1
|
Wu L, Sun Y, Yin Y, Wu Z, Liu R, Liu Y, Zhu Y, Shao M, Zhou H, Lu C, Zhang H. Lancao decoction in the treatment of alzheimer's disease via activating PI3K/AKT signaling to promote ERK involving in enhancing neuronal activities in the hippocampus. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119017. [PMID: 39528121 DOI: 10.1016/j.jep.2024.119017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Previous study has demonstrated lancao decoction (LC), a traditional Chinese medicine (TCM) fomula and recorded in "Huangdineijing", has a therapeutic effect on cognitive impairment (early clinical manifestations of alzheimer's disease (AD), which suggests that LC may have potential therapeutic advantages for AD. Whether LC has the therapeutic effect on AD and its potential mechanisms were still further indicated. AIM OF THE STUDY In this study, we aimed to uncover the potential advantage and neuronal mechanisms of LC in the treatment of AD in APP/PS1 mice in the hippocampus. METHODS AND MATERIALS We chose APP/PS1 mice to combing with behavioral tests including morris water maze (MWM) or y-maze to determine the role of LC in the therapeutic actions of AD. Network pharmacology was used to screen potential targets and pathways involving in LC's treatments of AD. Western blot was used to detect the phosphorylated expressions of proteins in hippocampus in APP/PS1 mice in the hippocampus. Pharmacological interventions were used to elucidate the relationship between the role of LC in the treatment of AD and the pathway, as well as the upstream and downstream interactions with neuronal activities. RESULTS According to our previous LC effective dose (2.5 g/kg), the dose was also able to significantly reduce the latency to the platform, and significantly increase the number of crossing times and time spend in the target quadrant in APP/PS1 mice in MWM, which was consistent with donepezil (DON) after 14 days chronic treatments. Network pharmacology showed that PI3K/AKT and MAPK pathways were closely associated with LC's treatments of AD, and protein autophosphorylation played a role in this process. The phosphorylated expressions of PI3K and AKT were obviously reduced in APP/PS1 mice in the hippocampus, which were both reversed by LC or DON. The phosphorylated expressions of MAPK including P38, JNK and ERK were also significantly reduced in APP/PS1 mice hippocampus, but only the phosphorylated expression of ERK was reversed by LC or DON. Inhibiting the activities of PI3K/AKT pathway by LY294002 blocked LC's improvement of behavioral deficits in APP/PS1 mice, including reducing latency to platform and increasing the number of crossings time in MWM in APP/PS1 mice, which also blunted LC's up-regulated phosphorylated expressions of PI3K, AKT and ERK in the hippocampus. Moreover, suppressing the activities of ERK by PD98059 also blocked LC's improvement of AD-related behavioral deficits including decreasing latency to new arm and increasing time in new arm in y-maze test, which also inhibited LC's enhancement of synaptic proteins (PSD95 and synapsin1) in the hippocampus and the number of EGR1-positive cells in the hippocampal dentate gyrus (DG). CONCLUSIONS Take together, our study revealed that LC had the therapeutic effects on AD by activating the PI3K/AKT pathway to enhance ERK activity and further strengthened neuronal activities in the hippocampus.
Collapse
Affiliation(s)
- Lei Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Department of Pharmacy, Nanjing, 210029, China
| | - Yan Sun
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ying Yin
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China
| | - Zhangjie Wu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China
| | - Ruiyi Liu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China
| | - Yuxin Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Department of Pharmacy, Nanjing, 210029, China
| | - Yaping Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Department of Pharmacy, Nanjing, 210029, China
| | - Mengqi Shao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Department of Pharmacy, Nanjing, 210029, China
| | - Hang Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Danyang Hospital of Traditional Chinese Medicine, Zhenjiang, 212399, China
| | - Chao Lu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Department of Pharmacy, Nanjing, 210029, China.
| | - Hailou Zhang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China; The Guangdong-Hongkong-Macau Joint Laboratory of Traditional Chinese Medicine Regulation of Brain-Periphery Homeostasis and Comprehensive Health, Guangzhou, 510632, China; Zhuhai Institute of Jinan University, Zhuhai, 519070, China.
| |
Collapse
|
2
|
Liu S, Liu T, Li J, Hong J, Moosavi-Movahedi AA, Wei J. Type 2 Diabetes Mellitus Exacerbates Pathological Processes of Parkinson's Disease: Insights from Signaling Pathways Mediated by Insulin Receptors. Neurosci Bull 2025:10.1007/s12264-024-01342-8. [PMID: 39754628 DOI: 10.1007/s12264-024-01342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/15/2024] [Indexed: 01/06/2025] Open
Abstract
Parkinson's disease (PD), a chronic and common neurodegenerative disease, is characterized by the progressive loss of dopaminergic neurons in the dense part of the substantia nigra and abnormal aggregation of alpha-synuclein. Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by chronic insulin resistance and deficiency in insulin secretion. Extensive evidence has confirmed shared pathogenic mechanisms underlying PD and T2DM, such as oxidative stress caused by insulin resistance, mitochondrial dysfunction, inflammation, and disorders of energy metabolism. Conventional drugs for treating T2DM, such as metformin and glucagon-like peptide-1 receptor agonists, affect nerve repair. Even drugs for treating PD, such as levodopa, can affect insulin secretion. This review summarizes the relationship between PD and T2DM and related therapeutic drugs from the perspective of insulin signaling pathways in the brain.
Collapse
Affiliation(s)
- Shufen Liu
- Center for Translational Neuromedicine and Neurology, School of Life Sciences, Institute for Brain Sciences Research, Henan University, Huaihe Hospital of Henan University, Kaifeng, 475004, China
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China
| | - Tingting Liu
- Center for Translational Neuromedicine and Neurology, School of Life Sciences, Institute for Brain Sciences Research, Henan University, Huaihe Hospital of Henan University, Kaifeng, 475004, China
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China
| | - Jingwen Li
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China
| | - Jun Hong
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China
| | | | - Jianshe Wei
- Center for Translational Neuromedicine and Neurology, School of Life Sciences, Institute for Brain Sciences Research, Henan University, Huaihe Hospital of Henan University, Kaifeng, 475004, China.
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
3
|
Rizk MZ, Ibrahim Fouad G, Aly HF, El-Rigal NS, Ahmed KA, Mohammed FF, Khalil WKB, Abd El-Karim SS. Therapeutic impact of a benzofuran derivative on Aluminium chloride-induced Alzheimer's disease-like neurotoxicity in rats via modulating apoptotic and Insulin 1 genes. Biochem Biophys Res Commun 2024; 739:150971. [PMID: 39531906 DOI: 10.1016/j.bbrc.2024.150971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/28/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD) are age-related and are fatal in advanced cases. There is a limited efficacy of drugs used for the management of these diseases. Herein, the neurotherapeutic efficacy of a benzofuran-derivative-7 (BF-7) was investigated. Aluminum chloride (AlCl3) was employed to induce AD-like brain toxicity in rats. The rats were divided into four groups: Negative control, AlCl3-induced AD rats (100 mg/kg body weight, orally), AlCl3-AD induced rats treated with BF-7 (10 mg/kg body weight, orally), AlCl3-AD-induced rats treated with the standard drug "Donepezil" (10 mg/kg body weight, orally). The behavioral performance was tested using a beam-balance test. Brain and serum acetylcholinesterase (AChE) activities and the brain levels of norepinephrine, dopamine (DA), and serotonin (5-HT) were measured. The genetic expression of Bcl-2, Bax, caspase-3, and insulin 1 were assayed. The histopathological imaging and the immunohistochemical evaluation of Glial Fibrillary Acidic Protein (GFAP) were investigated in the cerebral cortex. Treatment of AD-rats with BF-7 mitigated AlCl3-induced neurotoxicity by improving motor functions, counteracting apoptosis, and exerting cholinergic functions. In addition, the genetic expression of Insulin 1 was upregulated significantly in AD-induced rats treated with BF-7. This compound could be used as a promising candidate for neurotherapeutic drug discovery against AD or any other toxic brain disorders.
Collapse
Affiliation(s)
- Maha Z Rizk
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., PO Box, 12622, Dokki, Cairo, Egypt
| | - Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., PO Box, 12622, Dokki, Cairo, Egypt.
| | - Hanan F Aly
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., PO Box, 12622, Dokki, Cairo, Egypt
| | - Nagy S El-Rigal
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., PO Box, 12622, Dokki, Cairo, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| | - Faten F Mohammed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| | - Wagdy K B Khalil
- Cell Biology Department, National Research Centre, 33 El Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Somaia S Abd El-Karim
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., PO Box, 12622, Dokki, Cairo, Egypt
| |
Collapse
|
4
|
Tu W, Xu F, Li J, Tian X, Cao L, Wang L, Qu Y. Studying targeted oxidation in diabetic cognitive dysfunction based on scientometrics analysis: research progress of natural product approaches. Front Endocrinol (Lausanne) 2024; 15:1445750. [PMID: 39758348 PMCID: PMC11695123 DOI: 10.3389/fendo.2024.1445750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/12/2024] [Indexed: 01/07/2025] Open
Abstract
Purpose The aim is to provide new insights for researchers studying the pathogenesis of diabetic cognitive dysfunction and promoting the wider use of natural products in their treatment. Method First, the Web of Science Core Collection was selected as the data source for a computerized literature search on oxidative stress and diabetic cognitive dysfunction (DCD). Next, Biblimetrix and VOSviewer performed statistical analysis focusing on publication countries, institutions, authors, research hotspots, and emerging directions in the field. Then, through the analysis of keywords and key articles, the forefront of the field is identified. Finally, we discussed the pathogenesis of DCD, the influence of oxidative stress on DCD and the antioxidant effect of natural products on DCD. Result 293 valid papers were obtained. Bibliometrics showed that oxidative stress, diabetes, Alzheimer's disease (AD), cognitive decline, insulin resistance and quercetin were the key words of the symbiotic network. Conclusion The antioxidant effects of natural products in improving DCD have been extensively studied in preclinical studies, providing potential for their treatment in DCD, but their evaluation in clinical trials is currently uncommon.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University,
Hangzhou, China
| | - Yiqian Qu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University,
Hangzhou, China
| |
Collapse
|
5
|
Zare H, Kasdorf MM, Bakhshian Nik A. Microfluidics in neural extracellular vesicles characterization for early Alzheimer's disease diagnosis. Mol Cell Neurosci 2024; 132:103982. [PMID: 39631514 DOI: 10.1016/j.mcn.2024.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/04/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024] Open
Abstract
Dementia is a general term for conditions impairing cognitive abilities including perception, reasoning, attention, judgment, memory, and daily brain function. Early diagnosis of Alzheimer's disease (AD), the most common form of dementia, using neural extracellular vesicles (nEVs) is the focus of the current study. These nEVs carry AD biomarkers including β-amyloid proteins and phosphorylated tau proteins. The novelty of this review lies in developing a microfluidic perspective by introducing the techniques using a microfluidic platform for early diagnosis of AD. A microfluidic device can detect small sample sizes with significantly low concentrations. These devices combine nEV isolation, enrichment, and detection, which makes them ideal candidates for early AD diagnosis.
Collapse
Affiliation(s)
- Hossein Zare
- Chemical and Biochemical Engineering Department, The University of Iowa, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
6
|
Yuan Y, Zhao G, Zhao Y. Dysregulation of energy metabolism in Alzheimer's disease. J Neurol 2024; 272:2. [PMID: 39621206 PMCID: PMC11611936 DOI: 10.1007/s00415-024-12800-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 12/06/2024]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. Its etiology and associated mechanisms are still unclear, which largely hinders the development of AD treatment strategies. Many studies have shown that dysregulation of energy metabolism in the brain of AD is closely related to disease development. Dysregulation of brain energy metabolism in AD brain is associated with reduced glucose uptake and utilization, altered insulin signaling pathways, and mitochondrial dysfunction. In this study, we summarized the relevant pathways and mechanisms regarding the dysregulation of energy metabolism in AD. In addition, we highlight the possible role of mitochondrial dysfunction as a central role in the AD process. A deeper understanding of the relationship between energy metabolism dysregulation and AD may provide new insights for understanding learning memory impairment in AD patients and in improving AD prevention and treatment.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, 130061, China
| | - Gang Zhao
- China Resources Pharmaceutical Commercial Group, Beijing, China
| | - Yang Zhao
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, 130061, China.
| |
Collapse
|
7
|
Szabo-Reed AN, Watts A, Vidoni ED, Mahnken J, Van Sciver A, Finley K, Clutton J, Holden R, Key MN, Burns JM. Lifestyle empowerment for Alzheimer's prevention prescribed by physicians: Methods and adaptations to COVID-19. Contemp Clin Trials 2024; 147:107729. [PMID: 39491720 DOI: 10.1016/j.cct.2024.107729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
The health care system is insufficiently capitalizing on the benefits of physical exercise in America's aging population. Few tools exist to help clinicians incorporate physical activity into their clinical care, and barriers limit older adults from initiating and maintaining exercise programs. The Lifestyle Empowerment for Alzheimer's Prevention (LEAP! Rx) Program has been designed to support providers and participants in lifestyle change. LEAP! Rx uses two forms of participant enrollment: physician referrals through electronic health records and self-referrals to test the efficacy of delivering a community-based exercise and healthy lifestyle program to older adults. After referral into the program, participants are randomized to receive the LEAP! Rx Program or are placed in a standard-of-care group to receive the program later. The LEAP! Rx program consists of a personalized and structured exercise program, lifestyle education, and mobile health monitoring. This includes a 12-week Empowerment phase with coaching and supervised exercise training, followed by a 40-week Lifestyle phase with intermittent supervised exercise and coaching. Lifestyle education includes monthly, evidence-based classes on optimal aging. The evaluation of LEAP! Rx focuses on 1) the assessment of implementation and scalability of the LEAP!Rx Program for clinicians and patients 2) the effect of the LEAP! Rx Program on cardiorespiratory fitness, 3) the impact of the LEAP! Rx Program on secondary intervention outcome measures of chronic disease risk factors, including insulin resistance, body composition, and lipids. If successful, this study's findings could advance future healthcare practices, providing a new and practical approach to aging and chronic disease prevention.
