1
|
Saurin S, Meineck M, Claßen P, Boedecker-Lips SC, Pautz A, Weinmann-Menke J. Sex-specific differences in SLE - Significance in the experimental setting of inflammation and kidney damage in MRL-Fas lpr mice. Autoimmunity 2024; 57:2377098. [PMID: 39004847 DOI: 10.1080/08916934.2024.2377098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
Animal models are an important tool in the research of chronic autoimmune diseases, like systemic lupus erythematosus (SLE). MRL-Faslpr mice are one of different lupus models that develop spontaneously an SLE-like disease with autoantibodies and immune complex deposition that leads into damage of different organs. In contrast to human SLE, both sexes of MRL-Faslpr mice develop a similar autoimmune disease. Due to the sex bias in human and the delayed disease progression in male MRL-Faslpr mice, the majority of studies have been performed in female mice. To determine the suitability of male MRL-Faslpr mice for SLE research, especially with regard to the 3 R-principle and animal welfare, analyses of phenotype, inflammation and damage with focus on kidney and spleen were performed in mice of both sexes. Female mice developed lymphadenopathy and skin lesions earlier as males. At an age of 3.5 month, more immune cells infiltrated kidney and spleen in females compared to males. At the age of 5 months, however, substantially less sex-specific differences were detected. Since other studies have shown differences between both sexes on other manifestations like autoimmune pancreatitis and Sjögren syndrome in MRL-Faslpr mice, the use of male mice as part of 3 R-principle and animal welfare must be carefully considered.
Collapse
Affiliation(s)
- Sabrina Saurin
- Department of Nephrology and Rheumatology, Center of Immunotherapy, Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Myriam Meineck
- Department of Nephrology and Rheumatology, Center of Immunotherapy, Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Paul Claßen
- Department of Nephrology and Rheumatology, Center of Immunotherapy, Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Simone Cosima Boedecker-Lips
- Department of Nephrology and Rheumatology, Center of Immunotherapy, Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Andrea Pautz
- Institute of Pharmacology, Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Julia Weinmann-Menke
- Department of Nephrology and Rheumatology, Center of Immunotherapy, Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
2
|
Sellau J, Hansen CS, Gálvez RI, Linnemann L, Honecker B, Lotter H. Immunological clues to sex differences in parasitic diseases. Trends Parasitol 2024; 40:1029-1041. [PMID: 39379261 DOI: 10.1016/j.pt.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/23/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024]
Abstract
The effect of sex on the prevalence and severity of parasitic diseases is an emerging area of research. Several factors underlie sex-based differences, including sociocultural influences that affect exposure to parasites, and physiological disparities linked to biological sex. Hence, human studies must be interpreted cautiously; however, studies conducted under controlled laboratory conditions are important to validate findings in humans. Such research can more effectively elucidate the role of sex-determining physiological factors (particularly their impact on immune responses), as well as the role of sex-specific differences in resistance to, or severity of, parasitic diseases. This review focuses on the overarching impact of biological sex variables on immunity. Both human and rodent experimental data are discussed, with a focus on selected protozoan and helminth infections.
Collapse
Affiliation(s)
- Julie Sellau
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | - Lara Linnemann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Barbara Honecker
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hanna Lotter
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
3
|
Wiese CB, Soliman B, Reue K. The Four Core Genotypes mouse model: evaluating the impact of a recently discovered translocation. Biol Sex Differ 2024; 15:90. [PMID: 39482704 PMCID: PMC11529163 DOI: 10.1186/s13293-024-00665-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
The Four Core Genotypes (FCG) mouse model has become a valuable model to study the mechanistic basis for biological sex differences. This model allows discrimination between influences of gonadal sex (ovaries or testes) from those associated with genetic sex (presence of XX or XY chromosome complement). FCG mice have illuminated distinct effects of gonadal and chromosomal sex on traits ranging from brain structure and behavior to vulnerability to obesity, atherosclerosis, multiple sclerosis, Alzheimer's and other diseases. A recent study determined that the YSry- chromosome used in a specific line of C57BL/6J FCG mice harbors nine genes that have been duplicated from the X chromosome. This report raised concern that scores of publications that previously used the FCG model may therefore be flawed, but did not provide details regarding how studies can be evaluated for potential impact (or lack of impact) of the translocation. Here we (1) provide a practical description of the genetic translocation for researchers using the FCG model, (2) document that a majority of the studies cited in the recent report are unlikely to be affected by the translocation, (3) provide a scheme for interpreting data from studies with FCG mice harboring the YSry- translocation, and (4) delineate expression levels of the nine translocated genes across tissue/cell types as a filter for evaluating their potential involvement in specific phenotypes.
Collapse
Affiliation(s)
- Carrie B Wiese
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Barbara Soliman
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
4
|
Wang Y, Li G, Chen B, Shakir G, Volz M, van der Vorst EPC, Maas SL, Geiger M, Jethwa C, Bartelt A, Li Z, Wettich J, Sachs N, Maegdefessel L, Nazari Jahantigh M, Hristov M, Lacy M, Lutz B, Weber C, Herzig S, Guillamat Prats R, Steffens S. Myeloid cannabinoid CB1 receptor deletion confers atheroprotection in male mice by reducing macrophage proliferation in a sex-dependent manner. Cardiovasc Res 2024; 120:1411-1426. [PMID: 38838211 PMCID: PMC11481387 DOI: 10.1093/cvr/cvae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/21/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
AIMS Although the cannabinoid CB1 receptor has been implicated in atherosclerosis, its cell-specific effects in this disease are not well understood. To address this, we generated a transgenic mouse model to study the role of myeloid CB1 signalling in atherosclerosis. METHODS AND RESULTS Here, we report that male mice with myeloid-specific Cnr1 deficiency on atherogenic background developed smaller lesions and necrotic cores than controls, while only minor genotype differences were observed in females. Male Cnr1-deficient mice showed reduced arterial monocyte recruitment and macrophage proliferation with less inflammatory phenotype. The sex-specific differences in proliferation were dependent on oestrogen receptor (ER)α-oestradiol signalling. Kinase activity profiling identified a CB1-dependent regulation of p53 and cyclin-dependent kinases. Transcriptomic profiling further revealed chromatin modifications, mRNA processing, and mitochondrial respiration among the key processes affected by CB1 signalling, which was supported by metabolic flux assays. Chronic administration of the peripherally restricted CB1 antagonist JD5037 inhibited plaque progression and macrophage proliferation, but only in male mice. Finally, CNR1 expression was detectable in human carotid endarterectomy plaques and inversely correlated with proliferation, oxidative metabolism, and inflammatory markers, suggesting a possible implication of CB1-dependent regulation in human pathophysiology. CONCLUSION Impaired macrophage CB1 signalling is atheroprotective by limiting their arterial recruitment, proliferation, and inflammatory reprogramming in male mice. The importance of macrophage CB1 signalling appears to be sex-dependent.
Collapse
Affiliation(s)
- Yong Wang
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany
| | - Guo Li
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany
| | - Bingni Chen
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany
| | - George Shakir
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany
| | - Mario Volz
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany
| | - Emiel P C van der Vorst
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany
- Institute for Molecular Cardiovascular Research (IMCAR), Aachen-Maastricht Institute for CardioRenal Disease (AMICARE) and Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
| | - Sanne L Maas
- Institute for Molecular Cardiovascular Research (IMCAR), Aachen-Maastricht Institute for CardioRenal Disease (AMICARE) and Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
| | - Martina Geiger
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany
| | - Carolin Jethwa
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany
- DZHK (German Center for Cardiovasular Research), partner site Munich Heart Alliance, Pettenkoferstr. 9, 80336 Munich, Germany
- Institute for Diabetes and Cancer, Helmholtz Zentrum Munich, Neuherberg, Germany
- Department of Molecular Metabolism & Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Zhaolong Li
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar—Technical University Munich (TUM), Munich, Germany
| | - Justus Wettich
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar—Technical University Munich (TUM), Munich, Germany
| | - Nadja Sachs
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar—Technical University Munich (TUM), Munich, Germany
| | - Lars Maegdefessel
- DZHK (German Center for Cardiovasular Research), partner site Munich Heart Alliance, Pettenkoferstr. 9, 80336 Munich, Germany
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar—Technical University Munich (TUM), Munich, Germany
| | - Maliheh Nazari Jahantigh
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany
| | - Michael Hristov
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany
| | - Michael Lacy
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center, Mainz, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany
- DZHK (German Center for Cardiovasular Research), partner site Munich Heart Alliance, Pettenkoferstr. 9, 80336 Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Straße 17, 81377 Munich, Germany
| | - Stephan Herzig
- DZHK (German Center for Cardiovasular Research), partner site Munich Heart Alliance, Pettenkoferstr. 9, 80336 Munich, Germany
- Institute for Diabetes and Cancer, Helmholtz Zentrum Munich, Neuherberg, Germany
- Chair Molecular Metabolic Control, TU Munich, Ismaninger Str. 22, 81675 Munich, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
| | - Raquel Guillamat Prats
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany
| | - Sabine Steffens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany
- DZHK (German Center for Cardiovasular Research), partner site Munich Heart Alliance, Pettenkoferstr. 9, 80336 Munich, Germany
| |
Collapse
|
5
|
Vavalà T. Immunotherapy outcomes in non-small cell lung cancer according to a gender perspective. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 209:241-258. [PMID: 39461754 DOI: 10.1016/bs.pmbts.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
In the last few years, immune checkpoint inhibitors (ICIs) improved treatment strategies for advanced non-small cell lung cancer (NSCLC) with no targetable driver mutations. Empirical evidence strongly suggests that males and females differ in outcomes following the use of ICIs for treatments of solid cancers. Women in fact exhibit greater humoral and cell-mediated immune responses and an even more advanced immune editing which plays an important role in controlling cancer rising and evolution. However, at present, no conclusive studies have addressed differences in response to ICIs regarding sex and, to note, reproductive status in women or autoimmune diseases in both sexes are often not recorded in clinical trials. Consequently, it can be argued that to assess cancer responses and study cancer spread, results of published studies in men may not unconditionally be applied on female patients treated with ICIs, and vice versa. In this chapter have been discussed recent data about gender differences in the immune system and in NSCLC patients treated with ICIs, highlighting sex as a key factor in evaluating different responses in the two sexes.
Collapse
Affiliation(s)
- Tiziana Vavalà
- AOU Città della Salute e della Scienza-Dipartimento di Oncologia, SC Oncologia 1U, Torino, Italy.
| |
Collapse
|
6
|
Vieira AA, Almada-Correia I, Inácio J, Costa-Reis P, da Rocha ST. Female-bias in systemic lupus erythematosus: How much is the X chromosome to blame? Biol Sex Differ 2024; 15:76. [PMID: 39375734 PMCID: PMC11460073 DOI: 10.1186/s13293-024-00650-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/30/2024] [Indexed: 10/09/2024] Open
Abstract
Systemic lupus erythematosus (SLE or lupus) is an immune-mediated disease associated with substantial medical burden. Notably, lupus exhibits a striking female bias, with women having significantly higher susceptibility compared to men, up to 14-fold higher in some ethnicities. Supernumerary X chromosome syndromes, like Klinefelter (XXY) and Triple X syndrome (XXX), also present higher SLE prevalence, whereas Turner syndrome (XO) displays lower prevalence. Taken together, SLE prevalence in different X chromosome dosage sceneries denotes a relationship between the number of X chromosomes and the risk of developing lupus. The dosage of X-linked genes, many of which play roles in the immune system, is compensated between males and females through the inactivation of one of the two X chromosomes in female cells. X-chromosome inactivation (XCI) initiates early in development with a random selection of which X chromosome to inactivate, a choice that is then epigenetically maintained in the daughter cells. This process is regulated by the X-Inactive-Specific Transcript (XIST), encoding for a long non-coding RNA, exclusively expressed from the inactive X chromosome (Xi). XIST interacts with various RNA binding proteins and chromatin modifiers to form a ribonucleoprotein (RNP) complex responsible for the transcriptional silencing and heterochromatinization of the Xi. This ensures stable silencing of most genes on the X chromosome, with only a few genes able to escape this process. Recent findings suggest that the molecular components involved in XCI, or their dysregulation, contribute to the pathogenesis of lupus. Indeed, nonrandom XCI, elevated gene escape from XCI, and the autoimmune potential of the XIST RNP complex have been suggested to contribute to auto-immune diseases, such as lupus. This review examines these current hypotheses concerning how this dosage compensation mechanism might impact the development of lupus, shedding light on potential mechanisms underlying the pathogenesis of the disease.
