1
|
Babzada SA, Raja V, Bhat AH, Qadir SU, Radhakrishnan A, Kumar N, Alsahli AA, Ahmad P. Alleviating lanthanum stress in tomato plants using MnO nanoparticles and triacontanol: Impacts on growth, photosynthesis, and antioxidant defense. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137746. [PMID: 40122002 DOI: 10.1016/j.jhazmat.2025.137746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 02/23/2025] [Accepted: 02/23/2025] [Indexed: 03/25/2025]
Abstract
The present study evaluated the synthesis, characterization, and ameliorative potential of manganese oxide nanoparticles (MnO NPs) against lanthanum (La)-induced stress in tomato plants. Biosynthesized MnO NPs exhibited a characteristic UV-Vis absorption peak at 276 nm and a cubic crystalline structure with an average crystallite size of 13 nm, as determined by XRD. TEM images confirmed pseudo-spherical morphology and homogenous distribution. Under La stress, tomato plants showed a significant reduction in shoot length (54.90 %), root length (62.39 %), shoot dry weight (49.71 %), and root dry weight (37.17 %). Application of MnO NPs and triacontanol (TRIA) mitigated these effects, with combined treatments enhanced shoot and root lengths by 155.81 % and 216.66 %, respectively, and dry weights by 116.58 % (shoot) and 173.06 % (root). La stressed plants demonstrated decreased accumulation of La in roots and shoots by about 36.64 % and 32.21 %, respectively, upon synergistic application of MnO NPs and TRIA. La stress decreased photosynthetic pigments, including chlorophyll a (53.56 %), chlorophyll b (51.28 %), total chlorophyll (53.10 %), and carotenoids (26.36 %). Combined MnO NPs and TRIA treatment significantly increased these pigments by 110.23 %, 263.15 %, 142.27 %, and 266.66 %, respectively. Photosynthetic efficiency parameters, such as net photosynthetic rate, stomatal conductance, and transpiration rate, also improved by up to 74.44 %, 119.00 %, and 89.44 %, respectively, under combined treatments. Relative water content (RWC) decreased by 49.83 % under La stress but increased by 84.75 % following combined treatments. Osmolytes like proline and glycine betaine were elevated by 20.13 % and 38.47 %, respectively. Reactive oxygen species (ROS)-related markers, including H₂O₂, malondialdehyde, and electrolyte leakage, were significantly reduced by 58.14 %, 28.46 %, and 39.81 %, respectively, with MnO NPs and TRIA. Antioxidant enzyme activities were enhanced, with combined treatments elevating SOD (27.02 %), CAT (15.38 %), APX (90.37 %), and GR (90.38 %). Moreover, activities of DHAR and MDHAR, previously suppressed by La, increased by 91.64 % and 81.75 %, respectively. The findings highlight the synergistic role of MnO NPs and TRIA in alleviating La toxicity by enhancing growth, photosynthetic efficiency, antioxidant defense, and reducing ROS, offering a sustainable approach for crop improvement under metal stress conditions.
Collapse
Affiliation(s)
- Shahid Ahmad Babzada
- Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Vaseem Raja
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413, India.
| | - Aashaq Hussain Bhat
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India
| | - Sami Ullah Qadir
- Department of Environmental Sciences, Govt Degree College Pampore, Pulwama, Jammu and Kashmir 192121, India
| | - Arunkumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu 603103, India
| | - Naveen Kumar
- Galgotias Multidisplinary Research and Development Cell (G-MRDC), Galgotias University,Greater Noida, Uttar Pradesh, 203201, India
| | - Abdulaziz Abdullah Alsahli
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama, Jammu and Kashmir 192301, India; Research and Development Cell, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
2
|
Chen ZJ, Shi XZ, Qu YN, Li SY, Ai G, Wang YZ, Zeng LQ, Liu XL, Li X, Wang YH. Insights into the synergistic effects of exogenous glycine betaine on the multiphase metabolism of oxyfluorfen in Oryza sativa for reducing environmental risks. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137970. [PMID: 40120261 DOI: 10.1016/j.jhazmat.2025.137970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Glycine betaine (GB), a secondary metabolite that regulates plant responses to biotic and abiotic stresses, may help reduce pesticide phytotoxicity, but this fact remains unestablished. This study investigated the physiological response of rice (Oryza sativa) to six dosages of oxyfluorfen (OFF) (0-0.25 mg/L) and two concentrations of GB (0 and 175 mg/L). GB treatment counteracted the considerable decrease in rice seedling growth caused by OFF treatment at doses higher than 0.15 mg/L. The biochemical processes and catalytic events associated with OFF-triggered degradation in rice were investigated using RNA-Seq-LC-Q-TOF-HRMS/MS after six rice root and shoot libraries were created and subjected to either OFF or OFF-GB. Rice treated with both GB and an ecologically relevant dose of OFF showed a marked upregulation of 1039 root genes and 111 shoot genes compared with those treated with OFF alone. Multiple OFF-degradative enzymes implicated in molecular metabolism and xenobiotic tolerance to environmental stress were identified by gene enrichment analysis. In comparison to treated with 0.25 mg/L OFF alone, exogenous GB administration decreased OFF accumulation, with the OFF concentration in roots being 44.47 % and in shoots being 51.03 %. The production of essential enzymes involved in the OFF decay process was attributed to certain genes with variable expression, including cytochrome P450, methyltransferase, glycosyltransferases, and acetyltransferases. Using LC-Q-TOF-HRMS/MS, 3 metabolites and 16 conjugates were identified in metabolic pathways including hydrolysis, acetylation, glycosylation, and interaction with amino acids in order to enhance OFF-degradative metabolism. All things considered, by reducing phytotoxicity and OFF buildup, external GB treatment can increase rice's resistance to oxidative stress caused by OFF. This study offers valuable insights into the function of GB in enhancing OFF degradation, which may have ramifications for designing genotypes that maximize OFF accumulation in rice crops and promote OFF degradation in paddy crops.
Collapse
Affiliation(s)
- Zhao Jie Chen
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China.
| | - Xu Zhen Shi
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Ya Nan Qu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Si Ying Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Gan Ai
- The Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Zhuo Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Li Qing Zeng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Xiao Liang Liu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Xuesheng Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Yan Hui Wang
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| |
Collapse
|
3
|
Qin Q, Wang L, Wang Q, Wang R, Li C, Qiao Y, Liu H. Postharvest Flavor Quality Changes and Preservation Strategies for Peach Fruits: A Comprehensive Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:1310. [PMID: 40364338 PMCID: PMC12073732 DOI: 10.3390/plants14091310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025]
Abstract
Peach (Prunus persica (L.) Batsch) is valued for its flavor, nutrition, and economic importance, yet as a climacteric fruit, it undergoes rapid postharvest senescence due to respiratory surges and ethylene production, leading to flavor loss and reduced marketability. Recent advances in postharvest physiology, including ethylene regulation, metabolic analysis, and advanced packaging, have improved preservation. Compared with traditional methods, emerging technologies, such as nanotechnology-based coatings and intelligent packaging systems, offer environmentally friendly and highly effective solutions but face high costs, technical barriers, and other constraints. This review examines changes in key flavor components-amino acids, phenolic compounds, sugars, organic acids, and volatile organic compounds (VOCs)-during ripening and senescence. It evaluates physical, chemical, and biotechnological preservation methods for maintaining quality. For instance, 1-MCP extends shelf life but may reduce aroma, underscoring the need for optimized protocols. Emerging trends, including biocontrol agents and smart packaging, provide a foundation for enhancing peach storage, transportation, and marketability.
Collapse
Affiliation(s)
- Qiaoping Qin
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (Q.Q.); (L.W.); (R.W.)
| | - Lili Wang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (Q.Q.); (L.W.); (R.W.)
| | - Qiankun Wang
- Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai 201403, China;
| | - Rongshang Wang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (Q.Q.); (L.W.); (R.W.)
| | - Chunxi Li
- Institute of Shanghai Peach Research, NO.897, Jiangang Village, Laogang Town, Pudong New District, Shanghai 200120, China;
| | - Yongjin Qiao
- Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai 201403, China;
| | - Hongru Liu
- Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai 201403, China;
| |
Collapse
|
4
|
Mushtaq NU, Saleem S, Rasool A, Shah WH, Tahir I, Seth CS, Rehman RU. Proline Tagging for Stress Tolerance in Plants. Int J Genomics 2025; 2025:9348557. [PMID: 40207093 PMCID: PMC11981710 DOI: 10.1155/ijog/9348557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/19/2024] [Indexed: 04/11/2025] Open
Abstract
In environments with high levels of stress conditions, plants accumulate various metabolic products under stress conditions. Among these products, amino acids have a cardinal role in supporting and maintaining plant developmental processes. The increase in proline content and stress tolerance in plants has been found optimistic, suggesting the importance of proline in mitigating stress through osmotic adjustments. Exogenous application and pretreatment of plants with proline increase growth and development under various stressful conditions, but excessive proline has negative influence on growth. Proline has two biosynthetic routes: glutamate or the ornithine pathway, and whether plants synthesize proline by glutamate or ornithine precursors is still debatable as relatively little is known about it. Plants have the innate machinery to synthesize proline from both pathways, but the switch of a particular pathway under which it can be activated and deactivated depends upon various factors. Therefore, in this review, we elucidate the importance of proline in stress mitigation; the optimal amount of proline required for maximum benefit; levels at which it inhibits the growth, conditions, and factors that regulate proline biosynthesis; and lastly, how we can benefit from all these answers to obtain better stress tolerance in plants.