Collapse
Affiliation(s)
- Amanda N Szabo-Reed
- Physical Activity & Weight Management, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| | - Amber Watts
- Department of Psychology, University of Kansas, 1415 Jayhawk Boulevard, Lawrence, KS 66045, USA; University of Kansas Alzheimer's Disease Research Center, 4350 Shawnee Mission Parkway, Fairway, KS 66205, USA.
| | - Eric D Vidoni
- University of Kansas Alzheimer's Disease Research Center, 4350 Shawnee Mission Parkway, Fairway, KS 66205, USA.
| | - Jonathan Mahnken
- Department of Biostatistics and Data Science, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160.
| | - Angela Van Sciver
- University of Kansas Alzheimer's Disease Research Center, 4350 Shawnee Mission Parkway, Fairway, KS 66205, USA.
| | - Katrina Finley
- University of Kansas Alzheimer's Disease Research Center, 4350 Shawnee Mission Parkway, Fairway, KS 66205, USA
| | - Jonathan Clutton
- University of Kansas Alzheimer's Disease Research Center, 4350 Shawnee Mission Parkway, Fairway, KS 66205, USA.
| | - Rachel Holden
- University of Kansas Alzheimer's Disease Research Center, 4350 Shawnee Mission Parkway, Fairway, KS 66205, USA.
| | - Mickeal N Key
- University of Kansas Alzheimer's Disease Research Center, 4350 Shawnee Mission Parkway, Fairway, KS 66205, USA.
| | - Jeffery M Burns
- University of Kansas Alzheimer's Disease Research Center, 4350 Shawnee Mission Parkway, Fairway, KS 66205, USA.
| |
Collapse
|
8
|
Liu W, Chen S, Rao X, Chen X, Yu L, Zhang J, Chen J, Cui B. Exploring the role of miR-125b-5p as a pro-inflammatory factor in Alzheimer's disease pathology. J Alzheimers Dis 2024; 102:1224-1238. [PMID: 39584931 DOI: 10.1177/13872877241297178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a common neurodegenerative disease, where neuroinflammation significantly influences its pathophysiology by driving the disease's pathological cascade. As a pro-inflammatory regulator, miR-125b-5p contributes to AD progression, though its precise role and mechanisms remain unclear. OBJECTIVE We aims to identify mRNAs significantly regulated by pro-inflammatory miR-125b-5p in AD and uncover key neuroinflammatory pathways. METHODS Target mRNAs regulated by miR-125b-5p were predicted using online databases and analyzed with two mRNA datasets to identify differentially expressed mRNAs (DEmRNAs). Enrichment analysis was conducted to explore their biological functions and pathways. The significance of DEmRNAs expression in AD-related inflammatory pathways was verified by the Wilcoxon test, predictive accuracy was assessed via area under the curves (AUCs), and novel mRNAs were identified through positive control analysis. RESULTS A total of 613 miR-125b-5p target mRNAs were identified, and 44 DEmRNAs were detected to be regulated by miR-125b-5p in two datasets. The 44 target DEmRNAs associated with AD include three key pathways: insulin signaling (EXOC7, FLOT2, MKNK2), phosphatidylinositol signaling (IP6K1, MTMR3), and phospholipase D signaling (CYTH1, GAB2). Correlation analysis indicated strong correlations among 7 mRNAs, all showing significant differential expression, with AUCs above 0.5, confirming their predictive value. Three mRNAs (EXOC7, IP6K1, CYTH1) were identified as novel AD-related genes. MiR-125b-5p binding sites in the 3'-UTRs of these 7 mRNAs suggest their potential roles in AD-related inflammation and signaling pathways. CONCLUSIONS This study investigates the pro-inflammatory miR-125b-5p's role in the pathological processes of AD, highlighting its regulation of key target mRNAs and critical pathways.
Collapse
Affiliation(s)
- Wenjia Liu
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, China
| | - Sophia Chen
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Xin Rao
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, China
| | - Xiaodong Chen
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, China
| | - Liyang Yu
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, China
| | - Jiangtao Zhang
- Department of Geriatrics, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Jiong Chen
- Department of Geriatrics, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Bohan Cui
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
9
|
Abrego-Guandique DM, Galmés S, García-Rodríguez A, Cannataro R, Caroleo MC, Ribot J, Bonet ML, Cione E. β-Carotene Impacts the Liver MicroRNA Profile in a Sex-Specific Manner in Mouse Offspring of Western Diet-Fed Mothers: Results from Microarray Analysis by Direct Hybridization. Int J Mol Sci 2024; 25:12899. [PMID: 39684610 DOI: 10.3390/ijms252312899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Maternal unbalanced diets cause adverse metabolic programming and affect the offspring's liver microRNA (miRNA) profile. The liver is a site of β-carotene (BC) metabolism and a target of BC action. We studied the interaction of maternal Western diet (WD) and early-life BC supplementation on the epigenetic remodeling of offspring's liver microRNAs. Mouse offspring of WD-fed mothers were given a daily placebo (controls) or BC during suckling. Biometric parameters and liver miRNAome by microarray hybridization were analyzed in newly weaned animals. BC sex-dependently impacted the liver triacylglycerol content. The liver miRNAome was also differently affected in male and female offspring, with no overlap in differentially expressed (DE) miRNAs between sexes and more impact in females. Bioinformatic analysis of DE miRNA predicted target genes revealed enrichment in biological processes/pathways related to metabolic processes, regulation of developmental growth and circadian rhythm, liver homeostasis and metabolism, insulin resistance, and neurodegeneration, among others, with differences between sexes. Fifty-five percent of the overlapping target genes in both sexes identified were targeted by DE miRNAs changed in opposite directions in males and females. The results identify sex-dependent responses of the liver miRNA expression profile to BC supplementation during suckling and may sustain further investigations regarding the long-term impact of early postnatal life BC supplementation on top of an unbalanced maternal diet.
Collapse
Affiliation(s)
| | - Sebastià Galmés
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (LBNB), Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Research Group, Universitat de les Illes Balears, 07122 Palma, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Adrián García-Rodríguez
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (LBNB), Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Research Group, Universitat de les Illes Balears, 07122 Palma, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Roberto Cannataro
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy
- Research Division, Dynamical Business & Science Society-DBSS International SAS, Bogotá 110311, Colombia
| | - Maria Cristina Caroleo
- Department of Health Sciences, University of Magna Graecia Catanzaro, 88100 Catanzaro, Italy
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (LBNB), Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Research Group, Universitat de les Illes Balears, 07122 Palma, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria Luisa Bonet
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (LBNB), Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Research Group, Universitat de les Illes Balears, 07122 Palma, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Erika Cione
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
10
|
Feng Y, Cheng L, Zhou W, Lu J, Huang H. Metabolic Syndrome and the Risk of Alzheimer's Disease: A Meta-Analysis. Metab Syndr Relat Disord 2024. [PMID: 39558765 DOI: 10.1089/met.2024.0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
Purpose: The relationship between metabolic syndrome (MetS) and the risk of Alzheimer's disease (AD) remains unclear. This meta-analysis aims to clarify the prospective association between MetS and AD risk and to explore how individual MetS components contribute to this relationship. Methods: Comprehensive searches of MEDLINE, Web of Science, and Embase were conducted up to April 12, 2024. Relevant prospective cohort studies were included. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated to assess the associations. A random-effects model was used to incorporate the potential impact of heterogeneity. Findings: Six prospective cohort studies with seven datasets, including 484,994 participants and a follow-up of 3.5 to 13.0 years, were included. The pooled analysis showed no significant association between MetS and AD risk (HR: 0.96, 95% CI: 0.89-1.04, P = 0.37; I2 = 0%). Sensitivity and subgroup analyses confirmed these findings. Individual MetS components exhibited varied effects as follows: abdominal obesity was linked to a reduced AD risk (Risk ratio (RR): 0.70, 95% CI: 0.56-0.88, P = 0.002), whereas high blood pressure (BP) (RR: 1.15, 95% CI: 1.04-1.27, P = 0.007) and hyperglycemia (RR: 1.24, 95% CI: 1.08-1.42, P = 0.002) were associated with an increased risk. Low high-density lipoprotein cholesterol and high triglycerides showed no significant associations. Conclusions: This meta-analysis found no significant overall association between MetS and AD risk. However, specific MetS components, such as abdominal obesity, high BP, and hyperglycemia, may influence AD risk differently.
Collapse
Affiliation(s)
- Yanqiong Feng
- Department of Medical Services, Shanghai Civil Affairs Second Mental Health Center, Shanghai, China
| | - Lili Cheng
- Department of General Practice, Community Health Service Center, Shanghai, China
| | - Weiying Zhou
- Department of General Practice, Shanghai Pudong New Area Zhuqiao Community Health Service Center, Shanghai, China
| | - Jiru Lu
- Department of Medical Services, Shanghai Civil Affairs Second Mental Health Center, Shanghai, China
| | - Huiyu Huang
- Department of Psychological Rehabilitation, Shanghai Nanhui Mental Health Center, Shanghai, China
| |
Collapse
|
11
|
Wu C, Ke Y, Nianogo R. Trends in hyperinsulinemia and insulin resistance among nondiabetic US adults, NHANES, 1999-2018. RESEARCH SQUARE 2024:rs.3.rs-5279795. [PMID: 39606490 PMCID: PMC11601873 DOI: 10.21203/rs.3.rs-5279795/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Hyperinsulinemia and insulin resistance (IR) are critical predictors of cardiometabolic diseases, disproportionately affecting various sociodemographic groups in the United States. This study aimed to estimate and analyze trends in the prevalence of hyperinsulinemia and IR among nondiabetic adults from 1999 to 2018, using data from the National Health and Nutrition Examination Survey (NHANES). The study included 17,310 nondiabetic men and nonpregnant women aged 20 years or older. Hyperinsulinemia was defined as fasting serum insulin levels ≥10 U/ml, while IR was measured using the HOMA-IR index (≥2.6, 66.7th percentile). The age-standardized prevalence of hyperinsulinemia increased from 28.2% in 1999-2000 to 41.4% in 2017-2018, while IR prevalence rose from 24.8% to 38.4% during the same period. Higher prevalence rates were consistently observed among males, non-Hispanic Blacks, Hispanics, and individuals with lower education or income levels. Trends indicated increases across all sociodemographic groups during at least some time periods. The findings suggest a growing prevalence of hyperinsulinemia and IR in the U.S., particularly among vulnerable populations, underscoring the importance of targeted public health interventions to address these disparities and reduce the risk of cardiometabolic diseases.
Collapse
Affiliation(s)
- Chuyue Wu
- Fielding School of Public Health, UCLA
| | - Yixun Ke
- Fielding School of Public Health, UCLA
| | | |
Collapse
|
12
|
Sighencea MG, Popescu RȘ, Trifu SC. From Fundamentals to Innovation in Alzheimer's Disease: Molecular Findings and Revolutionary Therapies. Int J Mol Sci 2024; 25:12311. [PMID: 39596378 PMCID: PMC11594972 DOI: 10.3390/ijms252212311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) is a global health concern and the leading cause of dementia in the elderly. The prevalence of this neurodegenerative condition is projected to increase concomitantly with increased life expectancy, resulting in a significant economic burden. With very few FDA-approved disease-modifying drugs available for AD, there is an urgent need to develop new compounds capable of impeding the progression of the disease. Given the unclear etiopathogenesis of AD, this review emphasizes the underlying mechanisms of this condition. It explores not only well-studied aspects, such as the accumulation of Aβ plaques and neurofibrillary tangles, but also novel areas, including glymphatic and lymphatic pathways, microbiota and the gut-brain axis, serotoninergic and autophagy alterations, vascular dysfunction, the metal hypothesis, the olfactory pathway, and oral health. Furthermore, the potential molecular targets arising from all these mechanisms have been reviewed, along with novel promising approaches such as nanoparticle-based therapy, neural stem cell transplantation, vaccines, and CRISPR-Cas9-mediated genome editing techniques. Taking into account the overlap of these various mechanisms, individual and combination therapies emerge as the future direction in the AD strategy.
Collapse
Affiliation(s)
| | - Ramona Ștefania Popescu
- Department of Infectious Diseases, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania;
| | - Simona Corina Trifu
- Department of Psychiatry, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania
| |
Collapse
|
13
|
Hajikarimloo B, Jabbaripour S, Tohidinia AM, Valinejad Qanati A, Fahim F, Javadpour P, Ghasemi R. Insulin potential in preventing brain damage after traumatic brain injury: What we know. J Neuroendocrinol 2024:e13458. [PMID: 39527975 DOI: 10.1111/jne.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Traumatic brain injury (TBI) is a major global cause of disability and mortality. TBI results in a spectrum of primary and secondary injuries that impact neural function and overall survival. Insulin, beyond its well-known role in regulating blood glucose levels, plays critical roles in the central nervous system (CNS). These roles include the modulation of synaptic plasticity, neurotransmitter levels, neurogenesis, and neuroprotection. Central insulin resistance, a reduced sensitivity to insulin in the brain, has been observed in TBI patients. This insulin resistance impairs insulin function in the brain and increases the risk of neurodegenerative processes. This review will delve into the central role of insulin resistance in the pathological changes observed after TBI and explore the potential benefits of insulin therapy as a treatment approach for TBI.
