1
|
Islam MM, Rahman S, Hoque N, Mamun MA, Moheuddin MS, Ali MS, Rashid MRA, Masum S, Ferdaus MH, Niloy NT, Rahman MA. REMP: A unique dataset of rare and endangered medicinal plants in Bangladesh for sustainable healing and biodiversity conservation. Data Brief 2024; 57:110895. [PMID: 39314890 PMCID: PMC11418000 DOI: 10.1016/j.dib.2024.110895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
In Bangladesh, there are significant number of medicinal plants, but currently no comprehensive record of these valuable species is publicly available. Alarmingly, some of these plants are in a precarious state of endangerment. Therefore, we are creating a unique dataset of Bangladesh's rare, endangered, and threatened medicinal plants to support conservation efforts. It will help us to track and conserve endangered plant species, ensuring a more organized approach to research and preservation efforts. We conducted on-site visits to the National Botanical Garden and The Government Unani and Ayurvedic Medical College, capturing photographs of these plants in optimal sunlight conditions at various times of the day. This involved fieldwork, detailed image annotations, dataset organization, diversity augmentation, and contribution to the preservation of our natural heritage. We have collected a total of 16 types of rare and endangered medicinal plant leaf photos to create our unique dataset consisting of a total of 3494 images. This dataset will help researchers in biodiversity conservation through building efficient machine learning models and applying advanced machine learning techniques to identify rare and endangered medicinal plants.
Collapse
Affiliation(s)
- Mohammad Manzurul Islam
- Department of Computer Science and Engineering, East West University, Aftabnagar, Dhaka, Bangladesh
| | - Sanjida Rahman
- Department of Computer Science and Engineering, East West University, Aftabnagar, Dhaka, Bangladesh
| | - Nahida Hoque
- Department of Computer Science and Engineering, East West University, Aftabnagar, Dhaka, Bangladesh
| | - Md. Al Mamun
- Department of Computer Science and Engineering, East West University, Aftabnagar, Dhaka, Bangladesh
| | - Md. Sultan Moheuddin
- Department of Computer Science and Engineering, East West University, Aftabnagar, Dhaka, Bangladesh
| | - Md. Sawkat Ali
- Department of Computer Science and Engineering, East West University, Aftabnagar, Dhaka, Bangladesh
| | | | - Saleh Masum
- Department of Information and Communication Engineering, University of Rajshahi, Bangladesh
| | - Md. Hasanul Ferdaus
- Department of Computer Science and Engineering, East West University, Aftabnagar, Dhaka, Bangladesh
| | - Nishat Tasnim Niloy
- Department of Computer Science and Engineering, East West University, Aftabnagar, Dhaka, Bangladesh
| | - Md. Atiqur Rahman
- Department of Computer Science and Engineering, East West University, Aftabnagar, Dhaka, Bangladesh
| |
Collapse
|
2
|
Vladkova TG, Smani Y, Martinov BL, Gospodinova DN. Recent Progress in Terrestrial Biota Derived Antibacterial Agents for Medical Applications. Molecules 2024; 29:4889. [PMID: 39459256 PMCID: PMC11510244 DOI: 10.3390/molecules29204889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Conventional antibiotic and multidrug treatments are becoming less and less effective and the discovery of new effective and safe antibacterial agents is becoming a global priority. Returning to a natural antibacterial product is a relatively new current trend. Terrestrial biota is a rich source of biologically active substances whose antibacterial potential has not been fully utilized. The aim of this review is to present the current state-of-the-art terrestrial biota-derived antibacterial agents inspired by natural treatments. It summarizes the most important sources and newly identified or modified antibacterial agents and treatments from the last five years. It focuses on the significance of plant- animal- and bacteria-derived biologically active agents as powerful alternatives to antibiotics, as well as the advantages of utilizing natural antibacterial molecules alone or in combination with antibiotics. The main conclusion is that terrestrial biota-derived antibacterial products and substances open a variety of new ways for modern improved therapeutic strategies. New terrestrial sources of known antibacterial agents and new antibacterial agents from terrestrial biota were discovered during the last 5 years, which are under investigation together with some long-ago known but now experiencing their renaissance for the development of new medical treatments. The use of natural antibacterial peptides as well as combinational therapy by commercial antibiotics and natural products is outlined as the most promising method for treating bacterial infections. In vivo testing and clinical trials are necessary to reach clinical application.
Collapse
Affiliation(s)
- Todorka G. Vladkova
- Department of Polymer Engineering, University of Chemical Technology and Metallurgy, 8 “Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria
| | - Younes Smani
- Andalusian Center of Developmental Biology, CSIC, Junta de Andalusia, University of Pablo de Olavide, 41013 Seville, Spain;
- Department of Molecular Biology and Biochemical Engineering, Andalusian Center of Developmental Biology, CSIC, Junta de Andalusia, University of Pablo de Olavide, 41013 Seville, Spain
| | - Boris L. Martinov
- Department of Biotechnology, University of Chemical Technology and Metallurgy, 8 “Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria;
| | - Dilyana N. Gospodinova
- Faculty of Electrical Engineering, Technical University of Sofia, 8 “Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria;
| |
Collapse
|
3
|
Huang X, Tao S, Liu C, Sun X, Hao Y, Ma Y, Liu Y, Liu J. The efficacy of azithromycin combined with seven types of Chinese medicine injections in the treatment of Mycoplasma pneumoniae pneumonia in children: a systematic review and Bayesian network meta-analysis. Front Pharmacol 2024; 15:1378445. [PMID: 39421669 PMCID: PMC11484089 DOI: 10.3389/fphar.2024.1378445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/19/2024] [Indexed: 10/19/2024] Open
Abstract
Mycoplasma pneumoniae pneumonia (MPP) is the predominant community-acquired pneumonia (CAP) in children aged 5 years or older. In recent decades, the annual increase in drug resistance rates of macrolide antibiotics, particularly azithromycin (AZ), has led to complex clinical treatment strategies and substantial healthcare costs associated with MPP. Chinese medicine injections (CMIs), recognized as an effective supplementary therapy, are acknowledged by clinicians in China. It is necessary to explore the efficacy of azithromycin in combination with CMIs. Methods Randomized controlled trials (RCTs) evaluating azithromycin in combination with seven types of CMIs for MPP in children were identified based on inclusion criteria and assessed using the revised Cochrane risk of bias tool (RoB 2.0). R 4.3.1 and STATA 15.0 were employed to generate ranking probabilities and perform network meta-analysis. Competing interventions were ranked using the surface under the cumulative ranking (SUCRA) probabilities. Results A comprehensive analysis was performed on 155 RCTs involving 15,014 patients and 8 therapeutic strategies within this Bayesian network meta-analysis (BNMA). The results indicated that AZ combined with seven types of CMIs was more effective than azithromycin alone in overall outcomes. Notably, azithromycin combined with Chuanhuning injection (AZ + CHN) achieved the highest ranking in improving the clinical effectiveness rate (SUCRA, 80.89%); regarding secondary outcome measures, azithromycin combined with Yanhuning injection (AZ + YHN) had the highest probability of improving four different outcomes: disappearance time of cough (SUCRA, 80.01%), disappearance time of pulmonary rale (SUCRA, 87.77%), disappearance time of fever (SUCRA, 95.70%), and disappearance time of pulmonary shadows in X-ray (SUCRA, 97.34%); furthermore, azithromycin combined with Qingkailing injection (AZ + QKL) was more likely to reduce average hospitalization time (SUCRA, 94.60%). Conclusion This study highlights the potential benefits of seven types of Chinese medicine injections as adjunctive therapy for Mycoplasma pneumoniae pneumonia in children. However, further support and validation of these findings are needed through high-quality randomized controlled trials with larger sample sizes and double-blind designs. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/#recordDetails/.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jibin Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Suriyaprom S, Ngamsaard P, Intachaisri V, Cheepchirasuk N, Panya A, Kaewkod T, Tragoolpua Y. Inhibition of Oral Pathogenic Bacteria, Suppression of Bacterial Adhesion and Invasion on Human Squamous Carcinoma Cell Line (HSC-4 Cells), and Antioxidant Activity of Plant Extracts from Acanthaceae Family. PLANTS (BASEL, SWITZERLAND) 2024; 13:2622. [PMID: 39339598 PMCID: PMC11435011 DOI: 10.3390/plants13182622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
Medicinal plants have traditionally been used to treat various human diseases worldwide. In this study, we evaluated the leaf extracts of plants from the Acanthaceae family, specifically Clinacanthus nutans (Burm.f.) Lindau, Thunbergia laurifolia Lindl., and Acanthus ebracteatus Vahl., for their compounds and antioxidant activity. The ethanolic extracts of A. ebracteatus showed the highest total phenolic content at 22.55 mg GAE/g extract and the strongest antioxidant activities, with IC50 values of 0.24 mg/mL and 3.05 mg/mL, as determined by DPPH and ABTS assays. The antibacterial efficacy of these extracts was also tested against Streptococcus pyogenes, Streptococcus mutans, Staphylococcus aureus, and Klebsiella pneumoniae. The diameters of the inhibition zones ranged from 14.7 to 17.3 mm using the agar well diffusion method, with MIC and MBC values ranging from 7.81 to 250 mg/mL. Anti-biofilm formation, antibacterial adhesion, and antibacterial invasion assays further demonstrated that these medicinal plant extracts can inhibit bacterial biofilm formation and prevent the adhesion and invasion of oral pathogenic bacteria on the human tongue squamous cell carcinoma-derived cell line (HSC-4 cells). The ethanolic extracts of C. nutans and A. ebracteatus were able to inhibit the gtfD and gbp genes, which facilitate biofilm formation and bacterial adherence to surfaces. These findings provide new insights into the antibacterial and antioxidant properties of plant extracts from the Acanthaceae family. These activities could enhance the clinical and pharmaceutical applications of plant extracts as an alternative therapy for bacterial infections and a dietary supplement.
Collapse
Affiliation(s)
- Sureeporn Suriyaprom
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornpimon Ngamsaard
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Varachaya Intachaisri
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nitsanat Cheepchirasuk
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Aussara Panya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thida Kaewkod
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Wahyuni DK, Nuha GA, Atere TG, Kharisma VD, Tari VS, Rahmawati CT, Murtadlo AAA, Syukriya AJ, Wacharasindu S, Prasongsuk S, Purnobasuki H. Antimicrobial potentials of Pandanus amaryllifolius Roxb.: Phytochemical profiling, antioxidant, and molecular docking studies. PLoS One 2024; 19:e0305348. [PMID: 39141632 PMCID: PMC11324095 DOI: 10.1371/journal.pone.0305348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/28/2024] [Indexed: 08/16/2024] Open
Abstract
The emergence of antimicrobial resistance has led to an urgent need for novel antimicrobial drugs. This study aimed to determine the antioxidant and antimicrobial potentials in silico and in vitro of Pandanus amaryllifolius Roxb. ethanolic extract. The extracts were subjected to gas chromatography-mass spectrometry (GC-MS) analysis to identify the compounds. In silico antimicrobial studies were performed to gain insights into the possible mechanism of action of the active compounds as antimicrobials. The antimicrobial activities of the ethanolic extracts were assessed using the agar well diffusion method against the Surabaya strain of Escherichia coli and Staphylococcus aureus. Antioxidant properties of the extract were done using DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) and ABTS [2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid)] inhibition assays. The phytochemical screening revealed that the extract has high flavonoids and polyphenols contents. The GC-MS analysis detected the presence of 52 bioactive substances, with n-hexadecanoic acid, 9, 12, 15-octadecatrienoic acid, benzofuran 2,3-dihydro-. quinic acid, neophytadiene as major compound. Molecular docking studies showed that these compounds have a high binding affinity towards the target proteins, thereby inhibiting their activities. The ethanolic extract of P. amaryllifolius Roxb. exhibited antioxidant and antimicrobial activities. The IC50 were 11.96 ± 4.01 μg/ml and 26.18 ± 7.44 μg/ml for DPPH and ABTS. The diameters of inhibition zones (DIZ) and percentage of inhibition (PI) were calculated and varied for every single pathogen 16.44 ± 1.21mm/66.76 ± 4.92% (50%) and 21.22 ± 0.11mm/82.49 ± 3.91% (50%) for E. coli and S. aureus (DIZ/PI) respectively. Overall, this study provides information on the mechanism responsible for P. amaryllifolius Roxb. extract as a natural antimicrobe and lays the foundation for further studies to isolate and characterize the active compounds as antimicrobial candidates.
