1
|
Liu Y, Xu T, Yu Z, Xu B. Neurophysiological Basis of Electroacupuncture Stimulation in the Treatment of Cardiovascular-Related Diseases: Vagal Interoceptive Loops. Brain Behav 2024; 14:e70076. [PMID: 39344397 PMCID: PMC11440030 DOI: 10.1002/brb3.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 10/01/2024] Open
Abstract
PURPOSE The vagal sensory nerve (VSN) is an essential interoceptive pathway that is connected to every level of the body. Its intricate genetic coding provides sustenance for physiological processes, including controlling blood pressure and respiration. Electroacupuncture (EA) is a proven surface stimulation therapy that can regulate vagal nerve activity, which can effectively prevent cardiovascular diseases. A growing number of studies have concentrated on the mapping of VSN codes, but little is known, and the physiological background of how EA influences interoceptive has not been fully explored. METHOD Here, we incorporate the hypothesized interaction among EA targets, VSNs, and the heart. This offers suggestions for using a versatile and focused EA strategy to modify vagal interoceptive awareness to enhance cardiovascular conditions. We first clarified the major role of vagal nerve in the control of cardiac activity. Additionally, we clarified the multidimensional coding pattern in the VSNs, revealing that the targeted control of multimodal interoceptive is the functional basis of the synchronization of cardiovascular system. FINDING We propose a strategy in which EA of the VSNs is employed to activate the interoceptive loop and reduce the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Yun Liu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of EducationNanjing University of Chinese MedicineNanjingChina
| | - Tiancheng Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of EducationNanjing University of Chinese MedicineNanjingChina
| | - Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of EducationNanjing University of Chinese MedicineNanjingChina
| | - Bin Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of EducationNanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
2
|
Baumer-Harrison C, Patel S, Scott KA, Krause EG, de Kloet AD. Optical perturbation of Agtr1a-containing neurons and afferents within the caudal nucleus of the solitary tract modulates sodium intake. Physiol Behav 2024; 284:114624. [PMID: 38959991 PMCID: PMC11526814 DOI: 10.1016/j.physbeh.2024.114624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/30/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Angiotensin-II (Ang-II) production is driven by deviations in blood volume and osmolality, and serves the role of regulating blood pressure and fluid intake to maintain cardiovascular and hydromineral homeostasis. These actions are mediated by Ang-II acting on its type 1a receptor (AT1aR) within the central nervous system and periphery. Of relevance, AT1aR are expressed on sensory afferents responsible for conveying cardiovascular information to the nucleus of the solitary tract (NTS). We have previously determined that optical excitation of neurons and vagal afferents within the NTS that express AT1aR (referred to as NTSAT1aR) mimics the perception of increased vascular stretch and induces compensatory responses to restore blood pressure. Here, we test whether NTSAT1aR are also involved in the modulation of water and sodium intake. We directed the light-sensitive excitatory channelrhodopsin-2 (ChR2) or inhibitory halorhodopsin (Halo) to Agtr1a-containing neurons and measured water and sodium chloride (NaCl) intake in the presence and absence of optical stimulation within the NTS during various challenges to fluid homeostasis. Optical perturbation of NTSAT1aR modulates NaCl intake, such that excitation attenuates, whereas inhibition increases intake. This effect is only observed in the water-deprived condition, suggesting that NTSAT1aR are involved in the regulation of sodium intake during an imbalance in both the intracellular and extracellular fluid compartments. Furthermore, optical excitation of NTSAT1aR increases c-Fos expression within oxytocinergic neurons of the paraventricular nucleus of the hypothalamus (PVN), indicating that the regulation of sodium intake by NTSAT1aR may be mediated by oxytocin. Collectively, these results reveal that NTSAT1aR are sufficient and necessary to modulate sodium intake relative to perceived changes in vascular stretch.
Collapse
Affiliation(s)
- Caitlin Baumer-Harrison
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, 32611
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, 32611
- Center for Smell and Taste, University of Florida, Gainesville, FL, 32611
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Sagar Patel
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, 32611
| | - Karen A. Scott
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, 32611
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302
| | - Eric G. Krause
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, 32611
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 32611
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302
| | - Annette D. de Kloet
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, 32611
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, 32611
- Center for Smell and Taste, University of Florida, Gainesville, FL, 32611
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302
| |
Collapse
|
3
|
Plott C, Harb T, Arvanitis M, Gerstenblith G, Blumenthal R, Leucker T. Neurocardiac Axis Physiology and Clinical Applications. IJC HEART & VASCULATURE 2024; 54:101488. [PMID: 39224460 PMCID: PMC11367645 DOI: 10.1016/j.ijcha.2024.101488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
The neurocardiac axis constitutes the neuronal circuits between the arteries, heart, brain, and immune organs (including thymus, spleen, lymph nodes, and mucosal associated lymphoid tissue) that together form the cardiovascular brain circuit. This network allows the individual to maintain homeostasis in a variety of environmental situations. However, in dysfunctional states, such as exposure to environments with chronic stressors and sympathetic activation, this axis can also contribute to the development of atherosclerotic vascular disease as well as other cardiovascular pathologies and it is increasingly being recognized as an integral part of the pathogenesis of cardiovascular disease. This review article focuses on 1) the normal functioning of the neurocardiac axis; 2) pathophysiology of the neurocardiac axis; 3) clinical implications of this axis in hypertension, atherosclerotic disease, and heart failure with an update on treatments under investigation; and 4) quantification methods in research and clinical practice to measure components of the axis and future research areas.