Collapse
Affiliation(s)
- Adriana A Vieira
- Rheumatology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Lisbon, Portugal
| | - Inês Almada-Correia
- Rheumatology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Joana Inácio
- Rheumatology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Lisbon, Portugal
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Patrícia Costa-Reis
- Rheumatology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Pediatric Rheumatology Unit, Pediatrics Department, Hospital de Santa Maria, Lisbon, Portugal
| | - S T da Rocha
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
7
|
Sgrò P, Antinozzi C, Wasson CW, Del Galdo F, Dimauro I, Di Luigi L. Sexual Dimorphism in Sex Hormone Metabolism in Human Skeletal Muscle Cells in Response to Different Testosterone Exposure. BIOLOGY 2024; 13:796. [PMID: 39452105 PMCID: PMC11504033 DOI: 10.3390/biology13100796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024]
Abstract
Muscle tissue is an important target of sex steroids, and particularly, testosterone plays essential roles in muscle cell metabolism. Wide ranges of studies have reported sex differences in basal muscle steroidogenesis, and recently several genes have been identified to be regulated by androgen response elements that show innate sex differences in muscle. However, studies accounting for and demonstrating cell sexual dimorphism in vitro are still scarce and not well characterized. Here, we demonstrated the ability of 46XX and 46XY human primary skeletal muscle cells to differently activate steroidogenesis in vitro, likely related to sex-chromosome onset, and to differently induce hormone release after increasing doses of testosterone exposure. Cells were treated with testosterone at concentrations of 0.5, 2, 5, 10, 32, and 100 nmol/L for 24 h. Variations in 17β-HSD, 5α-R2, CYP-19 expression, DHT, estradiol, and androstenedione release, as well as IL6 and IL8 release, were analyzed, respectively, by RT-PCR, ELISA, and luminex-assay. Following testosterone treatments, and potentially at any concentration level, an increase in the expression of 17β-HSD, 5α-R2, and CYP-19 was observed in 46XY cells, accompanied by elevated levels of DHT, androstenedione, and IL6/IL8 release. Following the same treatment, 46XX cells exhibited an increase in 5α-R2 and CYP-19 expression, a conversion of androgens to estrogens, and a reduction in IL6 and IL8 release. In conclusion, this study demonstrated that sex-chromosome differences may influence in vitro muscle cell steroidogenesis and hormone homeostasis, which are pivotal for skeletal muscle metabolism.
Collapse
Affiliation(s)
- Paolo Sgrò
- Endocrinology Unit, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy; (P.S.); (L.D.L.)
| | - Cristina Antinozzi
- Endocrinology Unit, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy; (P.S.); (L.D.L.)
| | - Christopher W. Wasson
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS7 4SA, UK; (C.W.W.); (F.D.G.)
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS7 4SA, UK; (C.W.W.); (F.D.G.)
| | - Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy;
| | - Luigi Di Luigi
- Endocrinology Unit, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy; (P.S.); (L.D.L.)
| |
Collapse
|
8
|
Krzyżewska A, Kurakula K. Sex Dimorphism in Pulmonary Arterial Hypertension Associated With Autoimmune Diseases. Arterioscler Thromb Vasc Biol 2024; 44:2169-2190. [PMID: 39145392 DOI: 10.1161/atvbaha.124.320886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Pulmonary hypertension is a rare, incurable, and progressive disease. Although there is increasing evidence that immune disorders, particularly those associated with connective tissue diseases, are a strong predisposing factor in the development of pulmonary arterial hypertension (PAH), there is currently a lack of knowledge about the detailed molecular mechanisms responsible for this phenomenon. Exploring this topic is crucial because patients with an immune disorder combined with PAH have a worse prognosis and higher mortality compared with patients with other PAH subtypes. Moreover, data recorded worldwide show that the prevalence of PAH in women is 2× to even 4× higher than in men, and the ratio of PAH associated with autoimmune diseases is even higher (9:1). Sexual dimorphism in the pathogenesis of cardiovascular disease was explained for many years by the action of female sex hormones. However, there are increasing reports of interactions between sex hormones and sex chromosomes, and differences in the pathogenesis of cardiovascular disease may be controlled not only by sex hormones but also by sex chromosome pathways that are not dependent on the gonads. This review discusses the role of estrogen and genetic factors including the role of genes located on the X chromosome, as well as the potential protective role of the Y chromosome in sexual dimorphism, which is prominent in the occurrence of PAH associated with autoimmune diseases. Moreover, an overview of animal models that could potentially play a role in further investigating the aforementioned link was also reviewed.
Collapse
Affiliation(s)
- Anna Krzyżewska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Poland (A.K.)
| | - Kondababu Kurakula
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Free University Medical Center, the Netherlands (K.K.)
| |
Collapse
|
9
|
James A, Brodin P. Immunological studies in trans-individuals undergoing gender affirming hormone therapy. Nat Rev Immunol 2024; 24:697-698. [PMID: 39232175 DOI: 10.1038/s41577-024-01070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Affiliation(s)
- Anna James
- Unit for Clinical Pediatrics, Dept. of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Petter Brodin
- Unit for Clinical Pediatrics, Dept. of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
- Medical Research Council Laboratory of Medical Sciences (MRC LMS), Imperial College Hammersmith Campus, London, UK.
- Department of Immunology and Inflammation, Imperial College London, London, UK.
| |
Collapse
|
10
|
Fritz García JHG, Keller Valsecchi CI, Basilicata MF. Sex as a biological variable in ageing: insights and perspectives on the molecular and cellular hallmarks. Open Biol 2024; 14:240177. [PMID: 39471841 PMCID: PMC11521605 DOI: 10.1098/rsob.240177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 11/01/2024] Open
Abstract
Sex-specific differences in lifespan and ageing are observed in various species. In humans, women generally live longer but are frailer and suffer from different age-related diseases compared to men. The hallmarks of ageing, such as genomic instability, telomere attrition or loss of proteostasis, exhibit sex-specific patterns. Sex chromosomes and sex hormones, as well as the epigenetic regulation of the inactive X chromosome, have been shown to affect lifespan and age-related diseases. Here we review the current knowledge on the biological basis of sex-biased ageing. While our review is focused on humans, we also discuss examples of model organisms such as the mouse, fruit fly or the killifish. Understanding these molecular differences is crucial as the elderly population is expected to double worldwide by 2050, making sex-specific approaches in the diagnosis, treatment, therapeutic development and prevention of age-related diseases a pressing need.
Collapse
Affiliation(s)
| | | | - M. Felicia Basilicata
- Institute of Molecular Biology (IMB), Mainz, Germany
- University Medical Center (UMC), Mainz, Germany
| |
Collapse
|
11
|
Lee J, Yurkovetskiy LA, Reiman D, Frommer L, Strong Z, Chang A, Kahaly GJ, Khan AA, Chervonsky AV. Androgens contribute to sex bias of autoimmunity in mice by T cell-intrinsic regulation of Ptpn22 phosphatase expression. Nat Commun 2024; 15:7688. [PMID: 39227386 PMCID: PMC11372096 DOI: 10.1038/s41467-024-51869-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
Autoimmune diseases such as systemic lupus erythematosus (SLE) display a strong female bias. Although sex hormones have been associated with protecting males from autoimmunity, the molecular mechanisms are incompletely understood. Here we report that androgen receptor (AR) expressed in T cells regulates genes involved in T cell activation directly, or indirectly via controlling other transcription factors. T cell-specific deletion of AR in mice leads to T cell activation and enhanced autoimmunity in male mice. Mechanistically, Ptpn22, a phosphatase and negative regulator of T cell receptor signaling, is downregulated in AR-deficient T cells. Moreover, a conserved androgen-response element is found in the regulatory region of Ptpn22 gene, and the mutation of this transcription element in non-obese diabetic mice increases the incidence of spontaneous and inducible diabetes in male mice. Lastly, Ptpn22 deficiency increases the disease severity of male mice in a mouse model of SLE. Our results thus implicate AR-regulated genes such as PTPN22 as potential therapeutic targets for autoimmune diseases.
Collapse
MESH Headings
- Animals
- Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 22/metabolism
- Male
- Female
- Autoimmunity
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
- Mice
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/genetics
- Androgens/metabolism
- Mice, Knockout
- Lymphocyte Activation
- Mice, Inbred NOD
- Mice, Inbred C57BL
- Disease Models, Animal
- Signal Transduction
Collapse
Affiliation(s)
- Jean Lee
- Committee on Cancer Biology, The University of Chicago, Chicago, IL, 60637, USA
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA
| | - Leonid A Yurkovetskiy
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA
- Committee on Microbiology, The University of Chicago, Chicago, IL, 60637, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Derek Reiman
- Toyota Technological Institute at Chicago, Chicago, IL, 60637, USA
| | - Lara Frommer
- Department of Medicine I, Johannes Gutenberg University (JGU) Medical Center, Mainz, 55101, Germany
| | - Zoe Strong
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA
| | - Anthony Chang
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA
| | - George J Kahaly
- Department of Medicine I, Johannes Gutenberg University (JGU) Medical Center, Mainz, 55101, Germany
| | - Aly A Khan
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA.
- Toyota Technological Institute at Chicago, Chicago, IL, 60637, USA.
- Department of Family Medicine, The University of Chicago, Chicago, IL, 60637, USA.
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA.
| | - Alexander V Chervonsky
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA.
- Committee on Microbiology, The University of Chicago, Chicago, IL, 60637, USA.
- Committee on Immunology, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
12
|
Cecalev D, Viçoso B, Galupa R. Compensation of gene dosage on the mammalian X. Development 2024; 151:dev202891. [PMID: 39140247 PMCID: PMC11361640 DOI: 10.1242/dev.202891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Changes in gene dosage can have tremendous evolutionary potential (e.g. whole-genome duplications), but without compensatory mechanisms, they can also lead to gene dysregulation and pathologies. Sex chromosomes are a paradigmatic example of naturally occurring gene dosage differences and their compensation. In species with chromosome-based sex determination, individuals within the same population necessarily show 'natural' differences in gene dosage for the sex chromosomes. In this Review, we focus on the mammalian X chromosome and discuss recent new insights into the dosage-compensation mechanisms that evolved along with the emergence of sex chromosomes, namely X-inactivation and X-upregulation. We also discuss the evolution of the genetic loci and molecular players involved, as well as the regulatory diversity and potentially different requirements for dosage compensation across mammalian species.
