1
|
Le TT, Nguyen HT, Vu PT, Le DC, Nguyen TK, Hoang VT, Duong KL, Dao TL. Space-time scanning statistics in the prediction and evaluation of dengue epidemic clusters. IJID REGIONS 2024; 13:100441. [PMID: 39351397 PMCID: PMC11440294 DOI: 10.1016/j.ijregi.2024.100441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024]
Abstract
Objectives To detect clusters of dengue hemorrhagic fever in an urbanized district of Hai Phong City, Vietnam using Poisson space-time retrospective and prospective analysis. Methods A cross-sectional and retrospective study analyzed dengue surveillance data in the period from January 01, 2018, to December 31, 2022. Spatial-temporal scanning statistics were performed using the free software SatScan v10.1.2. Results A total of 519 cases were recorded. The cumulative incidence per 100,000 inhabitants was 3.37, 127.36, 10.96, 0, and 296.04 in 2018, 2019, 2020, 2021, and 2022, respectively. By retrospective Poisson model-based analysis, seven clusters were detected. Six of these seven detected outbreaks occurred in November and December 2022. The largest cluster had a relative risk (RR) of 1539.5 (P <0.00001). The smallest cluster has a RR of 316.1 (P = 0.006). Prospective analysis using the Poisson model significantly detected four active case clusters at the time of the study. The largest cluster of cases with RR was 47.7 (P <0.00001) and the smallest cluster with RR was 18.2 (P <0.00001). Conclusions This study provides a basis for improving the effectiveness of interventions and conducting further investigations into risk factors in the study area, as well as in other urban and suburban areas nationwide.
Collapse
Affiliation(s)
- Thi Thanh Le
- Thai Binh University of Medicine and Pharmacy, Thai Binh, Vietnam
- Hai An District Medical Center, Hai Phong, Vietnam
| | - Hai Tuan Nguyen
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Phong Tuc Vu
- Thai Binh University of Medicine and Pharmacy, Thai Binh, Vietnam
| | - Duc Cuong Le
- Thai Binh University of Medicine and Pharmacy, Thai Binh, Vietnam
| | | | - Van Thuan Hoang
- Thai Binh University of Medicine and Pharmacy, Thai Binh, Vietnam
| | - Khanh Linh Duong
- Thai Binh University of Medicine and Pharmacy, Thai Binh, Vietnam
| | - Thi Loi Dao
- Thai Binh University of Medicine and Pharmacy, Thai Binh, Vietnam
| |
Collapse
|
2
|
Wynne NE, Applebach E, Chandrasegaran K, Ajayi OM, Chakraborty S, Bonizzoni M, Lahondère C, Benoit JB, Vinauger C. Aedes albopictus colonies from different geographic origins differ in their sleep and activity levels but not in the time of peak activity. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:495-507. [PMID: 39300680 PMCID: PMC11537810 DOI: 10.1111/mve.12765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
Mosquitoes occupy a wide range of habitats where they experience various environmental conditions. The ability of some species, such as the tiger mosquito, Aedes albopictus, to adapt to local conditions certainly contributes to their invasive success. Among traits that remain to be examined, mosquitoes' ability to time their activity with that of the local host population has been suggested to be of significant epidemiological importance. However, whether different populations display heritable differences in their chronotype has not been examined. Here, we compared laboratory strains originating from eight populations from three continents, monitored their spontaneous locomotor activity patterns and analysed their sleep-like states. Overall, all strains showed conserved diurnal activity concentrated in the hours preceding the crepuscule. Similarly, they all showed increased sleep levels during the morning and night hours. However, we observed strain-specific differences in the activity levels at each phase of the day. We also observed differences in the fraction of time that each strain spends in a sleep-like state, explained by variations in the sleep architecture across strains. Human population density and the latitude of the site of the geographic origin of the tested strain showed significant effects on sleep and activity patterns. Altogether, these results suggest that Ae. albopictus mosquitoes adapt to local environmental conditions via heritable adaptations of their chronotype.
Collapse
Affiliation(s)
- Nicole E. Wynne
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Emilie Applebach
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Karthikeyan Chandrasegaran
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Oluwaseun M. Ajayi
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Souvik Chakraborty
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Mariangela Bonizzoni
- Department of Biology and Biotechnology, University of Pavia, Pavia 27100, Italy
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
3
|
Tan J, Neupert S, Paluzzi JP. Functional characterization of CCHamides and deorphanization of their receptors in the yellow fever mosquito, Aedes aegypti. Gen Comp Endocrinol 2024; 359:114618. [PMID: 39368756 DOI: 10.1016/j.ygcen.2024.114618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
As a widely distributed anthropophilic mosquito species and vector of various arboviruses, Aedes aegypti poses a significant threat to human health on a global scale. Investigating mosquito neuropeptides allows us to better understand their physiology. The neuropeptides CCHamide1 (CCHa1) and CCHamide2 (CCHa2) along with their associated G protein-coupled receptors (CCHa1R and CCHa2R) were recently identified and studied across insects. However, expression profiles and physiological roles of CCHamides and their receptors in many other insects, including A. aegypti, remain unclear. This research aimed to quantify and localize the expression of CCHamides along with their receptors and gain insight on their physiological function in the yellow fever mosquito. RT-qPCR analysis revealed transcript abundance of CCHamides and receptors changes over development. Differential expression was also observed in tissues/organs of adult mosquitoes indicating CCHa1 and CCHa2 transcripts are enriched in the midgut, while receptors are expressed across various tissues. CCHamide immunoreactivity was observed in neurons in the brain and ventral nerve cord along with enteroendocrine cells in the posterior midgut adjacent to the midgut-hindgut junction, corroborating their transcript expression profiles. Using different mass spectrometrical approaches, presence of CCHamides were confirmed in the brain of both sexes, including the pars intercerebralis of female mosquitoes, as well as in the gut of adult mosquitoes. For chemical identification of predicted CCHamides, we analyzed brain and gut extracts by ESI-Q Exactive Orbitrap MS and resulting fragmentations confirmed CCHa1 and CCHa2 in brain and midgut samples of both male and female mosquitoes. A heterologous functional assay was used to confirm the specificity and sensitivity of the two CCHamide receptors by assessing their activation in response to diverse mosquito peptides, which confirmed CCHa1 and CCHa2 as natural ligands. Finally, using a capillary feeder (CAFE) bioassay, our results suggest that CCHa2 modulates feeding behaviour in female mosquitoes.
Collapse
Affiliation(s)
- Jinghan Tan
- Department of Biology, York University, Toronto, ON, Canada
| | - Susanne Neupert
- Institute of Biology, Animal Physiology, University of Kassel, Kassel, Germany
| | | |
Collapse
|
4
|
Bursali F, Ulug D, Touray M. Clash of mosquito wings: Larval interspecific competition among the mosquitoes, Culex pipiens, Aedes albopictus and Aedes aegypti reveals complex population dynamics in shared habitats. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:462-471. [PMID: 38980066 DOI: 10.1111/mve.12742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Globalisation, climate change and international trade are the factors contributing to the spread of Aedes albopictus (Diptera: Culicidae) and Ae. aegypti into new areas. In newly invaded habitats, these non-native species can serve as arbovirus disease vectors or increase the risk of disease spill over. These mosquitoes continue to emerge in new areas where they have or will have overlapping ranges with other resident mosquito species. The study investigates how invasive Aedes mosquitoes compete with the native Culex pipiens in Türkiye, which might affect the overall mosquito population dynamics and disease transmission risks. Both Aedes species exhibited contrasting responses to interspecific competition with Cx. pipiens. While Ae. albopictus suffers reduced emergence primarily in larger containers with abundant food, Ae. aegypti surprisingly thrives in mixed cultures under all food conditions. Adult Cx. pipiens emergence drops by half against Ae. albopictus and under specific conditions with Ae. aegypti. Competition influences mosquito size differently across species and life stages. Culex pipiens females grow larger when competing with Ae. aegypti, potentially indicating resource advantage or compensatory strategies. However, Ae. albopictus size shows more nuanced responses, suggesting complex interactions at play. Understanding how invasive and native mosquitoes interact with each other can provide insights into how they adapt and coexist in shared habitats. This knowledge can inform effective control strategies. The study highlights the differential responses of invasive Aedes species and the potential for managing populations based on their competitive interactions with the native Cx. pipiens. It can contribute to improved monitoring and prediction systems for the spread of invasive mosquitoes and the associated disease risks.
Collapse
Affiliation(s)
- Fatma Bursali
- Biology Department, Faculty of Science, Aydin Adnan Menderes University, Aydin, Türkiye
| | - Derya Ulug
- Biology Department, Faculty of Science, Aydin Adnan Menderes University, Aydin, Türkiye
| | - Mustapha Touray
- Biology Department, Faculty of Science, Aydin Adnan Menderes University, Aydin, Türkiye
| |
Collapse
|
5
|
Freppel W, Silva LA, Stapleford KA, Herrero LJ. Pathogenicity and virulence of chikungunya virus. Virulence 2024; 15:2396484. [PMID: 39193780 PMCID: PMC11370967 DOI: 10.1080/21505594.2024.2396484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted, RNA virus that causes an often-severe musculoskeletal illness characterized by fever, joint pain, and a range of debilitating symptoms. The virus has re-emerged as a global health threat in recent decades, spreading from its origin in Africa across Asia and the Americas, leading to widespread outbreaks impacting millions of people. Despite more than 50 years of research into the pathogenesis of CHIKV, there is still no curative treatment available. Current management of CHIKV infections primarily involves providing supportive care to alleviate symptoms and improve the patient's quality of life. Given the ongoing threat of CHIKV, there is an urgent need to better understand its pathogenesis. This understanding is crucial for deciphering the mechanisms underlying the disease and for developing effective strategies for both prevention and management. This review aims to provide a comprehensive overview of CHIKV and its pathogenesis, shedding light on the complex interactions of viral genetics, host factors, immune responses, and vector-related factors. By exploring these intricate connections, the review seeks to contribute to the knowledge base surrounding CHIKV, offering insights that may ultimately lead to more effective prevention and management strategies for this re-emerging global health threat.
Collapse
Affiliation(s)
- Wesley Freppel
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, Australia
| | - Laurie A. Silva
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lara J. Herrero
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, Australia
| |
Collapse
|
6
|
Zadra N, Rizzoli A. Comprehensive phylogenomic analysis of Zika virus: Insights into its origin, past evolutionary dynamics, and global spread. Virus Res 2024; 350:199490. [PMID: 39489463 DOI: 10.1016/j.virusres.2024.199490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Zika virus (ZIKV), a Flaviviridae family member, has been linked to severe neurological disorders. Despite detailed studies on recent outbreaks, the early evolutionary history of ZIKV remains partially unclear. This study elucidates ZIKV origin and evolutionary dynamics, focusing on recombination events, early lineage diversification, and virus spread across continents. METHODS We assessed recombination using multiple methods. We conducted Bayesian phylogenetic analyses to understand the evolutionary relationships and timing of key diversification events. Model selection was carried out to determine the most appropriate evolutionary model for our dataset. RESULTS Our phylogenies revealed recent recombination between Singaporean and African lineages, indicating the co-circulation of diverse lineages during outbreaks. Thailand was identified as a crucial hub in the spread across Asia. The phylogenetic analysis suggests that the ZIKV lineage dates back to the eleventh century, with the first significant diversification occurring in the nineteenth century. The timing of the re-introduction of the Asian lineage into Africa and the delay between probable introduction and outbreak onset were also determined. CONCLUSIONS This study provides novel insights into ZIKV's origin and early evolutionary dynamics, highlighting Thailand's role in the spread of the virus in Asia and recent recombination events between distant lineages. These findings emphasize the need for continuous surveillance and a better understanding of ZIKV biology to forecast and mitigate future outbreaks.
Collapse
Affiliation(s)
- Nicola Zadra
- Conservation Genomics Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, Trento, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| | - Annapaola Rizzoli
- Applied Ecology Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, Trento, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| |
Collapse
|
7
|
Castellon JT, Birhanie SK, Macias A, Casas R, Hans J, Brown MQ. Optimizing and synchronizing Aedes aegypti colony for Sterile Insect Technique application: Egg hatching, larval development, and adult emergence rate. Acta Trop 2024; 259:107364. [PMID: 39179165 DOI: 10.1016/j.actatropica.2024.107364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Mosquito Sterile Insect Technique (SIT) programs can be developed in smaller agencies through synchronization of the colony development to take advantage of the natural male early emergence. This paper examined key aspects of Ae. aegypti colony synchronization work, including egg hatching, larval development, and adult emergence to produce sufficient numbers of adult male mosquitoes within a specific timeframe for irradiation and release. Our data indicated that a relatively low percentage of males are required for colony propagation. Additional results highlighted that fresher Ae. aegypti eggs could yield as high as a 93 % hatching success than older eggs when placed under vacuum pressure in yeast infused water for 1.5 h. Eggs that were one-month old hatched (93 %) better than older eggs (0-32 %). A higher egg density in the hatching flask was correlated to a lower hatch rate, and higher larval density was related to unsynchronized pupae and delayed adult emergence. By keeping Ae. aegypti larvae at reasonable density, over 95 % of adults emerged on the first two days of emergence - indicating a high synchronicity. A standardized colony maintenance protocol therefore renders a synchronized larval development and adult male emergence which are critical in SIT programs.
Collapse
Affiliation(s)
| | - Solomon Kibret Birhanie
- West Valley Mosquito and Vector Control District, 1295 East Locust St, Ontario, California, USA.
| | - Ale Macias
- West Valley Mosquito and Vector Control District, 1295 East Locust St, Ontario, California, USA
| | - Rubi Casas
- West Valley Mosquito and Vector Control District, 1295 East Locust St, Ontario, California, USA
| | - Jacob Hans
- West Valley Mosquito and Vector Control District, 1295 East Locust St, Ontario, California, USA
| | - Michelle Q Brown
- West Valley Mosquito and Vector Control District, 1295 East Locust St, Ontario, California, USA
| |
Collapse
|
8
|
Le Goff G, Damiens D, Ruttee AH, Jean F, Payet L, Lebon C, Taconet P, Gaudillat B, Habchi-Hanriot N, Dehecq JS, Simard F, Gouagna LC. Spatial and temporal characterization of Aedes albopictus oviposition activity in candidate urban settings for sterile insect technique testing in La Reunion Island. Infect Dis Poverty 2024; 13:78. [PMID: 39456106 PMCID: PMC11515404 DOI: 10.1186/s40249-024-01250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Understanding of mosquito spatiotemporal dynamics is central to characterize candidate field sites for the sterile insect technique (SIT) testing, and is critical to the effective implementation and evaluation of pilot sterile male release programs. Here, we present a detailed description of Aedes albopictus (Skuse) egg-laying activity over a 6-year period in urban areas identified as potential SIT testing sites on Reunion Island. METHOD Weekly entomological collections using ovitraps were carried out in residential and adjacent uninhabited habitats in two urban areas, Duparc and Bois Rouge, in the municipality of Sainte Marie, Reunion Island. Time-series data incorporating the frequency of positive ovitraps and the total number of eggs/ovitrap recorded each time at each locality during the study period from May 2013 to December 2018 were analyzed with multifaceted statistical approaches including descriptive statistics and spatiotemporal analyses incorporating the role of climatic factors on overall ovitrap productivity. RESULTS During the ovitrap survey, the proportion of egg-positive ovitraps differed among study sites (χ2 = 50.21, df = 2, P < 0.001), being relatively lower in Duparc (89.5%) than in Bois-Rouges (95.3%) and the adjacent buffer zone (91.2%). Within each neighborhood, Ae. albopictus egg abundance varied by month in a roughly seasonal pattern marked by a single peak occurring more regularly February each year, a decline at the onset of the austral winter in July, followed by a period of lower ovitrap productivity in August and September. Fluctuation in both positivity rate and eggs densities per ovitraps were related to annual and seasonal variations in local temperature and rainfall (P < 0.001 in all cases). The spatial analysis also captured substantial between- and within-habitats heterogeneity, whereby the overall ovitrap productivity was higher in residential areas than in the buffer zone. CONCLUSIONS Collectively, these results reveal that the distribution of Ae. albopictus oviposition activity is shaped by local habitat heterogeneity and seasonal climatic factors. Overall, this study provides baseline insights into the reproductive dynamics of Ae. albopictus, which would assist in planning locally tailored SIT interventions, while addressing concerns related to focal areas of high egg-laying intensity and potential immigration of females from natural areas.