Collapse
Affiliation(s)
- Caroline Plott
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Tarek Harb
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Marios Arvanitis
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Gary Gerstenblith
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Roger Blumenthal
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Thorsten Leucker
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
4
|
Hao X, Long X, Fan L, Gou J, Liu Y, Fu Y, Zhao H, Xie X, Wang D, Liang G, Ye Y, Wang J, Li S, Zeng C. Prenatal LPS leads to increases in RAS expression within the PVN and overactivation of sympathetic outflow in offspring rats. Hypertens Res 2024; 47:2363-2376. [PMID: 38969805 PMCID: PMC11374713 DOI: 10.1038/s41440-024-01754-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 07/07/2024]
Abstract
The renin-angiotensin system (RAS) and the sympathetic nervous system (SNS) are two major blood pressure-regulating systems. The link between the renal and cerebral RAS axes was provided by reflex activation of renal afferents and efferent sympathetic nerves. There is a self-sustaining enhancement of the brain and the intrarenal RAS. In this study, prenatal exposure to lipopolysaccharide (LPS) led to increased RAS activity in the paraventricular nucleus (PVN) and overactivation of sympathetic outflow, accompanied by increased production of reactive oxygen species (ROS) and disturbances between inhibitory and excitatory neurons in PVN. The AT1 receptor blocker losartan and α2 adrenergic receptor agonist clonidine in the PVN significantly decreased renal sympathetic nerve activity (RSNA) and synchronously reduced systolic blood pressure. Prenatal LPS stimulation caused H3 acetylation at H3K9 and H3K14 in the PVN, which suggested that epigenetic changes are involved in transmitting the prenatal adverse stimulative information to the next generation. Additionally, melatonin treatment during pregnancy reduced RAS activity and ROS levels in the PVN; balanced the activity of inhibitory and excitatory neurons in the PVN; increased urine sodium secretion; reduced RSNA and blood pressure. In conclusion, prenatal LPS leads to increased RAS expression within the PVN and overactivation of the sympathetic outflow, thereby contributing to hypertension in offspring rats. Melatonin is expected to be a promising agent for preventing prenatal LPS exposure-induced hypertension.
Collapse
Affiliation(s)
- Xueqin Hao
- Department of human Anatomy and Histoembryology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
- Department of Anesthesiology, the First affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China
| | - Xueting Long
- Department of human Anatomy and Histoembryology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Lingling Fan
- Department of Physiology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Jijia Gou
- Department of human Anatomy and Histoembryology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yuchao Liu
- Department of human Anatomy and Histoembryology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yifan Fu
- Department of human Anatomy and Histoembryology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Huijuan Zhao
- Department of human Anatomy and Histoembryology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xiaojuan Xie
- Department of Anesthesiology, the First affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China
| | - Dongmei Wang
- Department of Microbiology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Gaofeng Liang
- Department of Pathology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yujia Ye
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Jing Wang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Sanqiang Li
- Department of Biochemistry, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China.
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
5
|
de Miranda VHM, Dos Santos CP, Neves PP, Nascimento-Filho AV, Dutra MRH, Bernardes N, Irigoyen MC, De Angelis K. Acetylcholinesterase Inhibitor Ameliorates Early Cardiometabolic Disorders in Fructose-Overloaded Rat Offspring. Pharmaceuticals (Basel) 2024; 17:1055. [PMID: 39204159 PMCID: PMC11359402 DOI: 10.3390/ph17081055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND We investigate the role of galantamine on autonomic dysfunction associated with early cardiometabolic dysfunction in the offspring of fructose-overloaded rats. METHODS Wistar rats received fructose diluted in drinking water (10%) or water for 60 days prior to mating. Fructose overload was maintained until the end of lactation. The offspring (21 days after birth) of control and fructose-overloaded animals were divided into three groups: control (C), fructose (F) and fructose + galantamine (GAL). GAL (5 mg/kg) was administered orally until the offspring were 51 days old. Metabolic, hemodynamic and cardiovascular autonomic modulation were evaluated. RESULTS The F group showed decreased insulin tolerance (KITT) compared to the C and GAL groups. The F group, in comparison to the C group, had increased arterial blood pressure, heart rate and sympathovagal balance (LF/HF ratio) and a low-frequency band of systolic arterial pressure (LF-SAP). The GAL group, in comparison to the F group, showed increased vagally mediated RMSSD index, a high-frequency band (HF-PI) and decreased LF/HF ratio and variance in SAP (VAR-SAP) and LF-SAP. Correlations were found between HF-PI and KITT (r = 0.60), heart rate (r = -0.65) and MAP (r = -0.71). CONCLUSIONS GAL treatment significantly improved cardiovascular autonomic modulation, which was associated with the amelioration of cardiometabolic dysfunction in offspring of parents exposed to chronic fructose consumption.
Collapse
Affiliation(s)
- Victor Hugo Martins de Miranda
- Physiology Department, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04023-062, Brazil; (V.H.M.d.M.); (C.P.D.S.); (A.V.N.-F.)
| | - Camila Paixão Dos Santos
- Physiology Department, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04023-062, Brazil; (V.H.M.d.M.); (C.P.D.S.); (A.V.N.-F.)
| | - Pietra Petrica Neves
- Laboratory of Translational Physiology, Nove de Julho University (UNINOVE), Sao Paulo 01525-000, Brazil; (P.P.N.); (M.R.H.D.)
| | - Antonio Viana Nascimento-Filho
- Physiology Department, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04023-062, Brazil; (V.H.M.d.M.); (C.P.D.S.); (A.V.N.-F.)
- Laboratory of Translational Physiology, Nove de Julho University (UNINOVE), Sao Paulo 01525-000, Brazil; (P.P.N.); (M.R.H.D.)
| | - Marina Rascio Henriques Dutra
- Laboratory of Translational Physiology, Nove de Julho University (UNINOVE), Sao Paulo 01525-000, Brazil; (P.P.N.); (M.R.H.D.)
| | - Nathalia Bernardes
- Postgraduate Program in Physical Education, São Judas Tadeu University, Sao Paulo 03166-000, Brazil;
| | - Maria Claúdia Irigoyen
- Hypertension Unit, Heart Institute (InCor), School of Medicine, University of Sao Paulo, Sao Paulo 05403-000, Brazil;
| | - Kátia De Angelis
- Physiology Department, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04023-062, Brazil; (V.H.M.d.M.); (C.P.D.S.); (A.V.N.-F.)