Collapse
Affiliation(s)
- Daniela Cecalev
- Molecular, Cellular and Developmental Biology (MCD) Unit, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Beatriz Viçoso
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
| | - Rafael Galupa
- Molecular, Cellular and Developmental Biology (MCD) Unit, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| |
Collapse
|
13
|
Lee CR, Kim MJ, Park SH, Kim S, Kim SY, Koh SJ, Lee S, Choi M, Chae JH, Park SG, Moon J. Recurrent fever of unknown origin and unexplained bacteremia in a patient with a novel 4.5 Mb microdeletion in Xp11.23-p11.22. Sci Rep 2024; 14:17801. [PMID: 39090138 PMCID: PMC11294525 DOI: 10.1038/s41598-024-65341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/19/2024] [Indexed: 08/04/2024] Open
Abstract
Fever of unknown origin (FUO) remains a formidable diagnostic challenge in the field of medicine. Numerous studies suggest an association between FUO and genetic factors, including chromosomal abnormalities. Here, we report a female patient with a 4.5 Mb Xp microdeletion, who presented with recurrent FUO, bacteremia, colitis, and hematochezia. To elucidate the underlying pathogenic mechanism, we employed a comprehensive approach involving single cell RNA sequencing, T cell receptor sequencing, and flow cytometry to evaluate CD4 T cells. Analysis of peripheral blood mononuclear cells revealed augmented Th1, Th2, and Th17 cell populations, and elevated levels of proinflammatory cytokines in serum. Notably, the patient exhibited impaired Treg cell function, possibly related to deletion of genes encoding FOPX3 and WAS. Single cell analysis revealed specific expansion of cytotoxic CD4 T lymphocytes, characterized by upregulation of various signature genes associated with cytotoxicity. Moreover, interferon-stimulated genes were upregulated in the CD4 T effector memory cluster. Further genetic analysis confirmed maternal inheritance of the Xp microdeletion. The patient and her mother exhibited X chromosome-skewed inactivation, a potential protective mechanism against extensive X chromosome deletions; however, the mother exhibited complete skewing and the patient exhibited incomplete skewing (85:15), which may have contributed to emergence of immunological symptoms. In summary, this case report describes an exceptional instance of FUO stemming from an incompletely inactivated X chromosome microdeletion, thereby increasing our understanding of the genetics underpinning FUO.
Collapse
Affiliation(s)
- Cho-Rong Lee
- College of Pharmacy, Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Man Jin Kim
- Department of Genomic Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Sang-Heon Park
- College of Pharmacy, Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sheehyun Kim
- Department of Genomic Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Soo Yeon Kim
- Department of Genomic Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Seong-Joon Koh
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Seungbok Lee
- Department of Genomic Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jong Hee Chae
- Department of Genomic Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sung-Gyoo Park
- College of Pharmacy, Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Jangsup Moon
- Department of Genomic Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Neurology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
14
|
Lee J, Reiman D, Singh S, Chang A, Morel L, Chervonsky AV. Microbial influences on severity and sex bias of systemic autoimmunity. Immunol Rev 2024; 325:64-76. [PMID: 38716867 PMCID: PMC11338725 DOI: 10.1111/imr.13341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Commensal microbes have the capacity to affect development and severity of autoimmune diseases. Germ-free (GF) animals have proven to be a fine tool to obtain definitive answers to the queries about the microbial role in these diseases. Moreover, GF and gnotobiotic animals can be used to dissect the complex symptoms and determine which are regulated (enhanced or attenuated) by microbes. These include disease manifestations that are sex biased. Here, we review comparative analyses conducted between GF and Specific-Pathogen Free (SPF) mouse models of autoimmunity. We present data from the B6;NZM-Sle1NZM2410/AegSle2NZM2410/AegSle3NZM2410/Aeg-/LmoJ (B6.NZM) mouse model of systemic lupus erythematosus (SLE) characterized by multiple measurable features. We compared the severity and sex bias of SPF, GF, and ex-GF mice and found variability in the severity and sex bias of some manifestations. Colonization of GF mice with the microbiotas taken from B6.NZM mice housed in two independent institutions variably affected severity and sexual dimorphism of different parameters. Thus, microbes regulate both the severity and sexual dimorphism of select SLE traits. The sensitivity of particular trait to microbial influence can be used to further dissect the mechanisms driving the disease. Our results demonstrate the complexity of the problem and open avenues for further investigations.
Collapse
Affiliation(s)
- Jean Lee
- Committee on Cancer Biology, The University of Chicago, Chicago, Illinois, USA
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Derek Reiman
- Toyota Technological Institute at Chicago, Chicago, Illinois, USA
| | - Samara Singh
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Anthony Chang
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Laurence Morel
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Alexander V Chervonsky
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
- Committee on Immunology, The University of Chicago, Chicago, Illinois, USA
- Committee on Microbiology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
15
|
Kuzmenko N, Alexenko M, Mukhina A, Rodina Y, Fadeeva M, Pershin D, Kieva A, Raykina E, Maschan M, Novichkova G, Shcherbina A. Genetic Characteristics of a Large Pediatric Cohort of Patients with Inborn Errors of Immunity: Single-Center Experience. J Clin Immunol 2024; 44:165. [PMID: 39052144 DOI: 10.1007/s10875-024-01767-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
More than 450 genetic defects result in inborn errors of immunity (IEI). Their individual prevalence in specific cohorts is influenced by national characteristics and other factors. We present results of genetic testing conducted in 1809 Russian children with IEI. Genetic defects confirming IEI were found in 1112 out of 1809 (61.5%) probands. These defects included variants in 118 single genes (87.9% of patients) and aberrations in 6 chromosomes (11.8%). Notably, three patients harbored pathogenic variants in more than one IEI gene. Large deletions constituted 5% of all defects. Out of the 799 original variants, 350 (44%) have not been described previously. Rare genetic defects (10 or fewer patients per gene) were identified in 20% of the patients. Among 967 probands with germline variants, defects were inherited in an autosomal dominant manner in 29%, X-linked in 34%, and autosomal recessive in 37%. Four females with non-random X-inactivation exhibited symptoms of X-linked diseases (BTK, WAS, CYBB, IKBKG gene defects). Despite a relatively low rate of consanguinity in Russia, 47.9% of autosomal recessive gene defects were found in a homozygous state. Notably, 28% of these cases carried "Slavic" mutation of the NBN gene or known hot-spot mutations in other genes. The diversity of IEI genetic forms and the high frequency of newly described variants underscore the genetic heterogeneity within the Russian IEI group. The new variants identified in this extensive cohort will enrich genetic databases.
Collapse
Affiliation(s)
- Natalia Kuzmenko
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation.
| | - Maxim Alexenko
- Laboratory of Molecular Biology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Anna Mukhina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Yulia Rodina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Mariia Fadeeva
- Laboratory of Hematopoietic Stem Cell Transplantation and Immunotherapy, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Dmitrii Pershin
- Laboratory of Hematopoietic Stem Cell Transplantation and Immunotherapy, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Amina Kieva
- Laboratory of Molecular Biology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Elena Raykina
- Laboratory of Molecular Biology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Miсhael Maschan
- Laboratory of Hematopoietic Stem Cell Transplantation and Immunotherapy, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
- High School of Molecular and Experimental Medicine, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Galina Novichkova
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
- High School of Molecular and Experimental Medicine, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Anna Shcherbina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| |
Collapse
|
16
|
Harvey BJ, McElvaney NG. Sex differences in airway disease: estrogen and airway surface liquid dynamics. Biol Sex Differ 2024; 15:56. [PMID: 39026347 PMCID: PMC11264786 DOI: 10.1186/s13293-024-00633-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
Biological sex differences exist for many airway diseases in which females have either worse or better health outcomes. Inflammatory airway diseases such as cystic fibrosis (CF) and asthma display a clear male advantage in post-puberty while a female benefit is observed in asthma during the pre-puberty years. The influence of menstrual cycle stage and pregnancy on the frequency and severity of pulmonary exacerbations in CF and asthma point to a role for sex steroid hormones, particularly estrogen, in underpinning biological sex differences in these diseases. There are many ways by which estrogen may aggravate asthma and CF involving disturbances in airway surface liquid (ASL) dynamics, inappropriate hyper-immune and allergenic responses, as well as exacerbation of pathogen virulence. The deleterious effect of estrogen on pulmonary function in CF and asthma contrasts with the female advantage observed in airway diseases characterised by pulmonary edema such as pneumonia, acute respiratory distress syndrome (ARDS) and COVID-19. Airway surface liquid hypersecretion and alveolar flooding are hallmarks of ARDS and COVID-19, and contribute to the morbidity and mortality of severe forms of these diseases. ASL dynamics encompasses the intrinsic features of the thin lining of fluid covering the airway epithelium which regulate mucociliary clearance (ciliary beat, ASL height, volume, pH, viscosity, mucins, and channel activating proteases) in addition to innate defence mechanisms (pathogen virulence, cytokines, defensins, specialised pro-resolution lipid mediators, and metabolism). Estrogen regulation of ASL dynamics contributing to biological sex differences in CF, asthma and COVID-19 is a major focus of this review.
Collapse
Affiliation(s)
- Brian J Harvey
- Faculty of Medicine and Health Sciences, Royal College of Surgeons in Ireland, 126 St Stephens Green, Dublin 2, Ireland.
- Department of Medicine, RCSI ERC, Beaumont Hospital, Dublin 2, Ireland.
| | - Noel G McElvaney
- Faculty of Medicine and Health Sciences, Royal College of Surgeons in Ireland, 126 St Stephens Green, Dublin 2, Ireland
| |
Collapse
|
17
|
Chavan SV, Desikan S, Roman CAJ, Huan C. PKCδ Protects against Lupus Autoimmunity. Biomedicines 2024; 12:1364. [PMID: 38927570 PMCID: PMC11202175 DOI: 10.3390/biomedicines12061364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Protein kinase C delta (PKCδ) has emerged as a key protective molecule against systemic lupus erythematosus (SLE or lupus), an autoimmune disease characterized by anti-double stranded (ds) DNA IgGs. Although PKCδ-deficient mice and lupus patients with mutated PRKCD genes clearly demonstrate the requirement for PKCδ in preventing lupus autoimmunity, this critical tolerance mechanism remains poorly understood. We recently reported that PKCδ acts as a key regulator of B cell tolerance by selectively deleting anti-dsDNA B cells in the germinal center (GC). PKCδ's tolerance function is activated by sphingomyelin synthase 2 (SMS2), a lipid enzyme whose expression is generally reduced in B cells from lupus patients. Moreover, pharmacologic strengthening of the SMS2/PKCδ tolerance pathway alleviated lupus pathogenesis in mice. Here, we review relevant publications in order to provide mechanistic insights into PKCδ's tolerance activity and discuss the potential significance of therapeutically targeting PKCδ's tolerance activity in the GC for selectively inhibiting lupus autoimmunity.