Collapse
Affiliation(s)
- Dwi Kusuma Wahyuni
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga Surabaya, Surabaya, East Java, Indonesia
| | - Gita Aqila Nuha
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga Surabaya, Surabaya, East Java, Indonesia
| | - Tope Gafar Atere
- Department of Medical Biochemistry, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Viol Dhea Kharisma
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga Surabaya, Surabaya, East Java, Indonesia
| | - Vinaya Satyawan Tari
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga Surabaya, Surabaya, East Java, Indonesia
| | - Cici Tya Rahmawati
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga Surabaya, Surabaya, East Java, Indonesia
| | - Ahmad Affan Ali Murtadlo
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga Surabaya, Surabaya, East Java, Indonesia
| | | | - Sumrit Wacharasindu
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Sehanat Prasongsuk
- Plant and Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Hery Purnobasuki
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga Surabaya, Surabaya, East Java, Indonesia
| |
Collapse
|
6
|
Li Q, Lu H, Ruan Y, Geng Y, Zhao Z, Liu Y, Feng L, Guo W. Andrographolide suppresses SARS-CoV-2 infection by downregulating ACE2 expression: A mechanistic study. Antivir Ther 2024; 29:13596535241259952. [PMID: 38873947 DOI: 10.1177/13596535241259952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the receptor that enables SARS-CoV-2 to invade host cells. Previous studies have reported that reducing ACE2 expression may have an anti-SARS-CoV-2 effect. In this study, we constructed a pGL4.10-F2-ACE2 vector with double luciferase genes (firefly and Renilla luciferase) under the control of the ACE2 promoter and used it to screen compounds from Chinese traditional medicinal herbs (CTMHs) that can inhibit ACE2 transcription in human cells. We transfected HEK293T cells with pGL4.10-F2-ACE2 and treated them with CTMH compounds and then measured fluorescence to evaluate the indirect inhibition of ACE2 transcription. Out of 37 compounds tested, andrographolide demonstrated a dose-dependent inhibition of ACE2 transcription. We further confirmed by RT-qPCR and Western blot assays that andrographolide also reduced ACE2 expression in BEAS-2B cells in a dose-dependent manner. Moreover, pseudovirus infection assays in BEAS-2B cells demonstrated that andrographolide can inhibit SARS-CoV-2 infection in a dose-dependent manner. These results suggest that andrographolide has potential anti-SARS-CoV-2 activity and could be a candidate drug for COVID-19 prevention and treatment.
Collapse
Affiliation(s)
- Qing Li
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Donguan, China
- Department of Pathogenic Organism Biology, Henan University of Chinese Medicine, Zhengzhou, China
| | - Hongmei Lu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Donguan, China
| | - Yongdui Ruan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Donguan, China
| | - Yuxuan Geng
- Department of Pathogenic Organism Biology, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zuguo Zhao
- School of Basic Medicine, Guangdong Medical University, Donguan, China
| | - Ying Liu
- Department of Pharmacy, DongGuan SongShan Lake Tung Wah Hospital, DongGuan, China
| | - Long Feng
- Department of Pathogenic Organism Biology, Henan University of Chinese Medicine, Zhengzhou, China
| | - Wentao Guo
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Donguan, China
- School of Basic Medicine, Guangdong Medical University, Donguan, China
| |
Collapse
|
7
|
Yu K, Liang P, Yu H, Liu H, Guo J, Yan X, Li Z, Li G, Wang Y, Wang C. Integrating Transcriptome and Chemical Analyses to Provide Insights into Biosynthesis of Terpenoids and Flavonoids in the Medicinal Industrial Crop Andrographis paniculate and Its Antiviral Medicinal Parts. Molecules 2024; 29:852. [PMID: 38398604 PMCID: PMC10893308 DOI: 10.3390/molecules29040852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Andrographis paniculata is a medicinal plant traditionally used to produce diterpene lactones and flavonoids, which possess various biological activities. Widely distributed in China, India, and other Southeast Asia countries, A. paniculata has become an important economic crop, significantly treating SARS-CoV-2, and is being cultivated on a large scale in southern China. The biosynthesis of active ingredients in A. paniculata are regulated and controlled by genes, but their specific roles are still not fully understood. To further explore the growth regulation factors and utilization of its medicinal parts of this industrial crop, chemical and transcriptome analyses were conducted on the roots, stems, and leaves of A. paniculata to identify the biosynthesis pathways and related candidate genes of the active ingredients. The chemical analysis revealed that the main components of A. paniculata were diterpene lactones and flavonoids, which displayed potential ability to treat SARS-CoV-2 through molecular docking. Moreover, the transcriptome sequencing annotated a total of 40,850 unigenes, including 7962 differentially expressed genes. Among these, 120 genes were involved in diterpene lactone biosynthesis and 60 genes were involved in flavonoid biosynthesis. The expression of diterpene lactone-related genes was the highest in leaves and the lowest in roots, consistent with our content determination results. It is speculated that these highly expressed genes in leaves may be involved in the biosynthesis pathway of diterpenes. Furthermore, two class Ⅰ terpene synthases in A. paniculata transcriptome were also annotated, providing reference for the downstream pathway of the diterpene lactone biosynthesis. With their excellent market value, our experiments will promote the study of the biosynthetic genes for active ingredients in A. paniculata and provide insights for subsequent in vitro biosynthesis.
Collapse
Affiliation(s)
- Kuo Yu
- School of Medicine, Foshan University, Foshan 528225, China; (K.Y.); (P.L.); (H.L.); (J.G.); (G.L.)
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (H.Y.); (X.Y.); (Z.L.)
| | - Pengjie Liang
- School of Medicine, Foshan University, Foshan 528225, China; (K.Y.); (P.L.); (H.L.); (J.G.); (G.L.)
| | - Heshui Yu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (H.Y.); (X.Y.); (Z.L.)
| | - Hui Liu
- School of Medicine, Foshan University, Foshan 528225, China; (K.Y.); (P.L.); (H.L.); (J.G.); (G.L.)
| | - Jialiang Guo
- School of Medicine, Foshan University, Foshan 528225, China; (K.Y.); (P.L.); (H.L.); (J.G.); (G.L.)
| | - Xiaohui Yan
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (H.Y.); (X.Y.); (Z.L.)
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (H.Y.); (X.Y.); (Z.L.)
| | - Guoqiang Li
- School of Medicine, Foshan University, Foshan 528225, China; (K.Y.); (P.L.); (H.L.); (J.G.); (G.L.)
| | - Ying Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chunhua Wang
- School of Medicine, Foshan University, Foshan 528225, China; (K.Y.); (P.L.); (H.L.); (J.G.); (G.L.)
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (H.Y.); (X.Y.); (Z.L.)
| |
Collapse
|
8
|
Chau TP, Samdani MS, Kuriakose LL, Sindhu R. Assessment of multi-biomedical efficiency of Andrographis paniculata shoot extracts through in-vitro analysis and major compound identification. ENVIRONMENTAL RESEARCH 2024; 242:117779. [PMID: 38029817 DOI: 10.1016/j.envres.2023.117779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
The present investigation looked into the various biomedical potentials of Andrographis paniculata shoot extracts. The results showed that the methanol extract (Met-E) of A. paniculata contains more phytochemicals than the acetone and petroleum ether extracts, including alkaloids, saponins, tannins, phenolics, flavonoids, glycosides, terpenoids, phytosterol, steroids, and protein. Accordingly, the Met-E alone showed considerable bactericidal activity (through agar well diffusion method) against the bacterial pathogens namely Shigella dysenteriae, Bacillus cereus, Salmonella typhi, Enterococcus faecalis, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphlococcus aureus, E. coli, and B. subtilis. This bactericidal activity was found as dose dependent manner, since at 1000 μg ml concentration, the Met-E showed better antibacterial activity. Similarly, at increased concentration (1000 μg ml) it showed notable antidiabetic (α-amylase inhibition: 74.31% and α-glucosidase inhibition: 72.34%), antioxidant (DPPH: 78.24%), and anti-inflammatory (albumin denaturation inhibition: 79.84% and lipoxigenase inhibition: 69.4%) activities. The phytochemical profiling of Met-E was characterized by UV-visible spectrophotometer (UV-vis), Gas Chromatography-Mass Spectrometry (GC/MS), Fourier transform infrared (FTIR), and High Performance Liquid Chromatography (HPLC) analyses. The results showed the Met-E contain bioactive compounds such as gallic acid, epicatechin, catechin, naringin, vitexin-2-rhamnoside, taxifolin, kaempferol, hesperidin, myricetin, rutin, quercetin, phloretin, and ursolic acid compounds. While most of these substances have been recognised for their pharmacological application perspective, the biological properties of particular substances must be studied in the future using in-vivo strategies.
Collapse
Affiliation(s)
- Tan Phat Chau
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | | | - Laya Liz Kuriakose
- Department of Food Technology, TKM Institute of Technology, Kollam, Kerala, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam, Kerala, India.
| |
Collapse
|
9
|
Chau TP, Devanesan S, Ayub R, Perumal K. Identification and characterization of major bioactive compounds from Andrographis paniculata (Burm. f.) extracts showed multi-biomedical applications. ENVIRONMENTAL RESEARCH 2024; 242:117763. [PMID: 38029828 DOI: 10.1016/j.envres.2023.117763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
The Andrographis paniculata recognized as most valuable medicinal plant in folk medicine. Hence, this research was designed to evaluate antibacterial potential of petroleum ether (PE) and methanol (ME) extracts of A. paniculata against skin infection causing bacterial pathogens such as Staphylococcus aureus, Streptococcus pyogenes, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus vulgaris, and Propionibacterium acnes. Also assessed the antidiabetic (α-glucosidase and α-amylase inhibition assay), antioxidant, and photoprotective potential of PE and ME extract analyses. The major bioactive compounds were identified and characterized through UV, FTIR, 1H-NMR and 13C-NMR spectra analyses. The ME extract contain more number of phytochemicals (alkaloids, flavonoids, saponins, terpenoids, glycoside, protein, and phytosterol) than PE extract. The antibacterial activity result also revealed that the ME (as dose dependent) extract showed better activity at 250 mg mL-1 as in the following order: P. acnes (6-29 mm) > K. pneumoniae (3-28 mm) > S. aureus (3-27 mm) > P. vulgaris (3-26 mm) > S. pyogenes (2-25 mm) > E. aerogenes (1-23 mm). PE: E. aerogenes (3-20 mm) > P. vulgaris (2-19 mm) > P. acnes (3-18 mm) > K. pneumoniae (3-17 mm) > S. aureus (2-16 mm) > S. pyogenes (0-11 mm). The MIC value of ME extract was found as 100-150 mg mL-1 and it was better than PE extract. Similarly, the ME also possesses dose based α-glucosidase inhibition activity as up to 85% at 250 mg mL-1 concentration. The fluorescence spectra analysis method also stated that the ME extract possess photoprotective bioactive agent. The ME fractions (F01 and F02) obtained from TLC and column chromatogram were identified as 3-O-β-d-glucosyl-14- deoxyandrographiside and 14-deoxyandrographolide respectively through UV, FTIR, 1H-NMR and 13C-NMR spectra analyses. Such compounds may be responsible for significant antibacterial activity against pathogenic bacteria causing skin infections, excellent antidiabetic activity, as well as photoprotective potential.