Collapse
Affiliation(s)
- Bardia Hajikarimloo
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sama Jabbaripour
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Tohidinia
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aysan Valinejad Qanati
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzan Fahim
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Javadpour
- Neuroscience Research Center, Institute of Neuroscience and Cognition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neurophysiology Research Center, Institute of Neuroscience and Cognition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Kciuk M, Kruczkowska W, Gałęziewska J, Wanke K, Kałuzińska-Kołat Ż, Aleksandrowicz M, Kontek R. Alzheimer's Disease as Type 3 Diabetes: Understanding the Link and Implications. Int J Mol Sci 2024; 25:11955. [PMID: 39596023 PMCID: PMC11593477 DOI: 10.3390/ijms252211955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are two prevalent conditions that present considerable public health issue in aging populations worldwide. Recent research has proposed a novel conceptualization of AD as "type 3 diabetes", highlighting the critical roles of insulin resistance and impaired glucose metabolism in the pathogenesis of the disease. This article examines the implications of this association, exploring potential new avenues for treatment and preventive strategies for AD. Key evidence linking diabetes to AD emphasizes critical metabolic processes that contribute to neurodegeneration, including inflammation, oxidative stress, and alterations in insulin signaling pathways. By framing AD within this metabolic context, we can enhance our understanding of its etiology, which in turn may influence early diagnosis, treatment plans, and preventive measures. Understanding AD as a manifestation of diabetes opens up the possibility of employing novel therapeutic strategies that incorporate lifestyle modifications and the use of antidiabetic medications to mitigate cognitive decline. This integrated approach has the potential to improve patient outcomes and deepen our comprehension of the intricate relationship between neurodegenerative diseases and metabolic disorders.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (K.W.); (R.K.)
| | - Weronika Kruczkowska
- Department of Functional Genomics, Medical University of Lodz, 90-752 Lodz, Poland; (W.K.); (J.G.); (Ż.K.-K.)
| | - Julia Gałęziewska
- Department of Functional Genomics, Medical University of Lodz, 90-752 Lodz, Poland; (W.K.); (J.G.); (Ż.K.-K.)
| | - Katarzyna Wanke
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (K.W.); (R.K.)
| | - Żaneta Kałuzińska-Kołat
- Department of Functional Genomics, Medical University of Lodz, 90-752 Lodz, Poland; (W.K.); (J.G.); (Ż.K.-K.)
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, 90-136 Lodz, Poland
| | - Marta Aleksandrowicz
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (K.W.); (R.K.)
| |
Collapse
|
15
|
Turkyilmaz A, Akin MN, Kasap B, Ozdemİr C, Demirtas Bilgic A, Edgunlu TG. AKT1 and MAPK8: New Targets for Gestational Diabetes Mellitus? Fetal Pediatr Pathol 2024; 43:427-435. [PMID: 39177257 DOI: 10.1080/15513815.2024.2393357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/12/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
Objective: Gestational diabetes mellitus (GDM) disrupts placental function and increases risks for pregnancy. This study investigates the potential involvement of AKT1 and MAPK8 genes, known for their roles in insulin resistance and cell signaling, in GDM pathophysiology. Methods: Placental tissues from GDM patients and healthy controls were analyzed using real-time PCR to quantify gene expression levels. In silico analysis further explored the functional implications of expression changes. Results: AKT1 and MAPK8 displayed significantly altered expression in GDM placentas compared to controls (p = 0.047 and p = 0.007, respectively). In silico analysis suggests potential functional consequences related to diabetes-associated pathways. Conclusion: This study identifies differential expression of AKT1 and MAPK8 in GDM placentas, suggesting their potential roles in the disease process. Further investigation into their functional contributions could provide valuable insights into GDM pathophysiology and potential therapeutic targets.
Collapse
Affiliation(s)
- Aysegul Turkyilmaz
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Mugla Sıtkı Koçman University, Muğla, Turkey
| | - Melike Nur Akin
- Faculty of Medicine, Department of Gynaecology and Obstetrics, Mugla Sıtkı Koçman University, Muğla, Turkey
| | - Burcu Kasap
- Faculty of Medicine, Department of Gynaecology and Obstetrics, Mugla Sıtkı Koçman University, Muğla, Turkey
| | - Cilem Ozdemİr
- Graduate School of Natural and Applied Sciences, Department of Bioinformatics, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Aysegul Demirtas Bilgic
- Health Sciences Institution, Department of Medical Biology, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Tuba Gokdogan Edgunlu
- Faculty of Medicine, Department of Medical Biology, Mugla Sıtkı Koçman University, Muğla, Turkey
| |
Collapse
|
16
|
Bano N, Khan S, Ahamad S, Kanshana JS, Dar NJ, Khan S, Nazir A, Bhat SA. Microglia and gut microbiota: A double-edged sword in Alzheimer's disease. Ageing Res Rev 2024; 101:102515. [PMID: 39321881 DOI: 10.1016/j.arr.2024.102515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
The strong association between gut microbiota (GM) and brain functions such as mood, behaviour, and cognition has been well documented. Gut-brain axis is a unique bidirectional communication system between the gut and brain, in which gut microbes play essential role in maintaining various molecular and cellular processes. GM interacts with the brain through various pathways and processes including, metabolites, vagus nerve, HPA axis, endocrine system, and immune system to maintain brain homeostasis. GM dysbiosis, or an imbalance in GM, is associated with several neurological disorders, including anxiety, depression, and Alzheimer's disease (AD). Conversely, AD is sustained by microglia-mediated neuroinflammation and neurodegeneration. Further, GM and their products also affect microglia-mediated neuroinflammation and neurodegeneration. Despite the evidence connecting GM dysbiosis and AD progression, the involvement of GM in modulating microglia-mediated neuroinflammation in AD remains elusive. Importantly, deciphering the mechanism/s by which GM regulates microglia-dependent neuroinflammation may be helpful in devising potential therapeutic strategies to mitigate AD. Herein, we review the current evidence regarding the involvement of GM dysbiosis in microglia activation and neuroinflammation in AD. We also discuss the possible mechanisms through which GM influences the functioning of microglia and its implications for therapeutic intervention. Further, we explore the potential of microbiota-targeted interventions, such as prebiotics, probiotics, faecal microbiota transplantation, etc., as a novel therapeutic strategy to mitigate neuroinflammation and AD progression. By understanding and exploring the gut-brain axis, we aspire to revolutionize the treatment of neurodegenerative disorders, many of which share a common theme of microglia-mediated neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Jitendra Singh Kanshana
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburg, PA, USA.
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, CA 92037, USA.
| | - Sumbul Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research, New Delhi, India.
| | - Shahnawaz Ali Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
17
|
Mishra S, Stany B, Das A, Kanagavel D, Vijayan M. A Comprehensive Review of Membrane Transporters and MicroRNA Regulation in Alzheimer's Disease. Mol Neurobiol 2024; 61:8739-8758. [PMID: 38558361 DOI: 10.1007/s12035-024-04135-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Alzheimer's disease (AD) is a distressing neurodegenerative condition characterized by the accumulation of amyloid-beta (Aβ) plaques and tau tangles within the brain. The interconnectedness between membrane transporters (SLCs) and microRNAs (miRNAs) in AD pathogenesis has gained increasing attention. This review explores the localization, substrates, and functions of SLC transporters in the brain, emphasizing the roles of transporters for glutamate, glucose, nucleosides, and other essential compounds. The examination delves into the significance of SLCs in AD, their potential for drug development, and the intricate realm of miRNAs, encompassing their transcription, processing, functions, and regulation. MiRNAs have emerged as significant players in AD, including those associated with mitochondria and synapses. Furthermore, this review discusses the intriguing nexus of miRNAs targeting SLC transporters and their potential as therapeutic targets in AD. Finally, the review underscores the interaction between SLC transporters and miRNA regulation within the context of Alzheimer's disease, underscoring the need for further research in this area. This comprehensive review aims to shed light on the complex mechanisms underlying the causation of AD and provides insights into potential therapeutic approaches.
Collapse
Affiliation(s)
- Shatakshi Mishra
- School of Biosciences and Technology, Department of Biotechnology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - B Stany
- School of Biosciences and Technology, Department of Biotechnology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Anushka Das
- School of Biosciences and Technology, Department of Biotechnology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Deepankumar Kanagavel
- School of Biosciences and Technology, Department of Biotechnology, VIT University, Vellore, Tamil Nadu, 632014, India.
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA.
| |
Collapse
|
18
|
Toledano A, Rodríguez-Casado A, Älvarez MI, Toledano-Díaz A. Alzheimer's Disease, Obesity, and Type 2 Diabetes: Focus on Common Neuroglial Dysfunctions (Critical Review and New Data on Human Brain and Models). Brain Sci 2024; 14:1101. [PMID: 39595866 PMCID: PMC11591712 DOI: 10.3390/brainsci14111101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Obesity, type 2 diabetes (T2D), and Alzheimer's disease (AD) are pathologies that affect millions of people worldwide. They have no effective therapy and are difficult to prevent and control when they develop. It has been known for many years that these diseases have many pathogenic aspects in common. We highlight in this review that neuroglial cells (astroglia, oligodendroglia, and microglia) play a vital role in the origin, clinical-pathological development, and course of brain neurodegeneration. Moreover, we include the new results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we are investigating. METHODS Critical bibliographic revision and biochemical neuropathological study of neuroglia in a T2D-AD model. RESULTS T2D and AD are not only "connected" by producing complex pathologies in the same individual (obesity, T2D, and AD), but they also have many common pathogenic mechanisms. These include insulin resistance, hyperinsulinemia, hyperglycemia, oxidative stress, mitochondrial dysfunction, and inflammation (both peripheral and central-or neuroinflammation). Cognitive impairment and AD are the maximum exponents of brain neurodegeneration in these pathological processes. both due to the dysfunctions induced by metabolic changes in peripheral tissues and inadequate neurotoxic responses to changes in the brain. In this review, we first analyze the common pathogenic mechanisms of obesity, T2D, and AD (and/or cerebral vascular dementia) that induce transcendental changes and responses in neuroglia. The relationships between T2D and AD discussed mainly focus on neuroglial responses. Next, we present neuroglial changes within their neuropathological context in diverse scenarios: (a) aging involution and neurodegenerative disorders, (b) human obesity and diabetes and obesity/diabetes models, (c) human AD and in AD models, and (d) human AD-T2D and AD-T2D models. An important part of the data presented comes from our own studies on humans and experimental models over the past few years. In the T2D-AD section, we included the results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we investigated, which showed that neuroglial dysfunctions (astrocytosis and microgliosis) manifest before the appearance of amyloid neuropathology, and that the amyloid pathology is greater than that presented by mice fed a normal, non-high-caloric diet A broad review is finally included on pharmacological, cellular, genic, and non-pharmacological (especially diet and lifestyle) neuroglial-related treatments, as well as clinical trials in a comparative way between T2D and AD. These neuroglial treatments need to be included in the multimodal/integral treatments of T2D and AD to achieve greater therapeutic efficacy in many millions of patients. CONCLUSIONS Neuroglial alterations (especially in astroglia and microglia, cornerstones of neuroinflammation) are markedly defining brain neurodegeneration in T2D and A, although there are some not significant differences between each of the studied pathologies. Neuroglial therapies are a very important and p. promising tool that are being developed to prevent and/or treat brain dysfunction in T2D-AD. The need for further research in two very different directions is evident: (a) characterization of the phenotypic changes of astrocytes and microglial cells in each region of the brain and in each phase of development of each isolated and associated pathology (single-cell studies are mandatory) to better understand the pathologies and define new therapeutic targets; (b) studying new therapeutic avenues to normalize the function of neuroglial cells (preventing neurotoxic responses and/or reversing them) in these pathologies, as well as the phenotypic characteristics in each moment of the course and place of the neurodegenerative process.
Collapse
Affiliation(s)
- Adolfo Toledano
- Instituto Cajal, CSIC, 28002 Madrid, Spain; (A.R.-C.); (M.I.Ä.)
| | | | | | | |
Collapse
|
19
|
Fazio S, Bellavite P, Affuso F. Chronically Increased Levels of Circulating Insulin Secondary to Insulin Resistance: A Silent Killer. Biomedicines 2024; 12:2416. [PMID: 39457728 PMCID: PMC11505545 DOI: 10.3390/biomedicines12102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Despite all the progress made by science in the prevention and treatment of cardiovascular diseases and cancers, these are still the main reasons for hospitalizations and death in the Western world. Among the possible causes of this situation, disorders related to hyperinsulinemia and insulin resistance (Hyperin/IR) are still little-known topics. An analysis of the literature shows that this condition is a multiple risk factor for type 2 diabetes, cardiovascular diseases, cellular senescence and cancer, and neurodegenerative diseases. Hyperin/IR is progressively increasing worldwide, and its prevalence has now exceeded 50% of the general population and in overweight children. Asymptomatic or poorly symptomatic, it can last for many years before manifesting itself as diabetes, cardiovascular disease, neoplasm, cognitive deficit, or dementia, therefore leading to enormous social and healthcare costs. For these reasons, a screening plan for this pathology should be implemented for the purpose of identifying people with Hyperin/IR and promptly starting them on preventive treatment.
Collapse
Affiliation(s)
- Serafino Fazio
- School of Medicine, Federico II University, 80100 Naples, Italy
| | | | | |
Collapse
|
20
|
Almutary AG, Begum MY, Kyada AK, Gupta S, Jyothi SR, Chaudhary K, Sharma S, Sinha A, Abomughaid MM, Imran M, Lakhanpal S, Babalghith AO, Abu-Seer EA, Avinash D, Alzahrani HA, Alhindi AA, Iqbal D, Kumar S, Jha NK, Alghamdi S. Inflammatory signaling pathways in Alzheimer's disease: Mechanistic insights and possible therapeutic interventions. Ageing Res Rev 2024; 104:102548. [PMID: 39419399 DOI: 10.1016/j.arr.2024.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
The complex pathophysiology of Alzheimer's disease (AD) poses challenges for the development of therapies. Recently, neuroinflammation has been identified as a key pathogenic mechanism underlying AD, while inflammation has emerged as a possible target for the management and prevention of AD. Several prior studies have demonstrated that medications modulating neuroinflammation might lessen AD symptoms, mostly by controlling neuroinflammatory signaling pathways such as the NF-κB, MAPK, NLRP3, etc, and their respective signaling cascade. Moreover, targeting these inflammatory modalities with inhibitors, natural products, and metabolites has been the subject of intensive research because of their anti-inflammatory characteristics, with many studies demonstrating noteworthy pharmacological capabilities and potential clinical applications. Therefore, targeting inflammation is considered a promising strategy for treating AD. This review comprehensively elucidates the neuroinflammatory mechanisms underlying AD progression and the beneficial effects of inhibitors, natural products, and metabolites in AD treatment.
