1
|
Graves C, Babikow E, Ghaltakhchyan N, Ngo T, Liu C, Wang S, Shoji A, Bocklage C, Phillips S, Markovetz M, Frazier-Bowers S, Divaris K, Freire M, Wallet S, Wu D, Jacox L. Immune Dysregulation in the Oral Cavity during Early SARS-CoV-2 Infection. J Dent Res 2024; 103:1258-1270. [PMID: 39394771 PMCID: PMC11562286 DOI: 10.1177/00220345241271943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024] Open
Abstract
Tissue-specific immune responses are critical determinants of health-maintaining homeostasis and disease-related dysbiosis. In the context of COVID-19, oral immune responses reflect local host-pathogen dynamics near the site of infection and serve as important "windows to the body," reflecting systemic responses to the invading SARS-CoV-2 virus. This study leveraged multiplex technology to characterize the salivary SARS-CoV-2-specific immunological landscape (37 cytokines/chemokines and 11 antibodies) during early infection. Cytokine/immune profiling was performed on unstimulated cleared whole saliva collected from 227 adult SARS-CoV-2+ participants and 37 controls. Statistical analysis and modeling revealed significant differential abundance of 25 cytokines (16 downregulated, 9 upregulated). Pathway analysis demonstrated early SARS-CoV-2 infection is associated with local suppression of oral type I/III interferon and blunted natural killer-/T-cell responses, reflecting a potential novel immune-evasion strategy enabling infection. This virus-associated immune suppression occurred concomitantly with significant upregulation of proinflammatory pathways including marked increases in the acute phase proteins pentraxin-3 and chitinase-3-like-1. Irrespective of SARS-CoV-2 infection, prior vaccination was associated with increased total α-SARS-CoV-2-spike (trimer), -S1 protein, -RBD, and -nucleocapsid salivary antibodies, highlighting the importance of COVID-19 vaccination in eliciting mucosal responses. Altogether, our findings highlight saliva as a stable and accessible biofluid for monitoring host responses to SARS-CoV-2 over time and suggest that oral-mucosal immune dysregulation is a hallmark of early SARS-CoV-2 infection, with possible implications for viral evasion mechanisms.
Collapse
Affiliation(s)
- C. Graves
- Department of Biomedical Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - E. Babikow
- Department of Orthodontics, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
- Parrott Orthodontics, Staunton, VA, USA
| | - N. Ghaltakhchyan
- Department of Biomedical Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
- Department of Orthodontics, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - T.Q. Ngo
- Department of Biomedical Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
- Department of Orthodontics, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - C. Liu
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - S. Wang
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - A. Shoji
- Department of Biomedical Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
- Department of Orthodontics, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - C. Bocklage
- Department of Biomedical Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
- Department of Orthodontics, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - S.T. Phillips
- GoHealth Clinical Research Unit, Department of Biomedical Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - M. Markovetz
- Cystic Fibrosis and Pulmonary Research Center, Marisco Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - S.A. Frazier-Bowers
- Department of Orthodontics, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
- Indiana University School of Dentistry, Indianapolis, IN, USA
| | - K. Divaris
- Department of Pediatric Dentistry and Dental Public Health, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - M. Freire
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, USA
| | - S. Wallet
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - D. Wu
- Department of Biomedical Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - L.A. Jacox
- Department of Biomedical Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
- Department of Orthodontics, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Dave K, Jain M, Sharma M, Delta AK, Kole C, Kaushik P. RNA-Seq analysis of human heart tissue reveals SARS-CoV-2 infection and inappropriate activation of the TNF-NF-κB pathway in cardiomyocytes. Sci Rep 2024; 14:22044. [PMID: 39333655 PMCID: PMC11437285 DOI: 10.1038/s41598-024-69635-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/07/2024] [Indexed: 09/29/2024] Open
Abstract
The negative impact of SARS-CoV-2 virus infection on cardiovascular disease (CVD) patients is well established. This research article explores the cellular pathways involved in underlying heart diseases after infection. The systemic inflammatory response to SARS-CoV-2 infection likely exacerbates this increased cardiovascular risk; however, whether the virus directly infects cardiomyocytes remains unknown due to limited multi-omics data. While public transcriptome data exists for COVID-19 infection in different cell types (including cardiomyocytes), infection times vary between studies. We used available RNA-seq data from human heart tissue to delineate SARS-CoV-2 infection and heart failure aetiology specific gene expression signatures. A total of fifty-four samples from four studies were analysed. Our aim was to investigate specific transcriptome changes occurring in cardiac tissue with SARS-CoV-2 infection compared to non-infected controls. Our data establish that SARS-CoV-2 infects cardiomyocytes by the TNF-NF-κB pathway, potentially triggering acute cardiovascular complications and increasing the long-term cardiovascular risk in COVID-19 patients.
Collapse
Affiliation(s)
- Kirtan Dave
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, 391760, India.
- Bioinformatics Laboratory, Research & Development Cell, Parul University, Vadodara, Gujarat, 391760, India.
| | - Mukul Jain
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, 391760, India
- Cell & Developmental Biology Lab, Research & Development Cell, Parul University, Vadodara, Gujarat, 391760, India
| | - Meenakshi Sharma
- Department of Chemistry, Ranchi University, Ranchi, 834001, India
| | - Anil Kumar Delta
- Department of Chemistry, Ranchi University, Ranchi, 834001, India
| | | | - Prashant Kaushik
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, India.
| |
Collapse
|
3
|
Jia R, Li Z, Hu S, Chang H, Zeng M, Liu P, Lu L, Xu M, Zhai X, Qian M, Xu J. Immunological characterization and comparison of children with COVID-19 from their adult counterparts at single-cell resolution. Front Immunol 2024; 15:1358725. [PMID: 39148728 PMCID: PMC11325098 DOI: 10.3389/fimmu.2024.1358725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction The immunological characteristics that could protect children with coronavirus disease 2019 (COVID-19) from severe or fatal illnesses have not been fully understood yet. Methods Here, we performed single-cell RNA sequencing (scRNA-seq) analysis on peripheral blood samples of 15 children (8 with COVID-19) and compared them to 18 adults (13 with COVID-19). Results The child-adult integrated single cell data indicated that children with the disease presented a restrained response to type I interferon in most of the major immune cell types, along with suppression of upstream interferon regulatory factor and toll-like receptor expression in monocytes, which was confirmed by in vitro interferon stimulation assays. Unlike adult patients, children with COVID-19 showed lower frequencies of activated proinflammatory CD14+ monocytes, possibly explaining the rareness of cytokine storm in them. Notably, natural killer (NK) cells in pediatric patients displayed potent cytotoxicity with a rich expression of cytotoxic molecules and upregulated cytotoxic pathways, whereas the cellular senescence, along with the Notch signaling pathway, was significantly downregulated in NK cells, all suggesting more robust cytotoxicity in NK cells of children than adult patients that was further confirmed by CD107a degranulation assays. Lastly, a modest adaptive immune response was evident with more naïve T cells but less activated and proliferated T cells while less naïve B cells but more activated B cells in children over adult patients. Conclusion Conclusively, this preliminary study revealed distinct cell frequency and activation status of major immune cell types, particularly more robust NK cell cytotoxicity in PBMC that might help protect children from severe COVID-19.
Collapse
Affiliation(s)
- Ran Jia
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Zifeng Li
- Department of Hematology and Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Shiwen Hu
- Department of Hematology and Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Hailing Chang
- Department of Infectious Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Mei Zeng
- Department of Infectious Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Pengcheng Liu
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Lijuan Lu
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Menghua Xu
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xiaowen Zhai
- Department of Hematology and Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Maoxiang Qian
- Institute of Pediatrics and Department of Hematology and Oncology, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Balachandran H, Kroll K, Terry K, Manickam C, Jones R, Woolley G, Hayes T, Martinot AJ, Sharma A, Lewis M, Jost S, Reeves RK. NK cells modulate in vivo control of SARS-CoV-2 replication and suppression of lung damage. PLoS Pathog 2024; 20:e1012439. [PMID: 39133756 PMCID: PMC11341101 DOI: 10.1371/journal.ppat.1012439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/22/2024] [Accepted: 07/22/2024] [Indexed: 08/18/2024] Open
Abstract
Natural killer (NK) cells play a critical role in virus control. However, it has remained largely unclear whether NK cell mobilization in SARS-CoV-2 infections is beneficial or pathologic. To address this deficit, we employed a validated experimental NK cell depletion non-human primate (NHP) model with SARS-CoV-2 Delta variant B.1.617.2 challenge. Viral loads (VL), NK cell numbers, activation, proliferation, and functional measures were evaluated in blood and tissues. In non-depleted (control) animals, infection rapidly induced NK cell expansion, activation, and increased tissue trafficking associated with VL. Strikingly, we report that experimental NK cell depletion leads to higher VL, longer duration of viral shedding, significantly increased levels of pro-inflammatory cytokines in the lungs, and overt lung damage. Overall, we find the first significant and conclusive evidence for NK cell-mediated control of SARS-CoV-2 virus replication and disease pathology. These data indicate that adjunct therapies for infection could largely benefit from NK cell-targeted approaches.
Collapse
Affiliation(s)
- Harikrishnan Balachandran
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kyle Kroll
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Karen Terry
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Cordelia Manickam
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Rhianna Jones
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Griffin Woolley
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Tammy Hayes
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| | - Amanda J. Martinot
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| | - Ankur Sharma
- BIOQUAL, Inc., Rockville, Maryland, United States of America
| | - Mark Lewis
- BIOQUAL, Inc., Rockville, Maryland, United States of America
| | - Stephanie Jost
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - R. Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
5
|
Buyl K, Merimi M, Rodrigues RM, Rahmani S, Fayyad-Kazan M, Bouhtit F, Boukhatem N, Vanhaecke T, Fahmi H, De Kock J, Najar M. The Immunological Profile of Adipose Mesenchymal Stromal/Stem Cells after Cell Expansion and Inflammatory Priming. Biomolecules 2024; 14:852. [PMID: 39062566 PMCID: PMC11275169 DOI: 10.3390/biom14070852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND AT-MSCs display great immunoregulatory features, making them potential candidates for cell-based therapy. This study aimed to evaluate the "RBC lysis buffer" isolation protocol and immunological profiling of the so-obtained AT-MSCs. METHODS We established an immune-comparative screening of AT-MSCs throughout in vitro cell expansion (PM, P1, P2, P3, P4) and inflammatory priming regarding the expression of 28 cell-surface markers, 6 cytokines/chemokines, and 10 TLR patterns. FINDINGS AT-MSCs were highly expandable and sensitive to microenvironment challenges, hereby showing plasticity in distinct expression profiles. Both cell expansion and inflammation differentially modulated the expression profile of CD34, HLA-DR, CD40, CD62L, CD200 and CD155, CD252, CD54, CD58, CD106, CD274 and CD112. Inflammation resulted in a significant increase in the expression of the cytokines IL-6, IL-8, IL-1β, IL-1Ra, CCL5, and TNFα. Depending on the culture conditions, the expression of the TLR pattern was distinctively altered with TLR1-4, TLR7, and TLR10 being increased, whereas TLR6 was downregulated. Protein network and functional enrichment analysis showed that several trophic and immune responses are likely linked to these immunological changes. CONCLUSIONS AT-MSCs may sense and actively respond to tissue challenges by modulating distinct and specific pathways to create an appropriate immuno-reparative environment. These mechanisms need to be further characterized to identify and assess a molecular target that can enhance or impede the therapeutic ability of AT-MSCs, which therefore will help improve the quality, safety, and efficacy of the therapeutic strategy.
Collapse
Affiliation(s)
- Karolien Buyl
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Makram Merimi
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco (F.B.); (N.B.)
| | - Robim M. Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Saida Rahmani
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco (F.B.); (N.B.)
| | - Mohammad Fayyad-Kazan
- Department of Natural and Applied Sciences, College of Arts and Sciences, The American University of Iraq-Baghdad (AUIB), Baghdad 10001, Iraq
| | - Fatima Bouhtit
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco (F.B.); (N.B.)
- Hematology Department, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium
- Laboratoire d’Hématologie, CHU Mohammed VI, Faculté de Médecine et de Pharmacie d’Oujda, University Mohammed Premier, Oujda 60000, Morocco
| | - Noureddine Boukhatem
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco (F.B.); (N.B.)
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Hassan Fahmi
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Joery De Kock
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Mehdi Najar
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
- Faculty of Medicine, ULB721, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
6
|
Peskersoy C, Oguzhan A, Akcay C, Dincturk BA, Can HS, Kamer EK, Haciyanli M. Evaluation of oral health status and immunological parameters of hospitalized COVID-19 patients during acute and recovery phases: A randomized clinical trial. J Dent Sci 2024; 19:1515-1524. [PMID: 39035327 PMCID: PMC11259628 DOI: 10.1016/j.jds.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 01/27/2024] [Indexed: 07/23/2024] Open
Abstract
Background/purpose It is known that COVID-19 patients show many clinical oral symptoms due to the immunological mechanisms triggered by the virus. Aim of this study is to analyze the antibody response to SARS-CoV-2, and to evaluate the oral health status of hospitalized patients. Materials and methods 160 patients with COVID-19 confirmed by SARS-CoV-2-specific RT-PCR testing and 160 healthy volunteers (HI) with similar age, gender and systemic status were included to compare the bio-chemical and oral manifestations. Oropharyngeal swab specimens were collected to evaluate the salivary interleukins (IL-1, IL-6, IL-10) and immunoglobulins (sIgA, sIgG, sIgM). Oral findings (DMFT, plaque index, salivary flow rate), socio-demographic information and systemic conditions were also recorded. Chi-square, Mann-Whitney U and Spearman's ratio tests were applied to determine the possible correlations between the factors (P = 0.05). Results The mean DMFT scores of COVID-19 patients (12.71 ± 7.3) were significantly higher than the HI (7.39 ± 2.8), whereas cases of total or partial edentulism were more common among COVID-19 patients (P < 0.05). While plaque index scores were similar for both groups (P > 0.05), salivary parameters were found statistically different (P < 0.05). Severe and moderate cases showed higher proinflammatory interleukin levels (IL-1 = 68.74 pg/ml, IL-6 = 53.31 pg/ml) amongst all (P < 0.05). While secretory immunoglobulins were almost depleted at baseline, (sIgA = 0.11 mg/ml, sIgG = 0.21 mg/ml, sIgM = 0.08 mg/ml) they reached to threshold levels after 4 weeks. Conclusion Higher proinflammatory interleukin levels indicated that traces of ongoing "Cytokine Storm" in COVID-19 patients which can also be observed in oral environment. Poor oral hygiene and malnutrition due to edentulism can pave the way for having a severe COVID-19 infection.