- Laboratory of Translational Physiology, Nove de Julho University (UNINOVE), Sao Paulo 01525-000, Brazil; (P.P.N.); (M.R.H.D.)
| |
Collapse
|
6
|
Zhu T, Ye Z, Song J, Zhang J, Zhao Y, Xu F, Wang J, Huang X, Gao B, Li F. Effect of extracellular matrix stiffness on efficacy of Dapagliflozin for diabetic cardiomyopathy. Cardiovasc Diabetol 2024; 23:273. [PMID: 39049086 PMCID: PMC11270890 DOI: 10.1186/s12933-024-02369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Extracellular matrix (ECM) stiffness is closely related to the progress of diabetic cardiomyopathy (DCM) and the response of treatment of DCM to anti-diabetic drugs. Dapagliflozin (Dapa) has been proven to have cardio-protective efficacy for diabetes and listed as the first-line drug to treat heart failure. But the regulatory relationship between ECM stiffness and treatment efficacy of Dapa remains elusive. MATERIALS AND METHODS This work investigated the effect of ECM stiffness on DCM progression and Dapa efficacy using both in vivo DCM rat model and in vitro myocardial cell model with high glucose injury. First, through DCM rat models with various levels of myocardial injury and administration with Dapa treatment for four weeks, the levels of myocardial injury, myocardial oxidative stress, expressions of AT1R (a mechanical signal protein) and the stiffness of myocardial tissues were obtained. Then for mimicking the stiffness of myocardial tissues at early and late stages of DCM, we constructed cell models through culturing H9c2 myocardial cells on the polyacrylamide gels with two stiffness and exposed to a high glucose level and without/with Dapa intervention. The cell viability, reactive oxygen species (ROS) levels and expressions of mechanical signal sensitive proteins were obtained. RESULTS The DCM progression is accompanied by the increased myocardial tissue stiffness, which can synergistically exacerbate myocardial cell injury with high glucose. Dapa can improve the ECM stiffness-induced DCM progression and its efficacy on DCM is more pronounced on the soft ECM, which is related to the regulation pathway of AT1R-FAK-NOX2. Besides, Dapa can inhibit the expression of the ECM-induced integrin β1, but without significant impact on piezo 1. CONCLUSIONS Our study found the regulation and effect of biomechanics in the DCM progression and on the Dapa efficacy on DCM, providing the new insights for the DCM treatment. Additionally, our work showed the better clinical prognosis of DCM under early Dapa intervention.
Collapse
Affiliation(s)
- Tong Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Department of Cardiovasology, Xidian Group Hospital, Xi'an, 710077, P.R. China
| | - Zhaoyang Ye
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jingjing Song
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Junjie Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Yuxiang Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jun Wang
- Department of Health Evaluation and Promotion, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Xin Huang
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Bin Gao
- Department of Endocrinology, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710032, P.R. China.
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China.
| |
Collapse
|
7
|
Behuliak M, Bencze M, Boroš A, Vavřínová A, Vodička M, Ergang P, Vaněčková I, Zicha J. Chronic inhibition of angiotensin converting enzyme lowers blood pressure in spontaneously hypertensive rats by attenuation of sympathetic tone: The role of enhanced baroreflex sensitivity. Biomed Pharmacother 2024; 176:116796. [PMID: 38810397 DOI: 10.1016/j.biopha.2024.116796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
Spontaneously hypertensive rats (SHR) are characterized by sympathetic hyperactivity and insufficient parasympathetic activity, and their high blood pressure (BP) can be lowered by long-term inhibition of the renin-angiotensin system. The aim of our study was to determine the influence of chronic inhibition of angiotensin converting enzyme (ACE) by captopril on cardiovascular regulation by the sympathetic and parasympathetic nervous system. Implanted radiotelemetric probes or arterial cannulas were used to measure mean arterial pressure (MAP), heart rate (HR), and arterial baroreflex in adult SHR and Wistar-Kyoto (WKY) rats under basal or stress conditions. MAP and the low-frequency component of systolic blood pressure variability (LF-SBPV, marker of sympathetic activity) were greater in SHR than in WKY rats. Under basal conditions chronic captopril treatment reduced both parameters more effectively in SHR, and the same was true during acute restraint stress. HR was similar in control rats of both strains, but WKY rats showed greater heart rate variability (HRV), indicating higher parasympathetic activity. Captopril administration increased HR in both strains, whereas HRV was decreased only in WKY. Chronic captopril treatment improved the impaired baroreflex-HR control in SHR by increasing the sensitivity but not the capacity of vagal arm of arterial baroreflex. Captopril treatment attenuated BP changes elicited by dimethylphenylpiperazinium (DMPP, agonist of nicotinic acetylcholine receptors), especially in SHR, indicating that sympathetic nerve transmission is facilitated by angiotensin II more in hypertensive than in normotensive animals. Thus, chronic ACE inhibition improves baroreflex sensitivity and lowers BP through both central and peripheral attenuation of sympathetic tone.
Collapse
Affiliation(s)
- Michal Behuliak
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Bencze
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Almos Boroš
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Anna Vavřínová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Vodička
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Ergang
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Ivana Vaněčková
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Josef Zicha
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
8
|
Mather M. The emotion paradox in the aging body and brain. Ann N Y Acad Sci 2024; 1536:13-41. [PMID: 38676452 DOI: 10.1111/nyas.15138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
With age, parasympathetic activity decreases, while sympathetic activity increases. Thus, the typical older adult has low heart rate variability (HRV) and high noradrenaline levels. Younger adults with this physiological profile tend to be unhappy and stressed. Yet, with age, emotional experience tends to improve. Why does older adults' emotional well-being not suffer as their HRV decreases? To address this apparent paradox, I present the autonomic compensation model. In this model, failing organs, the initial phases of Alzheimer's pathology, and other age-related diseases trigger noradrenergic hyperactivity. To compensate, older brains increase autonomic regulatory activity in the pregenual prefrontal cortex (PFC). Age-related declines in nerve conduction reduce the ability of the pregenual PFC to reduce hyperactive noradrenergic activity and increase peripheral HRV. But these pregenual PFC autonomic compensation efforts have a significant impact in the brain, where they bias processing in favor of stimuli that tend to increase parasympathetic activity (e.g., stimuli that increase feelings of safety) and against stimuli that tend to increase sympathetic activity (e.g., threatening stimuli). In summary, the autonomic compensation model posits that age-related chronic sympathetic/noradrenergic hyperactivity stimulates regulatory attempts that have the side effect of enhancing emotional well-being.