Collapse
Affiliation(s)
- Tan Phat Chau
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Rashid Ayub
- Department of Science and Technology, King Saud University, P.O. Box-2454, Riyadh, 11451, Saudi Arabia
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, OH, 43210, USA
| |
Collapse
|
10
|
Chiesa I, Esposito A, Vozzi G, Gottardi R, De Maria C. 4D bioprinted self-folding scaffolds enhance cartilage formation in the engineering of trachea. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570378. [PMID: 38105967 PMCID: PMC10723422 DOI: 10.1101/2023.12.06.570378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Trachea defects that required surgical interventions are increasing in number in the recent years, especially for pediatric patients. However, current gold standards, such as biological grafts and synthetic prothesis, do not represent an effective solution, due to the lack of mimicry and regeneration capability. Bioprinting is a cutting-edge approach for the fabrication of biomimetic scaffold to empower tissue engineering toward trachea replacement. In this study, we developed a self-folding gelatin-based bilayer scaffold for trachea engineering, exploiting the 4D bioprinting approach, namely the fabrication of dynamic scaffolds, able to shape morph in a predefined way after the application of an environmental stimulus. Indeed, starting form a 2D flat position, upon hydration, this scaffold forms a closed tubular structure. An analytical model, based on Timoshenko's beam thermostats, was developed, and validated to predict the radius of curvature of the scaffold according to the material properties and the scaffold geometry. The 4D bioprinted structure was tested with airway fibroblast, lung endothelial cells and ear chondral progenitor cells (eCPCs) toward the development of a tissue engineered trachea. Cells were seeded on the scaffold in its initial flat position, maintained their position after the scaffold actuation and proliferated over or inside it. The ability of eCPCs to differentiate towards mature cartialge was evaluated. Interestingly, real-time PCR revealed that differentiating eCPCs on the 4D bioprinted scaffold promote healthy cartilage formation, if compared with eCPCs cultured on 2D static scaffold. Thus, eCPCs can perceive scaffold folding and its final curvature and to react to it, towards the formation of mature cartilage for the airway.
Collapse
|
11
|
Talodthaisong C, Patramanon R, Thammawithan S, Lapmanee S, Maikaeo L, Sricharoen P, Khongkow M, Namdee K, Jantimaporn A, Kayunkid N, Hutchison JA, Kulchat S. A Shear-Thinning, Self-Healing, Dual-Cross Linked Hydrogel Based on Gelatin/Vanillin/Fe 3+ /AGP-AgNPs: Synthesis, Antibacterial, and Wound-Healing Assessment. Macromol Biosci 2023; 23:e2300250. [PMID: 37535979 DOI: 10.1002/mabi.202300250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/12/2023] [Indexed: 08/05/2023]
Abstract
A shear-thinning and self-healing hydrogel based on a gelatin biopolymer is synthesized using vanillin and Fe3+ as dual crosslinking agents. Rheological studies indicate the formation of a strong gel found to be injectable and exhibit rapid self-healing (within 10 min). The hydrogels also exhibited a high degree of swelling, suggesting potential as wound dressings since the absorption of large amounts of wound exudate, and optimum moisture levels, lead to accelerated wound healing. Andrographolide, an anti-inflammatory natural product is used to fabricate silver nanoparticles, which are characterized and composited with the fabricated hydrogels to imbue them with anti-microbial activity. The nanoparticle/hydrogel composites exhibit activity against Escherichia coli, Staphylococcus aureus, and Burkholderia pseudomallei, the pathogen that causes melioidosis, a serious but neglected disease affecting southeast Asia and northern Australia. Finally, the nanoparticle/hydrogel composites are shown to enhance wound closure in animal models compared to the hydrogel alone, confirming that these hydrogel composites hold great potential in the biomedical field.
Collapse
Affiliation(s)
- Chanon Talodthaisong
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Rina Patramanon
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Saengrawee Thammawithan
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sarawut Lapmanee
- Department of Basic Medical Sciences, Faculty of Medicine, Siam University, Bangkok, 10160, Thailand
| | - Lamai Maikaeo
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok, 26120, Thailand
| | - Phitchan Sricharoen
- Department of Premedical Science, Faculty of Medicine, Bangkok, Thonburi University, Thawi Watthana, Bangkok, 10170, Thailand
| | - Mattaka Khongkow
- National Nanotechnology Centre, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Katawut Namdee
- National Nanotechnology Centre, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Angkana Jantimaporn
- National Nanotechnology Centre, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Navaphun Kayunkid
- College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, Bangkok, 10520, Thailand
| | - James A Hutchison
- School of Chemistry and Centre of Excellence in Exciton Science, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Sirinan Kulchat
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
12
|
Huang Z, Wu Z, Zhang J, Wang K, Zhao Q, Chen M, Yan S, Guo Q, Ma Y, Ji L. Andrographolide attenuated MCT-induced HSOS via regulating NRF2-initiated mitochondrial biogenesis and antioxidant response. Cell Biol Toxicol 2023; 39:3269-3285. [PMID: 37816928 DOI: 10.1007/s10565-023-09832-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023]
Abstract
Hepatic sinusoidal obstruction syndrome (HSOS) is a death-dealing liver disease with a fatality rate of up to 67%. In the study present, we explored the efficacy of andrographolide (Andro), a diterpene lactone from Andrographis Herba, in ameliorating the monocrotaline (MCT)-induced HSOS and the underlying mechanism. The alleviation of Andro on MCT-induced rats HSOS was proved by biochemical index detection, electron microscope observation, and liver histological evaluation. Detection of hepatic ATP content, mitochondrial DNA (mtDNA) copy number, and protein expression of nuclear respiratory factor-1 (NRF1) and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A) demonstrated that Andro strengthened mitochondrial biogenesis in livers from MCT-treated rats. Chromatin immunoprecipitation assay exhibited that Andro enhanced the occupation of nuclear factor erythroid 2-related factor 2 (NFE2L2, also known as NRF2) in the promoter regions of both PPARGC1A and NRF1. Andro also activated the NRF2-dependent anti-oxidative response and alleviated liver oxidative injury. In Nrf2 knock-out mice, MCT induced more severe liver damage, and Andro showed no alleviation in it. Furthermore, the Andro-activated mitochondrial biogenesis and anti-oxidative response were reduced in Nrf2 knock-out mice. Contrastingly, knocking out Kelch-like ECH-associated protein 1 (Keap1), a NRF2 repressor, reduced MCT-induced liver damage. Results from co-immunoprecipitation, molecular docking analysis, biotin-Andro pull-down, cellular thermal shift assay, and surface plasmon resonance assay showed that Andro hindered the NRF2-KEAP1 interaction via directly binding to KEAP1. In conclusion, our results revealed that NRF2-dependent liver mitochondrial biogenesis and anti-oxidative response were essential for the Andro-provided alleviation of the MCT-induced HSOS. Graphical Headlights: 1. Andro alleviated MCT-induced HSOS via activating antioxidative response and promoting mitochondrial biogenesis. 2. Andro-activated antioxidative response and mitochondrial biogenesis were NRF2-dependent. 3. Andro activated NRF2 via binding to KEAP1.
Collapse
Affiliation(s)
- Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Zeqi Wu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Jingnan Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Keke Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Qing Zhao
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Minwei Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Shihao Yan
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Qian Guo
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Yun Ma
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Science, King's College London, London, UK
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
13
|
Das D, Banerjee R, Bandyopadhyay M, Nag A. Exploring the potential of Andrographis paniculata for developing novel HDAC inhibitors: an in silico approach. J Biomol Struct Dyn 2023:1-13. [PMID: 37969010 DOI: 10.1080/07391102.2023.2281635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/04/2023] [Indexed: 11/17/2023]
Abstract
Cancer is one of the dreaded diseases of the twentieth century, emerging the major global causes of human morbidity. Cancer research in the last 15 years has provided unprecedented information on the role of epigenetics in cancer initiation and progression. Histone deacetylases (HDACs) are recognized as important epigenetic markers in cancer, whose overexpression leads to increased metastasis and angiogenesis. In the current study, thirty-four (34) compounds from Andrographis paniculata were screened for the identification of potential candidate drugs, targeting three Class I HDACs (Histone deacetylases), namely HDAC1 (PDB id 5ICN), HDAC3 (PDB id 4A69) and HDAC8 (PDB id 5FCW) through computer-assisted drug discovery study. Results showed that some of the phytochemicals chosen for this study exhibited significant drug-like properties. In silico molecular docking study further revealed that out of 34 compounds, the flavonoid Andrographidine E had the highest binding affinities towards HDAC1 (-9.261 Kcal mol-1) and 3 (-9.554 Kcal mol-1) when compared with the control drug Givinostat (-8.789 and -9.448 Kcal mol-1). The diterpenoid Andrographiside displayed the highest binding affinity (-9.588 Kcal mol-1) to HDAC8 compared to Givinostat (-8.947 Kcal mol-1). Statistical analysis using Principal Component Analysis tool revealed that all 34 phytocompounds could be clustered in four statistical groups. Most of them showed high or comparable inhibitory potentials towards HDAC target protein. Finally, the stability of top-ranked complexes (Andrographidine E-HDAC1 and HDAC3; Andrographiside-HDAC8) at the physiological condition was validated by Molecular Dynamic Simulation and MM-PBSA study.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Debalina Das
- Plant Molecular Cytogenetics and Plant Biotechnology Laboratory, Department of Botany, Centre of Advanced Studies, University of Calcutta, Kolkata, West Bengal, India
| | - Ritesh Banerjee
- School of Biological and Environmental Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Maumita Bandyopadhyay
- Plant Molecular Cytogenetics and Plant Biotechnology Laboratory, Department of Botany, Centre of Advanced Studies, University of Calcutta, Kolkata, West Bengal, India
| | - Anish Nag
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore Central Campus, Bangalore, India
| |
Collapse
|
14
|
Hossain MS, Roney M, Bin Mohd Yunus MY, Shariffuddin JH. Virtual screening, molecular docking, molecular dynamics, and MM-GBSA approaches identify prospective fructose-1,6-bisphosphatase inhibitors from pineapple for diabetes management. J Biomol Struct Dyn 2023:1-16. [PMID: 37916669 DOI: 10.1080/07391102.2023.2276889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Diabetes affects millions globally and poses treatment challenges. Targeting the enzyme fructose-1,6-bisphosphatase (FBPase) in gluconeogenesis and exploring plant-based therapies offer potential solutions for improving diabetes management while supporting sustainability and medicinal advancements. Utilizing pineapple (Ananas comosus L. Merr.) waste as a source of drug precursors could be valuable for health and environmental care due to its medicinal benefits and abundant yearly biomass production. Therefore, this study conducted a virtual screening to identify potential natural compounds from pineapple that could inhibit FBPase activity. A total of 112 compounds were screened for drug-likeness and ADMET properties, and molecular docking simulations were performed on 20 selected compounds using blind docking. The lead compound, butane-2,3-diyl diacetate, was subjected to 100 ns MD simulations, revealing a binding energy of -5.4 kcal/mol comparable to metformin (-5.6 kcal/mol). The MD simulation also confirmed stable complexes with crucial hydrogen bonds. Glu20, Ala24, Thr27, Gly28, Glu29, Leu30, Val160, Met177, Asp178, and Cys179 were identified as key amino acids that stabilized the human liver FBPase-butane-2,3-diyl diacetate complex, while Tyr215 and Asp218 played a crucial role in the human liver FBPase-Metformin complex. Our study indicates that the lead compound has high intestinal solubility. Therefore, it would show rapid bloodstream distribution and effective action on the target protein, making butane-2,3-diyl diacetate a potential antidiabetic drug candidate. However, further investigations in vitro, preclinical, and clinical trials are required to thoroughly assess its efficacy and safety.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Md Sanower Hossain
- Centre for Sustainability of Mineral and Resource Recovery Technology (Pusat SMaRRT), Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Malaysia
| | - Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Malaysia
| | - Mohd Yusri Bin Mohd Yunus
- Centre for Sustainability of Mineral and Resource Recovery Technology (Pusat SMaRRT), Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Malaysia
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Malaysia
| | - Jun Haslinda Shariffuddin
- Centre for Sustainability of Mineral and Resource Recovery Technology (Pusat SMaRRT), Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Malaysia
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Malaysia
| |
Collapse
|
15
|
Ladjimi MH, Ben Barka Z, Lahbib K, Ben Miled H, Ben Rhouma K, Sakly M, Tebourbi O. Antidiarrheal and antioxidant activities of Ajuga iva (L.) leave extract. Heliyon 2023; 9:e21139. [PMID: 37942157 PMCID: PMC10628661 DOI: 10.1016/j.heliyon.2023.e21139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 09/30/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023] Open
Abstract
We studied the effect of Ajuga iva leaves extract (AIE) on the intestinal absorption, motricity and its antioxidant capacity against diarrhea. Wistar rats were divided and received either: castor oil (CO), CO and loperamide or CO and different doses of AIE. AIE prevented dose-dependently CO-induced diarrhea. AIE at 800 mg/kg showed inhibition efficiency on defecation and diarrhea. The pro-oxidant effect of the CO in the small intestine was inhibited significantly in presence of AIE: increasing glutathione peroxidase (GPx) activity and lowering oxygen free radicals (OH°, O2°-), carbonyl protein and malondialdehyde (MDA) levels. However, co-administration of AIE in castor oil-exposed groups significantly increased the intestinal contents of calcium and magnesium. AIE exhibits significant anti-diarrheal activity, related in part to its antioxidant properties. Our investigation also provides experimental evidence for the traditional use of this medicinal plant in the treatment of diarrhea.