Collapse
Affiliation(s)
- Cem Peskersoy
- Ege University, Faculty of Dentistry, Department of Restorative Dentistry, Izmir, Turkey
| | - Aybeniz Oguzhan
- Ege University, Faculty of Dentistry, Department of Restorative Dentistry, Izmir, Turkey
| | - Cagri Akcay
- Izmir Katip Celebi University Faculty of Medicine, Department of Surgery and Infectious Diseases, Izmir, Turkey
| | - Beyza A. Dincturk
- Dokuz Eylul University, Faculty of Dentistry, Department of Restorative Dentistry, Izmir, Turkey
| | - Hulya S.E. Can
- Gazi University, Faculty of Dentistry, Department of Restorative Dentistry, Ankara, Turkey
| | - Erdinc K. Kamer
- Health Sciences University, Faculty of Medicine, Department of Surgery, Izmir, Turkey
| | - Mehmet Haciyanli
- Izmir Katip Celebi University, Faculty of Medicine, Department of Surgery, Izmir, Turkey
| |
Collapse
|
7
|
Zhao JV, Yao M, Liu Z. Using genetics and proteomics data to identify proteins causally related to COVID-19, healthspan and lifespan: a Mendelian randomization study. Aging (Albany NY) 2024; 16:6384-6416. [PMID: 38575325 PMCID: PMC11042960 DOI: 10.18632/aging.205711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/24/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND COVID-19 pandemic poses a heavy burden on public health and accounts for substantial mortality and morbidity. Proteins are building blocks of life, but specific proteins causally related to COVID-19, healthspan and lifespan have not been systematically examined. METHODS We conducted a Mendelian randomization study to assess the effects of 1,361 plasma proteins on COVID-19, healthspan and lifespan, using large GWAS of severe COVID-19 (up to 13,769 cases and 1,072,442 controls), COVID-19 hospitalization (32,519 cases and 2,062,805 controls) and SARS-COV2 infection (122,616 cases and 2,475,240 controls), healthspan (n = 300,477) and parental lifespan (~0.8 million of European ancestry). RESULTS We identified 35, 43, and 63 proteins for severe COVID, COVID-19 hospitalization, and SARS-COV2 infection, and 4, 32, and 19 proteins for healthspan, father's attained age, and mother's attained age. In addition to some proteins reported previously, such as SFTPD related to severe COVID-19, we identified novel proteins involved in inflammation and immunity (such as ICAM-2 and ICAM-5 which affect COVID-19 risk, CXCL9, HLA-DRA and LILRB4 for healthspan and lifespan), apoptosis (such as FGFR2 and ERBB4 which affect COVID-19 risk and FOXO3 which affect lifespan) and metabolism (such as PCSK9 which lowers lifespan). We found 2, 2 and 3 proteins shared between COVID-19 and healthspan/lifespan, such as CXADR and LEFTY2, shared between severe COVID-19 and healthspan/lifespan. Three proteins affecting COVID-19 and seven proteins affecting healthspan/lifespan are targeted by existing drugs. CONCLUSIONS Our study provided novel insights into protein targets affecting COVID-19, healthspan and lifespan, with implications for developing new treatment and drug repurposing.
Collapse
Affiliation(s)
- Jie V. Zhao
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
| | - Minhao Yao
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong SAR, China
| | - Zhonghua Liu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| |
Collapse
|
8
|
Kakavandi S, Hajikhani B, Azizi P, Aziziyan F, Nabi-Afjadi M, Farani MR, Zalpoor H, Azarian M, Saadi MI, Gharesi-Fard B, Terpos E, Zare I, Motamedifar M. COVID-19 in patients with anemia and haematological malignancies: risk factors, clinical guidelines, and emerging therapeutic approaches. Cell Commun Signal 2024; 22:126. [PMID: 38360719 PMCID: PMC10868124 DOI: 10.1186/s12964-023-01316-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/13/2023] [Indexed: 02/17/2024] Open
Abstract
Extensive research in countries with high sociodemographic indices (SDIs) to date has shown that coronavirus disease 2019 (COVID-19) may be directly associated with more severe outcomes among patients living with haematological disorders and malignancies (HDMs). Because individuals with moderate to severe immunodeficiency are likely to undergo persistent infections, shed virus particles for prolonged periods, and lack an inflammatory or abortive phase, this represents an overall risk of morbidity and mortality from COVID-19. In cases suffering from HDMs, further investigation is needed to achieve a better understanding of triviruses and a group of related variants in patients with anemia and HDMs, as well as their treatment through vaccines, drugs, and other methods. Against this background, the present study aimed to delineate the relationship between HDMs and the novel COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Besides, effective treatment options for HDM cases were further explored to address this epidemic and its variants. Therefore, learning about how COVID-19 manifests in these patients, along with exploiting the most appropriate treatments, may lead to the development of treatment and care strategies by clinicians and researchers to help patients recover faster. Video Abstract.
Collapse
Affiliation(s)
- Sareh Kakavandi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Paniz Azizi
- Psychological and Brain Science Departments, Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
| | - Hamidreza Zalpoor
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Maryam Azarian
- Department of Radiology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | | | | | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd., Shiraz, 7178795844, Iran.
| | - Mohammad Motamedifar
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Hammond TC, Purbhoo MA, Kadel S, Ritz J, Nikiforow S, Daley H, Shaw K, van Besien K, Gomez-Arteaga A, Stevens D, Ortuzar W, Michelet X, Smith R, Moskowitz D, Masakayan R, Yigit B, Boi S, Soh KT, Chamberland J, Song X, Qin Y, Mishchenko I, Kirby M, Nasonenko V, Buffa A, Buell JS, Chand D, van Dijk M, Stebbing J, Exley MA. A phase 1/2 clinical trial of invariant natural killer T cell therapy in moderate-severe acute respiratory distress syndrome. Nat Commun 2024; 15:974. [PMID: 38321023 PMCID: PMC10847411 DOI: 10.1038/s41467-024-44905-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024] Open
Abstract
Invariant natural killer T (iNKT) cells, a unique T cell population, lend themselves for use as adoptive therapy due to diverse roles in orchestrating immune responses. Originally developed for use in cancer, agenT-797 is a donor-unrestricted allogeneic ex vivo expanded iNKT cell therapy. We conducted an open-label study in virally induced acute respiratory distress syndrome (ARDS) caused by the severe acute respiratory syndrome-2 virus (trial registration NCT04582201). Here we show that agenT-797 rescues exhausted T cells and rapidly activates both innate and adaptive immunity. In 21 ventilated patients including 5 individuals receiving veno-venous extracorporeal membrane oxygenation (VV-ECMO), there are no dose-limiting toxicities. We observe an anti-inflammatory systemic cytokine response and infused iNKT cells are persistent during follow-up, inducing only transient donor-specific antibodies. Clinical signals of associated survival and prevention of secondary infections are evident. Cellular therapy using off-the-shelf iNKT cells is safe, can be rapidly scaled and is associated with an anti-inflammatory response. The safety and therapeutic potential of iNKT cells across diseases including infections and cancer, warrants randomized-controlled trials.
Collapse
Affiliation(s)
- Terese C Hammond
- Pulmonary Critical Care Sleep Medicine, Providence Saint John's Health Center, Santa Monica, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | | | - Jerome Ritz
- Dana Farber Cancer Institute, Boston, MA, USA
| | | | | | - Kit Shaw
- Dana Farber Cancer Institute, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yu Qin
- MiNK Therapeutics, Lexington, MA, USA
- Agenus, Lexington, MA, USA
| | | | | | | | - Alexa Buffa
- MiNK Therapeutics, Lexington, MA, USA
- Agenus, Lexington, MA, USA
| | | | | | | | | | | |
Collapse
|
10
|
Müller L, Di Benedetto S. Immunosenescence and Cytomegalovirus: Exploring Their Connection in the Context of Aging, Health, and Disease. Int J Mol Sci 2024; 25:753. [PMID: 38255826 PMCID: PMC10815036 DOI: 10.3390/ijms25020753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Aging induces numerous physiological alterations, with immunosenescence emerging as a pivotal factor. This phenomenon has attracted both researchers and clinicians, prompting profound questions about its implications for health and disease. Among the contributing factors, one intriguing actor in this complex interplay is human cytomegalovirus (CMV), a member of the herpesvirus family. Latent CMV infection exerts a profound influence on the aging immune system, potentially contributing to age-related diseases. This review delves into the intricate relationship between immunosenescence and CMV, revealing how chronic viral infection impacts the aging immune landscape. We explore the mechanisms through which CMV can impact both the composition and functionality of immune cell populations and induce shifts in inflammatory profiles with aging. Moreover, we examine the potential role of CMV in pathologies such as cardiovascular diseases, cancer, neurodegenerative disorders, COVID-19, and Long COVID. This review underlines the importance of understanding the complex interplay between immunosenescence and CMV. It offers insights into the pathophysiology of aging and age-associated diseases, as well as COVID-19 outcomes among the elderly. By unraveling the connections between immunosenescence and CMV, we gain a deeper understanding of aging's remarkable journey and the profound role that viral infections play in transforming the human immune system.
Collapse
Affiliation(s)
- Ludmila Müller
- Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | | |
Collapse
|
11
|
Müller L, Di Benedetto S. From aging to long COVID: exploring the convergence of immunosenescence, inflammaging, and autoimmunity. Front Immunol 2023; 14:1298004. [PMID: 37942323 PMCID: PMC10628127 DOI: 10.3389/fimmu.2023.1298004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
The process of aging is accompanied by a dynamic restructuring of the immune response, a phenomenon known as immunosenescence. This mini-review navigates through the complex landscape of age-associated immune changes, chronic inflammation, age-related autoimmune tendencies, and their potential links with immunopathology of Long COVID. Immunosenescence serves as an introductory departure point, elucidating alterations in immune cell profiles and their functional dynamics, changes in T-cell receptor signaling, cytokine network dysregulation, and compromised regulatory T-cell function. Subsequent scrutiny of chronic inflammation, or "inflammaging," highlights its roles in age-related autoimmune susceptibilities and its potential as a mediator of the immune perturbations observed in Long COVID patients. The introduction of epigenetic facets further amplifies the potential interconnections. In this compact review, we consider the dynamic interactions between immunosenescence, inflammation, and autoimmunity. We aim to explore the multifaceted relationships that link these processes and shed light on the underlying mechanisms that drive their interconnectedness. With a focus on understanding the immunological changes in the context of aging, we seek to provide insights into how immunosenescence and inflammation contribute to the emergence and progression of autoimmune disorders in the elderly and may serve as potential mediator for Long COVID disturbances.
Collapse
Affiliation(s)
- Ludmila Müller
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Berlin, Germany
| | | |
Collapse
|
12
|
Das S, Sharma T, Bhardwaj A, Srivastava RK. COVID-19 induced ARDS: immunopathology and therapeutics. EXPLORATION OF IMMUNOLOGY 2023:255-275. [DOI: 10.37349/ei.2023.00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/14/2023] [Indexed: 01/03/2025]
Abstract
The coronavirus disease-2019 (COVID-19) pandemic is a significant threat in the modern era. Clinical studies show that the most common symptom of severe COVID-19 is viral pneumonia-induced acute respiratory distress syndrome (ARDS). The underlying mechanisms by which severe respiratory disease syndrome-coronavirus-2 (SARS-CoV-2) results in ARDS and how certain host factors confer an increased risk of developing severe disease remain unknown. Therefore, identifying the distinctive features of this severe and fatal disease and the therapeutic approaches to COVID-19-induced ARDS remains an immediate need to serve as a basis for best practice models of standardized ARDS treatment. This review article aims to comprehensively discuss the immunopathology of ARDS and provides an overview of the precise role of both the innate and adaptive immune system, with emphasis on the current treatment strategies being tested in the COVID-19-induced ARDS patients. This knowledge will supposedly help in revealing further mechanistic insights into understanding COVID-19-induced ARDS.