Collapse
Affiliation(s)
- Mara Mather
- Leonard Davis School of Gerontology, Department of Psychology, and Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
9
|
Rai R, Singh V, Ahmad Z, Jain A, Jat D, Mishra SK. Autonomic neuronal modulations in cardiac arrhythmias: Current concepts and emerging therapies. Physiol Behav 2024; 279:114527. [PMID: 38527577 DOI: 10.1016/j.physbeh.2024.114527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
The pathophysiology of atrial fibrillation and ventricular tachycardia that result in cardiac arrhythmias is related to the sustained complicated mechanisms of the autonomic nervous system. Atrial fibrillation is when the heart beats irregularly, and ventricular arrhythmias are rapid and inconsistent heart rhythms, which involves many factors including the autonomic nervous system. It's a complex topic that requires careful exploration. Cultivation of speculative knowledge on atrial fibrillation; the irregular rhythm of the heart and ventricular arrhythmias; rapid oscillating waves resulting from mistakenly inconsistent P waves, and the inclusion of an autonomic nervous system is an inconceivable approach toward clinical intricacies. Autonomic modulation, therefore, acquires new expansions and conceptions of appealing therapeutic intelligence to prevent cardiac arrhythmia. Notably, autonomic modulation uses the neural tissue's flexibility to cause remodeling and, hence, provide therapeutic effects. In addition, autonomic modulation techniques included stimulation of the vagus nerve and tragus, renal denervation, cardiac sympathetic denervation, and baroreceptor activation treatment. Strong preclinical evidence and early human studies support the annihilation of cardiac arrhythmias by sympathetic and parasympathetic systems to transmigrate the cardiac myocytes and myocardium as efficient determinants at the cellular and physiological levels. However, the goal of this study is to draw attention to these promising early pre-clinical and clinical arrhythmia treatment options that use autonomic modulation as a therapeutic modality to conquer the troublesome process of irregular heart movements. Additionally, we provide a summary of the numerous techniques for measuring autonomic tone such as heart rate oscillations and its association with cutaneous sympathetic nerve activity appear to be substitute indicators and predictors of the outcome of treatment.
Collapse
Affiliation(s)
- Ravina Rai
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar 470003 MP, India
| | - Virendra Singh
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 UP, India
| | - Zaved Ahmad
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar 470003 MP, India
| | - Abhishek Jain
- Sanjeevani Diabetes and Heart Care Centre, Shri Chaitanya Hospital, Sagar, 470002, MP, India
| | - Deepali Jat
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar 470003 MP, India.
| | | |
Collapse
|
10
|
Wu HF, Saito-Diaz K, Huang CW, McAlpine JL, Seo DE, Magruder DS, Ishan M, Bergeron HC, Delaney WH, Santori FR, Krishnaswamy S, Hart GW, Chen YW, Hogan RJ, Liu HX, Ivanova NB, Zeltner N. Parasympathetic neurons derived from human pluripotent stem cells model human diseases and development. Cell Stem Cell 2024; 31:734-753.e8. [PMID: 38608707 PMCID: PMC11069445 DOI: 10.1016/j.stem.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/16/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024]
Abstract
Autonomic parasympathetic neurons (parasymNs) control unconscious body responses, including "rest-and-digest." ParasymN innervation is important for organ development, and parasymN dysfunction is a hallmark of autonomic neuropathy. However, parasymN function and dysfunction in humans are vastly understudied due to the lack of a model system. Human pluripotent stem cell (hPSC)-derived neurons can fill this void as a versatile platform. Here, we developed a differentiation paradigm detailing the derivation of functional human parasymNs from Schwann cell progenitors. We employ these neurons (1) to assess human autonomic nervous system (ANS) development, (2) to model neuropathy in the genetic disorder familial dysautonomia (FD), (3) to show parasymN dysfunction during SARS-CoV-2 infection, (4) to model the autoimmune disease Sjögren's syndrome (SS), and (5) to show that parasymNs innervate white adipocytes (WATs) during development and promote WAT maturation. Our model system could become instrumental for future disease modeling and drug discovery studies, as well as for human developmental studies.
Collapse
Affiliation(s)
- Hsueh-Fu Wu
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Kenyi Saito-Diaz
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Chia-Wei Huang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Jessica L McAlpine
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Dong Eun Seo
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - D Sumner Magruder
- Department of Genetics, Department of Computer Science, Wu Tsai Institute, Program for Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Mohamed Ishan
- Regenerative Bioscience Center, Department of Animal and Dairy Science College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Harrison C Bergeron
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - William H Delaney
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Fabio R Santori
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Smita Krishnaswamy
- Department of Genetics, Department of Computer Science, Wu Tsai Institute, Program for Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Gerald W Hart
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Ya-Wen Chen
- Department of Otolaryngology, Department of Cell, Developmental, and Regenerative Biology, Institute for Airway Sciences, Institute for Regenerative Medicine, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert J Hogan
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Hong-Xiang Liu
- Regenerative Bioscience Center, Department of Animal and Dairy Science College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Natalia B Ivanova
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Nadja Zeltner
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
11
|
Birnefeld J, Petersson K, Wåhlin A, Eklund A, Birnefeld E, Qvarlander S, Haney M, Malm J, Zarrinkoob L. Cerebral Blood Flow Assessed with Phase-contrast Magnetic Resonance Imaging during Blood Pressure Changes with Noradrenaline and Labetalol: A Trial in Healthy Volunteers. Anesthesiology 2024; 140:669-678. [PMID: 37756527 DOI: 10.1097/aln.0000000000004775] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
BACKGROUND Adequate cerebral perfusion is central during general anesthesia. However, perfusion is not readily measured bedside. Clinicians currently rely mainly on mean arterial pressure (MAP) as a surrogate, even though the relationship between blood pressure and cerebral blood flow is not well understood. The aim of this study was to apply phase-contrast magnetic resonance imaging to characterize blood flow responses in healthy volunteers to commonly used pharmacologic agents that increase or decrease arterial blood pressure. METHODS Eighteen healthy volunteers aged 30 to 50 yr were investigated with phase-contrast magnetic resonance imaging. Intra-arterial blood pressure monitoring was used. First, intravenous noradrenaline was administered to a target MAP of 20% above baseline. After a wash-out period, intravenous labetalol was given to a target MAP of 15% below baseline. Cerebral blood flow was measured using phase-contrast magnetic resonance imaging and defined as the sum of flow in the internal carotid arteries and vertebral arteries. Cardiac output (CO) was defined as the flow in the ascending aorta. RESULTS Baseline median cerebral blood flow was 772 ml/min (interquartile range, 674 to 871), and CO was 5,874 ml/min (5,199 to 6,355). The median dose of noradrenaline was 0.17 µg · kg-1 · h-1 (0.14 to 0.22). During noradrenaline infusion, cerebral blood flow decreased to 705 ml/min (606 to 748; P = 0.001), and CO decreased to 4,995 ml/min (4,705 to 5,635; P = 0.01). A median dose of labetalol was 120 mg (118 to 150). After labetalol boluses, cerebral blood flow was unchanged at 769 ml/min (734 to 900; P = 0.68). CO increased to 6,413 ml/min (6,056 to 7,464; P = 0.03). CONCLUSIONS In healthy, awake subjects, increasing MAP using intravenous noradrenaline decreased cerebral blood flow and CO. These data do not support inducing hypertension with noradrenaline to increase cerebral blood flow. Cerebral blood flow was unchanged when decreasing MAP using labetalol. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Johan Birnefeld