Collapse
Affiliation(s)
- Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ashish Kumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot, Gujarat 360003, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Swati Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | - Aashna Sinha
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ahmad O Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Eman Adnan Abu-Seer
- Department of Epidemiology and Medical Statistic, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Makkah, Saudi Arabia
| | - D Avinash
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Hassan A Alzahrani
- Department of Respiratory Care, Medical Cities at the Minister of Interior, MCMOl, Riyadh, Saudi Arabia
| | | | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Sandeep Kumar
- School of Pharmacy, Sharda University, Greater Noida, India; DST-FIST Laboratory, Sharda University, Greater Noida, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Biosciences and Technology (SBT), Galgotias University, Greater Noida, India; Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India.
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
21
|
Tsoy A, Umbayev B, Kassenova A, Kaupbayeva B, Askarova S. Pathology of Amyloid-β (Aβ) Peptide Peripheral Clearance in Alzheimer's Disease. Int J Mol Sci 2024; 25:10964. [PMID: 39456746 PMCID: PMC11507512 DOI: 10.3390/ijms252010964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Although Alzheimer's disease (AD) is traditionally viewed as a central nervous system disorder driven by the cerebral accumulation of toxic beta-amyloid (Aβ) peptide, new interpretations of the amyloid cascade hypothesis have led to the recognition of the dynamic equilibrium in which Aβ resides and the importance of peripheral Aβ production and degradation in maintaining healthy Aβ levels. Our review sheds light on the critical role of peripheral organs, particularly the liver, in the metabolism and clearance of circulating Aβ. We explore the mechanisms of Aβ transport across the blood-brain barrier (BBB) via transport proteins such as LRP1 and P-glycoprotein. We also examine how peripheral clearance mechanisms, including enzymatic degradation and phagocytic activity, impact Aβ homeostasis. Our review also discusses potential therapeutic strategies targeting peripheral Aβ clearance pathways. By enhancing these pathways, we propose a novel approach to reducing cerebral Aβ burden, potentially slowing AD progression.
Collapse
Affiliation(s)
- Andrey Tsoy
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (A.T.); (B.U.); (A.K.); (B.K.)
| | - Bauyrzhan Umbayev
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (A.T.); (B.U.); (A.K.); (B.K.)
| | - Aliya Kassenova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (A.T.); (B.U.); (A.K.); (B.K.)
- Faculty of Natural Sciences, Eurasian National University, Astana 010000, Kazakhstan
| | - Bibifatima Kaupbayeva
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (A.T.); (B.U.); (A.K.); (B.K.)
| | - Sholpan Askarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (A.T.); (B.U.); (A.K.); (B.K.)
| |
Collapse
|
22
|
Diniz DG, Bento-Torres J, da Costa VO, Carvalho JPR, Tomás AM, Galdino de Oliveira TC, Soares FC, de Macedo LDED, Jardim NYV, Bento-Torres NVO, Anthony DC, Brites D, Picanço Diniz CW. The Hidden Dangers of Sedentary Living: Insights into Molecular, Cellular, and Systemic Mechanisms. Int J Mol Sci 2024; 25:10757. [PMID: 39409085 PMCID: PMC11476792 DOI: 10.3390/ijms251910757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
With the aging of the global population, neurodegenerative diseases are emerging as a major public health issue. The adoption of a less sedentary lifestyle has been shown to have a beneficial effect on cognitive decline, but the molecular mechanisms responsible are less clear. Here we provide a detailed analysis of the complex molecular, cellular, and systemic mechanisms underlying age-related cognitive decline and how lifestyle choices influence these processes. A review of the evidence from animal models, human studies, and postmortem analyses emphasizes the importance of integrating physical exercise with cognitive, multisensory, and motor stimulation as part of a multifaceted approach to mitigating cognitive decline. We highlight the potential of these non-pharmacological interventions to address key aging hallmarks, such as genomic instability, telomere attrition, and neuroinflammation, and underscore the need for comprehensive and personalized strategies to promote cognitive resilience and healthy aging.
Collapse
Affiliation(s)
- Daniel Guerreiro Diniz
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Seção de Hepatologia, Belém 66.093-020, Pará, Brazil;
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil;
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
| | - João Bento-Torres
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Ciências do Movimento Humano, Universidade Federal do Pará, Belém 66.050-160, Pará, Brazil
| | - Victor Oliveira da Costa
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
| | - Josilayne Patricia Ramos Carvalho
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Ciências do Movimento Humano, Universidade Federal do Pará, Belém 66.050-160, Pará, Brazil
| | - Alessandra Mendonça Tomás
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Campus Samabaia, Universidade Federal de Goiás (EBTT), CEPAE, Goiânia 74.001-970, Goiás, Brazil
| | - Thaís Cristina Galdino de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Faculdade de Ceilândia, Ceilândia, Universidade de Brasília, Brasília 72.220-900, Brazil
| | - Fernanda Cabral Soares
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
| | - Liliane Dias e Dias de Macedo
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Campus Tucurui, Universidade do Estado do Pará, Tucurui 68.455-210, Pará, Brazil
| | - Naina Yuki Vieira Jardim
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Campus Tucurui, Universidade do Estado do Pará, Tucurui 68.455-210, Pará, Brazil
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66.075-110, Pará, Brazil
| | - Natáli Valim Oliver Bento-Torres
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Ciências do Movimento Humano, Universidade Federal do Pará, Belém 66.050-160, Pará, Brazil
| | - Daniel Clive Anthony
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 2JD, UK;
| | - Dora Brites
- Faculty of Pharmacy, Department of Pharmaceutical Sciences and Medicines, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Cristovam Wanderley Picanço Diniz
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil;
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66.075-110, Pará, Brazil
| |
Collapse
|
23
|
Min JH, Sarlus H, Harris RA. MAD-microbial (origin of) Alzheimer's disease hypothesis: from infection and the antimicrobial response to disruption of key copper-based systems. Front Neurosci 2024; 18:1467333. [PMID: 39416952 PMCID: PMC11480022 DOI: 10.3389/fnins.2024.1467333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Microbes have been suspected to cause Alzheimer's disease since at least 1908, but this has generally remained unpopular in comparison to the amyloid hypothesis and the dominance of Aβ and Tau. However, evidence has been accumulating to suggest that these earlier theories are but a manifestation of a common cause that can trigger and interact with all the major molecular players recognized in AD. Aβ, Tau and ApoE, in particular appear to be molecules with normal homeostatic functions but also with alternative antimicrobial functions. Their alternative functions confer the non-immune specialized neuron with some innate intracellular defenses that appear to be re-appropriated from their normal functions in times of need. Indeed, signs of infection of the neurons by biofilm-forming microbial colonies, in synergy with herpes viruses, are evident from the clinical and preclinical studies we discuss. Furthermore, we attempt to provide a mechanistic understanding of the AD landscape by discussing the antimicrobial effect of Aβ, Tau and ApoE and Lactoferrin in AD, and a possible mechanistic link with deficiency of vital copper-based systems. In particular, we focus on mitochondrial oxidative respiration via complex 4 and ceruloplasmin for iron homeostasis, and how this is similar and possibly central to neurodegenerative diseases in general. In the case of AD, we provide evidence for the microbial Alzheimer's disease (MAD) theory, namely that AD could in fact be caused by a long-term microbial exposure or even long-term infection of the neurons themselves that results in a costly prolonged antimicrobial response that disrupts copper-based systems that govern neurotransmission, iron homeostasis and respiration. Finally, we discuss potential treatment modalities based on this holistic understanding of AD that incorporates the many separate and seemingly conflicting theories. If the MAD theory is correct, then the reduction of microbial exposure through use of broad antimicrobial and anti-inflammatory treatments could potentially alleviate AD although this requires further clinical investigation.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital at Solna, Stockholm, Sweden
| | | | | |
Collapse
|
24
|
Rhea EM, Babin A, Thomas P, Omer M, Weaver R, Hansen K, Banks WA, Talbot K. Brain uptake pharmacokinetics of albiglutide, dulaglutide, tirzepatide, and DA5-CH in the search for new treatments of Alzheimer's and Parkinson's diseases. Tissue Barriers 2024; 12:2292461. [PMID: 38095516 PMCID: PMC11583597 DOI: 10.1080/21688370.2023.2292461] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND A number of peptide incretin receptor agonists (IRAs) show promise as therapeutics for Alzheimer's disease (AD) and Parkinson's disease (PD). Transport across the blood-brain barrier (BBB) is one way for IRAs to act directly within the brain. To determine which IRAs are high priority candidates for treating these disorders, we have studied their brain uptake pharmacokinetics. METHODS We quantitatively measure the ability of four IRAs to cross the BBB. We injected adult male CD-1 mice intravenously with 125I- or 14C-labeled albiglutide, dulaglutide, DA5-CH, or tirzepatide and used multiple-time regression analyses to measure brain kinetics up to 1 hour. For those IRAs failing to enter the brain 1 h after intravenous injection, we also investigated their ability to enter over a longer time frame (i.e., 6 h). RESULTS Albiglutide and dulaglutide had the fastest brain uptake rates within 1 hour. DA5-CH appears to enter the brain rapidly, reaching equilibrium quickly. Tirzepatide does not appear to cross the BBB within 1 h after iv injection but like albumin, did so slowly over 6 h, presumably via the extracellular pathways. CONCLUSIONS We find that IRAs can cross the BBB by two separate processes; one that is fast and one that is slow. Three of the four IRAs investigated here have fast rates of transport and should be taken into consideration for testing as AD and PD therapeutics as they would have the ability to act quickly and directly on the brain as a whole.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Alice Babin
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
| | - Peter Thomas
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
| | - Mohamed Omer
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
| | - Riley Weaver
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
| | - Kim Hansen
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
| | - William A Banks
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Konrad Talbot
- Departments of Neurosurgery, Pathology and Human Anatomy, and Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
25
|
Abedi A, Foroutan T, Mohaghegh Shalmani L, Dargahi L. Sex-dependent susceptibility to brain metabolic dysfunction and memory impairment in response to pre and postnatal high-fat diet. J Nutr Biochem 2024; 132:109675. [PMID: 38945454 DOI: 10.1016/j.jnutbio.2024.109675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/15/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024]
Abstract
The developing brain is sensitive to the impacts of early-life nutritional intake. This study investigates whether maternal high fat diet (HFD) causes glucose metabolism impairment, neuroinflammation, and memory impairment in immature and adult offspring, and whether it may be affected by postweaning diets in a sex-dependent manner in adult offspring. After weaning, female rats were fed HFD (55.9% fat) or normal chow diet (NCD; 10% fat) for 8 weeks before mating, during pregnancy, and lactation. On postnatal day 21 (PND21), the male and female offspring of both groups were split into two new groups, and NCD or HFD feeding was maintained until PND180. On PND21 and PND180, brain glucose metabolism, inflammation, and Alzheimer's pathology-related markers were by qPCR. In adult offspring, peripheral insulin resistance parameters, spatial memory performance, and brain glucose metabolism (18F-FDG-PET scan and protein levels of IDE and GLUT3) were assessed. Histological analysis was also performed on PND21 and adult offspring. On PND21, we found that maternal HFD affected transcript levels of glucose metabolism markers in both sexes. In adult offspring, more profoundly in males, postweaning HFD in combination with maternal HFD induced peripheral and brain metabolic disturbances, impaired memory performance and elevated inflammation, dementia risk markers, and neuronal loss. Our results suggest that maternal HFD affects brain glucose metabolism in the early ages of both sexes. Postweaning HFD sex-dependently causes brain metabolic dysfunction and memory impairment in later-life offspring; effects that can be worsened in combination with maternal HFD.
Collapse
Affiliation(s)
- Azam Abedi
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Tahereh Foroutan
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Leila Mohaghegh Shalmani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
de la Monte SM, Tong M. Dysregulated mTOR networks in experimental sporadic Alzheimer's disease. Front Cell Neurosci 2024; 18:1432359. [PMID: 39386180 PMCID: PMC11461251 DOI: 10.3389/fncel.2024.1432359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024] Open
Abstract
Background Beyond the signature amyloid-beta plaques and neurofibrillary tangles, Alzheimer's disease (AD) has been shown to exhibit dysregulated metabolic signaling through insulin and insulin-like growth factor (IGF) networks that crosstalk with the mechanistic target of rapamycin (mTOR). Its broad impact on brain structure and function suggests that mTOR is likely an important therapeutic target for AD. Objective This study characterizes temporal lobe (TL) mTOR signaling abnormalities in a rat model of sporadic AD neurodegeneration. Methods Long Evans rats were given intracerebroventricular injections of streptozotocin (ic-STZ) or saline (control), and 4 weeks later, they were administered neurobehavioral tests followed by terminal harvesting of the TLs for histopathological study and measurement of AD biomarkers, neuroinflammatory/oxidative stress markers, and total and phosphorylated insulin/IGF-1-Akt-mTOR pathway signaling molecules. Results Rats treated with ic-STZ exhibited significantly impaired performance on Rotarod (RR) and Morris Water Maze (MWM) tests, brain atrophy, TL and hippocampal neuronal and white matter degeneration, and elevated TL pTau, AβPP, Aβ, AChE, 4-HNE, and GAPDH and reduced ubiquitin, IL-2, IL-6, and IFN-γ immunoreactivities. In addition, ic-STZ reduced TL pY1135/1136-IGF-1R, Akt, PTEN, pS380-PTEN, pS2448-mTOR, p70S6K, pT412-p70S6K, p/T-pT412-p70S6K, p/T-Rictor, and p/T-Raptor. Conclusion Experimental ic-STZ-induced sporadic AD-type neurodegeneration with neurobehavioral dysfunctions associated with inhibition of mTOR signaling networks linked to energy metabolism, plasticity, and white matter integrity.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Medicine, Pathology and Laboratory Medicine, Neurology, and Neurosurgery, Rhode Island Hospital, Women and Infants Hospital, The Alpert Medical School at Brown University, Providence, RI, United States
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital, The Alpert Medical School at Brown University, Providence, RI, United States
| |
Collapse
|
27
|
Duranti E, Villa C. From Brain to Muscle: The Role of Muscle Tissue in Neurodegenerative Disorders. BIOLOGY 2024; 13:719. [PMID: 39336146 PMCID: PMC11428675 DOI: 10.3390/biology13090719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Neurodegenerative diseases (NDs), like amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), and Parkinson's disease (PD), primarily affect the central nervous system, leading to progressive neuronal loss and motor and cognitive dysfunction. However, recent studies have revealed that muscle tissue also plays a significant role in these diseases. ALS is characterized by severe muscle wasting as a result of motor neuron degeneration, as well as alterations in gene expression, protein aggregation, and oxidative stress. Muscle atrophy and mitochondrial dysfunction are also observed in AD, which may exacerbate cognitive decline due to systemic metabolic dysregulation. PD patients exhibit muscle fiber atrophy, altered muscle composition, and α-synuclein aggregation within muscle cells, contributing to motor symptoms and disease progression. Systemic inflammation and impaired protein degradation pathways are common among these disorders, highlighting muscle tissue as a key player in disease progression. Understanding these muscle-related changes offers potential therapeutic avenues, such as targeting mitochondrial function, reducing inflammation, and promoting muscle regeneration with exercise and pharmacological interventions. This review emphasizes the importance of considering an integrative approach to neurodegenerative disease research, considering both central and peripheral pathological mechanisms, in order to develop more effective treatments and improve patient outcomes.