Collapse
Affiliation(s)
- Sailee Vijay Chavan
- Program in Molecular and Cellular Biology, The School of Graduate Studies, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.V.C.); (S.D.)
| | - Shreya Desikan
- Program in Molecular and Cellular Biology, The School of Graduate Studies, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.V.C.); (S.D.)
| | - Christopher A J Roman
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA;
| | - Chongmin Huan
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA;
| |
Collapse
|
18
|
Huret C, Ferrayé L, David A, Mohamed M, Valentin N, Charlotte F, Savignac M, Goodhardt M, Guéry JC, Rougeulle C, Morey C. Altered X-chromosome inactivation predisposes to autoimmunity. SCIENCE ADVANCES 2024; 10:eadn6537. [PMID: 38701219 PMCID: PMC11068014 DOI: 10.1126/sciadv.adn6537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
In mammals, males and females show marked differences in immune responses. Males are globally more sensitive to infectious diseases, while females are more susceptible to systemic autoimmunity. X-chromosome inactivation (XCI), the epigenetic mechanism ensuring the silencing of one X in females, may participate in these sex biases. We perturbed the expression of the trigger of XCI, the noncoding RNA Xist, in female mice. This resulted in reactivation of genes on the inactive X, including members of the Toll-like receptor 7 (TLR7) signaling pathway, in monocyte/macrophages and dendritic and B cells. Consequently, female mice spontaneously developed inflammatory signs typical of lupus, including anti-nucleic acid autoantibodies, increased frequencies of age-associated and germinal center B cells, and expansion of monocyte/macrophages and dendritic cells. Mechanistically, TLR7 signaling is dysregulated in macrophages, leading to sustained expression of target genes upon stimulation. These findings provide a direct link between maintenance of XCI and female-biased autoimmune manifestations and highlight altered XCI as a cause of autoimmunity.
Collapse
Affiliation(s)
- Christophe Huret
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Léa Ferrayé
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Paul Sabatier, Toulouse, France
| | - Antoine David
- Université Paris Cité, INSERM UMRS 976, Institut de Recherche Saint Louis, F-75010, Paris, France
| | - Myriame Mohamed
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Nicolas Valentin
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Frédéric Charlotte
- Sorbonne University, Department of Pathological Anatomy and Cytology, Hôpital Pitié-Salpêtrière Charles Foix, F-75013, Paris, France
| | - Magali Savignac
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Paul Sabatier, Toulouse, France
| | - Michele Goodhardt
- Université Paris Cité, INSERM UMRS 976, Institut de Recherche Saint Louis, F-75010, Paris, France
| | - Jean-Charles Guéry
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Paul Sabatier, Toulouse, France
| | - Claire Rougeulle
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Céline Morey
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| |
Collapse
|
19
|
Shi X, Facemire L, Singh S, Kumar S, Cornelison R, Liang C, Qin F, Liu A, Lin S, Tang Y, Elfman J, Manley T, Bullock T, Haverstick DM, Wu P, Li H. UBA1-CDK16 : A Sex-Specific Chimeric RNA and Its Role in Immune Sexual Dimorphism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580120. [PMID: 38405903 PMCID: PMC10888732 DOI: 10.1101/2024.02.13.580120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
RNA processing mechanisms, such as alternative splicing and RNA editing, have been recognized as critical means to expand the transcriptome. Chimeric RNAs formed by intergenic splicing provide another potential layer of RNA diversification. By analyzing a large set of RNA-Seq data and validating results in over 1,200 blood samples, we identified UBA1-CDK16 , a female-specific chimeric transcript. Intriguingly, both parental genes, are expressed in males and females. Mechanistically, UBA1-CDK16 is produced by cis-splicing between the two adjacent X-linked genes, originating from the inactive X chromosome. A female-specific chromatin loop, formed between the junction sites, facilitates the alternative splicing of its readthrough precursor. This unique chimeric transcript exhibits evolutionary conservation, evolving to be female-specific from non-human primates to humans. Furthermore, our investigation reveals that UBA1-CDK16 is enriched in the myeloid lineage and plays a regulatory role in myeloid differentiation. Notably, female COVID-19 patients who tested negative for this chimeric transcript displayed higher counts of neutrophils, highlighting its potential role in disease pathogenesis. These findings support the notion that chimeric RNAs represent a new repertoire of transcripts that can be regulated independently from the parental genes, and a new class of RNA variance with potential implications in sexual dimorphism and immune responses.
Collapse
|
20
|
Lynch MA. A case for seeking sex-specific treatments in Alzheimer's disease. Front Aging Neurosci 2024; 16:1346621. [PMID: 38414633 PMCID: PMC10897030 DOI: 10.3389/fnagi.2024.1346621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/15/2024] [Indexed: 02/29/2024] Open
Abstract
There is no satisfactory explanation for the sex-related differences in the incidence of many diseases and this is also true of Alzheimer's disease (AD), where females have a higher lifetime risk of developing the disease and make up about two thirds of the AD patient population. The importance of understanding the cause(s) that account for this disproportionate distribution cannot be overestimated, and is likely to be a significant factor in the search for therapeutic strategies that will combat the disease and, furthermore, potentially point to a sex-targeted approach to treatment. This review considers the literature in the context of what is known about the impact of sex on processes targeted by drugs that are in clinical trial for AD, and existing knowledge on differing responses of males and females to these drugs. Current knowledge strongly supports the view that trials should make assessing sex-related difference in responses a priority with a focus on exploring the sex-stratified treatments.
Collapse
|
21
|
Bhattacharya S, Sadhukhan D, Saraswathy R. Role of sex in immune response and epigenetic mechanisms. Epigenetics Chromatin 2024; 17:1. [PMID: 38247002 PMCID: PMC10802034 DOI: 10.1186/s13072-024-00525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
The functioning of the human immune system is highly dependent on the sex of the individual, which comes by virtue of sex chromosomes and hormonal differences. Epigenetic mechanisms such as X chromosome inactivation, mosaicism, skewing, and dimorphism in X chromosome genes and Y chromosome regulatory genes create a sex-based variance in the immune response between males and females. This leads to differential susceptibility in immune-related disorders like infections, autoimmunity, and malignancies. Various naturally available immunomodulators are also available which target immune pathways containing X chromosome genes.
Collapse
Affiliation(s)
- Sombodhi Bhattacharya
- Biomedical Genetics Research Lab, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Debasmita Sadhukhan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Radha Saraswathy
- Biomedical Genetics Research Lab, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
22
|
Hunt KS, Alspach E. Battle Within the Sexes: Differences in Male and Female Immunity and the Impact on Antitumor Responses. Cancer Immunol Res 2024; 12:17-25. [PMID: 37939008 DOI: 10.1158/2326-6066.cir-23-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/14/2023] [Accepted: 09/12/2023] [Indexed: 11/10/2023]
Abstract
The immune system plays critical roles in regulating tumor progression. However, despite established differences in male and female immune cell function, our appreciation of sex as a variable in antitumor immune responses is only beginning to develop. Recent findings in mice have demonstrated for the first time that disparities in cancer incidence between the sexes are driven in part by differences in male and female T-cell responses. This review will discuss the growing body of literature demonstrating that male and female innate and adaptive immune responses against tumors are not equivalent and highlight the impact this may have on tumor responses to immunotherapies.
Collapse
Affiliation(s)
- Katey S Hunt
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Elise Alspach
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
23
|
Hodes GE, Bangasser D, Sotiropoulos I, Kokras N, Dalla C. Sex Differences in Stress Response: Classical Mechanisms and Beyond. Curr Neuropharmacol 2024; 22:475-494. [PMID: 37855285 PMCID: PMC10845083 DOI: 10.2174/1570159x22666231005090134] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 10/20/2023] Open
Abstract
Neuropsychiatric disorders, which are associated with stress hormone dysregulation, occur at different rates in men and women. Moreover, nowadays, preclinical and clinical evidence demonstrates that sex and gender can lead to differences in stress responses that predispose males and females to different expressions of similar pathologies. In this curated review, we focus on what is known about sex differences in classic mechanisms of stress response, such as glucocorticoid hormones and corticotrophin-releasing factor (CRF), which are components of the hypothalamicpituitary- adrenal (HPA) axis. Then, we present sex differences in neurotransmitter levels, such as serotonin, dopamine, glutamate and GABA, as well as indices of neurodegeneration, such as amyloid β and Tau. Gonadal hormone effects, such as estrogens and testosterone, are also discussed throughout the review. We also review in detail preclinical data investigating sex differences caused by recentlyrecognized regulators of stress and disease, such as the immune system, genetic and epigenetic mechanisms, as well neurosteroids. Finally, we discuss how understanding sex differences in stress responses, as well as in pharmacology, can be leveraged into novel, more efficacious therapeutics for all. Based on the supporting evidence, it is obvious that incorporating sex as a biological variable into preclinical research is imperative for the understanding and treatment of stress-related neuropsychiatric disorders, such as depression, anxiety and Alzheimer's disease.
Collapse
Affiliation(s)
| | - Debra Bangasser
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| | - Ioannis Sotiropoulos
- Institute of Biosciences & Applications NCSR “Demokritos”, Athens, Greece
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
24
|
Drevinge C, Scheffler JM, Nordqvist J, Engdahl C, Carlsten H, Islander U. Treatment with a tissue-selective oestrogen complex does not affect disease pathology but reduces pre-BI cells in lupus-prone mice. Scand J Rheumatol 2024; 53:49-58. [PMID: 37722827 DOI: 10.1080/03009742.2023.2251753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/22/2023] [Indexed: 09/20/2023]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE or lupus) is an autoimmune disease characterized by B-cell dysfunction, production of autoantibodies, and immune complex formation. Lupus is overrepresented in females, indicating that sex hormones play a role in the pathophysiology. Treatment with a tissue-selective oestrogen complex (TSEC) containing conjugated oestrogens and the selective oestrogen receptor modulator bazedoxifene (BZA) protects against postmenopausal vasomotor symptoms and osteoporosis, but its impact on organ damage in lupus is not fully understood. METHOD We used ovariectomized MRL/lpr mice, treated with two different physiological doses of 17β-oestradiol-3-benzoate (E2), BZA, or TSEC (E2 plus BZA), to assess early and late B-cell development and to determine histological disease manifestations in the kidneys and salivary glands. RESULTS TSEC treatment reduced the frequency of the pre-BI population in bone marrow to levels equivalent to treatment with physiological doses of E2 alone but did not affect any of the other examined B-cell populations. Our earlier studies indicated that TSEC treatment did not aggravate disease development in ovariectomized MRL/lpr mice, while protecting against trabecular bone loss. Here, we follow up on our previous study and show that neither ovariectomy alone nor TSEC treatment of ovariectomized MRL/lpr mice influenced perivascular lymphocyte infiltration to the kidneys or salivary glands. CONCLUSION TSEC does not aggravate a mouse model of lupus, when given in doses that protect against postmenopausal lupus-associated bone loss. This indicates that further investigations into TSEC as a treatment for osteoporosis or vasomotor symptoms in postmenopausal women with SLE are warranted.
Collapse
Affiliation(s)
- C Drevinge
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - J M Scheffler
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - J Nordqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - C Engdahl
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- SciLifeLab, University of Gothenburg, Gothenburg, Sweden
| | - H Carlsten
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - U Islander
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- SciLifeLab, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
25
|
Pujantell M, Skenteris NT, Claussen JM, Grünhagel B, Thiele RJ, Altfeld M. Sex-dependent differences in type I IFN-induced natural killer cell activation. Front Immunol 2023; 14:1277967. [PMID: 38162640 PMCID: PMC10757368 DOI: 10.3389/fimmu.2023.1277967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
Natural killer (NK) cells are important antiviral effector cells and also involved in tumor clearance. NK cells express IFNAR, rendering them responsive to Type I IFNs. To evaluate Type I IFN-mediated modulation of NK cell functions, individual Type I IFNs subtypes were assessed for their ability to activate NK cells. Different Type I IFN subtypes displayed a broad range in the capacity to induce and modulate NK cell activation and degranulation, measured by CD69 and CD107a expression in response to leukemia cell line K562. When including biological sex as a variable in the analysis, transwell co-cultures of NK cells with either male- or female-derived PBMCs or pDCs stimulated with the TLR7/8 agonist CL097 showed that NK cells were more activated by CL097-stimulated cells derived from females. These sex-specific differences were linked to higher CL097-induced IFNα production by pDCs derived from females, indicating an extrinsic sex-specific effect of Type I IFNs on NK cell function. Interestingly, in addition to the extrinsic effect, we also observed NK cell-intrinsic sex differences, as female NK cells displayed higher activation levels after IFNα-stimulation and after co-culture with CL097-stimulated pDCs, suggesting higher activation of IFNα-signaling transduction in female NK cells. Taken together, the results from these studies identify both extrinsic and intrinsic sex-specific differences in Type I IFN-dependent NK cell functions, contributing to a better understanding of sex-specific differences in innate immunity.