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - Karl Petersson
- Department of Surgical and Perioperative Sciences, Anesthesiology and Intensive Care Medicine Unit, Umeå University, Umeå, Sweden
| | - Anders Wåhlin
- Departments of Radiation Sciences, Biomedical Engineering and Applied Physics and Electronics and Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Anders Eklund
- Departments of Radiation Sciences, Biomedical Engineering and Applied Physics and Electronics, Umeå University, Umeå, Sweden
| | - Elin Birnefeld
- Department of Surgical and Perioperative Sciences, Anesthesiology and Intensive Care Medicine Unit, Umeå University, Umeå, Sweden
| | - Sara Qvarlander
- Department of Radiation Sciences, Biomedical Engineering, Umeå University, Umeå, Sweden
| | - Michael Haney
- Department of Surgical and Perioperative Sciences, Anesthesiology and Intensive Care Medicine Unit, Umeå University, Umeå, Sweden
| | - Jan Malm
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - Laleh Zarrinkoob
- Department of Surgical and Perioperative Sciences, Anesthesiology and Intensive Care Medicine Unit, Umeå University, Umeå, Sweden
| |
Collapse
|
12
|
Kikinis Z, Castañeyra-Perdomo A, González-Mora JL, Rushmore RJ, Toppa PH, Haggerty K, Papadimitriou G, Rathi Y, Kubicki M, Kikinis R, Heller C, Yeterian E, Besteher B, Pallanti S, Makris N. Investigating the structural network underlying brain-immune interactions using combined histopathology and neuroimaging: a critical review for its relevance in acute and long COVID-19. Front Psychiatry 2024; 15:1337888. [PMID: 38590789 PMCID: PMC11000670 DOI: 10.3389/fpsyt.2024.1337888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/23/2024] [Indexed: 04/10/2024] Open
Abstract
Current views on immunity support the idea that immunity extends beyond defense functions and is tightly intertwined with several other fields of biology such as virology, microbiology, physiology and ecology. It is also critical for our understanding of autoimmunity and cancer, two topics of great biological relevance and for critical public health considerations such as disease prevention and treatment. Central to this review, the immune system is known to interact intimately with the nervous system and has been recently hypothesized to be involved not only in autonomic and limbic bio-behaviors but also in cognitive function. Herein we review the structural architecture of the brain network involved in immune response. Furthermore, we elaborate upon the implications of inflammatory processes affecting brain-immune interactions as reported recently in pathological conditions due to SARS-Cov-2 virus infection, namely in acute and post-acute COVID-19. Moreover, we discuss how current neuroimaging techniques combined with ad hoc clinical autopsies and histopathological analyses could critically affect the validity of clinical translation in studies of human brain-immune interactions using neuroimaging. Advances in our understanding of brain-immune interactions are expected to translate into novel therapeutic avenues in a vast array of domains including cancer, autoimmune diseases or viral infections such as in acute and post-acute or Long COVID-19.
Collapse
Affiliation(s)
- Zora Kikinis
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Agustin Castañeyra-Perdomo
- Universidad de La Laguna, Área de Anatomía y Fisiología. Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Spain
| | - José Luis González-Mora
- Universidad de La Laguna, Área de Anatomía y Fisiología. Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Spain
- Universidad de La Laguna, Instituto Universitario de Neurosciencias, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Spain
| | - Richard Jarrett Rushmore
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, San Cristobal de la Laguna, Spain
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Poliana Hartung Toppa
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kayley Haggerty
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - George Papadimitriou
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Yogesh Rathi
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Marek Kubicki
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Ron Kikinis
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Carina Heller
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Edward Yeterian
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Psychology, Colby College, Waterville, ME, United States
| | - Bianca Besteher
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Stefano Pallanti
- Department of Psychiatry and Behavioural Science, Albert Einstein College of Medicine, Bronx, NY, United States
- Istituto di Neuroscienze, Florence, Italy
| | - Nikos Makris
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Universidad de La Laguna, Área de Anatomía y Fisiología. Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Spain
- Universidad de La Laguna, Instituto Universitario de Neurosciencias, Facultad de Ciencias de la Salud, San Cristobal de la Laguna, Spain
- Department of Anatomy and Neurobiology, Boston University School of Medicine, San Cristobal de la Laguna, Spain
- Departments of Psychiatry and Neurology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
13
|
Han JM, Guo L, Chen XH, Xie Q, Song XY, Ma YL. Relationship between trimethylamine N-oxide and the risk of hypertension in patients with cardiovascular disease: A meta-analysis and dose-response relationship analysis. Medicine (Baltimore) 2024; 103:e36784. [PMID: 38181288 PMCID: PMC10766215 DOI: 10.1097/md.0000000000036784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/26/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND The gut microbiota-dependent metabolite trimethylamine N-oxide (TMAO) has recently been recognized to be one of the risk factors for cardiovascular disease (CVD). However, there is a scarcity of data on the relationship between circulating TMAO levels and hypertension in patients with CVD. Meta analysis and a dose-response relationship were used in this study to assess the relationship between circulating trimethylamine N-oxide levels and the risk of hypertension in patients with CVD. METHODS CNKI, Wanfang Database, Pubmed, Embase, Cochrane Library, and Web of Science were searched up to June 01, 2023. Meta-analysis and dose-response analysis of relative risk data from prospective cohort studies reporting on the relationship between circulating TMAO levels and hypertension risk in patients with CVD were conducted. RESULTS Fifteen studies with a total of 15,498 patients were included in the present meta-analysis. Compared with a lower circulating TMAO level, a higher TMAO level was associated with a higher risk of hypertension in patients with CVD (RR = 1.14,95%CI (1.08, 1.20)). And the higher the TMAO level, the greater the risk of hypertension. The dose-response analysis revealed a linear dose-response relationship between circulating TMAO levels and the risk of hypertension in patients with CVD. The risk of hypertension increased by 1.014% when the circulating TMAO level increased by 1 μ mol/L. CONCLUSION In patients with CVD, the level of circulating TMAO is significantly related to the risk of hypertension. The risk of hypertension increased by 1.014% for every 1 μ mol/L increase in circulating TMAO levels.
