F, Kachooei SA, Nabiuni M, Yazdansetad S. Down-regulation of TGF-β, VEGF, and bFGF in vascular endothelial cells of chicken induced by a brittle star ( Ophiocoma erinaceus) extract. Heliyon 2020; 6:e03199. [PMID: 31970303 PMCID: PMC6965705 DOI: 10.1016/j.heliyon.2020.e03199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/26/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022] Open
Abstract
Great attention has been focused on the discovery of anti-angiogenic natural and synthetic compounds to be finally used as or at least a part of the treatment of tumors. The marine ecosystems provide diversity in natural chemicals with the potential of being exploited as medicines in the treatment of diseases. Several studies have investigated Ophiuroids as a source of anti-tumor and anti-metastatic organisms. Here, we described the inhibitory effects of an ethanolic crude extract of brittle star (Ophiocoma erinaceus) on angiogenesis and the expression level of TGF-β, VEGF, and bFGF in chicken chorioallantoic membrane (CAM) as an experimental model. To do this 45 embryonated eggs were randomly divided into six groups including the control group, sham, three experimental groups and positive. The number and the length of vessels were calculated using ImageJ® software. The relative mRNA levels of the genes in different groups were evaluated by qRT-PCR method. Our study was suggestive of an anti-angiogenesis effect of brittle star ethanolic crude extract in a CAM model. The extract also showed a pharmacological effect of down-regulation of mRNA related to VEGF, TGF-β, and bFGF genes on chicken vascular endothelial cells. It was also showed that the observed inhibitory effect is with a dose-dependent manner in which the highest inhibitory effect belonged to the highest used dose. We indicated the anti-angiogenesis properties of the Persian Gulf brittle star. Further studies are needed in other aspects of the brittle star extract in the treatment of angiogenesis, hyperplasia, and cancers.
Collapse
Affiliation(s)
- Saeed Ataei Kachooei
- Department of Poultry Diseases, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Roya Rahmani
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Karaj, Iran
| | - Nasrin Zareh
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Karaj, Iran
| | - Fatemeh Donyadideh
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Karaj, Iran
| | - Saba Ataei Kachooei
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Karaj, Iran
| | - Mohammad Nabiuni
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Karaj, Iran
| | - Sajjad Yazdansetad
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
39
|
Torre E, Giasafaki D, Steriotis T, Cassinelli C, Morra M, Fiorilli S, Vitale-Brovarone C, Charalambopoulou G, Iviglia G. Silver Decorated Mesoporous Carbons for the Treatment of Acute and Chronic Wounds, in a Tissue Regeneration Context. Int J Nanomedicine 2019; 14:10147-10164. [PMID: 32021158 PMCID: PMC6942531 DOI: 10.2147/ijn.s234393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Silver decorated mesoporous carbons are interesting systems that may offer effective solutions for advanced wound care products by combining the well-known anti-microbial activity of silver nanoparticles with the versatile properties of ordered mesoporous carbons. Silver is being used as a topical antimicrobial agent, especially in wound repair. However, while silver shows bactericidal properties, it is also cytotoxic at high concentrations. Therefore, the incorporation of silver into ordered mesoporous carbons allows to exploit both silver's biological effects and mesoporous carbons' biocompatibility and versatility with the purpose of conceiving silver-doped materials in light of the growing health concern in wound care. METHODS The wound healing potential of an ordered mesoporous carbon also doped with two different loadings of silver nanoparticles (2 wt% and 10 wt%), was investigated through a biological assessment study based on different assays (cell viability, inflammation, antibacterial tests, macrophage-conditioned fibroblast and human keratinocyte cell cultures). RESULTS The results show silver-doped ordered mesoporous carbons to positively condition cell viability, with a cell viability percentage >70% even for 10 wt% Ag, to modulate the expression of inflammatory cytokines and of genes involved in tissue repair (KRT6a, VEGFA, IVN) and remodeling (MMP9, TIMP3) in different cell systems. Furthermore, along with the biocompatibility and the bioactivity, the silver-doped ordered mesoporous carbons still retain an antibacterial effect, as shown by a maximum of 13.1% of inhibited area in the Halo test. The obtained results clearly showed that the silver-doped ordered mesoporous carbons exhibit both good biocompatibility and antibacterial effect with enhanced re-epithelialization, angiogenesis promotion and tissue regeneration. DISCUSSION These findings suggest that the exceptional properties of silver-doped ordered mesoporous carbons could be exploited in the treatment of acute and chronic wounds and that such carbon materials could be potential candidates for use in medical devices for wound healing purposes, in particular, the 10 wt% loading, as the results showed to be the most effective.