Collapse
Affiliation(s)
- Naveed Ul Mushtaq
- Department of Bioresources, School of Biological Sciences, University of Kashmir 190006, Srinagar, India
| | - Seerat Saleem
- Department of Bioresources, School of Biological Sciences, University of Kashmir 190006, Srinagar, India
| | - Aadil Rasool
- Department of Bioresources, School of Biological Sciences, University of Kashmir 190006, Srinagar, India
| | - Wasifa Hafiz Shah
- Department of Bioresources, School of Biological Sciences, University of Kashmir 190006, Srinagar, India
| | - Inayatullah Tahir
- Department of Botany, School of Biological Sciences, University of Kashmir 190006, Srinagar, India
| | | | - Reiaz Ul Rehman
- Department of Bioresources, School of Biological Sciences, University of Kashmir 190006, Srinagar, India
| |
Collapse
|
5
|
Zhu Y, Lin D, Li Q, An M, Lv J. Metabolomic Analysis of the Responses of Bryophyte Tortella tortuosa (Hedw.) Limpr. to Cadmium (Cd) Stress. Int J Mol Sci 2025; 26:2856. [PMID: 40243446 PMCID: PMC11989171 DOI: 10.3390/ijms26072856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
In recent years, there have been many studies on the response of plants to heavy metal stress, but the metabolic changes in bryophytes, pioneer plants quickly responding to environmental changes, under exogenous cadmium (Cd) stress have yet to be explored. In this indoor experiment, the responses in the metabolome of bryophyte Tortella tortuosa (Hedw.) Limpr. to different Cd exposure levels (0 (CK), 5 (T1), and 10 (T2) mg·L-1) were analyzed. The results showed that the number of differentially accumulated metabolites (DAMs) secreted by T. tortuosa increased with the increase in the Cd concentration, and the biosynthesis of cofactors, D-Amino acid metabolism, Arginine biosynthesis, ATP-binding cassette transporters (ABC transporters), and biosynthesis of alkaloids derived from shikimate pathway were the main pathways enriched by DAMs. The relative abundances of malic acid, N-Formylkynurenine, L-Glutamine, L-Histidine, LL-2,6-Diaminopimelic acid, and fusaric acid in the T2 treatment increased by 16.06%, 62.51%, 14.51%, 11.92%, 21.37%, and 35.79%, respectively (p < 0.05), compared with those of the CK, and the correlation analysis results showed that the above DAMs were closely related to the changes in plant antioxidant enzyme activity and Cd concentration. These results indicate that the secretion of amino acid (N-Formylkynurenine, L-Histidine) and organic acids (isocitric acid, LL-2,6-Diaminopimelic acid, malic acid) through the metabolic pathways, including biosynthesis of amino acids, biosynthesis of cofactors, glyoxylate and dicarboxylate metabolism, and ABC transporters, is the metabolic mechanism of T. tortuosa to resist exogenous Cd stress. This study will provide a reference for the monitoring and remediation of heavy metal pollution.
Collapse
Affiliation(s)
| | | | | | - Mengjie An
- Key Laboratory of Biological Resources and Genetic Engineering of Xinjiang, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.Z.)
| | - Jie Lv
- Key Laboratory of Biological Resources and Genetic Engineering of Xinjiang, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.Z.)
| |
Collapse
|
6
|
Lamlom SF, El-Banna AAA, Ren H, El-Yamany BAM, Salama EAA, El-Sorady GA, Kamara MM, AlGarawi AM, Hatamleh AA, Shehab AA, Abdelghany AM. Synergistic effects of foliar applied glycine betaine and proline in enhancing rice yield and stress resilience under salinity conditions. PeerJ 2025; 13:e18993. [PMID: 40098812 PMCID: PMC11913015 DOI: 10.7717/peerj.18993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/23/2025] [Indexed: 03/19/2025] Open
Abstract
Soil salinity is one of the most challenging environmental factors affecting rice productivity, particularly in regions with high saline soils such as Egypt. The ability of rice to maintain high yield and quality under saline stress is often limited, leading to significant reductions in productivity. With the increasing salinization of agricultural lands, finding effective agronomic practices and treatments to mitigate salt-induced damage in rice crops is critical for ensuring food security. This study investigates the potential of exogenous glycine betaine (GB) and proline (Pro) applications to mitigate the adverse effects of salt stress on rice (cv. Sakha 108) over two consecutive growing seasons (2021-2022). Treatments of 30 mM GB and 30 mM Pro significantly enhanced dry weight (162.2 and 169.7 g in 2021 and 2022, respectively), plant height (88.94 and 99.00 cm), tiller number (10.58 and 10.33), and grain yield (4.22 and 4.30 t/ha) compared to control groups. Combined treatments of 30 mM GB and 30 mM Pro exhibited the greatest improvements across both years, with maximum dry weight (193.44 and 186.56 g), plant height (112.00 and 112.33 cm), tiller number (15.33 and 16.28), spikelet number per meter (264.00 and 264.05), thousand-kernel weight (70.00 and 73.2 g), and grain yield (6.17 and 6.64 t/ha). Additionally, the combined treatments resulted in the highest harvest index (53.22% in 2021 and 48.94% in 2022), amylose content (24.24% and 20.09%), and protein content (12.33% and 12.00%). Correlation analysis highlighted strong positive relationships among traits, such as plant height with grain yield (r = 0.94), biomass yield (r = 0.92), and harvest index (r = 0.90). Path analysis further demonstrated that thousand-kernel weight and biomass yield had the most significant direct effects on grain yield, with values of 0.43 and 0.42, respectively. Heatmap clustering and principal component analysis (PCA) confirmed the synergistic effects of combined GB and Pro treatments, with the 30P_30GB treatment consistently clustering with high-yield traits, enhancing nitrogen use efficiency and stress resilience. In conclusion, the combined application of glycine betaine and proline significantly enhances the agronomic and chemical traits of rice under salt stress. This study demonstrates that these osmoprotectants improve vegetative growth, grain yield, and quality, with synergistic effects observed at optimal concentrations. The findings highlight the potential of glycine betaine and proline as effective tools for improving salt tolerance in rice, offering practical solutions to address challenges in saline-affected agricultural regions.
Collapse
Affiliation(s)
- Sobhi F. Lamlom
- Work Station of Science and Technique for Post-doctoral in Sugar Beet Institute, Heilongjiang University, Harbin, Heilongjiang, China
- Plant Production Department, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, Egypt
| | - Aly A. A. El-Banna
- Plant Production Department, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, Egypt
| | - Honglei Ren
- Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbain, Heilongjiang, China
| | - Bassant A. M. El-Yamany
- Rice Research Department, Field Crop Research Institute, Agricultural Research Center, Alexandria, Egypt
| | - Ehab A. A. Salama
- Agricultural Botany Department, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, Egypt
| | - Gawhara A. El-Sorady
- Plant Production Department, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, Egypt
| | - Mohamed M. Kamara
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Amal Mohamed AlGarawi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Ahmed M. Abdelghany
- Crop Science Department, Faculty of Agriculture, Damanhur University, Damanhur, Egypt
| |
Collapse
|
7
|
Mu P, Ye F, Liu X, Zhang P, Liu T, Li X. Partial root-zone drying irrigation enhances synthesis of glutathione in barley roots to improve low temperature tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70026. [PMID: 39908208 DOI: 10.1111/tpj.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/27/2024] [Accepted: 01/23/2025] [Indexed: 02/07/2025]
Abstract
Partial root-zone drying irrigation (PRD) has been widely employed to regulate crop root development and responses to environmental fluctuations. However, its role in reprogramming rhizospheric microorganisms and inducing plant stress tolerance remains largely unexplored. This study aimed to investigate the effects of PRD on the response of barley (Hordeum vulgare) plants to low temperatures under various irrigation regimes. Under low temperature, barley plants subjected to PRD exhibited a significantly enhanced net photosynthetic rate, stomatal conductance, and maximum quantum efficiency of photosystem II compared to fully irrigated plants. Additionally, these plants showed a reduction in relative conductance. These results suggest that PRD could be a viable strategy for enhancing crop stress tolerance through irrigation management. Metabolomic analysis revealed that PRD influenced the accumulation of glutathione and 9-octadecenamide in roots under low temperature, which was corroborated by transcriptome profiling data. Furthermore, the study highlighted the close association between this regulatory process and rhizosphere core microorganisms, such as Sphingobium and Mortierella, enriched in barley roots under PRD. This study revealed the mechanism underlying plant stress tolerance induction by PRD and the roles of rhizosphere microorganisms in this process. Also, the current study suggests that PRD is a promising strategy for enhancing crop stress tolerance through effective irrigation management.
Collapse
Affiliation(s)
- Peng Mu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Fan Ye
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Xintong Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Peng Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Tianhao Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Xiangnan Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Brown JH, Vijayan J, Rodrigues de Queiroz A, Figueroa Ramos N, Bickford N, Wuellner M, Buan NR, Stone JM, Glowacka K, Roston RL. Coenzyme M: An Archaeal Antioxidant as an Agricultural Biostimulant. Antioxidants (Basel) 2025; 14:140. [PMID: 40002327 PMCID: PMC11851959 DOI: 10.3390/antiox14020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/09/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Rising global food demand necessitates improved crop yields. Biostimulants offer a potential solution to meet these demands. Among them, antioxidants have shown potential to improve yield, nutritional quality, and resilience to climate change. However, large-scale production of many antioxidants is challenging. Here, we investigate Coenzyme M (CoM), a small, achiral antioxidant from archaea, as a potential biostimulant, investigating its effects on growth and physiology. CoM significantly increased shoot mass and root length of the model plant, Arabidopsis thaliana, in a concentration-dependent manner. Sulfur-containing CoM supplementation restored growth under sulfur-limited conditions in Arabidopsis, whereas similar recovery was not observed for other macronutrient deficiencies, consistent with it being metabolized. In tobacco, CoM increased photosynthetic light capture capacity, consistent with observed growth improvements. Interestingly, this effect was independent of carbon capture rates. Furthermore, CoM promoted early-stage shoot growth in various crops species, including tobacco, basil, cannabis, and soybean. Our results suggest CoM is a promising, scalable biostimulant with potential to modify photosynthesis and enhance crop productivity.
Collapse
Affiliation(s)
- Jeremy H. Brown
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (J.H.B.); (N.R.B.); (J.M.S.); (K.G.)
- Nebraska Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Jithesh Vijayan
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (J.H.B.); (N.R.B.); (J.M.S.); (K.G.)
- Nebraska Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Aline Rodrigues de Queiroz
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (J.H.B.); (N.R.B.); (J.M.S.); (K.G.)
- Nebraska Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Natalia Figueroa Ramos
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (J.H.B.); (N.R.B.); (J.M.S.); (K.G.)
| | - Nate Bickford
- Department of Natural Sciences, Oregon Institute of Technology, Klamath Falls, OR 97601, USA;
| | - Melissa Wuellner
- Department of Biology, University of Nebraska at Kearny, Kearney, NE 68849, USA;
| | - Nicole R. Buan
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (J.H.B.); (N.R.B.); (J.M.S.); (K.G.)
- Nebraska Center for Redox Biology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Julie M. Stone
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (J.H.B.); (N.R.B.); (J.M.S.); (K.G.)
- Nebraska Center for Redox Biology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Katarzyna Glowacka
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (J.H.B.); (N.R.B.); (J.M.S.); (K.G.)
- Nebraska Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland
| | - Rebecca L. Roston
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (J.H.B.); (N.R.B.); (J.M.S.); (K.G.)