Collapse
Affiliation(s)
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| |
Collapse
|
28
|
Kim DS, Kang S, Moon NR, Shin BK, Park S. Zeaxanthin and Lutein Ameliorate Alzheimer's Disease-like Pathology: Modulation of Insulin Resistance, Neuroinflammation, and Acetylcholinesterase Activity in an Amyloid-β Rat Model. Int J Mol Sci 2024; 25:9828. [PMID: 39337316 PMCID: PMC11432044 DOI: 10.3390/ijms25189828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by impaired insulin/insulin-like growth factor-1 signaling in the hippocampus. Zeaxanthin and lutein, known for their antioxidant and anti-inflammatory properties, have been reported to protect against brain damage and cognitive decline. However, their mechanisms related to insulin signaling in AD remain unclear. This study investigated the efficacy and mechanisms of zeaxanthin, lutein, and resveratrol in modulating an AD-like pathology in an amyloid-β rat model. Rats were administered hippocampal infusions of 3.6 nmol/day amyloid-β (Aβ)(25-35) for 14 days to induce AD-like memory deficits (AD-CON). Normal control rats received Aβ(35-25) (Normal-CON). All rats had a high-fat diet. Daily, AD rats consumed 200 mg/kg body weight of zeaxanthin (AD-ZXT), lutein (AD-LTN), and resveratrol (AD-RVT; positive-control) or resistant dextrin as a placebo (AD-CON) for eight weeks. The AD-CON rats exhibited a higher Aβ deposition, attenuated hippocampal insulin signaling (reduced phosphorylation of protein kinase B [pAkt] and glycogen synthase kinase-3β [pGSK-3β]), increased neuroinflammation, elevated acetylcholinesterase activity, and memory deficits compared to the Normal-CON group. They also showed systemic insulin resistance and high hepatic glucose output. Zeaxanthin and lutein prevented memory impairment more effectively than the positive-control resveratrol by suppressing acetylcholinesterase activity, lipid peroxidation, and pro-inflammatory cytokines (TNF-α, IL-1β). They also potentiated hippocampal insulin signaling and increased brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CTNF) mRNA expression to levels comparable to the Normal-CON rats. Additionally, zeaxanthin and lutein improved glucose disposal, reduced hepatic glucose output, and normalized insulin secretion patterns. In conclusion, zeaxanthin and lutein supplementation at doses equivalent to 1.5-2.0 g daily in humans may have practical implications for preventing or slowing human AD progression by reducing neuroinflammation and maintaining systemic and central glucose homeostasis, showing promise even when compared to the established neuroprotective compound resveratrol. However, further clinical trials are needed to evaluate their efficacy and safety in human populations.
Collapse
Affiliation(s)
- Da-Sol Kim
- Department Food and Nutrition, Hoseo University, Asan 31499, Republic of Korea; (D.-S.K.); (S.K.); (N.-R.M.); (B.-K.S.)
| | - Suna Kang
- Department Food and Nutrition, Hoseo University, Asan 31499, Republic of Korea; (D.-S.K.); (S.K.); (N.-R.M.); (B.-K.S.)
| | - Na-Rang Moon
- Department Food and Nutrition, Hoseo University, Asan 31499, Republic of Korea; (D.-S.K.); (S.K.); (N.-R.M.); (B.-K.S.)
| | - Bae-Keun Shin
- Department Food and Nutrition, Hoseo University, Asan 31499, Republic of Korea; (D.-S.K.); (S.K.); (N.-R.M.); (B.-K.S.)
| | - Sunmin Park
- Department Food and Nutrition, Hoseo University, Asan 31499, Republic of Korea; (D.-S.K.); (S.K.); (N.-R.M.); (B.-K.S.)
- Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea
| |
Collapse
|
29
|
Shekho D, Mishra R, Kamal R, Bhatia R, Awasthi A. Breaking Barriers in Alzheimer's Disease: the Role of Advanced Drug Delivery Systems. AAPS PharmSciTech 2024; 25:207. [PMID: 39237748 DOI: 10.1208/s12249-024-02923-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024] Open
Abstract
Alzheimer's disease (AD), characterized by cognitive impairment, brain plaques, and tangles, is a global health concern affecting millions. It involves the build-up of amyloid-β (Aβ) and tau proteins, the formation of neuritic plaques and neurofibrillary tangles, cholinergic system dysfunction, genetic variations, and mitochondrial dysfunction. Various signaling pathways and metabolic processes are implicated in AD, along with numerous biomarkers used for diagnosis, risk assessment, and research. Despite these, there is no cure or effective treatment for AD. It is critically important to address this immediately to develop novel drug delivery systems (NDDS) capable of targeting the brain and delivering therapeutic agents to modulate the pathological processes of AD. This review summarizes AD, its pathogenesis, related signaling pathways, biomarkers, conventional treatments, the need for NDDS, and their application in AD treatment. It also covers preclinical, clinical, and ongoing trials, patents, and marketed AD formulations.
Collapse
Affiliation(s)
- Devank Shekho
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Ritika Mishra
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Raj Kamal
- Department of Quality Assurance, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Rohit Bhatia
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India.
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| |
Collapse
|
30
|
Victor-Sami S, Kamali-Roosta A, Shamsaldeen YA. Methylglyoxal induces death in human brain neuronal cells (SH-SY5Y), prevented by metformin and dapagliflozin. J Diabetes Complications 2024; 38:108832. [PMID: 39116474 DOI: 10.1016/j.jdiacomp.2024.108832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/22/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Diabetes mellitus is a metabolic disorder caused by a dysfunction in insulin action or secretion, leading to an elevation in blood glucose levels. It is a highly prevalent condition and as a result, the NHS spends 10 % of its entire budget on diabetes mellitus care, that is equivalent to £10 billion a year. Diabetes mellitus has been linked with vascular and neurological complications which may be associated with the progression of neurodegeneration and Alzheimer's disease. Chronic hyperglycaemia increases the production of the reactive oxidant species (ROS) such as methylglyoxal (MGO). MGO has been linked with vascular complications, neuropathy and cytotoxicity. The main aim of this study was to investigate the potential beneficial effect of antidiabetic agents such as metformin and dapagliflozin on human brain neuronal cells (SH-SY5Y) treated with MGO. SH-SY5Y cells were cultured in DMEM/F12 media and subjected overnight incubation with one of the following treatment conditions: Control (untreated); MGO (1 μM); MGO (100 μM); metformin (100 μM) + MGO (100 μM); and dapagliflozin (10 μM) + MGO (100 μM). Several assays were conducted to explore the effect of the treatment groups on the SH-SY5Y cells. These included: MTT assay; LDH assay, peroxynitrite fluorescence assay, and laser scanning confocal microscopy. MGO (100 μM) led to significant cell injury and damage and significantly reduced the survival of the cells by approximately 50-75 %, associated with significant increase in peroxynitrite. The addition of metformin (100 μM) or dapagliflozin (10 μM) represented significant protective effects on the cells and prevented the cell damage caused by the high MGO concentration. As a result, the findings of this research reveal that MGO-induced cell damage may partly be mediated by the generation of peroxynitrite, while the antidiabetic agents such as metformin and dapagliflozin prevent brain cell death, which potentially may play prophylactic roles against the risk of dementia in diabetic patients.
Collapse
Affiliation(s)
- Samantha Victor-Sami
- Department of applied science, school of pharmacy, University of Brighton, BN24GJ, UK
| | - Ali Kamali-Roosta
- Department of applied science, school of pharmacy, University of Brighton, BN24GJ, UK
| | - Yousif A Shamsaldeen
- Department of applied science, school of pharmacy, University of Brighton, BN24GJ, UK.
| |
Collapse
|
31
|
Li X, Wang J, Zhang M, Li X, Fan Y, Zhou X, Sun Y, Qiu Z. Biological aging mediates the associations of metabolic score for insulin resistance with all-cause and cardiovascular disease mortality among US adults: A nationwide cohort study. Diabetes Obes Metab 2024; 26:3552-3564. [PMID: 38853301 DOI: 10.1111/dom.15694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/11/2024] [Accepted: 05/20/2024] [Indexed: 06/11/2024]
Abstract
AIM To investigate the associations of metabolic score for insulin resistance (METS-IR) with all-cause and cardiovascular disease (CVD)-specific mortality and the potential mediating role of biological ageing. METHODS A cohort of 19 204 participants from the National Health and Nutrition Examination Survey (NHANES) 1999-2018 was recruited for this study. Cox regression models, restricted cubic splines, and Kaplan-Meier survival curves were used to determine the relationships of METS-IR with all-cause and CVD-specific mortality. Mediation analyses were performed to explore the possible intermediary role of biological ageing markers, including phenotypic age (PhenoAge) and biological age (BioAge). RESULTS During a median follow-up of 9.17 years, we observed 2818 deaths, of which 875 were CVD-specific. Multivariable Cox regression showed that the highest METS-IR level (Q4) was associated with increased all-cause (hazard ratio [HR] 1.38, 95% confidence interval [CI] 1.14-1.67) and CVD mortality (HR 1.52, 95% CI 1.10-2.12) compared with the Q1 level. Restricted cubic splines showed a nonlinear relationship between METS-IR and all-cause mortality. Only METS-IR above the threshold (41.02 μg/L) was positively correlated with all-cause death. METS-IR had a linear positive relationship with CVD mortality. In mediation analyses, we found that PhenoAge mediated 51.32% (p < 0.001) and 41.77% (p < 0.001) of the association between METS-IR and all-cause and CVD-specific mortality, respectively. For BioAge, the mediating proportions of PhenoAge were 21.33% (p < 0.001) and 15.88% (p < 0.001), respectively. CONCLUSIONS This study highlights the detrimental effects of insulin resistance, as measured by METS-IR, on all-cause and CVD mortality. Moreover, it underscores the role of biological ageing in mediating these associations, emphasizing the need for interventions targeting both insulin resistance and ageing processes to mitigate mortality risks in metabolic disorders.
Collapse
Affiliation(s)
- Xiaoxuan Li
- Department of Oncology, Key Laboratory of Cancer Molecular and Translational Research, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jia Wang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengqi Zhang
- Department of Oncology, Key Laboratory of Cancer Molecular and Translational Research, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangjun Li
- Breast Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuchen Fan
- Department of Medicine, Qingdao University, Qingdao, China
| | - Xinbei Zhou
- Department of Critical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuxin Sun
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenkang Qiu
- Interventional Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
32
|
Kerr NR, Mossman CW, Chou CH, Bunten JM, Kelty TJ, Childs TE, Rector RS, Arnold WD, Grisanti LA, Du X, Booth FW. Hindlimb immobilization induces insulin resistance and elevates mitochondrial ROS production in the hippocampus of female rats. J Appl Physiol (1985) 2024; 137:512-526. [PMID: 38961821 PMCID: PMC11424180 DOI: 10.1152/japplphysiol.00234.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/11/2024] [Accepted: 07/02/2024] [Indexed: 07/05/2024] Open
Abstract
Alzheimer's disease (AD) is the fifth leading cause of death in older adults, and treatment options are severely lacking. Recent findings demonstrate a strong relationship between skeletal muscle and cognitive function, with evidence supporting that muscle quality and cognitive function are positively correlated in older adults. Conversely, decreased muscle function is associated with a threefold increased risk of cognitive decline. Based on these observations, the purpose of this study was to investigate the negative effects of muscle disuse [via a model of hindlimb immobilization (HLI)] on hippocampal insulin sensitivity and mitochondrial function and identify the potential mechanisms involved. HLI for 10 days in 4-mo-old female Wistar rats resulted in the following novel findings: 1) hippocampal insulin resistance and deficits in whole body glucose homeostasis, 2) dramatically increased mitochondrial reactive oxygen species (ROS) production in the hippocampus, 3) elevated markers for amyloidogenic cleavage of amyloid precursor protein (APP) and tau protein in the hippocampus, 4) and reduced brain-derived neurotrophic factor (BDNF) expression. These findings were associated with global changes in iron homeostasis, with muscle disuse producing muscle iron accumulation in association with decreased serum and whole brain iron levels. We report the novel finding that muscle disuse alters brain iron homeostasis and reveal a strong negative correlation between muscle and brain iron content. Overall, HLI-induced muscle disuse has robust negative effects on hippocampal insulin sensitivity and ROS production in association with altered brain iron homeostasis. This work provides potential novel mechanisms that may help explain how loss of muscle function contributes to cognitive decline and AD risk.NEW & NOTEWORTHY Muscle disuse via hindlimb immobilization increased oxidative stress and insulin resistance in the hippocampus. These findings were in association with muscle iron overload in connection with iron dysregulation in the brain. Overall, our work identifies muscle disuse as a contributor to hippocampal dysfunction, potentially through an iron-based muscle-brain axis, highlighting iron dysregulation as a potential novel mechanism in the relationship between muscle health, cognitive function, and Alzheimer's disease risk.