Collapse
Affiliation(s)
- Elisa Torre
- Nobil Bio Ricerche Srl, Portacomaro14037, AT, Italy
| | - Dimitra Giasafaki
- National Center for Scientific Research “Demokritos”, Athens15341, Greece
| | - Theodore Steriotis
- National Center for Scientific Research “Demokritos”, Athens15341, Greece
| | | | - Marco Morra
- Nobil Bio Ricerche Srl, Portacomaro14037, AT, Italy
| | - Sonia Fiorilli
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | | | | | | |
Collapse
|
40
|
Barui AK, Nethi SK, Haque S, Basuthakur P, Patra CR. Recent Development of Metal Nanoparticles for Angiogenesis Study and Their Therapeutic Applications. ACS APPLIED BIO MATERIALS 2019; 2:5492-5511. [DOI: 10.1021/acsabm.9b00587] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ayan Kumar Barui
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Susheel Kumar Nethi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Shagufta Haque
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Papia Basuthakur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
41
|
|
42
|
Kang Z, Qiao N, Liu G, Chen H, Tang Z, Li Y. Copper-induced apoptosis and autophagy through oxidative stress-mediated mitochondrial dysfunction in male germ cells. Toxicol In Vitro 2019; 61:104639. [PMID: 31491480 DOI: 10.1016/j.tiv.2019.104639] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/15/2019] [Accepted: 09/03/2019] [Indexed: 01/20/2023]
Abstract
Excess copper reduces sperm number and motility but the causes are unclear. We investigated the toxic effects of copper exposure on the immortalized male germ cell line GC-1. Copper addition to cells altered viability and morphology in a dose-dependent manner. Copper addition resulted in increased levels of reactive oxygen species (ROS), malonaldehyde (MDA) and lactate dehydrogenase (LDH) while catalase (CAT) activity and glutathione (GSH) declined. The mitochondrial transmembrane potential and ATP levels decreased in response to copper as did mitochondria fission that led to mitochondrial dysfunction. The apoptosis rate was also proportional to the level of copper in the growth medium. Copper also down-regulated Bcl2 and up-regulated Bax, Casp8 and Casp3 linking the effects of copper to increased apoptosis. The levels of mRNA for the autophagy-related genes (Atg3, Atg5, p62, Lc3b/Lc3a) and proteins (Lc3b/Lc3a, BECN1, Atg5, p62) all increased in copper-treated cells as were levels Lc3 determined by fluorescence microscopy. These results indicated that copper induces apoptosis and autophagy through oxidative stress-mediated mitochondrial dysfunction.
Collapse
Affiliation(s)
- Zhenlong Kang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Na Qiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Gaoyang Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Hanming Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| |
Collapse
|
43
|
N D, Manikantan Syamala K. Effects of structural distinction in neodymium nanoparticle for therapeutic application in aberrant angiogenesis. Colloids Surf B Biointerfaces 2019; 181:450-460. [PMID: 31176117 DOI: 10.1016/j.colsurfb.2019.05.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/23/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
Abstract
In the present study we analyzed the effect of structural distinction in neodymium nanostructures for modulating angiogenic process as the strategy for identifying biocompatible Nano therapeutics for biomedical applications. We observed structural dependence of Nd nanoparticles on biocompatibility, the spherical polymorphs showed better biocompatibility when compared with cuboidal and nanorod shaped polymorphs of neodymium. The Nd nanopolymorphs in spherical morphology exhibited least redox modulating effect compared to cuboidal shaped that was higher when compared to Nd nanorods. The efficacy of the Nd Nanopolymorphs to induce biological effect in particular on angiogenic process was observed to be directly related to the polymorphs ability to modulate redox signaling. The redox signaling was observed to be via PKM2-NOX4 signaling pathways. Further the results demonstrated that ROS generated by cuboid and rod shaped nanopolymorphs activated the pro-angiogenic factors namely VE-cadherin, HIF 1α, VEGF and VEGFR-2 to facilitate the angiogenic process. The manuscript highlights the importance of rare earth metal nanoparticles in modulating biological process for therapeutic interventions. The present study opens up a new domain in developing novel biocompatible therapeutics based on rare earth metal nanoparticles for regulating disease pathophysiology.