Collapse
Affiliation(s)
- Mohamed H. Ladjimi
- Laboratory of Integrated Physiology UR11S33, Faculty of Science of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
| | - Zaineb Ben Barka
- Laboratory of Integrated Physiology UR11S33, Faculty of Science of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
| | - Karima Lahbib
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Science of Bizerte, University of Carthage, 7021, Jarzouna, Tunisia
| | - Hanène Ben Miled
- Laboratory of Integrated Physiology UR11S33, Faculty of Science of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
| | - Khemais Ben Rhouma
- Laboratory of Integrated Physiology UR11S33, Faculty of Science of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
| | - Mohsen Sakly
- Laboratory of Integrated Physiology UR11S33, Faculty of Science of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
| | - Olfa Tebourbi
- Laboratory of Integrated Physiology UR11S33, Faculty of Science of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
| |
Collapse
|
16
|
Mehta CH, Paliwal S, Muttigi MS, Seetharam RN, Prasad ASB, Nayak Y, Acharya S, Nayak UY. Polyphenol-based targeted therapy for oral submucous fibrosis. Inflammopharmacology 2023; 31:2349-2368. [PMID: 37106237 PMCID: PMC10518296 DOI: 10.1007/s10787-023-01212-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/26/2023] [Indexed: 04/29/2023]
Abstract
Oral submucous fibrosis (OSF) is a chronic, progressive, and precancerous condition mainly caused by chewing areca nut. Currently, OSF therapy includes intralesional injection of corticosteroids with limited therapeutic success in disease management. Therefore, a combined approach of in silico, in vitro and in vivo drug development can be helpful. Polyphenols are relatively safer than other synthetic counterparts. We used selected polyphenols to shortlist the most suitable compound by in silico tools. Based on the in silico results, epigallocatechin-3-gallate (EGCG), quercetin (QUR), resveratrol, and curcumin had higher affinity and stability with the selected protein targets, transforming growth factor beta-1 (TGF-β1), and lysyl oxidase (LOX). The efficacy of selected polyphenols was studied in primary buccal mucosal fibroblasts followed by in vivo areca nut extract induced rat OSF model. In in vitro studies, the induced fibroblast cells were treated with EGCG and QUR. EGCG was safer at higher concentrations and more efficient in reducing TGF-β1, collagen type-1A2 and type-3A1 mRNA expression than QUR. In vivo studies confirmed that the EGCG hydrogel was efficient in improving the disease conditions compared to the standard treatment betamethasone injection with significant reduction in TGF-β1 and collagen concentrations with increase in mouth opening. EGCG can be considered as a potential, safer and efficient phytomolecule for OSF therapy and its mucoadhesive topical formulation help in the improvement of patient compliance without any side effects. Highlights Potential polyphenols were shortlisted to treat oral submucous fibrosis (OSF) using in silico tools Epigallocatechin 3-gallate (EGCG) significantly reduced TGF-β1 and collagen both in vitro and in vivo EGCG hydrogel enhanced antioxidant defense, modulated inflammation by reducing TGF-β1 and improved mouth opening in OSF rat model.
Collapse
Affiliation(s)
- Chetan Hasmukh Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shivangi Paliwal
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Manjunatha S Muttigi
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Raviraja N Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Alevoor Srinivas Bharath Prasad
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shruthi Acharya
- Department of Oral Medicine and Radiology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Usha Yogendra Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
17
|
Liu W, Luo Y, Song W, Dan H, Li L, Zhou D, You P. Angelica Yinzi Alleviates Pruritus-Related Atopic Dermatitis through Skin Repair, Antioxidation, and Balancing Peripheral μ- and κ-opioid Receptors. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:6058951. [PMID: 37790739 PMCID: PMC10545464 DOI: 10.1155/2023/6058951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/10/2022] [Indexed: 10/05/2023]
Abstract
Background Angelica Yinzi (AYZ) is a Chinese traditional herbal formula reported to attenuate itches and inflammation caused by atopic dermatitis (AD). However, the underlying mechanism of AYZ in the attenuation of itchiness and inflammation remains unknown. Objective This study investigated the mechanism of AYZ in reducing itchiness in mice with 1-chloro-2,4-dinitrobenzene- (DNCB-)-induced atopic dermatitis. Methods Hematoxylin and eosin (H&E) and toluidine blue staining were used to evaluate pathological changes in skin tissue, while an enzyme-linked immunosorbent assay (ELISA) was used to assess the cytokine levels in the skin. After that, qRT-PCR was performed to determine the mRNA levels of cytokines in the skin. Immunofluorescence and western blotting analysis were further used to assess µ-opioid receptor (MOR) expression and immunohistochemistry to assess the p-ERK, p-AKT, and κ-opioid receptor (KOR). Results The AYZ treatment alleviated the AD clinical symptoms, including decreasing the scratching frequency, the ear thickness, and the infiltration of mast cells, lymphocytes, inflammatory cells, and mononuclear cells. In addition, AYZ inhibited the expression of interleukin (IL)-13, thymic stromal lymphopoietin (TSLP), and reduced neuraminidase (NA), corticotropin-releasing factor (CRF), and reactive oxygen species (ROS) expression. Markers involved in itches, such as p-ERK and p-AKT, were significantly downregulated following AYZ treatment. Besides, AYZ significantly increased MOR expression and downregulated KOR in the epidermis and spinal cord. Conclusion Our findings imply that AYZ ameliorates pruritus-related AD through skin repair, antioxidation, and balancing peripheral MOR and KOR. The findings in this study lay a theoretical foundation for the control mechanism of peripheral itch.
Collapse
Affiliation(s)
- Wei Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Research Center, Mayinglong Pharmaceutical Group Co. Ltd., Wuhan 430060, Hubei, China
| | - Yang Luo
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Wanci Song
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Hanxiong Dan
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Li Li
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430014, China
| | - Daonian Zhou
- Research Center, Mayinglong Pharmaceutical Group Co. Ltd., Wuhan 430060, Hubei, China
| | - Pengtao You
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| |
Collapse
|
18
|
Sar T, Kiraz P, Braho V, Harirchi S, Akbas MY. Novel Perspectives on Food-Based Natural Antimicrobials: A Review of Recent Findings Published since 2020. Microorganisms 2023; 11:2234. [PMID: 37764078 PMCID: PMC10536795 DOI: 10.3390/microorganisms11092234] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Various fruit and vegetable wastes, particularly peels, seeds, pulp, and unprocessed residues from the food industry, are abundant sources of antioxidants and essential antimicrobial agents. These valuable bioactive compounds recovered from the food industry have a great application in food, agriculture, medicine, and pharmacology. Food-derived natural antimicrobials offer advantages such as diminishing microbial loads and prolonging the shelf life of food products particularly prone to microbial spoilage. They not only enrich the foods with antioxidants but also help prevent microbial contamination, thereby prolonging their shelf life. Similarly, incorporating these natural antimicrobials into food packaging products extends the shelf life of meat products. Moreover, in agricultural practices, these natural antimicrobials act as eco-friendly pesticides, eliminating phytopathogenic microbes responsible for causing plant diseases. In medicine and pharmacology, they are being explored as potential therapeutic agents. This review article is based on current studies conducted in the last four years, evaluating the effectiveness of food-based natural antimicrobials in food, agriculture, medicine, and pharmacology.
Collapse
Affiliation(s)
- Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden; (V.B.); (S.H.)
| | - Pelin Kiraz
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli 41400, Türkiye; (P.K.); (M.Y.A.)
| | - Vjola Braho
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden; (V.B.); (S.H.)
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden; (V.B.); (S.H.)
| | - Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli 41400, Türkiye; (P.K.); (M.Y.A.)
| |
Collapse
|
19
|
Balogun FO, Ajao AAN, Sabiu S. A review of indigenous knowledge and ethnopharmacological significance of African Copaiba Balsam Tree, Daniellia oliveri (Fabaceae). Heliyon 2023; 9:e20228. [PMID: 37810056 PMCID: PMC10559981 DOI: 10.1016/j.heliyon.2023.e20228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 08/08/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
Daniellia oliveri has found its indigenous relevance in the management of diseases including but not limited to diabetes mellitus, tuberculosis, fever, ulcers, pain, worm manifestation, pneumonia, skin ailments, infectious diseases, sickle cell anaemia, hence, a review of its indigenous knowledge, ethnopharmacological and nutritional benefits was undertaken. Information used for the review was sourced from popular scientific databases (Google Scholar, PubMed, Science Direct, Web of Science, BioMed Central, JSTOR, African Plant, Global Biodiversity Information and others), conference proceedings, dissertations or theses, chapters in books, edited books, and journal collections. The materials obtained from 121 scientific documents targeting majorly between 1994 and 2023 established the presence of major secondary metabolites (such as polyphenols, flavonoids, saponins, alkaloids, etc.), minerals (e.g., sodium, potassium, phosphorus, selenium, calcium, magnesium, etc.), vitamins (beta-carotene, thiamine, riboflavin, niacin, ascorbic acid, etc.), and nutrients (crude protein, moisture, dry matter, ether, carbohydrates, and energy). Literature also lent credence to the preliminary safety profiles of the plant and its pharmacological potentials as analgesic, antinociceptive, antioxidant, antidiabetic, antidiarrhoeal, anthelmintic, anti-inflammatory, antimelanogenesis, antimicrobial, antiplasmodial, antisickling, cardiotoxic, cytotoxic, and neuroprotective agents. While the review is majorly limited to Africa particularly western countries (such as Nigeria, Burkina Faso, Mali, Ghana, Togo, and Benin) and the plant is found to be largely underutilized, it is evident that limited information exists on the in vivo pharmacological evaluation, bioactive compounds identification, and there is a lack of preclinical and clinical trials for possible drug development. Based on the aforementioned, it is hoped that further research studies geared toward providing insights into the established grey areas (such as traditional use investigation, targeted or assay-guided compounds identification, and preclinical and clinical studies) are necessary in order to fully explore the therapeutic, nutritional, and economic benefits of the plant.