- Nebraska Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
9
|
Targino VA, Dias TJ, Sousa VFDO, Silva MDM, da Silva AJ, Ribeiro JEDS, da Silva RF, Batista DS, Henschel JM, do Rêgo MM. Growth, Gas Exchange, and Phytochemical Quality of Nasturtium ( Tropaeolum majus L.) Subjected to Proline Concentrations and Salinity. PLANTS (BASEL, SWITZERLAND) 2025; 14:301. [PMID: 39942863 PMCID: PMC11820538 DOI: 10.3390/plants14030301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025]
Abstract
Salinity is a significant challenge for agriculture in semi-arid regions, affecting the growth and productivity of plants like Tropaeolum majus (nasturtium), which is valued for its ornamental, medicinal, and food uses. Salt stress disrupts the plant's biochemical, physiological, and anatomical processes, limiting its development. This study investigates the potential of proline as an osmoprotectant to mitigate the effects of salt stress on nasturtium's growth and physiology. A completely randomized factorial design was employed, testing five levels of electrical conductivity (0.0, 1.50, 3.00, 4.5, 6.5 dS m-1) and four proline concentrations (0.0, 5.00, 10.0, 15.0 mM) with six replicates. The results showed that proline application, particularly at 15.0 mM, enhanced growth parameters such as leaf number, stem diameter, and root length. At moderate salinity (3.0 dS m-1), proline significantly improved gas exchange, increasing net photosynthesis, transpiration, and stomatal conductance. Additionally, proline reduced the negative impact of salt stress on the fresh mass of leaves, stems, and roots, and increased both the mass and number of flowers. Proline also elevated the levels of total phenolic compounds and vitamin C while reducing soluble sugars, particularly under moderate salt stress (4.75 dS m-1). Overall, applying 15.0 mM proline shows promise for enhancing the biomass accumulation, flower production, and overall quality of nasturtium under saline conditions.
Collapse
Affiliation(s)
- Vitor Araujo Targino
- Graduate Program in Agronomy, Federal University of Paraíba, Areia 58397-000, PB, Brazil; (M.d.M.S.); (A.J.d.S.); (R.F.d.S.); (D.S.B.); (J.M.H.); (M.M.d.R.)
| | - Thiago Jardelino Dias
- Graduate Program in Agronomy, Federal University of Paraíba, Areia 58397-000, PB, Brazil; (M.d.M.S.); (A.J.d.S.); (R.F.d.S.); (D.S.B.); (J.M.H.); (M.M.d.R.)
| | | | - Mariana de Melo Silva
- Graduate Program in Agronomy, Federal University of Paraíba, Areia 58397-000, PB, Brazil; (M.d.M.S.); (A.J.d.S.); (R.F.d.S.); (D.S.B.); (J.M.H.); (M.M.d.R.)
| | - Adjair José da Silva
- Graduate Program in Agronomy, Federal University of Paraíba, Areia 58397-000, PB, Brazil; (M.d.M.S.); (A.J.d.S.); (R.F.d.S.); (D.S.B.); (J.M.H.); (M.M.d.R.)
| | | | - Ramon Freire da Silva
- Graduate Program in Agronomy, Federal University of Paraíba, Areia 58397-000, PB, Brazil; (M.d.M.S.); (A.J.d.S.); (R.F.d.S.); (D.S.B.); (J.M.H.); (M.M.d.R.)
| | - Diego Silva Batista
- Graduate Program in Agronomy, Federal University of Paraíba, Areia 58397-000, PB, Brazil; (M.d.M.S.); (A.J.d.S.); (R.F.d.S.); (D.S.B.); (J.M.H.); (M.M.d.R.)
| | - Juliane Maciel Henschel
- Graduate Program in Agronomy, Federal University of Paraíba, Areia 58397-000, PB, Brazil; (M.d.M.S.); (A.J.d.S.); (R.F.d.S.); (D.S.B.); (J.M.H.); (M.M.d.R.)
| | - Mailson Monteiro do Rêgo
- Graduate Program in Agronomy, Federal University of Paraíba, Areia 58397-000, PB, Brazil; (M.d.M.S.); (A.J.d.S.); (R.F.d.S.); (D.S.B.); (J.M.H.); (M.M.d.R.)
| |
Collapse
|
10
|
Han J, Dai Y, Zhou J, Tian J, Chen Q, Kou X, Raza G, Zhang B, Wang K. Tissue-specific chromatin accessibility and transcriptional regulation in maize cold stress response. Genomics 2025; 117:110981. [PMID: 39701501 DOI: 10.1016/j.ygeno.2024.110981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/19/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Maize, a vital crop globally, faces significant yield losses due to its sensitivity to cold stress, especially in temperate regions. Understanding the molecular mechanisms governing maize response to cold stress is crucial for developing strategies to enhance cold tolerance. However, the precise chromatin-level regulatory mechanisms involved remain largely unknown. In this study, we employed DNase-seq and RNA-seq techniques to investigate chromatin accessibility and gene expression changes in maize root, stem, and leaf tissues subjected to cold treatment. We discovered widespread changes in chromatin accessibility and gene expression across these tissues, with strong tissue specificity. Cold stress-induced DNase I hypersensitive sites (coiDHSs) were associated with differentially expressed genes, suggesting a direct link between chromatin accessibility and gene regulation under cold stress. Motif enrichment analysis identified ERF transcription factors (TFs) as central regulators conserved across tissues, with ERF5 emerging as pivotal in the cold response regulatory network. Additionally, TF co-localization analysis highlighted six TF pairs (ERF115-SHN3, ERF9-LEP, ERF7-SHN3, LEP-SHN3, LOB-SHN3, and AS2-LOB) conserved across tissues but showing tissue-specific binding preferences. These findings indicate intricate regulatory networks in maize cold response. Overall, our study provides insights into the chromatin-level regulatory mechanisms underpinning maize adaptive response to cold stress, offering potential targets for enhancing cold tolerance in agricultural contexts.
Collapse
Affiliation(s)
- Jinlei Han
- School of Life Sciences, Nantong University, Nantong 226019, China.
| | - Yan Dai
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Jialiang Zhou
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Jingjing Tian
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Qi Chen
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Xiaobing Kou
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Ghulam Raza
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong 226019, China.
| |
Collapse
|
11
|
Ikeda N, Kamimura M, Uesugi K, Kobayashi T, Che FS. Choline chloride and N-allylglycine promote plant growth by increasing the efficiency of photosynthesis. Biosci Biotechnol Biochem 2024; 89:51-61. [PMID: 39439204 DOI: 10.1093/bbb/zbae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
We previously reported that choline chloride and N-allylglycine stimulate photosynthesis in wheat protoplasts. Treatment of Arabidopsis thaliana and Brassica rapa plants with both compounds promoted growth and photosynthesis. To clarify the relationship between the enhancement of photosynthesis and increased growth, A. thaliana T87 cells, which show photosynthesis-dependent growth, and YG1 cells, which use sugar in the medium for growth, were treated with choline chloride or N-allylglycine. Only the T87 cells showed increased growth, suggesting that choline chloride and N-allylglycine promote growth by increasing photosynthetic activity. Transcriptome analysis using choline chloride- and N-allylglycine-treated plants showed that the most abundant transcripts corresponded to photosynthetic electron transfer-related genes among the genes upregulated by both compounds. Furthermore, the compounds also upregulate genes encoding transcription factors that may control the expression of these photosynthetic genes. These results suggest that choline chloride and N-allylglycine promote photosynthesis through increased expression of photosynthetic electron transfer-related genes.
Collapse
Affiliation(s)
- Naoki Ikeda
- Graduate School of Biosciences, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Mayu Kamimura
- Department of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Kousaku Uesugi
- Graduate School of Biosciences, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | | | - Fang-Sik Che
- Graduate School of Biosciences, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
- Department of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
- Genome Editing Research Institute, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| |
Collapse
|
12
|
Afonso S, Oliveira I, Guedes F, Meyer AS, Gonçalves B. GLYCINE betaine and seaweed-based biostimulants improved leaf water status and enhanced photosynthetic activity in sweet cherry trees. FRONTIERS IN PLANT SCIENCE 2024; 15:1467376. [PMID: 39759231 PMCID: PMC11695132 DOI: 10.3389/fpls.2024.1467376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/07/2024] [Indexed: 01/07/2025]
Abstract
Sweet cherry is a high-value crop, and strategies to enhance production and sustainability are at the forefront of research linked to this crop. The improvement of plant status is key to achieving optimum yield. Biostimulants, such as glycine betaine (GB) or seaweed-based biostimulants [e.g., Ecklonia maxima (EM)], can represent a sustainable approach to improving plant conditions, even under adverse environmental circumstances. Despite their potential, few studies have focused on the effects of GB or EM exogenous application on sweet cherry tree physiology. To address this lack of research, a study was conducted in a Portuguese sweet cherry commercial orchard, using Lapins and Early Bigi cultivars. Trees were treated with products based on GB and EM at two different concentrations [GB 0.25% (v/v) and GB 0.40% (v/v); EM 0.30% (v/v) and EM 0.15% (v/v)], a combination of the lowest concentrations of both biostimulants (Mix -GB 0.25% and EM 0.15%), and a control group (C) treated with water. Applications were performed over three consecutive years (2019, 2020, and 2021) at three different phenological stages, according to the BBCH scale: 77, 81, and 86 BBCH. Results showed, in general, that the application of biostimulants led to improvements in water status as well as significantly lower values of electrolyte leakage and thiobarbituric acid reactive substances compared to C samples. Additionally, biostimulants reduced pigment loss in the leaves and enhanced their biosynthesis. The Chlorophylla/Chlorophyllb ratio, ranging from 2 to 4, indicated a greater capacity for light absorption and lower stress levels in treated leaves. Soluble sugar and starch content decreased during fruit development in both cultivars and years; however, biostimulants increased these contents, with increments of approximately 15% to 30% in leaves treated with EM. Soluble protein content also showed the same pattern for treated leaves. Biostimulants, especially EM, demonstrated a significant positive effect (p ≤ 0.001) on total phenolic content, with increases of approximately 25% to 50% in treated leaves. In conclusion, the application of biostimulants, especially algae-based, significantly improved tree performance by enhancing physiological parameters and stress resilience and could represent a novel approach in fruit production systems.
