1
|
Justa HCD, Baldissera AB, Machado MI, Souza SH, Polli NLC, Boia-Ferreira M, Schluga PHDC, Donatti L, Wille ACM, Minozzo JC, Gremski LH, Veiga SS. Induction of ectosome formation by binding of phospholipases D from Loxosceles venoms to endothelial cell surface: Mechanism of interaction. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159579. [PMID: 39547302 DOI: 10.1016/j.bbalip.2024.159579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Members of the phospholipase D (PLD) superfamily found in Loxosceles spider venoms are potent toxins with inflammatory and necrotizing activities. They degrade phospholipids in cell membranes, generating bioactive molecules that activate skin cells. These skin cells, in turn, activate leukocytes involved in dermonecrosis, characterized by aseptic coagulative necrosis. Although the literature has advanced in understanding the structure-function relationship, the cell biology resulting from the interactions of these molecules with cells remains poorly understood. In this study, we show that different cells exposed to recombinant PLDs bind these molecules to their plasma membrane, leading to the subsequent organization of extracellular microvesicles/ectosomes. The binding occurs as quickly as five minutes or less after exposure, increases over time, and eventually, the PLDs are expelled from the cell surface without generating cytotoxicity. PLDs are not endocytosed, nor do they spatially colocalize with acidic organelles in the intracellular environment. At least two regions of PLDs - the domain involved in magnesium ion coordination and the choline binding site - appear to play a role in cell surface binding and ectosome organization. However, the amino acids involved in catalysis do not participate in these events. The binding of these PLDs to the cell membrane, independent of catalytic activity, is sufficient to trigger intracellular signaling and enhance the expression of the pro-inflammatory IL-8 gene. These results are supported by the observation that isoforms of PLDs lacking catalytic activity induce an inflammatory response in vivo when injected into the skin of rabbits, without causing dermonecrosis. Our data indicate that these PLDs bind to the surface of target cells, promoting the organization of extracellular vesicles/ectosomes. Subsequently, these events activate pro-inflammatory genes and induce an inflammatory response in vivo. The binding to cells is not dependent on amino acids involved in catalysis but rather on amino acids involved in magnesium coordination. The binding of PLDs to the cell surface, formation of ectosomes, and activation of cells appear to initiate signals involved in inflammatory responses that can lead to dermonecrosis in accidents. This correlation is supported by experimental observations indicating that the events of toxin binding to cells, formation of microvesicles, and inflammatory responses observed both in vitro and in vivo are interconnected.
Collapse
Affiliation(s)
- Hanna Câmara da Justa
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil
| | | | | | - Samira Hajjar Souza
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil
| | | | - Marianna Boia-Ferreira
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil
| | | | - Lucelia Donatti
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil
| | - Ana Carolina M Wille
- Department of Structural, Molecular Biology and Genetics, State University of Ponta Grossa (UEPG), Ponta Grossa 84030-900, Brazil
| | - João Carlos Minozzo
- Production and Research Center of Immunobiological Products (CPPI), State Department of Health, Piraquara 83302-200, Brazil
| | - Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil
| | - Silvio S Veiga
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil.
| |
Collapse
|
2
|
Kupikowska-Stobba B, Niu H, Klojdová I, Agregán R, Lorenzo JM, Kasprzak M. Controlled lipid digestion in the development of functional and personalized foods for a tailored delivery of dietary fats. Food Chem 2025; 466:142151. [PMID: 39615348 DOI: 10.1016/j.foodchem.2024.142151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/04/2024] [Accepted: 11/17/2024] [Indexed: 12/14/2024]
Abstract
In recent decades, obesity and its associated health issues have risen dramatically. The COVID-19 pandemic has further exacerbated this trend, underscoring the pressing need for new strategies to manage weight. Functional foods designed to modulate lipid digestion and absorption rates and thereby reduce the assimilation of dietary fats have gained increasing attention in food science as a potentially safer alternative to weight-loss medications. This review provides insights into controlled lipid digestion and customized delivery of fats. The first section introduces basic concepts of lipid digestion and absorption in the human gastrointestinal tract. The second section discusses factors regulating lipid digestion and absorption rates, as well as strategies for modulating lipid assimilation from food. The third section focuses on applications of controlled lipid digestion in developing personalized foods designed for specific consumer groups, with particular emphasis on two target populations: overweight individuals and infants.
Collapse
Affiliation(s)
- Barbara Kupikowska-Stobba
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland.
| | - Hui Niu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Iveta Klojdová
- DRIFT-FOOD, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 21 Prague, Czech Republic
| | - Ruben Agregán
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| | - Mirosław Kasprzak
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, Balicka 122, 30-149 Kraków, Poland
| |
Collapse
|
3
|
Chaudary AS, Guo Y, Utkin YN, Barancheshmeh M, Dagda RK, Gasanoff ES. Sphingomyelin Inhibits Hydrolytic Activity of Heterodimeric PLA 2 in Model Myelin Membranes: Pharmacological Relevance. J Membr Biol 2025; 258:29-46. [PMID: 39438323 DOI: 10.1007/s00232-024-00327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
In this work, the heterodimeric phospholipase A2, HDP-2, from viper venom was investigated for its hydrolytic activity in model myelin membranes as well as for its effects on intermembrane exchange of phospholipids (studied by phosphorescence quenching) and on phospholipid polymorphism (studied by 1H-NMR spectroscopy) to understand the role of sphingomyelin (SM) in the demyelination of nerve fibers. By using well-validated in vitro approaches, we show that the presence of SM in model myelin membranes leads to a significant inhibition of the hydrolytic activity of HDP-2, decreased intermembrane phospholipid exchange, and reduced phospholipid polymorphism. Using AutoDock software, we show that the NHδ+ group of the sphingosine backbone of SM binds to Tyr22(C=Opbδ-) of HDP-2 via a hydrogen bond which keeps only the polar head of SM inside the HDP-2's active center and positions the sn-2 acyl ester bond away from the active center, thus making it unlikely to hydrolyze the alkyl chains at the sn-2 position. This observation strongly suggests that SM inhibits the catalytic activity of HDP-2 by blocking access to other phospholipids to the active center of the enzyme. Should this observation be verified in further studies, it would offer a tantalizing opportunity for developing effective pharmaceuticals to stop the demyelination of nerve fibers by aberrant PLA2s with overt activity - as observed in brain degenerative diseases - by inhibiting SM hydrolysis and/or facilitating SM synthesis in the myelin sheath membrane.
Collapse
Affiliation(s)
- Anwaar S Chaudary
- Advanced STEM Research Center, Chaoyang Kaiwen Academy, Beijing, 100018, China
| | - Yanglin Guo
- Advanced STEM Research Center, Chaoyang Kaiwen Academy, Beijing, 100018, China
| | - Yuri N Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Maryam Barancheshmeh
- Universal Scientific Education and Research Network (USERN), Reno, NV, 89512, USA
| | - Ruben K Dagda
- Department of Pharmacology, University of Nevada Medical School, Reno, NV, 89557, USA
| | - Edward S Gasanoff
- Advanced STEM Research Center, Chaoyang Kaiwen Academy, Beijing, 100018, China.
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
4
|
Kapri A, Singh D, Onteru SK. Deciphering Aflatoxin B1 affected critical molecular pathways governing cancer: A bioinformatics study using CTD and PANTHER databases. Mycotoxin Res 2025; 41:93-111. [PMID: 39417919 DOI: 10.1007/s12550-024-00563-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Aflatoxin B1 (AFB1) is a fungal toxin consistently found as a contaminant in food products such as cereals, nuts, spices, and oilseeds. AFB1 exposure can lead to hepatotoxicity, cancer, immune suppression, reproductive deficiency, nutritional dysfunction, and growth impairment. AFB1 has also been listed as one of the most potent human carcinogens by the International Agency for Research on Cancer. Although the correlation between AFB1 exposure and cancer initiation and progression is already reported in the literature, very little information is available about what molecular pathways are affected during cancer development. Considering this, we first selected AFB1-responsive genes involved in five deadliest cancer types including lung, colorectal, liver, stomach, and breast cancers from the Comparative Toxicogenomics Database (CTD). Then, using the PANTHER database, a statistical overrepresentation test was performed to identify the significantly affected pathways in each cancer type. The gonadotropin-releasing hormone receptor (GnRHR) pathway, the CCKR signaling pathway, and angiogenesis were found to be the most affected pathways in lung, breast, liver, and stomach cancers. In addition, AFB1 toxicity majorly impacted apoptosis and Wnt signaling pathways in liver and stomach cancers, respectively. Moreover, the most affected pathways in colorectal cancer were the Wnt, CCKR, and GnRHR pathways. Furthermore, gene analysis was also performed for the most affected pathways associated with each cancer and identified thirteen key genes (e.g., FOS, AKT1) that may serve as biological markers for a particular type of AFB1-induced cancer as well as for in vitro AFB1 toxicological studies using specific cancer cell lines.
Collapse
Affiliation(s)
- Ankita Kapri
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| |
Collapse
|
5
|
Wang X, Liu J, Holman BWB, Zuo H, Hao J, Zhang Y, Mao Y. The regulatory mechanisms for beef tenderization by the calcium-independent phospholipase A 2 activity of Peroxiredoxin 6. Food Chem 2025; 473:143083. [PMID: 39879755 DOI: 10.1016/j.foodchem.2025.143083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
This study investigated the effect of the inhibition of the activity of Ca2+-independent Phospholipase A2 (iPLA2) of Peroxiredoxin 6 (Prdx6) on beef tenderization in the early post-mortem period. Longissimus lumborum (LL) were incubated with or without the inhibitor of iPLA2 activity of Prdx6 (MJ33) for 1, 6, 12, 24, or 36 h, followed by incubation with or without the H2O2. iPLA2 activity, troponin T and desmin, Ca2+ concentration, calpain-1, caspases, apoptosis rate, and cell morphology were examined. It was found that the reduction of the iPLA2 activity of Prdx6 was found to promote degradation of cytoskeletal proteins (troponin T, desmin). The inhibition of the iPLA2 activity of Prdx6 suppressed the caspases activation. This reduced the apoptotic rate, but increased Ca2+ concentrations and calpain-1 activation, outcomes that promoted beef tenderization. This mechanistic characterization confirms the application of Prdx6 as a biomarker for beef of high quality and consumer acceptance.
Collapse
Affiliation(s)
- Xinyi Wang
- Lab of Meat Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Jitong Liu
- Lab of Meat Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Benjamin W B Holman
- Wagga Wagga Agricultural Institute, NSW Department of Primary Industries and Regional Development, Wagga Wagga, New South Wales 2650, Australia
| | - Huixin Zuo
- Lab of Meat Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jiangang Hao
- Ulagai Station of China Agriculture Research System (beef), Ulagai, Inner Mongolia 026321, PR China
| | - Yimin Zhang
- Lab of Meat Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Yanwei Mao
- Lab of Meat Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
6
|
Ri M, Iida S, Saito K, Saito Y, Maruyama D, Asano A, Fukuhara S, Tsujimura H, Miyazaki K, Ota S, Fukuhara N, Negoro E, Kuroda J, Yoshida S, Ohtsuka E, Norifumi T, Tabayashi T, Takayama N, Saito T, Suzuki Y, Harada Y, Mizuno I, Yoshida I, Maruta M, Takamatsu Y, Katsuya H, Yoshimitsu M, Minami Y, Kanato K, Munakata W, Nagai H. Lipidomic profiling of plasma from patients with multiple myeloma receiving bortezomib: an exploratory biomarker study of JCOG1105 (JCOG1105A1). Cancer Chemother Pharmacol 2025; 95:29. [PMID: 39853402 DOI: 10.1007/s00280-025-04752-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
PURPOSE A comprehensive analysis of metabolites (metabolomics) has been proposed as a new strategy for analyzing liquid biopsies and has been applied to identify biomarkers predicting clinical responses or adverse events associated with specific treatments. Here, we aimed to identify metabolites associated with bortezomib (Btz)-related toxicities and response to treatment in newly diagnosed multiple myeloma (MM). METHODS Fifty-four plasma samples from transplant-ineligible MM patients enrolled in a randomized phase II study comparing two less-intensive regimens of melphalan, prednisolone and Btz (MPB) were subjected to the lipidomic profiling analysis. The amount of each lipid metabolite in plasma obtained prior to MPB therapy was compared to toxicity grades and responses to MPB therapy. RESULTS High levels of 7 phospholipids (4 lysophosphatidylcholines and 3 phosphatidylcholines) were observed in cases with Btz-induced ≥ grade 2 peripheral neuropathy (BiPN) (n = 11). In addition, low levels of 3 fatty acids (FAs)-FA (18:2), FA (18:1), and FA (22:6)-were observed in patients who developed severe skin disorders ≥ grade 2 (n = 10). No metabolite significantly associated with treatment response was identified. CONCLUSION We conclude that levels of specific plasma lipid metabolites are associated with the severity of BiPN and skin disorders in patients with MM. These metabolites may serve as candidate biomarkers to predict Btz-induced toxicity in patients with MM before initiating Btz-containing therapy.