Collapse
Affiliation(s)
- Duraipandy N
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 20, India; Academy of Scientific and Innovative Research, CSIR-CLRI, Chennai, 20, India
| | - Kiran Manikantan Syamala
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 20, India; Academy of Scientific and Innovative Research, CSIR-CLRI, Chennai, 20, India.
| |
Collapse
|
44
|
Gaspar D, Peixoto R, De Pieri A, Striegl B, Zeugolis DI, Raghunath M. Local pharmacological induction of angiogenesis: Drugs for cells and cells as drugs. Adv Drug Deliv Rev 2019; 146:126-154. [PMID: 31226398 DOI: 10.1016/j.addr.2019.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 05/12/2019] [Accepted: 06/16/2019] [Indexed: 12/12/2022]
Abstract
The past decades have seen significant advances in pro-angiogenic strategies based on delivery of molecules and cells for conditions such as coronary artery disease, critical limb ischemia and stroke. Currently, three major strategies are evolving. Firstly, various pharmacological agents (growth factors, interleukins, small molecules, DNA/RNA) are locally applied at the ischemic region. Secondly, preparations of living cells with considerable bandwidth of tissue origin, differentiation state and preconditioning are delivered locally, rarely systemically. Thirdly, based on the notion, that cellular effects can be attributed mostly to factors secreted in situ, the cellular secretome (conditioned media, exosomes) has come into the spotlight. We review these three strategies to achieve (neo)angiogenesis in ischemic tissue with focus on the angiogenic mechanisms they tackle, such as transcription cascades, specific signalling steps and cellular gases. We also include cancer-therapy relevant lymphangiogenesis, and shall seek to explain why there are often conflicting data between in vitro and in vivo. The lion's share of data encompassing all three approaches comes from experimental animal work and we shall highlight common technical obstacles in the delivery of therapeutic molecules, cells, and secretome. This plethora of preclinical data contrasts with a dearth of clinical studies. A lack of adequate delivery vehicles and standardised assessment of clinical outcomes might play a role here, as well as regulatory, IP, and manufacturing constraints of candidate compounds; in addition, completed clinical trials have yet to reveal a successful and efficacious strategy. As the biology of angiogenesis is understood well enough for clinical purposes, it will be a matter of time to achieve success for well-stratified patients, and most probably with a combination of compounds.
Collapse
Affiliation(s)
- Diana Gaspar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Rita Peixoto
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Andrea De Pieri
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Proxy Biomedical Ltd., Coilleach, Spiddal, Galway, Ireland
| | - Britta Striegl
- Competence Centre Tissue Engineering for Drug Development (TEDD), Centre for Cell Biology & Tissue Engineering, Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences, Zurich, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Michael Raghunath
- Competence Centre Tissue Engineering for Drug Development (TEDD), Centre for Cell Biology & Tissue Engineering, Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences, Zurich, Switzerland.
| |
Collapse
|
45
|
Nethi SK, Barui AK, Mukherjee S, Patra CR. Engineered Nanoparticles for Effective Redox Signaling During Angiogenic and Antiangiogenic Therapy. Antioxid Redox Signal 2019; 30:786-809. [PMID: 29943661 DOI: 10.1089/ars.2017.7383] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Redox signaling plays a vital role in regulating various cellular signaling pathways and disease biology. Recently, nanomedicine (application of nanotechnology in biology and medicine) has been demonstrated to regulate angiogenesis through redox signaling. A complete understanding of redox signaling pathways influenced angiogenesis/antiangiogenesis triggered by therapeutic nanoparticles is extensively reviewed in this article. Recent Advances: In recent times, nanomedicines are regarded as the Trojan horses that could be employed for successful drug delivery, gene delivery, peptide delivery, disease diagnosis, and others, conquering barriers associated with conventional theranostic approaches. CRITICAL ISSUES Physiological angiogenesis is a tightly regulated process maintaining a balance between proangiogenic and antiangiogenic factors. The redox signaling is one of the main factors that contribute to this physiological balance. An aberrant redox signaling cascade can be caused by several exogenous and endogenous factors and leads to reduced or augmented angiogenesis that ultimately results in several disease conditions. FUTURE DIRECTIONS Redox signaling-based nanomedicine approach has emerged as a new platform for angiogenesis-related disease therapy, where nanoparticles promote angiogenesis via controlled reactive oxygen species (ROS) production and antiangiogenesis by triggering excessive ROS formation. Recently, investigators have identified different efficient nano-candidates, which modulate angiogenesis by controlling intracellular redox molecules. Considering the importance of angiogenesis in health care a thorough understanding of nanomedicine-regulated redox signaling would inspire researchers to design and develop more novel nanomaterials that could be used as an alternative strategy for the treatment of various diseases, where angiogenesis plays a vital role.