Collapse
Affiliation(s)
- Nathan R Kerr
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Chandler W Mossman
- Veterinary Medical Diagnostic Laboratory, University of Missouri, Columbia, Missouri, United States
| | - Chih-Hsuan Chou
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Joshua M Bunten
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Taylor J Kelty
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
| | - Thomas E Childs
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Randy Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Research Service, Harry S. Truman Memorial Veterans Medical Center, University of Missouri, Columbia, Missouri, United States
- Department of Medicine, University of Missouri, Columbia, Missouri, United States
| | - William David Arnold
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, Missouri, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
- Department of Neurology, University of Missouri, Columbia, Missouri, United States
| | - Laurel A Grisanti
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Xiangwei Du
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
- Veterinary Medical Diagnostic Laboratory, University of Missouri, Columbia, Missouri, United States
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
33
|
Nagayach A, Bhaskar R, Ghosh S, Singh KK, Han SS, Sinha JK. Advancing the understanding of diabetic encephalopathy through unravelling pathogenesis and exploring future treatment perspectives. Ageing Res Rev 2024; 100:102450. [PMID: 39134179 DOI: 10.1016/j.arr.2024.102450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/25/2024]
Abstract
Diabetic encephalopathy (DE), a significant micro-complication of diabetes, manifests as neurochemical, structural, behavioral, and cognitive alterations. This condition is especially dangerous for the elderly because aging raises the risk of neurodegenerative disorders and cognitive impairment, both of which can be made worse by diabetes. Despite its severity, diagnosis of this disease is challenging, and there is a paucity of information on its pathogenesis. The pivotal roles of various cellular pathways, activated or influenced by hyperglycemia, insulin sensitivity, amyloid accumulation, tau hyperphosphorylation, brain vasculopathy, neuroinflammation, and oxidative stress, are widely recognized for contributing to the potential causes of diabetic encephalopathy. We also reviewed current pharmacological strategies for DE encompassing a comprehensive approach targeting metabolic dysregulations and neurological manifestations. Antioxidant-based therapies hold promise in mitigating oxidative stress-induced neuronal damage, while anti-diabetic drugs offer neuroprotective effects through diverse mechanisms, including modulation of insulin signaling pathways and neuroinflammation. Additionally, tissue engineering and nanomedicine-based approaches present innovative strategies for targeted drug delivery and regenerative therapies for DE. Despite significant progress, challenges remain in translating these therapeutic interventions into clinical practice, including long-term safety, scalability, and regulatory approval. Further research is warranted to optimize these approaches and address remaining gaps in the management of DE and associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Aarti Nagayach
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301 India
| | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology, Symbiosis International (Deemed University), Rajiv Gandhi InfoTech Park, Hinjawadi, Pune, Maharashtra 411057, India
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea.
| | | |
Collapse
|
34
|
Doroszkiewicz J, Mroczko J, Winkel I, Mroczko B. Metabolic and Immune System Dysregulation: Unraveling the Connections between Alzheimer's Disease, Diabetes, Inflammatory Bowel Diseases, and Rheumatoid Arthritis. J Clin Med 2024; 13:5057. [PMID: 39274269 PMCID: PMC11396443 DOI: 10.3390/jcm13175057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Alzheimer's disease (AD), diabetes mellitus (DM), inflammatory bowel diseases (IBD), and rheumatoid arthritis (RA) are chronic conditions affecting millions globally. Despite differing clinical symptoms, these diseases share pathophysiological mechanisms involving metabolic and immune system dysregulation. This paper examines the intricate connections between these disorders, focusing on shared pathways such as insulin resistance, lipid metabolism dysregulation, oxidative stress, and chronic inflammation. An important aspect is the role of amyloid-beta plaques and tau protein tangles, which are hallmark features of AD. These protein aggregates are influenced by metabolic dysfunction and inflammatory processes similar to those seen in DM, RA, and IBD. This manuscript explores how amyloid and tau pathologies may be exacerbated by shared metabolic and immune dysfunction. Additionally, this work discusses the gut-brain axis and the influence of gut microbiota in mediating disease interactions. Understanding these commonalities opens new avenues for multi-targeted therapeutic approaches that address the root causes rather than merely the symptoms of these conditions. This integrative perspective could lead to more effective interventions and improved patient outcomes, emphasizing the importance of a unified approach in managing these interconnected diseases.
Collapse
Affiliation(s)
- Julia Doroszkiewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Jan Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Izabela Winkel
- Dementia Disorders Centre, Medical University of Wroclaw, 50-425 Scinawa, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
35
|
Cardinali CAEF, Martins YA, Moraes RCM, Costa AP, Alencar MB, Silber AM, Torrão AS. Exploring the Therapeutic Potential of Benfotiamine in a Sporadic Alzheimer's-Like Disease Rat Model: Insights into Insulin Signaling and Cognitive function. ACS Chem Neurosci 2024; 15:2982-2994. [PMID: 39007352 PMCID: PMC11342302 DOI: 10.1021/acschemneuro.4c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative process, also considered a metabolic condition due to alterations in glucose metabolism and insulin signaling pathways in the brain, which share similarities with diabetes. This study aimed to investigate the therapeutic effects of benfotiamine (BFT), a vitamin B1 analog, in the early stages of the neurodegenerative process in a sporadic model of Alzheimer's-like disease induced by intracerebroventricular injection of streptozotocin (STZ). Supplementation with 150 mg/kg of BFT for 7 days reversed the cognitive impairment in short- and long-term memories caused by STZ in rodents. We attribute these effects to BFT's ability to modulate glucose transporters type 1 and 3 (GLUT1 and GLUT3) in the hippocampus, inhibit GSK3 activity in the hippocampus, and modulate the insulin signaling in the hippocampus and entorhinal cortex, as well as reduce the activation of apoptotic pathways (BAX) in the hippocampus. Therefore, BFT emerges as a promising and accessible intervention in the initial treatment of conditions similar to AD.
Collapse
Affiliation(s)
- Camila A. E. F. Cardinali
- Departamento
de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Yandara A. Martins
- Departamento
de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Ruan C. M. Moraes
- Departamento
de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
- Department
of Psychiatry & Behavioral Neurosciences, The University of Alabama at Birmingham, Birmingham Alabama 35294, United States
| | - Andressa P. Costa
- Departamento
de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Mayke B. Alencar
- Laboratory
of Biochemistry of Tryps−LaBTryps, Departamento de Parasitologia, Instituto de Ciencias Biomedicas, Universidade de
Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Ariel M. Silber
- Laboratory
of Biochemistry of Tryps−LaBTryps, Departamento de Parasitologia, Instituto de Ciencias Biomedicas, Universidade de
Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Andrea S. Torrão
- Departamento
de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
| |
Collapse
|
36
|
Xu F, Dou L, Yu D, Wu X, Liu L, Man Y, Huang X. A Novel "Endocrine Hormone": The Diverse Role of Extracellular Vesicles in Multiorgan Insulin Resistance. Int J Med Sci 2024; 21:2081-2093. [PMID: 39239539 PMCID: PMC11373541 DOI: 10.7150/ijms.97217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/24/2024] [Indexed: 09/07/2024] Open
Abstract
Insulin resistance is the primary contributor to the disruption in glucose homeostasis in the body, playing a significant causative role in many metabolic diseases. Insulin resistance is characterized by compensatory insulin secretion and reduced insulin responsiveness in target organs. Dysregulation of the interaction between insulin-secreting cells and insulin-responsive target organs is an important factor driving the progression of insulin resistance. Circulating endocrine hormones are important mediators mediating the interaction between insulin-secreting cells and insulin-responsive target organs. In addition to the classical hormones secreted by endocrine glands and organ-specific hormones secreted by metabolism-related organs (adipose tissue, muscle, liver, etc.), extracellular vesicles have been recognized as a novel class of endocrine hormones with a complex composition. Extracellular vesicles can transport signaling molecules, such as miRNAs and LncRNAs, to vital organs related to insulin resistance, in a manner akin to conventional hormones. The significant role in regulating the development of insulin resistance underscores the increasing interest in extracellular vesicles as essential contributors to this process. In this review, we summarize the three types of hormones (classical hormones, organokines and extracellular vesicles) that play a regulatory role in insulin resistance, and focus on the novel endocrine hormones, extracellular vesicles, to elaborate the mechanism of extracellular vesicles' regulation of insulin resistance progress from two aspects: the impact on insulin-secreting cells and the influence on insulin-responsive target organs. In addition, this paper outlines the clinical applications of extracellular vesicles in insulin resistance. A comprehensive understanding of the regulatory mechanisms and diagnostic status of the inter-organ network in insulin resistance has great potential to advance targeted therapeutic interventions and diagnostic markers, thereby benefiting both the prevention and treatment of insulin resistance.
Collapse
Affiliation(s)
- Fangzhi Xu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology of National Health Commission, 100730, Beijing, P.R. China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology of National Health Commission, 100730, Beijing, P.R. China
| | - Dongni Yu
- Department of Dermatology, Beijing hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, Beijing, P.R. China
| | - Xi Wu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology of National Health Commission, 100730, Beijing, P.R. China
| | - Longteng Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology of National Health Commission, 100730, Beijing, P.R. China
| | - Yong Man
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology of National Health Commission, 100730, Beijing, P.R. China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology of National Health Commission, 100730, Beijing, P.R. China
| |
Collapse
|
37
|
Wei C, Li X, Jin Y, Zhang Y, Yuan Q. Does the liver facilitate aging-related cognitive impairment: Conversation between liver and brain during exercise? J Cell Physiol 2024; 239:e31287. [PMID: 38704693 DOI: 10.1002/jcp.31287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/24/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
Liver, an important regulator of metabolic homeostasis, is critical for healthy brain function. In particular, age-related neurodegenerative diseases seriously reduce the quality of life for the elderly. As population aging progresses rapidly, unraveling the mechanisms that effectively delay aging has become critical. Appropriate exercise is reported to improve aging-related cognitive impairment. Whereas current studies focused on exploring the effect of exercise on the aging brain itself, ignoring the persistent effects of peripheral organs on the brain through the blood circulation. The aim of this paper is to summarize the communication and aging processes of the liver and brain and to emphasize the metabolic mechanisms of the liver-brain axis about exercise ameliorating aging-related neurodegenerative diseases. A comprehensive understanding of the potential mechanisms about exercise ameliorating aging is critical for improving adaptation to age-related brain changes and formulating effective interventions against age-related cognitive decline.
Collapse
Affiliation(s)
- Changling Wei
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Xue Li
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Yu Jin
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Yuanting Zhang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Qiongjia Yuan
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| |
Collapse
|
38
|
Arjmand S, Ilaghi M, Sisakht AK, Guldager MB, Wegener G, Landau AM, Gjedde A. Regulation of mitochondrial dysfunction by estrogens and estrogen receptors in Alzheimer's disease: A focused review. Basic Clin Pharmacol Toxicol 2024; 135:115-132. [PMID: 38801027 DOI: 10.1111/bcpt.14035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that primarily manifests itself by progressive memory loss and cognitive decline, thus significantly affecting memory functions and quality of life. In this review, we proceed from the understanding that the canonical amyloid-β hypothesis, while significant, has faced setbacks, highlighting the need to adopt a broader perspective considering the intricate interplay of diverse pathological pathways for effective AD treatments. Sex differences in AD offer valuable insights into a better understanding of its pathophysiology. Fluctuation of the levels of ovarian sex hormones during perimenopause is associated with changes in glucose metabolism, as a possible window of opportunity to further understand the roles of sex steroid hormones and their associated receptors in the pathophysiology of AD. We review these dimensions, emphasizing the potential of estrogen receptors (ERs) to reveal mitochondrial functions in the search for further research and therapeutic strategies for AD pharmacotherapy. Understanding and addressing the intricate interactions of mitochondrial dysfunction and ERs potentially pave the way for more effective approaches to AD therapy.
Collapse
Affiliation(s)
- Shokouh Arjmand
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mehran Ilaghi
- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Karimi Sisakht
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Matti Bock Guldager
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anne M Landau
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Albert Gjedde
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
39
|
Zamora MG, García-Lluch G, Moreno L, Pardo J, Pericas CC. Assessment of sodium-glucose cotransporter 2 inhibitors (SGLT2i) and other antidiabetic agents in Alzheimer's disease: A population-based study. Pharmacol Res 2024; 206:107295. [PMID: 38971270 DOI: 10.1016/j.phrs.2024.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/18/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The lack of effective treatments for dementia has led to explore the potential of antidiabetic agents as a possible approach. This cross-sectional and population-based study aimed to investigate the relationship between each antidiabetic drug and their defined daily doses (DDDs) and the use of anti-Alzheimer's disease (AD) drugs in order to establish new possible hypotheses about the role of antidiabetic drugs in AD. For that purpose, a database containing information on medications prescribed to 233183 patients aged 50 years or older between 2018 and 2020 was used. DDDs were calculated according to the ATC/DDD index 2023. Statistical analyses, with logistic regression, were carried out to assess antidiabetic and anti-AD drugs consumption. A total of 91836 patients who were prescribed at least one antihypertensive, antidiabetic, or lipid-modifying agent were included in the study; specifically, 29260 patients were prescribed antidiabetic medication. Among the antidiabetic agents, glucagon-like peptide-1 analogs (GLP-1) DDDs were likely to have a positive association with anti-AD drugs in people aged between 70 and 80 years. Additionally, sodium-glucose cotransporter 2 inhibitors (SGLT2i) were prone to have a positive association with anti-AD drug usage across almost every age. However, insulin usage was associated with an increased usage of anti-AD agents. In conclusion, there is evidence suggesting a correlation between certain antidiabetic agents and dementia. Specifically, GLP-1 and SGLT2i might be associated with lower odds of anti-AD drugs usage, while insulins might be linked to higher odds of using anti-AD drugs.