Collapse
Affiliation(s)
- Gilbert Le Goff
- Unité Mixte de Recherche "Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle" (MIVEGEC): Université Montpellier, Institut de Recherche pour le Développement, Centre National de Recherche Scientifique, Délégation Régionale Occitanie, Montpellier, France
- Institut de Recherche pour le Développement (IRD) La Réunion/Groupement d'Intérêt Public (GIP) Cyclotron Océan Indien, Recherche Santé Bio-Innovation, Sainte Clotilde, Reunion Island, France
| | - David Damiens
- Unité Mixte de Recherche "Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle" (MIVEGEC): Université Montpellier, Institut de Recherche pour le Développement, Centre National de Recherche Scientifique, Délégation Régionale Occitanie, Montpellier, France
- Institut de Recherche pour le Développement (IRD) La Réunion/Groupement d'Intérêt Public (GIP) Cyclotron Océan Indien, Recherche Santé Bio-Innovation, Sainte Clotilde, Reunion Island, France
| | - Abdoul-Hamid Ruttee
- Service de lutte anti vectorielle, Agence Régionale de Santé-Océan Indien (ARS-OI), Saint-Denis, Reunion Island, France
| | - Frédéric Jean
- Unité Mixte de Recherche "Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle" (MIVEGEC): Université Montpellier, Institut de Recherche pour le Développement, Centre National de Recherche Scientifique, Délégation Régionale Occitanie, Montpellier, France
- Institut de Recherche pour le Développement (IRD) La Réunion/Groupement d'Intérêt Public (GIP) Cyclotron Océan Indien, Recherche Santé Bio-Innovation, Sainte Clotilde, Reunion Island, France
| | - Laurent Payet
- Service de lutte anti vectorielle, Agence Régionale de Santé-Océan Indien (ARS-OI), Saint-Denis, Reunion Island, France
| | - Cyrille Lebon
- Unité Mixte de Recherche "Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle" (MIVEGEC): Université Montpellier, Institut de Recherche pour le Développement, Centre National de Recherche Scientifique, Délégation Régionale Occitanie, Montpellier, France
- Institut de Recherche pour le Développement (IRD) La Réunion/Groupement d'Intérêt Public (GIP) Cyclotron Océan Indien, Recherche Santé Bio-Innovation, Sainte Clotilde, Reunion Island, France
| | - Paul Taconet
- Unité Mixte de Recherche "Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle" (MIVEGEC): Université Montpellier, Institut de Recherche pour le Développement, Centre National de Recherche Scientifique, Délégation Régionale Occitanie, Montpellier, France
| | - Benjamin Gaudillat
- Institut de Recherche pour le Développement (IRD) La Réunion/Groupement d'Intérêt Public (GIP) Cyclotron Océan Indien, Recherche Santé Bio-Innovation, Sainte Clotilde, Reunion Island, France
| | - Nausicaa Habchi-Hanriot
- Service de lutte anti vectorielle, Agence Régionale de Santé-Océan Indien (ARS-OI), Saint-Denis, Reunion Island, France
| | - Jean-Sébastien Dehecq
- Service de lutte anti vectorielle, Agence Régionale de Santé-Océan Indien (ARS-OI), Saint-Denis, Reunion Island, France
| | - Frédéric Simard
- Unité Mixte de Recherche "Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle" (MIVEGEC): Université Montpellier, Institut de Recherche pour le Développement, Centre National de Recherche Scientifique, Délégation Régionale Occitanie, Montpellier, France
| | - Louis-Clément Gouagna
- Unité Mixte de Recherche "Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle" (MIVEGEC): Université Montpellier, Institut de Recherche pour le Développement, Centre National de Recherche Scientifique, Délégation Régionale Occitanie, Montpellier, France.
- Institut de Recherche pour le Développement (IRD) La Réunion/Groupement d'Intérêt Public (GIP) Cyclotron Océan Indien, Recherche Santé Bio-Innovation, Sainte Clotilde, Reunion Island, France.
| |
Collapse
|
9
|
Duval P, Martin E, Vallon L, Antonelli P, Girard M, Signoret A, Luis P, Abrouk D, Wiest L, Fildier A, Bonnefoy C, Jame P, Bonjour E, Cantarel A, Gervaix J, Vulliet E, Cazabet R, Minard G, Valiente Moro C. Pollution gradients shape microbial communities associated with Ae. albopictus larval habitats in urban community gardens. FEMS Microbiol Ecol 2024; 100:fiae129. [PMID: 39327012 PMCID: PMC11523617 DOI: 10.1093/femsec/fiae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/07/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024] Open
Abstract
The Asian tiger mosquito Aedes albopictus is well adapted to urban environments and takes advantage of the artificial containers that proliferate in anthropized landscapes. Little is known about the physicochemical, pollutant, and microbiota compositions of Ae. albopictus-colonized aquatic habitats and whether these properties differ with noncolonized habitats. We specifically addressed this question in French community gardens by investigating whether pollution gradients (characterized either by water physicochemical properties combined with pollution variables or by the presence of organic molecules in water) influence water microbial composition and then the presence/absence of Ae. albopictus mosquitoes. Interestingly, we showed that the physicochemical and microbial compositions of noncolonized and colonized waters did not significantly differ, with the exception of N2O and CH4 concentrations, which were higher in noncolonized water samples. Moreover, the microbial composition of larval habitats covaried differentially along the pollution gradients according to colonization status. This study opens new avenues on the impact of pollution on mosquito habitats in urban areas and raises questions on the influence of biotic and abiotic interactions on adult life-history traits and their ability to transmit pathogens to humans.
Collapse
Affiliation(s)
- Penelope Duval
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Edwige Martin
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Laurent Vallon
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Pierre Antonelli
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Maxime Girard
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Aymeric Signoret
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Patricia Luis
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Danis Abrouk
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Laure Wiest
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Aurélie Fildier
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Christelle Bonnefoy
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Patrick Jame
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Erik Bonjour
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Amelie Cantarel
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Jonathan Gervaix
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Emmanuelle Vulliet
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Rémy Cazabet
- UMR 5205, Laboratoire d'Informatique en image et systèmes d'information, Université de Lyon, Villeurbanne, France
| | - Guillaume Minard
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Claire Valiente Moro
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| |
Collapse
|
10
|
Padde JR, Zhou Y, Chen Y, Zhu Y, Yang Y, Hou M, Chen L, Xu Z, Zhang D, Chen L, Ji M. Adaptation and carry over effects of extreme sporadic heat stress in Culex mosquitoes. Acta Trop 2024; 260:107417. [PMID: 39383926 DOI: 10.1016/j.actatropica.2024.107417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/11/2024]
Abstract
Mosquitoes, as temperature-sensitive ectothermic vectors, exhibit temperature-dependence. This study investigates Culex pipiens pallens (Cx. pallens) responses to abrupt temperature increases and their implications on mosquito physiology. First instar larvae (24hr post hatching) and newly enclosed adults (24hr post emergence) were separately exposed to heat shock regimes of 33 °C, 37 °C, and 42 °C for 3 days alongside a control temperature of 27 °C. Results showed that mortality was triggered at 42 °C within a day. Adult male mosquitoes were less tolerant to all temperatures than larvae and adult females (p < 0.05). Exposing larvae to constant temperatures for 3 days significantly decreased larvae's development time, growth rate and adult emergence (p < 0.05). Reproductive fitness was significantly reduced (p < 0.05) in males emerging from larvae exposed to 37 °C. Life table parameters showed significant increased mortality rate, kill power and decreased life expectancy at the embryonic stage (p < 0.05). Furthermore, heatwaves deactivated the Transient receptor protein ankyrin 1 at 37 °C (p < 0.05) in larvae but not adults. Calmodium, Heat shock protein 90, and small heat shock protein expression were significantly decreased in larvae at 37 °C (p < 0.05) as compared to larvae raised at 33 °C and 27 °C. In conclusion, we classified the heat waves into three categories: adaptable (33 °C), critical (37 °C), and fatal (42 °C). Prolonged exposure of Culex pallens larvae to extreme heat affects the male reproductive output. These findings may serve as an important reference for forecasting vector and pest dynamics and used to tailor mosquito prevention and control measures.
Collapse
Affiliation(s)
- John Roberts Padde
- Department of Pathogen Biology, School of Basic Medicine, Nanjing Medical University, 101Longmian Avenue, Jiangning, Nanjing, 211166, PR China; Department of Microbiology, Faculty of Health Sciences, Muni University, Arua, Uganda
| | - Yinghui Zhou
- Department of Pathogen Biology, School of Basic Medicine, Nanjing Medical University, 101Longmian Avenue, Jiangning, Nanjing, 211166, PR China
| | - Yunxuan Chen
- Department of Pathogen Biology, School of Basic Medicine, Nanjing Medical University, 101Longmian Avenue, Jiangning, Nanjing, 211166, PR China
| | - Yuxiao Zhu
- Department of Pathogen Biology, School of Basic Medicine, Nanjing Medical University, 101Longmian Avenue, Jiangning, Nanjing, 211166, PR China
| | - Yuxuan Yang
- Department of Pathogen Biology, School of Basic Medicine, Nanjing Medical University, 101Longmian Avenue, Jiangning, Nanjing, 211166, PR China
| | - Min Hou
- Department of Pathogen Biology, School of Basic Medicine, Nanjing Medical University, 101Longmian Avenue, Jiangning, Nanjing, 211166, PR China; Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Lu Chen
- Department of Pathogen Biology, School of Basic Medicine, Nanjing Medical University, 101Longmian Avenue, Jiangning, Nanjing, 211166, PR China; Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Zhipeng Xu
- Department of Pathogen Biology, School of Basic Medicine, Nanjing Medical University, 101Longmian Avenue, Jiangning, Nanjing, 211166, PR China; Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Donghui Zhang
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China; Department of Teaching Management, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lin Chen
- Department of Pathogen Biology, School of Basic Medicine, Nanjing Medical University, 101Longmian Avenue, Jiangning, Nanjing, 211166, PR China; Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - MinJun Ji
- Department of Pathogen Biology, School of Basic Medicine, Nanjing Medical University, 101Longmian Avenue, Jiangning, Nanjing, 211166, PR China; Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
11
|
Heyrani A, Pourjalil F, Hosseini Z, Shahabi N, Asadipour E. A comprehensive scoping review of global educational strategies and outcomes in aedes-borne disease control. Arch Public Health 2024; 82:176. [PMID: 39380105 PMCID: PMC11459706 DOI: 10.1186/s13690-024-01412-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Aedes mosquito is the primary vector of emerging or re-emerging arboviruses that threaten public health worldwide. Many efforts have been made to develop interventions to control the Aedes mosquito. This scoping review was conducted to identify the nature and scope of educational interventions to prevent and control diseases transmitted through the Aedes mosquito. The findings can be used to evaluate, compare, and develop appropriate control strategies. METHODS The present scoping review was conducted in 2023 and used Arksey and O'Malley's approach, which involves five key stages. To search for academic papers, PubMed, Web of Science, Scopus and ScienceDirect databases were used with a combination of keywords about Aedes mosquitoes, educational interventions, and disease prevention and control. The search was not limited by the publication date, yet only included studies published in English. Studies were included that reported the educational interventions about Aedes mosquito control at the community or organizational level. The screening of papers was done based on the PRISMA-ScR guideline. Excel 2019 was used for data analysis. RESULTS Initially, 3,172 papers were extracted, and after screenings and reviews, a total number of 45 final papers were selected. The studies focused on educational interventions. Twenty interventional studies were at the organizational level and 25 at the community level. The latter was the most commonly used strategy. Interventions using educational approaches have achieved sustainable results. Out of the forty-five studies, twenty-one were assessed to have a low risk of bias. CONCLUSIONS The present scoping review evaluates the effectiveness of educational interventions at various community levels for controlling Aedes-borne diseases, emphasizing the need for multidisciplinary collaboration. Controlling Aedes mosquitoes using education and attracting the community's participation is an effective approach to reduce diseases transmitted through Aedes. The development of education at different levels of the community, such as educational and occupational environments, can play a role in the effectiveness of societal education and can be more cost-effective. Maintaining the effect of this approach is challenging because it requires multi-sector and multidisciplinary team participation and active community engagement over the long term. Further research is required to explore the removal of barriers to the implementation of educational interventions and the consistency of effects.
Collapse
Affiliation(s)
- Ali Heyrani
- Social Determinants in Health Promotion Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Farzaneh Pourjalil
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zahra Hosseini
- Social Determinants in Health Promotion Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Nahid Shahabi
- Social Determinants in Health Promotion Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Elaheh Asadipour
- Health Services Management Research Center, Institute for Futures Studies in Health, Kerman University of medical sciences, Kerman, Iran
| |
Collapse
|
12
|
Wang Y, Chong KC, Ren C. Impact of compound warm and wet events on dengue fever infection in South and Southeast Asian countries. ENVIRONMENTAL RESEARCH 2024; 263:120091. [PMID: 39368600 DOI: 10.1016/j.envres.2024.120091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/13/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Multiple studies have reported the profound influence of various climate factors on dengue fever infection, while the effects of joint exposure to warm and wet environment, a condition favouring dengue vectors, on disease transmission were less evaluated. This study aims to investigate the impact of various compound temperature, rainfall, and relative humidity exposures on dengue fever infection in the South and Southeast Asia regions. METHODS Weekly dengue fever surveillance data from 2012 to 2020 were collected from 48 locations in four countries named Singapore (1 location), Sri Lanka (15 locations), Malaysia (9 locations), and Thailand (23 locations, with 11 locations having different study periods). The distributed lag non-linear models were built to assess the impacts of compound temperature, rainfall, and relative humidity exposures on dengue fever infection risks. RESULTS A total of 1,359,993 dengue fever cases were reported with 9.33%, 24.02%, 48.73%, and 17.91% cases contributed by Singapore, Sri Lanka, Malaysia, and Thailand, respectively. Compared to non-warm-non-wet, compound warm-wet was associated with an increased dengue risk (RR:1.32, 95% CI:1.21-1.44). Compared to moderate temperature-humidity, warm-wet environment was also associated with an increase in dengue risk (RR:1.37, 95% CI:1.22-1.55). In comparison to weeks with moderate temperature-rainfall, warm-wet weeks was linked to an elevated dengue risk (RR:1.39, 95% CI:1.27-1.52), whereas cold-dry weather would significantly reduce the infection risk (RR:0.70, 95% CI:0.62-0.80). Modification effects showed that the hot effect on dengue infection was more pronounced under higher humidity, while the impact of rainfall increased with warmer temperature. CONCLUSION Warm-wet events were associated with an increased dengue fever risk, while the infection risk would decline in cold-dry environment, and modification effects exist among exposures. Findings from this study highlight the importance of considering joint temperature, humidity, and rainfall dependency of dengue fever infection in disease prevention and control.