Collapse
Affiliation(s)
- Sílvia Afonso
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Ivo Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Francisco Guedes
- Cermouros-Cerejas de São Martinho de Mouros, Lda., Resende, Portugal
| | - Anne S. Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| |
Collapse
|
13
|
Jin Y, Yang P, Li J, Yang Y, Yang R, Fu H, Li J. Brassinosteroids Alleviate Salt Stress by Enhancing Sugar and Glycine Betaine in Pepper ( Capsicum annuum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:3029. [PMID: 39519948 PMCID: PMC11548198 DOI: 10.3390/plants13213029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Salt stress is a major abiotic factor that negatively impacts the growth, performance, and secondary metabolite production in pepper (Capsicum annuum L.) plants. Brassinosteroids (BRs) play a crucial role in enhancing plant tolerance to abiotic stress, yet their potential in mitigating salt stress in pepper plants, particularly by promoting sugar and glycine betaine accumulation, remains underexplored. In this study, we investigated the effects of the foliar application of 2,4-epibrassinolide (EBR) on salt-stressed pepper seedlings. Our findings revealed that EBR treatment significantly increased the levels of proline, sugar, and glycine betaine under salt stress compared to untreated controls. Moreover, EBR enhanced the antioxidant defense mechanisms in pepper seedlings by increasing sugar and glycine betaine levels, which contributed to the reduction of reactive oxygen species (ROS) and malondialdehyde (MDA) accumulation.
Collapse
Affiliation(s)
- Yujie Jin
- College of Biological and Agricultural Sciences, Honghe University, Mengzi 661100, China; (Y.J.)
- College of Horticulture and Forestry, Tarim University, Alar 843300, China
| | - Ping Yang
- College of Biological and Agricultural Sciences, Honghe University, Mengzi 661100, China; (Y.J.)
| | - Jian Li
- College of Biological and Agricultural Sciences, Honghe University, Mengzi 661100, China; (Y.J.)
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China
| | - Yongchao Yang
- College of Biological and Agricultural Sciences, Honghe University, Mengzi 661100, China; (Y.J.)
| | - Ruopeng Yang
- College of Chemistry and Resources Engineering, Honghe University, Mengzi 661100, China
| | - Hongbo Fu
- College of Biological and Agricultural Sciences, Honghe University, Mengzi 661100, China; (Y.J.)
| | - Jie Li
- College of Biological and Agricultural Sciences, Honghe University, Mengzi 661100, China; (Y.J.)
| |
Collapse
|
14
|
Ayman M, Fahmy MA, Elnahal ASM, Alfassam HE, Rudayni HA, Allam AA, Farahat EM. Enhancing wheat tolerance to salinity using nanomaterials, proline, and biochar-inoculated with Bacillus subtilis. Heliyon 2024; 10:e37160. [PMID: 39286164 PMCID: PMC11402747 DOI: 10.1016/j.heliyon.2024.e37160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Salinity negatively impacts crop production by affecting physiological and biochemical processes in plants. This study investigates the effectiveness of Nano-ZnO (NZn), proline (PA), Nano-TiO2 (NTi), Nano-SiO2 (NSi)), and biochar inoculated with Bacillus subtilis (OSBS) in enhancing wheat tolerance to salinity stress. Pot experiments were conducted under saline conditions with varying rates of biochar and foliar applications. Results indicated that 2 % OSBS with NZn and NSi significantly improved wheat growth, leaf area, and nutrient level, reducing the negative impacts of salinity.
Collapse
Affiliation(s)
- Muhammad Ayman
- Department of Water and Soil Sciences, Faculty of Technology and Development, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed A Fahmy
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed S M Elnahal
- Department of Plant Pathology, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Haifa E Alfassam
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh, 11671, Saudi Arabia
| | - Hassan A Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef 65211 Egypt
| | - Eman M Farahat
- Minia Higher Technology Institute for Applied Health Sciences, Minia, Egypt
| |
Collapse
|
15
|
Hanif S, Farooq S, Kiani MZ, Zia M. Surface modified ZnO NPs by betaine and proline build up tomato plants against drought stress and increase fruit nutritional quality. CHEMOSPHERE 2024; 362:142671. [PMID: 38906183 DOI: 10.1016/j.chemosphere.2024.142671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024]
Abstract
Drought stress is a serious challenge for global food production. Nanofertilizers and nanocomposites cope with such environmental stresses and also increase nutritional contents of fruits. An in vitro experiment was designed to use Zinc Oxide Nanoparticles (ZnO NPs) primed with Proline and Betaine (ZnOP and ZnOBt NPs) at 50 and 100 mg/kg soil against drought stress in Tomato (Solanum lycopersicum) plants. Plant morphological, biochemical, and fruit nutritional quality were accessed. Maximum plant height was observed under the treatment of ZnOP50 (1.09 m) and ZnO 100 (1.06 m). ZnOP and ZnOBt also improved the chlorophyll content up to 86% and 87.16%, respectively. Application of ZnOP NPs also demonstrated maximum tomato yield (204 g tomato/plant) followed by ZnO NPs and ZnOBt NPs. Nanocomposites decreased phenolics and flavonoids contents in drought stressed plants demonstrating the mitigation of oxidative stress. Nanofertilizer also increased the concentration of phenolics and flavonoids in fruits that increased the nutritional contents. Furthermore a significant accumulation of betaine, proline, and lycopene in fruits on nanocomposite treatment made it nutritional and healthy. Lycopene content increased up to 2.01% and 1.23% in presence of ZnOP50 and ZnOP100, respectively. These outcomes validate that drought stress in plant can be reduced by accumulation of different phytochemicals and quenching oxidative stress. The study deems that nano zinc carrying osmoregulators can greatly reduce the negative effects of drought stress and increase nutritional quality of tomato fruits.
Collapse
Affiliation(s)
- Saad Hanif
- Department of Biotechnology, Quaid-i-Azam University Islamabad Pakistan, 45320, Pakistan
| | - Snovia Farooq
- Department of Biotechnology, Quaid-i-Azam University Islamabad Pakistan, 45320, Pakistan
| | - Misbah Zeb Kiani
- Department of Biotechnology, Quaid-i-Azam University Islamabad Pakistan, 45320, Pakistan
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University Islamabad Pakistan, 45320, Pakistan.
| |
Collapse
|
16
|
Elsherif DE, Safhi FA, Subudhi PK, Shaban AS, El-Esawy MA, Khalifa AM. Phytochemical Profiling and Bioactive Potential of Grape Seed Extract in Enhancing Salinity Tolerance of Vicia faba. PLANTS (BASEL, SWITZERLAND) 2024; 13:1596. [PMID: 38931028 PMCID: PMC11207552 DOI: 10.3390/plants13121596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Salinity stress poses a significant threat to crop productivity worldwide, necessitating effective mitigation strategies. This study investigated the phytochemical composition and potential of grape seed extract (GSE) to mitigate salinity stress effects on faba bean plants. GC-MS analysis revealed several bioactive components in GSE, predominantly fatty acids. GSE was rich in essential nutrients and possessed a high antioxidant capacity. After 14 days of germination, GSE was applied as a foliar spray at different concentrations (0, 2, 4, 6, and 8 g/L) to mitigate the negative effects of salt stress (150 mM NaCl) on faba bean plants. Foliar application of 2-8 g/L GSE significantly enhanced growth parameters such as shoot length, root length, fresh weight, and dry weight of salt-stressed bean plants compared to the control. The Fv/Fm ratio, indicating photosynthetic activity, also improved with GSE treatment under salinity stress compared to the control. GSE effectively alleviated the oxidative stress induced by salinity, reducing malondialdehyde, hydrogen peroxide, praline, and glycine betaine levels. Total soluble proteins, amino acids, and sugars were enhanced in GSE-treated, salt-stressed plants. GSE treatment under salinity stress modulated the total antioxidant capacity, antioxidant responses, and enzyme activities such as peroxidase, ascorbate peroxidase, and polyphenol oxidase compared to salt-stressed plants. Gene expression analysis revealed GSE (6 g/L) upregulated photosynthesis (chlorophyll a/b-binding protein of LHCII type 1-like (Lhcb1) and ribulose bisphosphate carboxylase large chain-like (RbcL)) and carbohydrate metabolism (cell wall invertase I (CWINV1) genes) while downregulating stress response genes (ornithine aminotransferase (OAT) and ethylene-responsive transcription factor 1 (ERF1)) in salt-stressed bean plants. The study demonstrates GSE's usefulness in mitigating salinity stress effects on bean plants by modulating growth, physiology, and gene expression patterns, highlighting its potential as a natural approach to enhance salt tolerance.
Collapse
Affiliation(s)
- Doaa E. Elsherif
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (D.E.E.); (M.A.E.-E.)
| | - Fatmah A. Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Prasanta K. Subudhi
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA;
| | - Abdelghany S. Shaban
- Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mai A. El-Esawy
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (D.E.E.); (M.A.E.-E.)
| | - Asmaa M. Khalifa
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo 11765, Egypt;
| |
Collapse
|
17
|
Sharma J, Kumar S, Singh P, Kumar V, Verma S, Khyalia P, Sharma A. Emerging role of osmoprotectant glycine betaine to mitigate heavy metals toxicity in plants: a systematic review. Biol Futur 2024; 75:159-176. [PMID: 38183566 DOI: 10.1007/s42977-023-00198-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/08/2023] [Indexed: 01/08/2024]
Abstract
Heavy metals (HMs) toxicity has become one of the major global issues and poses a serious threat to the environment in recent years. HM pollution in agricultural soil is caused by metal mining, smelting, volcanic activity, industrial discharges, and excessive use of phosphate fertilizers. HMs above a threshold level adversely affect the cellular metabolism of plants by producing reactive oxygen species (ROS), which attack cellular proteins. There are different mechanisms (physiological and morphological) adopted by plants to survive in the era of abiotic stress. Various osmoprotectants or compatible solutes, including amino acids, sugar, and betaines, enable the plants to counteract the HM stress. Glycine betaine (GB) is an effective osmolyte against HM stress among compatible solutes. GB has been shown to improve plant growth, photosynthesis, uptake of nutrients, and minimize oxidative stress in plants under HM stress. Additionally, GB increases the activity of antioxidant enzymes such as CAT (catalase), SOD (superoxide dismutase), and POD (peroxidase), which are effective in scavenging unwarranted ROS. Since not all species of plants can naturally produce or accumulate GB in response to stress, various approaches have been explored for introducing them. Plant hormones like salicylic acid, ABA (abscisic acid), and JA (jasmonic acid) co-ordinately stimulate the accumulation of GB inside the cell under HM stress. Apart from the exogenous application, the introduction of GB pathway genes in GB deficient species via genetic engineering also seems to be efficient in mediating HM stress. This review complied the beneficial effects of GB in mitigating HM stress and its role as a plant growth regulator. Additionally, the review explores the potential for engineering GB biosynthesis in plants as a strategy to bolster their resilience to HMs.