Collapse
Affiliation(s)
- Fatai Oladunni Balogun
- Department of Biotechnology and Food Technology, Durban University of Technology, Steve-Biko Campus, Durban, 4001, Durban, KwaZulu-Natal, South Africa
| | - Abdulwakeel Ayokun-nun Ajao
- Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park 2006, Johannesburg, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Technology, Durban University of Technology, Steve-Biko Campus, Durban, 4001, Durban, KwaZulu-Natal, South Africa
| |
Collapse
|
20
|
Veldman LBM, Belt-Van Zoen E, Baars EW. Mechanistic Evidence of Andrographis paniculata (Burm. f.) Wall. ex Nees, Pelargonium sidoides DC., Echinacea Species and a Combination of Hedera helix L., Primula veris L./ Primula elatior L. and Thymus vulgaris L./ Thymus zygis L. in the Treatment of Acute, Uncomplicated Respiratory Tract Infections: A Systematic Literature Review and Expert Interviews. Pharmaceuticals (Basel) 2023; 16:1206. [PMID: 37765014 PMCID: PMC10537612 DOI: 10.3390/ph16091206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Reducing inappropriate antibiotic (AB) use by using effective non-antibiotic treatments is one strategy to prevent and reduce antimicrobial resistance (AMR). Andrographis paniculata (Burm. f.) Wall. ex Nees, Pelargonium sidoides DC., Echinacea species and a combination of ivy (Hedera helix L.), primrose (Primula veris L./Primula elatior L.) and thyme (Thymus vulgaris L./Thymus zygis L.) have promising clinical effects in uncomplicated, acute upper respiratory tract infections (URTI) treatment. However, mechanistic evidence of these herbal treatments is lacking. The objective of this Pstudy is to provide an overview of mechanistic evidence for these effects. Thirty-eight databases were searched. Included studies were mechanistic studies (in vitro, animal, and human studies and reviews) on these herbs; published before June 2021. Non-mechanistic studies or studies on combinations of herbs other than ivy/primrose/thyme were excluded. Furthermore, three experts in traditional, complementary and integrative healthcare (TCIH) research and pharmacognosy were interviewed to collect additional expert knowledge. The results show that A. paniculata acts through immunomodulation and antiviral activity, possibly supplemented by antibacterial and antipyretic effects. P. sidoides acts through antiviral, indirect antibacterial, immunomodulatory and expectorant effects. Echinacea species likely act through immunomodulation. The combination of ivy/primrose/thyme combines secretolytic and spasmolytic effects from ivy with antibacterial effects from thyme. Studies on primrose were lacking. This mechanistic evidence supports the difference-making evidence from clinical studies, contributes to evidence-based recommendations for their use in URTI treatment, and guides future mechanistic studies on URTI treatments.
Collapse
Affiliation(s)
- Liesbeth B. M. Veldman
- Faculty of Healthcare, University of Applied Sciences Leiden, 2333 Leiden, The Netherlands
| | - Eefje Belt-Van Zoen
- Faculty of Healthcare, University of Applied Sciences Leiden, 2333 Leiden, The Netherlands
| | - Erik W. Baars
- Faculty of Healthcare, University of Applied Sciences Leiden, 2333 Leiden, The Netherlands
- Louis Bolk Institute, 3981 Bunnik, The Netherlands
| |
Collapse
|
21
|
Chiu PWY, Yue GGL, Cheung MK, Yip HC, Chu SK, Yung MY, Wu JCY, Chan SM, Teoh AYB, Ng EKW, Norimoto H, Lau CBS. The effect of Andrographis paniculata water extract on palliative management of metastatic esophageal squamous cell carcinoma-A phase II clinical trial. Phytother Res 2023; 37:3438-3452. [PMID: 37042309 DOI: 10.1002/ptr.7815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 04/13/2023]
Abstract
Patients with metastatic esophageal squamous cell carcinoma (ESCC) have a grave prognosis with limited life expectancy. Here, a phase II clinical trial was conducted to investigate the effect of Andrographis paniculata (AP) on the palliative care of patients with metastatic ESCC. Patients with metastatic or locally advanced ESCC deemed unfit for surgery, and who have already completed palliative chemotherapy or chemoradiotherapy or are not fit for these treatments, were recruited. These patients were prescribed AP concentrated granules for 4 months. They also received clinical and quality of life assessments for clinical response, as well as positron emission tomography-computed tomography at 3 and 6 months after AP treatment for the assessment of tumor volume. Furthermore, the change in gut microbiota composition after AP treatment was studied. From the results, among the 30 recruited patients, 10 completed the entire course of AP treatment, while 20 received partial AP treatment. Patients who completed the AP treatment achieved significantly longer overall survival periods with the maintenance of the quality of life during the survival period when compared to those who could not complete AP treatment. The treatment effect of AP also contributed to the shift of the overall structure of gut microbiota for ESCC patients towards those of healthy individuals. The significance of this study is the establishment of AP as a safe and effective palliative treatment for patients with squamous cell carcinoma of the esophagus. To the best of our knowledge, this is the first clinical trial of AP water extract in esophageal cancer patients demonstrating its new medicinal use.
Collapse
Affiliation(s)
- Philip Wai-Yan Chiu
- Division of Upper GI and Metabolic Surgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute of Digestive Disease and State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Grace Gar-Lee Yue
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Man Kit Cheung
- Division of Upper GI and Metabolic Surgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hon-Chi Yip
- Division of Upper GI and Metabolic Surgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute of Digestive Disease and State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Siu-Kai Chu
- Nong's, PuraPharm Corporation Limited, Tai Po, Hong Kong
| | - Man-Yee Yung
- Division of Upper GI and Metabolic Surgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute of Digestive Disease and State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Justin Che-Yuen Wu
- Institute of Digestive Disease and State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong
- Division of Gastroenterology and Hepatology, Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Shannon Melissa Chan
- Division of Upper GI and Metabolic Surgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute of Digestive Disease and State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Anthony Yuen-Bun Teoh
- Division of Upper GI and Metabolic Surgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute of Digestive Disease and State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Enders Kwok-Wai Ng
- Division of Upper GI and Metabolic Surgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute of Digestive Disease and State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | - Clara Bik-San Lau
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
22
|
Xie H, Hu M, Yu J, Yang X, Li J, Yu N, Han L, Peng D. Mass spectrometry-based metabolomics reveal Dendrobium huoshanense polysaccharide effects and potential mechanism of N-methyl-N'-nitro-N-nitrosoguanidine -induced damage in GES-1 cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116342. [PMID: 36889419 DOI: 10.1016/j.jep.2023.116342] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium huoshanense C. Z. Tang et S. J. Cheng is an important edible medicinal plant that thickens the stomach and intestines, and its active ingredient, polysaccharide, can have anti-inflammatory, immunoregulatory, and antitumor effects. However, the gastroprotective effects and potential mechanisms of Dendrobium huoshanense polysaccharides (DHP) remain unclear. AIM OF THE STUDY An N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) induced human gastric mucosal epithelial cells (GES-1) damage model was used in this research, aiming to investigate whether DHP has a protective effect on MNNG-induced GES-1 cell injury and its underlying mechanism based on the combination of multiple methods. MATERIALS AND METHODS DHP was extracted using water extraction and alcohol precipitation methods, and the proteins were removed using the Sevag method. The morphology was observed using scanning electron microscopy. A MNNG-induced GES-1 cell damage model was developed. Cell viability and proliferation of the experimental cells were investigated using a cell counting kit-8 (CCK-8). Cell nuclear morphology was detected using the fluorescent dye Hoechst 33342. Cell scratch wounds and migration were detected using a Transwell chamber. The expression levels of apoptosis proteins (Bcl-2, Bax, Caspase-3) in the experimental cells were detected by Western blotting. Ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) was performed to investigate the potential mechanism of action of DHP. RESULTS The CCK-8 kit analysis showed that DHP increased GES-1 cell viability and ameliorated GES-1 cell injury by MNNG. In addition, scratch assay and Transwell chambers results suggested that DHP improved the MNNG-induced motility and migration ability of GES-1 cells. Likewise, the results of the apoptotic protein assay indicated that DHP had a protective effect against gastric mucosal epithelial cell injury. To further investigate the potential mechanism of action of DHP, we analyzed the metabolite differences between GES-1 cells, GES-1 cells with MNNG-induced injury, and DHP + MMNG-treated cells using UHPLC-HRMS. The results indicated that DHP upregulated 1-methylnicotinamide, famotidine, N4-acetylsulfamethoxazole, acetyl-L-carnitine, choline and cer (d18:1/19:0) metabolites and significantly down-regulated 6-O-desmethyldonepezil, valet hamate, L-cystine, propoxur, and oleic acid. CONCLUSIONS DHP may protect against gastric mucosal cell injury through nicotinamide and energy metabolism-related pathways. This research may provide a useful reference for further in-depth studies on the treatment of gastric cancer, precancerous lesions, and other gastric diseases.
Collapse
Affiliation(s)
- Huiqun Xie
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mengqing Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jiao Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xinyu Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jinmiao Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China; Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China
| | - Lan Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China; Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China; Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei, China.
| |
Collapse
|
23
|
Singh R, Singh A, Mahato AK, Paliwal R, Tiwari G, Kumar A. De Novo Transcriptome Profiling for the Generation and Validation of Microsatellite Markers, Transcription Factors, and Database Development for Andrographis paniculata. Int J Mol Sci 2023; 24:ijms24119212. [PMID: 37298166 DOI: 10.3390/ijms24119212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 06/12/2023] Open
Abstract
Andrographis paniculata belongs to the family Acanthaceae and is known for its medicinal properties owing to the presence of unique constituents belonging to the lactones, diterpenoids, diterpene glycosides, flavonoids, and flavonoid glycosides groups of chemicals. Andrographolide, a major therapeutic constituent of A. paniculata, is extracted primarily from the leaves of this plant and exhibits antimicrobial and anti-inflammatory activities. Using 454 GS-FLX pyrosequencing, we have generated a whole transcriptome profile of entire leaves of A. paniculata. A total of 22,402 high-quality transcripts were generated, with an average transcript length and N50 of 884 bp and 1007 bp, respectively. Functional annotation revealed that 19,264 (86%) of the total transcripts showed significant similarity with the NCBI-Nr database and were successfully annotated. Out of the 19,264 BLAST hits, 17,623 transcripts were assigned GO terms and distributed into three major functional categories: molecular function (44.62%), biological processes (29.19%), and cellular component (26.18%) based on BLAST2GO. Transcription factor analysis showed 6669 transcripts, belonging to 57 different transcription factor families. Fifteen TF genes that belong to the NAC, MYB, and bHLH TF categories were validated by RT PCR amplification. In silico analysis of gene families involved in the synthesis of biochemical compounds having medicinal values, such as cytochrome p450, protein kinases, heat shock proteins, and transporters, was completed and a total of 102 different transcripts encoding enzymes involved in the biosynthesis of terpenoids were predicted. Out of these, 33 transcripts belonged to terpenoid backbone biosynthesis. This study also identified 4254 EST-SSRs from 3661 transcripts, representing 16.34% of the total transcripts. Fifty-three novel EST-SSR markers generated from our EST dataset were used to assess the genetic diversity among eighteen A. paniculata accessions. The genetic diversity analysis revealed two distinct sub-clusters and all accessions based on the genetic similarity index were distinct from each other. A database based on EST transcripts, EST-SSR markers, and transcription factors has been developed using data generated from the present study combined with available transcriptomic resources from a public database using Meta transcriptome analysis to make genomic resources available in one place to the researchers working on this medicinal plant.