Collapse
Affiliation(s)
- Sneha Das
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Tamanna Sharma
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Asha Bhardwaj
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rupesh K. Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| |
Collapse
|
13
|
Ulbegi Polat H, Abaci I, Tas Ekiz A, Aksoy O, Oktelik FB, Yilmaz V, Tekin S, Okyar A, Oncul O, Deniz G. Therapeutic Effect of C-Vx Substance in K18-hACE2 Transgenic Mice Infected with SARS-CoV-2. Int J Mol Sci 2023; 24:11957. [PMID: 37569331 PMCID: PMC10418837 DOI: 10.3390/ijms241511957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
C-Vx is a bioprotective product designed to boost the immune system. This study aimed to determine the antiviral activity of the C-Vx substance against SARS-CoV-2 infection. The effect of C-Vx in K18-hACE2 transgenic mice against the SARS-CoV-2 virus was investigated. For this purpose, ten mice were separated into experimental and control groups. Animals were infected with SARS-CoV-2 prior to the administration of the product to determine whether the product has a therapeutic effect similar to that demonstrated in previous human studies, at a histopathological and molecular level. C-Vx-treated mice survived the challenge, whereas the control mice became ill and/or died. The cytokine-chemokine panel with blood samples taken during the critical days of the disease revealed detailed immune responses. Our findings showed that C-Vx presented 90% protection against the SARS-CoV-2 virus-infected mice. The challenge results and cytokine responses of K18-hACE2 transgenic mice matched previous scientific studies, demonstrating the C-Vx's antiviral efficiency.
Collapse
Affiliation(s)
- Hivda Ulbegi Polat
- TUBITAK Marmara Research Center, Kocaeli 41470, Türkiye; (H.U.P.); (I.A.); (A.T.E.); (O.A.)
| | - Irem Abaci
- TUBITAK Marmara Research Center, Kocaeli 41470, Türkiye; (H.U.P.); (I.A.); (A.T.E.); (O.A.)
- Department of Biotechnology, Institute of Biotechnology, Gebze Technical University, Kocaeli 41400, Türkiye
| | - Arzu Tas Ekiz
- TUBITAK Marmara Research Center, Kocaeli 41470, Türkiye; (H.U.P.); (I.A.); (A.T.E.); (O.A.)
| | - Ozge Aksoy
- TUBITAK Marmara Research Center, Kocaeli 41470, Türkiye; (H.U.P.); (I.A.); (A.T.E.); (O.A.)
- Department of Molecular Biology and Genetics, Institute of Sciences, Yildiz Technical University, Istanbul 34220, Türkiye
| | - Fatma Betul Oktelik
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34452, Türkiye;
| | - Vuslat Yilmaz
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34452, Türkiye;
| | - Saban Tekin
- Department of Medical Biology, University of Health Sciences, Istanbul 34865, Türkiye;
| | - Alper Okyar
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul 34452, Türkiye;
| | - Oral Oncul
- Department of Infectious Diseases and Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34452, Türkiye;
| | - Gunnur Deniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34452, Türkiye;
| |
Collapse
|
14
|
Diray-Arce J, Fourati S, Doni Jayavelu N, Patel R, Maguire C, Chang AC, Dandekar R, Qi J, Lee BH, van Zalm P, Schroeder A, Chen E, Konstorum A, Brito A, Gygi JP, Kho A, Chen J, Pawar S, Gonzalez-Reiche AS, Hoch A, Milliren CE, Overton JA, Westendorf K, Cairns CB, Rouphael N, Bosinger SE, Kim-Schulze S, Krammer F, Rosen L, Grubaugh ND, van Bakel H, Wilson M, Rajan J, Steen H, Eckalbar W, Cotsapas C, Langelier CR, Levy O, Altman MC, Maecker H, Montgomery RR, Haddad EK, Sekaly RP, Esserman D, Ozonoff A, Becker PM, Augustine AD, Guan L, Peters B, Kleinstein SH. Multi-omic longitudinal study reveals immune correlates of clinical course among hospitalized COVID-19 patients. Cell Rep Med 2023; 4:101079. [PMID: 37327781 PMCID: PMC10203880 DOI: 10.1016/j.xcrm.2023.101079] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/31/2023] [Accepted: 05/16/2023] [Indexed: 06/18/2023]
Abstract
The IMPACC cohort, composed of >1,000 hospitalized COVID-19 participants, contains five illness trajectory groups (TGs) during acute infection (first 28 days), ranging from milder (TG1-3) to more severe disease course (TG4) and death (TG5). Here, we report deep immunophenotyping, profiling of >15,000 longitudinal blood and nasal samples from 540 participants of the IMPACC cohort, using 14 distinct assays. These unbiased analyses identify cellular and molecular signatures present within 72 h of hospital admission that distinguish moderate from severe and fatal COVID-19 disease. Importantly, cellular and molecular states also distinguish participants with more severe disease that recover or stabilize within 28 days from those that progress to fatal outcomes (TG4 vs. TG5). Furthermore, our longitudinal design reveals that these biologic states display distinct temporal patterns associated with clinical outcomes. Characterizing host immune responses in relation to heterogeneity in disease course may inform clinical prognosis and opportunities for intervention.
Collapse
Affiliation(s)
- Joann Diray-Arce
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA; Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Slim Fourati
- Emory School of Medicine, Atlanta, GA 30322, USA
| | | | - Ravi Patel
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Cole Maguire
- The University of Texas at Austin, Austin, TX 78712, USA
| | - Ana C Chang
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Ravi Dandekar
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Jingjing Qi
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brian H Lee
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patrick van Zalm
- Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Schroeder
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Ernie Chen
- Yale School of Medicine, New Haven, CT 06510, USA
| | | | | | | | - Alvin Kho
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jing Chen
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA; Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Annmarie Hoch
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA; Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Carly E Milliren
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA
| | | | | | - Charles B Cairns
- Drexel University, Tower Health Hospital, Philadelphia, PA 19104, USA
| | | | | | | | - Florian Krammer
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lindsey Rosen
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20814, USA
| | | | - Harm van Bakel
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Wilson
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Jayant Rajan
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Hanno Steen
- Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Walter Eckalbar
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Chris Cotsapas
- Yale School of Medicine, New Haven, CT 06510, USA; Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | | | - Ofer Levy
- Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Matthew C Altman
- Benaroya Research Institute, University of Washington, Seattle, WA 98101, USA
| | - Holden Maecker
- Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | | | - Elias K Haddad
- Drexel University, Tower Health Hospital, Philadelphia, PA 19104, USA
| | | | | | - Al Ozonoff
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA; Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Patrice M Becker
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20814, USA
| | - Alison D Augustine
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20814, USA
| | - Leying Guan
- Yale School of Public Health, New Haven, CT 06510, USA
| | - Bjoern Peters
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | | |
Collapse
|
15
|
Suh E, Cho AR, Haam JH, Gil M, Lee YK, Kim YS. Relationship between Serum Cortisol, Dehydroepiandrosterone Sulfate (DHEAS) Levels, and Natural Killer Cell Activity: A Cross-Sectional Study. J Clin Med 2023; 12:4027. [PMID: 37373720 DOI: 10.3390/jcm12124027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/10/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
The adrenal steroid hormones, cortisol and dehydroepiandrosterone sulfate (DHEAS), are associated with the immune system in opposite actions. This study aimed to investigate the relationship between cortisol and DHEAS serum concentrations, their ratio (CDR), and natural killer cell activity (NKA). This cross-sectional study included 2275 subjects without current infection or inflammation in the final analyses. NKA was estimated by measuring the amount of interferon-gamma (IFN-γ) released by activated natural killer cells; low NKA was defined as IFN-γ level < 500 pg/mL. Cortisol, DHEAS levels, and CDRs were categorized by quartiles in men, premenopausal women, and postmenopausal women. Compared with the lowest quartile as reference, the adjusted odd ratios (ORs) and 95% confidence intervals (CIs) for low NKA of the highest cortisol and CDR group were 1.66 (1.09-2.51) and 1.68 (1.11-2.55) in men, 1.58 (1.07-2.33) and 2.33 (1.58-3.46) in premenopausal women, and 2.23 (1.28-3.87) and 1.85 (1.07-3.21) in postmenopausal women. Only in premenopausal women, the highest DHEAS group showed significantly lower risk of low NKA (OR: 0.51, 95% CI: 0.35-0.76). HPA axis activation indicated as high cortisol level, CDR was significantly associated with low NKA, while high DHEAS levels were inversely associated with low NKA in premenopausal women.
Collapse
Affiliation(s)
- Eunkyung Suh
- Chaum Life Center, CHA University, Seoul 06062, Republic of Korea
| | - A-Ra Cho
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Ji-Hee Haam
- Department of Family Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea
| | - Minchan Gil
- NKMAX Co., Ltd., Seongnam 13605, Republic of Korea
| | - Yun-Kyong Lee
- Chaum Life Center, CHA University, Seoul 06062, Republic of Korea
| | - Young-Sang Kim
- Department of Family Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea
| |
Collapse
|
16
|
Maksoud R, Magawa C, Eaton-Fitch N, Thapaliya K, Marshall-Gradisnik S. Biomarkers for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): a systematic review. BMC Med 2023; 21:189. [PMID: 37226227 DOI: 10.1186/s12916-023-02893-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a multifaceted condition that affects most body systems. There is currently no known diagnostic biomarker; instead, diagnosis is dependent on application of symptom-based case criteria following exclusion of any other potential medical conditions. While there are some studies that report potential biomarkers for ME/CFS, their efficacy has not been validated. The aim of this systematic review is to collate and appraise literature pertaining to a potential biomarker(s) which may effectively differentiate ME/CFS patients from healthy controls. METHODS This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses and Cochrane review guidelines. PubMed, Embase and Scopus were systematically searched for articles containing "biomarker" and "ME/CFS" keywords in the abstract or title and if they included the following criteria: (1) were observational studies published between December 1994 and April 2022; (2) involved adult human participants; (3) full text is available in English (4) original research; (5) diagnosis of ME/CFS patients made according to the Fukuda criteria (1994), Canadian Consensus Criteria (2003), International Consensus Criteria (2011) or Institute of Medicine Criteria (2015); (6) study investigated potential biomarkers of ME/CFS compared to healthy controls. Quality and Bias were assessed using the Joanna Briggs Institute Critical Appraisal Checklist for Case Control Studies. RESULTS A total of 101 publications were included in this systematic review. Potential biomarkers ranged from genetic/epigenetic (19.8%), immunological (29.7%), metabolomics/mitochondrial/microbiome (14.85%), endovascular/circulatory (17.82%), neurological (7.92%), ion channel (8.91%) and physical dysfunction biomarkers (8.91%). Most of the potential biomarkers reported were blood-based (79.2%). Use of lymphocytes as a model to investigate ME/CFS pathology was prominent among immune-based biomarkers. Most biomarkers had secondary (43.56%) or tertiary (54.47%) selectivity, which is the ability for the biomarker to identify a disease-causing agent, and a moderate (59.40%) to complex (39.60%) ease-of-detection, including the requirement of specialised equipment. CONCLUSIONS All potential ME/CFS biomarkers differed in efficiency, quality, and translatability as a diagnostic marker. Reproducibility of findings between the included publications were limited, however, several studies validated the involvement of immune dysfunction in the pathology of ME/CFS and the use of lymphocytes as a model to investigate the pathomechanism of illness. The heterogeneity shown across many of the included studies highlights the need for multidisciplinary research and uniform protocols in ME/CFS biomarker research.
Collapse
Affiliation(s)
- Rebekah Maksoud
- National Centre for Neuroimmunology and Emerging Diseases (NCNED), Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia.
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, Australia.
| | - Chandi Magawa
- National Centre for Neuroimmunology and Emerging Diseases (NCNED), Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, Australia
| | - Natalie Eaton-Fitch
- National Centre for Neuroimmunology and Emerging Diseases (NCNED), Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| | - Kiran Thapaliya
- National Centre for Neuroimmunology and Emerging Diseases (NCNED), Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases (NCNED), Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| |
Collapse
|
17
|
Shen J, Fan J, Zhao Y, Jiang D, Niu Z, Zhang Z, Cao G. Innate and adaptive immunity to SARS-CoV-2 and predisposing factors. Front Immunol 2023; 14:1159326. [PMID: 37228604 PMCID: PMC10203583 DOI: 10.3389/fimmu.2023.1159326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2), has affected all countries worldwide. Although some symptoms are relatively mild, others are still associated with severe and even fatal clinical outcomes. Innate and adaptive immunity are important for the control of SARS-CoV-2 infections, whereas a comprehensive characterization of the innate and adaptive immune response to COVID-19 is still lacking and the mechanisms underlying immune pathogenesis and host predisposing factors are still a matter of scientific debate. Here, the specific functions and kinetics of innate and adaptive immunity involved in SARS-CoV-2 recognition and resultant pathogenesis are discussed, as well as their immune memory for vaccinations, viral-mediated immune evasion, and the current and future immunotherapeutic agents. We also highlight host factors that contribute to infection, which may deepen the understanding of viral pathogenesis and help identify targeted therapies that attenuate severe disease and infection.
Collapse
Affiliation(s)
- Jiaying Shen
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Junyan Fan
- Department of Epidemiology, Shanghai Key Laboratory of Medical Bioprotection, Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, China
| | - Yue Zhao
- Department of Epidemiology, Shanghai Key Laboratory of Medical Bioprotection, Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, China
| | - Doming Jiang
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Zheyun Niu
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Zihan Zhang
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Guangwen Cao
- Tongji University School of Medicine, Tongji University, Shanghai, China
- Department of Epidemiology, Shanghai Key Laboratory of Medical Bioprotection, Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, China
| |
Collapse
|
18
|
Thirupathi A, Yong W, Oflaz O, Agascioglu E, Gu Y. Exercise and COVID-19: exercise intensity reassures immunological benefits of post-COVID-19 condition. Front Physiol 2023; 14:1036925. [PMID: 37275224 PMCID: PMC10233405 DOI: 10.3389/fphys.2023.1036925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/18/2023] [Indexed: 06/07/2023] Open
Abstract
Any form of physical activity, including exercise, has various benefits at the physiological (improving cardiac and respiratory functions, increasing skeletal muscle mass, and maintaining homeostasis) and psychological levels (improving cognitive function, reducing anxiety and depression) which help to combat any type of infection. In contrast, the infectivity ratio could reduce the physical activity of an individual, such as performing a habitual exercise. Adaptation to different exercise strategies including intensity and duration may better increase physical performance and improve the symptoms. For example, low to moderate intensity perhaps fails to induce this adaptive process, while high-intensity of exercise compromises immune health. This can aggravate the infection rate (Open window theory). However, high intensity with a shorter time produces various morphological alterations in the primary organs including the lungs and heart, which facilitate life support in COVID-19 patients. However, less information about exercise protocols failed to assure the benefits of exercise to COVID-19 patients, particularly post-COVID-19 conditions. Therefore, this review will answer how exercise intensity is crucial to reassure the exercise benefits for promoting safe participation before infection and post-COVID-19 conditions.