Collapse
Affiliation(s)
- Masaki Ri
- Department of Hematology and Oncology, Nagoya City University Hospital, Nagoya, Japan.
| | - Shinsuke Iida
- Department of Hematology and Oncology, Nagoya City University Hospital, Nagoya, Japan
| | - Kosuke Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, Kawasaki, Japan
| | - Yoshiro Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, Kawasaki, Japan
| | - Dai Maruyama
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
- Department of Hematology Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Arisa Asano
- Department of Hematology and Oncology, Nagoya City University Hospital, Nagoya, Japan
| | - Suguru Fukuhara
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Hideki Tsujimura
- Department of Hematology and Medical Oncology, Chiba Cancer Center, Chiba, Japan
| | - Kana Miyazaki
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Shuichi Ota
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Noriko Fukuhara
- Department of Hematology, Tohoku University Hospital, Sendai, Japan
| | - Eiju Negoro
- Department of Hematology and Oncology, University of Fukui Hospital, Fukui, Japan
| | - Junya Kuroda
- Division of Hematology and Oncology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Eiichi Ohtsuka
- Department of Hematology, Oita Prefectural Hospital, Oita, Japan
| | | | - Takayuki Tabayashi
- Department of Hematology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Nobuyuki Takayama
- Department of Hematology, Kyorin University Faculty of Medicine, Mitaka, Japan
| | - Toko Saito
- Department of Hematology and Cell Therapy, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yasuhiro Suzuki
- Department of Hematology, NHO Nagoya Medical Center, Nagoya, Japan
| | - Yasuhiko Harada
- Department of Hematology, Toyota Kosei Hospital, Toyota, Japan
| | | | - Isao Yoshida
- Department of Hematologic Oncology, NHO Shikoku Cancer Center, Matsuyama, Japan
| | - Masaki Maruta
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Matsuyama, Japan
| | - Yasushi Takamatsu
- Division of Medical Oncology, Hematology and Infectious Diseases, Fukuoka University Hospital, Fukuoka, Japan
| | - Hiroo Katsuya
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Makoto Yoshimitsu
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Keisuke Kanato
- JCOG Data Center/Operating Office, National Cancer Center Hospital, Tokyo, Japan
| | - Wataru Munakata
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Hirokazu Nagai
- Department of Hematology, NHO Nagoya Medical Center, Nagoya, Japan
| |
Collapse
|
7
|
Biernacki M, Skrzydlewska E. Metabolic pathways of eicosanoids-derivatives of arachidonic acid and their significance in skin. Cell Mol Biol Lett 2025; 30:7. [PMID: 39825220 PMCID: PMC11742234 DOI: 10.1186/s11658-025-00685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025] Open
Abstract
The skin is a barrier that protects the human body against environmental factors (physical, including solar radiation, chemicals, and pathogens). The integrity and, consequently, the effective metabolic activity of skin cells is ensured by the cell membrane, the important structural and metabolic elements of which are phospholipids. Phospholipids are subject to continuous transformation, including enzymatic hydrolysis (with the participation of phospholipases A, C, and D) to free polyunsaturated fatty acids (PUFAs), which under the influence of cyclooxygenases (COX1/2), lipoxygenases (LOXs), and cytochrome P450 (CYPs P450) are metabolized to various classes of oxylipins, depending on the type of PUFA being metabolized and the enzyme acting. The most frequently analyzed oxylipins, especially in skin cells, are eicosanoids, which are derivatives of arachidonic acid (AA). Their level depends on both environmental factors and endogenous metabolic disorders. However, they play an important role in homeostasis mechanisms related to the structural and functional integrity of the skin, including maintaining redox balance, as well as regulating inflammatory processes arising in response to endogenous and exogenous factors reaching skin cells. Therefore, it is believed that dysregulation of eicosanoid levels may contribute to the development of skin diseases, such as psoriasis or atopic dermatitis, which in turn suggests that targeted control of the generation of specific eicosanoids may have diagnostic significance and beneficial therapeutic effects. This review is the first systemic and very detailed approach presenting both the causes and consequences of changes in phospholipid metabolism leading to the generation of eicosanoids, changes in the level of which result in specific metabolic disorders in skin cells leading to the development of various diseases. At the same time, existing literature data indicate that further detailed research is necessary to understand a clear relationship between changes in the level of specific eicosanoids and the pathomechanisms of specific skin diseases, as well as to develop an effective diagnostic and therapeutic approach.
Collapse
Affiliation(s)
- Michał Biernacki
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069, Bialystok, Poland.
| |
Collapse
|
8
|
da Silva JR, Ramos MJ, Fernandes PA. Elucidating on the quaternary structure of viper venom phospholipase A 2 enzymes in aqueous solution. Biochimie 2025:S0300-9084(24)00319-5. [PMID: 39800211 DOI: 10.1016/j.biochi.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025]
Abstract
This study focuses on the quaternary structure of the viper-secreted phospholipase A2 (PLA2), a central toxin in viper envenomation. PLA2 enzymes catalyze the hydrolysis of the sn-2 ester bond of membrane phospholipids. Small-molecule inhibitors that act as snakebite antidotes, such as varespladib, are currently in clinical trials. These inhibitors likely bind to the enzyme in the aqueous cytosol prior to membrane-binding. Thus, understanding its controversial solution structure is key for drug design. Crystal structures of PLA2 in the PDB show at least four different dimeric conformations, the most well-known being "extended" and "compact". This variability among enzymes with >50 % sequence identity raises questions about their transferability to aqueous solution. Therefore, we performed extensive molecular dynamics (MD) simulations of several PLA2 enzymes in water to determine their quaternary structure under physiological conditions. The MD simulations strongly indicate that PLA2 enzymes adopt a "semi-compact" conformation in cytosol, a hybrid between extended and compact conformations. To our knowledge, this is the first study that determines the most favorable dimeric conformation of PLA2 enzymes in solution, providing a basis for advancements in snakebite envenoming treatment. Recognizing snakebite envenoming as a neglected tropical disease has driven the search for efficient, affordable alternatives to the current antivenoms. Therefore, understanding the main drug targets within snake venom is crucial to this achievement.
Collapse
Affiliation(s)
- Joana R da Silva
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Maria João Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| |
Collapse
|
9
|
Felix MN, Waerner T, Lakatos D, Reisinger B, Fischer S, Garidel P. Polysorbates degrading enzymes in biotherapeutics - a current status and future perspectives. Front Bioeng Biotechnol 2025; 12:1490276. [PMID: 39867473 PMCID: PMC11760601 DOI: 10.3389/fbioe.2024.1490276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/02/2024] [Indexed: 01/28/2025] Open
Abstract
Polysorbates, in particular polysorbate (PS) 20 and 80, are the most commonly used surfactants for stabilising biotherapeutics produced by biotechnological processes. PSs are derived from ethoxylated sorbitan (a derivative of sorbitol) esterified with fatty acids of varying chain length and degree of saturation. In the past, these surfactants have been reported to have specific liabilities. Chemical (oxidations and hydrolyses) and enzymatic degradations have been reported to affect the stability of PS in drug products. Specifically, the presence of trace amounts (sub-ppm) of certain host cell proteins (HCPs) can induce enzymatic PS degradation, which can lead to the release of free fatty acids during storage over time. Enzymatic polysorbate degradation may impair the functionality of the surfactant in stabilising therapeutic proteins, leading to the formation of visible and/or sub-visible particles in biopharmaceutical drug products. This review summarises the enzymes currently known to be involved in the degradation of polysorbate in mammalian biotechnological processes for therapeutic proteins. In recent years, advanced analytical methods have been developed to qualify and quantify the PS-degrading enzymes. Most of these assays are based on mass spectrometry with a preceding HCP enrichment approach. Efforts were made to measure the enzyme activity and correlate it with observed PS degradation. The impact on drug product quality attributes, including fatty acid solubility and phase separation, up to the formation of visible particles, and the potential induction of protein and protein/fatty acid mixed particles as well as the sensitivity of specific PS quality towards enzymatic degradation, was considered. Various drug substance (DS) mitigation strategies related to the occurrence of PS degrading enzymes are discussed as amongst them the generation of stable HCP knockout cell lines, which are also carefully analysed. The underlying opinion article reflects the undergoing discussions related to PS degrading enzymes and focusses on (i) impact on drug product, (ii) analytics for identification/quantification (characterisation) of the PS degrading enzymes, (iii) enzyme activity (iv) currently identified enzymes, and (v) potential mitigation strategies to avoid enzymatic PS degradation during DS manufacturing.
Collapse
Affiliation(s)
- Marius Nicolaus Felix
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| | - Thomas Waerner
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| | - Daniel Lakatos
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| | - Bernd Reisinger
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| | - Simon Fischer
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| | - Patrick Garidel
- Pharmaceutical Development Biologicals, TIP, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| |
Collapse
|
10
|
Wang Y, Liu M, Liu Y, Tang X, Tang X. Assessment of heart rate deceleration capacity, heart rate deceleration runs, heart rate acceleration capacity, and lipoprotein-related phospholipase A2 as predictors in individuals with dementia. Front Neurol 2025; 15:1438736. [PMID: 39850729 PMCID: PMC11754063 DOI: 10.3389/fneur.2024.1438736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/27/2024] [Indexed: 01/25/2025] Open
Abstract
Background Autonomic dysfunction plays an essential role in dementia, however, it is not known whether electrocardiogram autonomic dysfunction-related indicators are associated with the severity of dementia. In this study, we attempted to investigate whether these indicators are correlated in patients with vascular dementia and Alzheimer's disease compared with normal health individuals. For this purpose, we measured and analyzed the predictive value of heart rate deceleration capacity (DC), heart rate deceleration runs (DRs), heart rate acceleration capacity (AC) along with the plasma levels of lipoprotein-associated phospholipase A2 (Lp-PLA2). Methods We compared 83 dementia cases including 41 vascular dementia (VD), 42 Alzheimer's disease (AD) patients with 42 elderly health controls. The Mini-Mental State Examination (MMSE) scores, DC, DRs, AC, and Lp-PLA2 levels were comprehensively evaluated. Results Our studies showed that DC and DRs in VD and AD groups were significantly lower than those in controls, while AC values were significantly higher. Furthermore, the risk stratification (high- and moderate-) of DC, DRs, and AC in VD and AD groups was increased, while the low-risk was simultaneously decreased. In addition, DC and DRs were positively while AC and Lp-PLA2 were negatively correlated with MMSE scores. Logistic regression analysis indicated that DC, DRs, AC, and Lp-PLA2 were associated with dementia. Moreover, the areas under the ROC curves showed that the combination of five variables and AC + Lp-PLA2 were 0.970 (95% CI, 0.923-0.992) and 0.940 (95% CI, 0.882-0.974) were larger than each single indicator alone. Conclusion Distinctive alterations in dynamic electrocardiogram-related indicators reveal a decline in autonomic nervous functions among individuals with dementia. By incorporating comprehensive analyses of DC, DRs, AC, and Lp-PLA2 values, the specificity and sensitivity of dementia diagnosis can be significantly enhanced.
Collapse
Affiliation(s)
- Yaping Wang
- Department of Electrocardiogram, Yangzhou Wutaishan Hospital of Jiangsu Province, Teaching Hospital of Yangzhou University, Yangzhou, China
| | - Mingyan Liu
- Department of Electrocardiogram, Yangzhou Wutaishan Hospital of Jiangsu Province, Teaching Hospital of Yangzhou University, Yangzhou, China
| | - Yaping Liu
- Department of Clinical Laboratory, Yangzhou Wutaishan Hospital of Jiangsu Province, Teaching Hospital of Yangzhou University, Yangzhou, China
| | - Xiaowei Tang
- Department of Psychiatry, Yangzhou Wutaishan Hospital of Jiangsu Province, Teaching Hospital of Yangzhou University, Yangzhou, China
| | - Xiangming Tang
- Department of Neurology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| |
Collapse
|
11
|
Liao L, Huang W, Ma R, He X, Su M, Sha D. Potential biomarkers for cerebral small vessel disease with cognitive impairment: a systematic review and meta-analysis. Front Aging Neurosci 2025; 16:1475571. [PMID: 39839309 PMCID: PMC11747022 DOI: 10.3389/fnagi.2024.1475571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/09/2024] [Indexed: 01/23/2025] Open
Abstract
Cerebral small vessel disease (CSVD) is a common factor in age-related diseases such as stroke and dementia, and about half of dementia patients worldwide are caused by CSVD. CSVD-related cognitive impairment (CSVD-CI) affects more and more elderly people, resulting in economic losses and burdens on families and society. In recent years, circulating biomarkers have made breakthroughs and played an increasingly important role in the diagnosis, progression, and prognosis of CSVD-associated cognitive impairment, and are expected to be applied to the early clinical detection, diagnosis, and treatment of patients with cerebral small vessel disease. Through a systematic review and meta-analysis, this study aimed to assess the relationship between circulating factors and cognitive impairment associated with cerebral small vessel disease, especially the possibility of becoming the potential biomarkers for diagnosis. Articles published before November 2023 were searched in four databases, PubMed, Web of Science, Embase, and Cochrane Library, to identify all relevant studies reporting circulating markers in patients with CSVD. Twenty-nine articles out of 2,911 were finalized for this study. We meta-analyzed 2 or more articles that were jointly considered to be circulating biomarkers of CSVD-CI and summarized a total of 4 possible biomarkers: homocysteine (Hcy), high-sensitivity C-reactive protein (hs-CRP), lipoprotein-associated phospholipase A2 (Lp-PLA2), and neurofilament protein light chain (NfL). The results revealed that patients in the CSVD-related cognitive impairment group had significantly higher levels of Hcy and hs-CRP than those in the CSVD-without cognitive impairment group, whereas there was no statistically significant difference in Lp-PLA2 and NfL between the two groups. Therefore, Hcy, hs-CRP may be considered circulating markers of cognitive impairment associated with cerebral small vessel disease.