Collapse
Affiliation(s)
- Yawen Wang
- Division of Landscape Architecture, Department of Architecture, Faculty of Architecture, The University of Hong Kong, Hong Kong
| | - Ka Chun Chong
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
| | - Chao Ren
- Division of Landscape Architecture, Department of Architecture, Faculty of Architecture, The University of Hong Kong, Hong Kong.
| |
Collapse
|
13
|
Acharya P, Singh US, Rajamannar V, Muniaraj M, Nayak B, Das A. Genome resequencing and genome-wide polymorphisms in mosquito vectors Aedes aegypti and Aedes albopictus from south India. Sci Rep 2024; 14:22931. [PMID: 39358370 PMCID: PMC11447132 DOI: 10.1038/s41598-024-71484-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Aedes aegypti and Aedes albopictus mosquitoes spread major vector-borne viral diseases in tropical and sub-tropical regions of the globe. In this study, we sequenced the genome of Indian Ae. aegypti and Ae. albopictus and mapped to their reference genomes. Comparative genomics were performed between our strain and the reference strains. A total of 14,416,484 single nucleotide polymorphisms (SNPs) and 156,487 insertions and deletions (InDels) were found in Ae. aegypti, and 28,940,433 SNPs and 188,987 InDels in Ae. albopictus. Particular emphasis was given to gene families involved in mosquito digestion, development, and innate immunity, which could be putative candidates for vector control. Serine protease cascades and their inhibitors called serpins, play a central role in these processes. We extracted high-impact variants in genes associated with serine proteases and serpins. This study reports for the first time a high coverage genome sequence data of an Indian Ae. albopictus mosquito. The results from this study will provide insights into Indian Aedes specific polymorphisms and the evolution of immune related genes in mosquitoes, which can serve as a resource for future comparative genomics and those pursuing the development of targeted biopesticides for effective mosquito control strategies.
Collapse
Affiliation(s)
- Preeti Acharya
- Sambalpur University, Jyoti Vihar, Sambalpur, Odisha, 768019, India
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | | | | | - Mayilsamy Muniaraj
- ICMR-Vector Control Research Centre Field Station, Madurai, Tamil Nadu, India
| | - Binata Nayak
- Sambalpur University, Jyoti Vihar, Sambalpur, Odisha, 768019, India.
| | - Aparup Das
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India.
| |
Collapse
|
14
|
Gizaw Z, Salubi E, Pietroniro A, Schuster-Wallace CJ. Impacts of climate change on water-related mosquito-borne diseases in temperate regions: A systematic review of literature and meta-analysis. Acta Trop 2024; 258:107324. [PMID: 39009235 DOI: 10.1016/j.actatropica.2024.107324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Mosquito-borne diseases are a known tropical phenomenon. This review was conducted to assess the mecha-nisms through which climate change impacts mosquito-borne diseases in temperate regions. Articles were searched from PubMed, Scopus, Web of Science, and Embase databases. Identification criteria were scope (climate change and mosquito-borne diseases), region (temperate), article type (peer-reviewed), publication language (English), and publication years (since 2015). The WWH (who, what, how) framework was applied to develop the research question and thematic analyses identified the mechanisms through which climate change affects mosquito-borne diseases. While temperature ranges for disease transmission vary per mosquito species, all are viable for temperate regions, particularly given projected temperature increases. Zika, chikungunya, and dengue transmission occurs between 18-34 °C (peak at 26-29 °C). West Nile virus establishment occurs at monthly average temperatures between 14-34.3 °C (peak at 23.7-25 °C). Malaria establishment occurs when the consecutive average daily temperatures are above 16 °C until the sum is above 210 °C. The identified mechanisms through which climate change affects the transmission of mosquito-borne diseases in temperate regions include: changes in the development of vectors and pathogens; changes in mosquito habitats; extended transmission seasons; changes in geographic spread; changes in abundance and behaviors of hosts; reduced abundance of mosquito predators; interruptions to control operations; and influence on other non-climate factors. Process and stochastic approaches as well as dynamic and spatial models exist to predict mosquito population dynamics, disease transmission, and climate favorability. Future projections based on the observed relations between climate factors and mosquito-borne diseases suggest that mosquito-borne disease expansion is likely to occur in temperate regions due to climate change. While West Nile virus is already established in some temperate regions, Zika, dengue, chikungunya, and malaria are also likely to become established over time. Moving forward, more research is required to model future risks by incorporating climate, environmental, sociodemographic, and mosquito-related factors under changing climates.
Collapse
Affiliation(s)
- Zemichael Gizaw
- Department of Geography and Planning, University of Saskatchewan, 117 Science Place, Saskatoon, Saskatchewan, S7N 5C8, Canada; Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada
| | - Eunice Salubi
- Department of Geography and Planning, University of Saskatchewan, 117 Science Place, Saskatoon, Saskatchewan, S7N 5C8, Canada
| | - Alain Pietroniro
- Schulich School of Engineering, University of Calgary, Calgary, 622 Collegiate Pl NW, Calgary, Alberta, T2N 4V8, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada
| | - Corinne J Schuster-Wallace
- Department of Geography and Planning, University of Saskatchewan, 117 Science Place, Saskatoon, Saskatchewan, S7N 5C8, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
15
|
Reinhold JM, Lahondère C. Mosquitoes feeding on ectothermic hosts: from host seeking to pathogen transmission. CURRENT OPINION IN INSECT SCIENCE 2024; 66:101273. [PMID: 39341457 DOI: 10.1016/j.cois.2024.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/02/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
While much research has centered on mosquitoes transmitting pathogens to mammals and birds, several species feed on cold-blooded hosts, including amphibians, reptiles, fish, and various invertebrates. Despite limited knowledge about these alternative feeding habits, delving into their biology offers valuable insights into the evolutionary origins of blood feeding and aids in developing comprehensive epidemiological models for vector-borne diseases. This review sheds light on these 'alternative' hosts, highlighting recent discoveries in this field and probing into the evolutionary theories surrounding blood feeding in mosquitoes. Additionally, we delve into the host-seeking cues used by ectotherm-feeding mosquitoes and the physiological and mechanical challenges inherent in feeding on cold-blooded animals, contrasting them with endotherm-feeding mosquitoes. Finally, we examine the pathogens these mosquitoes can transmit. While our understanding of mosquitoes with alternative hosts remains incomplete, this review synthesizes existing knowledge, offering insights into the biology and ecology of mosquito species that target cold-blooded hosts.
Collapse
Affiliation(s)
- Joanna M Reinhold
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; The Fralin Life Science Institute Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; Center of Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; The Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
16
|
Vinauger C, Chandrasegaran K. Context-specific variation in life history traits and behavior of Aedes aegypti mosquitoes. FRONTIERS IN INSECT SCIENCE 2024; 4:1426715. [PMID: 39386346 PMCID: PMC11461241 DOI: 10.3389/finsc.2024.1426715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/19/2024] [Indexed: 10/12/2024]
Abstract
Aedes aegypti, the vector for dengue, chikungunya, yellow fever, and Zika, poses a growing global epidemiological risk. Despite extensive research on Ae. aegypti's life history traits and behavior, critical knowledge gaps persist, particularly in integrating these findings across varied experimental contexts. The plasticity of Ae. aegypti's traits throughout its life cycle allows dynamic responses to environmental changes, yet understanding these variations within heterogeneous study designs remains challenging. A critical aspect often overlooked is the impact of using lab-adapted lines of Ae. aegypti, which may have evolved under laboratory conditions, potentially altering their life history traits and behavioral responses compared to wild populations. Therefore, incorporating field-derived populations in experimental designs is essential to capture the natural variability and adaptability of Ae. aegypti. The relationship between larval growing conditions and adult traits and behavior is significantly influenced by the specific context in which mosquitoes are studied. Laboratory conditions may not replicate the ecological complexities faced by wild populations, leading to discrepancies in observed traits and behavior. These discrepancies highlight the need for ecologically relevant experimental conditions, allowing mosquito traits and behavior to reflect field distributions. One effective approach is semi-field studies involving field-collected mosquitoes housed for fewer generations in the lab under ecologically relevant conditions. This growing trend provides researchers with the desired control over experimental conditions while maintaining the genetic diversity of field populations. By focusing on variations in life history traits and behavioral plasticity within these varied contexts, this review highlights the intricate relationship between larval growing conditions and adult traits and behavior. It underscores the significance of transstadial effects and the necessity of adopting study designs and reporting practices that acknowledge plasticity in adult traits and behavior, considering variations due to larval rearing conditions. Embracing such approaches paves the way for a comprehensive understanding of contextual variations in mosquito life history traits and behavior. This integrated perspective enables the synthesis of research findings across laboratory, semi-field, and field-based investigations, which is crucial for devising targeted intervention strategies tailored to specific ecological contexts to combat the health threat posed by this formidable disease vector effectively.
Collapse
Affiliation(s)
- Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | | |
Collapse
|
17
|
Salles TS, Martins-Duarte ES, Meneses MDFD, Moreira MF, Ferreira DF, Azevedo RC, De Souza W, Caldas LA. Temperature Interference on ZIKV and CHIKV Cycles in Mosquitoes and Mammalian Cells. Pathogens 2024; 13:814. [PMID: 39339005 PMCID: PMC11435172 DOI: 10.3390/pathogens13090814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Temperature is a determining factor for the viral cycle. In this study, we investigate the effect of different temperatures on the cycles of two important arboviruses-Zika (ZIKV) and Chikungunya (CHIKV)-in Vero (mammalian) and C6/36 (mosquito) cells. We compare genome quantification to infectivity at 28 °C and 37 °C in both cell types. Virus-cell interaction was also examined by transmission electron microscopy, allowing the observation of phenomena such as virus-surfing and giant forms for CHIKV, as well as the the scarcity of ZIKV in C6/36 cells compared to its cycle in mammalian cells.
Collapse
Affiliation(s)
- Tiago Souza Salles
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Fiocruz Biodiversity and Health Biobank, Oswaldo Cruz Foundation, Rio de Janeiro 21040-361, Brazil
| | | | | | - Monica Ferreira Moreira
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | | | - Renata Campos Azevedo
- Department of Virology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Wanderley De Souza
- Precision Medicine Research Center, Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-904, Brazil
- National Centre for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Lucio Ayres Caldas
- Precision Medicine Research Center, Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-904, Brazil
- Multidisciplinary Research Centre (Numpex-Bio), Federal University of Rio de Janeiro, Rio de Janeiro 25265-970, Brazil
| |
Collapse
|
18
|
Barcellos Madeira Rosa Y, Tamanini Silva Moschen H, Loss AC, Cardoso da Silva TC, Brioschi Dos Santos AP, Caetano Pimenta B, Nunes Zordan JS, Cerutti Junior C, Espinosa Barbosa Miranda A, Drumond Louro I, Dummer Meira D, Vicente CR. Climate change impacts on dengue transmission areas in Espírito Santo state, Brazil. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae011. [PMID: 39279888 PMCID: PMC11398874 DOI: 10.1093/oxfimm/iqae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/07/2024] [Accepted: 08/30/2024] [Indexed: 09/18/2024] Open
Abstract
Espírito Santo state, in Brazil, is a dengue-endemic region predicted to suffer from an increase in temperature and drought due to climate change, which could affect the areas with active dengue virus transmission. The study objective was modeling climatic factors and climate change effects in zones suitable for dengue virus transmission in Espírito Santo state, Brazil. Data on dengue reports from 2022 were used to determine climatic variables related to spatial distribution. The climate change projections were generated for the 2030s, 2050s, 2070s, and 2090s for three distinct Shared Socioeconomic Pathways: SSP1-2.6, SSP2-4.5 and SSP5-8.5. A maximum entropy algorithm was used to construct the three models and projections, and the results were used to calculate the ensemble mean. Isothermality, the maximum temperature of the warmest month, precipitation of the wettest month, precipitation of the warmest quarter, and annual precipitation impacted the model. Projections indicated a change in areas suitable for dengue virus transmission, varying from -30.44% in the 2070s (SSP1-2.6) to +13.07% in the 2070s (SSP5-8.5) compared to 2022. The coastal regions were consistently suitable in all scenarios. Urbanized and highly populated areas were predicted to persist with active dengue transmission in Espírito Santo state, posing challenges for public health response.