Collapse
Affiliation(s)
- Rakesh Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| | - Akshay Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| | - Ajay Kumar Mahato
- The Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Ritu Paliwal
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| | - Gunjan Tiwari
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Ashok Kumar
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| |
Collapse
|
24
|
Tundis R, Patra JK, Bonesi M, Das S, Nath R, Das Talukdar A, Das G, Loizzo MR. Anti-Cancer Agent: The Labdane Diterpenoid-Andrographolide. PLANTS (BASEL, SWITZERLAND) 2023; 12:1969. [PMID: 37653887 PMCID: PMC10221142 DOI: 10.3390/plants12101969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 09/02/2023]
Abstract
In spite of the progress in treatment strategies, cancer remains a major cause of death worldwide. Therefore, the main challenge should be the early diagnosis of cancer and the design of an optimal therapeutic strategy to increase the patient's life expectancy as well as the continuation of the search for increasingly active and selective molecules for the treatment of different forms of cancer. In the recent decades, research in the field of natural compounds has increasingly shifted towards advanced and molecular level understandings, thus leading to the development of potent anti-cancer agents. Among them is the diterpene lactone andrographolide, isolated from Andrographis paniculata (Burm.f.) Wall. ex Nees that showed shows a plethora of biological activities, including not only anti-cancer activity, but also anti-inflammatory, anti-viral, anti-bacterial, neuroprotective, hepatoprotective, hypoglycemic, and immunomodulatory properties. Andrographolide has been shown to act as an anti-tumor drug by affecting specific molecular targets that play a part in the development and progression of several cancer types including breast, lung, colon, renal, and cervical cancer, as well as leukemia and hepatocarcinoma. This review comprehensively and systematically summarized the current research on the potential anti-cancer properties of andrographolide highlighting its mechanisms of action, pharmacokinetics, and potential side effects and discussing the future perspectives, challenges, and limitations of use.
Collapse
Affiliation(s)
- Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (R.T.)
| | - Jayanta Kumar Patra
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyangsi 10326, Republic of Korea;
| | - Marco Bonesi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (R.T.)
| | - Subrata Das
- Department of Botany and Biotechnology, Karimganj College, Assam University, Assam 788710, India
| | - Rajat Nath
- Department of Life Science and Bioinformatics, Assam University, Assam 788011, India
| | - Anupam Das Talukdar
- Department of Life Science and Bioinformatics, Assam University, Assam 788011, India
| | - Gitishree Das
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyangsi 10326, Republic of Korea;
| | - Monica Rosa Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (R.T.)
| |
Collapse
|
25
|
Zhou HF, Yang C, Li JY, He YY, Huang Y, Qin RJ, Zhou QL, Sun F, Hu DS, Yang J. Quercetin serves as the major component of Xiang-lian Pill to ameliorate ulcerative colitis via tipping the balance of STAT1/PPARγ and dictating the alternative activation of macrophage. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116557. [PMID: 37142141 DOI: 10.1016/j.jep.2023.116557] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese herbal formula, Xiang-lian Pill (XLP), is commonly prescribed for ulcerative colitis (UC) patients to relieve their clinical symptom. Nonetheless, the underlying cellular and molecular mechanisms of XLP's anti-UC effect remain incompletely understood. AIM OF THE STUDY To evaluate the therapeutic effect and elucidate the possible working mechanisms of XLP in UC treatment. The major active component of XLP was also characterized. MATERIALS AND METHODS Colitis was induced in C57BL/6 mice with 3% dextran sulfate sodium (DSS) dissolved in drinking water for 7 consecutive days. The UC mice were grouped and treated with XLP (3640 mg/kg) or vehicle orally during the procedure of DSS induction. Mouse body weight, disease activity index (DAI) score and colon length were recorded. Histopathological changes and inflammatory cell infiltration were evaluated by pathological staining and flow cytometric analysis (FACS). Network pharmacology, bioinformatic analysis, widely targeted and targeted metabolomics analysis were performed to screen the potential effective ingredients and key targets. Bone marrow derived macrophages (BMDMs), peripheral blood mononuclear cells (PBMCs), RAW264.7 and THP-1 cells were used to dissect the anti-inflammatory effect of XLP. RESULTS Oral administration of XLP ameliorated DSS induced mouse colitis, as evidenced by reduced DAI and colonic inflammatory destruction. FACS results demonstrated that XLP treatment effectively restored immune tolerance in colon, inhibited the generation of monocyte derived macrophages and skewed macrophage polarization into M2 phenotype. Network pharmacology analysis suggested that innate effector modules related to macrophage activation comprise the major targets of XLP, and the counter-regulatory STAT1/PPARγ signaling possibly serves as the critical downstream pathway. Subsequent experiments unveiled an imbalance of STAT1/PPARγ signaling in monocytes derived from UC patients, and validated that XLP suppressed LPS/IFN-γ induced macrophage activation (STAT1 mediated) but facilitated IL-4 induced macrophage M2 polarization (PPARγ dependent). Meanwhile, our data showed that quercetin served as the major component of XLP to recapitulate the regulatory effect on macrophages. CONCLUSION Our findings revealed that quercetin serves as the major component of XLP that regulates macrophage alternative activation via tipping the balance of STAT1/PPARγ, which provides a mechanistic explanation for the therapeutic effect of XLP in UC treatment.
Collapse
Affiliation(s)
- Hai-Feng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Chao Yang
- Department of Geratology, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan, 430015, China.
| | - Jun-Yi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yu-Yao He
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yun Huang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Ren-Jie Qin
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Qiao-Li Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Fei Sun
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China.
| | - De-Sheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jia Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
26
|
Indradi RB, Muhaimin M, Barliana MI, Khatib A. Potential Plant-Based New Antiplasmodial Agent Used in Papua Island, Indonesia. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091813. [PMID: 37176870 PMCID: PMC10181418 DOI: 10.3390/plants12091813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Resistance to antimalarial medicine remains a threat to the global effort for malaria eradication. The World Health Organization recently reported that artemisinin partial resistance, which was defined as delayed parasite clearance, was detected in Southeast Asia, particularly in the Greater Mekong subregion, and in Africa, particularly in Rwanda and Uganda. Therefore, the discovery of a potential new drug is important to overcome emerging drug resistance. Natural products have played an important role in drug development over the centuries, including the development of antimalarial drugs, with most of it influenced by traditional use. Recent research on traditional medicine used as an antimalarial treatment on Papua Island, Indonesia, reported that 72 plant species have been used as traditional medicine, with Alstonia scholaris, Carica papaya, Andrographis paniculata, and Physalis minima as the most frequently used medicinal plants. This review aimed to highlight the current research status of these plants for potential novel antiplasmodial development. In conclusion, A. paniculata has the highest potential to be developed as an antiplasmodial, and its extract and known bioactive isolate andrographolide posed strong activity both in vitro and in vivo. A. scholaris and C. papaya also have the potential to be further investigated as both have good potential for their antiplasmodial activities in vivo. However, P. minima is a less studied medicinal plant; nevertheless, it opens the opportunity to explore the potential of this plant.
Collapse
Affiliation(s)
- Raden Bayu Indradi
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Center of Herbal Study, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Muhaimin Muhaimin
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Center of Herbal Study, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Melisa Intan Barliana
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Center of Excellence in Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Alfi Khatib
- Department of Pharmaceutical Chemistry, Kuliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia
| |
Collapse
|
27
|
Huang XJ, Jian SF, Wan S, Miao JH, Zhong C. Exogenous γ-aminobutyric acid (GABA) alleviates nitrogen deficiency by mediating nitrate uptake and assimilation in Andrographis paniculata seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107700. [PMID: 37086691 DOI: 10.1016/j.plaphy.2023.107700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
γ-Aminobutyric acid (GABA) plays significant metabolic and signaling roles in plant stress responses. Recent studies have proposed that GABA alleviates plant nitrogen (N) deficient stress; however, the mechanism by which GABA mediates plant N deficiency adaptation remains not yet well understood. Herein we found in a medicinal plant Andrographis paniculata that 5 mmol L-1 exogenous GABA promoted plant growth under N deficient (1 mmol L-1 NO3-) condition, with remarkably increments in total N and NO3- concentrations in plants. GABA increased N assimilation and protein synthesis by up-regulating the activities and expression of N metabolic enzymes. GABA also increased the accumulation of α-ketoglutarate and malate, which could facilitate the assimilation of NO3-. Inhibition of NR by Na2WO4 counteracted the promoting effects of GABA on plant growth, and the effects of GABA were not affected by L-DABA and 3-MP, the inhibitors of GABA transaminase (GABA-T) and glutamate decarboxylase (GAD), respectively. These results suggested that the nutritional role of GABA was excluded in promoting plant growth under low N condition. The results of 15N isotopic tracing and NRTs transcription indicated that exogenous GABA could up-regulate NRT2.4 and NRT3.2 to increase plant NO3- uptake under N deficient condition. Interestingly, primidone, an inhibitor of GABA receptor, impeded the effects of GABA on plant growth and N accumulation. Thus, our results revealed that exogenous GABA acted as a signal to up-regulate NRTs via its receptor to increase NO3- uptake, and subsequently promoted NO3- assimilation to alleviate N deficiency in A. paniculata.
Collapse
Affiliation(s)
- Xue-Jing Huang
- Guangxi Key Laboratory of Medicinal Resource Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China; Guangxi Engineering Research Centre of TCM Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China; Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Shao-Fen Jian
- Guangxi Key Laboratory of Medicinal Resource Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China; Guangxi Engineering Research Centre of TCM Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Si Wan
- Guangxi Key Laboratory of Medicinal Resource Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China; Guangxi Engineering Research Centre of TCM Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Jian-Hua Miao
- Guangxi Key Laboratory of Medicinal Resource Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China; Guangxi Engineering Research Centre of TCM Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China; Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China.
| | - Chu Zhong
- Guangxi Key Laboratory of Medicinal Resource Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China; Guangxi Engineering Research Centre of TCM Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| |
Collapse
|
28
|
Hussain Shah SA, Aleem A. Investigations of plausible pharmacodynamics supporting the antispasmodic, bronchodilator, and antidiarrheal activities of Berberis lycium Royle. Via in silico, in vitro, and in vivo studies. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116115. [PMID: 36587881 DOI: 10.1016/j.jep.2022.116115] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Berberis lycium Royle, a member of the Berberidaceae family, is a high-value medicinal plant with a documented history of usage in traditional medicine and has demonstrated significant therapeutic results among local populations throughout the globe. It is used traditionally in many parts of Pakistan to treat diarrhea, abdominal spasms, coughs, and chest problems. AIM OF THE STUDY To investigate the antispasmodic, bronchodilator, and antidiarrheal effects of B. lycium and its possible underlying mechanisms through in silico, in vitro, and in vivo studies. MATERIALS AND METHODS LC ESI-MS/MS analysis was used to identify bioactive components within the hydromethanolic extract of B. lycium. In silico studies, including network pharmacology and molecular docking, were utilized to investigate the antispasmodic and bronchodilator properties of the extract's bioactive components. In vitro pharmacological studies were conducted using isolated rabbit jejunum, trachea, urinary bladder, and rat ileum preparations. In vivo antidiarrheal activities were conducted in mice, including castor oil-induced diarrhea, intestinal transit, and castor oil-induced enteropooling. RESULTS The LC ESI-MS/MS analysis of the hydromethanolic extract of B. lycium identified 38 bioactive compounds. Network pharmacology study demonstrated that the mechanism of BLR for the treatment of diarrhea might involve IL1B, TLR4, PIK3R1, TNF, PTPRC, IL2, PIK3CD, and ABCB1, whereas, for respiratory ailments, it may involve PIK3CG, TRPV1, STAT3, ICAM1, ACE, PTGER2, PTGS2, TNF, MMP9, NOS2, IL2, CCR5, HRH1, and VDR. Molecular docking research revealed that chlorogenic acid, epigallocatechin, isorhamnetin, quinic acid, gallic acid, camptothecin, formononetin-7-O-glucoside, velutin, caffeic acid, and (S)-luteanine exhibited a higher docking score than dicyclomine with validated proteins of smooth muscle contractions such as CACB2_HUMAN, ACM3_HUMAN, MYLK_HUMAN, and PLCG1_HUMAN. In vitro investigations demonstrated that Blr.Cr, Blr.EtOAc, and Blr.Aq relaxed spontaneously contracting jejunum preparations; carbachol (1 μM)-induced and K+ (80 mM)-induced jejunum, trachea, and urinary bladder contractions in a concentration-dependent manner, similar to dicyclomine. Moreover, Blr.Cr, Blr.EtOAc, and Blr.Aq exhibited a rightward shift in Ca+2 and carbachol cumulative response curves, similar to dicyclomine, demonstrating the coexistence of antimuscarinic and Ca+2 antagonistic mechanisms due to the presence of alkaloids and flavonoids. In vivo antidiarrheal activities showed that the hydromethanolic extract was significantly effective against castor oil-induced diarrhea and castor oil-induced enteropooling, similar to loperamide, and charcoal meal intestinal transit, similar to atropine, in mice at doses of 50, 100, and 200 mg/kg body weight, which supports its traditional use in diarrhea. CONCLUSION The dual blocking mechanism of muscarinic receptors and Ca+2 channels behind the smooth muscle relaxing activity reveals the therapeutic relevance of B. lycium in diarrhea, abdominal spasms, coughs, and chest problems.