Collapse
Affiliation(s)
- Libin Liao
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Weiquan Huang
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Rongchao Ma
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Xuan He
- Department of General Practice, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing, China
| | - Moxi Su
- Department of General Practice, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Dujuan Sha
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Department of General Practice, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing, China
| |
Collapse
|
12
|
Cheema AN, Shi R, Kamboh MI. Association of Novel Pathogenic Variant (p. Ile366Asn) in PLA2G6 Gene with Infantile Neuroaxonal Dystrophy. Int J Mol Sci 2025; 26:352. [PMID: 39796207 PMCID: PMC11721680 DOI: 10.3390/ijms26010352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
A couple presented to the office with an apparently healthy infant for a thorough clinical assessment, as they had previously lost two male children to a neurodegenerative disorder. They also reported the death of a male cousin abroad with a comparable condition. We aimed to evaluate a novel coding pathogenic variant c.1097T>A, PLA2G6, within the affected family, previously identified in a deceased cousin, but its clinical significance remained undetermined. A 200 bp PCR product of target genome (including codon 366 of PLA2G6) was amplified followed by enzymatic digestion (MboI) and sequencing. Structural pathogenic variant analysis was performed using PyMOL 2.5.4. In RFLP analysis, the mutant-type allele produced a single band of 200 bp, and the wild-type allele manifested as two bands of 112 bp and 88 bp. The pathogenic variant was identified in nine family members, including two heterozygous couples with consanguineous marriages resulting in affected children. It was predicted to be deleterious by multiple bioinformatic tools. The substitution of nonpolar isoleucine with polar asparagine of iPLA2 (Ile366Asn) resulted in a eense pathogenic variant (ATC>AAC). A missense variant (p. Ile366Asn) in the PLA2G6 gene is associated with clinically evident infantile neuroaxonal dystrophy, which is transmitted in an autosomal recessive pattern, and is also predicted to be dysfunctional by bioinformatic analyses.
Collapse
Affiliation(s)
- Asma Naseer Cheema
- Children’s Hospital & The Institute of Child Health Multan, Multan 66000, Pakistan
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; (R.S.); (M.I.K.)
| | - Ruyu Shi
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; (R.S.); (M.I.K.)
| | - M. Ilyas Kamboh
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; (R.S.); (M.I.K.)
| |
Collapse
|
13
|
Glaser EP, Kopper TJ, Bailey WM, Kashif HK, Kumari R, Stewart AN, Gensel JC. Cytosolic phospholipase A2 in infiltrating monocyte derived macrophages does not impair recovery after spinal cord injury in female mice. Sci Rep 2025; 15:1. [PMID: 39747330 PMCID: PMC11696740 DOI: 10.1038/s41598-024-84936-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025] Open
Abstract
Spinal cord injury (SCI) leads to permanent motor and sensory loss that is exacerbated by intraspinal inflammation and persists months to years after injury. After SCI, monocyte-derived macrophages (MDMs) infiltrate the lesion to aid in myelin-rich debris clearance. During debris clearance, MDMs adopt a proinflammatory phenotype that exacerbates neurodegeneration and hinders recovery. The underlying cause of the lipid-mediated MDM phenotype shift is unclear. Our previous work suggests that cytosolic phospholipase A2 (cPLA2) plays a role in the proinflammatory potentiating effect of myelin on macrophages in vitro. Cytosolic phospholipase A2 (cPLA2) frees arachidonic acid from phospholipids, generating eicosanoids that play an important role in inflammation, immunity, and host defense. cPLA2 is expressed in macrophages along with multiple other cell types after SCI, and cPLA2 inhibition has been reported to both reduce and exacerbate secondary injury pathology recovery. The role of cPLA2 in MDMs after SCI is not fully understood. We hypothesize that cPLA2 activation in MDMs after SCI contributes to secondary injury. Here, we report that cPLA2 plays an important role in the myelin-induced inflammatory macrophage phenotype in vitro using macrophages derived from cPLA2 knockout bone marrow. Furthermore, to investigate the role of cPLA2 in MDMs after SCI, we generated female bone marrow chimeras using cPLA2 knock-out donors and assessed locomotor recovery using the Basso Mouse Scale (BMS), CatWalk gait analysis system, and horizontal ladder task over six weeks. We also evaluated tissue sparing and intralesional axon density six weeks after injury. cPLA2 KO chimeras did not display altered locomotor recovery or tissue pathology after SCI compared to WT chimera controls. These data suggest that although cPLA2 plays a critical role in myelin-mediated potentiation of proinflammatory macrophage activation in vitro, it may not contribute to secondary injury pathology in vivo after SCI.
Collapse
Affiliation(s)
- Ethan P Glaser
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Timothy J Kopper
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave, Aurora, CO, 80045, USA
| | - William M Bailey
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Hassan K Kashif
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Reena Kumari
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Andrew N Stewart
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - John C Gensel
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
| |
Collapse
|
14
|
McGorum B, Pirie RS, Bano L, Davey T, Harris J, Montecucco C. Neurotoxic phospholipase A 2: A proposed cause of equine grass sickness and other animal dysautonomias (multiple system neuropathies). Equine Vet J 2025; 57:11-18. [PMID: 39630613 DOI: 10.1111/evj.14442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2024] [Indexed: 12/07/2024]
Affiliation(s)
- Bruce McGorum
- Royal Dick School of Veterinary Studies, University of Edinburgh, Roslin, UK
| | - R Scott Pirie
- Royal Dick School of Veterinary Studies, University of Edinburgh, Roslin, UK
| | - Luca Bano
- Istituto Zooprofilattico Sperimentale delle Venezie, Treviso, Italy
| | - Tracey Davey
- Electron Microscopy Research Services, Newcastle University, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - John Harris
- Medical Toxicology Centre and Institute of Neuroscience, Newcastle University, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Cesare Montecucco
- National Research Council Institute of Neuroscience and Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
15
|
Wood PL, Kunigelis SC. Copepod Lipidomics: Fatty Acid Substituents of Structural Lipids in Labidocerca aestiva, a Dominant Species in the Food Chain of the Apalachicola Estuary of the Gulf of Mexico. Life (Basel) 2024; 15:43. [PMID: 39859983 PMCID: PMC11766502 DOI: 10.3390/life15010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Zooplanktonic copepods represent a major biological mass in the marine food chain that can be affected by climate change. Monitoring the health of this critical biomass is essential for increasing our understanding of the impact of environmental changes on marine environments. Since the lipidomes of marine organisms are known to adapt to alterations in pH, temperature, and availability of metabolic precursors, lipidomics is one technology that can be used for monitoring copepod adaptations. Among the key lipid parameters that can be monitored are the fatty acid substituents of glycerolipids and glycerophospholipids. We utilized high-resolution tandem mass spectrometry (≤2 ppm mass error) to characterize the fatty acid substituents of triacylglycerols, glycerophosphocholines, ceramides, and sphingomyelins of Labidocerca aestiva. This included monitoring for furan fatty acid substituents, a family of fatty acids unique to marine organisms. These data will contribute to establishing a lipid database of the fatty acid substituents of essential structural lipids. The key findings were that polyunsaturated fatty acids (PUFAs) were only major substituents in glycerophosphocholines with 36 to 44 carbons. Triacylglycerols, ceramides, and sphingomyelins contained minimal PUFA substituents. Furan fatty acids were limited to mono- and di-acylglycerols. In summary, we have built a baseline database of the fatty acid substituents of key structural lipids in Labidocerca aestiva. With this database, we will next evaluate potential seasonal changes in these lipid substituents and long-term effects of climate change.
Collapse
Affiliation(s)
- Paul L. Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN 37752, USA
| | - Stan C. Kunigelis
- Imaging and Analysis Center, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN 37752, USA;
| |
Collapse
|
16
|
Zhao Z, Li P, Liu Z, Cui Y, Yao Z, Chen W, Wang M, Yu C, Xia S, Sun Y, Zhang N, Shen W. Exploring the molecular mechanisms by which secretory phospholipase a2 regulates lymphatic endothelial cell dysfunction by activating macrophages. Int J Biol Macromol 2024; 294:139038. [PMID: 39708872 DOI: 10.1016/j.ijbiomac.2024.139038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
This study offers new insights into the dual role of secretory phospholipase A2 (sPLA2) in lymphedema, highlighting its impact on lymphatic endothelial cell (LEC) functionality. Through transcriptomic analyses and co-culture experiments, we observed that sPLA2 has both protective and detrimental effects on human LECs (HLECs), mediated by macrophage activation. Our findings reveal that while low levels of sPLA2 promote LEC health, excessive sPLA2 leads to dysfunction, emphasizing the significance of the sPLA2/PLA2R axis and arachidonic acid metabolism (AA) in lymphedema pathology. The study suggests targeting sPLA2 and its downstream pathways as a novel therapeutic strategy for lymphedema, aiming to mitigate its progression by safeguarding HLEC integrity. This research underscores the importance of balanced sPLA2 activity in maintaining lymphatic vessel health and presents a new avenue for lymphedema management and treatment.
Collapse
Affiliation(s)
- Zimin Zhao
- Department of Lymphatic Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital; Clinical Center for Lymphatic Disorders, CMU, China
| | - Peilin Li
- Department of Lymphatic Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital; Clinical Center for Lymphatic Disorders, CMU, China
| | - Zhong Liu
- Department of Lymphatic Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital; Clinical Center for Lymphatic Disorders, CMU, China
| | - Yonghao Cui
- Department of Lymphatic Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital; Clinical Center for Lymphatic Disorders, CMU, China
| | - Zixuan Yao
- Department of Lymphatic Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital; Clinical Center for Lymphatic Disorders, CMU, China
| | - Weijian Chen
- Center for Obesity and Metabolic Disease, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
| | - Mengqin Wang
- Center for Obesity and Metabolic Disease, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
| | - Chengyuan Yu
- Peking University Ninth Clinical School of Medicine, China
| | - Song Xia
- Department of Lymphatic Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital; Clinical Center for Lymphatic Disorders, CMU, China
| | - Yuguang Sun
- Department of Lymphatic Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital; Clinical Center for Lymphatic Disorders, CMU, China
| | - Nengwei Zhang
- Center for Obesity and Metabolic Disease, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China.
| | - Wenbin Shen
- Department of Lymphatic Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital; Clinical Center for Lymphatic Disorders, CMU, China.
| |
Collapse
|
17
|
Németh K, Kestecher BM, Ghosal S, Bodnár BR, Kittel Á, Hambalkó S, Kovácsházi C, Giricz Z, Ferdinandy P, Osteikoetxea X, Burkhardt R, Buzas EI, Orsó E. Therapeutic and pharmacological applications of extracellular vesicles and lipoproteins. Br J Pharmacol 2024; 181:4733-4749. [PMID: 39491825 DOI: 10.1111/bph.17336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/15/2024] [Accepted: 07/13/2024] [Indexed: 11/05/2024] Open
Abstract
In recent years, various approaches have been undertaken to eliminate lipoproteins co-isolated with extracellular vesicles, as they were initially regarded as contaminating entities. However, novel discoveries are reshaping our perspective. In body fluids, these distinct particles not only co-exist, but also interactions between them are likely to occur. Extracellular vesicles and lipoproteins can associate with each other, share cargo, influence each other's functions, and jointly have a role in the pathomechanisms of diseases. Additionally, their association carries important implications for therapeutic and pharmacological aspects of lipid-lowering strategies. Extracellular vesicles and lipoprotein particles may have roles in the elimination of each other from the circulation. The objective of this minireview is to delve into these aspects. Here, we show that under certain physiological and pathological conditions, extracellular vesicles and lipoproteins are 'partners' rather than 'strangers' or 'rivals'.
Collapse
Affiliation(s)
- Krisztina Németh
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HUN-REN-SU Translational Extracellular Vesicle Research Group, Budapest, Hungary
| | - Brachyahu M Kestecher
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HUN-REN-SU Translational Extracellular Vesicle Research Group, Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary
| | - Sayam Ghosal
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary
| | - Bernadett R Bodnár
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary
| | - Ágnes Kittel
- HUN-REN-SU Translational Extracellular Vesicle Research Group, Budapest, Hungary
- HUN-REN, Institute of Experimental Medicine, Budapest, Hungary
| | - Szabolcs Hambalkó
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Csenger Kovácsházi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Xabier Osteikoetxea
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Edit I Buzas
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HUN-REN-SU Translational Extracellular Vesicle Research Group, Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary
| | - Evelyn Orsó
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
18
|
Liu Y, Tang Y, Le WB, Chen D, Liang D, Xu F, Liang S, Zhong Y, Zeng C. The correlation between anti-phospholipase A2 receptor antibodies and hypercoagulability in patients with idiopathic membranous nephropathy. Ren Fail 2024; 46:2374448. [PMID: 38973428 PMCID: PMC11232635 DOI: 10.1080/0886022x.2024.2374448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Patients with idiopathic membranous nephropathy (IMN) are more likely to be complicated by venous thromboembolism (VTE). The aim of the study was to investigate the potential association between anti-phospholipase A2 receptor (PLA2R) antibodies and hypercoagulability in patients with IMN. METHODS A total of 168 patients with biopsy-proven IMN and 36 patients with biopsy-proven minimal change disease (MCD) were enrolled in this study. The clinical data, serum anti-PLA2R antibodies and coagulation-related indices of the patients were retrospectively analyzed. RESULTS Patients with IMN were categorized into glomerular PLA2R staining-positive (GAg+) IMN group and glomerular PLA2R staining-negative (GAg-) IMN group in the study. Patients with IMN who were GAg + had lower PT, APTT and R time than patients with IMN who were GAg-, while the CI value was higher in patients with IMN who were GAg+. Patients with IMN who were GAg + were divided into the SAb+/GAg + group and the SAb-/GAg + group. Patients with IMN who were SAb+/GAg + had higher Fib and MA values than patients with IMN who were SAb-/GAg+. Correlation analysis showed that serum anti-PLA2R antibodies were positively correlated with fibrinogen, D-dimer, K time, CI value, α-angle, and MA value. Multiple linear regression analysis indicated that anti-PLA2R antibodies were independently correlated with fibrinogen and MA value. CONCLUSION Our study provides a new perspective on the underlying mechanisms of hypercoagulability in patients with IMN. Anti-PLA2R antibodies are associated with hypercoagulability in patients with IMN and may affect coagulation in patients with IMN by affecting platelet aggregation function and fibrinogen counts.