Collapse
Affiliation(s)
- Yasmim Barcellos Madeira Rosa
- School of Biology, Center for Human and Natural Sciences, Federal University of Espírito Santo, Fernando Ferrari Avenue, 514, Goiabeiras, Vitória, Espírito Santo, 29075-910, Brazil
| | - Henrique Tamanini Silva Moschen
- School of Biology, Center for Human and Natural Sciences, Federal University of Espírito Santo, Fernando Ferrari Avenue, 514, Goiabeiras, Vitória, Espírito Santo, 29075-910, Brazil
- Graduate Program in Molecular Biology, Institute of Biological Sciences, University of Brasília, Asa Norte, Brasília, Federal District, 70910-900, Brazil
| | - Ana Carolina Loss
- Graduate Program in Biological Sciences, Center for Human and Natural Sciences, Federal University of Espírito Santo, Fernando Ferrari Avenue, 514, Goiabeiras, Vitória, Espírito Santo, 29075-910, Brazil
| | - Theresa Cristina Cardoso da Silva
- Graduate Program in Collective Health, Health Science Center, Federal University of Espírito Santo, Marechal Campos Avenue, 1468, Bonfim, Vitória, Espírito Santo, 29047-105, Brazil
- Surveillance Sector, Health Department of Espírito Santo State, Marechal Mascarenhas de Moraes Avenue, 2025, Bento Ferreira, Vitória, Espírito Santo, 29052-121, Brazil
| | - Ana Paula Brioschi Dos Santos
- Graduate Program in Collective Health, Health Science Center, Federal University of Espírito Santo, Marechal Campos Avenue, 1468, Bonfim, Vitória, Espírito Santo, 29047-105, Brazil
- Surveillance Sector, Health Department of Espírito Santo State, Marechal Mascarenhas de Moraes Avenue, 2025, Bento Ferreira, Vitória, Espírito Santo, 29052-121, Brazil
| | - Bruna Caetano Pimenta
- School of Biology, Center for Human and Natural Sciences, Federal University of Espírito Santo, Fernando Ferrari Avenue, 514, Goiabeiras, Vitória, Espírito Santo, 29075-910, Brazil
| | - Julia Sthefany Nunes Zordan
- School of Biology, Center for Human and Natural Sciences, Federal University of Espírito Santo, Fernando Ferrari Avenue, 514, Goiabeiras, Vitória, Espírito Santo, 29075-910, Brazil
| | - Crispim Cerutti Junior
- Graduate Program in Infectious Diseases, Health Science Center, Federal University of Espírito Santo, Marechal Campos Avenue, 1468, Bonfim, Vitória, Espírito Santo, 29047-105, Brazil
- Department of Social Medicine, Health Science Center, Federal University of Espírito Santo, Marechal Campos Avenue, 1468, Bonfim, Vitória, Espírito Santo, 29047-105, Brazil
| | - Angelica Espinosa Barbosa Miranda
- Graduate Program in Collective Health, Health Science Center, Federal University of Espírito Santo, Marechal Campos Avenue, 1468, Bonfim, Vitória, Espírito Santo, 29047-105, Brazil
- Graduate Program in Infectious Diseases, Health Science Center, Federal University of Espírito Santo, Marechal Campos Avenue, 1468, Bonfim, Vitória, Espírito Santo, 29047-105, Brazil
- Department of Social Medicine, Health Science Center, Federal University of Espírito Santo, Marechal Campos Avenue, 1468, Bonfim, Vitória, Espírito Santo, 29047-105, Brazil
| | - Iuri Drumond Louro
- Graduate Program in Biotechnology, Health Science Center, Federal University of Espírito Santo, Marechal Campos Avenue, 1468, Bonfim, Vitória, Espírito Santo, 29047-105, Brazil
- Department of Biology, Center for Human and Natural Sciences, Federal University of Espírito Santo, Fernando Ferrari Avenue, 514, Goiabeiras, Vitória, Espírito Santo, 29075-910, Brazil
| | - Débora Dummer Meira
- Graduate Program in Biotechnology, Health Science Center, Federal University of Espírito Santo, Marechal Campos Avenue, 1468, Bonfim, Vitória, Espírito Santo, 29047-105, Brazil
- Department of Biology, Center for Human and Natural Sciences, Federal University of Espírito Santo, Fernando Ferrari Avenue, 514, Goiabeiras, Vitória, Espírito Santo, 29075-910, Brazil
| | - Creuza Rachel Vicente
- Graduate Program in Infectious Diseases, Health Science Center, Federal University of Espírito Santo, Marechal Campos Avenue, 1468, Bonfim, Vitória, Espírito Santo, 29047-105, Brazil
- Department of Social Medicine, Health Science Center, Federal University of Espírito Santo, Marechal Campos Avenue, 1468, Bonfim, Vitória, Espírito Santo, 29047-105, Brazil
| |
Collapse
|
19
|
Sanei-Dehkordi A, Tagizadeh AM, Bahadori MB, Nikkhah E, Pirmohammadi M, Rahimi S, Nazemiyeh H. Larvicidal potential of Trachyspermum ammi essential oil and Delphinium speciosum extract against malaria, dengue, and filariasis mosquito vectors. Sci Rep 2024; 14:20677. [PMID: 39237741 PMCID: PMC11377549 DOI: 10.1038/s41598-024-71829-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024] Open
Abstract
Mosquito-borne diseases, such as malaria, dengue, and Zika, pose major public health challenges globally, affecting millions of people. The growing resistance of mosquito populations to synthetic insecticides underscores the critical need for effective and environmentally friendly larvicides. Although chemical pesticides can initially be effective, they often lead to negative environmental consequences and health hazards for non-target species, including humans. This study aimed to evaluate the larvicidal effects of Trachyspermum ammi essential oil and Delphinium speciosum extract on the larvae of three major mosquito species: Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. Mosquito larvae of Ae. aegypti, An. stephensi, and Cx. quinquefasciatus were reared under controlled laboratory conditions. The larvicidal activity of T. ammi essential oil and D. speciosum extract was evaluated through standard bioassays, using various concentrations of essential oils (10, 20, 40, 80, and 160 ppm) and extracts (160, 320, 640, 1280, and 2560 ppm) to determine the lethal concentration (LC50) values after 24 h of exposure. Fresh plant materials were collected, with the essential oil extracted via hydro-distillation, and the extract prepared using methanol solvent extraction. The chemical composition of T. ammi essential oil was examined using gas chromatography-mass spectrometry (GC-MS). Additionally, the preliminary analysis of the chemical compounds in D. speciosum extract was carried out using thin layer chromatography (TLC) and nuclear magnetic resonance spectroscopy (NMR) techniques. The results indicated that the essential oil of T. ammi exhibited more effective larvicidal activity compared to the D. speciosum extract. Specifically, the essential oil demonstrated LC50 values of 18 ppm for Cx. quinquefasciatus and 19 ppm for Ae. aegypti. In contrast, the D. speciosum extract showed the strongest larvicidal effect against An. stephensi, with an LC50 of 517 ppm. Concentrations of 40 ppm of the essential oil and 1280 ppm of the extract resulted in 100% mortality across all three species. Both the essential oil of T. ammi and the D. speciosum extract exhibited concentration-dependent larvicidal activity, and these results were statistically significant (p < 0.001) compared to the no-treatment group. GC-MS analysis revealed thymol (88.95%), o-cymen-5-ol (4.11%), and γ-terpinene (2.10%) as the major constituents of the T. ammi essential oil. Additionally, TLC verified the presence of alkaloids in both chloroform and methanolic extracts. Proton NMR identified a diterpene structure for these alkaloids. These findings suggest that T. ammi essential oil is a promising candidate for natural mosquito control strategies. Given its efficacy, further research is warranted to explore its potential in integrated vector management programs.
Collapse
Affiliation(s)
- Alireza Sanei-Dehkordi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amir Masoud Tagizadeh
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mir Babak Bahadori
- Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Elhameh Nikkhah
- Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Masoumeh Pirmohammadi
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Rahimi
- Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran.
| | - Hossein Nazemiyeh
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Zhang M, Wang X, Tang S. Integrating dynamic models and neural networks to discover the mechanism of meteorological factors on Aedes population. PLoS Comput Biol 2024; 20:e1012499. [PMID: 39331695 PMCID: PMC11463784 DOI: 10.1371/journal.pcbi.1012499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/09/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Aedes mosquitoes, known as vectors of mosquito-borne diseases, pose significant risks to public health and safety. Modeling the population dynamics of Aedes mosquitoes requires comprehensive approaches due to the complex interplay between biological mechanisms and environmental factors. This study developed a model that couples differential equations with a neural network to simulate the dynamics of mosquito population, and explore the relationships between oviposition rate, temperature, and precipitation. Data from nine cities in Guangdong Province spanning four years were used for model training and parameter estimation, while data from the remaining three cities were reserved for model validation. The trained model successfully simulated the mosquito population dynamics across all twelve cities using the same set of parameters. Correlation coefficients between simulated results and observed data exceeded 0.7 across all cities, with some cities surpassing 0.85, demonstrating high model performance. The coupled neural network in the model effectively revealed the relationships among oviposition rate, temperature, and precipitation, aligning with biological patterns. Furthermore, symbolic regression was used to identify the optimal functional expression for these relationships. By integrating the traditional dynamic model with machine learning, our model can adhere to specific biological mechanisms while extracting patterns from data, thus enhancing its interpretability in biology. Our approach provides both accurate modeling and an avenue for uncovering potential unknown biological mechanisms. Our conclusions can provide valuable insights into designing strategies for controlling mosquito-borne diseases and developing related prediction and early warning systems.
Collapse
Affiliation(s)
- Mengze Zhang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Xia Wang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Sanyi Tang
- School of Mathematics and Statistics, Shanxi University, Taiyuan, People’s Republic of China
| |
Collapse
|
21
|
Wouters RM, Beukema W, Schrama M, Biesmeijer K, Braks MAH, Helleman P, Schaffner F, van Slobbe J, Stroo A, van der Beek JG. Local environmental factors drive distributions of ecologically-contrasting mosquito species (Diptera: Culicidae). Sci Rep 2024; 14:19315. [PMID: 39164289 PMCID: PMC11336062 DOI: 10.1038/s41598-024-64948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/14/2024] [Indexed: 08/22/2024] Open
Abstract
Mosquitoes are important vectors of disease pathogens and multiple species are undergoing geographical shifts due to global changes. As such, there is a growing need for accurate distribution predictions. Ecological niche modelling (ENM) is an effective tool to assess mosquito distribution patterns and link these to underlying environmental preferences. Typically, macroclimatic variables are used as primary predictors of mosquito distributions. However, they likely undervalue local conditions and intraspecific variation in environmental preferences. This is problematic, as mosquito control takes place at the local scale. Utilising high-resolution (10 × 10 m) Maxent ENMs on the island of Bonaire as model system, we explore the influence of local environmental variables on mosquito distributions. Our results show a distinct set of environmental variables shape distribution patterns across ecologically-distinct species, with urban variables strongly associated with introduced species like Aedes aegypti and Culex quinquefasciatus, while native species show habitat preferences for either mangroves, forests, or ephemeral water habitats. These findings underscore the importance of distinct local environmental factors in shaping distributions of different mosquitoes, even on a small island. As such, these findings warrant further studies aimed at predicting high-resolution mosquito distributions, opening avenues for preventative management of vector-borne disease risks amidst ongoing global change and ecosystem degradation.
Collapse
Grants
- MOBOCON Ministry of Health, Welfare and Sport, The Netherlands
- MOBOCON Ministry of Health, Welfare and Sport, The Netherlands
- MOBOCON Ministry of Health, Welfare and Sport, The Netherlands
- MOBOCON Ministry of Health, Welfare and Sport, The Netherlands
- MOBOCON Ministry of Health, Welfare and Sport, The Netherlands
- MOBOCON Ministry of Health, Welfare and Sport, The Netherlands
- MOBOCON Ministry of Health, Welfare and Sport, The Netherlands
- Pandemics and Disaster Preparedness Center
Collapse
Affiliation(s)
- Roel M Wouters
- NL Biodiversity and Society Research Group, Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands.
- Institute of Environmental Sciences, Leiden University, 2333 CC, Leiden, The Netherlands.
- Department of Ecology, Faculty of Science, Charles University, 12844, Prague, Czechia.
| | - Wouter Beukema
- NL Biodiversity and Society Research Group, Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- RAVON, Reptile, Amphibian and Fish Conservation Netherlands, 6501 BK, Nijmegen, The Netherlands
| | - Maarten Schrama
- Institute of Environmental Sciences, Leiden University, 2333 CC, Leiden, The Netherlands
| | - Koos Biesmeijer
- NL Biodiversity and Society Research Group, Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- Institute of Environmental Sciences, Leiden University, 2333 CC, Leiden, The Netherlands
| | - Marieta A H Braks
- Institute of Environmental Sciences, Leiden University, 2333 CC, Leiden, The Netherlands
- Centre for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA, Bilthoven, The Netherlands
| | - Pepijn Helleman
- Institute of Environmental Sciences, Leiden University, 2333 CC, Leiden, The Netherlands
| | | | - Joey van Slobbe
- Bonaire Public Health Department, Public Body Bonaire, 4PXG+GH4, Kralendijk, Dutch Caribbean, The Netherlands
| | - Arjan Stroo
- Centre for Monitoring of Vectors (CMV), Netherlands Food and Consumer Product Safety Authority (NVWA), 6706 EA, Wageningen, The Netherlands
| | - Jordy G van der Beek
- NL Biodiversity and Society Research Group, Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- Institute of Environmental Sciences, Leiden University, 2333 CC, Leiden, The Netherlands
- Pandemic and Disaster Preparedness Center, Delft, Rotterdam, The Netherlands
| |
Collapse
|
22
|
Romero-Vivas CM, Potes D, Arango-Padilla PJ, Roa-García CE, Falconar AK. Comparison of Aedes aegypti arbovirus transmission thresholds in two communities with differing water supply infrastructure. BMC Public Health 2024; 24:2096. [PMID: 39095794 PMCID: PMC11295485 DOI: 10.1186/s12889-024-19554-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND To assess whether the 'economic boom' in the tropical seaport city of Barranquilla improved tapped water supplies to socio-economically poor neighbourhoods resulting in: (1) their reduced use for domestic water-storage in large (> 1,000-litre) custom-made cement tanks which are their principal Aedes aegypti breeding sites and (2) their pupae/person index (PPI) values to below their established 0.5-1.5 PPI arbovirus transmission-threshold value, compared to matched neighbourhoods in the: (a) pre-economic boom (2004) period in Barranquilla and (b) economically-neglected seaport city of Buenaventura. METHODS The simple, accurate and robust water surface sweep-net/calibration factor or total count methods were used to determine the total Ae. aegypti pupae numbers in greater or less than 20-litre water-holding container types located 'inside' or 'outside' these neighbourhood premises. The women residents also participated in questionnaire-based responses about their domestic water supplies, water-storage and maintenance and mosquito life stages and disease transmission knowledge, to subsequently plan appropriate resident education programmes. Microsoft Excel 8.0 with OpenEpi was used to determine the samples sizes and the statistical values. RESULTS Tapped water supplies to the three poor Barranquilla neighbourhoods were dramatically increased from 2004 to 2023 resulting in their residents significantly reducing their: (a) large cement water-storage tanks from 1 per 6.9 (2004) to 1 per 31.2 (2020) premises (z = 10.5: p = 0) and (b) PPI values to 0.16, 0.19 and 0.53 (mean: 0.29: 95% CI ± 0.4) in each study neighbourhood. In contrast, tapped water supplies remained inadequate in the Buenaventura neighborhoods, thereby resulting in their continued use of many large (> 1,000-litre) water-storage containers (Barranquilla: 1 per 31.2 and Buenaventura: 1 per 1.5 premises: z = - 9.26: p = 0), with unacceptably high 0.81, 0.88 and 0.99 PPI values in each study neighbourhood (mean 0.89: 95% CI ± 0.12). CONCLUSIONS Improved tapped water supplies resulted in reduced numbers of large custom-made stoneware water-containers, as are employed by poor residents throughout the world, as well as their Ae. aegypti PPI transmission threshold values which, together with appropriate residents' education programmes, are also urgently to reduce to prevent/reduce Ae. aegypti transmitted human diseases globally.
Collapse
Affiliation(s)
- Claudia Maria Romero-Vivas
- Grupo de Investigaciones en Enfermedades Tropicales, Departamento de Medicina, Universidad del Norte, Km5 Antigua via a Puerto Colombia, Barranquilla, Colombia
| | - Dhay Potes
- Universidad del Norte, Km. 5 Vía Puerto Colombia, Barranquilla, Colombia
| | - Pedro José Arango-Padilla
- Refente Program Prevencion y Control de Enfermidades Transmitidas por Vectores, Secretaria Distrital de Salud, Barranquilla, Colombia
| | - Clara Eugenia Roa-García
- Foundaćion Evaristo García, Universidad Nacional de Colombia, Sede Palmira, Palmira, Cra 32#12-00, Valle del Cauca, Colombia
| | - Andrew Keith Falconar
- Grupo de Investigaciones en Enfermedades Tropicales, Departamento de Medicina, Universidad del Norte, Km5 Antigua via a Puerto Colombia, Barranquilla, Colombia.
| |
Collapse
|
23
|
Tung GA, Fonseca DM. Internal and external drivers interact to create highly dynamic mosquito blood-feeding behaviour. Proc Biol Sci 2024; 291:20241105. [PMID: 39196275 DOI: 10.1098/rspb.2024.1105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Blood-feeding, which is necessary for most female mosquitoes to reproduce, provides an opportunity for pathogen transmission. Blood-feeding is influenced by external factors such as light, temperature, humidity and intra- and inter-specific interactions. Physiologically, blood-feeding cycles are linked to nutritional conditions and governed by conserved hormonal signalling pathways that prepare mosquito sensory systems to locate and evaluate hosts. Human activities also alter mosquito blood-feeding behaviour through selection pressures such as insecticide usage, habitat and ecosystem alterations, and climate change. Notably, blood-feeding behaviour changes within a mosquito's lifespan, an underexplored phenomenon from an epidemiological standpoint. A review of the literature indicates that our understanding of mosquito biology and blood-feeding behaviour is predominantly based on studies of a handful of primarily tropical species. This focus likely skews our comprehension of the diversity of critical drivers of blood-feeding behaviour, especially under constraints imposed by harsh conditions. We found evidence of remarkable adaptability in blood-feeding and significant knowledge gaps regarding the determinants of host use. Specifically, epidemiological analyses assume host use is modified by external factors, while neglecting internal physiology. Integrating all significant factors is essential for developing effective models of mosquito-borne disease transmission in a rapidly changing world.