Collapse
Affiliation(s)
- Anand Thirupathi
- Research Academy of Medicine Combining Sports, Ningbo No 2 Hospital, Ningbo, China
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Wang Yong
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Ofcan Oflaz
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Eda Agascioglu
- Department of Medical Biology, Faculty of Medicine, Lokman Hekim University, Ankara, Türkiye
| | - Yaodong Gu
- Research Academy of Medicine Combining Sports, Ningbo No 2 Hospital, Ningbo, China
- Faculty of Sports Science, Ningbo University, Ningbo, China
| |
Collapse
|
19
|
Cavic M, Nesic A, Mirjacic Martinovic K, Vuletic A, Besu Zizak I, Tisma Miletic N, Krivokuca A, Jankovic R, Gavrovic-Jankulovic M. Detection of humoral and cellular immune response to anti-SARS-CoV-2 BNT162b2 vaccine in breastfeeding women and naïve and previously infected individuals. Sci Rep 2023; 13:6271. [PMID: 37069315 PMCID: PMC10109231 DOI: 10.1038/s41598-023-33516-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/13/2023] [Indexed: 04/19/2023] Open
Abstract
This study explored humoral and cellular responses to anti-SARS-CoV-2 BNT162b2 mRNA vaccine in breastfeeding women and naïve and seropositive individuals in the first six months after vaccination.Sixty-one volunteers vaccinated with two doses of the BNT162b2 mRNA vaccine were enrolled in the study. In-house developed ELISA was used for the quantification of SARS-CoV-2 RBD-specific antibodies. Cell surface marker expression and intracellular IFN-γ analysis were carried out by flow cytometry. The concentrations of IFN-γ, IL-6 and TNF were determined by ELISA. A significant rise in anti-RBD IgG antibody levels was observed 14 days after the first vaccine dose (p < 0.0001) in serum and milk. The expression of CD28 on CD4+ T cells was significantly higher compared to baseline (p < 0.05). There was a significant increase (p ≤ 0.05) in B cell lymphocyte subset after revaccination, and increased percentage of CD80+ B cells. The expression of IFN-γ in peripheral blood lymphocytes, CD3+ T cells and serum was significantly increased (p < 0.05). No significant difference in immune response was observed between breastfeeding women and other study participants. The anti-SARS-CoV-2 BNT162b2 mRNA vaccine-induced measurable and durable immune response in breastfeeding women and in naïve and previously infected individuals.
Collapse
Affiliation(s)
- Milena Cavic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia.
| | - Andrijana Nesic
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Katarina Mirjacic Martinovic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia
| | - Ana Vuletic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia
| | - Irina Besu Zizak
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia
| | - Nevena Tisma Miletic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia
| | - Ana Krivokuca
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia
| | - Radmila Jankovic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia
| | | |
Collapse
|
20
|
Khullar N, Bhatti JS, Singh S, Thukral B, Reddy PH, Bhatti GK. Insight into the liver dysfunction in COVID-19 patients: Molecular mechanisms and possible therapeutic strategies. World J Gastroenterol 2023; 29:2064-2077. [PMID: 37122601 PMCID: PMC10130970 DOI: 10.3748/wjg.v29.i14.2064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 03/21/2023] [Indexed: 04/13/2023] Open
Abstract
As of June 2022, more than 530 million people worldwide have become ill with coronavirus disease 2019 (COVID-19). Although COVID-19 is most commonly associated with respiratory distress (severe acute respiratory syndrome), meta-analysis have indicated that liver dysfunction also occurs in patients with severe symptoms. Current studies revealed distinctive patterning in the receptors on the hepatic cells that helps in viral invasion through the expression of angiotensin-converting enzyme receptors. It has also been reported that in some patients with COVID-19, therapeutic strategies, including repurposed drugs (mitifovir, lopinavir/ritonavir, tocilizumab, etc.) triggered liver injury and cholestatic toxicity. Several proven indicators support cytokine storm-induced hepatic damage. Because there are 1.5 billion patients with chronic liver disease worldwide, it becomes imperative to critically evaluate the molecular mechanisms concerning hepatotropism of COVID-19 and identify new potential therapeutics. This review also designated a comprehensive outlook of comorbidities and the impact of lifestyle and genetics in managing patients with COVID-19.
Collapse
Affiliation(s)
- Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib 140407, Punjab, India
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Satwinder Singh
- Department of Computer Science and Technology, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Bhawana Thukral
- Department of Nutrition and Dietetics, University Institute of Applied Health Sciences, Chandigarh University, Mohali 140413, Punjab, India
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali 140413, Punjab, India
| |
Collapse
|
21
|
Savchenko AA, Kudryavtsev IV, Isakov DV, Sadowski IS, Belenyuk VD, Borisov AG. Recombinant Human Interleukin-2 Corrects NK Cell Phenotype and Functional Activity in Patients with Post-COVID Syndrome. Pharmaceuticals (Basel) 2023; 16:ph16040537. [PMID: 37111294 PMCID: PMC10144656 DOI: 10.3390/ph16040537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
Post-COVID syndrome develops in 10–20% of people who have recovered from COVID-19 and it is characterized by impaired function of the nervous, cardiovascular, and immune systems. Previously, it was found that patients who recovered from infection with the SARS-CoV-2 virus had a decrease in the number and functional activity of NK cells. The aim of the study was to assess the effectiveness of recombinant human IL-2 (rhIL-2) administered to correct NK cell phenotype and functional activity in patients with post-COVID syndrome. Patients were examined after 3 months for acute COVID-19 of varying severity. The phenotype of the peripheral blood NK cells was studied by flow cytometry. It was found that disturbances in the cell subset composition in patients with post-COVID syndrome were characterized by low levels of mature (p = 0.001) and cytotoxic NK cells (p = 0.013), with increased release of immature NK cells (p = 0.023). Functional deficiency of NK cells in post-COVID syndrome was characterized by lowered cytotoxic activity due to the decreased count of CD57+ (p = 0.001) and CD8+ (p < 0.001) NK cells. In the treatment of patients with post-COVID syndrome with recombinant IL-2, peripheral blood NK cell count and functional potential were restored. In general, the effectiveness of using rhIL-2 in treatment of post-COVID syndrome has been proven in patients with low levels of NK cells.
Collapse
Affiliation(s)
- Andrei A. Savchenko
- Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| | - Igor V. Kudryavtsev
- Institute of Experimental Medicine, 197376 St. Petersburg, Russia
- School of Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Dmitry V. Isakov
- Institute of Experimental Medicine, Pavlov First St. Petersburg State Medical University of the Russian Federation Ministry of Healthcare, 197022 St. Petersburg, Russia
| | - Ivan S. Sadowski
- Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| | - Vasily D. Belenyuk
- Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| | - Alexandr G. Borisov
- Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| |
Collapse
|
22
|
Fraser R, Orta-Resendiz A, Mazein A, Dockrell DH. Upper respiratory tract mucosal immunity for SARS-CoV-2 vaccines. Trends Mol Med 2023; 29:255-267. [PMID: 36764906 PMCID: PMC9868365 DOI: 10.1016/j.molmed.2023.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023]
Abstract
SARS-CoV-2 vaccination significantly reduces morbidity and mortality, but has less impact on viral transmission rates, thus aiding viral evolution, and the longevity of vaccine-induced immunity rapidly declines. Immune responses in respiratory tract mucosal tissues are crucial for early control of infection, and can generate long-term antigen-specific protection with prompt recall responses. However, currently approved SARS-CoV-2 vaccines are not amenable to adequate respiratory mucosal delivery, particularly in the upper airways, which could account for the high vaccine breakthrough infection rates and limited duration of vaccine-mediated protection. In view of these drawbacks, we outline a strategy that has the potential to enhance both the efficacy and durability of existing SARS-CoV-2 vaccines, by inducing robust memory responses in the upper respiratory tract (URT) mucosa.
Collapse
Affiliation(s)
- Rupsha Fraser
- The University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| | - Aurelio Orta-Resendiz
- Institut Pasteur, Université Paris Cité, HIV, Inflammation and Persistence Unit, F-75015 Paris, France
| | - Alexander Mazein
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - David H Dockrell
- The University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
23
|
Cohen Tervaert JW, van Eeden C, Butt I, Redmond D, Clifford A, Osman M, Yacyshyn E. Vaccine hesitancy is not increased in patients with ASIA (autoimmune/inflammatory syndrome induced by adjuvants) when compared to patients with vasculitis. Clin Rheumatol 2023; 42:1727-1728. [PMID: 37004592 PMCID: PMC10066990 DOI: 10.1007/s10067-023-06591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 03/21/2023] [Accepted: 03/26/2023] [Indexed: 04/04/2023]
Affiliation(s)
- Jan Willem Cohen Tervaert
- Division of Rheumatology, Department of Medicine, University of Alberta, Alberta, Edmonton, Canada.
- Maastricht University, Maastricht, the Netherlands.
| | - Charmaine van Eeden
- Division of Rheumatology, Department of Medicine, University of Alberta, Alberta, Edmonton, Canada
| | - Imama Butt
- Division of Rheumatology, Department of Medicine, University of Alberta, Alberta, Edmonton, Canada
| | - Desiree Redmond
- Division of Rheumatology, Department of Medicine, University of Alberta, Alberta, Edmonton, Canada
| | - Alison Clifford
- Division of Rheumatology, Department of Medicine, University of Alberta, Alberta, Edmonton, Canada
| | - Mo Osman
- Division of Rheumatology, Department of Medicine, University of Alberta, Alberta, Edmonton, Canada
| | - Elaine Yacyshyn
- Division of Rheumatology, Department of Medicine, University of Alberta, Alberta, Edmonton, Canada
| |
Collapse
|
24
|
Fraser R, Orta-Resendiz A, Dockrell D, Müller-Trutwin M, Mazein A. Severe COVID-19 versus multisystem inflammatory syndrome: comparing two critical outcomes of SARS-CoV-2 infection. Eur Respir Rev 2023; 32:32/167/220197. [PMID: 36889788 PMCID: PMC10032586 DOI: 10.1183/16000617.0197-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/31/2022] [Indexed: 03/10/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with diverse host response immunodynamics and variable inflammatory manifestations. Several immune-modulating risk factors can contribute to a more severe coronavirus disease 2019 (COVID-19) course with increased morbidity and mortality. The comparatively rare post-infectious multisystem inflammatory syndrome (MIS) can develop in formerly healthy individuals, with accelerated progression to life-threatening illness. A common trajectory of immune dysregulation forms a continuum of the COVID-19 spectrum and MIS; however, severity of COVID-19 or the development of MIS is dependent on distinct aetiological factors that produce variable host inflammatory responses to infection with different spatiotemporal manifestations, a comprehensive understanding of which is necessary to set better targeted therapeutic and preventative strategies for both.
Collapse
Affiliation(s)
- Rupsha Fraser
- The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - Aurelio Orta-Resendiz
- Institut Pasteur, Université Paris Cité, HIV, Inflammation and Persistence Unit, Paris, France
| | - David Dockrell
- The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - Michaela Müller-Trutwin
- Institut Pasteur, Université Paris Cité, HIV, Inflammation and Persistence Unit, Paris, France
| | - Alexander Mazein
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
25
|
Shahsavandi S, Hariri AA. SARS-CoV-2 Variant-Specific mRNA Vaccine: Pros and Cons. Viral Immunol 2023; 36:186-202. [PMID: 36796002 DOI: 10.1089/vim.2022.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Emerging severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants have raised concerns about the efficacy of vaccines. The present study aimed to compare the potential of Delta and Omicron variant-specific mRNA vaccines in inducing immune responses. B cell and T cell epitopes and population coverage of spike (S) glycoprotein of the variants were predicted using the Immune Epitope Database. The molecular docking was carried out between the protein and different toll-like receptors, as well as the receptor-binding domain (RBD) protein and angiotensin-converting-enzyme 2 (ACE2) cellular receptor using ClusPro. The molecular simulation was done for each docked RBD-ACE2 using YASARA. The mRNA secondary structure was predicted through the RNAfold. The simulation of immune responses to the mRNA vaccine construct was performed using C-ImmSim. Apart from a few positions, no significant difference was observed in the prediction of S protein B cell and T cell epitopes of these two variants. The lower amounts of Median consensus percentile in the Delta variant in similar positions signify its stronger affinity to major histocompatibility complex (MHC) II binding alleles. Docking of Delta S protein with TLR3, TLR4, and TLR7 and also its RBD with ACE2 showed striking interactions with the lower binding energy than Omicron. In the immune simulation, elevated levels of cytotoxic T lymphocytes, helper T lymphocytes, and memory cells in both the active and resting states and the main regulators of the immune system suggested the capacity of mRNA constructs to elicit robust immune responses against SARS-CoV-2 variants. Considering slight differences in the binding affinity to MHC II binding alleles, activation of TLRs, mRNA secondary structure stability, and concentration of immunoglobulins and cytokines, the Delta variant is suggested for the mRNA vaccine construction. Further studies are being done to prove the efficiency of the design construct.