Collapse
Affiliation(s)
- Yunyun Liu
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yujie Tang
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei-Bo Le
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Dacheng Chen
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Dandan Liang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Feng Xu
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shaoshan Liang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yongzhong Zhong
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Nephrology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Caihong Zeng
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
19
|
Hidalgo I, Sorolla MA, Sorolla A, Salud A, Parisi E. Secreted Phospholipases A2: Drivers of Inflammation and Cancer. Int J Mol Sci 2024; 25:12408. [PMID: 39596471 PMCID: PMC11594849 DOI: 10.3390/ijms252212408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Secreted phospholipase 2 (sPLA2) is the largest family of phospholipase A2 (PLA2) enzymes with 11 mammalian isoforms. Each sPLA2 exhibits different localizations and specific properties, being involved in a very wide spectrum of biological processes. The enzymatic activity of sPLA2 has been well described; however, recent findings have shown that they could regulate different signaling pathways by acting directly as ligands. Arachidonic acid (AA) and its derivatives are produced by sPLA2 in collaboration with other molecules in the extracellular space, making important impacts on the cellular environment, being especially relevant in the contexts of immunity and cancer. For these reasons, this review focuses on sPLA2 functions in processes such as the promotion of EMT, angiogenesis, and immunomodulation in the context of tumor initiation and progression. Finally, we will also describe how this knowledge has been applied in the search for new sPLA2 inhibitory compounds that can be used for cancer treatment.
Collapse
Affiliation(s)
- Ivan Hidalgo
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Maria Alba Sorolla
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Anabel Sorolla
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Antonieta Salud
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), 25198 Lleida, Spain
- Department of Medicine, University of Lleida, 25198 Lleida, Spain
| | - Eva Parisi
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- Department of Experimental Medicine, University of Lleida, 25198 Lleida, Spain
| |
Collapse
|
20
|
Guo X, Zhou J, La Yan, Liu X, Yuan Y, Ye J, Zhang Z, Chen H, Ma Y, Zhong Z, Luo G, Chen H. Very long-chain fatty acids control peroxisome dynamics via a feedback loop in intestinal stem cells during gut regeneration. Dev Cell 2024; 59:3008-3024.e8. [PMID: 39047737 DOI: 10.1016/j.devcel.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/19/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Peroxisome dynamics are crucial for intestinal stem cell (ISC) differentiation and gut regeneration. However, the precise mechanisms that govern peroxisome dynamics within ISCs during gut regeneration remain unknown. Using mouse colitis and Drosophila intestine models, we have identified a negative-feedback control mechanism involving the transcription factors peroxisome proliferator-activated receptors (PPARs) and SOX21. This feedback mechanism effectively regulates peroxisome abundance during gut regeneration. Following gut injury, the released free very long-chain fatty acids (VLCFAs) increase peroxisome abundance by stimulating PPARs-PEX11s signaling. PPARs act to stimulate peroxisome fission and inhibit pexophagy. SOX21, which acts downstream of peroxisomes during ISC differentiation, induces peroxisome elimination through pexophagy while repressing PPAR expression. Hence, PPARs and SOX21 constitute a finely tuned negative-feedback loop that regulates peroxisome dynamics. These findings shed light on the complex molecular mechanisms underlying peroxisome regulation in ISCs, contributing to our understanding of gut renewal and repair.
Collapse
Affiliation(s)
- Xiaoxin Guo
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Juanyu Zhou
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - La Yan
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingzhu Liu
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu Yuan
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinbao Ye
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zehong Zhang
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haiou Chen
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongxin Ma
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Zhendong Zhong
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Guanzheng Luo
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Haiyang Chen
- West China Centre of Excellence for Pancreatitis and Laboratory of Stem Cell and Anti-Aging Research, National Clinical Research Center for Geriatrics and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
21
|
Uren RT, Ritchie ME, Wong AW, Ludeman JP, Uno E, Narayana VK, De Souza DP, Sviridov D, Kluck RM. A lipid signature of BAK-driven apoptotic pore formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618570. [PMID: 39463966 PMCID: PMC11507859 DOI: 10.1101/2024.10.16.618570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Apoptotic cell death is regulated by the BCL-2 protein family, with clusters of BAK or BAX homodimers driving pore formation in the mitochondrial outer membrane via a poorly understood process. There is growing evidence that, in addition to BAK and BAX, lipids play an important role in pore formation. Towards a better understanding of the lipidic drivers of apoptotic pore formation in isolated mitochondria, two complementary approaches were taken. Firstly, the lipids released during BAK-mediated pore formation were measured with targeted lipidomics, revealing enrichment of long chain polyunsaturated lysophospholipids (LPLs) in the released fraction. In contrast, the BAK protein was not released suggesting that BAK and LPLs locate to distinct microdomains. Secondly, added cholesterol not only prevented pore formation but prevented the clustering of BAK homodimers. Our data lead us to a model in which BAK clustering triggers formation of a separate microdomain rich in LPLs that can progress to lipid shedding and the opening of a lipid-lined pore. Pore stabilisation and growth may be due to BAK dimers then moving to the pore edge. Our BAK-lipid microdomain model supports the heterogeneity of BAK assemblies, and the observed lipid-release signature gives new insight into the genesis of the apoptotic pore.
Collapse
|
22
|
Miao X, Zhao Y, Zhu L, Zeng Y, Yang C, Zhang R, Lund AK, Zhang M. The Equilibrium of Bacterial Microecosystem: Probiotics, Pathogenic Bacteria, and Natural Antimicrobial Substances in Semen. Microorganisms 2024; 12:2253. [PMID: 39597642 PMCID: PMC11596911 DOI: 10.3390/microorganisms12112253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Semen is a complex fluid that contains spermatozoa and also functions as a dynamic bacterial microecosystem, comprising probiotics, pathogenic bacteria, and natural antimicrobial substances. Probiotic bacteria, such as Lactobacillus and Bifidobacterium, along with pathogenic bacteria like Pseudomonas aeruginosa and Escherichia coli, play significant roles in semen preservation and reproductive health. Studies have explored the impact of pathogenic bacteria on sperm quality, providing insights into the bacterial populations in mammalian semen and their influence on sperm function. These reviews highlight the delicate balance between beneficial and harmful bacteria, alongside the role of natural antimicrobial substances that help maintain this equilibrium. Moreover, we discuss the presence and roles of antimicrobial substances in semen, such as lysozyme, secretory leukocyte peptidase inhibitors, lactoferrin, and antimicrobial peptides, as well as emerging antibacterial substances like amyloid proteins. Understanding the interactions among probiotics, pathogens, and antimicrobial agents is crucial for elucidating semen preservation and fertility mechanisms. Additionally, the potential for adding probiotic bacteria with recombinant antibacterial properties presents a promising avenue for the development of new semen extenders. This review offers updated insights to understand the equilibrium of the bacterial microecosystem in semen and points toward innovative approaches for improving semen preservation.
Collapse
Affiliation(s)
- Xuelan Miao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (Y.Z.); (L.Z.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
| | - Yanhua Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (Y.Z.); (L.Z.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
| | - Lingxi Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (Y.Z.); (L.Z.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
| | - Yutian Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (Y.Z.); (L.Z.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
| | - Cuiting Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (Y.Z.); (L.Z.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
| | - Run Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (Y.Z.); (L.Z.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
| | - Arab Khan Lund
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (Y.Z.); (L.Z.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
- Faculty of Animal Production and Technology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
| | - Ming Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.M.); (Y.Z.); (L.Z.); (Y.Z.); (C.Y.); (R.Z.); (A.K.L.)
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
23
|
Li S, Qin C, Peng SM, Wang YB, Wang Y, Wang XS, Shi JG, Li XC. A newly identified secretory phospholipase A2 group XIIA homolog (LcPLA2XIIA) in Larimichthys crocea exhibits antimicrobial and antitumor activities. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109924. [PMID: 39332653 DOI: 10.1016/j.fsi.2024.109924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
The phospholipase A2 (PLA2) superfamily has attracted increasing attention in recent years due to the multiple physiological and pathological functions exerted by its members. Up to date, the knowledge about the biological role of PLA2XIIA subfamily members remains limited. In this study, a new member of PLA2XIIA subfamily, LcPLA2XIIA, was characterized in large yellow croaker. Different from most members of the PLA2 superfamily with positive charge, LcPLA2XIIA encodes an anionic protein, which is similar to other members of PLA2XIIA subfamily. LcPLA2XIIA is highly expressed in the intestine, and afterwards, it is up-regulated after with Pseudomonas plecoglossicida or Staphylococcus aureus. LcPLA2XIIA exhibits strong inhibitory activity against these two bacteria. The results indicate that LcPLA2XIIA plays an important role in the antimicrobial immune responses of large yellow croaker. LcPLA2XIIA displays strong binding activity to all the tested bacteria. It specifically interacts with LTA, a unique component on the surface of Gram-positive bacteria. It also significantly promotes bacterial agglutination in the presence of Ca2+. These findings reveal that the binding and agglutinating abilities of LcPLA2XIIA to bacteria contribute greatly to its antibacterial activity. In addition, LcPLA2XIIA significantly inhibits the proliferation of infectious hematopoietic necrosis virus instead of recombinant human adenovirus type 5. It also suppresses the growth of human colorectal adenocarcinoma cells by inducing apoptosis, but it has no obvious inhibitory effect on the growth of epithelioma papulosum cyprinid cells. This study provides new insights into the antibacterial activity, and the mechanism of LcPLA2XIIA in large yellow croaker, and antiviral and antitumor functions of PLA2XIIA subfamily members.
Collapse
Affiliation(s)
- Shouhu Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China; Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200090, China
| | - Chuang Qin
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China; Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200090, China
| | - Shi-Ming Peng
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Ya-Bing Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Yuan Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China; Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200090, China
| | - Xiao-Shan Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Jian-Gao Shi
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China.
| | - Xin-Cang Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China; Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200090, China.
| |
Collapse
|
24
|
Sun J, Liu J, Liu M, Bi X, Huang C. New perspective for pathomechanism and clinical applications of animal toxins: Programmed cell death. Toxicon 2024; 249:108071. [PMID: 39134227 DOI: 10.1016/j.toxicon.2024.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
Various animal toxins pose a significant threat to human safety, necessitating urgent attention to their treatment and research. The clinical potential of programmed cell death (PCD) is widely regarded as a target for envenomation, given its crucial role in regulating physiological and pathophysiological processes. Current research on animal toxins examines their specific components in pathomechanisms and injuries, as well as their clinical applications. This review explores the relationship between various toxins and several types of PCD, such as apoptosis, necroptosis, autophagy, ferroptosis, and pyroptosis, to provide a reference for future understanding of the pathophysiology of toxins and the development of their potential clinical value.
Collapse
Affiliation(s)
- Jiaqi Sun
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jiahao Liu
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Meiling Liu
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xiaowen Bi
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Chunhong Huang
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
25
|
de Araujo MFC, Cardoso LS, Pereira MH, Pereira MG, Atella GC. Trypanosoma cruzi infection modulates secreted phospholipase A 2 expression in the salivary glands of Rhodnius prolixus. Acta Trop 2024; 257:107281. [PMID: 38852917 DOI: 10.1016/j.actatropica.2024.107281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
Phospholipases A2 (PLA2) comprise a superfamily of enzymes that specifically catalyze hydrolysis of the ester bond at the sn-2 position of glycerophospholipids, generating lysophospholipids and fatty acids. In Rhodnius prolixus, one of the main vectors of the Chagas's disease etiologic agent Trypanosoma cruzi, it was previously shown that lysophosphatidylcholine, a bioactive lipid, found in the insect's saliva, contributes to the inhibition of platelet aggregation, and increases the production of nitric oxide, an important vasodilator. Due to its role in potentially generating LPC, here we studied the PLA2 present in the salivary glands of R. prolixus. PLA2 activity is approximately 100 times greater in the epithelium than in the contents of salivary glands. Our study reveals the role of the RpPLA2XIIA gene in the insect feeding performance and in the fatty acids composition of phospholipids extracted from the salivary glands. Knockdown of RpPLA2XIIA significantly altered the relative amounts of palmitic, palmitoleic, oleic and linoleic acids. A short-term decrease in the expression of RpPLA2III and RpPLA2XIIA in the salivary glands of R. prolixus was evident on the third day after infection by T. cruzi. Taken together, our results contribute to the understanding of the role of PLA2 in the salivary glands of hematophagous insects and show that the parasite is capable of modulating even tissues that are not colonized by it.