Collapse
Affiliation(s)
- Grayson A Tung
- Center for Vector Biology, Department of Entomology, Rutgers University, 180 Jones Avenue , New Brunswick, NJ 08901, USA
| | - Dina M Fonseca
- Center for Vector Biology, Department of Entomology, Rutgers University, 180 Jones Avenue , New Brunswick, NJ 08901, USA
| |
Collapse
|
24
|
Kalmouni J, Will JB, Townsend J, Paaijmans KP. Temperature and time of host-seeking activity impact the efficacy of chemical control interventions targeting the West Nile virus vector, Culex tarsalis. PLoS Negl Trop Dis 2024; 18:e0012460. [PMID: 39213461 PMCID: PMC11392387 DOI: 10.1371/journal.pntd.0012460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 09/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
West Nile virus (WNV) is the leading mosquito-borne disease causing-pathogen in the United States. Concerningly, there are no prophylactics or drug treatments for WNV and public health programs rely heavily on vector control efforts to lessen disease incidence. Insecticides can be effective in reducing vector numbers if implemented strategically, but can diminish in efficacy and promote insecticide resistance otherwise. Vector control programs which employ mass-fogging applications of insecticides, often conduct these methods during the late-night hours, when diel temperatures are coldest, and without a-priori knowledge on daily mosquito activity patterns. This study's aims were to 1) quantify the effect of temperature on the toxicity of two conventional insecticides used in fogging applications (malathion and deltamethrin) to Culex tarsalis, an important WNV vector, and 2) quantify the time of host-seeking of Cx. tarsalis and other local mosquito species in Maricopa County, Arizona. The temperature-toxicity relationship of insecticides was assessed using the WHO tube bioassay, and adult Cx. tarsalis, collected as larvae, were exposed to three different insecticide doses at three temperature regimes (15, 25, and 35°C; 80% RH). Time of host-seeking was assessed using collection bottle rotators with encephalitis vector survey traps baited with dry ice, first at 3h intervals during a full day, followed by 1h intervals during the night-time. Malathion became less toxic at cooler temperatures at all doses, while deltamethrin was less toxic at cooler temperatures at the low dose. Regarding time of host-seeking, Cx. tarsalis, Aedes vexans, and Culex quinquefasciatus were the most abundant vectors captured. During the 3-hour interval surveillance over a full day, Cx. tarsalis were most-active during post-midnight biting (00:00-06:00), accounting for 69.0% of all Cx. tarsalis, while pre-midnight biting (18:00-24:00) accounted for 30.0% of Cx. tarsalis. During the 1-hour interval surveillance overnight, Cx. tarsalis were most-active during pre-midnight hours (18:00-24:00), accounting for 50.2% of Cx. tarsalis captures, while post-midnight biting (00:00-06:00) accounted for 49.8% of Cx. tarsalis. Our results suggest that programs employing large-scale applications of insecticidal fogging should consider temperature-toxicity relationships coupled with time of host-seeking data to maximize the efficacy of vector control interventions in reducing mosquito-borne disease burden.
Collapse
Affiliation(s)
- Joshua Kalmouni
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - James B Will
- Vector Control Division, Maricopa County Environmental Services Department, Phoenix, Arizona, United States of America
| | - John Townsend
- Vector Control Division, Maricopa County Environmental Services Department, Phoenix, Arizona, United States of America
| | - Krijn P Paaijmans
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, Arizona, United States of America
- WITS Research Institute for Malaria (WRIM), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
25
|
Kanga S, Roy P, Singh SK, Meraj G, Kumar P, Debnath J. Delineating dengue risk zones in Jaipur: An interdisciplinary approach to inform public health strategies. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2024. [PMID: 38987233 DOI: 10.1111/risa.15102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 07/12/2024]
Abstract
Dengue fever (DF) is a pervasive public health concern in tropical climates, with densely populated regions, such as India, disproportionately affected. Addressing this issue requires a multifaceted understanding of the environmental and sociocultural factors that contribute to the risk of dengue infection. This study aimed to identify high-risk zones for DF in Jaipur, Rajasthan, India, by integrating physical, demographic, and epidemiological data in a comprehensive risk analysis framework. We investigated environmental variables, such as soil type and plant cover, to characterize the potential habitats of Aedes aegypti, the primary dengue vector. Concurrently, demographic metrics were evaluated to assess the population's susceptibility to dengue outbreaks. High-risk areas were systematically identified through a comparative analysis that integrated population density and incidence rates per ward. The results revealed a significant correlation between high population density and an increased risk of dengue, predominantly facilitated by vertical transmission. Spatially, these high-risk zones are concentrated in the northern and southern sectors of Jaipur, with the northern and southwestern wards exhibiting the most acute risk profiles. This study underscores the importance of targeted public health interventions and vaccination campaigns in vulnerable areas. It further lays the groundwork for future research to evaluate the effectiveness of such interventions, thereby contributing to the development of robust evidence-based strategies for dengue risk mitigation.
Collapse
Affiliation(s)
- Shruti Kanga
- Department of Geography, School of Environment and Earth Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Priyanka Roy
- Centre for Climate Change and Water Research, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Suraj Kumar Singh
- Centre for Sustainable Development, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Gowhar Meraj
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Pankaj Kumar
- Institute for Global Environmental Strategies, Hayama, Japan
| | - Jatan Debnath
- Department of Geography, Gauhati University, Jalukbari, Assam, India
| |
Collapse
|
26
|
Aliaga-Samanez A, Romero D, Murray K, Segura M, Real R, Olivero J. Potential climate change effects on the distribution of urban and sylvatic dengue and yellow fever vectors. Pathog Glob Health 2024; 118:397-407. [PMID: 38972071 PMCID: PMC11338215 DOI: 10.1080/20477724.2024.2369377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Climate change may increase the risk of dengue and yellow fever transmission by urban and sylvatic mosquito vectors. Previous research primarily focused on Aedes aegypti and Aedes albopictus. However, dengue and yellow fever have a complex transmission cycle involving sylvatic vectors. Our aim was to analyze how the distribution of areas favorable to both urban and sylvatic vectors could be modified as a consequence of climate change. We projected, to future scenarios, baseline distribution models already published for these vectors based on the favorability function, and mapped the areas where mosquitoes' favorability could increase, decrease or remain stable in the near (2041-2060) and distant (2061-2080) future. Favorable areas for the presence of dengue and yellow fever vectors show little differences in the future compared to the baseline models, with changes being perceptible only at regional scales. The model projections predict dengue vectors expanding in West and Central Africa and in South-East Asia, reaching Borneo. Yellow fever vectors could spread in West and Central Africa and in the Amazon. In some locations of Europe, the models suggest a reestablishment of Ae. aegypti, while Ae. albopictus will continue to find new favorable areas. The results underline the need to focus more on vectors Ae. vittatus, Ae. luteocephalus and Ae. africanus in West and Central sub-Saharan Africa, especially Cameroon, Central Africa Republic, and northern Democratic Republic of Congo; and underscore the importance of enhancing entomological monitoring in areas where populations of often overlooked vectors may thrive as a result of climate changes.
Collapse
Affiliation(s)
- Alisa Aliaga-Samanez
- Grupo de Biogeografía, Diversidad y Conservación, Departamento de Biología Animal, Universidad de Málaga, Facultad de Ciencias, Malaga, Spain
| | - David Romero
- Grupo de Biogeografía, Diversidad y Conservación, Departamento de Biología Animal, Universidad de Málaga, Facultad de Ciencias, Malaga, Spain
| | - Kris Murray
- Medical Research Council Unit the Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Marina Segura
- Servicio de Sanidad Exterior, Centro de Vacunación Internacional, Ministerio de Sanidad, Consumo y Bienestar Social, Estación Marítima, Malaga, Spain
| | - Raimundo Real
- Grupo de Biogeografía, Diversidad y Conservación, Departamento de Biología Animal, Universidad de Málaga, Facultad de Ciencias, Malaga, Spain
- Instituto IBYDA, Centro de Experimentación Grice-Hutchinson, Malaga, Spain
| | - Jesús Olivero
- Grupo de Biogeografía, Diversidad y Conservación, Departamento de Biología Animal, Universidad de Málaga, Facultad de Ciencias, Malaga, Spain
| |
Collapse
|
27
|
Fox TP, Raka YP, Smith K, Harrison JF. Mesocosm Studies Suggest Climate Change May Release Aedes aegypti (Diptera: Culicidae) Larvae from Cold Inhibition and Enable Year-Round Development in a Desert City. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:250-261. [PMID: 39270329 DOI: 10.1086/731710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
AbstractGlobal warming trends, human-assisted transport, and urbanization have allowed poleward expansion of many tropical vector species, but the specific mechanisms responsible for thermal mediation of range changes and ecological success of invaders remain poorly understood. Aedes aegypti (Diptera: Culicidae) is a tropical mosquito currently expanding into many higher-latitude regions, including the urban desert region of Maricopa County, Arizona. Here, adult populations virtually disappear in winter and spring and then increase exponentially through summer and fall, indicating that winter conditions remain a barrier to the development of some life stages of A. aegypti. To determine whether cold limits the winter development of A. aegypti larvae in Maricopa County, we surveyed for larval abundance and tested their capacity to develop in ambient and warmed conditions. Aedes aegypti larvae were not observed in artificial aquatic habitats in winter and spring but were abundant in summer and fall, suggesting winter suppression of adults, larvae, or both. Water temperatures in winter months fluctuated strongly; larvae were usually cold paralyzed at night but active during the day. Despite daytime temperatures that allowed activity and achieving similar degree-days as warmed mesocosms, larvae reared under ambient winter conditions were unable to develop to adulthood, perhaps due to repetitive cold damage. However, warming average temperature by 1.7°C allowed many larvae to successfully develop to adults. Because daytime highs in winter will often allow adult flight, it is likely that relatively minor additional winter warming may allow A. aegypti populations to develop and reproduce year-round in Maricopa County.
Collapse
|
28
|
Kronen J, Leuchner M, Küpper T. Zika and Chikungunya in Europe 2100 - A GIS based model for risk estimation. Travel Med Infect Dis 2024; 60:102737. [PMID: 38996856 DOI: 10.1016/j.tmaid.2024.102737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 10/27/2023] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND The spread of vector-borne infectious diseases is determined, among other things, by temperature. Thus, climate change will have an influence on their global distribution. In the future, Europe will approach the temperature optimum for the transmission of ZIKV and CHIKV. Climate scenarios and climate models can be used to depict future climatic changes and to draw conclusions about future risk areas for vector-borne infectious diseases. METHODS Based on the RCP 4.5 and RCP 8.5 climate scenarios, a geospatial analysis was carried out for the future temperature suitability of ZIKV and CHIKV in Europe. The results were presented in maps and the percentage of the affected areas calculated. RESULTS Due to rising temperatures, the risk areas for transmission of ZIKV and CHIKV spread in both RCP scenarios. For CHIKV transmission, Spain, Portugal, the Mediterranean coast and areas near the Black Sea are mainly affected. Due to high temperatures, large areas throughout Europe are at risk for ZIKV and CHIKV transmission. CONCLUSION Temperature is only one of many factors influencing the spread of vector-borne infectious diseases. Nevertheless, the representation of risk areas on the basis of climate scenarios allows an assessment of future risk development. Monitoring and adaptation strategies are indispensable for coping with and containing possible future autochthonous transmissions and epidemics in Europe.
Collapse
Affiliation(s)
- J Kronen
- Physical Geography and Climatology, Institute of Geography, RWTH Aachen University, Aachen, Germany.
| | - M Leuchner
- Physical Geography and Climatology, Institute of Geography, RWTH Aachen University, Aachen, Germany
| | - T Küpper
- Inst. of Occupational, Social & Environmental Medicine, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
29
|
Linthout C, Martins AD, de Wit M, Delecroix C, Abbo SR, Pijlman GP, Koenraadt CJM. The potential role of the Asian bush mosquito Aedes japonicus as spillover vector for West Nile virus in the Netherlands. Parasit Vectors 2024; 17:262. [PMID: 38886805 PMCID: PMC11181672 DOI: 10.1186/s13071-024-06279-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/13/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND In recent years the Asian bush mosquito Aedes japonicus has invaded Europe, including the Netherlands. This species is a known vector for a range of arboviruses, possibly including West Nile virus (WNV). As WNV emerged in the Netherlands in 2020, it is important to investigate the vectorial capacity of mosquito species present in the Netherlands to estimate the risk of future outbreaks and further spread of the virus. Therefore, this study evaluates the potential role of Ae. japonicus in WNV transmission and spillover from birds to dead-end hosts in the Netherlands. METHODS We conducted human landing collections in allotment gardens (Lelystad, the Netherlands) in June, August and September 2021 to study the diurnal and seasonal host-seeking behaviour of Ae. japonicus. Furthermore, their host preference in relation to birds using live chicken-baited traps was investigated. Vector competence of field-collected Ae. japonicus mosquitoes for two isolates of WNV at two different temperatures was determined. Based on the data generated from these studies, we developed a Susceptible-Exposed-Infectious-Recovered (SEIR) model to calculate the risk of WNV spillover from birds to humans via Ae. japonicus, under the condition that the virus is introduced and circulates in an enzootic cycle in a given area. RESULTS Our results show that Ae. japonicus mosquitoes are actively host seeking throughout the day, with peaks in activity in the morning and evening. Their abundance in August was higher than in June and September. For the host-preference experiment, we documented a small number of mosquitoes feeding on birds: only six blood-fed females were caught over 4 full days of sampling. Finally, our vector competence experiments with Ae. japonicus compared to its natural vector Culex pipiens showed a higher infection and transmission rate when infected with a local, Dutch, WNV isolate compared to a Greek isolate of the virus. Interestingly, we also found a small number of infected Cx. pipiens males with virus-positive leg and saliva samples. CONCLUSIONS Combining the field and laboratory derived data, our model predicts that Ae. japonicus could act as a spillover vector for WNV and could be responsible for a high initial invasion risk of WNV when present in large numbers.
Collapse
Affiliation(s)
- Charlotte Linthout
- Department of Entomology, Wageningen University & Research, Wageningen, the Netherlands.
| | - Afonso Dimas Martins
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Mariken de Wit
- Quantitative Veterinary Epidemiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Clara Delecroix
- Quantitative Veterinary Epidemiology, Wageningen University & Research, Wageningen, the Netherlands
- Department of Environmental Sciences, Wageningen University & Research, Wageningen, the Netherlands
| | - Sandra R Abbo
- Department of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Gorben P Pijlman
- Department of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | | |
Collapse
|
30
|
Solano N, Herring EC, Hintz CW, Newberry PM, Schatz AM, Walker JW, Osenberg CW, Murdock CC. Mosquito population dynamics is shaped by the interaction among larval density, season, and land use. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.08.598043. [PMID: 38915528 PMCID: PMC11195073 DOI: 10.1101/2024.06.08.598043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Understanding how variation in key abiotic and biotic factors interact at spatial scales relevant for mosquito fitness and population dynamics is crucial for predicting current and future mosquito distributions and abundances, and the transmission potential for human pathogens. However, studies investigating the effects of environmental variation on mosquito traits have investigated environmental factors in isolation or in laboratory experiments that examine constant environmental conditions that often do not occur in the field. To address these limitations, we conducted a semi-field experiment in Athens, Georgia using the invasive Asian tiger mosquito (Aedes albopictus). We selected nine sites that spanned natural variation in impervious surface and vegetation cover to explore effects of the microclimate (temperature and humidity) on mosquitoes. On these sites, we manipulated conspecific larval density at each site. We repeated the experiment in the summer and fall. We then evaluated the effects of land cover, larval density, and time of season, as well as interactive effects, on the mean proportion of females emerging, juvenile development time, size upon emergence, and predicted per capita population growth (i.e., fitness). We found significant effects of larval density, land cover, and season on all response variables. Of most note, we saw strong interactive effects of season and intra-specific density on each response variable, including a non-intuitive decrease in development time with increasing intra-specific competition in the fall. Our study demonstrates that ignoring the interaction between variation in biotic and abiotic variables could reduce the accuracy and precision of models used to predict mosquito population and pathogen transmission dynamics, especially those inferring dynamics at finer-spatial scales across which transmission and control occur.