Collapse
Affiliation(s)
- Syed Adil Hussain Shah
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Ambreen Aleem
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| |
Collapse
|
29
|
Komaikul J, Ruangdachsuwan S, Wanlayaporn D, Palabodeewat S, Punyahathaikul S, Churod T, Choonong R, Kitisripanya T. Effect of andrographolide and deep eutectic solvent extracts of Andrographis paniculata on human coronavirus organ culture 43 (HCoV-OC43). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154708. [PMID: 36805485 PMCID: PMC9905047 DOI: 10.1016/j.phymed.2023.154708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/19/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Andrographis paniculata (Burm. f.) Nees has demonstrated potential for treating infections caused by coronaviruses. However, no antiviral activity of andrographolide or A. paniculata extracts against human coronavirus organ culture 43 (HCoV-OC43) has been reported. PURPOSE This study aimed to evaluate the anti-HCoV-OC43 effect of andrographolide and A. paniculata as well as the correlation between andrographolide concentration and the anti-HCoV-OC43 activity of A. paniculata extracts. METHODS This study evaluated and compared the in vitro anti-HCoV-OC43 activities of various A. paniculata extracts and andrographolide. To obtain A. paniculata extracts with different concentrations of andrographolide and its components, methanol and deep eutectic solvents (DES) were used to extract the aerial parts of A. paniculata. Andrographolide content was determined using UV-HPLC, and antiviral activity was assessed in HCT-8 colon cells. RESULTS The methanol and five acidic DES (containing malic acid or citric acid) extracts of A. paniculata exerted anti-HCoV-OC43 activity. Antiviral activity had a moderately strong positive linear relationship (r = 0.7938) with andrographolide content. Although the methanol extract contained the highest andrographolide content (2.34 mg/ml), its anti-HCoV-OC43 activity was lower than that of the DES extracts containing lower andrographolide concentrations (0.92-1.46 mg/ml). CONCLUSION Methanol and the five acidic DES extracts of A. paniculata exhibited anti-HCoV-OC43 activity. However, the in vitro antiviral activity of A. paniculata extracts did not have a very strong positive linear relationship (r < 0.8) with andrographolide concentration in the extract. As a result, when comparing A. paniculata extracts, the anti-HCoV-OC43 test could provide a different result from the andrographolide concentration determination.
Collapse
Affiliation(s)
- Jukrapun Komaikul
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Sasiporn Ruangdachsuwan
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Duangnapa Wanlayaporn
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Somnuek Palabodeewat
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Surat Punyahathaikul
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Theeraporn Churod
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | | | - Tharita Kitisripanya
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
30
|
Krithigaa S, Harini Priya AH, Sreeja C, Nachiammai N, Muthukumar RS, Premika Sri VL. Evaluation of anti-microbial efficacy among Andrographis Paniculata and Mimusops Elengi on oral microflora: An Experimental in-vitro study. J Oral Maxillofac Pathol 2023; 27:428. [PMID: 37854917 PMCID: PMC10581283 DOI: 10.4103/jomfp.jomfp_307_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 10/20/2023] Open
Abstract
Introduction Oral health is an essential non-integrated part of general health that plays a vital role in preventing chronic diseases. The oral cavity acts as a suitable environment for the proliferation of bacteria by forming a connecting link to invade the tissues through direct contact from outside. For the past few decades, there has been increased resistance of human pathogenic bacteria to the currently used antibiotics and chemotherapeutics for tooth decay, gingivitis, periodontitis and fungal infection among different age groups. Hence, the search has shifted to traditional plants and natural products, which are a good alternative. To create oral hygiene solutions for the prevention of oral infections, several ayurvedic ingredients, including Andrographis paniculata and Mimusops elengi, have been tested for their effectiveness against dental pathogens. The present investigation's purpose is to determine the minimum inhibitory concentration-based antibacterial efficiency of Andrographis paniculata and Mimusops elengi against Streptococcus mutans, Lactobacillus acidophilus, Actinomyces and Candida albicans. Methodology Antimicrobial activity of herbal extracts was determined using the agar well diffusion method. Ethanolic extracts were prepared using a cold extraction method whereas Dimethyl sulfoxide and water were used as dissolution solvents. The diluted herbal extract sample was used as the test sample, while the positive control used was an antibiotic solution and the negative control used was dissolution solvents. The samples were implanted, the bacteria along with the culture media were incubated, and the zone of inhibition was measured. Results The Minimum inhibitory concentration and zones of inhibition of Andrographis Paniculata and Mimusops Elengi showed significant antibacterial efficacy when compared with standards. Conclusion Andrographis Paniculata and Mimusops Elengi may be used as an efficient addition to conventional care in the management of oral disorders, according to their antimicrobial efficacy.
Collapse
Affiliation(s)
- S. Krithigaa
- Department of Oral and Maxillofacial Pathology, Chettinad Dental College and Research Institute, Chennai, Tamil Nadu, India
| | - A. H. Harini Priya
- Department of Oral and Maxillofacial Pathology, Chettinad Dental College and Research Institute, Chennai, Tamil Nadu, India
| | - C. Sreeja
- Department of Oral and Maxillofacial Pathology, Chettinad Dental College and Research Institute, Chennai, Tamil Nadu, India
| | - N. Nachiammai
- Department of Oral and Maxillofacial Pathology, Chettinad Dental College and Research Institute, Chennai, Tamil Nadu, India
| | - R. Sathish Muthukumar
- Department of Oral and Maxillofacial Pathology, Chettinad Dental College and Research Institute, Chennai, Tamil Nadu, India
| | - V. L. Premika Sri
- Department of Oral and Maxillofacial Pathology, Chettinad Dental College and Research Institute, Chennai, Tamil Nadu, India
| |
Collapse
|
31
|
Adiguna SP, Panggabean JA, Swasono RT, Rahmawati SI, Izzati F, Bayu A, Putra MY, Formisano C, Giuseppina C. Evaluations of Andrographolide-Rich Fractions of Andrographis paniculata with Enhanced Potential Antioxidant, Anticancer, Antihypertensive, and Anti-Inflammatory Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12061220. [PMID: 36986909 PMCID: PMC10052505 DOI: 10.3390/plants12061220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 06/01/2023]
Abstract
Andrographis paniculata is widely used as a traditional medicine in Asian countries. It has been classified as a safe and non-toxic medicine by traditional Chinese medicine. The investigation of the biological activities of A. paniculata is still focused on the crude extract and isolation of its main active compound, andrographolide, and its derivatives. However, the use of andrographolide alone has been shown to exacerbate unwanted effects. This highlights the importance of developing a fraction of A. paniculata with enhanced efficacy as an herbal-based medicine. In this study, the extraction and fractionation of A. paniculata, followed by quantitative analysis using high-performance liquid chromatography coupled with a DAD detector, were established to quantify the andrographolide and its derivative in each fraction. Biological activities, such as antioxidant, anticancer, antihypertensive, and anti-inflammatory activities, were evaluated to study their correlations with the quantification of active substances of A. paniculata extract and its fractions. The 50% methanolic fraction of A. paniculata exhibited the best cytotoxic activities against CACO-2 cells, as well as the best anti-inflammatory and antihypertensive activities compared to other extracts. The 50% methanolic fraction also displayed the highest quantification of its main active compound, andrographolide, and its derivatives, 14-deoxy-11,12-didehydroandrographolide, neoandrographolide, and andrograpanin, among others.
Collapse
Affiliation(s)
- Sya’ban Putra Adiguna
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia; (S.P.A.); (J.A.P.); (R.T.S.)
- Research Center for Vaccine and Drugs, Research Organisation for Healths, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong 16911, Indonesia; (F.I.); (A.B.)
| | - Jonathan Ardhianto Panggabean
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia; (S.P.A.); (J.A.P.); (R.T.S.)
- Research Center for Vaccine and Drugs, Research Organisation for Healths, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong 16911, Indonesia; (F.I.); (A.B.)
| | - Respati Tri Swasono
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia; (S.P.A.); (J.A.P.); (R.T.S.)
| | - Siti Irma Rahmawati
- Research Center for Vaccine and Drugs, Research Organisation for Healths, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong 16911, Indonesia; (F.I.); (A.B.)
| | - Fauzia Izzati
- Research Center for Vaccine and Drugs, Research Organisation for Healths, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong 16911, Indonesia; (F.I.); (A.B.)
| | - Asep Bayu
- Research Center for Vaccine and Drugs, Research Organisation for Healths, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong 16911, Indonesia; (F.I.); (A.B.)
| | - Masteria Yunovilsa Putra
- Research Center for Vaccine and Drugs, Research Organisation for Healths, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong 16911, Indonesia; (F.I.); (A.B.)
| | - Carmen Formisano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Chianese Giuseppina
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| |
Collapse
|
32
|
Suemanotham N, Phochantachinda S, Chatchaisak D, Sakcamduang W, Chansawhang A, Pitchakarn P, Chantong B. Antidiabetic effects of Andrographis paniculata supplementation on biochemical parameters, inflammatory responses, and oxidative stress in canine diabetes. Front Pharmacol 2023; 14:1077228. [PMID: 36865924 PMCID: PMC9971231 DOI: 10.3389/fphar.2023.1077228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction: Diabetes mellitus is a common endocrine disorder that causes hyperglycemia in dogs. Persistent hyperglycemia can induce inflammation and oxidative stress. This study aimed to investigate the effects of A. paniculata (Burm.f.) Nees (Acanthaceae) (A. paniculata) on blood glucose, inflammation, and oxidative stress in canine diabetes. A total of 41 client-owned dogs (23 diabetic and 18 clinically healthy) were included in this double-blind, placebo-controlled trial. Methods: The diabetic dogs were further divided into two treatments protocols: group 1 received A. paniculata extract capsules (50 mg/kg/day; n = 6) or received placebo for 90 days (n = 7); and group 2 received A. paniculata extract capsules (100 mg/kg/day; n = 6) or received a placebo for 180 days (n = 4). Blood and urine samples were collected every month. No significant differences in fasting blood glucose, fructosamine, interleukin-6, tumor necrosis factor-alpha, superoxide dismutase, and malondialdehyde levels were observed between the treatment and placebo groups (p > 0.05). Results and Discussion: The levels of alanine aminotransferase, alkaline phosphatase, blood urea nitrogen, and creatinine were stable in the treatment groups. The blood glucose levels and concentrations of inflammatory and oxidative stress markers in the client-owned diabetic dogs were not altered by A. paniculata supplementation. Furthermore, treatment with this extract did not have any adverse effects on the animals. Non-etheless, the effects of A. paniculata on canine diabetes must be appropriately evaluated using a proteomic approach and involving a wider variety of protein markers.