Collapse
Affiliation(s)
- Maria Fernanda Carvalho de Araujo
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lívia Silva Cardoso
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Horácio Pereira
- Laboratório de Fisiologia de Insetos Hematófagos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Miria Gomes Pereira
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Georgia Correa Atella
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
26
|
Khan SA, Ilies MA. Development and Optimization of a Bromothymol Blue-Based PLA2 Assay Involving POPC-Based Self-Assemblies. Int J Mol Sci 2024; 25:9517. [PMID: 39273463 PMCID: PMC11395447 DOI: 10.3390/ijms25179517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Phospholipase A2 (PLA2) is a superfamily of phospholipase enzymes that dock at the water/oil interface of phospholipid assemblies, hydrolyzing the ester bond at the sn-2 position. The enzymatic activity of these enzymes differs based on the nature of the substrate, its supramolecular assemblies (micelle, liposomes), and their composition, reflecting the interfacial nature of the PLA2s and requiring assays able to directly quantify this interaction of the enzyme(s) with these supramolecular assemblies. We developed and optimized a simple, universal assay method employing the pH-sensitive indicator dye bromothymol blue (BTB), in which different POPC (3-palmitoyl-2-oleoyl-sn-glycero-1-phosphocholine) self-assemblies (liposomes or mixed micelles with Triton X-100 at different molar ratios) were used to assess the enzymatic activity. We used this assay to perform a comparative analysis of PLA2 kinetics on these supramolecular assemblies and to determine the kinetic parameters of PLA2 isozymes IB and IIA for each supramolecular POPC assembly. This assay is suitable for assessing the inhibition of PLA2s with great accuracy using UV-VIS spectrophotometry, being thus amenable for screening of PLA2 enzymes and their substrates and inhibitors in conditions very similar to physiologic ones.
Collapse
Affiliation(s)
| | - Marc A. Ilies
- Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, Temple University, School of Pharmacy, 3307 N Broad Street, Philadelphia, PA 19130, USA;
| |
Collapse
|
27
|
Kryukova NA, Yanshole LV, Zelentsova EA, Tsentalovich YP, Chertkova EA, Alekseev AA, Glupov VV. The venom of Habrobracon hebetor induces alterations in host metabolism. J Exp Biol 2024; 227:jeb247694. [PMID: 39253831 DOI: 10.1242/jeb.247694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024]
Abstract
The ability of parasitic wasps to manipulate a host's metabolism is under active investigation. Components of venom play a major role in this process. In the present work, we studied the effect of the venom of the ectoparasitic wasp Habrobracon hebetor on the metabolism of the greater wax moth host (Galleria mellonella). We identified and quantified 45 metabolites in the lymph (cell-free hemolymph) of wax moth larvae on the second day after H. hebetor venom injection, using NMR spectroscopy and liquid chromatography coupled with mass spectrometry. These metabolites included 22 amino acids, nine products of lipid metabolism (sugars, amines and alcohols) and four metabolic intermediates related to nitrogenous bases, nucleotides and nucleosides. An analysis of the larvae metabolome suggested that the venom causes suppression of the tricarboxylic acid cycle, an increase in the number of free amino acids in the lymph, an increase in the concentration of trehalose in the lymph simultaneously with a decrease in the amount of glucose, and destructive processes in the fat body tissue. Thus, this parasitoid venom not only immobilizes the prey but also modulates its metabolism, thereby providing optimal conditions for the development of larvae.
Collapse
Affiliation(s)
- Natalia A Kryukova
- Institute of Systematics and Ecology of Animals SB RAS, Frunze Str. 11, Novosibirsk 630091, Russia
| | - Lyudmila V Yanshole
- Laboratory of Proteomics and Metabolomics, International Tomography Center SB RAS, Institutskaya Str. 3a, Novosibirsk 630090, Russia
| | - Ekaterina A Zelentsova
- Laboratory of Proteomics and Metabolomics, International Tomography Center SB RAS, Institutskaya Str. 3a, Novosibirsk 630090, Russia
| | - Yuri P Tsentalovich
- Laboratory of Proteomics and Metabolomics, International Tomography Center SB RAS, Institutskaya Str. 3a, Novosibirsk 630090, Russia
| | - Ekaterina A Chertkova
- Institute of Systematics and Ecology of Animals SB RAS, Frunze Str. 11, Novosibirsk 630091, Russia
| | - Alexander A Alekseev
- Institute of Systematics and Ecology of Animals SB RAS, Frunze Str. 11, Novosibirsk 630091, Russia
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya Str. 3, Novosibirsk 630090, Russia
| | - Victor V Glupov
- Institute of Systematics and Ecology of Animals SB RAS, Frunze Str. 11, Novosibirsk 630091, Russia
| |
Collapse
|
28
|
Ebright B, Duro MV, Chen K, Louie S, Yassine HN. Effects of APOE4 on omega-3 brain metabolism across the lifespan. Trends Endocrinol Metab 2024; 35:745-757. [PMID: 38609814 PMCID: PMC11321946 DOI: 10.1016/j.tem.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024]
Abstract
Omega-3 (n-3) polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA), have important roles in human nutrition and brain health by promoting neuronal functions, maintaining inflammatory homeostasis, and providing structural integrity. As Alzheimer's disease (AD) pathology progresses, DHA metabolism in the brain becomes dysregulated, the timing and extent of which may be influenced by the apolipoprotein E ε4 (APOE4) allele. Here, we discuss how maintaining adequate DHA intake early in life may slow the progression to AD dementia in cognitively normal individuals with APOE4, how recent advances in DHA brain imaging could offer insights leading to more personalized preventive strategies, and how alternative strategies targeting PUFA metabolism pathways may be more effective in mitigating disease progression in patients with existing AD dementia.
Collapse
Affiliation(s)
- Brandon Ebright
- Department of Clinical Pharmacy, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Marlon V Duro
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kai Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Stan Louie
- Department of Clinical Pharmacy, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Hussein N Yassine
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
29
|
Lin MZ, Bi YH, Li SQ, Xie JH, Zhou ZG. The enzyme encoded by Myrmecia incisa, a green microalga, phospholipase A 2 gene preferentially hydrolyzes arachidonic acid at the sn-2 position of phosphatidylcholine. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108806. [PMID: 38861822 DOI: 10.1016/j.plaphy.2024.108806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
The enzyme phospholipase A2 (PLA2) plays a crucial role in acyl remodeling of phospholipids via the Lands' cycle, and consequently alters fatty acid compositions in triacylglycerol (TAG). In this study, a full-length cDNA sequence coding Myrmecia incisa phospholipase A2 (MiPLA2) was cloned using the technique of rapid amplification of cDNA ends. Comparison of the 1082-bp cDNA with its corresponding cloned DNA sequence revealed that MiPLA2 contained 3 introns. Mature MiPLA2 (mMiPLA2) had a conserved Ca2+-binding loop and a catalytic site motif that has been recognized in plant secretory PLA2 (sPLA2) proteins. Correspondingly, phylogenetic analysis illustrated that MiPLA2 was clustered within GroupXIA of plant sPLA2 proteins. To ascertain the function of MiPLA2, the cDNA coding for mMiPLA2 was subcloned into the vector pET-32a to facilitate the production of recombinant mMiPLA2 in Escherichia coli. Recombinant mMiPLA2 was purified and used for the in vitro enzyme reaction. Thin-layer chromatography profiles of the catalytic products generated by recombinant mMiPLA2 indicated a specificity for cleaving sn-2 acyl chains from phospholipids, thereby functionally characterizing MiPLA2. Although recombinant mMiPLA2 displayed a strong preference for phosphatidylethanolamine, it preferentially hydrolyzes arachidonic acid (ArA) at the sn-2 position of phosphatidylcholine. Results from the fused expression of p1300-sp-EGFP-mMiPLA2 illustrated that MiPLA2 was localized in the intercellular space of onion epidermis. Furthermore, the positive correlation between MiPLA2 transcription and free ArA levels were established. Consequently, the role of mMiPLA2 in the biosynthesis of ArA-rich TAG was elucidated. This study helps to understand how M. incisa preferentially uses ArA to synthesize TAG.
Collapse
Affiliation(s)
- Mei-Zhi Lin
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Yan-Hui Bi
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Si-Qi Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Jin-Hai Xie
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Zhi-Gang Zhou
- International Research Center for Marine Biosciences Conferred by Ministry of Science and Technology, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China.
| |
Collapse
|
30
|
Ali O, Szabó A. Fumonisin distorts the cellular membrane lipid profile: A mechanistic insight. Toxicology 2024; 506:153860. [PMID: 38871209 DOI: 10.1016/j.tox.2024.153860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Monitoring modifications in membrane lipids in association with external stimuli/agents, including fumonisins (FUMs), is a widely employed approach to assess cellular metabolic response/status. FUMs are prevalent fusariotoxins worldwide that have diverse structures with varying toxicity across species; nevertheless, they can induce metabolic disturbances and disease, including cancer. The capacity of FUMs to disrupt membrane lipids, demonstrated across numerous species and organs/tissues, is ascribed to a multitude of factors/events, which range from direct to indirect effects. Certain events are well established, whereas the potential consequences of others remain speculative. The most notable effect is their resemblance to sphingoid bases, which impacts the synthesis of ceramides leading to numerous changes in lipids' composition that are not limited to sphingolipids' composition of the membranes. The next plausible scenario involves the induction of oxidative stress, which is considered an indirect/secondary effect of FUMs. Additional modes of action include modifications of enzyme activities and nuclear signals related to lipid metabolism, although these are likely not yet fully comprehended. This review provides in-depth insight into the current state of these events and their potential mechanistic actions in modifying membrane lipids, with a focus on long-chain fatty acids. This paper also presents a detailed description of the reported modifications to membrane lipids by FUMs.
Collapse
Affiliation(s)
- Omeralfaroug Ali
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary.
| | - András Szabó
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary; HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary
| |
Collapse
|
31
|
Han D, Li Z, Luo L, Jiang H. Targeting Hypoxia and HIF1α in Triple-Negative Breast Cancer: New Insights from Gene Expression Profiling and Implications for Therapy. BIOLOGY 2024; 13:577. [PMID: 39194515 DOI: 10.3390/biology13080577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024]
Abstract
Breast cancer is a complex and multifaceted disease with diverse risk factors, types, and treatment options. Triple-negative breast cancer (TNBC), which lacks the expression of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2), is the most aggressive subtype. Hypoxia is a common feature of tumors and is associated with poor prognosis. Hypoxia can promote tumor growth, invasion, and metastasis by stimulating the production of growth factors, inducing angiogenesis, and suppressing antitumor immune responses. In this study, we used mRNA-seq technology to systematically investigate the gene expression profile of MDA-MB-231 cells under hypoxia. We found that the hypoxia-inducible factor (HIF) signaling pathway is the primary pathway involved in the cellular response to hypoxia. The genes in which expression levels were upregulated in response to hypoxia were regulated mainly by HIF1α. In addition, hypoxia upregulated various genes, including Nim1k, Rimkla, Cpne6, Tpbgl, Kiaa11755, Pla2g4d, and Ism2, suggesting that it regulates cellular processes beyond angiogenesis, metabolism, and known processes. We also found that HIF1α was hyperactivated in MDA-MB-231 cells under normoxia. A HIF1α inhibitor effectively inhibited the invasion, migration, proliferation, and metabolism of MDA-MB-231 cells. Our findings suggest that hypoxia and the HIF signaling pathway play more complex and multifaceted roles in TNBC than previously thought. These findings have important implications for the development of new therapeutic strategies for TNBC.
Collapse
Affiliation(s)
- Delong Han
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- Institute for Inheritance-Based Innovation of Chinese Medicine, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Zeyu Li
- Institute for Inheritance-Based Innovation of Chinese Medicine, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Lingjie Luo
- Institute for Inheritance-Based Innovation of Chinese Medicine, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Hezhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
32
|
Corbetta P, Lonati E, Pagliari S, Mauri M, Cazzaniga E, Botto L, Campone L, Palestini P, Bulbarelli A. Flavonoids-Enriched Vegetal Extract Prevents the Activation of NFκB Downstream Mechanisms in a Bowel Disease In Vitro Model. Int J Mol Sci 2024; 25:7869. [PMID: 39063111 PMCID: PMC11277009 DOI: 10.3390/ijms25147869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Inflammatory bowel disease (IBD) incidence has increased in the last decades due to changes in dietary habits. IBDs are characterized by intestinal epithelial barrier disruption, increased inflammatory mediator production and excessive tissue injury. Since the current treatments are not sufficient to achieve and maintain remission, complementary and alternative medicine (CAM) becomes a primary practice as a co-adjuvant for the therapy. Thus, the intake of functional food enriched in vegetal extracts represents a promising nutritional strategy. This study evaluates the anti-inflammatory effects of artichoke, caihua and fenugreek vegetal extract original blend (ACFB) in an in vitro model of gut barrier mimicking the early acute phases of the disease. Caco2 cells cultured on transwell supports were treated with digested ACFB before exposure to pro-inflammatory cytokines. The pre-treatment counteracts the increase in barrier permeability induced by the inflammatory stimulus, as demonstrated by the evaluation of TEER and CLDN-2 parameters. In parallel, ACFB reduces p65NF-κB pro-inflammatory pathway activation that results in the decrement of COX-2 expression as PGE2 and IL-8 secretion. ACFB properties might be due to the synergistic effects of different flavonoids, indicating it as a valid candidate for new formulation in the prevention/mitigation of non-communicable diseases.