Collapse
Affiliation(s)
- Jyoti Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Sandeep Kumar
- Department of Botany, Baba Mast Nath University, Rohtak, Haryana, 124001, India
| | - Pooja Singh
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Vikram Kumar
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Shivani Verma
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Pradeep Khyalia
- Department of Environmental Science, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Asha Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
- Department of Botany, Baba Mast Nath University, Rohtak, Haryana, 124001, India.
- Department of Environmental Science, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| |
Collapse
|
18
|
Yan W, Sharif R, Sohail H, Zhu Y, Chen X, Xu X. Surviving a Double-Edged Sword: Response of Horticultural Crops to Multiple Abiotic Stressors. Int J Mol Sci 2024; 25:5199. [PMID: 38791235 PMCID: PMC11121501 DOI: 10.3390/ijms25105199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Climate change-induced weather events, such as extreme temperatures, prolonged drought spells, or flooding, pose an enormous risk to crop productivity. Studies on the implications of multiple stresses may vary from those on a single stress. Usually, these stresses coincide, amplifying the extent of collateral damage and contributing to significant financial losses. The breadth of investigations focusing on the response of horticultural crops to a single abiotic stress is immense. However, the tolerance mechanisms of horticultural crops to multiple abiotic stresses remain poorly understood. In this review, we described the most prevalent types of abiotic stresses that occur simultaneously and discussed them in in-depth detail regarding the physiological and molecular responses of horticultural crops. In particular, we discussed the transcriptional, posttranscriptional, and metabolic responses of horticultural crops to multiple abiotic stresses. Strategies to breed multi-stress-resilient lines have been presented. Our manuscript presents an interesting amount of proposed knowledge that could be valuable in generating resilient genotypes for multiple stressors.
Collapse
Affiliation(s)
- Wenjing Yan
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
| | - Rahat Sharif
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
| | - Hamza Sohail
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
| | - Yu Zhu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
| | - Xuehao Chen
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xuewen Xu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
19
|
Licciardello G, Doppler M, Sicher C, Bueschl C, Ruso D, Schuhmacher R, Perazzolli M. Metabolic changes in tomato plants caused by psychrotolerant Antarctic endophytic bacteria might be implicated in cold stress mitigation. PHYSIOLOGIA PLANTARUM 2024; 176:e14352. [PMID: 38764037 DOI: 10.1111/ppl.14352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024]
Abstract
Climate change is responsible for mild winters and warm springs that can induce premature plant development, increasing the risk of exposure to cold stress with a severe reduction in plant growth. Tomato plants are sensitive to cold stress and beneficial microorganisms can increase their tolerance. However, scarce information is available on mechanisms stimulated by bacterial endophytes in tomato plants against cold stress. This study aimed to clarify metabolic changes stimulated by psychrotolerant endophytic bacteria in tomato plants exposed to cold stress and annotate compounds possibly associated with cold stress mitigation. Tomato seeds were inoculated with two bacterial endophytes isolated from Antarctic Colobanthus quitensis plants (Ewingella sp. S1.OA.A_B6 and Pseudomonas sp. S2.OTC.A_B10) or with Paraburkholderia phytofirmans PsJN, while mock-inoculated seeds were used as control. The metabolic composition of tomato plants was analyzed immediately after cold stress exposure (4°C for seven days) or after two and four days of recovery at 25°C. Under cold stress, the content of malondialdehyde, phenylalanine, ferulic acid, and p-coumaric acid was lower in bacterium-inoculated compared to mock-inoculated plants, indicating a reduction of lipid peroxidation and the stimulation of phenolic compound metabolism. The content of two phenolic compounds, five putative phenylalanine-derived dipeptides, and three further phenylalanine-derived compounds was higher in bacterium-inoculated compared to mock-inoculated samples under cold stress. Thus, psychrotolerant endophytic bacteria can reprogram polyphenol metabolism and stimulate the accumulation of secondary metabolites, like 4-hydroxybenzoic and salicylic acid, which are presumably involved in cold stress mitigation, and phenylalanine-derived dipeptides possibly involved in plant stress responses.
Collapse
Affiliation(s)
- Giorgio Licciardello
- Center Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Trento, Italy
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Tulln, Austria
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Maria Doppler
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Tulln, Austria
- Core Facility Bioactive Molecules: Screening and Analysis, University of Natural Resources and Life Sciences, Tulln, Austria
| | - Carmela Sicher
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Christoph Bueschl
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Tulln, Austria
| | - David Ruso
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Tulln, Austria
| | - Rainer Schuhmacher
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Tulln, Austria
| | - Michele Perazzolli
- Center Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| |
Collapse
|
20
|
Inayat H, Mehmood H, Danish S, Alharbi SA, Ansari MJ, Datta R. Impact of cobalt and proline foliar application for alleviation of salinity stress in radish. BMC PLANT BIOLOGY 2024; 24:287. [PMID: 38627664 PMCID: PMC11020780 DOI: 10.1186/s12870-024-04998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Salinity stress ranks among the most prevalent stress globally, contributing to soil deterioration. Its negative impacts on crop productivity stem from mechanisms such as osmotic stress, ion toxicity, and oxidative stress, all of which impede plant growth and yield. The effect of cobalt with proline on mitigating salinity impact in radish plants is still unclear. That's why the current study was conducted with aim to explore the impact of different levels of Co and proline on radish cultivated in salt affected soils. There were four levels of cobalt, i.e., (0, 10, 15 and 20 mg/L) applied as CoSO4 and two levels of proline (0 and 0.25 mM), which were applied as foliar. The treatments were applied in a complete randomized design (CRD) with three replications. Results showed that 20 CoSO4 with proline showed improvement in shoot length (∼ 20%), root length (∼ 23%), plant dry weight (∼ 19%), and plant fresh weight (∼ 41%) compared to control. The significant increase in chlorophyll, physiological and biochemical attributes of radish plants compared to the control confirms the efficacy of 20 CoSO4 in conjunction with 10 mg/L proline for mitigating salinity stress. In conclusion, application of cobalt with proline can help to alleviate salinity stress in radish plants. However, multiple location experiments with various levels of cobalt and proline still needs in-depth investigations to validate the current findings.
Collapse
Affiliation(s)
- Hira Inayat
- Department of Agronomy, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Hassan Mehmood
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, India
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, Brno, 61300, Czech Republic
| |
Collapse
|
21
|
Dai T, Ban S, Han L, Li L, Zhang Y, Zhang Y, Zhu W. Effects of exogenous glycine betaine on growth and development of tomato seedlings under cold stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1332583. [PMID: 38584954 PMCID: PMC10995342 DOI: 10.3389/fpls.2024.1332583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/11/2024] [Indexed: 04/09/2024]
Abstract
Low temperature is a type of abiotic stress affecting the tomato (Solanum lycopersicum) growth. Understanding the mechanisms and utilization of exogenous substances underlying plant tolerance to cold stress would lay the foundation for improving temperature resilience in this important crop. Our study is aiming to investigate the effect of exogenous glycine betaine (GB) on tomato seedlings to increase tolerance to low temperatures. By treating tomato seedlings with exogenous GB under low temperature stress, we found that 30 mmol/L exogenous GB can significantly improve the cold tolerance of tomato seedlings. Exogenous GB can influence the enzyme activity of antioxidant defense system and ROS levels in tomato leaves. The seedlings with GB treatment presented higher Fv/Fm value and photochemical activity under cold stress compared with the control. Moreover, analysis of high-throughput plant phenotyping of tomato seedlings also supported that exogenous GB can protect the photosynthetic system of tomato seedlings under cold stress. In addition, we proved that exogenous GB significantly increased the content of endogenous abscisic acid (ABA) and decreased endogenous gibberellin (GA) levels, which protected tomatoes from low temperatures. Meanwhile, transcriptional analysis showed that GB regulated the expression of genes involved in antioxidant capacity, calcium signaling, photosynthesis activity, energy metabolism-related and low temperature pathway-related genes in tomato plants. In conclusion, our findings indicated that exogenous GB, as a cryoprotectant, can enhance plant tolerance to low temperature by improving the antioxidant system, photosynthetic system, hormone signaling, and cold response pathway and so on.
Collapse
Affiliation(s)
- Taoyu Dai
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Songtao Ban
- Key Laboratory of Intelligent Agricultural Technology (Yangtze River Delta), Ministry of Agriculture and Rural Affairs, Agricultural Information Institute of Science and Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Liyuan Han
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Linyi Li
- Key Laboratory of Intelligent Agricultural Technology (Yangtze River Delta), Ministry of Agriculture and Rural Affairs, Agricultural Information Institute of Science and Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yingying Zhang
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yuechen Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Weimin Zhu
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Intelligent Agricultural Technology (Yangtze River Delta), Ministry of Agriculture and Rural Affairs, Agricultural Information Institute of Science and Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
22
|
Hareem M, Danish S, Pervez M, Irshad U, Fahad S, Dawar K, Alharbi SA, Ansari MJ, Datta R. Optimizing chili production in drought stress: combining Zn-quantum dot biochar and proline for improved growth and yield. Sci Rep 2024; 14:6627. [PMID: 38503869 PMCID: PMC10951368 DOI: 10.1038/s41598-024-57204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
The reduction in crop productivity due to drought stress, is a major concern in agriculture. Drought stress usually disrupts photosynthesis by triggering oxidative stress and generating reactive oxygen species (ROS). The use of zinc-quantum dot biochar (ZQDB) and proline (Pro) can be effective techniques to overcome this issue. Biochar has the potential to improve the water use efficiency while proline can play an imperative role in minimization of adverse impacts of ROS Proline, functioning as an osmotic protector, efficiently mitigates the adverse effects of heavy metals on plants by maintaining cellular structure, scavenging free radicals, and ensuring the stability of cellular integrity. That's why current study explored the impact of ZQDB and proline on chili growth under drought stress. Four treatments, i.e., control, 0.4%ZQDB, 0.1 mM Pro, and 0.4%ZQDB + Pro, were applied in 4 replications following the complete randomized design. Results exhibited that 0.4%ZQDB + Pro caused an increases in chili plant dry weight (29.28%), plant height (28.12%), fruit length (29.20%), fruit girth (59.81%), and fruit yield (55.78%) over control under drought stress. A significant increment in chlorophyll a (18.97%), chlorophyll b (49.02%), and total chlorophyll (26.67%), compared to control under drought stress, confirmed the effectiveness of 0.4%ZQDB + Pro. Furthermore, improvement in leaves N, P, and K concentration over control validated the efficacy of 0.4%ZQDB + Pro against drought stress. In conclusion, 0.4%ZQDB + Pro can mitigate drought stress in chili. More investigations are suggested to declare 0.4%ZQDB + Pro as promising amendment for mitigation of drought stress in other crops as well under changing climatic situations.