Collapse
Affiliation(s)
- Jia-Ming Han
- Medical College of Qinghai University, Xining, China
| | - Lu Guo
- Medical College of Qinghai University, Xining, China
| | - Xian-Hui Chen
- Medical College of Qinghai University, Xining, China
| | - Qian Xie
- Medical College of Qinghai University, Xining, China
| | - Xiu-Ying Song
- Medical College of Qinghai University, Xining, China
| | - Yu-Lan Ma
- Department of Cardiology, Affiliated Hospital of Qinghai University, Xining, China
| |
Collapse
|
14
|
Wu Q, Jiao Y, Luo M, Wang J, Li J, Ma Y, Liu C. Detection of Various Traditional Chinese Medicinal Metabolites as Angiotensin-Converting Enzyme Inhibitors: Molecular Docking, Activity Testing, and Surface Plasmon Resonance Approaches. Molecules 2023; 28:7131. [PMID: 37894610 PMCID: PMC10609061 DOI: 10.3390/molecules28207131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Angiotensin-converting enzyme 1 (ACE1) is a peptide involved in fluid and blood pressure management. It regulates blood pressure by converting angiotensin I to angiotensin II, which has vasoconstrictive effects. Previous studies have shown that certain compounds of natural origin can inhibit the activity of angiotensin-converting enzymes and exert blood pressure-regulating effects. Surface Plasmon Resonance (SPR) biosensor technology is the industry standard method for observing biomolecule interactions. In our study, we used molecular simulation methods to investigate the docking energies of various herbal metabolites with ACE1 proteins, tested the real-time binding affinities between various herbal metabolites and sACE1 by SPR, and analyzed the relationship between real-time binding affinity and docking energy. In addition, to further explore the connection between inhibitor activity and real-time binding affinity, several herbal metabolites' in vitro inhibitory activities were tested using an ACE1 activity test kit. The molecular docking simulation technique's results and the real-time affinity tested by the SPR technique were found to be negatively correlated, and the virtual docking technique still has some drawbacks as a tool for forecasting proteins' affinities to the metabolites of Chinese herbal metabolites. There may be a positive correlation between the enzyme inhibitory activity and the real-time affinity detected by the SPR technique, and the results from the SPR technique may provide convincing evidence to prove the interaction between herbal metabolites and ACE1 target proteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Changzhen Liu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
15
|
Sánchez-Solís AM, Peláez-Hernández V, Santiago-Fuentes LM, Luna-Rodríguez GL, Reyes-Lagos JJ, Orea-Tejeda A. Induced Relaxation Enhances the Cardiorespiratory Dynamics in COVID-19 Survivors. ENTROPY (BASEL, SWITZERLAND) 2023; 25:874. [PMID: 37372218 DOI: 10.3390/e25060874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023]
Abstract
Most COVID-19 survivors report experiencing at least one persistent symptom after recovery, including sympathovagal imbalance. Relaxation techniques based on slow-paced breathing have proven to be beneficial for cardiovascular and respiratory dynamics in healthy subjects and patients with various diseases. Therefore, the present study aimed to explore the cardiorespiratory dynamics by linear and nonlinear analysis of photoplethysmographic and respiratory time series on COVID-19 survivors under a psychophysiological assessment that includes slow-paced breathing. We analyzed photoplethysmographic and respiratory signals of 49 COVID-19 survivors to assess breathing rate variability (BRV), pulse rate variability (PRV), and pulse-respiration quotient (PRQ) during a psychophysiological assessment. Additionally, a comorbidity-based analysis was conducted to evaluate group changes. Our results indicate that all BRV indices significantly differed when performing slow-paced breathing. Nonlinear parameters of PRV were more appropriate for identifying changes in breathing patterns than linear indices. Furthermore, the mean and standard deviation of PRQ exhibited a significant increase while sample and fuzzy entropies decreased during diaphragmatic breathing. Thus, our findings suggest that slow-paced breathing may improve the cardiorespiratory dynamics of COVID-19 survivors in the short term by enhancing cardiorespiratory coupling via increased vagal activity.
Collapse
Affiliation(s)
| | - Viridiana Peláez-Hernández
- Cardiology Service, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico
| | - Laura Mercedes Santiago-Fuentes
- School of Medicine, Universidad Autónoma del Estado de México (UAEMéx), Toluca de Lerdo 50180, Mexico
- Health Sciences Department, Universidad Autónoma Metropolitana Unidad Iztapalapa (UAM-I), Mexico City 09340, Mexico
| | | | - José Javier Reyes-Lagos
- School of Medicine, Universidad Autónoma del Estado de México (UAEMéx), Toluca de Lerdo 50180, Mexico
| | - Arturo Orea-Tejeda
- Cardiology Service, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City 14080, Mexico
| |
Collapse
|
16
|
Ortiz RM, Satou R, Zhuo JL, Nishiyama A. The Renin-Angiotensin-Aldosterone System in Metabolic Diseases and Other Pathologies. Int J Mol Sci 2023; 24:7413. [PMID: 37108577 PMCID: PMC10138637 DOI: 10.3390/ijms24087413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
It has been our pleasure to have been able to develop two special issues within the International Journal of Molecular Sciences: (1) Renin-Angiotensin-Aldosterone System in Pathologies and (2) Renin-Angiotensin-Aldosterone System in Metabolism & Disease [...].
Collapse
Affiliation(s)
- Rudy M. Ortiz
- Department of Molecular & Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Ryousuke Satou
- Department of Physiology and The Hypertension & Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA; (R.S.); (J.L.Z.)
| | - Jia L. Zhuo
- Department of Physiology and The Hypertension & Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA; (R.S.); (J.L.Z.)