Collapse
Affiliation(s)
- Shahla Shahsavandi
- Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Amir Ali Hariri
- Biotechnology Department, Bahyaar Sanaat Sepahan Company, Isfahan, Iran.,Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
26
|
Tandel N, Negi S, Dalai SK, Tyagi RK. Role of natural killer and B cell interaction in inducing pathogen specific immune responses. Int Rev Immunol 2023:1-19. [PMID: 36731424 DOI: 10.1080/08830185.2023.2172406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The innate lymphoid cell (ILC) system comprising of the circulating and tissue-resident cells is known to clear infectious pathogens, establish immune homeostasis as well as confer antitumor immunity. Human natural killer cells (hNKs) and other ILCs carry out mopping of the infectious pathogens and perform cytolytic activity regulated by the non-adaptive immune system. The NK cells generate immunological memory and rapid recall response tightly regulated by the adaptive immunity. The interaction of NK and B cell, and its role to induce the pathogen specific immunity is not fully understood. Hence, present article sheds light on the interaction between NK and B cells and resulting immune responses in the infectious diseases. The immune responses elicited by the NK-B cell interaction is of particular importance for developing therapeutic vaccines against the infectious pathogens. Further, experimental evidences suggest the immune-response driven by NK cell population elicits the host-specific antibodies and memory B cells. Also, recently developed humanized immune system (HIS) mice and their importance in to understanding the NK-B cell interaction and resulting pathogen specific immunity has been discussed.
Collapse
Affiliation(s)
- Nikunj Tandel
- Institute of Science, Nirma University, Ahmedabad, India
| | - Sushmita Negi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Nano-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Sarat K Dalai
- Institute of Science, Nirma University, Ahmedabad, India
| | - Rajeev K Tyagi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Nano-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| |
Collapse
|
27
|
Zafarani A, Razizadeh MH, Pashangzadeh S, Amirzargar MR, Taghavi-Farahabadi M, Mahmoudi M. Natural killer cells in COVID-19: from infection, to vaccination and therapy. Future Virol 2023:10.2217/fvl-2022-0040. [PMID: 36936055 PMCID: PMC10013930 DOI: 10.2217/fvl-2022-0040] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 01/31/2023] [Indexed: 03/15/2023]
Abstract
Natural killer (NK) cells are among the most important innate immunity members, which are the first cells that fight against infected cells. The function of these cells is impaired in patients with COVID-19 and they are not able to prevent the spread of the disease or destroy the infected cells. Few studies have evaluated the effects of COVID-19 vaccines on NK cells, though it has been demonstrated that DNA vaccines and BNT162b2 can affect NK cell response. In the present paper, the effects of SARS-CoV-2 on the NK cells during infection, the effect of vaccination on NK cells, and the NK cell-based therapies were reviewed.
Collapse
Affiliation(s)
- Alireza Zafarani
- 1Department of Hematology & Blood Banking, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Salar Pashangzadeh
- 3Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
- 4Immunology Today, Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mohammad Reza Amirzargar
- 1Department of Hematology & Blood Banking, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Taghavi-Farahabadi
- 5Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahmoudi
- 6Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Author for correspondence: Tel.: +98 936 002 0731;
| |
Collapse
|
28
|
Nasrollahi H, Talepoor AG, Saleh Z, Eshkevar Vakili M, Heydarinezhad P, Karami N, Noroozi M, Meri S, Kalantar K. Immune responses in mildly versus critically ill COVID-19 patients. Front Immunol 2023; 14:1077236. [PMID: 36793739 PMCID: PMC9923185 DOI: 10.3389/fimmu.2023.1077236] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
The current coronavirus pandemic (COVID-19), caused by SARS-CoV-2, has had devastating effects on the global health and economic system. The cellular and molecular mediators of both the innate and adaptive immune systems are critical in controlling SARS-CoV-2 infections. However, dysregulated inflammatory responses and imbalanced adaptive immunity may contribute to tissue destruction and pathogenesis of the disease. Important mechanisms in severe forms of COVID-19 include overproduction of inflammatory cytokines, impairment of type I IFN response, overactivation of neutrophils and macrophages, decreased frequencies of DC cells, NK cells and ILCs, complement activation, lymphopenia, Th1 and Treg hypoactivation, Th2 and Th17 hyperactivation, as well as decreased clonal diversity and dysregulated B lymphocyte function. Given the relationship between disease severity and an imbalanced immune system, scientists have been led to manipulate the immune system as a therapeutic approach. For example, anti-cytokine, cell, and IVIG therapies have received attention in the treatment of severe COVID-19. In this review, the role of immunity in the development and progression of COVID-19 is discussed, focusing on molecular and cellular aspects of the immune system in mild vs. severe forms of the disease. Moreover, some immune- based therapeutic approaches to COVID-19 are being investigated. Understanding key processes involved in the disease progression is critical in developing therapeutic agents and optimizing related strategies.
Collapse
Affiliation(s)
- Hamid Nasrollahi
- Radio-Oncology Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefe Ghamar Talepoor
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Saleh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Eshkevar Vakili
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paria Heydarinezhad
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karami
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Noroozi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seppo Meri
- Department of Bacteriology and Immunology, University of Helsinki and Diagnostic Center of the Helsinki University Hospital, Helsinki, Finland
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
29
|
COVID-19 Heart Lesions in Children: Clinical, Diagnostic and Immunological Changes. Int J Mol Sci 2023; 24:ijms24021147. [PMID: 36674665 PMCID: PMC9866514 DOI: 10.3390/ijms24021147] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
In the beginning of COVID-19, the proportion of confirmed cases in the pediatric population was relatively small and there was an opinion that children often had a mild or asymptomatic course of infection. Our understanding of the immune response, diagnosis and treatment of COVID-19 is highly oriented towards the adult population. At the same time, despite the fact that COVID-19 in children usually occurs in a mild form, there is an incomplete understanding of the course as an acute infection and its subsequent manifestations such as Long-COVID-19 or Post-COVID-19, PASC in the pediatric population, correlations with comorbidities and immunological changes. In mild COVID-19 in childhood, some authors explain the absence of population decreasing T and B lymphocytes. Regardless of the patient's condition, they can have the second phase, related to the exacerbation of inflammation in the heart tissue even if the viral infection was completely eliminated-post infectious myocarditis. Mechanism of myocardial dysfunction development in MIS-C are not fully understood. It is known that various immunocompetent cells, including both resident inflammatory cells of peripheral tissues (for example macrophages, dendritic cells, resident memory T-lymphocytes and so on) and also circulating in the peripheral blood immune cells play an important role in the immunopathogenesis of myocarditis. It is expected that hyperproduction of interferons and the enhanced cytokine response of T cells 1 and 2 types contribute to dysfunction of the myocardium. However, the role of Th1 in the pathogenesis of myocarditis remains highly controversial. At the same time, the clinical manifestations and mechanisms of damage, including the heart, both against the background and after COVID-19, in children differ from adults. Further studies are needed to evaluate whether transient or persistent cardiac complications are associated with long-term adverse cardiac events.
Collapse
|
30
|
Osuna-Espinoza KY, Rosas-Taraco AG. Metabolism of NK cells during viral infections. Front Immunol 2023; 14:1064101. [PMID: 36742317 PMCID: PMC9889541 DOI: 10.3389/fimmu.2023.1064101] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Cellular metabolism is essential for the correct function of immune system cells, including Natural Killer cells (NK). These cells depend on energy to carry out their effector functions, especially in the early stages of viral infection. NK cells participate in the innate immune response against viruses and tumors. Their main functions are cytotoxicity and cytokine production. Metabolic changes can impact intracellular signals, molecule production, secretion, and cell activation which is essential as the first line of immune defense. Metabolic variations in different immune cells in response to a tumor or pathogen infection have been described; however, little is known about NK cell metabolism in the context of viral infection. This review summarizes the activation-specific metabolic changes in NK cells, the immunometabolism of NK cells during early, late, and chronic antiviral responses, and the metabolic alterations in NK cells in SARS-CoV2 infection. The modulation points of these metabolic routes are also discussed to explore potential new immunotherapies against viral infections.
Collapse
Affiliation(s)
- Kenia Y Osuna-Espinoza
- Faculty of Medicine, Department of Immunology, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon, Mexico
| | - Adrián G Rosas-Taraco
- Faculty of Medicine, Department of Immunology, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon, Mexico
| |
Collapse
|
31
|
Dhawan M, Rabaan AA, Fawarah MMA, Almuthree SA, Alsubki RA, Alfaraj AH, Mashraqi MM, Alshamrani SA, Abduljabbar WA, Alwashmi ASS, Ibrahim FA, Alsaleh AA, Khamis F, Alsalman J, Sharma M, Emran TB. Updated Insights into the T Cell-Mediated Immune Response against SARS-CoV-2: A Step towards Efficient and Reliable Vaccines. Vaccines (Basel) 2023; 11:101. [PMID: 36679947 PMCID: PMC9861463 DOI: 10.3390/vaccines11010101] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
The emergence of novel variants of SARS-CoV-2 and their abilities to evade the immune response elicited through presently available vaccination makes it essential to recognize the mechanisms through which SARS-CoV-2 interacts with the human immune response. It is essential not only to comprehend the infection mechanism of SARS-CoV-2 but also for the generation of effective and reliable vaccines against COVID-19. The effectiveness of the vaccine is supported by the adaptive immune response, which mainly consists of B and T cells, which play a critical role in deciding the prognosis of the COVID-19 disease. T cells are essential for reducing the viral load and containing the infection. A plethora of viral proteins can be recognized by T cells and provide a broad range of protection, especially amid the emergence of novel variants of SARS-CoV-2. However, the hyperactivation of the effector T cells and reduced number of lymphocytes have been found to be the key characteristics of the severe disease. Notably, excessive T cell activation may cause acute respiratory distress syndrome (ARDS) by producing unwarranted and excessive amounts of cytokines and chemokines. Nevertheless, it is still unknown how T-cell-mediated immune responses function in determining the prognosis of SARS-CoV-2 infection. Additionally, it is unknown how the functional perturbations in the T cells lead to the severe form of the disease and to reduced protection not only against SARS-CoV-2 but many other viral infections. Hence, an updated review has been developed to understand the involvement of T cells in the infection mechanism, which in turn determines the prognosis of the disease. Importantly, we have also focused on the T cells' exhaustion under certain conditions and how these functional perturbations can be modulated for an effective immune response against SARS-CoV-2. Additionally, a range of therapeutic strategies has been discussed that can elevate the T cell-mediated immune response either directly or indirectly.
Collapse
Affiliation(s)
- Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, Punjab, India
- Trafford College, Altrincham, Manchester WA14 5PQ, UK
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Mahmoud M. Al Fawarah
- Microbiology Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
| | - Souad A. Almuthree
- Department of Infectious Disease, King Abdullah Medical City, Makkah 43442, Saudi Arabia
| | - Roua A. Alsubki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Amal H. Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Mutaib M. Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Saleh A. Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Wesam A. Abduljabbar
- Department of Medical Laboratory Sciences, Fakeeh College for Medical Science, Jeddah 21134, Saudi Arabia
| | - Ameen S. S. Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Fatimah Al Ibrahim
- Infectious Disease Division, Department of Internal Medicine, Dammam Medical Complex, Dammam 32245, Saudi Arabia
| | - Abdulmonem A. Alsaleh
- Clinical Laboratory Science Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Faryal Khamis
- Infection Diseases Unit, Department of Internal Medicine, Royal Hospital, Muscat 1331, Oman
| | - Jameela Alsalman
- Infection Disease Unit, Department of Internal Medicine, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 435, Bahrain
| | - Manish Sharma
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| |
Collapse
|
32
|
Chattopadhyay P, Khare K, Kumar M, Mishra P, Anand A, Maurya R, Gupta R, Sahni S, Gupta A, Wadhwa S, Yadav A, Devi P, Tardalkar K, Joshi M, Sethi T, Pandey R. Single-cell multiomics revealed the dynamics of antigen presentation, immune response and T cell activation in the COVID-19 positive and recovered individuals. Front Immunol 2022; 13:1034159. [PMID: 36532041 PMCID: PMC9755500 DOI: 10.3389/fimmu.2022.1034159] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction Despite numerous efforts to describe COVID-19's immunological landscape, there is still a gap in our understanding of the virus's infections after-effects, especially in the recovered patients. This would be important to understand as we now have huge number of global populations infected by the SARS-CoV-2 as well as variables inclusive of VOCs, reinfections, and vaccination breakthroughs. Furthermore, single-cell transcriptome alone is often insufficient to understand the complex human host immune landscape underlying differential disease severity and clinical outcome. Methods By combining single-cell multi-omics (Whole Transcriptome Analysis plus Antibody-seq) and machine learning-based analysis, we aim to better understand the functional aspects of cellular and immunological heterogeneity in the COVID-19 positive, recovered and the healthy individuals. Results Based on single-cell transcriptome and surface marker study of 163,197 cells (124,726 cells after data QC) from the 33 individuals (healthy=4, COVID-19 positive=16, and COVID-19 recovered=13), we observed a reduced MHC Class-I-mediated antigen presentation and dysregulated MHC Class-II-mediated antigen presentation in the COVID-19 patients, with restoration of the process in the recovered individuals. B-cell maturation process was also impaired in the positive and the recovered individuals. Importantly, we discovered that a subset of the naive T-cells from the healthy individuals were absent from the recovered individuals, suggesting a post-infection inflammatory stage. Both COVID-19 positive patients and the recovered individuals exhibited a CD40-CD40LG-mediated inflammatory response in the monocytes and T-cell subsets. T-cells, NK-cells, and monocyte-mediated elevation of immunological, stress and antiviral responses were also seen in the COVID-19 positive and the recovered individuals, along with an abnormal T-cell activation, inflammatory response, and faster cellular transition of T cell subtypes in the COVID-19 patients. Importantly, above immune findings were used for a Bayesian network model, which significantly revealed FOS, CXCL8, IL1β, CST3, PSAP, CD45 and CD74 as COVID-19 severity predictors. Discussion In conclusion, COVID-19 recovered individuals exhibited a hyper-activated inflammatory response with the loss of B cell maturation, suggesting an impeded post-infection stage, necessitating further research to delineate the dynamic immune response associated with the COVID-19. To our knowledge this is first multi-omic study trying to understand the differential and dynamic immune response underlying the sample subtypes.