Collapse
Affiliation(s)
- Misbah Hareem
- Department of Environmental Sciences, Woman University Multan, Multan, Punjab, Pakistan
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Mahnoor Pervez
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Usman Irshad
- Department of Environmental Sciences, COMSATS University Islamabad Abbottabad Campus, Abbottabad, Pakistan
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| | - Khadim Dawar
- Department of Soil and Environmental Science, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, 11451, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, India
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic.
| |
Collapse
|
23
|
Kumar S, Wang S, Wang M, Zeb S, Khan MN, Chen Y, Zhu G, Zhu Z. Enhancement of sweetpotato tolerance to chromium stress through melatonin and glutathione: Insights into photosynthetic efficiency, oxidative defense, and growth parameters. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108509. [PMID: 38461751 DOI: 10.1016/j.plaphy.2024.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Melatonin (MT) and reduced glutathione (GSH) roles in mitigating chromium (Cr) toxicity in sweetpotato were explored. Plants, pre-treated with varying MT and GSH doses, were exposed to Cr (40 μM). Cr severely hampered growth by disrupting leaf photosynthesis, root system, and oxidative processes and increased Cr absorption. However, the exogenous application of 1 μM of MT and 2 mM of GSH substantially improved growth parameters by enhancing chlorophyll content, gas exchange (Pn, Tr, Gs, and Ci), and chlorophyll fluorescence (Fv/Fm, ETR, qP, and Y(II)). Furthermore, malondialdehyde (MDA), hydrogen peroxide (H2O2), superoxide ion (O2•-), electrolyte leakage (EL), and Cr uptake by roots (21.6 and 27.3%) and its translocation to shoots were markedly reduced by MT and GSH application, protecting the cell membrane from oxidative damage of Cr-toxicity. Microscopic analysis demonstrated that MT and GSH maintained chloroplast structure and integrity of mesophyll cells; they also enhanced stomatal length, width, and density, strengthening the photosynthetic system and plant growth and biomass. MT and GSH improved osmo-protectants (proline and soluble sugars), gene expression, and enzymatic and non-enzymatic antioxidant activities, mitigating osmotic stress and strengthening plant defenses under Cr stress. Importantly, the efficiency of GSH pre-treatment in reducing Cr-toxicity surpassed that of MT. The findings indicate that MT and GSH alleviate Cr detrimental effects by enhancing photosynthetic organ stability, component accumulation, and resistance to oxidative stress. This study is a valuable resource for plants confronting Cr stress in contaminated soils, but further field validation and detailed molecular exploration are necessary.
Collapse
Affiliation(s)
- Sunjeet Kumar
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China
| | - Shihai Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China
| | - Mengzhao Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China
| | - Shah Zeb
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China
| | - Mohammad Nauman Khan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Yanli Chen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China
| | - Guopeng Zhu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China.
| | - Zhixin Zhu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China.
| |
Collapse
|
24
|
Kumar S, Liu Y, Wang M, Khan MN, Wang S, Li Y, Chen Y, Zhu G. Alleviating sweetpotato salt tolerance through exogenous glutathione and melatonin: A profound mechanism for active oxygen detoxification and preservation of photosynthetic organs. CHEMOSPHERE 2024; 350:141120. [PMID: 38199502 DOI: 10.1016/j.chemosphere.2024.141120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Salt stress profoundly impacts sweetpotato production. Exogenous glutathione (GSH) and melatonin (MT) promoted plant growth under stress, but their specific roles and mechanisms in sweetpotato salt tolerance need exploration. This study investigated GSH and MT's regulatory mechanisms in sweetpotato under salt stress. Salt stress significantly reduces both growth and biomass by hindering photosynthesis, root traits, K+ content, and K+/Na+ balance, leading to oxidative stress and excessive hydrogen peroxide (H2O2), superoxide ion (O2•-), and malondialdehyde (MDA) production and Na+ accumulation. Nevertheless, GSH (2 mM) and MT (25 μM) pre-treatments effectively mitigated salt-induced oxidative damage and protected the plasma membrane. They reduced osmotic pressure by enhancing K+ uptake, K+/Na+ regulation, osmolyte accumulation, and reducing Na+ accumulation. Improved stomatal traits, chloroplast and grana lamella preservation, and maintenance of mesophyll cells, cell wall, and mitochondrial structure were observed with GSH and MT pre-treatments under salt stress, therefore boosting the photosynthetic system and enhancing plant growth and biomass. Moreover, the findings also indicate that the positive outcomes of GSH and MT pre-treatments result from elevated antioxidant levels, enhanced enzymatic activity, and upregulated expression of sodium hydrogen exchanger 2 (NHX2), K+transporter 1 (AKT1), and cation/H+exchanger (CHX), CBL-interacting protein kinase 1 (CIPK1), and antioxidant enzyme genes. These mechanisms enhance structural stability in photosynthesis and reduce salt stress. Evidently, MT pre-treatment exhibited superior effects compared to GSH. These findings provide a firm theoretical basis for employing GSH and MT to enhance salt tolerance in sweetpotato cultivation.
Collapse
Affiliation(s)
- Sunjeet Kumar
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China
| | - Yang Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China
| | - Mengzhao Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China
| | - Mohammad Nauman Khan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Shihai Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China
| | - Yongping Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China
| | - Yanli Chen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China.
| | - Guopeng Zhu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China.
| |
Collapse
|
25
|
Kang L, Li C, Qin A, Liu Z, Li X, Zeng L, Yu H, Wang Y, Song J, Chen R. Identification and Expression Analysis of the Nucleotidyl Transferase Protein (NTP) Family in Soybean ( Glycine max) under Various Abiotic Stresses. Int J Mol Sci 2024; 25:1115. [PMID: 38256188 PMCID: PMC10816777 DOI: 10.3390/ijms25021115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Nucleotidyl transferases (NTPs) are common transferases in eukaryotes and play a crucial role in nucleotide modifications at the 3' end of RNA. In plants, NTPs can regulate RNA stability by influencing 3' end modifications, which in turn affect plant growth, development, stress responses, and disease resistance. Although the functions of NTP family members have been extensively studied in Arabidopsis, rice, and maize, there is limited knowledge about NTP genes in soybeans. In this study, we identified 16 members of the NTP family in soybeans, including two subfamilies (G1 and G2) with distinct secondary structures, conserved motifs, and domain distributions at the protein level. Evolutionary analysis of genes in the NTP family across multiple species and gene collinearity analysis revealed a relatively conserved evolutionary pattern. Analysis of the tertiary structure of the proteins showed that NTPs have three conserved aspartic acids that bind together to form a possible active site. Tissue-specific expression analysis indicated that some NTP genes exhibit tissue-specific expression, likely due to their specific functions. Stress expression analysis showed significant differences in the expression levels of NTP genes under high salt, drought, and cold stress. Additionally, RNA-seq analysis of soybean plants subjected to salt and drought stress further confirmed the association of soybean NTP genes with abiotic stress responses. Subcellular localization experiments revealed that GmNTP2 and GmNTP14, which likely have similar functions to HESO1 and URT1, are located in the nucleus. These research findings provide a foundation for further investigations into the functions of NTP family genes in soybeans.
Collapse
Affiliation(s)
- Liqing Kang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Changgen Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| | - Aokang Qin
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| | - Zehui Liu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| | - Xuanyue Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| | - Liming Zeng
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| | - Hongyang Yu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| | - Yihua Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| | - Jianbo Song
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| | - Rongrong Chen
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (L.K.); (C.L.); (A.Q.); (Z.L.); (X.L.); (L.Z.); (H.Y.); (Y.W.)
| |
Collapse
|
26
|
Zhao W, Chen Z, Yang X, Sheng L, Mao H, Zhu S. Metagenomics reveal arbuscular mycorrhizal fungi altering functional gene expression of rhizosphere microbial community to enhance Iris tectorum's resistance to Cr stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:164970. [PMID: 37343864 DOI: 10.1016/j.scitotenv.2023.164970] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
Chromium (Cr) can disrupt a plant's normal physiological and metabolic functions and severely impact the microenvironment. However, limited studies have investigated the impact of arbuscular mycorrhizal fungi (AMF) inoculation on the rhizosphere microorganisms of Iris tectorum under Cr stress, and the mechanisms of how rhizosphere microorganisms interact with hosts and contaminants. In this study, we investigated the effects of AMF inoculation on the growth, absorption of nutrients and heavy metals, and functional genes of the rhizosphere microbial community of I. tectorum under Cr stress in a greenhouse pot experiment. The results showed that AMF significantly increased the biomass and nutrient levels of I. tectorum, while decreasing the content of Cr in soil. Furthermore, metagenome analysis demonstrated significant changes in the structure and composition of the rhizosphere microbial community after AMF formed a mycorrhizal symbiosis system with the I. tectorum. Specifically, the abundance of functional genes related to nutrient cycling (N, P) and heavy metal resistance (chrA and arsB), as well as the abundance of heavy metal transporter family (P-atPase, MIT, CDF, and ABC) in the rhizosphere microbial community were up-regulated and their expression. Additionally, the synergies between rhizosphere microbial communities were regulated, and the complexity and stability of the rhizosphere microbial ecological network were enhanced. This study provides evidence that AMF can regulate rhizosphere microbial communities to improve plant growth and heavy metal stress tolerance, and helps us to understand the potential mechanism of wetland plant remediation of Cr-contaminated soil under AMF symbiosis.