Collapse
Affiliation(s)
- Nicole Solano
- Odum School of Ecology, University of Georgia, Athens, GA, USA
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Emily C. Herring
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Carl W. Hintz
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Philip M. Newberry
- Odum School of Ecology, University of Georgia, Athens, GA, USA
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Annakate M. Schatz
- Odum School of Ecology, University of Georgia, Athens, GA, USA
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Joseph W. Walker
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | | | - Courtney C. Murdock
- Odum School of Ecology, University of Georgia, Athens, GA, USA
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| |
Collapse
|
31
|
Costa-da-Silva AL, Dye-Braumuller KC, Wagner-Coello HU, Li H, Johnson-Carson D, Gunter SM, Nolan MS, DeGennaro M. Landscape and meteorological variables associated with Aedes aegypti and Aedes albopictus mosquito infestation in two southeastern USA coastal cities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597792. [PMID: 38895389 PMCID: PMC11185711 DOI: 10.1101/2024.06.06.597792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Aedes transmitted arboviral human cases are increasing worldwide and spreading to new areas of the United States of America (USA). These diseases continue to re-emerge likely due to changes in vector ecology, urbanization, human migration, and larger range of climatic suitability. Recent shifts in landscape and weather variables are predicted to impact the habitat patterns of urban mosquitoes such as Aedes aegypti and Aedes albopictus. Miami (FL) is in the tropical zone and an established hotspot for arboviruses, while Charleston (SC) is in the humid subtropical zone and newly vulnerable. Although these coastal cities have distinct climates, both have hot summers. To understand mosquito infestation in both cities and potentiate our surveillance effort, we performed egg collections in the warmest season. We applied remote sensing with land-use cover and weather variation to identify mosquito infestation patterns. Our study found predominant occurrence of Ae. aegypti and, to a lesser extent, Ae. albopictus in both cities. We detected statistically significant positive and negative associations between entomological indicators and most weather variables in combined data from both cities. For all entomological indices, weekly wind speed and relative humidity were significantly positively associated, while precipitation and maximum temperature were significantly negatively associated. Aedes egg abundance was significantly positively associated with open land in Charleston but was negatively associated with vegetation cover in combined data. There is a clear need for further observational studies to determine the impact of climate change on Ae. aegypti and Ae. albopictus infestation in the Southeastern region of the USA.
Collapse
Affiliation(s)
- Andre Luis Costa-da-Silva
- Kimberly Green Latin American and Caribbean Center, Florida International University, Miami, FL 33199
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199
- Department of Biological Sciences, Florida International University, Miami, FL 33199
| | - Kyndall C Dye-Braumuller
- Institute for Infectious Disease Translational Research, University of South Carolina, Columbia, SC 29208
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208
| | - Helen Urpi Wagner-Coello
- Kimberly Green Latin American and Caribbean Center, Florida International University, Miami, FL 33199
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199
- Department of Biological Sciences, Florida International University, Miami, FL 33199
| | - Huixuan Li
- Institute for Infectious Disease Translational Research, University of South Carolina, Columbia, SC 29208
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208
| | - Danielle Johnson-Carson
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208
| | - Sarah M Gunter
- Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030
| | - Melissa S Nolan
- Institute for Infectious Disease Translational Research, University of South Carolina, Columbia, SC 29208
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC 29208
| | - Matthew DeGennaro
- Kimberly Green Latin American and Caribbean Center, Florida International University, Miami, FL 33199
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199
- Department of Biological Sciences, Florida International University, Miami, FL 33199
| |
Collapse
|
32
|
Taracena-Agarwal ML, Walter-Nuno AB, Bottino-Rojas V, Mejia APG, Xu K, Segal S, Dotson EM, Oliveira PL, Paiva-Silva GO. Juvenile Hormone as a contributing factor in establishing midgut microbiota for fecundity and fitness enhancement in adult female Aedes aegypti. Commun Biol 2024; 7:687. [PMID: 38839829 PMCID: PMC11153597 DOI: 10.1038/s42003-024-06334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
Understanding the factors influencing mosquitoes' fecundity and longevity is important for designing better and more sustainable vector control strategies, as these parameters can impact their vectorial capacity. Here, we address how mating affects midgut growth in Aedes aegypti, what role Juvenile Hormone (JH) plays in this process, and how it impacts the mosquito's immune response and microbiota. Our findings reveal that mating and JH induce midgut growth. Additionally, the establishment of a native bacterial population in the midgut due to JH-dependent suppression of the immune response has important reproductive outcomes. Specific downregulation of AMPs with an increase in bacteria abundance in the gut results in increased egg counts and longer lifespans. Overall, these findings provide evidence of a cross-talk between JH response, gut epithelial tissue, cell cycle regulation, and the mechanisms governing the trade-offs between nutrition, immunity, and reproduction at the cellular level in the mosquito gut.
Collapse
Affiliation(s)
- Mabel L Taracena-Agarwal
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil.
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA.
- Entomology Department, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, USA.
| | - Ana Beatriz Walter-Nuno
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil
| | - Vanessa Bottino-Rojas
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil
| | | | - Kelsey Xu
- Entomology Department, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, USA
| | - Steven Segal
- Entomology Department, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, USA
| | - Ellen M Dotson
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Pedro L Oliveira
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil
| | - Gabriela O Paiva-Silva
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil.
| |
Collapse
|
33
|
Sakaci Z, Talay S, Erguler K, Korkmaz A, Sirin D, Er A, Alten B, Kar S. Interindividual variation among Culex pipiens larvae in terms of thermal response. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:205-215. [PMID: 38348507 DOI: 10.1111/mve.12709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/23/2024] [Indexed: 05/01/2024]
Abstract
This study aims to determine the phenological characteristics of thermal responses in the larvae of a Culex pipiens complex field population at the individual level under the influence of thermal regime of its habitat. The analysis is based on a structured population model quantifying the thermal responses of development time and survival under variable conditions and characterising the variety between the larvae (interindividual variety). During the study performed in Turkish Thrace on a monthly basis between May 2021 and June 2022, a total of 3744 larvae were reared as peer larval cohorts and 2330 larvae as siblings in artificial containers to be fully exposed to the natural thermal condition that was recorded hourly. The development process of larvae was monitored daily from egg to adult. As a result, a total of 4788 adult mosquitoes emerged, with a development period ranging from 8 to 52 days in the females and 7 to 50 days in the males, and the survival rate was found to range from 0% to 100%. Both parameters varied by month and individuals, and the variations manifested itself, particularly in the colder periods. The results indicate that the variation between the individuals in terms of thermal response in the larvae of C. pipiens, along with the thermal acclimation ability, appears to be fate determinant in resisting fluctuating thermal regimes, surviving in concurrent climate change and adapting to new conditions with modifications in the seasonal phenology, such as maintaining reproductive dynamics throughout the winter thanks to global warming.
Collapse
Affiliation(s)
- Zafer Sakaci
- Department of Biology, Tekirdag Namik Kemal University, Tekirdag, Turkey
- Department of Biology, Balikesir University, Balikesir, Turkey
| | - Sengul Talay
- Department of Biology, Tekirdag Namik Kemal University, Tekirdag, Turkey
| | - Kamil Erguler
- Environmental Predictions Department, Climate and Atmosphere Research Centre, Nicosia, Cyprus
| | - Adil Korkmaz
- Department of Econometrics, Faculty of Economics and Administrative Sciences, Akdeniz University, Antalya, Turkey
| | - Deniz Sirin
- Department of Biology, Tekirdag Namik Kemal University, Tekirdag, Turkey
| | - Aylin Er
- Department of Biology, Balikesir University, Balikesir, Turkey
| | - Bulent Alten
- Faculty of Sciences, Department of Biology, Division of Ecology, Hacettepe University, Ankara, Turkey
| | - Sirri Kar
- Department of Biology, Tekirdag Namik Kemal University, Tekirdag, Turkey
| |
Collapse
|
34
|
Drwiega EN, Danziger LH, Burgos RM, Michienzi SM. Commonly Reported Mosquito-Borne Viruses in the United States: A Primer for Pharmacists. J Pharm Pract 2024; 37:741-752. [PMID: 37018738 DOI: 10.1177/08971900231167929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Mosquito-borne diseases are a public health concern. Pharmacists are often a patient's first stop for health information and may be asked questions regarding transmission, symptoms, and treatment of mosquito borne viruses (MBVs). The objective of this paper is to review transmission, geographic location, symptoms, diagnosis and treatment of MBVs. We discuss the following viruses with cases in the US in recent years: Dengue, West Nile, Chikungunya, LaCrosse Encephalitis, Eastern Equine Encephalitis Virus, and Zika. Prevention, including vaccines, and the impact of climate change are also discussed.
Collapse
Affiliation(s)
- Emily N Drwiega
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Larry H Danziger
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
- College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Rodrigo M Burgos
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Sarah M Michienzi
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
35
|
Muharromah AF, Carvajal TM, Regilme MAF, Watanabe K. Fine-scale adaptive divergence and population genetic structure of Aedes aegypti in Metropolitan Manila, Philippines. Parasit Vectors 2024; 17:233. [PMID: 38769579 PMCID: PMC11107013 DOI: 10.1186/s13071-024-06300-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND The adaptive divergence of Aedes aegypti populations to heterogeneous environments can be a driving force behind the recent expansion of their habitat distribution and outbreaks of dengue disease in urbanized areas. In this study, we investigated the population genomics of Ae. aegypti at a regional scale in Metropolitan Manila, Philippines. METHODS We used the Pool-Seq double digestion restriction-site association DNA sequencing (ddRAD-Seq) approach to generate a high number of single nucleotide polymorphisms (SNPs), with the aim to determine local adaptation and compare the population structure with 11 microsatellite markers. A total of 217 Ae. aegypti individuals from seven female and seven male populations collected from Metropolitan Manila were used in the assays. RESULTS We detected 65,473 SNPs across the populations, of which 76 were non-neutral SNPs. Of these non-neutral SNPs, the multivariate regression test associated 50 with eight landscape variables (e.g. open space, forest, etc.) and 29 with five climate variables (e.g. air temperature, humidity, etc.) (P-value range 0.005-0.045) in female and male populations separately. Male and female populations exhibited contrasting spatial divergence, with males exhibiting greater divergence than females, most likely reflecting the different dispersal abilities of male and female mosquitoes. In the comparative analysis of the same Ae. aegypti individuals, the pairwise FST values of 11 microsatellite markers were lower than those of the neutral SNPs, indicating that the neutral SNPs generated via pool ddRAD-Seq were more sensitive in terms of detecting genetic differences between populations at fine-spatial scales. CONCLUSIONS Overall, our study demonstrates the utility of pool ddRAD-Seq for examining genetic differences in Ae. aegypti populations in areas at fine-spatial scales that could inform vector control programs such as Wolbachia-infected mosquito mass-release programs. This in turn would provide information on mosquito population dispersal patterns and the potential barriers to mosquito movement within and around the release area. In addition, the potential of environmental adaptability observed in Ae. aegypti could help population control efforts.
Collapse
Affiliation(s)
- Atikah Fitria Muharromah
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, 7908577, Japan
- Graduate School of Science and Engineering, Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, 7908577, Japan
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Thaddeus M Carvajal
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, 7908577, Japan
- Biological Control Research Unit, Center for Natural Sciences and Environmental Research, De La Salle University, 2401 Taft Avenue, 1004, Manila, Philippines
| | - Maria Angenica F Regilme
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, 7908577, Japan
| | - Kozo Watanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, 7908577, Japan.
| |
Collapse
|
36
|
Joyce AL, Moreno M, Palomo L, O'Connor R, Escobar D. Genetic variability of Aedes aegypti (Diptera: Culicidae) in El Salvador and Honduras: presence of a widespread haplotype and implications for mosquito control. Parasit Vectors 2024; 17:229. [PMID: 38755689 PMCID: PMC11100194 DOI: 10.1186/s13071-024-06312-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND This study examined population genetics of Aedes aegypti in El Salvador and Honduras, two adjacent countries in Central America. Aedes aegypti is associated with yellow fever, dengue, chikungunya, and Zika. Each year, thousands of cases of dengue are typically reported in El Salvador and Honduras. METHODS In El Salvador, collections were obtained from five Departments. In Honduras, samples were obtained from six municipalities in four Departments. Mitochondrial DNA cytochrome oxidase I (COI) was sequenced, and consensus sequences were combined with available sequences from El Salvador to determine haplotype number, haplotype diversity, nucleotide diversity, and Tajima's D. A haplotype network was produced to examine the relationship between genotypes. RESULTS In El Salvador, there were 17 haplotypes, while in Honduras there were 4 haplotypes. In both El Salvador and Honduras, Haplotype 1 is most abundant and widespread. In El Salvador, haplotype H2 was also widespread in 10 of 11 sampled municipalities, but it was not present in Honduras. The capital of El Salvador (San Salvador) and the eastern region of ES had the highest haplotype diversity of regions sampled. CONCLUSIONS Haplotype 1 and H2 each belong to different phylogenetic lineages of Ae. aegypti. The most geographically widespread haplotype (H1) may have been present the longest and could be a remnant from previous eradication programs. These data may contribute to future control programs for Ae. aegypti in the two countries.
Collapse
Affiliation(s)
- A L Joyce
- Public Health, University of California, 5200 North Lake Road, Merced, CA, 95343, USA.
| | - Miguel Moreno
- Departmento de Biología, Final de Av. Mártires y Héroes del 30 Julio, University of El Salvador, San Salvador, El Salvador
| | - Leonel Palomo
- Departmento de Biología, Final de Av. Mártires y Héroes del 30 Julio, University of El Salvador, San Salvador, El Salvador
| | - Raul O'Connor
- Unidad de vigilancia de la Salud, Secretaría de Salud de Honduras, Tegucigalpa, 11101, Honduras
| | - Denis Escobar
- Microbiology Research Institute, Universidad Nacional Autónoma de Honduras, Tegucigalpa, 11101, Honduras
| |
Collapse
|
37
|
Saha T, Genoud AP, Park JH, Thomas BP. Temperature Dependency of Insect's Wingbeat Frequencies: An Empirical Approach to Temperature Correction. INSECTS 2024; 15:342. [PMID: 38786898 PMCID: PMC11121811 DOI: 10.3390/insects15050342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
This study examines the relationship between the wingbeat frequency of flying insects and ambient temperature, leveraging data from over 302,000 insect observations obtained using a near-infrared optical sensor during an eight-month field experiment. By measuring the wingbeat frequency as well as wing and body optical cross-sections of each insect in conjunction with the ambient temperature, we identified five clusters of insects and analyzed how their average wingbeat frequencies evolved over temperatures ranging from 10 °C to 38 °C. Our findings reveal a positive correlation between temperature and wingbeat frequency, with a more pronounced increase observed at higher wingbeat frequencies. Frequencies increased on average by 2.02 Hz/°C at 50 Hz, and up to 9.63 Hz/°C at 525 Hz, and a general model is proposed. This model offers a valuable tool for correcting wingbeat frequencies with temperature, enhancing the accuracy of insect clustering by optical and acoustic sensors. While this approach does not account for species-specific responses to temperature changes, our research provides a general insight, based on all species present during the field experiment, into the intricate dynamics of insect flight behavior in relation to environmental factors.