Collapse
Affiliation(s)
- Partha Chattopadhyay
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kriti Khare
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manish Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Pallavi Mishra
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Alok Anand
- Indraprastha Institute of Information Technology Delhi, New Delhi, India
| | - Ranjeet Maurya
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rohit Gupta
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Shweta Sahni
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Ayushi Gupta
- Indraprastha Institute of Information Technology Delhi, New Delhi, India
| | - Saruchi Wadhwa
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Aanchal Yadav
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Priti Devi
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kishore Tardalkar
- Department of Stem Cells and Regenerative Medicine, Dr. D. Y. Patil Medical College, Hospital and Research Institute, Kolhapur, Maharashtra, India
| | - Meghnad Joshi
- Department of Stem Cells and Regenerative Medicine, Dr. D. Y. Patil Medical College, Hospital and Research Institute, Kolhapur, Maharashtra, India
| | - Tavpritesh Sethi
- Indraprastha Institute of Information Technology Delhi, New Delhi, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
33
|
Sharun K, Tiwari R, Yatoo MI, Natesan S, Megawati D, Singh KP, Michalak I, Dhama K. A comprehensive review on pharmacologic agents, immunotherapies and supportive therapeutics for COVID-19. NARRA J 2022; 2:e92. [PMID: 38449903 PMCID: PMC10914132 DOI: 10.52225/narra.v2i3.92] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/06/2022] [Indexed: 03/08/2024]
Abstract
The emergence of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected many countries throughout the world. As urgency is a necessity, most efforts have focused on identifying small molecule drugs that can be repurposed for use as anti-SARS-CoV-2 agents. Although several drug candidates have been identified using in silico method and in vitro studies, most of these drugs require the support of in vivo data before they can be considered for clinical trials. Several drugs are considered promising therapeutic agents for COVID-19. In addition to the direct-acting antiviral drugs, supportive therapies including traditional Chinese medicine, immunotherapies, immunomodulators, and nutritional therapy could contribute a major role in treating COVID-19 patients. Some of these drugs have already been included in the treatment guidelines, recommendations, and standard operating procedures. In this article, we comprehensively review the approved and potential therapeutic drugs, immune cells-based therapies, immunomodulatory agents/drugs, herbs and plant metabolites, nutritional and dietary for COVID-19.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Mohd I. Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Senthilkumar Natesan
- Department of Infectious Diseases, Indian Institute of Public Health Gandhinagar, Opp to Airforce station HQ, Gandhinagar, India
| | - Dewi Megawati
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Warmadewa University, Denpasar, Indonesia
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| | - Karam P. Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wrocław University of Science and Technology, Wrocław, Poland
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
34
|
Antigen-Specific T Cells and SARS-CoV-2 Infection: Current Approaches and Future Possibilities. Int J Mol Sci 2022; 23:ijms232315122. [PMID: 36499448 PMCID: PMC9737069 DOI: 10.3390/ijms232315122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
COVID-19, a significant global health threat, appears to be an immune-related disease. Failure of effective immune responses in initial stages of infection may contribute to development of cytokine storm and systemic inflammation with organ damage, leading to poor clinical outcomes. Disease severity and the emergence of new SARS-CoV-2 variants highlight the need for new preventative and therapeutic strategies to protect the immunocompromised population. Available data indicate that these people may benefit from adoptive transfer of allogeneic SARS-CoV-2-specific T cells isolated from convalescent individuals. This review first provides an insight into the mechanism of cytokine storm development, as it is directly related to the exhaustion of T cell population, essential for viral clearance and long-term antiviral immunity. Next, we describe virus-specific T lymphocytes as a promising and efficient approach for the treatment and prevention of severe COVID-19. Furthermore, other potential cell-based therapies, including natural killer cells, regulatory T cells and mesenchymal stem cells are mentioned. Additionally, we discuss fast and effective ways of producing clinical-grade antigen-specific T cells which can be cryopreserved and serve as an effective "off-the-shelf" approach for rapid treatment of SARS-CoV-2 infection in case of sudden patient deterioration.
Collapse
|
35
|
Development of Single-Cell Transcriptomics and Its Application in COVID-19. Viruses 2022; 14:v14102271. [PMID: 36298825 PMCID: PMC9611071 DOI: 10.3390/v14102271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Over the last three years, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related health crisis has claimed over six million lives and caused USD 12 trillion losses to the global economy. SARS-CoV-2 continuously mutates and evolves with a high basic reproduction number (R0), resulting in a variety of clinical manifestations ranging from asymptomatic infection to acute respiratory distress syndrome (ARDS) and even death. To gain a better understanding of coronavirus disease 2019 (COVID-19), it is critical to investigate the components that cause various clinical manifestations. Single-cell sequencing has substantial advantages in terms of identifying differentially expressed genes among individual cells, which can provide a better understanding of the various physiological and pathological processes. This article reviewed the use of single-cell transcriptomics in COVID-19 research, examined the immune response disparities generated by SARS-CoV-2, and offered insights regarding how to improve COVID-19 diagnosis and treatment plans.
Collapse
|
36
|
Abbaspour-Aghdam S, Hazrati A, Abdolmohammadi-Vahid S, Tahmasebi S, Mohseni J, Valizadeh H, Nadiri M, Mikaeili H, Sadeghi A, Yousefi M, Roshangar L, Nikzad B, Jadidi-Niaragh F, Kafil HS, Malekpour K, Ahmadi M. Immunomodulatory role of Nanocurcumin in COVID-19 patients with dropped natural killer cells frequency and function. Eur J Pharmacol 2022; 933:175267. [PMID: 36122756 PMCID: PMC9482094 DOI: 10.1016/j.ejphar.2022.175267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022]
Abstract
The ongoing COVID-19 pandemic is still a challenging problem in the case of infection treatment. The immunomodulatory effect of Nanocurcumin was investigated in the present study in an attempt to counterbalance the immune response and improve the patients' clinical symptoms. 60 confirmed COVID-19 patients and 60 healthy controls enrolled in the study. COVID-19 patients were divided into Nanocurcumin and placebo received groups. Due to the importance of the role of NK cells in this disease, the frequency, cytotoxicity, receptor gene expression of NK cells, and serum secretion levels of inflammatory cytokines IL-1β, IL-6, TNF-α, as well as circulating C5a as a chemotactic factor an inflammatory mediator was evaluated by flow cytometry, real-time PCR and enzyme-linked immunosorbent assay in both experimental groups before and after the intervention. Given the role of measured factors in the progression and pathogenesis of COVID-19 disease, the results can help find appropriate treatments. The results of this study indicated that the Nanocurcumin could significantly increase the frequency and function of NK cells compared to the placebo-treated group. As an immunomodulatory agent, Nanocurcumin may be a helpful choice to improve NK cell function in COVID-19 patients and improve the clinical outcome of patients.
Collapse
Affiliation(s)
| | - Ali Hazrati
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Safa Tahmasebi
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jafar Mohseni
- Genetics Research Group, ACECR Infertility Center, Tabriz, East Azarbaijan, Iran
| | - Hamed Valizadeh
- Tuberculosis and Lung Disease Research Center of Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Nadiri
- Tuberculosis and Lung Disease Research Center of Tabriz University of Medical Sciences, Tabriz, Iran
| | - Haleh Mikaeili
- Tuberculosis and Lung Disease Research Center of Tabriz University of Medical Sciences, Tabriz, Iran
| | - Armin Sadeghi
- Tuberculosis and Lung Disease Research Center of Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Nikzad
- Research Center of Bioscience and Biotechnology, University of Tabriz, Tabriz, Iran
| | | | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kosar Malekpour
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
37
|
Hejazian SS, Hejazian SM, Farnood F, Abedi Azar S. Dysregulation of immunity in COVID-19 and SLE. Inflammopharmacology 2022; 30:1517-1531. [PMID: 36028612 PMCID: PMC9417079 DOI: 10.1007/s10787-022-01047-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/30/2022] [Indexed: 12/15/2022]
Abstract
The immune response plays a crucial role in preventing diseases, such as infections. There are two types of immune responses, specific and innate immunity, each of which consists of two components: cellular immunity and humoral immunity. Dysfunction in any immune system component increases the risk of developing certain diseases. Systemic lupus erythematosus (SLE), an autoimmune disease in the human body, develops an immune response against its own components. In these patients, due to underlying immune system disorders and receipt of immunosuppressive drugs, the susceptibility to infections is higher than in the general population and is the single largest cause of mortality in this group. COVID-19 infection, which first appeared in late 2019, has caused several concerns in patients with SLE. However, there is no strong proof of additional risk of developing COVID-19 in patients with SLE, and in some cases, studies have shown less severity of the disease in these individuals. This review paper discusses the immune disorders in SLE and COVID-19.
Collapse
Affiliation(s)
- Seyyed Sina Hejazian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farahnoosh Farnood
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Abedi Azar
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
38
|
Patankar SB, Gorde A, Joshi K, Suryawanshi K, Soni P, Shah T, Patankar S, Jha D, Raje R, Rangnekar H. Efficacy and safety of polyherbal formulation as an add-on to standard-of-care in mild-to-moderate COVID-19: A randomized, double-blind, placebo-controlled trial. J Ayurveda Integr Med 2022; 13:100653. [PMID: 36311474 PMCID: PMC9595378 DOI: 10.1016/j.jaim.2022.100653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/19/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
Background Novel corona virus disease-2019 (COVID-19) pandemic is a significant contributor to morbidity and mortality in affected individuals. Modulating the immune response in COVID-19 is now an established treatment approach. Polyherbal formulations have long been assessed for their potential immune modulating effects and are expected to be beneficial on COVID-19. Methods This study aims at assessing the efficacy and safety of polyherbal formulation (referred as IP) in comparison to placebo, as add on to the standard of care (SOC), in patients with mild to moderate COVID-19 patients. Hospitalized RT-PCR positive patients were randomized to either SOC + IP or SOC + Placebo arm. The viral load (VL) was assessed using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Immunological parameters were also assessed. The clinical improvement was assessed using a numeric rating scale (NRS) and WHO ordinal scale, and follow-up period was 30 days. Results Seventy-two patients were randomized to SOC + IP (n = 39) and SOC + Placebo (n = 33) arms. There was significant reduction in VL in SOC + IP arm from day 0-4 (p = 0.002), compared to SOC + Placebo arm (p = 0.106). Change in the NRS score and WHO score was significant in both arms, however, the difference between the two arms was statistically significant in favour of IP arm. The increase in Th1 response was significant in SOC + IP arm (p = 0.023), but not in SOC + Placebo arm. COVID-19 specific antibodies were numerically higher in the SOC + IP arm. Conclusion The study finds that polyherbal formulation significantly reduces VL and contributes to immunomodulation and improvement in clinical conditions without side effects.
Collapse
Affiliation(s)
- Suresh B Patankar
- AMAI Charitable Trust, Pune, India; Arogyasewa Medical Academy of India Trust, Pune 411 052, MS, India.
| | | | - Kalpana Joshi
- Dept. of Biotechnology, Sinhagad College of Engineering, Pune, India
| | | | | | - Tejas Shah
- KRSNNA Diagnostics Pvt. Ltd., Pune, India
| | | | | | | | | |
Collapse
|
39
|
Targeted therapy in Coronavirus disease 2019 (COVID-19): Implication from cell and gene therapy to immunotherapy and vaccine. Int Immunopharmacol 2022; 111:109161. [PMID: 35998506 PMCID: PMC9385778 DOI: 10.1016/j.intimp.2022.109161] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) is a highly pathogenic and transmissible virus. Infection caused by SARS-CoV-2 known as Coronavirus disease 2019 (COVID-19) can be severe, especially among high risk populations affected of underlying medical conditions. COVID-19 is characterized by the severe acute respiratory syndrome, a hyper inflammatory syndrome, vascular injury, microangiopathy and thrombosis. Antiviral drugs and immune modulating methods has been evaluated. So far, a particular therapeutic option has not been approved for COVID-19 and a variety of treatments have been studied for COVID-19 including, current treatment such as oxygen therapy, corticosteroids, antiviral agents until targeted therapy and vaccines which are diverse in each patient and have various outcomes. According to the findings of different in vitro and in vivo studies, some novel approach such as gene editing, cell based therapy, and immunotherapy may have significant potential in the treatment of COVID-19. Based on these findings, this paper aims to review the different strategies of treatment against COVID-19 and provide a summary from traditional and newer methods in curing COVID-19.