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University Medical School, Kagawa 761-0793, Japan;
| |
Collapse
|
17
|
Ahmed AA, Mohamed SK, Nofal S, El Morsy EM, Ahmed AAE. Effect of bempedoic acid on angiotensin-II induced hypertension and vascular tissue remodelling in renal hypertensive rats through AMPK multiple signalling pathways modulation. Life Sci 2023; 320:121573. [PMID: 36931497 DOI: 10.1016/j.lfs.2023.121573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Angiotensin II (Ang II), the effector of the renin-angiotensin system (RAS), is a key player in the pathogenesis of chronic hypertension, accompanied by vascular tissue resistance, remodelling, and damage. Chronic activation of Ang II receptor 1 (AT-1R) impairs multiple cellular targets implicated in cellular protection and survival, including adenosine Monophosphate-activated protein kinase (AMPK) signalling. In addition, it induces oxidative damage, endoplasmic reticulum (ER) stress, and fibrotic changes in resistance vessels. Our study investigated the antihypertensive and antifibrotic effects of bempedoic acid, a first-in-class antihyperlipidemic drug that targets adenosine triphosphate-citrate lyase enzyme to inhibit cholesterol synthesis. We also studied the modulation of multiple AMPK signalling pathways by bempedoic acid in a chronic hypertension model in rats. Sixty male Sprague-Dawley rats were divided into four groups: sham group, hypertensive group, standard captopril group, and bempedoic treated group. All groups underwent left renal artery ligation except the sham group. Fourteen days post-surgery, captopril and bempedoic acid were administered with a dose of 30 mg/kg/day orally to captopril-standard and bempedoic acid-treated groups for two weeks, respectively. In mesenteric resistance arteries, bempedoic acid activated AMPK energy independently and augmented AMPK multiple cellular targets to adapt to Ang II-induced cellular stress. It exerted antioxidant activity, increased endothelial nitric oxide synthase, and reversed the ER stress. Bempedoic acid maintained vascular integrity and prevented vascular remodelling by inhibiting extracellular signal-regulated kinase (ERK)/transforming growth factor-β fibrotic pathway. These effects were reflected in the improved hemodynamic measurements.
Collapse
Affiliation(s)
- Asmaa A Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Egypt.
| | - Shimaa K Mohamed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Egypt
| | - Shahira Nofal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Egypt
| | - Engy M El Morsy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Egypt
| | - Amany A E Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Egypt
| |
Collapse
|
18
|
Tian Y, Yao D, Pan Y, Wang M, Meng X, Zhao X, Liu L, Wang Y, Wang Y. Implication of heart rate variability on cerebral small vessel disease: A potential therapeutic target. CNS Neurosci Ther 2023; 29:1379-1391. [PMID: 36786131 PMCID: PMC10068455 DOI: 10.1111/cns.14111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/19/2022] [Accepted: 01/15/2023] [Indexed: 02/15/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the relationships of heart rate variability (HRV) with the presence, severity, and individual neuroimaging markers of cerebral small vessel disease (CSVD). METHOD A total of 4676 participants from the Third China National Stroke Registry (CNSR-III) study were included in this cross-sectional analysis. CSVD and its markers, including white matter hyperintensity (WMH), lacunes, enlarged perivascular spaces (EPVS), cerebral microbleeds (CMBs), and brain atrophy (BA), were evaluated. Two common HRV parameters, including the square root of the mean of the sum of the squares of differences between adjacent N-N intervals (RMSSD) and the standard deviation of all N-N intervals (SDNN), were used to evaluate the function of the autonomic nervous system (ANS). Binary or ordinal logistic regression analyses were performed to investigate the association between HRV and CSVD. In addition, two-sample mendelian randomization (MR) analyses were performed to investigate the causality of HRV with CSVD. RESULTS RMSSD was significantly associated with total burden of CSVD (Wardlaw's scale, common odds ratio [cOR] 0.80, 95% confidence interval [CI] 0.67-0.96, p = 0.02; Rothwell's scale, cOR 0.75, 95% CI 0.60-0.93, p = 0.008) and the presence of CSVD (Rothwell, OR 0.75, 95% CI 0.60-0.93, p = 0.008). However, no significant associations between SDNN and the presence or total burden of CSVD were observed. Moreover, RMSSD was related to WMH burden (OR 0.80, 95% CI 0.66-0.96, p = 0.02), modified WMH burden (cOR 0.82, 95% CI 0.69-0.97, p = 0.02), and Deep-WMH (OR 0.75, 95% CI 0.62-0.91, p = 0.003), while SDNN was related to Deep-WMH (OR 0.80, 95% CI 0.66-0.96, p = 0.02) and BA (cOR 0.80, 95% CI 0.68-0.95, p = 0.009). Furthermore, adding HRV to the conventional model based on vascualr risk factors enhanced the predictive performance for CSVD, as validated by the integrated discrimination index (p < 0.05). In addition, no causality between HRV and CSVD was observed in two-sample MR analyses. CONCLUSION Decreased HRV may be a potential risk factor of CSVD, implying the possible role of the ANS in the pathogenesis of CSVD.
Collapse
Affiliation(s)
- Yu Tian
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Institute for Brain Research, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,National Center for Neurological Diseases, Beijing, China
| | - Dongxiao Yao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Institute for Brain Research, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,National Center for Neurological Diseases, Beijing, China
| | - Yuesong Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Institute for Brain Research, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,National Center for Neurological Diseases, Beijing, China
| | - Mengxing Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Institute for Brain Research, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,National Center for Neurological Diseases, Beijing, China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Institute for Brain Research, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,National Center for Neurological Diseases, Beijing, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Institute for Brain Research, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,National Center for Neurological Diseases, Beijing, China
| | - Liping Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Institute for Brain Research, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,National Center for Neurological Diseases, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Institute for Brain Research, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,National Center for Neurological Diseases, Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Institute for Brain Research, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,National Center for Neurological Diseases, Beijing, China
| |
Collapse
|
19
|
Baumer-Harrison C, Breza JM, Sumners C, Krause EG, de Kloet AD. Sodium Intake and Disease: Another Relationship to Consider. Nutrients 2023; 15:535. [PMID: 36771242 PMCID: PMC9921152 DOI: 10.3390/nu15030535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023] Open
Abstract
Sodium (Na+) is crucial for numerous homeostatic processes in the body and, consequentially, its levels are tightly regulated by multiple organ systems. Sodium is acquired from the diet, commonly in the form of NaCl (table salt), and substances that contain sodium taste salty and are innately palatable at concentrations that are advantageous to physiological homeostasis. The importance of sodium homeostasis is reflected by sodium appetite, an "all-hands-on-deck" response involving the brain, multiple peripheral organ systems, and endocrine factors, to increase sodium intake and replenish sodium levels in times of depletion. Visceral sensory information and endocrine signals are integrated by the brain to regulate sodium intake. Dysregulation of the systems involved can lead to sodium overconsumption, which numerous studies have considered causal for the development of diseases, such as hypertension. The purpose here is to consider the inverse-how disease impacts sodium intake, with a focus on stress-related and cardiometabolic diseases. Our proposition is that such diseases contribute to an increase in sodium intake, potentially eliciting a vicious cycle toward disease exacerbation. First, we describe the mechanism(s) that regulate each of these processes independently. Then, we highlight the points of overlap and integration of these processes. We propose that the analogous neural circuitry involved in regulating sodium intake and blood pressure, at least in part, underlies the reciprocal relationship between neural control of these functions. Finally, we conclude with a discussion on how stress-related and cardiometabolic diseases influence these circuitries to alter the consumption of sodium.