Collapse
Affiliation(s)
- Maria Pujantell
- Institute of Immunology, University Medical Center Hamburg Eppendorf (UKE), Hamburg, Germany
- Department Virus Immunology, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | | | | | - Benjamin Grünhagel
- Department Virus Immunology, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Rebecca-Jo Thiele
- Department Virus Immunology, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Marcus Altfeld
- Institute of Immunology, University Medical Center Hamburg Eppendorf (UKE), Hamburg, Germany
- Department Virus Immunology, Leibniz Institute of Virology (LIV), Hamburg, Germany
| |
Collapse
|
26
|
Sullivan KA, Chapman C, Lu L, Ashbrook DG, Wang Y, Alduraibi FK, Lu C, Sun CW, Liu S, Williams RW, Mountz JD, Hsu HC. Increased development of T-bet +CD11c + B cells predisposes to lupus in females: Analysis in BXD2 mouse and genetic crosses. Clin Immunol 2023; 257:109842. [PMID: 37981105 PMCID: PMC10799694 DOI: 10.1016/j.clim.2023.109842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/05/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Cardinal features of lupus include elevated B cell activation and autoantibody production with a female sex preponderance. We quantified interactions of sex and genetic variation on the development of autoimmune B-cell phenotypes and autoantibodies in the BXD2 murine model of lupus using a cohort of backcrossed progeny (BXD2 x C57BL/6J) x BXD2. Sex was the key factor leading to increased total IgG, IgG2b, and autoantibodies. The percentage of T-bet+CD11c+ IgD+ activated naive B cells (aNAV) was higher in females and was associated with increased T-bet+CD11c+ IgD- age-related B cells, Fas+GL7+ germinal center B cells, Cxcr5-Icos+ peripheral T-helper cells, and Cxcr5+Icos+ follicular T-helper cells. IFN-β was elevated in females. Variation in aNAV cells was mapped to Chr 7 in a locus that shows significant interactions between the female sex and heterozygous B/D variant. Our results suggest that activation of naive B cells forms the basis for the female-predominant development of autoantibodies in lupus-susceptible BXD2 mice.
Collapse
Affiliation(s)
- Kathryn A Sullivan
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Casey Chapman
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - David G Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yong Wang
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Fatima K Alduraibi
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA; Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Division of Rheumatology, Department of Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Changming Lu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chao-Wang Sun
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shanrun Liu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - John D Mountz
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA; Research, Birmingham Veterans Affairs Health Care System, Birmingham, AL, USA
| | - Hui-Chen Hsu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA; Research, Birmingham Veterans Affairs Health Care System, Birmingham, AL, USA.
| |
Collapse
|
27
|
Lee EY, Copaescu AM, Trubiano JA, Phillips EJ, Wolfson AR, Ramsey A. Drug Allergy in Women. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:3615-3623. [PMID: 37805007 DOI: 10.1016/j.jaip.2023.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/21/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
Across all settings, women self-report more drug allergies than do men. Although there is epidemiologic evidence of increased drug allergy labeling in postpubertal females, the evidence base for female sex as a risk factor for true immune-mediated drug hypersensitivity reactions (DHRs), particularly in fatal drug-induced anaphylaxis, is low. A focus on the known immunologic mechanisms described in immediate and delayed DHR, layered on known hormonal and genetic sex differences that drive other immune-mediated diseases, could be the key to understanding biological sex variations in DHR. Particular conditions that highlight the impact of drug allergy in women include (1) pregnancy, in which a drug allergy label is associated with increased maternal and fetal complications; (2) multiple drug intolerance syndrome, associated with anxiety and depression; and (3) female-predominant autoimmune medical conditions in the context of mislabeling of the drug allergy or increased underlying risk. In this review, we describe the importance of drug allergy in the female population, mainly focusing on the epidemiology and risk, the mechanisms, and the associated conditions and psychosocial factors. By performing a detailed analysis of the current literature, we provide focused conclusions and identify existing knowledge gaps that should be prioritized for future research.
Collapse
Affiliation(s)
- Erika Yue Lee
- Division of Clinical Immunology and Allergy, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada; Eliot Phillipson Clinician-Scientist Training Program, University of Toronto, Toronto, Ontario, Canada
| | - Ana Maria Copaescu
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia; Division of Allergy and Clinical Immunology, Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada; Research Institute of McGill University Health Centre, McGill University, McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Jason A Trubiano
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia; National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Elizabeth J Phillips
- Center for Drug Safety and Immunology, Vanderbilt University Medical Centre, Nashville, Tenn; Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Anna R Wolfson
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Boston, Mass
| | - Allison Ramsey
- Rochester Regional Health, Rochester, NY; Clinical Assistant Professor of Medicine, Department of Allergy/Immunology/Rheumatology, University of Rochester, Rochester, NY.
| |
Collapse
|
28
|
Grünhagel B, Borggrewe M, Hagen SH, Ziegler SM, Henseling F, Glau L, Thiele RJ, Pujantell M, Sivayoganathan V, Padoan B, Claussen JM, Düsedau A, Hennesen J, Bunders MJ, Bonn S, Tolosa E, Krebs CF, Dorn C, Altfeld M. Reduction of IFN-I responses by plasmacytoid dendritic cells in a longitudinal trans men cohort. iScience 2023; 26:108209. [PMID: 37953956 PMCID: PMC10637924 DOI: 10.1016/j.isci.2023.108209] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Type I interferons (IFN-I) are important mediators of antiviral immunity and autoimmune diseases. Female plasmacytoid dendritic cells (pDCs) exert an elevated capacity to produce IFN-I upon toll-like receptor 7 (TLR7) activation compared to male pDCs, and both sex hormones and X-encoded genes have been implicated in these sex-specific differences. Using longitudinal samples from a trans men cohort receiving gender-affirming hormone therapy (GAHT), the impact of testosterone injections on TLR7-mediated IFN-I production by pDCs was assessed. Single-cell RNA analyses of pDCs showed downregulation of IFN-I-related gene expression signatures but also revealed transcriptional inter-donor heterogeneity. Longitudinal quantification showed continuous reduction of IFN-I protein production by pDCs and reduced expression of IFN-I-stimulated genes in peripheral blood mononuclear cells (PBMCs). These studies in trans men demonstrate that testosterone administration reduces IFN-I production by pDCs over time and provide insights into the immune-modulatory role of testosterone in sex-specific IFN-I-mediated immune responses.
Collapse
Affiliation(s)
- Benjamin Grünhagel
- Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Malte Borggrewe
- Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany
| | - Sven Hendrik Hagen
- Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Susanne M. Ziegler
- Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Florian Henseling
- Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Laura Glau
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Rebecca-Jo Thiele
- Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Maria Pujantell
- Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Varshi Sivayoganathan
- III. Department of Medicine, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany
- Hamburg Center for Translational Immunology, 20251 Hamburg, Germany
| | - Benedetta Padoan
- Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Janna M. Claussen
- Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Arne Düsedau
- Technology Platform Flow Cytometry/FACS, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Jana Hennesen
- Technology Platform Flow Cytometry/FACS, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Madeleine J. Bunders
- Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany
| | - Eva Tolosa
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Christian F. Krebs
- III. Department of Medicine, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany
- Hamburg Center for Translational Immunology, 20251 Hamburg, Germany
| | | | - Marcus Altfeld
- Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| |
Collapse
|
29
|
Sakkers TR, Mokry M, Civelek M, Erdmann J, Pasterkamp G, Diez Benavente E, den Ruijter HM. Sex differences in the genetic and molecular mechanisms of coronary artery disease. Atherosclerosis 2023; 384:117279. [PMID: 37805337 DOI: 10.1016/j.atherosclerosis.2023.117279] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/09/2023] [Accepted: 09/01/2023] [Indexed: 10/09/2023]
Abstract
Sex differences in coronary artery disease (CAD) presentation, risk factors and prognosis have been widely studied. Similarly, studies on atherosclerosis have shown prominent sex differences in plaque biology. Our understanding of the underlying genetic and molecular mechanisms that drive these differences remains fragmented and largely understudied. Through reviewing genetic and epigenetic studies, we identified more than 40 sex-differential candidate genes (13 within known CAD loci) that may explain, at least in part, sex differences in vascular remodeling, lipid metabolism and endothelial dysfunction. Studies with transcriptomic and single-cell RNA sequencing data from atherosclerotic plaques highlight potential sex differences in smooth muscle cell and endothelial cell biology. Especially, phenotypic switching of smooth muscle cells seems to play a crucial role in female atherosclerosis. This matches the known sex differences in atherosclerotic phenotypes, with men being more prone to lipid-rich plaques, while women are more likely to develop fibrous plaques with endothelial dysfunction. To unravel the complex mechanisms that drive sex differences in CAD, increased statistical power and adjustments to study designs and analysis strategies are required. This entails increasing inclusion rates of women, performing well-defined sex-stratified analyses and the integration of multi-omics data.
Collapse
Affiliation(s)
- Tim R Sakkers
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands
| | - Michal Mokry
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands; Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands
| | - Mete Civelek
- Center for Public Health Genomics, University of Virginia, 1335 Lee St, Charlottesville, VA, 22908, USA; Department of Biomedical Engineering, University of Virginia, 351 McCormick Road, Charlottesville, VA, 22904, USA
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Gerard Pasterkamp
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands
| | - Ernest Diez Benavente
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3508, GA, Utrecht, the Netherlands.
| |
Collapse
|
30
|
Bogers L, Kuiper KL, Smolders J, Rip J, van Luijn MM. Epstein-Barr virus and genetic risk variants as determinants of T-bet + B cell-driven autoimmune diseases. Immunol Lett 2023; 261:66-74. [PMID: 37451321 DOI: 10.1016/j.imlet.2023.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
B cells expressing the transcription factor T-bet are found to have a protective role in viral infections, but are also considered major players in the onset of different types of autoimmune diseases. Currently, the exact mechanisms driving such 'atypical' memory B cells to contribute to protective immunity or autoimmunity are unclear. In addition to general autoimmune-related factors including sex and age, the ways T-bet+ B cells instigate autoimmune diseases may be determined by the close interplay between genetic risk variants and Epstein-Barr virus (EBV). The impact of EBV on T-bet+ B cells likely relies on the type of risk variants associated with each autoimmune disease, which may affect their differentiation, migratory routes and effector function. In this hypothesis-driven review, we discuss the lines of evidence pointing to such genetic and/or EBV-mediated influence on T-bet+ B cells in a range of autoimmune diseases, including systemic lupus erythematosus (SLE) and multiple sclerosis (MS). We provide examples of how genetic risk variants can be linked to certain signaling pathways and are differentially affected by EBV to shape T-bet+ B-cells. Finally, we propose options to improve current treatment of B cell-related autoimmune diseases by more selective targeting of pathways that are critical for pathogenic T-bet+ B-cell formation.