Collapse
|
40
|
Zeinali T, Faraji N, Joukar F, Khan Mirzaei M, Kafshdar Jalali H, Shenagari M, Mansour-Ghanaei F. Gut bacteria, bacteriophages, and probiotics: Tripartite mutualism to quench the SARS-CoV2 storm. Microb Pathog 2022; 170:105704. [PMID: 35948266 PMCID: PMC9357283 DOI: 10.1016/j.micpath.2022.105704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
Patients with SARS-CoV-2 infection, exhibit various clinical manifestations and severity including respiratory and enteric involvements. One of the main reasons for death among covid-19 patients is excessive immune responses directed toward cytokine storm with a low chance of recovery. Since the balanced gut microbiota could prepare health benefits by protecting against pathogens and regulating immune homeostasis, dysbiosis or disruption of gut microbiota could promote severe complications including autoimmune disorders; we surveyed the association between the imbalanced gut bacteria and the development of cytokine storm among COVID-19 patients, also the impact of probiotics and bacteriophages on the gut bacteria community to alleviate cytokine storm in COVID-19 patients. In present review, we will scrutinize the mechanism of immunological signaling pathways which may trigger a cytokine storm in SARS-CoV2 infections. Moreover, we are explaining in detail the possible immunological signaling pathway-directing by the gut bacterial community. Consequently, the specific manipulation of gut bacteria by using probiotics and bacteriophages for alleviation of the cytokine storm will be investigated. The tripartite mutualistic cooperation of gut bacteria, probiotics, and phages as a candidate prophylactic or therapeutic approach in SARS-CoV-2 cytokine storm episodes will be discussed at last.
Collapse
Affiliation(s)
- Tahereh Zeinali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Niloofar Faraji
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammadali Khan Mirzaei
- Institute of Virology, Helmholtz Center Munich and Technical University of Munich, 85764, Neuherberg, Germany
| | - Hossnieh Kafshdar Jalali
- Department of Microbiology, Faculty of Science, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Mohammad Shenagari
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Fariborz Mansour-Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Caspian Digestive Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
41
|
Sukocheva OA, Maksoud R, Beeraka NM, Madhunapantula SV, Sinelnikov M, Nikolenko VN, Neganova ME, Klochkov SG, Amjad Kamal M, Staines DR, Marshall-Gradisnik S. Analysis of post COVID-19 condition and its overlap with myalgic encephalomyelitis/chronic fatigue syndrome. J Adv Res 2022; 40:179-196. [PMID: 36100326 PMCID: PMC8619886 DOI: 10.1016/j.jare.2021.11.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) disease (COVID-19) triggers the development of numerous pathologies and infection-linked complications and exacerbates existing pathologies in nearly all body systems. Aside from the primarily targeted respiratory organs, adverse SARS-CoV-2 effects were observed in nervous, cardiovascular, gastrointestinal/metabolic, immune, and other systems in COVID-19 survivors. Long-term effects of this viral infection have been recently observed and represent distressing sequelae recognised by the World Health Organisation (WHO) as a distinct clinical entity defined as post-COVID-19 condition. Considering the pandemic is still ongoing, more time is required to confirm post COVID-19 condition diagnosis in the COVID-19 infected cohorts, although many reported post COVID-19 symptoms overlap with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). AIMS OF REVIEW In this study, COVID-19 clinical presentation and associated post-infection sequelae (post-COVID-19 condition) were reviewed and compared with ME/CFS symptomatology. KEY SCIENTIFIC CONCEPTS OF REVIEW The onset, progression, and symptom profile of post COVID-19 condition patients have considerable overlap with ME/CFS. Considering the large scope and range of pro-inflammatory effects of this virus, it is reasonable to expect development of post COVID-19 clinical complications in a proportion of the affected population. There are reports of a later debilitating syndrome onset three months post COVID-19 infection (often described as long-COVID-19), marked by the presence of fatigue, headache, cognitive dysfunction, post-exertional malaise, orthostatic intolerance, and dyspnoea. Acute inflammation, oxidative stress, and increased levels of interleukin-6 (IL-6) and tumor necrosis factor α (TNFα), have been reported in SARS-CoV-2 infected patients. Longitudinal monitoring of post COVID-19 patients is warranted to understand the long-term effects of SARS-CoV-2 infection and the pathomechanism of post COVID-19 condition.
Collapse
Affiliation(s)
- Olga A Sukocheva
- College of Nursing and Health Sciences, Flinders University of South Australia, Bedford Park 5042, SA, Australia; The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.
| | - Rebekah Maksoud
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Narasimha M Beeraka
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
| | - SabbaRao V Madhunapantula
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India; Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
| | - Mikhail Sinelnikov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Mohovaya 11c10, Moscow, Russia
| | - Vladimir N Nikolenko
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Mohovaya 11c10, Moscow, Russia
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Donald R Staines
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Sonya Marshall-Gradisnik
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
42
|
van Eeden C, Osman MS, Cohen Tervaert JW. Fatigue in ANCA-associated vasculitis (AAV) and systemic sclerosis (SSc): similarities with Myalgic encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). A critical review of the literature. Expert Rev Clin Immunol 2022; 18:1049-1070. [PMID: 36045606 DOI: 10.1080/1744666x.2022.2116002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Persistent debilitating fatigue is a frequent complaint in patients with systemic autoimmune rheumatic diseases (SARDs). Fatigue is, however, frequently overlooked in the clinic, and patients who successfully achieve remission of their disease, often still have a lowered quality of life due to its persistence. How similar is this fatigue to Myalgic encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), what is this fatigue associated with, and what tools/approaches (if any), have resulted in the improvement of fatigue in these patients is poorly defined. AREAS COVERED Similarities between the pathophysiology of ME/CFS, systemic sclerosis (SSc) and primary systemic vasculitides (PSV) are discussed, followed by an in-depth review of the prevalence and correlates of fatigue in these diseases. The authors reviewed literature from MEDLINE, APA PsycInfo, Embase, and CINAHL. EXPERT OPINION Persistent fatigue is a prominent feature in SARDs and may not be associated with components commonly associated with disease activity and/or progression. Immune and metabolic commonalities exist between ME/CFS, SSc, and PSVs - suggesting that common pathways inherent to the diseases and fatigue may be present. We suggest that patients with features of ME/CFS need to be identified by treating physicians, as they may require alternative approaches to therapy to improve their quality of life.
Collapse
Affiliation(s)
- Charmaine van Eeden
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mohammed S Osman
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jan Willem Cohen Tervaert
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.,School for Mental Health and Neurosciences (MHeNs), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
43
|
Khare K, Pandey R. Cellular heterogeneity in disease severity and clinical outcome: Granular understanding of immune response is key. Front Immunol 2022; 13:973070. [PMID: 36072602 PMCID: PMC9441806 DOI: 10.3389/fimmu.2022.973070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/26/2022] [Indexed: 12/15/2022] Open
Abstract
During an infectious disease progression, it is crucial to understand the cellular heterogeneity underlying the differential immune response landscape that will augment the precise information of the disease severity modulators, leading to differential clinical outcome. Patients with COVID-19 display a complex yet regulated immune profile with a heterogeneous array of clinical manifestation that delineates disease severity sub-phenotypes and worst clinical outcomes. Therefore, it is necessary to elucidate/understand/enumerate the role of cellular heterogeneity during COVID-19 disease to understand the underlying immunological mechanisms regulating the disease severity. This article aims to comprehend the current findings regarding dysregulation and impairment of immune response in COVID-19 disease severity sub-phenotypes and relate them to a wide array of heterogeneous populations of immune cells. On the basis of the findings, it suggests a possible functional correlation between cellular heterogeneity and the COVID-19 disease severity. It highlights the plausible modulators of age, gender, comorbidities, and hosts' genetics that may be considered relevant in regulating the host response and subsequently the COVID-19 disease severity. Finally, it aims to highlight challenges in COVID-19 disease that can be achieved by the application of single-cell genomics, which may aid in delineating the heterogeneity with more granular understanding. This will augment our future pandemic preparedness with possibility to identify the subset of patients with increased diseased severity.
Collapse
Affiliation(s)
- Kriti Khare
- Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajesh Pandey
- Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
44
|
Sasso EM, Muraki K, Eaton-Fitch N, Smith P, Lesslar OL, Deed G, Marshall-Gradisnik S. Transient receptor potential melastatin 3 dysfunction in post COVID-19 condition and myalgic encephalomyelitis/chronic fatigue syndrome patients. Mol Med 2022; 28:98. [PMID: 35986236 PMCID: PMC9388968 DOI: 10.1186/s10020-022-00528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/24/2022] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a severe multisystemic condition associated with post-infectious onset, impaired natural killer (NK) cell cytotoxicity and impaired ion channel function, namely Transient Receptor Potential Melastatin 3 (TRPM3). Long-term effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has resulted in neurocognitive, immunological, gastrointestinal, and cardiovascular manifestations recently recognised as post coronavirus disease 2019 (COVID-19) condition. The symptomatology of ME/CFS overlaps significantly with post COVID-19; therefore, this research aimed to investigate TRPM3 ion channel function in post COVID-19 condition patients. METHODS Whole-cell patch-clamp technique was used to measure TRPM3 ion channel activity in isolated NK cells of N = 5 ME/CFS patients, N = 5 post COVID-19 patients, and N = 5 healthy controls (HC). The TRPM3 agonist, pregnenolone sulfate (PregS) was used to activate TRPM3 function, while ononetin was used as a TRPM3 antagonist. RESULTS As reported in previous research, PregS-induced TRPM3 currents were significantly reduced in ME/CFS patients compared with HC (p = 0.0048). PregS-induced TRPM3 amplitude was significantly reduced in post COVID-19 condition compared with HC (p = 0.0039). Importantly, no significant difference was reported in ME/CFS patients compared with post COVID-19 condition as PregS-induced TRPM3 currents of post COVID-19 condition patients were similar of ME/CFS patients currents (p > 0.9999). Isolated NK cells from post COVID-19 condition and ME/CFS patients were resistant to ononetin and differed significantly with HC (p < 0.0001). CONCLUSION The results of this investigation suggest that post COVID-19 condition patients may have impaired TRPM3 ion channel function and provide further evidence regarding the similarities between post COVID-19 condition and ME/CFS. Impaired TRPM3 channel activity in post COVID-19 condition patients suggest impaired ion mobilisation which may consequently impede cell function resulting in chronic post-infectious symptoms. Further investigation into TRPM3 function may elucidate the pathomechanism, provide a diagnostic and therapeutic target for post COVID-19 condition patients and commonalities with ME/CFS patients.
Collapse
Affiliation(s)
- Etianne Martini Sasso
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia.
| | - Katsuhiko Muraki
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| | - Natalie Eaton-Fitch
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Peter Smith
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Clinical Medicine, Griffith University, Gold Coast, QLD, Australia
| | - Olivia Ly Lesslar
- LifeSpan Medicine, Los Angeles, CA, USA
- Cingulum Health, Rosebery, NSW, Australia
| | - Gary Deed
- Mediwell Medical Clinic, Coorparoo, QLD, Australia
| | - Sonya Marshall-Gradisnik
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
45
|
Dave TV, Nair AG, Joseph J, Freitag SK. Immunopathology of COVID-19 and its implications in the development of rhino-orbital-cerebral mucormycosis: a major review. Orbit 2022; 41:670-679. [PMID: 35856238 DOI: 10.1080/01676830.2022.2099428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE To present a literature review on various immunopathologic dysfunctions following COVID-19 infection and their potential implications in development of rhino-orbital-cerebral mucormycosis (ROCM). METHODS A literature search was performed via Google Scholar and PubMed with subsequent review of the accompanying references. Analogies were drawn between the immune and physiologic deviations caused by COVID-19 and the tendency of the same to predispose to ROCM. RESULTS Sixty-two articles were reviewed. SARS-CoV-2 virus infection leads to disruption of epithelial integrity in the respiratory passages, which may be a potential entry point for the ubiquitous Mucorales to become invasive. COVID-19 related GRP78 protein upregulation may aid in spore germination and hyphal invasion by Mucorales. COVID-19 causes interference in macrophage functioning by direct infection, a tendency for hyperglycemia, and creation of neutrophil extracellular traps. This affects innate immunity against Mucorales. Thrombocytopenia and reduction in the number of natural killer (NK) cells and infected dendritic cells is seen in COVID-19. This reduces the host immune response to pathogenic invasion by Mucorales. Cytokines released in COVID-19 cause mitochondrial dysfunction and accumulation of reactive oxygen species, which cause oxidative damage to the leucocytes. Hyperferritinemia also occurs in COVID-19 resulting in suppression of the hematopoietic proliferation of B- and T-lymphocytes. CONCLUSIONS COVID-19 has a role in the occurrence of ROCM due to its effects at the entry point of the fungus in the respiratory mucosa, effects of the innate immune system, creation of an environment of iron overload, propagation of hyperglycemia, and effects on the adaptive immune system.