Collapse
Affiliation(s)
- Susheel Kumar Nethi
- 1 Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,2 Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| | - Ayan Kumar Barui
- 1 Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,2 Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| | - Sudip Mukherjee
- 1 Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,2 Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| | - Chitta Ranjan Patra
- 1 Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,2 Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| |
Collapse
|
46
|
Gulla S, Lomada D, Srikanth VV, Shankar MV, Reddy KR, Soni S, Reddy MC. Recent advances in nanoparticles-based strategies for cancer therapeutics and antibacterial applications. J Microbiol Methods 2019. [DOI: 10.1016/bs.mim.2019.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
47
|
Copper induces oxidative stress and apoptosis through mitochondria-mediated pathway in chicken hepatocytes. Toxicol In Vitro 2018; 54:310-316. [PMID: 30389602 DOI: 10.1016/j.tiv.2018.10.017] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/12/2018] [Accepted: 10/29/2018] [Indexed: 11/21/2022]
Abstract
The aim of this study was to investigate the effects of excessive copper (Cu)-induced cytotoxicity on oxidative stress and mitochondrial apoptosis in chicken hepatocytes. Chicken hepatocytes were cultured in medium in the absence and presence of copper sulfate (CuSO4) (10, 50, 100 μM), in N-acetyl-L-cysteine (NAC) (1 mM), and the combination of CuSO4 and NAC for 24 h. Morphologic observation and function, reactive oxygen species (ROS) level, antioxidant indices, nitric oxide (NO) content, mitochondrial membrane potential (MMP), and apoptosis-related mRNA and protein levels were determined. These results indicated that excessive Cu could induce release of intracellular lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and alanine aminotransferase (ALT); increase levels of ROS, superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT), lipid peroxidation (LPO), and NO; decrease glutathione (GSH) content and MMP; upregulated Bak1, Bax, CytC, and Caspase3 mRNA and protein expression, inhibited Bcl2 mRNA and protein expression, and induced cell apoptosis in a dose effect. The Cu-caused changes of all above factors were alleviated by treatment with NAC. These results suggested that excessive Cu could induce oxidative stress and apoptosis via mitochondrial pathway in chicken hepatocytes.
Collapse
|
48
|
Sawosz E, Łukasiewicz M, Łozicki A, Sosnowska M, Jaworski S, Niemiec J, Scott A, Jankowski J, Józefiak D, Chwalibog A. Effect of copper nanoparticles on the mineral content of tissues and droppings, and growth of chickens. Arch Anim Nutr 2018; 72:396-406. [PMID: 30183391 DOI: 10.1080/1745039x.2018.1505146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We hypothesised that copper nanoparticles (NanoCu), because of their high physicochemical reactivity and bioavailability, could be used in much smaller quantities than bulk Cu, consequently reducing excretion of Cu into the environment. The objective of the study was to evaluate the effects of various levels of NanoCu on the development and growth of broiler chickens, in order to establish an optimum level of NanoCu dietary supplementation. Broiler chickens were randomly divided into five groups of 10 birds each. The control group received 7.5 mg Cu/kg feed (standard level) as CuSO4, while groups fed with complexes of NanoCu and starch received 25%, 50%, 75% and 100% of the standard level of Cu used in the control group. Chicken growth and excretion of Cu, Fe and Zn were measured during the growth period from d 7 to 42. At d 42, the slaughter characteristics, the content of Cu, Fe and Zn in the breast muscle and liver, and the oxidative status were analysed. The results indicate that using NanoCu can reduce the standard level of Cu from CuSO4 supplementation by 75% without jeopardising animal growth, and at the same time significantly decreasing Cu excretion into the environment.