Collapse
Affiliation(s)
- Laurens Bogers
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Kirsten L Kuiper
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Joost Smolders
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands; MS Center ErasMS, Department of Neurology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 CN, The Netherlands; Netherlands Institute for Neuroscience, Neuroimmunology research group, Amsterdam 1105 BA, The Netherlands
| | - Jasper Rip
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Marvin M van Luijn
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands.
| |
Collapse
|
31
|
Guo RY, Song S, Wang JQ, Guo JY, Liu J, Jia Z, Yuan CC, Li B. Downregulation of lncRNA XIST may promote Th17 differentiation through KDM6A-TSAd pathway in neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 2023; 76:104801. [PMID: 37315471 DOI: 10.1016/j.msard.2023.104801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/25/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUNDS Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disease with significant female preponderance. X inactive specific transcript (XIST) is a long non-coding RNA (lncRNA) and a key regulator of X-chromosome inactivation which is related to the sex-bias of autoimmunity. And Th17 cell proportion was significantly elevated in NMOSD according to our previous study. OBJECTIVES This study aimed to explore the expression levels of lncRNA XIST-KDM6A-TSAd pathway in lymphocytes of female NMOSD patients, and investigate its possible relationship with pathogenesis of NMOSD. METHODS AND RESULTS The study enrolled 30 acute-phase untreated female NMOSD patients and 30 age-matched female healthy controls, their lymphocytes were collected for experiments. Microarray as well as validation experiments showed lncRNA XIST was significantly downregulated in the NMOSD group. And the levels of lysine demethylase 6A (KDM6A) decreased in NMOSD and showed significant positive correlation with XIST. The levels of T cell-specific adapter (TSAd) mRNA and protein levels were significantly lower in NMOSD. And Chromatin immunoprecipitation assay demonstrated that NMOSD had more H3K27me3 modification than control at TSAd promoter region. CONCLUSIONS The present study introduced a potential pathway that following lncRNA XIST downregulation, which process may promote Th17 differentiation in NMOSD. These findings shed new light on the immune regulation mechanism about lncRNA XIST and related epigenetic features, which may contribute to develop female-specific treatment plans.
Collapse
Affiliation(s)
- Ruo-Yi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang 050000, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Shuang Song
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang 050000, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Jue-Qiong Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang 050000, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Jiang-Yuan Guo
- Department of Neurology, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Jia Liu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Zhen Jia
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang 050000, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Cong-Cong Yuan
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang 050000, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China; Department of Neurology, Baoding First Central Hospital, Baoding, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang 050000, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China.
| |
Collapse
|
32
|
Krueger K, Lamenza F, Gu H, El-Hodiri H, Wester J, Oberdick J, Fischer AJ, Oghumu S. Sex differences in susceptibility to substance use disorder: Role for X chromosome inactivation and escape? Mol Cell Neurosci 2023; 125:103859. [PMID: 37207894 PMCID: PMC10286730 DOI: 10.1016/j.mcn.2023.103859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
There is a sex-based disparity associated with substance use disorders (SUDs) as demonstrated by clinical and preclinical studies. Females are known to escalate from initial drug use to compulsive drug-taking behavior (telescoping) more rapidly, and experience greater negative withdrawal effects than males. Although these biological differences have largely been attributed to sex hormones, there is evidence for non-hormonal factors, such as the influence of the sex chromosome, which underlie sex disparities in addiction behavior. However, genetic and epigenetic mechanisms underlying sex chromosome influences on substance abuse behavior are not completely understood. In this review, we discuss the role that escape from X-chromosome inactivation (XCI) in females plays in sex-associated differences in addiction behavior. Females have two X chromosomes (XX), and during XCI, one X chromosome is randomly chosen to be transcriptionally silenced. However, some X-linked genes escape XCI and display biallelic gene expression. We generated a mouse model using an X-linked gene specific bicistronic dual reporter mouse as a tool to visualize allelic usage and measure XCI escape in a cell specific manner. Our results revealed a previously undiscovered X-linked gene XCI escaper (CXCR3), which is variable and cell type dependent. This illustrates the highly complex and context dependent nature of XCI escape which is largely understudied in the context of SUD. Novel approaches such as single cell RNA sequencing will provide a global molecular landscape and impact of XCI escape in addiction and facilitate our understanding of the contribution of XCI escape to sex disparities in SUD.
Collapse
Affiliation(s)
- Kate Krueger
- Department of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Felipe Lamenza
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Howard Gu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Heithem El-Hodiri
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Jason Wester
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - John Oberdick
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Andy J Fischer
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Steve Oghumu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
33
|
Masenga SK, Mweene BC, Luwaya E, Muchaili L, Chona M, Kirabo A. HIV-Host Cell Interactions. Cells 2023; 12:1351. [PMID: 37408185 DOI: 10.3390/cells12101351] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
The development of antiretroviral drugs (ARVs) was a great milestone in the management of HIV infection. ARVs suppress viral activity in the host cell, thus minimizing injury to the cells and prolonging life. However, an effective treatment has remained elusive for four decades due to the successful immune evasion mechanisms of the virus. A thorough understanding of the molecular interaction of HIV with the host cell is essential in the development of both preventive and curative therapies for HIV infection. This review highlights several inherent mechanisms of HIV that promote its survival and propagation, such as the targeting of CD4+ lymphocytes, the downregulation of MHC class I and II, antigenic variation and an envelope complex that minimizes antibody access, and how they collaboratively render the immune system unable to mount an effective response.
Collapse
Affiliation(s)
- Sepiso K Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
- Vanderbilt University Medical Center, Department of Medicine, Division of Clinical Pharmacology, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | - Bislom C Mweene
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
| | - Emmanuel Luwaya
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
| | - Lweendo Muchaili
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
| | - Makondo Chona
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
| | - Annet Kirabo
- Vanderbilt University Medical Center, Department of Medicine, Division of Clinical Pharmacology, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| |
Collapse
|
34
|
Reynolds JA, Putterman C. Progress and unmet needs in understanding fundamental mechanisms of autoimmunity. J Autoimmun 2023; 137:102999. [PMID: 36720662 DOI: 10.1016/j.jaut.2023.102999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/30/2023]
Abstract
The rising incidence of autoimmune diseases is straining the healthcare system's capacity to care for patients with autoimmunity. To further compound this growing crisis, this rise occurs at a time when virulent infectious diseases exacerbate pre-existing conditions. Despite some novel targeted therapies introduced over the preceding decades, current treatment strategies must often fall back on non-specific immunosuppression, inflicting its own toll on patient morbidity. To improve patient care, we must re-double our efforts to understand and target the fundamental mechanisms of autoimmune disease initiation and progression. Technologic innovations have recently accelerated our ability to discover key components of the processes leading to loss of tolerance and propagation of self-tissue damage in autoimmune conditions. The special issue "Cellular and Molecular Mechanisms of Autoimmunity" highlights many of these findings through primary research and review articles which detail advances in genetics, molecular processes, cellular functions, and host-pathogen interactions. Discussion of topics ranging from non-coding RNA and the complement cascade to T-cell aging and the microbiome uncovers exciting avenues for basic and clinical investigation. Importantly, the issue seeks to focus attention on both established and emerging mechanisms of autoimmunity to ultimately help improve the specificity, safety, and efficacy of treatments for this group of challenging immune disorders.
Collapse
Affiliation(s)
- Joshua A Reynolds
- Department of Microbiology and Immunology and the Division of Rheumatology, Albert Einstein College of Medicine, New York, USA; Department of Neuroscience, Albert Einstein College of Medicine, New York, USA
| | - Chaim Putterman
- Department of Microbiology and Immunology and the Division of Rheumatology, Albert Einstein College of Medicine, New York, USA; Azrieli Faculty of Medicine of Bar-Ilan University, Safed, Israel; Galilee Research Institute, Nahariya, Israel.
| |
Collapse
|
35
|
Thorlacius GE, Björk A, Wahren-Herlenius M. Genetics and epigenetics of primary Sjögren syndrome: implications for future therapies. Nat Rev Rheumatol 2023; 19:288-306. [PMID: 36914790 PMCID: PMC10010657 DOI: 10.1038/s41584-023-00932-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/14/2023]
Abstract
In primary Sjögren syndrome (pSS), chronic inflammation of exocrine glands results in tissue destruction and sicca symptoms, primarily of the mouth and eyes. Fatigue, arthralgia and myalgia are also common symptoms, whereas extraglandular manifestations that involve the respiratory, nervous and vascular systems occur in a subset of patients. The disease predominantly affects women, with an estimated female to male ratio of 14 to 1. The aetiology of pSS, however, remains incompletely understood, and effective treatment is lacking. Large-scale genetic and epigenetic investigations have revealed associations between pSS and genes in both innate and adaptive immune pathways. The genetic variants mediate context-dependent effects, and both sex and environmental factors can influence the outcome. As such, genetic and epigenetic studies can provide insight into the dysregulated molecular mechanisms, which in turn might reveal new therapeutic possibilities. This Review discusses the genetic and epigenetic features that have been robustly connected with pSS, putting them into the context of cellular function, carrier sex and environmental challenges. In all, the observations point to several novel opportunities for early detection, treatment development and the pathway towards personalized medicine.
Collapse
Affiliation(s)
- Gudny Ella Thorlacius
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Albin Björk
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Center for Rheumatology, Academic Specialist Center, Stockholm, Sweden
| | - Marie Wahren-Herlenius
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
36
|
Miquel CH, Faz-Lopez B, Guéry JC. Influence of X chromosome in sex-biased autoimmune diseases. J Autoimmun 2023; 137:102992. [PMID: 36641351 DOI: 10.1016/j.jaut.2023.102992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
Females have better ability to resolve infections, compared to males, but also, a greater susceptibility to develop autoimmunity. Besides the initial interest on the contribution of sex-steroid hormone signaling, the role of genetic factors linked to X chromosome has recently focused much attention. In human and mouse, the number of X chromosomes, rather than sex-steroid hormones, have been found associated with higher risk or susceptibility to develop autoimmunity, particularly rheumatic diseases, such as SLE, Sjögren's syndrome or Scleroderma. For all of these diseases, the Toll-like receptor TLR7 and TLR8, encoded on the same locus in the human Xp, have been demonstrated to be causal in disease development through gene dosage effect or gain of function mutations. During embryonic development in female mammals, one X chromosome is stochastically inactivated to balance X-linked gene expression between males and females, a process known as X chromosome inactivation (XCI). Nevertheless, some genes including immune related genes can escape XCI to variable degree and penetrance, resulting in a bi-allelic expression in some immune cells, such as TLR7. Because tight regulation of TLR expression is necessary for a healthy, self-tolerant immune environment, XCI escape has been proposed as a mechanism contributing to this sexual dimorphism. In this review, we will summarize general mechanisms of XCI, and describe the known escapee's genes in immune cells, the cellular diversity created by such mechanisms and its potential implication in autoimmune diseases, with a particular focus on the X-linked genes and immune cell populations involved in SLE. Whether dysregulated expression of X-linked genes could contribute to the enhanced susceptibility of females to develop such diseases remains to be proven. Shedding lights onto the X-linked genetic mechanisms contributing to modulation of immune cell functions will undoubtedly provide new insights into the intricate mechanisms underlying sex differences in immunity and autoimmunity.