Collapse
Affiliation(s)
- Tarjani Vivek Dave
- Ophthalmic Plastic Surgery Service, LV Prasad Eye Institute, Hyderabad, India
| | - Akshay Gopinathan Nair
- Aditya Jyot Eye Hospital, Mumbai, India.,Advanced Eye hospital and Institute, Navi Mumbai, India
| | - Joveeta Joseph
- Jhaveri Microbiology Centre, Kallam Anji Reddy Campus, LV Prasad Eye Institute, Hyderabad, India
| | - Suzanne K Freitag
- Ophthalmic Plastic Surgery Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
46
|
Kudryavtsev IV, Golovkin AS, Totolian AA. T helper cell subsets and related target cells in acute COVID-19. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2022. [DOI: 10.15789/2220-7619-thc-1882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Current review presents a brief overview of the immune system dysregulation during acute COVID-19 and illustrates the main alterations in peripheral blood CD4+ T-cell (Th) subsets as well as related target cells. Effects of dendritic cell dysfunction induced by SARS-CoV-2 exhibited decreased expression of cell-surface HLA-DR, CCR7 as well as co-stimulatory molecules CD80 and CD86, suggesting reduced antigen presentation, migratory and activation capacities of peripheral blood dendritic cells. SARS-CoV-2-specific Th cells could be detected as early as days 24 post-symptom onset, whereas the prolonged lack of SARS-CoV-2-specific Th cells was associated with severe and/or poor COVID-19 outcome. Firstly, in acute COVID-19 the frequency of Th1 cell was comparable with control levels, but several studies have reported about upregulated inhibitory immune checkpoint receptors and exhaustion-associated molecules (TIM3, PD-1, BTLA, TIGIT etc.) on circulating CD8+ T-cells and NK-cells, whereas the macrophage count was increased in bronchoalveolar lavage (BAL) samples. Next, type 2 immune responses are mediated mainly by Th2 cells, and several studies have revealed a skewing towards dominance of Th2 cell subset in peripheral blood samples from patients with acute COVID-19. Furthermore, the decrease of circulating main Th2 target cells basophiles and eosinophils were associated with severe COVID-19, whereas the lung tissue was enriched with mast cells and relevant mediators released during degranulation. Moreover, the frequency of peripheral blood Th17 cells was closely linked to COVID-19 severity, so that low level of Th17 cells was observed in patients with severe COVID-19, but in BAL the relative number of Th17 cells as well as the concentrations of relevant effector cytokines were dramatically increased. It was shown that severe COVID-19 patients vs. healthy control had higher relative numbers of neutrophils if compared, and the majority of patients with COVID-19 had increased frequency and absolute number of immature neutrophils with altered ROS production. Finally, the frequency of Tfh cells was decreased during acute COVID-19 infection. Elevated count of activated Tfh were found as well as the alterations in Tfh cell subsets characterized by decreased regulatory Tfh1 cell and increased pro-inflammatory Tfh2 as well as Tfh17 cell subsets were revealed. Descriptions of peripheral blood B cells during an acute SARS-CoV-2 infection werev reported as relative B cell lymphopenia with decreased frequency of nave and memory B cell subsets, as well as increased level of CD27hiCD38hiCD24 plasma cell precursors and atypical CD21low B cells. Thus, the emerging evidence suggests that functional alterations occur in all Th cell subsets being linked with loss-of-functions of main Th cell subsets target cells. Furthermore, recovered individuals could suffer from long-term immune dysregulation and other persistent symptoms lasting for many months even after SARS-CoV-2 elimination, a condition referred to as post-acute COVID-19 syndrome.
Collapse
|
47
|
Boland L, Bitterlich LM, Hogan AE, Ankrum JA, English K. Translating MSC Therapy in the Age of Obesity. Front Immunol 2022; 13:943333. [PMID: 35860241 PMCID: PMC9289617 DOI: 10.3389/fimmu.2022.943333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stromal cell (MSC) therapy has seen increased attention as a possible option to treat a number of inflammatory conditions including COVID-19 acute respiratory distress syndrome (ARDS). As rates of obesity and metabolic disease continue to rise worldwide, increasing proportions of patients treated with MSC therapy will be living with obesity. The obese environment poses critical challenges for immunomodulatory therapies that should be accounted for during development and testing of MSCs. In this review, we look to cancer immunotherapy as a model for the challenges MSCs may face in obese environments. We then outline current evidence that obesity alters MSC immunomodulatory function, drastically modifies the host immune system, and therefore reshapes interactions between MSCs and immune cells. Finally, we argue that obese environments may alter essential features of allogeneic MSCs and offer potential strategies for licensing of MSCs to enhance their efficacy in the obese microenvironment. Our aim is to combine insights from basic research in MSC biology and clinical trials to inform new strategies to ensure MSC therapy is effective for a broad range of patients.
Collapse
Affiliation(s)
- Lauren Boland
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Laura Melanie Bitterlich
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
| | - Andrew E. Hogan
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
| | - James A. Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
- *Correspondence: James A. Ankrum, ; Karen English,
| | - Karen English
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
- *Correspondence: James A. Ankrum, ; Karen English,
| |
Collapse
|
48
|
Fang K, Liang G, Zhuang Z, Fang Y, Dong Y, Liang C, Chen X, Guo X. Screening the hub genes and analyzing the mechanisms in discharged COVID-19 patients retesting positive through bioinformatics analysis. J Clin Lab Anal 2022; 36:e24495. [PMID: 35657140 PMCID: PMC9279949 DOI: 10.1002/jcla.24495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND After encountering COVID-19 patients who test positive again after discharge, our study analyzed the pathogenesis to further assess the risk and possibility of virus reactivation. METHODS A separate microarray was acquired from the Gene Expression Omnibus (GEO), and its samples were divided into two groups: a "convalescent-RTP" group consisting of convalescent and "retesting positive" (RTP) patients (group CR) and a "healthy-RTP" group consisting of healthy control and RTP patients (group HR). The enrichment analysis was performed with R software, obtaining the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, the protein-protein interaction (PPI) networks of each group were established, and the hub genes were discovered using the cytoHubba plugin. RESULTS In this study, 6622 differentially expressed genes were identified in the group CR, among which RAB11B-AS1, DISP1, MICAL3, PSMG1, and DOCK4 were up-regulated genes, and ANAPC1, IGLV1-40, SORT1, PLPPR2, and ATP1A1-AS1 were down-regulated. 7335 genes were screened in the group HR, including the top 5 up-regulated genes ALKBH6, AMBRA1, MIR1249, TRAV18, and LRRC69, and the top 5 down-regulated genes FAM241B, AC018529.3, AL031963.3, AC006946.1, and FAM149B1. The GO and KEGG analysis of the two groups revealed a significant enrichment in immune response and apoptosis. In the PPI network constructed, group CR and group HR identified 10 genes, respectively, and TP53BP1, SNRPD1, and SNRPD2 were selected as hub genes. CONCLUSIONS Using the messenger ribonucleic acid (mRNA) expression data from GSE166253, we found TP53BP1, SNRPD1, and SNRPD2 as hub genes in RTP patients, which is vital to the management and prognostic prediction of RTP patients.
Collapse
Affiliation(s)
- Ke‐Ying Fang
- Department of Clinical Laboratory MedicineThe Third Affiliated Hospital of Guangzhou Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Clinical MedicineThe Third Clinical School of Guangzhou Medical UniversityGuangzhouChina
| | - Gui‐Ning Liang
- Department of Clinical Laboratory MedicineThe Third Affiliated Hospital of Guangzhou Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Clinical MedicineNan Shan School of Guangzhou Medical UniversityGuangzhouChina
| | - Zhuo‐Qing Zhuang
- Department of Clinical Laboratory MedicineThe Third Affiliated Hospital of Guangzhou Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Clinical MedicineThe Third Clinical School of Guangzhou Medical UniversityGuangzhouChina
| | - Yong‐Xin Fang
- Department of Clinical Laboratory MedicineThe Third Affiliated Hospital of Guangzhou Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Clinical MedicineThe Third Clinical School of Guangzhou Medical UniversityGuangzhouChina
| | - Yu‐Qian Dong
- Department of Clinical Laboratory MedicineThe Third Affiliated Hospital of Guangzhou Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of PeriodonticsThe Stomatologe Medical School of Guangzhou Medical UniversityGuangzhouChina
| | - Chuang‐Jia Liang
- Department of Clinical Laboratory MedicineThe Third Affiliated Hospital of Guangzhou Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Clinical MedicineThe Third Clinical School of Guangzhou Medical UniversityGuangzhouChina
| | - Xin‐Yan Chen
- Department of Clinical Laboratory MedicineThe Third Affiliated Hospital of Guangzhou Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Clinical MedicineThe Third Clinical School of Guangzhou Medical UniversityGuangzhouChina
| | - Xu‐Guang Guo
- Department of Clinical Laboratory MedicineThe Third Affiliated Hospital of Guangzhou Hospital of Guangzhou Medical UniversityGuangzhouChina
- Department of Clinical MedicineThe Third Clinical School of Guangzhou Medical UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Major Obstetric DiseasesThe Third Affiliated GuangzhouGuangzhouChina
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory MedicineGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
49
|
Gutiérrez-Bautista JF, Martinez-Chamorro A, Rodriguez-Nicolas A, Rosales-Castillo A, Jiménez P, Anderson P, López-Ruz MÁ, López-Nevot MÁ, Ruiz-Cabello F. Major Histocompatibility Complex Class I Chain-Related α (MICA) STR Polymorphisms in COVID-19 Patients. Int J Mol Sci 2022; 23:ijms23136979. [PMID: 35805975 PMCID: PMC9266713 DOI: 10.3390/ijms23136979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
The SARS-CoV-2 disease presents different phenotypes of severity. Comorbidities, age, and being overweight are well established risk factors for severe disease. However, innate immunity plays a key role in the early control of viral infections and may condition the gravity of COVID-19. Natural Killer (NK) cells are part of innate immunity and are important in the control of virus infection by killing infected cells and participating in the development of adaptive immunity. Therefore, we studied the short tandem repeat (STR) transmembrane polymorphisms of the major histocompatibility complex class I chain-related A (MICA), an NKG2D ligand that induces activation of NK cells, among other cells. We compared the alleles and genotypes of MICA in COVID-19 patients versus healthy controls and analyzed their relation to disease severity. Our results indicate that the MICA*A9 allele is related to infection as well as to symptomatic disease but not to severe disease. The MICA*A9 allele may be a risk factor for SARS-CoV-2 infection and symptomatic disease.
Collapse
Affiliation(s)
- Juan Francisco Gutiérrez-Bautista
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, 18012 Granada, Spain; (J.F.G.-B.); (A.R.-N.); (P.J.); (P.A.)
- Programa de Doctorado en Biomedicina, University of Granada, 18016 Granada, Spain
- Departamento Bioquímica, Biología Molecular e Inmunología III, University of Granada, 18071 Granada, Spain
| | | | - Antonio Rodriguez-Nicolas
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, 18012 Granada, Spain; (J.F.G.-B.); (A.R.-N.); (P.J.); (P.A.)
| | - Antonio Rosales-Castillo
- Servicio de Medicina Interna, Hospital Universitario Virgen de las Nieves, 18012 Granada, Spain;
| | - Pilar Jiménez
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, 18012 Granada, Spain; (J.F.G.-B.); (A.R.-N.); (P.J.); (P.A.)
| | - Per Anderson
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, 18012 Granada, Spain; (J.F.G.-B.); (A.R.-N.); (P.J.); (P.A.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Miguel Ángel López-Ruz
- Departamento de Medicina, University of Granada, 18071 Granada, Spain;
- Servicio de Enfermedades Infecciosas, Hospital Universitario Virgen de las Nieves, 18012 Granada, Spain
| | - Miguel Ángel López-Nevot
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, 18012 Granada, Spain; (J.F.G.-B.); (A.R.-N.); (P.J.); (P.A.)
- Departamento Bioquímica, Biología Molecular e Inmunología III, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Correspondence: (M.Á.L.-N.); (F.R.-C.)
| | - Francisco Ruiz-Cabello
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, 18012 Granada, Spain; (J.F.G.-B.); (A.R.-N.); (P.J.); (P.A.)
- Departamento Bioquímica, Biología Molecular e Inmunología III, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Correspondence: (M.Á.L.-N.); (F.R.-C.)
| |
Collapse
|
50
|
Zheng J, Miao J, Guo R, Guo J, Fan Z, Kong X, Gao R, Yang L. Mechanism of COVID-19 Causing ARDS: Exploring the Possibility of Preventing and Treating SARS-CoV-2. Front Cell Infect Microbiol 2022; 12:931061. [PMID: 35774402 PMCID: PMC9237249 DOI: 10.3389/fcimb.2022.931061] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
Novel coronavirus pneumonia (COVID-19) is spreading worldwide, causing great harm and stress to humans. Since patients with novel coronavirus (SARS-CoV-2) have a high probability of developing acute respiratory distress syndrome (ARDS) in severe cases, the pathways through which SARS-CoV-2 causes lung injury have become a major concern in the scientific field. In this paper, we investigate the relationship between SARS-CoV-2 and lung injury and explore the possible mechanisms of COVID-19 in ARDS from the perspectives of angiotensin-converting enzyme 2 protein, cytokine storm, activation of the immune response, triggering of Fas/FasL signaling pathway to promote apoptosis, JAK/STAT pathway, NF-κB pathway, type I interferon, vitamin D, and explore the possibility of prevention and treatment of COVID-19. To explore the possibility of SARS-CoV-2, and to provide new ideas to stop the development of ARDS in COVID-19 patients.
Collapse
Affiliation(s)
- Jiajing Zheng
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiameng Miao
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Guo
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinhe Guo
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zheng Fan
- Department of Critical Medicine, The First Affiliated Hospital of Suzhou University, Suzhou, China
| | - Xianbin Kong
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xianbin Kong, ; Rui Gao, ; Long Yang,
| | - Rui Gao
- Institute of Clinical Pharmacology of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Xianbin Kong, ; Rui Gao, ; Long Yang,
| | - Long Yang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xianbin Kong, ; Rui Gao, ; Long Yang,
| |
Collapse
|