Collapse
Affiliation(s)
- Paolo Corbetta
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
| | - Elena Lonati
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Stefania Pagliari
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Mario Mauri
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
| | - Emanuela Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Laura Botto
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Luca Campone
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Alessandra Bulbarelli
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| |
Collapse
|
33
|
Sharma S, Subrahmanyam YV, Ranjani H, Sidra S, Parmar D, Vadivel S, Kannan S, Grallert H, Usharani D, Anjana RM, Balasubramanyam M, Mohan V, Jerzy A, Panchagnula V, Gokulakrishnan K. Circulatory levels of lysophosphatidylcholine species in obese adolescents: Findings from cross-sectional and prospective lipidomics analyses. Nutr Metab Cardiovasc Dis 2024; 34:1807-1816. [PMID: 38503619 DOI: 10.1016/j.numecd.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND AND AIMS Obesity has reached epidemic proportions, emphasizing the importance of reliable biomarkers for detecting early metabolic alterations and enabling early preventative interventions. However, our understanding of the molecular mechanisms and specific lipid species associated with childhood obesity remains limited. Therefore, the aim of this study was to investigate plasma lipidomic signatures as potential biomarkers for adolescent obesity. METHODS AND RESULTS A total of 103 individuals comprising overweight/obese (n = 46) and normal weight (n = 57) were randomly chosen from the baseline ORANGE (Obesity Reduction and Noncommunicable Disease Awareness through Group Education) cohort, having been followed up for a median of 7.1 years. Plasma lipidomic profiling was performed using the UHPLC-HRMS method. We used three different models adjusted for clinical covariates to analyze the data. Clustering methods were used to define metabotypes, which allowed for the stratification of subjects into subgroups with similar clinical and metabolic profiles. We observed that lysophosphatidylcholine (LPC) species like LPC.16.0, LPC.18.3, LPC.18.1, and LPC.20.3 were significantly (p < 0.05) associated with baseline and follow-up BMI in adolescent obesity. The association of LPC species with BMI remained consistently significant even after adjusting for potential confounders. Moreover, applying metabotyping using hierarchical clustering provided insights into the metabolic heterogeneity within the normal and obese groups, distinguishing metabolically healthy individuals from those with unhealthy metabolic profiles. CONCLUSION The specific LPC levels were found to be altered and increased in childhood obesity, particularly during the follow-up. These findings suggest that LPC species hold promise as potential biomarkers of obesity in adolescents, including healthy and unhealthy metabolic profiles.
Collapse
Affiliation(s)
- Sapna Sharma
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Yalamanchili Venkata Subrahmanyam
- CEPD Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008 India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Harish Ranjani
- Madras Diabetes Research Foundation, No. 4, Conran Smith Road, Gopalapuram, Chennai, 600086 India; Department of Preventive and Digital Health Research, Madras Diabetes Research Foundation, No. 4, Conran Smith Road, Gopalapuram, Chennai, 600086 India
| | - Sidra Sidra
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Dharmeshkumar Parmar
- CEPD Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008 India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sangeetha Vadivel
- Madras Diabetes Research Foundation, No. 4, Conran Smith Road, Gopalapuram, Chennai, 600086 India
| | - Shanthini Kannan
- Madras Diabetes Research Foundation, No. 4, Conran Smith Road, Gopalapuram, Chennai, 600086 India
| | - Harald Grallert
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Dandamudi Usharani
- Department of Food Safety and Analytical Quality Control Laboratory, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, Karnataka 570020, India
| | - Ranjit Mohan Anjana
- Madras Diabetes Research Foundation, No. 4, Conran Smith Road, Gopalapuram, Chennai, 600086 India
| | | | - Viswanathan Mohan
- Madras Diabetes Research Foundation, No. 4, Conran Smith Road, Gopalapuram, Chennai, 600086 India
| | - Adamski Jerzy
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597, Singapore; Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Venkateswarlu Panchagnula
- CEPD Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008 India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kuppan Gokulakrishnan
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, Karnataka 560029, India.
| |
Collapse
|
34
|
Pinto AV, Ferreira P, Cunha AV, Havenith RWA, Magalhães AL, Ramos MJ, Fernandes PA. Revisiting the reaction pathways for phospholipid hydrolysis catalyzed by phospholipase A2 with QM/MM methods. Chem Sci 2024; 15:9793-9805. [PMID: 38939148 PMCID: PMC11206408 DOI: 10.1039/d4sc02315c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/17/2024] [Indexed: 06/29/2024] Open
Abstract
Secreted phospholipase A2 (sPLA2) is a Ca2+-dependent, widely distributed enzyme superfamily in almost all mammalian tissues and bacteria. It is also a critical component of the venom of nearly all snakes, as well as many invertebrate species. In non-venomous contexts, sPLA2 assumes significance in cellular signaling pathways by binding cell membranes and catalyzing ester bond hydrolysis at the sn-2 position of phospholipids. Elevated levels of GIIA sPLA2 have been detected in the synovial fluid of arthritis patients, where it exhibits a pro-inflammatory function. Consequently, identifying sPLA2 inhibitors holds promise for creating highly effective pharmaceutical treatments. Beyond arthritis, the similarities among GIIA sPLA2s offer an opportunity for developing treatments against snakebite envenoming, the deadliest neglected tropical disease. Despite decades of study, the details of PLA2 membrane-binding, substrate-binding, and reaction mechanism remain elusive, demanding a comprehensive understanding of the sPLA2 catalytic mechanism. This study explores two reaction mechanism hypotheses, involving one or two water molecules, and distinct roles for the Ca2+ cofactor. Our research focuses on the human synovial sPLA2 enzyme bound to lipid bilayers of varying phospholipid compositions, and employing adiabatic QM/MM and QM/MM MD umbrella sampling methods to energetically and geometrically characterize the structures found along both reaction pathways. Our studies demonstrate the higher frequency of productive conformations within the single-water pathway, also revealing a lower free energy barrier for hydrolyzing POPC. Furthermore, we observe that the TS of this concerted one-step reaction closely resembles transition state geometries observed in X-ray crystallography complexes featuring high-affinity transition state analogue inhibitors.
Collapse
Affiliation(s)
- Alexandre V Pinto
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| | - Pedro Ferreira
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| | - Ana V Cunha
- MolSpec, Departement Chemie, Universiteit Antwerpen Groenenborgerlaan 171 2020 Antwerpen Belgium
| | - Remco W A Havenith
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen Nijenborgh 4 9747 AG Groningen Netherlands
- The Netherlands and Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University Krijgslaan 281 (S3) B-9000 Gent Belgium
| | - Alexandre L Magalhães
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| | - Maria J Ramos
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| | - Pedro A Fernandes
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| |
Collapse
|
35
|
Tong B, Ba Y, Li Z, Yang C, Su K, Qi H, Zhang D, Liu X, Wu Y, Chen Y, Ling J, Zhang J, Yin X, Yu P. Targeting dysregulated lipid metabolism for the treatment of Alzheimer's disease and Parkinson's disease: Current advancements and future prospects. Neurobiol Dis 2024; 196:106505. [PMID: 38642715 DOI: 10.1016/j.nbd.2024.106505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/02/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024] Open
Abstract
Alzheimer's and Parkinson's diseases are two of the most frequent neurological diseases. The clinical features of AD are memory decline and cognitive dysfunction, while PD mainly manifests as motor dysfunction such as limb tremors, muscle rigidity abnormalities, and slow gait. Abnormalities in cholesterol, sphingolipid, and glycerophospholipid metabolism have been demonstrated to directly exacerbate the progression of AD by stimulating Aβ deposition and tau protein tangles. Indirectly, abnormal lipids can increase the burden on brain vasculature, induce insulin resistance, and affect the structure of neuronal cell membranes. Abnormal lipid metabolism leads to PD through inducing accumulation of α-syn, dysfunction of mitochondria and endoplasmic reticulum, and ferroptosis. Great progress has been made in targeting lipid metabolism abnormalities for the treatment of AD and PD in recent years, like metformin, insulin, peroxisome proliferator-activated receptors (PPARs) agonists, and monoclonal antibodies targeting apolipoprotein E (ApoE). This review comprehensively summarizes the involvement of dysregulated lipid metabolism in the pathogenesis of AD and PD, the application of Lipid Monitoring, and emerging lipid regulatory drug targets. A better understanding of the lipidological bases of AD and PD may pave the way for developing effective prevention and treatment methods for neurodegenerative disorders.
Collapse
Affiliation(s)
- Bin Tong
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; School of Ophthalmology and Optometry of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Yaoqi Ba
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; School of Ophthalmology and Optometry of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Zhengyang Li
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; The First Clinical Medical College of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Caidi Yang
- The First Clinical Medical College of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Kangtai Su
- The First Clinical Medical College of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Haodong Qi
- The First Clinical Medical College of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Deju Zhang
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China; Center for Clinical Precision Medicine, Jiujiang University, Jiujiang, China; Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiao Liu
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China; Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuting Wu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Jitao Ling
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Jing Zhang
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China; Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China.
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China; Center for Clinical Precision Medicine, Jiujiang University, Jiujiang, China.
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China.
| |
Collapse
|
36
|
Liu J, Wang Y, Zhao Y, Pan H, Liu Z, Xu Q, Lu S, Jiang H, Wang J, Sun Q, Tan J, Yan X, Li J, Tang B, Guo J. Comprehensive variant analysis of phospholipase A2 superfamily genes in large Chinese Parkinson' s disease cohorts. Mech Ageing Dev 2024; 219:111940. [PMID: 38750970 DOI: 10.1016/j.mad.2024.111940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/31/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
To clarify the genetic role of phospholipase A2 (PLA2) genes in Parkinson's disease (PD), we performed a genetic association study in large Chinese population cohorts using next-generation sequencing. In this study, we analyzed both rare and common variants of 38 phospholipase A2 genes in two large cohorts. We detected 1558 and 1115 rare variants in these two cohorts, respectively. In both cohorts, we observed suggestive associations between specific subgroups and the risk of PD. At the single-gene level, several genes (PLA2G2D, PLA2G12A, PLA2G12B, PLA2G4F, PNPLA1, PNPLA3, PNPLA7, PLA2G7, PLA2G15, PLAAT5, and ABHD12) are suggestively associated with PD. Meanwhile, 364 and 2261 common variants were identified in two cohorts, respectively. Our study has expanded the genetic spectrum of the PLA2 family genes and suggested potential pathogenetic roles of PLA2 superfamily in PD.
Collapse
Affiliation(s)
- Jiabin Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yige Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China; Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shen Lu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieqiong Tan
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China; Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China; Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China; Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China; Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.
| |
Collapse
|
37
|
Wang Y, Jiang P, Xia F, Bai Q, Zhang X. Transcriptional and physiological profiles reveal the respiratory, antioxidant and metabolic adaption to intermittent hypoxia in the clam Tegillarca granosa. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101215. [PMID: 38359602 DOI: 10.1016/j.cbd.2024.101215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Tegillarca granosa can survive intermittent hypoxia for a long-term. We used the clam T. granosa as model to investigate the respiratory, antioxidant and metabolic responses to consecutive hypoxia-reoxygenation (H/R) stress at both physiological and transcriptional levels. The results showed that the clams were able to rapidly regulate oxygen consumption and ammonia excretion during H/R stress, and alleviate oxidative stress during the second-time challenge. The clams also efficiently balanced energy metabolism through the rapid conversion and decomposition of glycogen. According to the transcriptome profile, KEGG pathways of starch and sucrose metabolism, ECM-receptor interaction, and protein processing in endoplasmic reticulum were significantly enriched in H group (the second-time 24 h hypoxia exposure), while pathways associated with lipid metabolism were significantly enriched in h group (the first-time 24 h hypoxia exposure). DEGs including hspa5, birc2/3, and map3k5 might play important roles in alleviating endoplasmic reticulum stress, cpla2 and pla2g16 might mitigate oxidative stress by adjusting the composition of cellular membrane. In conclusions, our findings suggest that rapid adjustment of oxygen consumption, ammonia metabolism, glycogen metabolism, and the ability to adjust the composition of the membrane lipid may be critical for T. granosa in maintaining energy homeostasis and reducing oxidative damage during intermittent H/R exposure. This study preliminarily clarified the response of T. granosa to intermittent hypoxia stress on the physiological and molecular levels, offering insights into the hypoxia-tolerant mechanisms in this species and providing a reference for the following study on the other hypoxic-tolerant species.
Collapse
Affiliation(s)
- Yihang Wang
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Puyuan Jiang
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Feiyu Xia
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Qingqing Bai
- The Government of Guanhaiwei Town, Cixi 315315, China
| | - Xiumei Zhang
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
38
|
Guo Z, Huang J, Huo X, Huang C, Yu X, Sun Y, Li Y, He T, Guo H, Yang J, Xue L. Targeting LTA4H facilitates the reshaping of the immune microenvironment mediated by CCL5 and sensitizes ovarian cancer to Cisplatin. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1226-1241. [PMID: 38300441 DOI: 10.1007/s11427-023-2444-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/06/2023] [Indexed: 02/02/2024]
Abstract
Ovarian cancer is the most lethal and aggressive gynecological cancer with a high recurrence rate and is often diagnosed late. In ovarian cancer, multiple metabolic enzymes of lipid metabolism are abnormally expressed, resulting in metabolism disorder. As a characteristic pathway in polyunsaturated fatty acid (PUFA) metabolism, arachidonic acid (AA) metabolism is disturbed in ovarian cancer. Therefore, we established a 10-gene signature model to evaluate the prognostic risk of PUFA-related genes. This 10-gene signature has strong robustness and can play a stable predictive role in datasets of various platforms (TCGA, ICGC, and GSE17260). The high association between the risk subgroups and clinical characteristics indicated a good performance of the model. Our data further indicated that the high expression of LTA4H was positively correlated with poor prognosis in ovarian cancer. Deficiency of LTA4H enhanced sensitivity to Cisplatin and modified the characteristics of immune cell infiltration in ovarian cancer. Additionally, our results indicate that CCL5 was involved in the aberrant metabolism of the AA/LTA4H axis, which contributes to the reduction of tumor-infiltrating CD8+ T cells and immune escape in ovarian cancer. These findings provide new insights into the prognosis and potential target of LTA4H/CCL5 in treating ovarian cancer.