Collapse
Affiliation(s)
- Wei Zhao
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Praha-, Suchdol 16500, Czech Republic
| | - Xiuqin Yang
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Luying Sheng
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Huan Mao
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Sixi Zhu
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China.
| |
Collapse
|
27
|
Manchanda P, Chaudhary P, Deswal R. Photosynthesis regulation, cell membrane stabilization and methylglyoxal detoxification seems major altered pathways under cold stress as revealed by integrated multi-omics meta-analysis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1395-1407. [PMID: 38076772 PMCID: PMC10709295 DOI: 10.1007/s12298-023-01367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/01/2023] [Accepted: 10/01/2023] [Indexed: 12/17/2023]
Abstract
Climate change has altered cold weather patterns, resulting in irregular cold weather conditions, and changing the global plant distribution pattern affecting plant development processes resulting in severe yield losses. Although molecular mechanisms and interconnections are quite well studied, a cumulative understanding of plant responses to cold stress (CS) is still lacking. Through meta-analysis, integration of data at the multi-omics level and its correlation with known physiological changes to map and understand the global changes in response to CS was made. Meta-analysis was conducted using the metafor R package program based on physiological parameters like relative electrolytic leakage, malondialdehyde, soluble sugar, proline and antioxidant enzymes activity. Proline and soluble sugars showed the highest (> 1.5 mean fold) change over control thus qualifying as global markers for studying CS. Surprisingly most up-regulated (> 15-fold) DEGs corresponded with the dehydrin family and glyoxalase superfamily proteins. Functional annotations of DEGs corresponded with photosynthesis and glycolysis pathway. Proteins responsible for cell signalling and increased soluble sugars were common in all the datasets studied thus correlating with the transcriptome and proteomic data. Proline and soluble sugars were positively regulated in all the metabolomics datasets. This study supported the earlier known players like proline and soluble sugars. Surprisingly, a new player glyoxalase seems to be contributing in CS. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01367-9.
Collapse
Affiliation(s)
- Preet Manchanda
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, 110007 India
| | - Parneeta Chaudhary
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, 110007 India
| | - Renu Deswal
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, 110007 India
| |
Collapse
|
28
|
Zheng Z, Wang T, Liu M, Xu X, Wang J, Sun G, He S, Liao L, Xiong B, Wang X, He J, Wang Z, Zhang M. Effects of Exogenous Application of Glycine Betaine Treatment on 'Huangguoggan' Fruit during Postharvest Storage. Int J Mol Sci 2023; 24:14316. [PMID: 37762618 PMCID: PMC10532238 DOI: 10.3390/ijms241814316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Loss of quality in citrus fruit is a common occurrence during postharvest storage due to oxidative stress and energy consumption. In recent years, glycine betaine (GB) has been widely applied to postharvest horticulture fruit. This study aimed to investigate the effect of GB treatment (10 mM and 20 mM) on the quality and antioxidant activity of 'Huangguogan' fruit during postharvest storage at room temperature. Our results indicated that both 10 mM and 20 mM treatments effectively reduced weight and firmness losses and maintained total soluble solid (TSS), titratable acidity (TA), and ascorbic acid contents. Additionally, GB treatment significantly increased the activity of antioxidant enzymes, maintained higher levels of total phenols and total flavonoids, and led to slower accumulation of H2O2. A transcriptome analysis conducted at 28 days after treatment (DAT)identified 391 differentially expressed genes (DEGs) between 20 mM GB (GB-2) and the control (CK) group. These DEGs were enriched in various pathways, particularly related to oxygen oxidoreductase, peroxidase activity, and flavonoid biosynthesis. Overall, the application of GB proved beneficial in enhancing the storability and extending the shelf life of 'Huangguogan' fruit.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.Z.)
| | - Mingfei Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.Z.)
| |
Collapse
|
29
|
Raldugina GN, Bogoutdinova LR, Shelepova OV, Kondrateva VV, Platonova EV, Nechaeva TL, Kazantseva VV, Lapshin PV, Rostovtseva HI, Aniskina TS, Kharchenko PN, Zagoskina NV, Gulevich AA, Baranova EN. Heterologous codA Gene Expression Leads to Mitigation of Salt Stress Effects and Modulates Developmental Processes. Int J Mol Sci 2023; 24:13998. [PMID: 37762301 PMCID: PMC10531037 DOI: 10.3390/ijms241813998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Transgenic tobacco plants overexpressing the choline oxidase gene from A. globiformis showed an increase in resistance at the level of primary and secondary biosynthesis of metabolites, removing the damage characteristic of salinity and stabilizing the condition of plants. We used 200 mM NaCl, which inhibits the growth of tobacco plants at all stages of development. Leaves of transgenic and wild-type (WT) plants Nicotiána tabácum were used for biochemical, cytological and molecular biological analysis. However, for transgenic lines cultivated under normal conditions (without salinity), we noted juvenile characteristics, delay in flowering, and slowing down of development, including the photosynthetic apparatus. This caused changes in the amount of chlorophyll, a delay in the plastid grana development with the preservation of prolamellar bodies. It also caused changes in the amount of sugars and indirectly downstream processes. A significant change in the activity of antioxidant enzymes and a change in metabolism is probably compensated by the regulation of a number of genes, the expression level of which was also changed. Thus, the tolerance of transgenic tobacco plants to salinity, which manifested itself as a result of the constitutive expression of codA, demonstrates an advantage over WT plants, but in the absence of salinity, transgenic plants did not have such advantages due to juvenilization.
Collapse
Affiliation(s)
- Galina N. Raldugina
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (T.L.N.); (V.V.K.); (P.V.L.); (H.I.R.); (N.V.Z.)
| | - Lilia R. Bogoutdinova
- All Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550 Moscow, Russia (P.N.K.); (A.A.G.)
| | - Olga V. Shelepova
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya 4, 127276 Moscow, Russia (V.V.K.); (T.S.A.)
| | - Vera V. Kondrateva
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya 4, 127276 Moscow, Russia (V.V.K.); (T.S.A.)
| | | | - Tatiana L. Nechaeva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (T.L.N.); (V.V.K.); (P.V.L.); (H.I.R.); (N.V.Z.)
| | - Varvara V. Kazantseva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (T.L.N.); (V.V.K.); (P.V.L.); (H.I.R.); (N.V.Z.)
| | - Pyotr V. Lapshin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (T.L.N.); (V.V.K.); (P.V.L.); (H.I.R.); (N.V.Z.)
| | - Helen I. Rostovtseva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (T.L.N.); (V.V.K.); (P.V.L.); (H.I.R.); (N.V.Z.)
| | - Tatiana S. Aniskina
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya 4, 127276 Moscow, Russia (V.V.K.); (T.S.A.)
| | - Pyotr N. Kharchenko
- All Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550 Moscow, Russia (P.N.K.); (A.A.G.)
| | - Natalia V. Zagoskina
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (T.L.N.); (V.V.K.); (P.V.L.); (H.I.R.); (N.V.Z.)
| | - Alexander A. Gulevich
- All Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550 Moscow, Russia (P.N.K.); (A.A.G.)
| | - Ekaterina N. Baranova
- All Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550 Moscow, Russia (P.N.K.); (A.A.G.)
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya 4, 127276 Moscow, Russia (V.V.K.); (T.S.A.)
| |
Collapse
|
30
|
Liu Q, Zhang Y, Dong X, Zheng L, Zhou Y, Gao F. Integrated metabolomics and transcriptomics analysis reveals that the change of apoplast metabolites contributes to adaptation to winter freezing stress in Euonymus japonicus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107924. [PMID: 37541019 DOI: 10.1016/j.plaphy.2023.107924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/12/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Euonymus japonicus, a common urban street tree, can withstand winter freezing stress in temperate regions. The apoplast is the space outside the plasma membrane, and the changes of metabolites in apoplast may be involved in plant adaptation to adverse environments. To reveal the molecular mechanism underlying the winter freezing stress tolerance in E. japonicus, the changes in physiological and biochemical indexes, apoplast metabolites, and gene expression in the leaves of E. japonicus in early autumn and winter were analyzed. A total of 300 differentially accumulated metabolites were identified in apoplast fluids in E. japonicus, which were mainly related to flavone and flavonol biosynthesis, and galactose metabolism, amino acid synthesis, and unsaturated fatty acid synthesis. Integrated metabolomics and transcriptomics analysis revealed that E. japonicus adjust apoplast metabolites including flavonoids such as quercetin and kaempferol, and oligosaccharides such as raffinose and stachyose, to adapt to winter freezing stress through gene expression regulation. In addition, the regulation of ABA and SA biosynthesis and signal transduction pathways, as well as the activation of the antioxidant enzymes, also played important roles in the adaptation to winter freezing stress in E. japonicus. The present study provided essential data for understanding the molecular mechanism underlying the adaptation to winter freezing stress in E. japonicus.
Collapse
Affiliation(s)
- Qi Liu
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yifang Zhang
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Xue Dong
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Lamei Zheng
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yijun Zhou
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Fei Gao
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
31
|
Alsiary WA, AbdElgawad H, Madany MMY. How could actinobacteria augment the growth and redox homeostasis in barley plants grown in TiO 2NPs-contaminated soils? A growth and biochemical study. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107943. [PMID: 37651952 DOI: 10.1016/j.plaphy.2023.107943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023]
Abstract
The increases in titanium dioxide nanoparticles (TiO2-NPs) released into the environment have raised concerns about their toxicity. However, their phytotoxic impact on plants is not well studied. Therefore, this study aimed at a deeper understanding of the TiO2-NPs phytotoxic impact on barley (Hordeum vulgare) growth and stress defense. We also hypothesized that soil inoculation with bioactive Rhodospirillum sp. JY3 strain can be applied as a biological fertilizer to alleviate TiO2-NPs phytotoxicity. At TiO2-NPs phytotoxicity level, photosynthesis was significantly retarded (∼50% reduction) in TiO2-NPs treated-barley plants which accordingly affect the biomass of barley plants. This retardation was accompanied by a remarkable induction of oxidative damage (H2O2, lipid peroxidation) with a concomitant reduction in the antioxidant defense metabolism. At a glance, Rhodospirillum sp. JY3 ameliorated the reduction in growth by enhancing the photosynthetic efficiency in contaminated barley plants. Moreover, Rhodospirillum sp. JY3 inoculation reduced the oxidative damage induced by TiO2-NPs via quenching H2O2 production and lipid peroxidation. Regarding the antioxidant defense arsenal, Rhodospirillum sp. JY3 enhanced both enzymatic (e.g. peroxidase (POX), catalase (CAT), superoxide dismutase (SOD), …. etc.) and non-enzymatic (glutathione (GSH), ascorbate (ASC), polyphenols, flavonoids, tocopherols) antioxidants in shoots and to a greater extent roots of barley plants. Moreover, the inoculation significantly enhanced the heavy metal-detoxifying metabolites (eg. phytochelatins, glutaredoxin, thioredoxin, peroxiredoxin) as well as metal-detoxifying enzymes in barley shoots and more apparently in roots of TiO2-NPs stressed plants. Furthermore, there was an organ-specific response to TiO2-NPs and Rhodospirillum sp. JY3. To this end, this study shed light, for the first time, on the molecular bases underlie TiO2-NPs stress mitigating impact of Rhodospirillum sp. JY3 and it introduced Rhodospirillum sp. JY3 as a promising eco-friendly tool in managing environmental risks to maintain agricultural sustainability.