Collapse
Affiliation(s)
- Charles-Henry Miquel
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, 31300, France; Arthritis R&D, Neuilly-Sur-Seine, France
| | - Berenice Faz-Lopez
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, 31300, France
| | - Jean-Charles Guéry
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, 31300, France.
| |
Collapse
|
37
|
Kadlecova M, Freude K, Haukedal H. Complexity of Sex Differences and Their Impact on Alzheimer's Disease. Biomedicines 2023; 11:biomedicines11051261. [PMID: 37238932 DOI: 10.3390/biomedicines11051261] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Sex differences are present in brain morphology, sex hormones, aging processes and immune responses. These differences need to be considered for proper modelling of neurological diseases with clear sex differences. This is the case for Alzheimer's disease (AD), a fatal neurodegenerative disorder with two-thirds of cases diagnosed in women. It is becoming clear that there is a complex interplay between the immune system, sex hormones and AD. Microglia are major players in the neuroinflammatory process occurring in AD and have been shown to be directly affected by sex hormones. However, many unanswered questions remain as the importance of including both sexes in research studies has only recently started receiving attention. In this review, we provide a summary of sex differences and their implications in AD, with a focus on microglia action. Furthermore, we discuss current available study models, including emerging complex microfluidic and 3D cellular models and their usefulness for studying hormonal effects in this disease.
Collapse
Affiliation(s)
- Marion Kadlecova
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 C Frederiksberg, Denmark
| | - Kristine Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 C Frederiksberg, Denmark
| | - Henriette Haukedal
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 C Frederiksberg, Denmark
| |
Collapse
|
38
|
Ocañas SR, Ansere VA, Kellogg CM, Isola JVV, Chucair-Elliott AJ, Freeman WM. Chromosomal and gonadal factors regulate microglial sex effects in the aging brain. Brain Res Bull 2023; 195:157-171. [PMID: 36804773 PMCID: PMC10810555 DOI: 10.1016/j.brainresbull.2023.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
Biological sex contributes to phenotypic sex effects through genetic (sex chromosomal) and hormonal (gonadal) mechanisms. There are profound sex differences in the prevalence and progression of age-related brain diseases, including neurodegenerative diseases. Inflammation of neural tissue is one of the most consistent age-related phenotypes seen with healthy aging and disease. The pro-inflammatory environment of the aging brain has primarily been attributed to microglial reactivity and adoption of heterogeneous reactive states dependent upon intrinsic (i.e., sex) and extrinsic (i.e., age, disease state) factors. Here, we review sex effects in microglia across the lifespan, explore potential genetic and hormonal molecular mechanisms of microglial sex effects, and discuss currently available models and methods to study sex effects in the aging brain. Despite recent attention to this area, significant further research is needed to mechanistically understand the regulation of microglial sex effects across the lifespan, which may open new avenues for sex informed prevention and treatment strategies.
Collapse
Affiliation(s)
- Sarah R Ocañas
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Victor A Ansere
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Collyn M Kellogg
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jose V V Isola
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Ana J Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Willard M Freeman
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
39
|
Anesi N, Miquel CH, Laffont S, Guéry JC. The Influence of Sex Hormones and X Chromosome in Immune Responses. Curr Top Microbiol Immunol 2023; 441:21-59. [PMID: 37695424 DOI: 10.1007/978-3-031-35139-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Males and females differ in their susceptibility to develop autoimmunity and allergy but also in their capacity to cope with infections and cancers. Cellular targets and molecular pathways underlying sexual dimorphism in immunity have started to emerge and appeared multifactorial. It became increasingly clear that sex-linked biological factors have important impact on the development, tissue maintenance and effector function acquisition of distinct immune cell populations, thereby regulating multiple layers of innate or adaptive immunity through distinct mechanisms. This review discusses the recent development in our understanding of the cell-intrinsic actions of biological factors linked to sex, sex hormones and sex chromosome complement, on immune cells, which may account for the sex differences in susceptibility to autoimmune diseases and allergies, and the sex-biased responses in natural immunity and cancer.
Collapse
Affiliation(s)
- Nina Anesi
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, 31300, Toulouse, France
| | - Charles-Henry Miquel
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, 31300, Toulouse, France
| | - Sophie Laffont
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, 31300, Toulouse, France
| | - Jean-Charles Guéry
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, 31300, Toulouse, France.
- INSERM UMR1291, Centre Hospitalier Universitaire Purpan, Place du Dr. Baylac, 31024, Toulouse Cedex 3, France.
| |
Collapse
|
40
|
Gómez-Carballa A, Pardo-Seco J, Pischedda S, Rivero-Calle I, Butler-Laporte G, Richards JB, Viz-Lasheras S, Martinón-Torres F, Salas A. Sex-biased expression of the TLR7 gene in severe COVID-19 patients: Insights from transcriptomics and epigenomics. ENVIRONMENTAL RESEARCH 2022; 215:114288. [PMID: 36152884 PMCID: PMC9508271 DOI: 10.1016/j.envres.2022.114288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
There is abundant epidemiological data indicating that the incidence of severe cases of coronavirus disease (COVID-19) is significantly higher in males than females worldwide. Moreover, genetic variation at the X-chromosome linked TLR7 gene has been associated with COVID-19 severity. It has been suggested that the sex-biased incidence of COVID-19 might be related to the fact that TLR7 escapes X-chromosome inactivation during early embryogenesis in females, thus encoding a doble dose of its gene product compared to males. We analyzed TLR7 expression in two acute phase cohorts of COVID-19 patients that used two different technological platforms, one of them in a multi-tissue context including saliva, nasal, and blood samples, and a third cohort that included different post-infection timepoints of long-COVID-19 patients. We additionally explored methylation patterns of TLR7 using epigenomic data from an independent cohort of COVID-19 patients stratified by severity and sex. In line with genome-wide association studies, we provide supportive evidence indicating that TLR7 has altered CpG methylation patterns and it is consistently downregulated in males compared to females in the most severe cases of COVID-19.
Collapse
Affiliation(s)
- A Gómez-Carballa
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain
| | - J Pardo-Seco
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain
| | - S Pischedda
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain
| | - I Rivero-Calle
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - G Butler-Laporte
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec, Canada; Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - J B Richards
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec, Canada; Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - S Viz-Lasheras
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain
| | - F Martinón-Torres
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - A Salas
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain.
| |
Collapse
|
41
|
Berkovitz A, Migler RD, Qureshi A, Rosemore C, Torbenson MS, Vaughan R, Marcotte E, Simon SM. Clinical and demographic predictors of survival for fibrolamellar carcinoma patients-A patient community, registry-based study. Hepatol Commun 2022; 6:3539-3549. [PMID: 36245434 PMCID: PMC9701473 DOI: 10.1002/hep4.2105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 01/21/2023] Open
Abstract
Fibrolamellar hepatocellular carcinoma (FLC) is a rare primary liver cancer that affects primarily adolescents and young adults. It is associated with a poor overall prognosis. There is a need to better define risk factors, but small sample size has limited such studies. An FLC patient registry now provides data sufficient for statistically robust inferences. We leveraged a unique patient community-based FLC registry to analyze the prognostic impact of demographic and clinical characteristics evident at diagnosis. Variables were analyzed using Cox proportional hazards regression to calculate hazard ratios (HRs) and 95% confidence intervals (CIs). In multivariable models of 149 patients (88 females and 61 males), female gender was associated with statistically significant improved survival with HR of 0.52 (95% CI 0.29-0.93). Factors evident at diagnosis that are associated with worse survival included the presence of 10 or more tumors within the liver (HR 7.1; 95% CI 2.4-21.04), and metastases at diagnosis (HR 2.17; 95% CI 1.19-3.94). Positive lymph nodes at diagnosis, despite being found significantly associated with worse survival in a univariate analysis, did not remain significant when adjusted for covariates in a multivariable analysis. We found no statistically significant effect of age at diagnosis nor tumor size at diagnosis on survival. Female gender may confer a favorable prognosis in FLC. Established high-risk prognostic factors that we confirmed in this Registry included the diagnostic presence of numerous intrahepatic tumors, and metastases. This is the first study derived from a FLC patient community-based registry, and highlights how registries of rare tumors can empower patients to meaningfully advance clinical and scientific discoveries.
Collapse
Affiliation(s)
- Amichai Berkovitz
- Laboratory of Cellular BiophysicsThe Rockefeller UniversityNew YorkNew YorkUSA
| | | | - Adam Qureshi
- Hospital BiostatisticsThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Carly Rosemore
- Laboratory of Cellular BiophysicsThe Rockefeller UniversityNew YorkNew YorkUSA
- Department of PediatricsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | | | - Roger Vaughan
- Hospital BiostatisticsThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Erin Marcotte
- Department of PediatricsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Sanford M. Simon
- Laboratory of Cellular BiophysicsThe Rockefeller UniversityNew YorkNew YorkUSA
- The Fibrolamellar RegistryNew YorkNew YorkUSA
| |
Collapse
|
42
|
Holmes AD, White KA, Pratt MA, Johnson TB, Likhite S, Meyer K, Weimer JM. Sex-split analysis of pathology and motor-behavioral outcomes in a mouse model of CLN8-Batten disease reveals an increased disease burden and trajectory in female Cln8 mnd mice. Orphanet J Rare Dis 2022; 17:411. [PMID: 36369162 PMCID: PMC9652919 DOI: 10.1186/s13023-022-02564-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/23/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND CLN8-Batten disease (CLN8 disease) is a rare neurodegenerative disorder characterized phenotypically by progressive deterioration of motor and cognitive abilities, visual symptoms, epileptic seizures, and premature death. Mutations in CLN8 results in characteristic Batten disease symptoms and brain-wide pathology including accumulation of lysosomal storage material, gliosis, and neurodegeneration. Recent investigations of other subforms of Batten disease (CLN1, CLN3, CLN6) have emphasized the influence of biological sex on disease and treatment outcomes; however, little is known about sex differences in the CLN8 subtype. To determine the impact of sex on CLN8 disease burden and progression, we utilized a Cln8mnd mouse model to measure the impact and progression of histopathological and behavioral outcomes between sexes. RESULTS Several notable sex differences were observed in the presentation of brain pathology, including Cln8mnd female mice consistently presenting with greater GFAP+ astrocytosis and CD68+ microgliosis in the somatosensory cortex, ventral posteromedial/ventral posterolateral nuclei of the thalamus, striatum, and hippocampus when compared to Cln8mnd male mice. Furthermore, sex differences in motor-behavioral assessments revealed Cln8mnd female mice experience poorer motor performance and earlier death than their male counterparts. Cln8mnd mice treated with an AAV9-mediated gene therapy were also examined to assess sex differences on therapeutics outcomes, which revealed no appreciable differences between the sexes when responding to the therapy. CONCLUSIONS Taken together, our results provide further evidence of biologic sex as a modifier of Batten disease progression and outcome, thus warranting consideration when conducting investigations and monitoring therapeutic impact.