Collapse
Affiliation(s)
- Zhengyang Guo
- Cancer Center of Peking University Third Hospital, Beijing, 100191, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Jiaqi Huang
- Cancer Center of Peking University Third Hospital, Beijing, 100191, China
- Peking University Third Hospital Cancer Center, Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Xiao Huo
- Cancer Center of Peking University Third Hospital, Beijing, 100191, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Chen Huang
- Cancer Center of Peking University Third Hospital, Beijing, 100191, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaotong Yu
- Cancer Center of Peking University Third Hospital, Beijing, 100191, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Yan Sun
- Cancer Center of Peking University Third Hospital, Beijing, 100191, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Yanfang Li
- Cancer Center of Peking University Third Hospital, Beijing, 100191, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Tianhui He
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Hongyan Guo
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
| | - Jianling Yang
- Cancer Center of Peking University Third Hospital, Beijing, 100191, China.
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China.
| | - Lixiang Xue
- Cancer Center of Peking University Third Hospital, Beijing, 100191, China.
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China.
- Peking University Third Hospital Cancer Center, Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
39
|
Yu Y, Li P, Chen M, Zhan W, Zhu T, Min L, Liu H, Lv B. MiR-122 overexpression alleviates oxygen-glucose deprivation-induced neuronal injury by targeting sPLA2-IIA. Front Neurol 2024; 15:1395833. [PMID: 38798705 PMCID: PMC11127566 DOI: 10.3389/fneur.2024.1395833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Background Ischemic stroke (IS) is a neurological disease with significant disability and mortality. MicroRNAs were proven to be associated with cerebral ischemia. Previous studies have demonstrated miR-122 downregulation in both animal models of IS and the blood of IS patients. Nonetheless, the role and mechanism of miR-122-5p in IS remain unclear. Methods We established primary human and mouse astrocytes, along with HT22 mouse hippocampal neuronal cells, through oxygen-glucose deprivation/reoxygenation (OGD/R) treatment. To assess the impact of miR-122, we employed CCK8 assays, flow cytometry, RT-qPCR, western blotting, and ELISA to evaluate cell viability, apoptosis, reactive oxygen species (ROS) generation, and cytokine expression. A dual-luciferase reporter gene assay was employed to investigate the interaction between miR-122 and sPLA2-IIA. Results Overexpression of miR-122 resulted in decreased apoptosis, reduced cleaved caspase-3 expression, and increased cell viability in astrocytes and HT22 cells subjected to OGD/R. RT-qPCR and ELISA analyses demonstrated a decrease in mRNA and cytokine levels of interleukin (IL)-6 and tumor necrosis factor (TNF)-α in both astrocytes and HT22 cells following miR-122 overexpression. Moreover, miR-122 overexpression reversed OGD/R-induced ROS levels and 8-OHdG formation in astrocytes. Additionally, miR-122 overexpression decreased the mRNA and protein expression of inducible nitric oxide synthase (iNOS). Furthermore, we found that miR-122 attaches to the 3'-UTR of sPLA2-IIA, thereby downregulate its expression. Conclusion Our study demonstrates that miR-122-mediated inhibition of sPLA2-IIA attenuates OGD/R-induced neuronal injury by suppressing apoptosis, alleviating post-ischemic inflammation, and reducing ROS production. Thus, the miR-122/sPLA2-IIA axis may represent a promising target for IS treatment.
Collapse
Affiliation(s)
- Yuanfang Yu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of General Practice, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Pan Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Mengyuan Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of General Practice, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wenfeng Zhan
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of General Practice, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ting Zhu
- Department of Laboratory Medicine, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Ling Min
- Department of Laboratory Medicine, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Hao Liu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Bo Lv
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of General Practice, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
40
|
Zhao W, Liu J, Wang S, Tao Q, Lei Q, Huang C. Varespladib mitigates acute liver injury via suppression of excessive mitophagy on Naja atra envenomed mice by inhibiting PLA 2. Toxicon 2024; 242:107694. [PMID: 38556061 DOI: 10.1016/j.toxicon.2024.107694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Snakebite envenomation often leads to severe visceral injuries, including acute liver injury (ALI). However, the toxicity mechanism remains unclear. Moreover, varespladib can directly inhibit phospholipase A2 (PLA2) in snake venom, but its protective effect on snakebite-induced ALI and the mechanism have not been clarified. Previous studies have shown that snake venom PLA2 leads to neuron cell death via reactive oxygen species (ROS), one of the initial factors related to the mitophagy pathway. The present study group also found that ROS accumulation occurred after Naja atra envenoming. Hematoxylin and eosin (H/E) staining and immunohistochemistry (IHC) were performed to identify the expression of inflammatory factors in the liver tissue, and flow cytometry and immunofluorescence were used to detect ROS levels and mitochondrial function. Immunofluorescence and western blotting were also used for detecting mitophagy pathway-related proteins. The results showed that N. atra bite induced ALI by activating mitophagy and inducing inflammation and that varespladib had a protective effect. Collectively, these results showed the pathological mechanism of ALI caused by N. atra bite and revealed the protective effect of varespladib.
Collapse
Affiliation(s)
- Wenjie Zhao
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jiahao Liu
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Sidan Wang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Qinqin Tao
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Qiongqiong Lei
- School of Nursing, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Chunhong Huang
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
41
|
Jaramillo-Granada AM, Li J, Flores Villarreal A, Lozano O, Ruiz-Suárez JC, Monje-Galvan V, Sierra-Valdez FJ. Modulation of Phospholipase A 2 Membrane Activity by Anti-inflammatory Drugs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7038-7048. [PMID: 38511880 DOI: 10.1021/acs.langmuir.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The phospholipase A2 (PLA2) superfamily consists of lipolytic enzymes that hydrolyze specific cell membrane phospholipids and have long been considered a central hub of biosynthetic pathways, where their lipid metabolites exert a variety of physiological roles. A misregulated PLA2 activity is associated with mainly inflammatory-derived pathologies and thus has shown relevant therapeutic potential. Many natural and synthetic anti-inflammatory drugs (AIDs) have been proposed as direct modulators of PLA2 activity. However, despite the specific chemical properties that these drugs share in common, little is known about the indirect modulation able to finely tune membrane structural changes at the precise lipid-binding site. Here, we use a novel experimental strategy based on differential scanning calorimetry to systematically study the structural properties of lipid membrane systems during PLA2 cleavage and under the influence of several AIDs. For a better understanding of the AIDs-membrane interaction, we present a comprehensive and comparative set of molecular dynamics (MD) simulations. Our thermodynamic results clearly demonstrate that PLA2 cleavage is hindered by those AIDs that significantly reduce the lipid membrane cooperativity, while the rest of the AIDs oppositely tend to catalyze PLA2 activity to different extents. On the other hand, our MD simulations support experimental results by providing atomistic details on the binding, insertion, and dynamics of each AID on a pure lipid system; the drug efficacy to impact membrane cooperativity is related to the lipid order perturbation. This work suggests a membrane-based mechanism of action for diverse AIDs against PLA2 activity and provides relevant clues that must be considered in its modulation.
Collapse
Affiliation(s)
- Angela M Jaramillo-Granada
- Centro de Investigación y de Estudios Avanzados-Monterrey, Parque de Investigación e Innovación Tecnológica, Apodaca, Nuevo León 66600, Mexico
| | - Jinhui Li
- Department of Chemical and Biological Engineering, State University of New York (SUNY) at Buffalo, Buffalo, New York 14260, United States
| | | | - Omar Lozano
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Nuevo León 64460, Mexico
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Nuevo León 64849, Mexico
| | - J C Ruiz-Suárez
- Centro de Investigación y de Estudios Avanzados-Monterrey, Parque de Investigación e Innovación Tecnológica, Apodaca, Nuevo León 66600, Mexico
| | - Viviana Monje-Galvan
- Department of Chemical and Biological Engineering, State University of New York (SUNY) at Buffalo, Buffalo, New York 14260, United States
| | | |
Collapse
|
42
|
Zhou PY, Zhu DX, Chen YJ, Feng QY, Mao YH, Zhuang AB, Xu JM. High patatin like phospholipase domain containing 8 expression as a biomarker for poor prognosis of colorectal cancer. World J Gastrointest Oncol 2024; 16:787-797. [PMID: 38577466 PMCID: PMC10989391 DOI: 10.4251/wjgo.v16.i3.787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Patatin like phospholipase domain containing 8 (PNPLA8) has been shown to play a significant role in various cancer entities. Previous studies have focused on its roles as an antioxidant and in lipid peroxidation. However, the role of PNPLA8 in colorectal cancer (CRC) progression is unclear. AIM To explore the prognostic effects of PNPLA8 expression in CRC. METHODS A retrospective cohort containing 751 consecutive CRC patients was enrolled. PNPLA8 expression in tumor samples was evaluated by immunohistochemistry staining and semi-quantitated with immunoreactive scores. CRC patients were divided into high and low PNPLA8 expression groups based on the cut-off values, which were calculated by X-tile software. The prognostic value of PNPLA8 was identified using univariate and multivariate Cox regression analysis. The overall survival (OS) rates of CRC patients in the study cohort were compared with Kaplan-Meier analysis and Log-rank test. RESULTS PNPLA8 expression was significantly associated with distant metastases in our cohort (P = 0.048). CRC patients with high PNPLA8 expression indicated poor OS (median OS = 35.3, P = 0.005). CRC patients with a higher PNPLA8 expression at either stage I and II or stage III and IV had statistically significant shorter OS. For patients with left-sided colon and rectal cancer, the survival curves of two PNPLA8-expression groups showed statistically significant differences. Multivariate analysis also confirmed that high PNPLA8 expression was an independent prognostic factor for overall survival (hazard ratio HR = 1.328, 95%CI: 1.016-1.734, P = 0.038). CONCLUSION PNPLA8 is a novel independent prognostic factor for CRC. These findings suggest that PNPLA8 is a potential target in clinical CRC management.
Collapse
Affiliation(s)
- Peng-Yang Zhou
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - De-Xiang Zhu
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Yi-Jiao Chen
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Qing-Yang Feng
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Yi-Hao Mao
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Ao-Bo Zhuang
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Jian-Min Xu
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China
| |
Collapse
|
43
|
Powell TL, Ferchaud-Roucher V, Madi L, Uhlson C, Zemski-Berry K, Kramer AC, Erickson K, Palmer C, Chassen SS, Castillo-Castrejon M. Synthesis of phospholipids in human placenta. Placenta 2024; 147:12-20. [PMID: 38278000 PMCID: PMC10923060 DOI: 10.1016/j.placenta.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
INTRODUCTION Placental phospholipid synthesis is critical for the expansion of the placental exchange surface area and for production of signaling molecules. Despite their importance, it is not yet established which enzymes involved in the de novo synthesis and remodeling of placental phospholipids are expressed and active in the human placenta. METHODS We identified phospholipid synthesis enzymes by immunoblotting in placental homogenates and immunofluorescence in placenta tissue sections. Primary human trophoblast (PHT) cells from term healthy placentas (n = 10) were cultured and exposed to 13C labeled fatty acids (16:0, 18:1 and 18:2 n-6, 22:6 n-3) for 2 and 24 h. Three phospholipid classes; phosphatidic acid, phosphatidylcholine, and lysophosphatidylcholine containing 13C fatty acids were quantified by Liquid Chromatography with tandem mass spectrometry (LC/MS-MS). RESULTS Acyl transferase and phospholipase enzymes were detected in human placenta homogenate and primarily expressed in the syncytiotrophoblast. Three representative 13C fatty acids (16:0, 18:1 and 18:2 n-6) were incorporated rapidly into phosphatidic acid in trophoblasts, but 13C labeled docosahexaenoic acid (DHA; 22:6 n-3) incorporation was not detected. 13C DHA was incorporated into phosphatidylcholine. Lysophosphatidylcholine containing all four 13C labeled fatty acids were found in high abundance. CONCLUSIONS Phospholipid synthesis and remodeling enzymes are present in the syncytiotrophoblast. 13C labeled fatty acids were rapidly incorporated into cellular phospholipids. 13C DHA was incorporated into phospholipids through the remodeling pathway rather than by de novo synthesis. These understudied pathways are highly active and critical for structure and function of the placenta.
Collapse
Affiliation(s)
- Theresa L Powell
- Departments of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA; Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Veronique Ferchaud-Roucher
- University of Nantes-INRAE UMR 1280 PhAN, CHU Nantes, CRNH Ouest CHU Hotel Dieu, 1 place Alexis Ricordeau, 1er etage aile nord HNB, 44093, Nantes Cedex 1, France.
| | - Lana Madi
- Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Charis Uhlson
- Departments of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Karin Zemski-Berry
- Medicine, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Avery C Kramer
- Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Kathryn Erickson
- Departments of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Claire Palmer
- Departments of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Stephanie S Chassen
- Departments of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Marisol Castillo-Castrejon
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE 10th St., Stanton L Young Biomedical Research Center Room 458, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
44
|
Sampat GH, Hiremath K, Dodakallanavar J, Patil VS, Harish DR, Biradar P, Mahadevamurthy RK, Barvaliya M, Roy S. Unraveling snake venom phospholipase A 2: an overview of its structure, pharmacology, and inhibitors. Pharmacol Rep 2023; 75:1454-1473. [PMID: 37926795 DOI: 10.1007/s43440-023-00543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
Snake bite is a neglected disease that affects millions of people worldwide. WHO reported approximately 5 million people are bitten by various species of snakes each year, resulting in nearly 1 million deaths and an additional three times cases of permanent disability. Snakes utilize the venom mainly for immobilization and digestion of their prey. Snake venom is a composition of proteins and enzymes which is responsible for its diverse pharmacological action. Snake venom phospholipase A2 (SvPLA2) is an enzyme that is present in every snake species in different quantities and is known to produce remarkable functional diversity and pharmacological action like inflammation, necrosis, myonecrosis, hemorrhage, etc. Arachidonic acid, a precursor to eicosanoids, such as prostaglandins and leukotrienes, is released when SvPLA2 catalyzes the hydrolysis of the sn-2 positions of membrane glycerophospholipids, which is responsible for its actions. Polyvalent antivenom produced from horses or lambs is the standard treatment for snake envenomation, although it has many drawbacks. Traditional medical practitioners treat snake bites using plants and other remedies as a sustainable alternative. More than 500 plant species from more than 100 families reported having venom-neutralizing abilities. Plant-derived secondary metabolites have the ability to reduce the venom's adverse consequences. Numerous studies have documented the ability of plant chemicals to inhibit the enzymes found in snake venom. Research in recent years has shown that various small molecules, such as varespladib and methyl varespladib, effectively inhibit the PLA2 toxin. In the present article, we have overviewed the knowledge of snake venom phospholipase A2, its classification, and the mechanism involved in the pathophysiology of cytotoxicity, myonecrosis, anticoagulation, and inflammation clinical application and inhibitors of SvPLA2, along with the list of studies carried out to evaluate the potency of small molecules like varespladib and secondary metabolites from the traditional medicine for their anti-PLA2 effect.