Collapse
Affiliation(s)
- Topu Saha
- Department of Physics, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA;
| | - Adrien P. Genoud
- Institut Lumière Matière, UMR 5306, Université Claude Bernard Lyon 1, CNRS, F-69100 Villeurbanne, France;
| | - Jung H. Park
- Department of Data Science, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA;
| | - Benjamin P. Thomas
- Department of Physics, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA;
| |
Collapse
|
38
|
Wynne NE, Applebach E, Chandrasegaran K, Ajayi OM, Chakraborty S, Bonizzoni M, Lahondère C, Benoit JB, Vinauger C. Aedes albopictus colonies from different geographic origins differ in their sleep and activity levels but not in the time of peak activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585187. [PMID: 38559099 PMCID: PMC10980008 DOI: 10.1101/2024.03.15.585187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Mosquitoes occupy a wide range of habitats where they experience various environmental conditions. The ability of some species, such as the tiger mosquito, Aedes albopictus, to adapt to local conditions certainly contributes to their invasive success. Among traits that remain to be examined, mosquitoes' ability to time their activity with that of the local host population has been suggested to be of significant epidemiological importance. However, whether different populations display heritable differences in their chronotype has not been examined. Here, we compared laboratory strains originating from 8 populations from 3 continents, monitored their spontaneous locomotor activity patterns, and analyzed their sleep-like states. Overall, all strains showed conserved diurnal activity concentrated in the hours preceding the crepuscule. Similarly, they all showed increased sleep levels during the morning and night hours. However, we observed strain-specific differences in the activity levels at each phase of the day. We also observed differences in the fraction of time that each strain spends in a sleep-like state, explained by variations in the sleep architecture across strains. Human population density and the latitude of the site of geographic origin of the tested strain showed significant effects on sleep and activity patterns. Altogether, these results suggest that Ae. albopictus mosquitoes adapt to local environmental conditions via heritable adaptations of their chronotype.
Collapse
Affiliation(s)
- Nicole E Wynne
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Emilie Applebach
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Karthikeyan Chandrasegaran
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Oluwaseun M Ajayi
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Souvik Chakraborty
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Mariangela Bonizzoni
- Department of Biology and Biotechnology, University of Pavia, Pavia 27100, Italy
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
39
|
Carlassara M, Khorramnejad A, Oker H, Bahrami R, Lozada-Chávez AN, Mancini MV, Quaranta S, Body MJA, Lahondère C, Bonizzoni M. Population-specific responses to developmental temperature in the arboviral vector Aedes albopictus: Implications for climate change. GLOBAL CHANGE BIOLOGY 2024; 30:e17226. [PMID: 38454541 DOI: 10.1111/gcb.17226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
The increase of environmental temperature due to current global warming is not only favouring the expansion of the distribution range of many insect species, but it is also changing their phenology. Insect phenology is tightly linked to developmental timing, which is regulated by environmental temperatures. However, the degree to which the effects of developmental temperatures extend across developmental stages and their inter-stage relationships have not been thoroughly quantified in mosquitoes. Here, we used the mosquito Aedes albopictus, which is an aggressive invasive species and an arboviral vector, to study how developmental temperature influences fitness across developmental stages, thermal traits, energy reserves, transcriptome and Wolbachia prevalence in laboratory-reared populations originally collected from either temperate or tropical regions. We show that hatchability, larval and pupal viability and developmental speed are strongly influenced by temperature, and these effects extend to wing length, body mass, longevity and content of water, protein and lipids in adults in a population-specific manner. On the contrary, neither adult thermal preference nor heat resistance significantly change with temperature. Wolbachia density was generally lower in adult mosquitoes reared at 18°C than at other tested temperatures, and transcriptome analysis showed enrichment for functions linked to stress responses (i.e. cuticle proteins and chitin, cytochrome p450 and heat shock proteins) in mosquitoes reared at both 18 and 32°C. Our data showed an overall reduced vector fitness performance when mosquitoes were reared at 32°C, and the absence of isomorphy in the relationship between developmental stages and temperature in the laboratory population deriving from larvae collected in northern Italy. Altogether, these results have important implications for reliable model projections of the invasion potentials of Ae. albopictus and its epidemiological impact.
Collapse
Affiliation(s)
- Martina Carlassara
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Ayda Khorramnejad
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Helen Oker
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Romina Bahrami
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | | | - Stefano Quaranta
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Mélanie J A Body
- Department of Horticulture, Michigan State University, East Lansing, Michigan, USA
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | | |
Collapse
|
40
|
González-Pérez MI, Faulhaber B, Aranda C, Williams M, Villalonga P, Silva M, Costa Osório H, Encarnaçao J, Talavera S, Busquets N. Field evaluation of an automated mosquito surveillance system which classifies Aedes and Culex mosquitoes by genus and sex. Parasit Vectors 2024; 17:97. [PMID: 38424626 PMCID: PMC10905882 DOI: 10.1186/s13071-024-06177-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Mosquito-borne diseases are a major concern for public and veterinary health authorities, highlighting the importance of effective vector surveillance and control programs. Traditional surveillance methods are labor-intensive and do not provide high temporal resolution, which may hinder a full assessment of the risk of mosquito-borne pathogen transmission. Emerging technologies for automated remote mosquito monitoring have the potential to address these limitations; however, few studies have tested the performance of such systems in the field. METHODS In the present work, an optical sensor coupled to the entrance of a standard mosquito suction trap was used to record 14,067 mosquito flights of Aedes and Culex genera at four temperature regimes in the laboratory, and the resulting dataset was used to train a machine learning (ML) model. The trap, sensor, and ML model, which form the core of an automated mosquito surveillance system, were tested in the field for two classification purposes: to discriminate Aedes and Culex mosquitoes from other insects that enter the trap and to classify the target mosquitoes by genus and sex. The field performance of the system was assessed using balanced accuracy and regression metrics by comparing the classifications made by the system with those made by the manual inspection of the trap. RESULTS The field system discriminated the target mosquitoes (Aedes and Culex genera) with a balanced accuracy of 95.5% and classified the genus and sex of those mosquitoes with a balanced accuracy of 88.8%. An analysis of the daily and seasonal temporal dynamics of Aedes and Culex mosquito populations was also performed using the time-stamped classifications from the system. CONCLUSIONS This study reports results for automated mosquito genus and sex classification using an optical sensor coupled to a mosquito trap in the field with highly balanced accuracy. The compatibility of the sensor with commercial mosquito traps enables the sensor to be integrated into conventional mosquito surveillance methods to provide accurate automatic monitoring with high temporal resolution of Aedes and Culex mosquitoes, two of the most concerning genera in terms of arbovirus transmission.
Collapse
Affiliation(s)
- María I González-Pérez
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de La Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | | | - Carles Aranda
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de La Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Servei de Control de Mosquits del Consell Comarcal del Baix Llobregat, El Prat de Llobregat, Spain
| | | | | | - Manuel Silva
- National Institute of Health/Centre for Vectors and Infectious Diseases Research, Águas de Moura, Portugal
| | - Hugo Costa Osório
- National Institute of Health/Centre for Vectors and Infectious Diseases Research, Águas de Moura, Portugal
- Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | | - Sandra Talavera
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de La Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Núria Busquets
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de La Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.
| |
Collapse
|
41
|
Müller JN, Galardo AKR, Corrêa APSDA, Macoris MDLDG, de Melo-Santos MAV, Nakazawa MM, Martins AJ, Lima JBP. Impact of SumiLarv ® 2MR on Aedes aegypti larvae: a multicenter study in Brazil. Parasit Vectors 2024; 17:88. [PMID: 38409019 PMCID: PMC10895835 DOI: 10.1186/s13071-023-06064-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/20/2023] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Aedes aegypti is associated with dengue, Zika, and chikungunya transmission. These arboviruses are responsible for national outbreaks with severe public health implications. Vector control is one of the tools used to prevent mosquito proliferation, and SumiLarv® 2MR is an alternative commercial product based on pyriproxyfen for larval/pupal control. In this study, the residual effectiveness of SumiLarv® 2MR in different regions of Brazil was evaluated in simulated field conditions. METHODS We conducted a multicenter study across four Brazilian states-Amapá, Pernambuco, Rio de Janeiro, and São Paulo-given the importance to the country's climatic variances in the north, northeast, and southeast regions and their influence on product efficiency. The populations of Ae. aegypti from each location were held in an insectary. Third-instar larvae (L3) were added every 2 weeks to water containers with SumiLarv® 2MR discs in 250-, 500- and 1000-l containers in Amapá and Rio de Janeiro, and 100-l containers in Pernambuco and São Paulo, using concentrations of 0.04, 0.08, and 0.16 mg/l. RESULTS Adult emergence inhibition over 420 days was observed in all tests conducted at a concentration of 0.16 mg/l; inhibition for 308-420 days was observed for 0.08 mg/l, and 224-420 days for 0.04 mg/l. CONCLUSIONS Sumilarv® 2MR residual activity demonstrated in this study suggests that this new pyriproxyfen formulation is a promising alternative for Aedes control, regardless of climatic variations and ideal concentration, since the SumiLarv® 2MR showed adult emergence inhibition of over 80% and residual activity greater than 6 months, a period longer than that recommended by the Ministry of Health of Brazil between product re-application in larval breeding sites.
Collapse
Affiliation(s)
- Josiane Nogueira Müller
- Laboratory of Biology, Control and Surveillance of Vector Insects-LBCVIV FIOCRUZ/RJ, Rio de Janeiro, Brazil.
- Laboratory of Medical Entomology, Institute of Scientific and Technological Research of the State of Amapá-IEPA, Macapá, Brazil.
- Programa de Pós-graduação em Medicina Tropical, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil.
| | - Allan Kardec Ribeiro Galardo
- Laboratory of Medical Entomology, Institute of Scientific and Technological Research of the State of Amapá-IEPA, Macapá, Brazil
| | - Ana Paula Sales de Andrade Corrêa
- Laboratory of Biology, Control and Surveillance of Vector Insects-LBCVIV FIOCRUZ/RJ, Rio de Janeiro, Brazil
- Laboratory of Medical Entomology, Institute of Scientific and Technological Research of the State of Amapá-IEPA, Macapá, Brazil
- Programa de Pós-graduação em Medicina Tropical, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | | - Ademir Jesus Martins
- Laboratory of Biology, Control and Surveillance of Vector Insects-LBCVIV FIOCRUZ/RJ, Rio de Janeiro, Brazil
| | - José Bento Pereira Lima
- Laboratory of Biology, Control and Surveillance of Vector Insects-LBCVIV FIOCRUZ/RJ, Rio de Janeiro, Brazil
- Programa de Pós-graduação em Medicina Tropical, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
42
|
Ioannou CS, Savvidou EC, Apocha L, Terblanche JS, Papadopoulos NT. Insecticide resistant mosquitoes remain thermal stress resistant, without loss of thermal plasticity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169443. [PMID: 38114031 DOI: 10.1016/j.scitotenv.2023.169443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/07/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
A major component of mosquito's climate change response is their heat tolerance, and any ability to rapidly adjust to extreme environmental conditions through phenotypic plasticity. The excessive use of insecticides for the control of major mosquito species leads to resistant populations, however it is largely unclear if this concurrently impacts thermal stress resistance and their potential to adjust tolerance via phenotypic plasticity. Culex pipiens pipiens, Culex pipiens molestus and Aedes albopictus populations obtained from the same region were subjected for 12 generations to selection trials to larvicides Diflubenzuron (DFB) and Bacillus thuringiensis subsp. israelensis (Bti) to develop insecticide resistance. Adults emerging from the selected populations were acclimated at different temperatures and the upper and lower critical thermal limits (CTmax and CTmin) were estimated using dynamic thermal assays. In addition, the supercooling points (SCPs) of non-acclimated adults of resistant and control populations were determined. Our results revealed marked differences in thermal response among the three species, the different acclimation regimes and sexes. Aedes albopictus was more resistant in high than low temperatures compared to both Culex pipiens biotypes. Culex forms responded similarly to heat but differently to cold stress. In both forms, females responded better than males to all thermal stressors. Acclimation at higher and lower temperatures improves CTmax and CTmin values, respectively in both insecticide resistant and control populations of all three species. Overall, selection to insecticides did not affect the thermal performance of adults. Hence, insecticide-resistant mosquito populations perform similarly to untreated ones and are capable of readily adapting to new environmental changes rising concerns regarding their geographic range expansion and disease transmission globally.
Collapse
Affiliation(s)
- Charalampos S Ioannou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Greece
| | - Eleni C Savvidou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Greece
| | - Lemonia Apocha
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Greece
| | - John S Terblanche
- Centre for Invasion Biology, Department of Conservation Ecology & Entomology, Stellenbosch University, South Africa
| | - Nikos T Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Greece.
| |
Collapse
|
43
|
Edillo F, Ymbong RR, Navarro AO, Cabahug MM, Saavedra K. Detecting the impacts of humidity, rainfall, temperature, and season on chikungunya, dengue and Zika viruses in Aedes albopictus mosquitoes from selected sites in Cebu city, Philippines. Virol J 2024; 21:42. [PMID: 38360693 PMCID: PMC10870450 DOI: 10.1186/s12985-024-02310-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Aedes albopictus is the secondary vector for dengue virus (DENV) in the Philippines, and also harbors chikungunya (CHIKV) and Zika (ZIKV) viruses. This study aimed to determine the minimum infection rates (MIRs) of CHIKV, DENV serotypes, and ZIKV in Ae. albopictus collected from selected two-site categories by altitude (highland [H] and lowland [L] sites) in Cebu city, Philippines during the wet (WS) and dry seasons (DS) of 2021-2022, and to explore the relationships between these arboviral MIRs and the local weather. METHODS The viral RNA extracts in pooled and reared adult Ae. albopictus collected during the DS and WS from two-site categories were subjected to RT-PCR to amplify and detect gene loci specific for CHIKV, DENV-1 to DENV-4, and ZIKV and analyzed with the weather data. RESULTS The range of CHIKV MIRs was higher in the WS (13.61-107.38 infected individuals per 1,000 mosquitoes) than in the DS (13.22-44.12), but was similar between the two-site categories. Rainfall (RF) influenced the CHIKV MIR. The MIR ranges of both DENV-2 (WS: H = 0, L = 0; DS: H = 0-5.92; L = 0-2.6) and DENV-4 (WS: H = 0, L = 0-2.90; DS: H = 2.96-6.13, L = 0-15.63) differed by season but not between the two-site categories. Relative humidity (RH), RF, and temperature did not influence DENVs' MIRs. The MIR range of ZIKV was similar in both seasons (WS: 11.36-40.27; DS: 0-46.15) and two-site categories (H = 0-90.91, L = 0-55.56). RH and temperature influenced ZIKV MIR. CONCLUSIONS RF influenced CHIKV MIR in Ae. albopictus, whereas RH and temperature influenced that of ZIKV. Season influenced the MIRs of CHIKV and DENVs but not in ZIKV. Ae. albopictus were co-infected with CHIKV, DENVs, and ZIKV in both highland and lowland sites in Cebu city. Recommendations include all-year-round implementation of the Philippine Department of Health's 4S enhanced strategy and installation of water pipelines in rural highlands for vector and disease control. Our findings are relevant to protect public health in the tropics in this climate change.