Collapse
Affiliation(s)
- Andrew D. Holmes
- grid.430154.70000 0004 5914 2142Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60Th St N, Sioux Falls, SD USA ,grid.267169.d0000 0001 2293 1795Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD USA
| | - Katherine A. White
- grid.430154.70000 0004 5914 2142Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60Th St N, Sioux Falls, SD USA
| | - Melissa A. Pratt
- grid.430154.70000 0004 5914 2142Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60Th St N, Sioux Falls, SD USA
| | - Tyler B. Johnson
- grid.430154.70000 0004 5914 2142Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60Th St N, Sioux Falls, SD USA
| | - Shibi Likhite
- grid.240344.50000 0004 0392 3476The Research Institute at Nationwide Children’s Hospital, Columbus, OH USA
| | - Kathrin Meyer
- grid.240344.50000 0004 0392 3476The Research Institute at Nationwide Children’s Hospital, Columbus, OH USA ,grid.261331.40000 0001 2285 7943Department of Pediatrics, The Ohio State University, Columbus, OH USA
| | - Jill M. Weimer
- grid.430154.70000 0004 5914 2142Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60Th St N, Sioux Falls, SD USA ,grid.267169.d0000 0001 2293 1795Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD USA
| |
Collapse
|
43
|
Fox R. X-linked genes exhibit skewed expression in Sjogren's disease (SjD): a further step toward understanding the female predominance of autoimmune disease. J Mol Med (Berl) 2022; 100:1267-1269. [PMID: 35982186 PMCID: PMC9402745 DOI: 10.1007/s00109-022-02223-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/16/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Robert Fox
- Division of Rheumatology, Scripps Memorial Hospital and Research Foundation-Ximed, La Jolla, CA, USA.
| |
Collapse
|
44
|
Kim JW, Kim HA, Suh CH, Jung JY. Sex hormones affect the pathogenesis and clinical characteristics of systemic lupus erythematosus. Front Med (Lausanne) 2022; 9:906475. [PMID: 36035435 PMCID: PMC9402996 DOI: 10.3389/fmed.2022.906475] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) affects women more frequently than men, similar to the female predilection for other autoimmune diseases. Moreover, male patients with SLE exhibit different clinical features than female patients. Sex-associated differences in SLE required special considerations for disease management such as during pregnancy or hormone replacement therapy (HRT). Sex hormones, namely, estrogen and testosterone, are known to affect immune responses and autoimmunity. While estrogen and progesterone promote type I immune response, and testosterone enhances T-helper 1 response. Sex hormones also influence Toll-like receptor pathways, and estrogen receptor signaling is involved in the activation and tolerance of immune cells. Further, the clinical features of SLE vary according to hormonal changes in female patients. Alterations in sex hormones during pregnancy can alter the disease activity of SLE, which is associated with pregnancy outcomes. Additionally, HRT may change SLE status. Sex hormones affect the pathogenesis, clinical features, and management of SLE; thus, understanding the occurrence and exacerbation of disease caused by sex hormones is necessary to improve its management.
Collapse
Affiliation(s)
- Ji-Won Kim
- Department of Rheumatology, Ajou University School of Medicine, Suwon, South Korea
| | - Hyoun-Ah Kim
- Department of Rheumatology, Ajou University School of Medicine, Suwon, South Korea
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine, Suwon, South Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Ju-Yang Jung
- Department of Rheumatology, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
45
|
Ocañas SR, Ansere VA, Tooley KB, Hadad N, Chucair-Elliott AJ, Stanford DR, Rice S, Wronowski B, Pham KD, Hoffman JM, Austad SN, Stout MB, Freeman WM. Differential Regulation of Mouse Hippocampal Gene Expression Sex Differences by Chromosomal Content and Gonadal Sex. Mol Neurobiol 2022; 59:4669-4702. [PMID: 35589920 PMCID: PMC9119800 DOI: 10.1007/s12035-022-02860-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/25/2022] [Indexed: 01/23/2023]
Abstract
Common neurological disorders, like Alzheimer's disease (AD), multiple sclerosis (MS), and autism, display profound sex differences in prevalence and clinical presentation. However, sex differences in the brain with health and disease are often overlooked in experimental models. Sex effects originate, directly or indirectly, from hormonal or sex chromosomal mechanisms. To delineate the contributions of genetic sex (XX v. XY) versus gonadal sex (ovaries v. testes) to the epigenomic regulation of hippocampal sex differences, we used the Four Core Genotypes (FCG) mouse model which uncouples chromosomal and gonadal sex. Transcriptomic and epigenomic analyses of ~ 12-month-old FCG mouse hippocampus, revealed genomic context-specific regulatory effects of genotypic and gonadal sex on X- and autosome-encoded gene expression and DNA modification patterns. X-chromosomal epigenomic patterns, classically associated with X-inactivation, were established almost entirely by genotypic sex, independent of gonadal sex. Differences in X-chromosome methylation were primarily localized to gene regulatory regions including promoters, CpG islands, CTCF binding sites, and active/poised chromatin, with an inverse relationship between methylation and gene expression. Autosomal gene expression demonstrated regulation by both genotypic and gonadal sex, particularly in immune processes. These data demonstrate an important regulatory role of sex chromosomes, independent of gonadal sex, on sex-biased hippocampal transcriptomic and epigenomic profiles. Future studies will need to further interrogate specific CNS cell types, identify the mechanisms by which sex chromosomes regulate autosomes, and differentiate organizational from activational hormonal effects.
Collapse
Affiliation(s)
- Sarah R Ocañas
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Victor A Ansere
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kyla B Tooley
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Ana J Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
| | - David R Stanford
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
| | - Shannon Rice
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
| | - Benjamin Wronowski
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kevin D Pham
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
| | - Jessica M Hoffman
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven N Austad
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael B Stout
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Willard M Freeman
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
46
|
Bose M, Jefferies C. Sex bias in systemic lupus erythematosus: a molecular insight. IMMUNOMETABOLISM (COBHAM, SURREY) 2022; 4:e00004. [PMID: 35966636 PMCID: PMC9358995 DOI: 10.1097/in9.0000000000000004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/09/2022] [Indexed: 12/24/2022]
Abstract
Acknowledging sex differences in immune response is particularly important when we consider the differences between men and women in the incidence of disease. For example, over 80% of autoimmune disease occurs in women, whereas men have a higher incidence of solid tumors compared to women. In general women have stronger innate and adaptive immune responses than men, explaining their ability to clear viral and bacterial infections faster, but also contributing to their increased susceptibility to autoimmune disease. The autoimmune disease systemic lupus erythematosus (SLE) is the archetypical sexually dimorphic disease, with 90% of patients being women. Various mechanisms have been suggested to account for the female prevalence of SLE, including sex hormones, X-linked genes, and epigenetic regulation of gene expression. Here, we will discuss how these mechanisms contribute to pathobiology of SLE and how type I interferons work with them to augment sex specific disease pathogenesis in SLE.
Collapse
Affiliation(s)
- Moumita Bose
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Caroline Jefferies
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
47
|
Gupta M, Srikrishna G, Klein SL, Bishai WR. Genetic and hormonal mechanisms underlying sex-specific immune responses in tuberculosis. Trends Immunol 2022; 43:640-656. [PMID: 35842266 PMCID: PMC9344469 DOI: 10.1016/j.it.2022.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022]
Abstract
Tuberculosis (TB), the world's deadliest bacterial infection, afflicts more human males than females, with a male/female (M/F) ratio of 1.7. Sex disparities in TB prevalence, pathophysiology, and clinical manifestations are widely reported, but the underlying biological mechanisms remain largely undefined. This review assesses epidemiological data on sex disparity in TB, as well as possible underlying hormonal and genetic mechanisms that might differentially modulate innate and adaptive immune responses in males and females, leading to sex differences in disease susceptibility. We consider whether this sex disparity can be extended to the efficacy of vaccines and discuss novel animal models which may offer mechanistic insights. A better understanding of the biological factors underpinning sex-related immune responses in TB may enable sex-specific personalized therapies for TB.
Collapse
|
48
|
Moran JA, Turner SR, Marsden MD. Contribution of Sex Differences to HIV Immunology, Pathogenesis, and Cure Approaches. Front Immunol 2022; 13:905773. [PMID: 35693831 PMCID: PMC9174895 DOI: 10.3389/fimmu.2022.905773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/21/2022] [Indexed: 11/14/2022] Open
Abstract
Approximately 38 million people were living with human immunodeficiency virus (HIV) in 2020 and 53% of those infected were female. A variety of virological and immunological sex-associated differences (sexual dimorphism) in HIV infection have been recognized in males versus females. Social, behavioral, and societal influences play an important role in how the HIV pandemic has affected men and women differently. However, biological factors including anatomical, physiologic, hormonal, and genetic differences in sex chromosomes can each contribute to the distinct characteristics of HIV infection observed in males versus females. One striking example of this is the tendency for women to have lower HIV plasma viral loads than their male counterparts early in infection, though both progress to AIDS at similar rates. Sex differences in acquisition of HIV, innate and adaptive anti-HIV immune responses, efficacy/suitability of specific antiretroviral drugs, and viral pathogenesis have all been identified. Sex differences also have the potential to affect viral persistence, latency, and cure approaches. In this brief review, we summarize the major biological male/female sex differences in HIV infection and their importance to viral acquisition, pathogenesis, treatment, and cure efforts.
Collapse
Affiliation(s)
- Jose A. Moran
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, United States
| | - Shireen R. Turner
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, United States
| | - Matthew D. Marsden
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, United States
- Department of Medicine (Division of Infectious Diseases), School of Medicine, University of California, Irvine, CA, United States
| |
Collapse
|
49
|
Abstract
Strong epidemiological evidence now exists that sex is an important biologic variable in immunity. Recent studies, for example, have revealed that sex differences are associated with the severity of symptoms and mortality due to coronavirus disease 2019 (COVID-19). Despite this evidence, much remains to be learned about the mechanisms underlying associations between sex differences and immune-mediated conditions. A growing body of experimental data has made significant inroads into understanding sex-influenced immune responses. As physicians seek to provide more targeted patient care, it is critical to understand how sex-defining factors (e.g., chromosomes, gonadal hormones) alter immune responses in health and disease. In this review, we highlight recent insights into sex differences in autoimmunity; virus infection, specifically severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection; and cancer immunotherapy. A deeper understanding of underlying mechanisms will allow the development of a sex-based approach to disease screening and treatment.
Collapse
Affiliation(s)
- Nicole M Wilkinson
- UCLA/Caltech Medical Scientist Training Program, Los Angeles, California, USA
| | - Ho-Chung Chen
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Melissa G Lechner
- Division of Endocrinology, Diabetes, and Metabolism, David Geffen School of Medicine, University of California, Los Angeles, California, USA;
| | - Maureen A Su
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA;
- Department of Pediatrics, David Geffen School of Medicine, University of Los Angeles, California, USA
| |
Collapse
|
50
|
Preferential X Chromosome Inactivation as a Mechanism to Explain Female Preponderance in Myasthenia Gravis. Genes (Basel) 2022; 13:genes13040696. [PMID: 35456502 PMCID: PMC9031138 DOI: 10.3390/genes13040696] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/04/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Myasthenia gravis (MG) is a neuromuscular autoimmune disease characterized by prevalence in young women (3:1). Several mechanisms proposed as explanations for gender bias, including skewed X chromosome inactivation (XCI) and dosage or sex hormones, are often involved in the development of autoimmunity. The skewed XCI pattern can lead to an unbalanced expression of some X-linked genes, as observed in several autoimmune disorders characterized by female predominance. No data are yet available regarding XCI and MG. We hypothesize that the preferential XCI pattern may contribute to the female bias observed in the onset of MG, especially among younger women. XCI analysis was performed on blood samples of 284 women between the ages of 20 and 82. XCI was tested using the Human Androgen Receptor Assay (HUMARA). XCI patterns were classified as random (XCI < 75%) and preferential (XCI ≥ 75%). In 121 informative patients, the frequency of skewed XCI patterns was 47%, significantly higher than in healthy controls (17%; p ≤ 0.00001). Interestingly, the phenomenon was observed mainly in younger patients (<45 years; p ≤ 0.00001). Furthermore, considering the XCI pattern and the other clinical characteristics of patients, no significant differences were found. In conclusion, we observed preferential XCI in MG female patients, suggesting its potential role in the aetiology of MG, as observed in other autoimmune diseases in women.
Collapse
|