Collapse
Affiliation(s)
- Ganesh H Sampat
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Kashinath Hiremath
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Jagadeesh Dodakallanavar
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Vishal S Patil
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Darasaguppe R Harish
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India.
| | - Prakash Biradar
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India.
| | | | - Manish Barvaliya
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| |
Collapse
|
45
|
王 文, 杨 泳, 王 莉, 郭 欣, 田 玲, 王 鹤, 胡 玉, 刘 睿. [Sevoflurane alleviates ventilator-induced lung injury in rats by down-regulating the TRPV4/C-PLA2 signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1886-1891. [PMID: 38081606 PMCID: PMC10713460 DOI: 10.12122/j.issn.1673-4254.2023.11.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Indexed: 12/18/2023]
Abstract
OBJECTIVE To explore the mechanism underlying the protective effect of sevoflurane against ventilator-induced lung injury (VILI). METHODS Thirty-two SD rats were randomized into mechanical ventilation (MV) group, MV+sevoflurane group (MS group), MV+sevoflurane+transient receptor potential vanillate subtype 4 (TRPV4) agonist group (MST group) and MV+ sevoflurane + vehicle group (MSV group). Arachidonic acid (AA) in the lung tissues was quantified with ELISA. TRPV4, cytoplasmic phospholipase A2 (C-PLA2) and myosin light chain kinase (MLCK) protein expressions were detected by Western blotting. Lung injury in the rats was evaluated by assessing MLCK protein expression level, pulmonary permeability index, lung wet/dry ratio, leukocyte count in the bronchoalveolar lavage fluid (BALF), myeloperoxidase content in lung tissue, and histological score of the lungs. RESULTS The rats in MV group showed significantly increased TRPV4 and C-PLA2 expression levels in the lung tissues with increased lung permeability and obvious lung inflammation compared with those in the other 3 groups (P < 0.05). No significant differences were found in the parameters associated with lung injuries between MS group and MSV group. Compared with those in MST group, the rats in MS group and MSV group showed significantly reduced AA production and TRPV4 and C-PLA2 expressions in the lungs (P < 0.05) with alleviated lung hyper-permeability and inflammation (P < 0.05). CONCLUSION Sevoflurane protects against VILI in rats by down-regulating the TRPV4/C-PLA2 signaling pathway.
Collapse
Affiliation(s)
- 文法 王
- 楚雄彝族自治州人民医院麻醉科,云南 楚雄 675000Department of Anesthesiology, Chuxiong Yi Autonomous Prefecture People's Hospital, Chuxiong 675000, China
| | - 泳 杨
- 昆明医科大学医学机能实验中心,云南 昆明 650500Experimental Center of Medical Function, Kunming Medical University, Kunming 650500, China
| | - 莉 王
- 云南省第一人民医院//昆明理工大学附属医院麻醉科,云南 昆明 650032Department of Anesthesiology, First People's Hospital of Yunnan Province/Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - 欣 郭
- 云南省第一人民医院//昆明理工大学附属医院麻醉科,云南 昆明 650032Department of Anesthesiology, First People's Hospital of Yunnan Province/Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - 玲芳 田
- 楚雄彝族自治州人民医院麻醉科,云南 楚雄 675000Department of Anesthesiology, Chuxiong Yi Autonomous Prefecture People's Hospital, Chuxiong 675000, China
| | - 鹤 王
- 楚雄彝族自治州人民医院麻醉科,云南 楚雄 675000Department of Anesthesiology, Chuxiong Yi Autonomous Prefecture People's Hospital, Chuxiong 675000, China
| | - 玉珍 胡
- 楚雄彝族自治州人民医院麻醉科,云南 楚雄 675000Department of Anesthesiology, Chuxiong Yi Autonomous Prefecture People's Hospital, Chuxiong 675000, China
| | - 睿 刘
- 云南省第一人民医院//昆明理工大学附属医院麻醉科,云南 昆明 650032Department of Anesthesiology, First People's Hospital of Yunnan Province/Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| |
Collapse
|
46
|
Liang T, Kong Y, Xue H, Wang W, Li C, Chen C. Mutations of RAS genes identified in acute myeloid leukemia affect glycerophospholipid metabolism pathway. Front Oncol 2023; 13:1280192. [PMID: 38033488 PMCID: PMC10682766 DOI: 10.3389/fonc.2023.1280192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Background Acute myeloid leukemia (AML) is a malignant disease originating from myeloid hematopoietic stem cells. Recent studies have shown that certain gene mutations promote tumor cell survival and affect the prognosis of patients by affecting metabolic mechanisms in tumor cells. RAS gene mutations are prevalent in AML, and the RAS signaling pathway is closely related to many metabolic pathways. However, the effects of different RAS gene mutations on AML cell metabolism are unclear. Objectives The main purpose of this study was to explore the effect of RAS gene mutation on the metabolic pathway of tumor cells. Methods In this study, we first used a retrovirus carrying a mutant gene to prepare Ba/F3 cell lines with RAS gene mutations, and then compared full-transcriptome data of Ba/F3 cells before and after RAS gene mutation and found that differentially expressed genes after NRASQ61K and KRASG12V mutation. Results We found a total of 1899 differentially expressed genes after NRASQ61K and KRASG12V mutation. 1089 of these genes were involved in metabolic processes, of which 167 genes were enriched in metabolism-related pathways. In metabolism-related pathways, differential genes were associated with the lipid metabolism pathway. Moreover, by comparing groups, we found that the expression of the DGKzeta and PLA2G4A genes in the glycerophospholipid metabolism pathway was significantly upregulated. Conclusion In conclusion, our study revealed that RAS gene mutation is closely related to the glycerophospholipid metabolism pathway in Ba/F3 cells, which may contribute to new precision therapy strategies and the development and application of new therapeutic drugs for AML.
Collapse
Affiliation(s)
- Tianqi Liang
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yanxiang Kong
- Department of Reproductive Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hongman Xue
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Wenqing Wang
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Chunmou Li
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Chun Chen
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| |
Collapse
|
47
|
Dasgupta A, Gangai S, Narayan R, Kapoor S. Mapping the Lipid Signatures in COVID-19 Infection: Diagnostic and Therapeutic Solutions. J Med Chem 2023; 66:14411-14433. [PMID: 37899546 DOI: 10.1021/acs.jmedchem.3c01238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The COVID-19 pandemic ignited research centered around the identification of robust biomarkers and therapeutic targets. SARS-CoV-2, the virus responsible, hijacks the metabolic machinery of the host cells. It relies on lipids and lipoproteins of host cells for entry, trafficking, immune evasion, viral replication, and exocytosis. The infection causes host cell lipid metabolic remodelling. Targeting lipid-based processes is thus a promising strategy for countering COVID-19. Here, we review the role of lipids in the different steps of the SARS-CoV-2 pathogenesis and identify lipid-centric targetable avenues. We discuss lipidome changes in infected patients and their relevance as potential clinical diagnostic or prognostic biomarkers. We summarize the emerging direct and indirect therapeutic approaches for targeting COVID-19 using lipid-inspired approaches. Given that viral protein-targeted therapies may become less effective due to mutations in emerging SARS-CoV-2 variants, lipid-inspired interventions may provide additional and perhaps better means of combating this and future pandemics.
Collapse
Affiliation(s)
- Aishi Dasgupta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- IIT-Bombay Monash Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shon Gangai
- School of Chemical and Materials Sciences (SCMS), Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences (SCMS), Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
- School of Interdisciplinary Life Sciences (SILS), Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- IIT-Bombay Monash Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| |
Collapse
|
48
|
Ekodo Voundi M, Hanekamp W, Lehr M. Synthesis, activity and metabolic stability of propan-2-one substituted tetrazolylalkanoic acids as dual inhibitors of cytosolic phospholipase A 2α and fatty acid amide hydrolase. RSC Med Chem 2023; 14:2079-2088. [PMID: 37859716 PMCID: PMC10583809 DOI: 10.1039/d3md00224a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/09/2023] [Indexed: 10/21/2023] Open
Abstract
The serine hydrolases cytosolic phospholipase A2α (cPLA2α) and fatty acid amide hydrolase (FAAH) are interesting targets for the development of new anti-inflammatory and analgesic drugs. Structural modifications of a potent dual inhibitor with a propan-2-one substituted tetrazolylpropionic acid moiety led to compounds with also nanomolar activity against both enzymes but better physicochemical properties. The structure-activity relationships showed that the variations had partially divergent effects on the inhibitory activity of the compounds towards cPLA2α and FAAH reflecting differences in the binding mode to the enzymes. Furthermore, the metabolic stability of the target structures was investigated in vitro.
Collapse
Affiliation(s)
- Merlin Ekodo Voundi
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster Corrensstrasse 48 48149 Münster Germany
| | - Walburga Hanekamp
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster Corrensstrasse 48 48149 Münster Germany
| | - Matthias Lehr
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster Corrensstrasse 48 48149 Münster Germany
| |
Collapse
|
49
|
Lin CY, Xu WB, Li BZ, Shu MA, Zhang YM. Identification and functional analysis of cytosolic phospholipase A2 (cPLA2) from the red swamp crayfish Procambarus clarkii: The first evidence of cPLA2 involved in immunity in invertebrates. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108944. [PMID: 37451527 DOI: 10.1016/j.fsi.2023.108944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Cytosolic phospholipase A2 (cPLA2) specifically liberates the arachidonic acids from the phospholipid substrates. In mammals, cPLA2 serves as a key control point in inflammatory responses due to its diverse downstream products. However, the role of cPLA2 in animals lower than mammals largely remains unknown. In the current research, a homolog of cPLA2 was first identified and characterized in the red swamp crayfish Procambarus clarkii. The full-length cDNA of PccPLA2 was 4432 bp in length with a 3036 bp-long open reading frame, encoding a putative protein of 1011 amino acids that contained a protein kinase C conserved region 2 and a catalytic subunit of cPLA2. PccPLA2 was ubiquitously expressed in all examined tissues with the highest expression in the hepatopancreas, and the expression in hemocytes as well as hepatopancreas was induced upon the immune challenges of WSSV and Aeromonas hydrophila. After the co-treatment of RNA interference and bacterial infection, the decline of bacteria clearance capability was observed in the hemolymph, and the expression of some antimicrobial peptides (AMPs) was significantly suppressed. Additionally, the phagocytosis of A. hydrophila by primary hemocytes decreased when treated with the specific inhibitor CAY10650 of cPLA2. These results indicated the participation of PccPLA2 in both cellular and humoral immune responses in the crayfish, which provided an insight into the role that cPLA2 played in the innate immunity of crustaceans, and even in invertebrates.
Collapse
Affiliation(s)
- Chen-Yang Lin
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Bin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bang-Ze Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yan-Mei Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
50
|
Hong HJ, Nam GS, Nam KS. Daidzein Inhibits Human Platelet Activation by Downregulating Thromboxane A 2 Production and Granule Release, Regardless of COX-1 Activity. Int J Mol Sci 2023; 24:11985. [PMID: 37569361 PMCID: PMC10418957 DOI: 10.3390/ijms241511985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Platelets play crucial roles in cardiovascular diseases (CVDs) by regulating hemostasis and blood coagulation at sites of blood vessel damage. Accumulating evidence indicates daidzein inhibits platelet activation, but the mechanism involved has not been elucidated. Thus, in this study, we investigated the mechanism responsible for the inhibition of collagen-induced platelet aggregation by daidzein. We found that in collagen-induced platelets, daidzein suppressed the production of thromboxane A2 (TXA2), a molecule involved in platelet activation and aggregation, by inhibiting the cytosolic phospholipase A2 (cPLA2) signaling pathway. However, daidzein did not affect cyclooxygenase-1 (COX-1). Furthermore, daidzein attenuated the PI3K/PDK1/Akt/GSK3αβ and MAPK (p38, ERK) signaling pathways, increased the phosphorylation of inositol trisphosphate receptor1 (IP3R1) and vasodilator-stimulated phosphoprotein (VASP), and increased the level of cyclic adenosine monophosphate (cAMP). These results suggest that daidzein inhibits granule release (ATP, serotonin, P-selectin), integrin αIIbβ3 activation, and clot retraction. Taken together, our study demonstrates that daidzein inhibits collagen-induced platelet aggregation and suggests that daidzein has therapeutic potential for the treatment of platelet aggregation-related diseases such as atherosclerosis and thrombosis.
Collapse
Affiliation(s)
- Hyun-Jin Hong
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea;
| | - Gi-Suk Nam
- Department of Biomedical Laboratory Science, Honam University, 120, Honamdae-gil, Gwangsan-gu, Gwangju 62399, Republic of Korea
| | - Kyung-Soo Nam
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea;
| |
Collapse
|