Collapse
Affiliation(s)
- Frances Edillo
- Mosquito Research Laboratory, Department of Biology, University of San Carlos- Talamban Campus, 6000, Cebu city, Philippines.
| | - Rhoniel Ryan Ymbong
- Mosquito Research Laboratory, Department of Biology, University of San Carlos- Talamban Campus, 6000, Cebu city, Philippines
| | - Anthoddiemn Olin Navarro
- Mosquito Research Laboratory, Department of Biology, University of San Carlos- Talamban Campus, 6000, Cebu city, Philippines
- Department of Science and Technology, Science Education Institute, Taguig City, Metro Manila 1631, Philippines
| | - Maureen Mathilde Cabahug
- Mosquito Research Laboratory, Department of Biology, University of San Carlos- Talamban Campus, 6000, Cebu city, Philippines
| | - Kristilynn Saavedra
- Mosquito Research Laboratory, Department of Biology, University of San Carlos- Talamban Campus, 6000, Cebu city, Philippines
| |
Collapse
|
44
|
Hug DOH, Kropf A, Amann MO, Koella JC, Verhulst NO. Unexpected behavioural adaptation of yellow fever mosquitoes in response to high temperatures. Sci Rep 2024; 14:3659. [PMID: 38351076 PMCID: PMC10864274 DOI: 10.1038/s41598-024-54374-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/12/2024] [Indexed: 02/16/2024] Open
Abstract
Temperature is a major ecological driver of mosquito-borne diseases as it influences the life-history of both the mosquito and the pathogen harboured within it. Understanding the mosquitoes' thermal biology is essential to inform risk prediction models of such diseases. Mosquitoes can respond to temperatures by microhabitat selection through thermal preference. However, it has not yet been considered that mosquitoes are likely to adapt to changing temperatures, for example during climate change, and alter their preference over evolutionary time. We investigated this by rearing six cohorts of the yellow fever mosquito Aedes aegypti at two temperatures (24 °C, 30 °C) for 20 generations and used these cohorts to explicitly separate the effects of long-term evolution and within-generation acclimation on their thermal preferences in a thermal gradient of 20-35 °C. We found that warm-evolved mosquitoes spent 31.5% less time at high temperatures, which affects their efficiency as a vector. This study reveals the complex interplay of experimental evolution, rearing temperatures, and thermal preference in Ae. aegypti mosquitoes. It highlights the significance of incorporating mosquito microhabitat selection in disease transmission models, especially in the context of climate change.
Collapse
Affiliation(s)
- David O H Hug
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Zurich, Switzerland
| | - Alida Kropf
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Marine O Amann
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Jacob C Koella
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Niels O Verhulst
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Zurich, Switzerland.
| |
Collapse
|
45
|
Garbuio M, Lima AR, Silva KJS, De Souza M, Inada NM, Dias LD, Bagnato VS. Influence of temperature combined with photodynamic inactivation on the development of Aedes aegypti. Photodiagnosis Photodyn Ther 2024; 45:103977. [PMID: 38224724 DOI: 10.1016/j.pdpdt.2024.103977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
To reduce the speed of selection of populations resistant to chemical insecticides, photodynamic inactivation (PDI) against Aedes aegypti is a hot-topic and promising alternative technique to vector control. Temperature is an important factor in the survival of Ae. aegypti larvae and mosquitoes as it influences physiology, behavior, and ecology. This work aimed to evaluate parameters of the biological cycle of Ae. aegypti such as: hatching rate, larval development, adult mosquito longevity, sex ratio, weight, and lethal concentration of larval mortality (LC) through the combination of PDI with different temperatures. The number of larvae found after 48 h suggests that temperature affects hatching rate. Additionally, results showed a delay in development of surviving larvae after PDI when compared to control groups, and there was a reduction in the longevity of mosquitoes that undertook photodynamic action. PDI also led to a predominance of male insects, and observed weight indicates that the inactivation method may have also interfered in mosquito size. The results point to a satisfactory performance of PDI at all tested temperatures. Experimental conditions that were not lethal to all larvae implied that PDI impacts the mosquitoes' biological cycle. Though metabolism and development are improved at higher temperatures, so is PDI action, thus maintaining the net benefit. Therefore, it is assumed that the proposed photolarvicide can be useful in reducing arbovirus transmission, and results invite for future research in different abiotic conditions.
Collapse
Affiliation(s)
- Matheus Garbuio
- Environmental Biophotonics Laboratory, São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil; PPG Biotec, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Alessandra Ramos Lima
- Environmental Biophotonics Laboratory, São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil.
| | - Kamila Jessie Sammarro Silva
- Environmental Biophotonics Laboratory, São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Mariana De Souza
- Environmental Biophotonics Laboratory, São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Natalia Mayumi Inada
- Environmental Biophotonics Laboratory, São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Lucas Danilo Dias
- Laboratório de Novos Materiais, Universidade Evangélica de Goiás, Anápolis, Brazil
| | - Vanderlei Salvador Bagnato
- Environmental Biophotonics Laboratory, São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil; Department of Biomedical Engineering, Texas A&M University, Texas, USA
| |
Collapse
|
46
|
Talaga S, Compin A, Azémar F, Leroy C, Dejean A. Urbanization and Water Containers Influence the Mosquito Community with Consequences for Aedes aegypti. NEOTROPICAL ENTOMOLOGY 2024; 53:162-170. [PMID: 37882954 DOI: 10.1007/s13744-023-01091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 10/03/2023] [Indexed: 10/27/2023]
Abstract
We aimed to determine how the degree of urbanization in a Neotropical city influences Aedes aegypti (L.), a pantropical vector of urban yellow fever, dengue, Zika and Chikungunia, via other mosquito species, whether they are competitors or predators, native to the area or invasive. We conducted experiments twice a month during one year in the city of Kourou, French Guiana, on three sites characterized by increasing percentages of imperviousness (i.e., 0.65%, 33.80% and 86.60%). These sites were located in a ≈5 ha forest fragment, a residential area with gardens, and in the older part of the city, respectively, and correspond to slightly, moderately and highly urbanized sites. There, we monitored twice a month during one year a total of 108 mosquito communities inhabiting four types of containers (i.e., a tank bromeliad, dry stumps of bamboo, ovitraps and car tires) installed in a random block design. In the tanks of the bromeliad, likely due to the acidity of the water, the immatures of native mosquito species prevailed, particularly Wyeomyia pertinans (Williston) in the slightly urbanized site. The general pattern was very similar in the three other types of containers where Limatus durhamii Théobald dominated in the slightly urbanized site, so that the abundance of Ae. aegypti immatures was low compared to those of native species. Yet, Ae. aegypti strongly dominated in the two more urbanized sites. These findings open up perspectives for vector management, including the conservation and/or the augmentation of natural enemies through modifications to landscape features.
Collapse
Affiliation(s)
- Stanislas Talaga
- Vector Control and Adaptation Unit, Vectopôle Amazonien Emile Abonnenc, Institut Pasteur de la Guyane, Cayenne, France
| | - Arthur Compin
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse cedex 9, France
| | - Frédéric Azémar
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse cedex 9, France
| | - Céline Leroy
- AMAP, Univ. Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Alain Dejean
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse cedex 9, France.
- UMR EcoFoGAgroParisTechCirad, CNRS, INRA, Université des Antilles, Université de Guyane, Kourou, France.
| |
Collapse
|
47
|
Newman EA, Feng X, Onland JD, Walker KR, Young S, Smith K, Townsend J, Damian D, Ernst K. Defining the roles of local precipitation and anthropogenic water sources in driving the abundance of Aedes aegypti, an emerging disease vector in urban, arid landscapes. Sci Rep 2024; 14:2058. [PMID: 38267474 PMCID: PMC10808563 DOI: 10.1038/s41598-023-50346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
Understanding drivers of disease vectors' population dynamics is a pressing challenge. For short-lived organisms like mosquitoes, landscape-scale models must account for their highly local and rapid life cycles. Aedes aegypti, a vector of multiple emerging diseases, has become abundant in desert population centers where water from precipitation could be a limiting factor. To explain this apparent paradox, we examined Ae. aegypti abundances at > 660 trapping locations per year for 3 years in the urbanized Maricopa County (metropolitan Phoenix), Arizona, USA. We created daily precipitation layers from weather station data using a kriging algorithm, and connected localized daily precipitation to numbers of mosquitoes trapped at each location on subsequent days. Precipitation events occurring in either of two critical developmental periods for mosquitoes were correlated to suppressed subsequent adult female presence and abundance. LASSO models supported these analyses for female presence but not abundance. Precipitation may explain 72% of Ae. aegypti presence and 90% of abundance, with anthropogenic water sources supporting mosquitoes during long, precipitation-free periods. The method of using kriging and weather station data may be generally applicable to the study of various ecological processes and patterns, and lead to insights into microclimates associated with a variety of organisms' life cycles.
Collapse
Affiliation(s)
- Erica A Newman
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA.
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Xiao Feng
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | | | - Kathleen R Walker
- Department of Entomology, University of Arizona, 1140 E South Campus Drive, Forbes 410, Tucson, AZ, 85721, USA
| | - Steven Young
- Maricopa County Environmental Services Vector Control Division, 3220 W Gibson Ln, Phoenix, AZ, 85009, USA
| | - Kirk Smith
- Maricopa County Environmental Services Vector Control Division, 3220 W Gibson Ln, Phoenix, AZ, 85009, USA
| | - John Townsend
- Maricopa County Environmental Services Vector Control Division, 3220 W Gibson Ln, Phoenix, AZ, 85009, USA
| | - Dan Damian
- Maricopa County Office of Enterprise Technology, 301 S 4Th Ave #200, Phoenix, AZ, 85003, USA
| | - Kacey Ernst
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
48
|
Obholz G, Mansilla AP, San Blas G, Diaz A. Modeling and updating the occurrence of Aedes aegypti in its southern limit of distribution in South America. Acta Trop 2024; 249:107052. [PMID: 37890816 DOI: 10.1016/j.actatropica.2023.107052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/09/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023]
Abstract
Aedes aegypti is the main vector of arboviruses in the world. This mosquito species is distributed from tropical to temperate regions. In Argentina, it has been reported in 20 out of 23 provinces and reaches its southernmost distribution in the world. Its distribution and persistence are affected by meteorological, demographic and environmental factors, such as temperature, precipitation, and population. The aim of this study was to update and model the occurrence of Aedes aegypti in its southern limit of distribution in Argentina. To this end, a total of 37 sites were inspected in La Pampa and Río Negro provinces. Generalized Linear Models were used to explain the occurrence of Aedes aegypti based on meteorological, environmental and demographic variables. Aedes aegypti was found in 11 cities of La Pampa province where it had not been previously reported, but was not found in any of the cities evaluated in Río Negro province. The averaged model explaining the occurrence of Aedes aegypti included the minimum temperature, precipitation and interactions between maximum temperature and precipitation as explanatory variables. Although precipitation was statistically significant, other factors such as minimum temperature are also important in modeling the occurrence of Aedes aegypti in its southernmost distribution limit.
Collapse
Affiliation(s)
- Gisella Obholz
- Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP) - Universidad Nacional de La Pampa, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Ana Paula Mansilla
- Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP) - Universidad Nacional de La Pampa, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Germán San Blas
- Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP) - Universidad Nacional de La Pampa, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Adrián Diaz
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Arbovirus, Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
49
|
Manzano-Alvarez J, Terradas G, Holmes CJ, Benoit JB, Rasgon JL. Dehydration stress and Mayaro virus vector competence in Aedes aegypti. J Virol 2023; 97:e0069523. [PMID: 38051046 PMCID: PMC10734514 DOI: 10.1128/jvi.00695-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/19/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Relative humidity (RH) is an environmental variable that affects mosquito physiology and can impact pathogen transmission. Low RH can induce dehydration in mosquitoes, leading to alterations in physiological and behavioral responses such as blood-feeding and host-seeking behavior. We evaluated the effects of a temporal drop in RH (RH shock) on mortality and Mayaro virus vector competence in Ae. aegypti. While dehydration induced by humidity shock did not impact virus infection, we detected a significant effect of dehydration on mosquito mortality and blood-feeding frequency, which could significantly impact transmission dynamics.
Collapse
Affiliation(s)
- Jaime Manzano-Alvarez
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- Universidad El Bosque, Vicerrectoría de Investigación, Saneamiento Ecológico, Salud y Medio Ambiente, Bogotá, Colombia
| | - Gerard Terradas
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jason L. Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
50
|
Akyea-Bobi NE, Akorli J, Opoku M, Akporh SS, Amlalo GK, Osei JHN, Frempong KK, Pi-Bansa S, Boakye HA, Abudu M, Akorli EA, Acquah-Baidoo D, Pwalia R, Bonney JHK, Quansah R, Dadzie SK. Entomological risk assessment for transmission of arboviral diseases by Aedes mosquitoes in a domestic and forest site in Accra, Ghana. PLoS One 2023; 18:e0295390. [PMID: 38060554 PMCID: PMC10703219 DOI: 10.1371/journal.pone.0295390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Dengue, Zika and chikungunya are Aedes-borne viral diseases that have become great global health concerns in the past years. Several countries in Africa have reported outbreaks of these diseases and despite Ghana sharing borders with some of these countries, such outbreaks are yet to be detected. Viral RNA and antibodies against dengue serotype-2 have recently been reported among individuals in some localities in the regional capital of Ghana. This is an indication of a possible silent transmission ongoing in the population. This study, therefore, investigated the entomological transmission risk of dengue, Zika and chikungunya viruses in a forest and domestic population in the Greater Accra Region, Ghana. All stages of the Aedes mosquito (egg, larvae, pupae and adults) were collected around homes and in the forest area for estimation of risk indices. All eggs were hatched and reared to larvae or adults for morphological identification together with larvae and adults collected from the field. The forest population had higher species richness with 7 Aedes species. The predominant species of Aedes mosquitoes identified from both sites was Aedes aegypti (98%). Aedes albopictus, an important arbovirus vector, was identified only in the peri-domestic population at a prevalence of 1.5%, significantly higher than previously reported. All risk indices were above the WHO threshold except the House Index for the domestic site which was moderate (19.8). The forest population recorded higher Positive Ovitrap (34.2% vs 26.6%) and Container (67.9% vs 36.8%) Indices than the peri-domestic population. Although none of the mosquito pools showed the presence of dengue, chikungunya or Zika viruses, all entomological risk indicators showed that both sites had a high potential arboviral disease transmission risk should any of these viruses be introduced. Continuous surveillance is recommended in these and other sites in the Metropolis to properly map transmission risk areas to inform outbreak preparedness strategies.
Collapse
Affiliation(s)
- Nukunu Etornam Akyea-Bobi
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Jewelna Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Millicent Opoku
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Samuel Sowah Akporh
- Vestergaard NMIMR Vector Labs, Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Godwin Kwame Amlalo
- Vestergaard NMIMR Vector Labs, Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Joseph Harold Nyarko Osei
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Kwadwo Kyereme Frempong
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Sellase Pi-Bansa
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Helena Anokyewaa Boakye
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Mufeez Abudu
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Esinam Abla Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Dominic Acquah-Baidoo
- Vestergaard NMIMR Vector Labs, Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Rebecca Pwalia
- Vestergaard NMIMR Vector Labs, Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | | | - Reginald Quansah
- Department of Biological, Environmental and Occupational Health, School of Public Health, University of Ghana, Legon, Accra
| | - Samuel Kweku Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| |
Collapse
|