Collapse
Affiliation(s)
- Caitlin Baumer-Harrison
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32603, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Joseph M. Breza
- Department of Psychology, College of Arts and Sciences, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Colin Sumners
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32603, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL 32610, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Eric G. Krause
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL 32610, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Annette D. de Kloet
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32603, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
20
|
Zhen J, Zhou Z, He M, Han HX, Lv EH, Wen PB, Liu X, Wang YT, Cai XC, Tian JQ, Zhang MY, Xiao L, Kang XX. The gut microbial metabolite trimethylamine N-oxide and cardiovascular diseases. Front Endocrinol (Lausanne) 2023; 14:1085041. [PMID: 36824355 PMCID: PMC9941174 DOI: 10.3389/fendo.2023.1085041] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Morbidity and mortality of cardiovascular diseases (CVDs) are exceedingly high worldwide. Researchers have found that the occurrence and development of CVDs are closely related to intestinal microecology. Imbalances in intestinal microecology caused by changes in the composition of the intestinal microbiota will eventually alter intestinal metabolites, thus transforming the host physiological state from healthy mode to pathological mode. Trimethylamine N-oxide (TMAO) is produced from the metabolism of dietary choline and L-carnitine by intestinal microbiota, and many studies have shown that this important product inhibits cholesterol metabolism, induces platelet aggregation and thrombosis, and promotes atherosclerosis. TMAO is directly or indirectly involved in the pathogenesis of CVDs and is an important risk factor affecting the occurrence and even prognosis of CVDs. This review presents the biological and chemical characteristics of TMAO, and the process of TMAO produced by gut microbiota. In particular, the review focuses on summarizing how the increase of gut microbial metabolite TMAO affects CVDs including atherosclerosis, heart failure, hypertension, arrhythmia, coronary artery disease, and other CVD-related diseases. Understanding the mechanism of how increases in TMAO promotes CVDs will potentially facilitate the identification and development of targeted therapy for CVDs.
Collapse
Affiliation(s)
- Jing Zhen
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Zhou Zhou
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng He
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hai-Xiang Han
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - En-Hui Lv
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Peng-Bo Wen
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Liu
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan-Ting Wang
- Department of Biochemical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Xun-Chao Cai
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Jia-Qi Tian
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng-Ying Zhang
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lei Xiao
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu, China
- *Correspondence: Xing-Xing Kang, ; Lei Xiao,
| | - Xing-Xing Kang
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Xing-Xing Kang, ; Lei Xiao,
| |
Collapse
|
21
|
Candido VB, Perego SM, Ceroni A, Metzger M, Colquhoun A, Michelini LC. Trained hypertensive rats exhibit decreased transcellular vesicle trafficking, increased tight junctions' density, restored blood-brain barrier permeability and normalized autonomic control of the circulation. Front Physiol 2023; 14:1069485. [PMID: 36909225 PMCID: PMC9997677 DOI: 10.3389/fphys.2023.1069485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: Chronic hypertension is accompanied by either blood-brain barrier (BBB) leakage and autonomic dysfunction. There is no consensus on the mechanism determining increased BBB permeability within autonomic areas. While some reports suggested tight junction's breakdown, others indicated the involvement of transcytosis rather than paracellular transport changes. Interestingly, exercise training was able to restore both BBB permeability and autonomic control of the circulation. We sought now to clarify the mechanism(s) governing hypertension- and exercise-induced BBB permeability. Methods: Spontaneously hypertensive rats (SHR) and normotensive controls submitted to 4-week aerobic training (T) or sedentary protocol (S) were chronically cannulated for baseline hemodynamic and autonomic recordings and evaluation of BBB permeability. Brains were harvested for measurement of BBB function (FITC-10 kDa leakage), ultrastructural analysis of BBB constituents (transmission electron microscopy) and caveolin-1 expression (immunofluorescence). Results: In SHR-S the increased pressure, augmented sympathetic vasomotor activity, higher sympathetic and lower parasympathetic modulation of the heart and the reduced baroreflex sensitivity were accompanied by robust FITC-10kDa leakage, large increase in transcytotic vesicles number/capillary, but no change in tight junctions' density within the paraventricular nucleus of the hypothalamus, the nucleus of the solitary tract and the rostral ventrolateral medulla. SHR-T exhibited restored BBB permeability and normalized vesicles counting/capillary simultaneously with a normal autonomic modulation of heart and vessels, resting bradycardia and partial pressure reduction. Caveolin-1 expression ratified the counting of transcellular, not other cytoplasmatic vesicles. Additionally, T caused in both groups significant increases in tight junctions' extension/capillary border. Discussion: Data indicate that transcytosis, not the paracellular transport, is the primary mechanism underlying both hypertension- and exercise-induced BBB permeability changes within autonomic areas. The reduced BBB permeability contributes to normalize the autonomic control of the circulation, which suppresses pressure variability and reduces the occurrence of end-organ damage in the trained SHR. Data also disclose that hypertension does not change but exercise training strengthens the resistance of the paracellular pathway in both strains.
Collapse
Affiliation(s)
| | - Sany M Perego
- Department of Physiology and Biophysics, São Paulo, Brazil
| | | | - Martin Metzger
- Department of Physiology and Biophysics, São Paulo, Brazil
| | - Alison Colquhoun
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, São Paulo, Brazil
| | | |
Collapse
|
22
|
The effect of continuous Jue tone intervention on blood pressure and vasoactive substances in hypertensive rats with a liver-fire hyperactivity pattern. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2021. [DOI: 10.1016/j.jtcms.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|