Collapse
Affiliation(s)
- Mar Garcia Zamora
- Research Group in Alzheimer Disease. Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Cathedra DeCo MICOF-CEU UCH, University Cardenal Herrera-CEU, CEU Universities, Valencia 46115, Spain
| | - Gemma García-Lluch
- Research Group in Alzheimer Disease. Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Cathedra DeCo MICOF-CEU UCH, University Cardenal Herrera-CEU, CEU Universities, Valencia 46115, Spain
| | - Lucrecia Moreno
- Cathedra DeCo MICOF-CEU UCH, University Cardenal Herrera-CEU, CEU Universities, Valencia 46115, Spain; Department of Pharmacy, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia 46115, Spain
| | - Juan Pardo
- Embedded Systems and Artificial Intelligence Group, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia 46115, Spain.
| | - Consuelo Cháfer Pericas
- Research Group in Alzheimer Disease. Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| |
Collapse
|
40
|
Gao CY, Qin GF, Zheng MC, Tian MJ, He YN, Wang PW. Banxia Xiexin Decoction Alleviated Cerebral Glucose Metabolism Disorder by Regulating Intestinal Microbiota in APP/PS1 Mice. Chin J Integr Med 2024; 30:701-712. [PMID: 37987962 DOI: 10.1007/s11655-023-3606-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2023] [Indexed: 11/22/2023]
Abstract
OBJECTIVE To identify whether Banxia Xiexin Decoction (BXD) alleviates cerebral glucose metabolism disorder by intestinal microbiota regulation in APP/PS1 mice. METHODS Forty-five 3-month-old male APP/PS1 mice were divided into 3 groups using a random number table (n=15 per group), including a model group (MG), a liraglutide group (LG) and a BXD group (BG). Fifteen 3-month-old male C57BL/6J wild-type mice were used as the control group (CG). Mice in the BG were administered BXD granules by gavage at a dose of 6 g/(kg•d) for 3 months, while mice in the LG were injected intraperitoneally once daily with Liraglutide Injection (25 nmol/kg) for 3 months. Firstly, liquid chromatography with tandem-mass spectrometry was used to analyze the active components of BXD granules and the medicated serum of BXD. Then, the cognitive deficits, Aβ pathological change and synaptic plasticity markers, including synaptophysin (SYP) and postsynaptic density protein 95 (PSD95), were measured in APP/PS1 mice. Brain glucose uptake was detected by micropositron emission tomography. Intestinal microbial constituents were detected by 16S rRNA sequencing. The levels of intestinal glucagon-like peptide 1 (GLP-1) and cerebral GLP-1 receptor (GLP-1R), as well as the phosphoinositide-3-kinase/protein kinase B/glycogen synthase kinase-3β (PI3K/Akt/GSK3β) insulin signaling pathway were determined by immunohistochemical (IHC) staining and Western blot analysis, respectively. RESULTS BXD ameliorated cognitive deficits and Aβ pathological features (P<0.01). The expressions of SYP and PSD95 in the BG were higher than those in the MG (P<0.01). Brain glucose uptake in the BG was higher than that in the MG (P<0.01). The intestinal microbial composition in the BG was partially reversed. The levels of intestinal GLP-1 in the BG were higher than those in the MG (P<0.01). Compared with the MG, the expression levels of hippocampal GLP-1R, Akt, PI3K and p-PI3K in the BG were significantly increased (P<0.01), while the levels of GSK3β were reduced (P<0.01). CONCLUSION BXD exhibited protective effects against Alzheimer's disease by regulating the gut microbiota/GLP-1/GLP-1R, enhancing PI3K/Akt/GSK3β insulin signaling pathway, and improving brain glucose metabolism.
Collapse
Affiliation(s)
- Chen-Yan Gao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Gao-Feng Qin
- Neurology Department, Binzhou Medical University Hospital, Binzhou, Shandong Province, 256603, China
| | - Ming-Cui Zheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Mei-Jing Tian
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yan-Nan He
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Peng-Wen Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
41
|
Abdulhameed N, Babin A, Hansen K, Weaver R, Banks WA, Talbot K, Rhea EM. Comparing regional brain uptake of incretin receptor agonists after intranasal delivery in CD-1 mice and the APP/PS1 mouse model of Alzheimer's disease. Alzheimers Res Ther 2024; 16:173. [PMID: 39085976 PMCID: PMC11293113 DOI: 10.1186/s13195-024-01537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Targeting brain insulin resistance (BIR) has become an attractive alternative to traditional therapeutic treatments for Alzheimer's disease (AD). Incretin receptor agonists (IRAs), targeting either or both of the glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptors, have proven to reverse BIR and improve cognition in mouse models of AD. We previously showed that many, but not all, IRAs can cross the blood-brain barrier (BBB) after intravenous (IV) delivery. Here we determined if widespread brain uptake of IRAs could be achieved by circumventing the BBB using intranasal (IN) delivery, which has the added advantage of minimizing adverse gastrointestinal effects of systemically delivered IRAs. Of the 5 radiolabeled IRAs tested (exenatide, dulaglutide, semaglutide, DA4-JC, and DA5-CH) in CD-1 mice, exenatide, dulaglutide, and DA4-JC were successfully distributed throughout the brain following IN delivery. We observed significant sex differences in uptake for DA4-JC. Dulaglutide and DA4-JC exhibited high uptake by the hippocampus and multiple neocortical areas. We further tested and found the presence of AD-associated Aβ pathology minimally affected uptake of dulaglutide and DA4-JC. Of the 5 tested IRAs, dulaglutide and DA4-JC are best capable of accessing brain regions most vulnerable in AD (neocortex and hippocampus) after IN administration. Future studies will need to be performed to determine if IN IRA delivery can reduce BIR in AD or animal models of that disorder.
Collapse
Affiliation(s)
- Noor Abdulhameed
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Alice Babin
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Kim Hansen
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Riley Weaver
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - William A Banks
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98498, USA
| | - Konrad Talbot
- Departments of Neurosurgery, Pathology and Human Anatomy, and Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| | - Elizabeth M Rhea
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA.
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98498, USA.
| |
Collapse
|
42
|
Bian X, Li M, Lou S. Resistance training boosts lactate transporters and synaptic proteins in insulin-resistance mice. Heliyon 2024; 10:e34425. [PMID: 39082040 PMCID: PMC11284409 DOI: 10.1016/j.heliyon.2024.e34425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024] Open
Abstract
Background This investigation delineates the influence of resistance training on the expression of synaptic plasticity-related proteins in the hippocampi of insulin-resistant mice and explores the underlying molecular mechanisms. Methods Six-week-old male C57BL/6 J mice were stratified into a control group and a high-fat diet group to induce insulin resistance over a 12-week period. Subsequently, the mice were further divided into sedentary and resistance training cohorts, with the latter engaging in a 12-week ladder-climbing regimen. Post-intervention, blood, and hippocampal specimens were harvested for analytical evaluation. Results In the insulin-resistant mice, elevated blood lactate levels were observed alongside diminished expression of synaptic plasticity-related proteins, monocarboxylate transporters (MCTs), and reduced phosphorylation of protein kinase B (Akt) and mechanistic target of rapamycin (mTOR). In contrast, the expression of eukaryotic translation initiation factor 4 E-binding protein 2 was significantly augmented. Resistance training mitigated insulin resistance, decreased blood lactate levels, and enhanced the expression and phosphorylation of mTOR, regulatory-associated protein of mTOR, MCTs, and synaptic plasticity-related proteins. Conclusions Resistance training mitigates insulin resistance and improves hippocampal synaptic plasticity by normalizing blood lactate levels and enhancing mTOR, MCTs, and synaptic plasticity-related proteins. It may also activate mTORC1 via the PI3K/Akt pathway, promote lactate utilization, and enhance synaptic plasticity proteins, potentially alleviating peripheral insulin resistance. Further research is needed to confirm these mechanisms.
Collapse
Affiliation(s)
- Xuepeng Bian
- Department of Rehabilitation, School of International Medical Technology, Shanghai Sanda University, Shanghai, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Mingming Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Shujie Lou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
43
|
Gendron WH, Fertan E, Roddick KM, Wong AA, Maliougina M, Hiani YE, Anini Y, Brown RE. Intranasal insulin treatment ameliorates spatial memory, muscular strength, and frailty deficits in 5xFAD mice. Physiol Behav 2024; 281:114583. [PMID: 38750806 DOI: 10.1016/j.physbeh.2024.114583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
The 5xFAD mouse model shows age-related weight loss as well as cognitive and motor deficits. Metabolic dysregulation, especially impaired insulin signaling, is also present in AD. This study examined whether intranasal delivery of insulin (INI) at low (0.875 U) or high (1.750 U) doses would ameliorate these deficits compared to saline in 10-month-old female 5xFAD and B6SJL wildtype (WT) mice. INI increased forelimb grip strength in the wire hang test in 5xFAD mice in a dose-dependent manner but did not improve the performance of 5xFAD mice on the balance beam. High INI doses reduced frailty scores in 5xFAD mice and improved spatial memory in both acquisition and reversal probe trials in the Morris water maze. INI increased swim speed in 5xFAD mice but had no effect on object recognition memory or working memory in the spontaneous alternation task, nor did it improve memory in the contextual or cued fear memory tasks. High doses of insulin increased the liver, spleen, and kidney weights and reduced brown adipose tissue weights. P-Akt signaling in the hippocampus was increased by insulin in a dose-dependent manner. Altogether, INI increased strength, reduced frailty scores, and improved visual spatial memory. Hypoglycemia was not present after INI, however alterations in tissue and organ weights were present. These results are novel and important as they indicate that intra-nasal insulin can reverse cognitive, motor and frailty deficits found in this mouse model of AD.
Collapse
Affiliation(s)
- William H Gendron
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Emre Fertan
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kyle M Roddick
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Aimée A Wong
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Maria Maliougina
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Yassine El Hiani
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Younes Anini
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Departments of Obstetrics and Gynecology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Richard E Brown
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
44
|
Le Thuc O, García-Cáceres C. Obesity-induced inflammation: connecting the periphery to the brain. Nat Metab 2024; 6:1237-1252. [PMID: 38997442 DOI: 10.1038/s42255-024-01079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/11/2024] [Indexed: 07/14/2024]
Abstract
Obesity is often associated with a chronic, low-grade inflammatory state affecting the entire body. This sustained inflammatory state disrupts the coordinated communication between the periphery and the brain, which has a crucial role in maintaining homeostasis through humoural, nutrient-mediated, immune and nervous signalling pathways. The inflammatory changes induced by obesity specifically affect communication interfaces, including the blood-brain barrier, glymphatic system and meninges. Consequently, brain areas near the third ventricle, including the hypothalamus and other cognition-relevant regions, become susceptible to impairments, resulting in energy homeostasis dysregulation and an elevated risk of cognitive impairments such as Alzheimer's disease and dementia. This Review explores the intricate communication between the brain and the periphery, highlighting the effect of obesity-induced inflammation on brain function.
Collapse
Affiliation(s)
- Ophélia Le Thuc
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
45
|
Nagasawa K, Matsumura K, Uchida T, Suzuki Y, Nishimura A, Okubo M, Igeta Y, Kobayashi T, Sakurai T, Mori Y. Global cognition and executive functions of older adults with type 1 diabetes mellitus without dementia. J Diabetes Investig 2024; 15:922-930. [PMID: 38525910 PMCID: PMC11215676 DOI: 10.1111/jdi.14191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
AIMS/INTRODUCTION This study aimed to characterize the global cognition and executive functions of older adults with type 1 diabetes mellitus in comparison with type 2 diabetes mellitus. MATERIALS AND METHODS This study included 37 patients with type 1 diabetes mellitus aged ≥65 years and 37 age- and sex-matched patients with type 2 diabetes mellitus. Patients with dementia scoring <24 on the Mini-Mental State Examination were excluded. General cognition, memory, classic, and practical executive function were investigated. RESULTS Patients with type 1 diabetes mellitus demonstrated lower psychomotor speed scores on Trail Making Tests A and B (P < 0.001, P < 0.013) than those with type 2 diabetes mellitus. The dysexecutive syndrome behavioral assessment revealed similar results in patients with types 1 and 2 diabetes mellitus. The Wechsler Memory Scale-Revised verbal episodic memory and Montreal Cognitive Assessment Japanese version were similar in terms of general cognition, but worse delayed recall subset on the latter was associated with type 2 diabetes mellitus (P = 0.038). A worse Trail Making Test-A performance was associated with type 1 diabetes mellitus and age (P < 0.004, P < 0.029). CONCLUSIONS Executive function of psychomotor speed was worse in older outpatient adults without dementia with type 1 diabetes mellitus than in those with type 2 diabetes mellitus but with no significant differences in the comprehensive and practical behavioral assessment of dysexecutive syndrome. Patients with type 1 diabetes had more severely impaired executive function, whereas those with type 2 had greater impaired memory than executive function.