Collapse
Affiliation(s)
- Waleed A Alsiary
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21441, Saudi Arabia
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, 62511, Egypt
| | - Mahmoud M Y Madany
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
32
|
Kuppusamy A, Alagarswamy S, Karuppusami KM, Maduraimuthu D, Natesan S, Ramalingam K, Muniyappan U, Subramanian M, Kanagarajan S. Melatonin Enhances the Photosynthesis and Antioxidant Enzyme Activities of Mung Bean under Drought and High-Temperature Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:2535. [PMID: 37447095 DOI: 10.3390/plants12132535] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
Mung bean, a legume, is sensitive to abiotic stresses at different growth stages, and its yield potential is affected by drought and high-temperature stress at the sensitive stage. Melatonin is a multifunctional hormone that plays a vital role in plant stress defense mechanisms. This study aimed to evaluate the efficiency of melatonin under individual and combined drought and high-temperature stress in mung bean. An experiment was laid out with five treatments, including an exogenous application of 100 µM melatonin as a seed treatment, foliar spray, and a combination of both seed treatment and foliar spray, as well as absolute control (ambient condition) and control (stress without melatonin treatment). Stresses were imposed during the mung bean's reproductive stage (31-40 DAS) for ten days. Results revealed that drought and high-temperature stress significantly decreased chlorophyll index, Fv/Fm ratio, photosynthetic rate, stomatal conductance, and transpiration rate through increased reactive oxygen species (ROS) production. Foliar application of melatonin at 100 µM concentration enhanced the activity of antioxidant enzymes such as superoxide dismutase, catalase, and ascorbate peroxidase and the concentration of metabolites involved in osmoregulation and ion homeostasis; thereby, it improves physiological and yield-related traits in mung bean under individual and combined stress at the reproductive stage.
Collapse
Affiliation(s)
- Anitha Kuppusamy
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Senthil Alagarswamy
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Kalarani M Karuppusami
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | | | - Senthil Natesan
- Centre for Plant Molecular Biology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Kuttimani Ramalingam
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Umapathi Muniyappan
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Marimuthu Subramanian
- Department of Agronomy, Agricultural College & Research Institute, Eachangkottai, Thanjavur 614904, India
| | - Selvaraju Kanagarajan
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, 23422 Lomma, Sweden
| |
Collapse
|
33
|
Tan C, Li N, Wang Y, Yu X, Yang L, Cao R, Ye X. Integrated Physiological and Transcriptomic Analyses Revealed Improved Cold Tolerance in Cucumber (Cucumis sativus L.) by Exogenous Chitosan Oligosaccharide. Int J Mol Sci 2023; 24:ijms24076202. [PMID: 37047175 PMCID: PMC10094205 DOI: 10.3390/ijms24076202] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Cucumber (Cucumis sativus L.), sensitive to cold stress, is one of the most economically important vegetables. Here, we systematically investigated the roles of exogenous glycine betaine, chitosan, and chitosan oligosaccharide in alleviating cold stress in cucumber seedlings. The results showed that 50 mg·L−1 chitosan oligosaccharide had the best activity. It effectively increases plant growth, chlorophyll content, photosynthetic capacity, osmotic regulatory substance content, and antioxidant enzyme activities while reducing relative electrical conductivity and malondialdehyde levels in cucumber seedlings under cold stress. To reveal the protective effects of chitosan oligosaccharide in cold stress, cucumber seedlings pretreated with 50 mg·L−1 chitosan oligosaccharide were sampled after 0, 3, 12, and 24 h of cold stress for transcriptome analysis, with distilled water as a control. The numbers of differentially expressed genes in the four comparison groups were 656, 1274, 1122, and 957, respectively. GO functional annotation suggested that these genes were mainly involved in “voltage-gated calcium channel activity”, “carbohydrate metabolic process”, “jasmonic acid biosynthetic”, and “auxin response” biological processes. KEGG enrichment analysis indicated that these genes performed important functions in “phenylpropanoid biosynthesis”, “MAPK signaling pathway—plant”, “phenylalanine metabolism”, and “plant hormone signal transduction.” These findings provide a theoretical basis for the use of COS to alleviate the damage caused by cold stress in plant growth and development.
Collapse
|
34
|
Salbitani G, Maresca V, Cianciullo P, Bossa R, Carfagna S, Basile A. Non-Protein Thiol Compounds and Antioxidant Responses Involved in Bryophyte Heavy-Metal Tolerance. Int J Mol Sci 2023; 24:5302. [PMID: 36982378 PMCID: PMC10049163 DOI: 10.3390/ijms24065302] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/23/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
Heavy-metal pollution represents a problem which has been widely discussed in recent years. The biological effects of heavy metals have been studied in both animals and plants, ranging from oxidative stress to genotoxicity. Plants, above all metal-tolerant species, have evolved a wide spectrum of strategies to counteract exposure to toxic metal concentrations. Among these strategies, the chelation and vacuolar sequestration of heavy metals are, after cell-wall immobilization, the first line of defence that prevent heavy metals from interacting with cell components. Furthermore, bryophytes activate a series of antioxidant non-enzymatic and enzymatic responses to counteract the effects of heavy metal in the cellular compartments. In this review, the role of non-protein thiol compounds and antioxidant molecules in bryophytes will be discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Adriana Basile
- Department of Biology, University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
35
|
Ahmad I, Song X, Hussein Ibrahim ME, Jamal Y, Younas MU, Zhu G, Zhou G, Adam Ali AY. The role of melatonin in plant growth and metabolism, and its interplay with nitric oxide and auxin in plants under different types of abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1108507. [PMID: 36866369 PMCID: PMC9971941 DOI: 10.3389/fpls.2023.1108507] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/09/2023] [Indexed: 06/01/2023]
Abstract
Melatonin is a pleiotropic signaling molecule that reduces the adverse effects of abiotic stresses, and enhances the growth and physiological function of many plant species. Several recent studies have demonstrated the pivotal role of melatonin in plant functions, specifically its regulation of crop growth and yield. However, a comprehensive understanding of melatonin, which regulates crop growth and yield under abiotic stress conditions, is not yet available. This review focuses on the progress of research on the biosynthesis, distribution, and metabolism of melatonin, and its multiple complex functions in plants and its role in the mechanisms of metabolism regulation in plants grown under abiotic stresses. In this review, we focused on the pivotal role of melatonin in the enhancement of plant growth and regulation of crop yield, and elucidated its interactions with nitric oxide (NO) and auxin (IAA, indole-3-acetic acid) when plants are grown under various abiotic stresses. The present review revealed that the endogenousapplication of melatonin to plants, and its interactions with NO and IAA, enhanced plant growth and yield under various abiotic stresses. The interaction of melatonin with NO regulated plant morphophysiological and biochemical activities, mediated by the G protein-coupled receptor and synthesis genes. The interaction of melatonin with IAA enhanced plant growth and physiological function by increasing the levels of IAA, synthesis, and polar transport. Our aim was to provide a comprehensive review of the performance of melatonin under various abiotic stresses, and, therefore, further explicate the mechanisms that plant hormones use to regulate plant growth and yield under abiotic stresses.
Collapse
Affiliation(s)
- Irshad Ahmad
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Xudong Song
- Department of Agronomy, Institute of Agricultural, Sudan University of Science and Technology, Khartoum, Sudan
| | - Muhi Eldeen Hussein Ibrahim
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Yanjiang Area, Institute of Agricultural Sciences, Nantong, China
| | - Yousaf Jamal
- Department of Agronomy, Faculty of Agriculture, University of Swabi, Swabi, Pakistan
| | - Muhammad Usama Younas
- Department of Crop Genetics and Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Guanglong Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Guisheng Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, College of Agriculture, Yangzhou University, Yangzhou, China
- Key Lab of Crop Genetics & Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Adam Yousif Adam Ali
- Department of Agronomy, Faculty of Agricultural and Environmental Science, University of Gadarif, Al Gadarif, Sudan
| |
Collapse
|
36
|
Feng C, Gao H, Zhou Y, Jing Y, Li S, Yan Z, Xu K, Zhou F, Zhang W, Yang X, Hussain MA, Li H. Unfolding molecular switches for salt stress resilience in soybean: recent advances and prospects for salt-tolerant smart plant production. FRONTIERS IN PLANT SCIENCE 2023; 14:1162014. [PMID: 37152141 PMCID: PMC10154572 DOI: 10.3389/fpls.2023.1162014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023]
Abstract
The increasing sodium salts (NaCl, NaHCO3, NaSO4 etc.) in agricultural soil is a serious global concern for sustainable agricultural production and food security. Soybean is an important food crop, and their cultivation is severely challenged by high salt concentration in soils. Classical transgenic and innovative breeding technologies are immediately needed to engineer salt tolerant soybean plants. Additionally, unfolding the molecular switches and the key components of the soybean salt tolerance network are crucial for soybean salt tolerance improvement. Here we review our understandings of the core salt stress response mechanism in soybean. Recent findings described that salt stress sensing, signalling, ionic homeostasis (Na+/K+) and osmotic stress adjustment might be important in regulating the soybean salinity stress response. We also evaluated the importance of antiporters and transporters such as Arabidopsis K+ Transporter 1 (AKT1) potassium channel and the impact of epigenetic modification on soybean salt tolerance. We also review key phytohormones, and osmo-protectants and their role in salt tolerance in soybean. In addition, we discuss the progress of omics technologies for identifying salt stress responsive molecular switches and their targeted engineering for salt tolerance in soybean. This review summarizes recent progress in soybean salt stress functional genomics and way forward for molecular breeding for developing salt-tolerant soybean plant.
Collapse
Affiliation(s)
- Chen Feng
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Hongtao Gao
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Yonggang Zhou
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Yan Jing
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Senquan Li
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Zhao Yan
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Keheng Xu
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Fangxue Zhou
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Wenping Zhang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Xinquan Yang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Muhammad Azhar Hussain
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
- *Correspondence: Muhammad Azhar Hussain, ; Haiyan Li,
| | - Haiyan Li
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
- *Correspondence: Muhammad Azhar Hussain, ; Haiyan Li,
| |
Collapse
|