Collapse
Affiliation(s)
- Ewa Sawosz
- a Department of Animal Nutrition and Biotechnology , Warsaw University of Life Sciences , Warsaw , Poland
| | - Monika Łukasiewicz
- b Department of Poultry Breeding , Warsaw University of Life Sciences , Warsaw , Poland
| | - Andrzej Łozicki
- a Department of Animal Nutrition and Biotechnology , Warsaw University of Life Sciences , Warsaw , Poland
| | - Malwina Sosnowska
- a Department of Animal Nutrition and Biotechnology , Warsaw University of Life Sciences , Warsaw , Poland
| | - Sławomir Jaworski
- a Department of Animal Nutrition and Biotechnology , Warsaw University of Life Sciences , Warsaw , Poland
| | - Jan Niemiec
- b Department of Poultry Breeding , Warsaw University of Life Sciences , Warsaw , Poland
| | - Abdullah Scott
- c Department of Veterinary and Animal Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Jan Jankowski
- d Department of Poultry , University of Warmia and Mazury , Olsztyn , Poland
| | - Damian Józefiak
- e Department of Animal Nutrition and Feed Management , Poznań University of Life Sciences , Poznań , Poland
| | - André Chwalibog
- c Department of Veterinary and Animal Sciences , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
49
|
Yang F, Liao J, Pei R, Yu W, Han Q, Li Y, Guo J, Hu L, Pan J, Tang Z. Autophagy attenuates copper-induced mitochondrial dysfunction by regulating oxidative stress in chicken hepatocytes. CHEMOSPHERE 2018; 204:36-43. [PMID: 29649662 DOI: 10.1016/j.chemosphere.2018.03.192] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
Copper (Cu) is an essential trace element that is required for the catalysis of several cellular enzymes. Excessive Cu could induce hepatotoxicity in humans and multiple animals. The purpose of this study was to investigate the effects of autophagy machinery on Cu-induced hepatotoxicity. Chicken hepatocytes were cultured in medium in the absence and presence of Cu sulfate (CuSO4) (0, 10, 50, and 100 μM) for 0, 6, 12, and 24 h, and in the combination of CuSO4 and N-acetyl-l-cysteine (NAC) (1 mM), rapamycin (10 nM), and 3-methyladenine (3-MA) (5 mM) for 24 h. Results showed that Cu could markedly increase the number of autophagosomes and LC3 puncta, induce autophagy-related genes (Beclin1, ATG5, LC3Ⅰ, LC3Ⅱ, mTOR, and Dynein) mRNA expression and proteins (BECN1, LC3Ⅱ/LC3Ⅰ) expression. NAC could relieve Cu-induced the changes of above genes and proteins. Additionally, rapamycin attenuated Cu-induced the increased lactic dehydrogenase (LDH), aspartate amino transferase (AST), and alanine aminotransferase (ALT) activities, and SOD-1 mRNA expression as well as the decreased cell viability, reactive oxygen species (ROS), hydrogen peroxide, total superoxide dismutase (T-SOD), malonaldehyde (MDA), catalase (CAT), HO-1 mRNA expression, adenosine triphosphate (ATP) levels, mitochondrial mass, and mitochondria membrane potential (MMP). But 3-MA had the opposite effects on above factors. Collectively, these findings provide strong evidence that Cu could induce autophagy by generating excessive ROS in hepatocytes, and autophagy might attenuate Cu-induced mitochondrial dysfunction by regulating oxidative stress.
Collapse
Affiliation(s)
- Fan Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Ruonan Pei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| |
Collapse
|
50
|
Vimalraj S, Ashokkumar T, Saravanan S. Biogenic gold nanoparticles synthesis mediated by Mangifera indica seed aqueous extracts exhibits antibacterial, anticancer and anti-angiogenic properties. Biomed Pharmacother 2018; 105:440-448. [PMID: 29879628 DOI: 10.1016/j.biopha.2018.05.151] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 10/14/2022] Open
Abstract
During the last few decades, gold nanoparticles (AuNP's) have gained considerable attention in nanomedicine and expanded its application in clinical diagnosis and as therapeutics. Employing plant extract for synthesising gold nanoparticles proves to be an eco-friendly technology for large scale production. It is highly economical and suitable for biological applications by negating the use of chemicals involved in conventional route. In this study, AuNP's was prepared by a simple one step method of employing aqueous Mangifera indica seed extract as a reducing agent. Scanning electron microscopy and transmission electron microscopy revealed spherical shaped nanoparticles and dynamic light scattering analysis indicated the AuNP's to be approximately 46.8 nm in size. AuNP's efficiently inhibited the growth of E. coli and S. aureus by its inherent ability to generate reactive oxygen species (ROS) and exhibited detrimental effects towards the tested bacterial species. Biocompatibility assessment indicated the non-toxic nature of AuNP's towards mesenchymal stem cells at 25 μg/ml and interestingly, suppressed the growth of human gastric cancer cells under in vitro culture conditions. AuNP's significantly exhibited anti-angiogenic property in chick chorioallantoic membrane model (CAM) by downregulating Ang-1/Tie2 pathway. Overall, the synthesized AuNP's exhibited antibacterial and anti-angiogenic properties with high biocompatibility thereby supporting its candidature for various biomedical applications. It can be employed in suppressing tumor growth, combat inflammatory diseases that necessitate the involvement of angiogenesis suppression, and antibacterial activity is suitable for its clinical translation to negate surgery associated infections.
Collapse
Affiliation(s)
- Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Chennai, 600 025, Tamil Nadu, India.
| | | | - Sekaran Saravanan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), Department of Bioengineering, School of Chemical and Biotechnology SASTRA University, Thanjavur, Tamil Nadu, 613 401, India.
| |
Collapse
|