Collapse
Affiliation(s)
- Kaoru Nagasawa
- Department of Endocrinology and MetabolismToranomon HospitalTokyoJapan
| | - Kimio Matsumura
- Department of Endocrinology and MetabolismToranomon HospitalTokyoJapan
| | - Takayasu Uchida
- Department of Endocrinology and MetabolismToranomon HospitalTokyoJapan
| | - Yuya Suzuki
- Department of Endocrinology and MetabolismToranomon HospitalTokyoJapan
| | | | - Minoru Okubo
- Okinaka Memorial Institute for Medical ResearchTokyoJapan
| | | | | | - Takashi Sakurai
- Department of Prevention and Care Science, Research InstituteNational Center for Geriatrics and GerontologyObuJapan
| | - Yasumichi Mori
- Department of Endocrinology and MetabolismToranomon HospitalTokyoJapan
| |
Collapse
|
46
|
Arnold SE, Hendrix S, Nicodemus‐Johnson J, Knowlton N, Williams VJ, Burns JM, Crane M, McManus AJ, Vaishnavi SN, Arvanitakis Z, Neugroschl J, Bell K, Trombetta BA, Carlyle BC, Kivisäkk P, Dodge HH, Tanzi RE, Yeramian PD, Leslie K. Biological effects of sodium phenylbutyrate and taurursodiol in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2024; 10:e12487. [PMID: 39131742 PMCID: PMC11310855 DOI: 10.1002/trc2.12487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/25/2024] [Accepted: 05/13/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION Sodium phenylbutyrate and taurursodiol (PB and TURSO) is hypothesized to mitigate endoplasmic reticulum stress and mitochondrial dysfunction, two of many mechanisms implicated in Alzheimer's disease (AD) pathophysiology. METHODS The first-in-indication phase 2a PEGASUS trial was designed to gain insight into PB and TURSO effects on mechanistic targets of engagement and disease biology in AD. The primary clinical efficacy outcome was a global statistical test combining three endpoints relevant to disease trajectory (cognition [Mild/Moderate Alzheimer's Disease Composite Score], function [Functional Activities Questionnaire], and total hippocampal volume on magnetic resonance imaging). Secondary clinical outcomes included various cognitive, functional, and neuropsychiatric assessments. Cerebrospinal fluid (CSF) biomarkers spanning multiple pathophysiological pathways in AD were evaluated in participants with both baseline and Week 24 samples (exploratory outcome). RESULTS PEGASUS enrolled 95 participants (intent-to-treat [ITT] cohort); cognitive assessments indicated significantly greater baseline cognitive impairment in the PB and TURSO (n = 51) versus placebo (n = 44) group. Clinical efficacy outcomes did not significantly differ between treatment groups in the ITT cohort. CSF interleukin-15 increased from baseline to Week 24 within the placebo group (n = 34). In the PB and TURSO group (n = 33), reductions were observed in core AD biomarkers phosphorylated tau-181 (p-tau181) and total tau; synaptic and neuronal degeneration biomarkers neurogranin and fatty acid binding protein-3 (FABP3); and gliosis biomarker chitinase 3-like protein 1 (YKL-40), while the oxidative stress marker 8-hydroxy-2-deoxyguanosine (8-OHdG) increased. Between-group differences were observed for the Aβ42/40 ratio, p-tau181, total tau, neurogranin, FABP3, YKL-40, interleukin-15, and 8-OHdG. Additional neurodegeneration, inflammation, and metabolic biomarkers showed no differences between groups. DISCUSSION While between-group differences in clinical outcomes were not observed, most likely due to the small sample size and relatively short treatment duration, exploratory biomarker analyses suggested that PB and TURSO engages multiple pathophysiologic pathways in AD. Highlights Proteostasis and mitochondrial stress play key roles in Alzheimer's disease (AD).Sodium phenylbutyrate and taurursodiol (PB and TURSO) targets these mechanisms.The PEGASUS trial was designed to assess PB and TURSO effects on biologic AD targets.PB and TURSO reduced exploratory biomarkers of AD and neurodegeneration.Supports further clinical development of PB and TURSO in neurodegenerative diseases.
Collapse
Affiliation(s)
- Steven E. Arnold
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | | | | | | | - Victoria J. Williams
- Department of MedicineUniversity of Wisconsin‐MadisonSchool of Medicine and Public HealthMadisonWisconsinUSA
| | - Jeffrey M. Burns
- University of Kansas Alzheimer's Disease Research CenterFairwayKansasUSA
| | - Monica Crane
- Genesis Neuroscience ClinicKnoxvilleTennesseeUSA
| | - Alison J. McManus
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Sanjeev N. Vaishnavi
- Department of NeurologyPenn Memory CenterPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Zoe Arvanitakis
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Judith Neugroschl
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Karen Bell
- Department of NeurologyColumbia UniversityNew YorkNew YorkUSA
| | - Bianca A. Trombetta
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Becky C. Carlyle
- Department of PhysiologyAnatomy & Genetics and Kavli Institute for Nanoscience DiscoveryUniversity of OxfordOxfordUK
| | - Pia Kivisäkk
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Hiroko H. Dodge
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Rudolph E. Tanzi
- Department of NeurologyGenetics and Aging Research UnitMcCance Center for Brain HealthMassachusetts General HospitalHarvard UniversityBostonMassachusettsUSA
| | | | - Kent Leslie
- Amylyx Pharmaceuticals, Inc.CambridgeMassachusettsUSA
- Present address:
Division of Biology and Biological Engineering Graduate ProgramCalifornia Institute of TechnologyPasadenaCAUSA
| |
Collapse
|
47
|
Ibrahim AM, Singh DKA, Ludin AFM, Sakian NIM, Rivan NFM, Shahar S. Cardiovascular risk factors among older persons with cognitive frailty in middle income country. World J Clin Cases 2024; 12:3076-3085. [PMID: 38898873 PMCID: PMC11185391 DOI: 10.12998/wjcc.v12.i17.3076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/11/2024] [Accepted: 04/15/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Cognitive frailty, characterized by the coexistence of cognitive impairment and physical frailty, represents a multifaceted challenge in the aging population. The role of cardiovascular risk factors in this complex interplay is not yet fully understood. AIM To investigate the relationships between cardiovascular risk factors and older persons with cognitive frailty by pooling data from two cohorts of studies in Malaysia. METHODS A comprehensive approach was employed, with a total of 512 community-dwelling older persons aged 60 years and above, involving two cohorts of older persons from previous studies. Datasets related to cardiovascular risks, namely sociodemographic factors, and cardiovascular risk factors, including hypertension, diabetes, hypercholesterolemia, anthropometric characteristics and biochemical profiles, were pooled for analysis. Cognitive frailty was defined based on the Clinical Dementia Rating scale and Fried frailty score. Cardiovascular risk was determined using Framingham risk score. Statistical analyses were conducted using SPSS version 21. RESULTS Of the study participants, 46.3% exhibited cognitive frailty. Cardiovascular risk factors including hypertension (OR:1.60; 95%CI: 1.12-2.30), low fat-free mass (OR:0.96; 95%CI: 0.94-0.98), high percentage body fat (OR:1.04; 95%CI: 1.02-1.06), high waist circumference (OR:1.02; 95%CI: 1.01-1.04), high fasting blood glucose (OR:1.64; 95%CI: 1.11-2.43), high Framingham risk score (OR:1.65; 95%CI: 1.17-2.31), together with sociodemographic factors, i.e., being single (OR 3.38; 95%CI: 2.26-5.05) and low household income (OR 2.18; 95%CI: 1.44-3.30) were found to be associated with cognitive frailty. CONCLUSION Cardiovascular-risk specific risk factors and sociodemographic factors were associated with risk of cognitive frailty, a prodromal stage of dementia. Early identification and management of cardiovascular risk factors, particularly among specific group of the population might mitigate the risk of cognitive frailty, hence preventing dementia.
Collapse
Affiliation(s)
- Azianah Mohamad Ibrahim
- Centre for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Wilayah Persekutuan Kuala Lumpur 50300, Malaysia
| | - Devinder Kaur Ajit Singh
- Centre for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Wilayah Persekutuan Kuala Lumpur 50300, Malaysia
| | - Arimi Fitri Mat Ludin
- Centre for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Wilayah Persekutuan Kuala Lumpur 50300, Malaysia
| | | | - Nurul Fatin Malek Rivan
- Centre for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Wilayah Persekutuan Kuala Lumpur 50300, Malaysia
| | - Suzana Shahar
- Centre for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Wilayah Persekutuan Kuala Lumpur 50300, Malaysia
| |
Collapse
|
48
|
Tong B, Ba Y, Li Z, Yang C, Su K, Qi H, Zhang D, Liu X, Wu Y, Chen Y, Ling J, Zhang J, Yin X, Yu P. Targeting dysregulated lipid metabolism for the treatment of Alzheimer's disease and Parkinson's disease: Current advancements and future prospects. Neurobiol Dis 2024; 196:106505. [PMID: 38642715 DOI: 10.1016/j.nbd.2024.106505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/02/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024] Open
Abstract
Alzheimer's and Parkinson's diseases are two of the most frequent neurological diseases. The clinical features of AD are memory decline and cognitive dysfunction, while PD mainly manifests as motor dysfunction such as limb tremors, muscle rigidity abnormalities, and slow gait. Abnormalities in cholesterol, sphingolipid, and glycerophospholipid metabolism have been demonstrated to directly exacerbate the progression of AD by stimulating Aβ deposition and tau protein tangles. Indirectly, abnormal lipids can increase the burden on brain vasculature, induce insulin resistance, and affect the structure of neuronal cell membranes. Abnormal lipid metabolism leads to PD through inducing accumulation of α-syn, dysfunction of mitochondria and endoplasmic reticulum, and ferroptosis. Great progress has been made in targeting lipid metabolism abnormalities for the treatment of AD and PD in recent years, like metformin, insulin, peroxisome proliferator-activated receptors (PPARs) agonists, and monoclonal antibodies targeting apolipoprotein E (ApoE). This review comprehensively summarizes the involvement of dysregulated lipid metabolism in the pathogenesis of AD and PD, the application of Lipid Monitoring, and emerging lipid regulatory drug targets. A better understanding of the lipidological bases of AD and PD may pave the way for developing effective prevention and treatment methods for neurodegenerative disorders.
Collapse
Affiliation(s)
- Bin Tong
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; School of Ophthalmology and Optometry of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Yaoqi Ba
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; School of Ophthalmology and Optometry of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Zhengyang Li
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; The First Clinical Medical College of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Caidi Yang
- The First Clinical Medical College of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Kangtai Su
- The First Clinical Medical College of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Haodong Qi
- The First Clinical Medical College of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Deju Zhang
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China; Center for Clinical Precision Medicine, Jiujiang University, Jiujiang, China; Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiao Liu
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China; Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuting Wu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Jitao Ling
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Jing Zhang
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China; Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China.
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China; Center for Clinical Precision Medicine, Jiujiang University, Jiujiang, China.
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China.
| |
Collapse
|
49
|
Pszczołowska M, Walczak K, Miśków W, Mroziak M, Chojdak-Łukasiewicz J, Leszek J. Mitochondrial disorders leading to Alzheimer's disease-perspectives of diagnosis and treatment. GeroScience 2024; 46:2977-2988. [PMID: 38457008 PMCID: PMC11009177 DOI: 10.1007/s11357-024-01118-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and the most common cause of dementia globally. The pathogenesis of AD remains still unclear. The three main features of AD are extracellular deposits of amyloid beta (Aβ) plaque, accumulation of abnormal formation hyper-phosphorylated tau protein, and neuronal loss. Mitochondrial impairment plays an important role in the pathogenesis of AD. There are problems with decreased activity of multiple complexes, disturbed mitochondrial fusion, and fission or formation of reactive oxygen species (ROS). Moreover, mitochondrial transport is impaired in AD. Mouse models in many research show disruptions in anterograde and retrograde transport. Both mitochondrial transportation and network impairment have a huge impact on synapse loss and, as a result, cognitive impairment. One of the very serious problems in AD is also disruption of insulin signaling which impairs mitochondrial Aβ removal.Discovering precise mechanisms leading to AD enables us to find new treatment possibilities. Recent studies indicate the positive influence of metformin or antioxidants such as MitoQ, SS-31, SkQ, MitoApo, MitoTEMPO, and MitoVitE on mitochondrial functioning and hence prevent cognitive decline. Impairments in mitochondrial fission may be treated with mitochondrial division inhibitor-1 or ceramide.
Collapse
Affiliation(s)
| | - Kamil Walczak
- Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | - Weronika Miśków
- Faculty of Medicine, Wrocław Medical University, Wrocław, Poland
| | | | | | - Jerzy Leszek
- Clinic of Psychiatry, Department of Psychiatry, Medical Department, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
50
|
Wang Q, Tripodi N, Valiukas Z, Bell SM, Majid A, de Courten B, Apostolopoulos V, Feehan J. The protective role of carnosine against type 2 diabetes-induced cognitive impairment. Food Sci Nutr 2024; 12:3819-3833. [PMID: 38873448 PMCID: PMC11167184 DOI: 10.1002/fsn3.4077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/11/2024] [Accepted: 02/23/2024] [Indexed: 06/15/2024] Open
Abstract
The morbidity and mortality associated with type 2 diabetes mellitus (T2DM) have grown exponentially over the last 30 years. Together with its associated complications, the mortality rates have increased. One important complication in those living with T2DM is the acceleration of age-related cognitive decline. T2DM-induced cognitive impairment seriously affects memory, executive function, and quality of life. However, there is a lack of effective treatment for both diabetes and cognitive decline. Thus, finding novel treatments which are cheap, effective in both diabetes and cognitive impairment, are easily accessible, are needed to reduce impact on patients with diabetes and health-care systems. Carnosine, a histidine containing dipeptide, plays a protective role in cognitive diseases due to its antioxidant, anti-inflammation, and anti-glycation properties, all of which may slow the development of neurodegenerative diseases and ischemic injury. Furthermore, carnosine is also involved in regulating glucose and insulin in diabetes. Herein, we discuss the neuroprotective role of carnosine and its mechanisms in T2DM-induced cognitive impairment, which may provide a theoretical basis and evidence base to evaluate whether carnosine has therapeutic effects in alleviating cognitive dysfunction in T2DM patients.
Collapse
Affiliation(s)
- Qian Wang
- Institute for Health and Sport, Victoria UniversityMelbourneAustralia
| | - Nicholas Tripodi
- Institute for Health and Sport, Victoria UniversityMelbourneAustralia
| | - Zachary Valiukas
- Institute for Health and Sport, Victoria UniversityMelbourneAustralia
| | - Simon M. Bell
- Sheffield Institute for Translational Neuroscience, Sheffield UniversitySheffieldUK
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience, Sheffield UniversitySheffieldUK
| | - Barbora de Courten
- STEM college, RMIT UniversityMelbourneVictoriaAustralia
- School of Clinical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria UniversityMelbourneAustralia
- Australian Institute for Musculoskeletal Sciences, Immunology Program, Western HealthThe University of Melbourne and Victoria UniversityMelbourneVictoriaAustralia
| | - Jack Feehan
- Institute for Health and Sport, Victoria UniversityMelbourneAustralia
| |
Collapse
|