Collapse
Affiliation(s)
- Namphung Suemanotham
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand,Department of pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sataporn Phochantachinda
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Duangthip Chatchaisak
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Walasinee Sakcamduang
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Anchana Chansawhang
- The Center for Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Boonrat Chantong
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand,*Correspondence: Boonrat Chantong,
| |
Collapse
|
33
|
Manna L, Rizzi E, Bafile E, Cappelleri A, Ruscica M, Macchi C, Podaliri Vulpiani M, Salini R, Rossi E, Panebianco C, Perri F, Pazienza V, Federici F. Lentilactobacillus kefiri SGL 13 and Andrographis paniculata alleviate dextran sulfate sodium induced colitis in mice. Front Nutr 2023; 10:1072334. [PMID: 36860688 PMCID: PMC9968723 DOI: 10.3389/fnut.2023.1072334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/09/2023] [Indexed: 02/15/2023] Open
Abstract
Introduction Inflammatory bowel diseases (IBD) are chronic inflammatory conditions that typically involve diarrhea, abdominal pain, fatigue, and weight loss, with a dramatic impact on patients' quality of life. Standard medications are often associated with adverse side effects. Thus, alternative treatments such as probiotics are of great interest. The purpose of the present study was to evaluate the effects of oral administration of Lentilactobacillus kefiri (basonym: Lactobacillus kefiri) SGL 13 and Andrographis paniculata, namely, Paniculin 13™, on dextran sodium sulfate (DSS)- treated C57BL/6J mice. Methods Colitis was induced by administering 1.5% DSS in drinking water for 9 days. Forty male mice were divided into four groups, receiving PBS (control), 1.5% DSS, Paniculin 13™ and 1.5% DSS + Paniculin 13™. Results The results showed that body weight loss and Disease Activity Index (DAI) score were improved by Paniculin 13™. Moreover, Paniculin 13™ ameliorated DSS-induced dysbiosis, by modulating the gut microbiota composition. The gene expression of MPO, TNFα and iNOS in colon tissue was reduced and these data matched with the histological results, supporting the efficacy of Paniculin 13™ in reducing the inflammatory response. No adverse effects were associated to Paniculin 13™ administration. Discussion In conclusion, Paniculin 13™ could be an effective add-on approach to conventional therapies for IBD.
Collapse
Affiliation(s)
- Laura Manna
- PNK Farmaceutici S.p.a., Castelnuovo Vomano, Italy
| | | | | | - Andrea Cappelleri
- Department of Veterinary Medicine (DIMEVET), University of Milan, Milan, Italy,Mouse and Animal Pathology Laboratory (MAPLab), Fondazione UNIMI, Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Michele Podaliri Vulpiani
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale” (IZSAM), Teramo, Italy
| | - Romolo Salini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale” (IZSAM), Teramo, Italy
| | - Emanuela Rossi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale” (IZSAM), Teramo, Italy
| | - Concetta Panebianco
- Division of Gastroenterology, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| | - Francesco Perri
- Division of Gastroenterology, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| | - Valerio Pazienza
- Division of Gastroenterology, Fondazione IRCCS-Casa Sollievo della Sofferenza, Foggia, Italy
| | - Federica Federici
- PNK Farmaceutici S.p.a., Castelnuovo Vomano, Italy,*Correspondence: Federica Federici,
| |
Collapse
|
34
|
Mansi K, Kumar R, Jindal N, Singh K. Biocompatible nanocarriers an emerging platform for augmenting the antiviral attributes of bioactive polyphenols: A review. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
35
|
Omeiza NA, Bakre A, Ben-Azu B, Sowunmi AA, Abdulrahim HA, Chimezie J, Lawal SO, Adebayo OG, Alagbonsi AI, Akinola O, Abolaji AO, Aderibigbe AO. Mechanisms underpinning Carpolobia lutea G. Don ethanol extract's neurorestorative and antipsychotic-like activities in an NMDA receptor antagonist model of schizophrenia. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115767. [PMID: 36206872 DOI: 10.1016/j.jep.2022.115767] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/11/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Persistent ketamine insults to the central nervous system block NMDA receptors and disrupt putative neurotransmission, oxido-nitrosative, and inflammatory pathways, resulting in schizophrenia-like symptoms in animals. Previously, the ethnomedicinal benefits of Carpolobia lutea against insomnia, migraine headache, and insanity has been documented, but the mechanisms of action remain incomplete. AIM OF THE STUDY Presently, we explored the neuro-therapeutic role of Carpolobia lutea ethanol extract (C. lutea) in ketamine-induced schizophrenia-like symptoms in mice. MATERIALS AND METHODS Sixty-four male Swiss (22 ± 2 g) mice were randomly assigned into eight groups (n = 8/group) and exposed to a reversal ketamine model of schizophrenia. For 14 days, either distilled water (10 mL/kg; p.o.) or ketamine (20 mg/kg; i.p.) was administered, following possible reversal treatments with C. lutea (100, 200, 400, and 800 mg/kg; p.o.), haloperidol (1 mg/kg, p.o.), or clozapine (5 mg/kg; p.o.) beginning on days 8-14. During the experiment, a battery of behavioral characterizations defining schizophrenia-like symptoms were obtained using ANY-maze software, followed by neurochemical, oxido-inflammatory and histological assessments in the mice brains. RESULTS A 7-day reversal treatment with C. lutea reversed predictors of positive, negative and cognitive symptoms of schizophrenia. C. lutea also mitigated ketamine-induced neurochemical derangements as evidenced by modulations of dopamine, glutamate, norepinephrine and serotonin neurotransmission. Also, the increased acetylcholinesterase activity, malondialdehyde nitrite, interleukin-6 and tumor necrosis-factor-α concentrations were reversed by C. lutea accompanied with elevated levels of catalase, superoxide dismutase and reduced glutathione. Furthermore, C. lutea reversed ketamine-induced neuronal alterations in the prefrontal cortex, hippocampus and cerebellum sections of the brain. CONCLUSION These findings suggest that C. lutea reverses the cardinal symptoms of ketamine-induced schizophrenia in a dose-dependent fashion by modulating the oxido-inflammatory and neurotransmitter-related mechanisms.
Collapse
Affiliation(s)
- Noah A Omeiza
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Adewale Bakre
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Nigeria
| | - Abimbola A Sowunmi
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Halimat A Abdulrahim
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Joseph Chimezie
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Sodiq O Lawal
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olusegun G Adebayo
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria; Department of Physiology, Neurophysiology Unit, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Abdullateef I Alagbonsi
- Department of Clinical Biology (Physiology), School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Southern Province, Rwanda
| | - Olugbenga Akinola
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, College of Medicine, University of Ibadan, Nigeria
| | - Amos O Abolaji
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adegbuyi O Aderibigbe
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
36
|
Nguyen HT, Do VM, Phan TT, Nguyen Huynh DT. The Potential of Ameliorating COVID-19 and Sequelae From Andrographis paniculata via Bioinformatics. Bioinform Biol Insights 2023; 17:11779322221149622. [PMID: 36654765 PMCID: PMC9841859 DOI: 10.1177/11779322221149622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/18/2022] [Indexed: 01/13/2023] Open
Abstract
The current coronavirus disease 2019 (COVID-19) outbreak is alarmingly escalating and raises challenges in finding efficient compounds for treatment. Repurposing phytochemicals in herbs is an ideal and economical approach for screening potential herbal components against COVID-19. Andrographis paniculata, also known as Chuan Xin Lian, has traditionally been used as an anti-inflammatory and antibacterial herb for centuries and has recently been classified as a promising herbal remedy for adjuvant therapy in treating respiratory diseases. This study aimed to screen Chuan Xin Lian's bioactive components and elicit the potential pharmacological mechanisms and plausible pathways for treating COVID-19 using network pharmacology combined with molecular docking. The results found terpenoid (andrographolide) and flavonoid (luteolin, quercetin, kaempferol, and wogonin) derivatives had remarkable potential against COVID-19 and sequelae owing to their high degrees in the component-target-pathway network and strong binding capacities in docking scores. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the PI3K-AKT signaling pathway might be the most vital molecular pathway in the pathophysiology of COVID-19 and long-term sequelae whereby therapeutic strategies can intervene.
Collapse
Affiliation(s)
- Hien Thi Nguyen
- Faculty of Public Health, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - Van Mai Do
- Faculty of Traditional Medicine, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - Thanh Thuy Phan
- Faculty of Pharmacy, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Dung Tam Nguyen Huynh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei,Dung Tam Nguyen Huynh, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei.
| |
Collapse
|
37
|
Lawal BA, Ayipo YO, Adekunle AO, Amali MO, Badeggi UM, Alananzeh WA, Mordi MN. Phytoconstituents of Datura metel extract improved motor coordination in haloperidol-induced cataleptic mice: Dual-target molecular docking and behavioural studies. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115753. [PMID: 36162546 DOI: 10.1016/j.jep.2022.115753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is a prominent health challenge characterized by complex aetiology and limited therapeutic breakthroughs. Datura metel (DM) is a medicinal plant containing active phytoconstituents with neuropharmacological potentials. In traditional medicine, it exerts anticholinergic, anti-inflammatory and antioxidant effects, and protection from organophosphate poisoning inclusively involved in the pharmacotherapy of PD. Its other PD-related medicinal potency includes treatment of motor sickness and bradycardia. However, the exact mechanisms of anti-PD effects of its phytoconstituents remain underexplored. MATERIALS AND METHODS In this study, methanolic extract of DM was evaluated for anti-PD behavioural effects in vivo haloperidol-induced cataleptic mice. The GC-MS-identified phytochemicals were studied for one-drug-multi-target inhibitory mechanisms against some key targets for PD treatment, alpha-synuclein (ASN) and dopa decarboxylase (DDC) using molecular docking. RESULTS and discussion: Chronic administration of 50, 100 and 200 mg/kg of DM extract improved the 14-s latency time induced by haloperidol to 54, 54 and 57 s respectively, whereas levodopa (30 mg/kg) produced 47 s in rotarod tests. Similarly, the descending times for haloperidol-induced cataleptic mice were significantly reduced from 110 s to 17.7, 17.7 and 12.5 s by the respective chronic doses of DM extract, whereas levodopa-administered mice spent 17.5 s descending the same 30 cm pole. The interesting motor coordination enhancements are suggestively due to synergistic inhibition of ASN and DCC by the phytoconstituents of DM, especially, atropine and scopolamine. From the docking analysis, the two phytochemicals interacted more potently with the active therapeutic sites of the dual targets than levodopa and carbidopa. CONCLUSION Methanolic extract of DM contains active phytochemicals for multi-target-directed antiparkinsonian mechanisms amenable for further studies.
Collapse
Affiliation(s)
- Bilqis Abiola Lawal
- Department of Pharmacognosy and Drug Development, University of Ilorin, P.M.B., 1515, Ilorin, Nigeria
| | - Yusuf Oloruntoyin Ayipo
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Pulauz, Pinang, Malaysia; Department of Chemistry and Industrial Chemistry, Kwara State University, P. M. B., 1530, Malete, Ilorin, Nigeria.
| | | | - Mohammed Otuofu Amali
- Department of Pharmacology and Toxicology, University of Ilorin, P.M.B., 1515, Ilorin, Nigeria
| | - Umar Muhammad Badeggi
- Department of Chemistry, Ibrahim Badamasi Babangida University, Lapai, PMB 11, Niger State, Nigeria
| | - Waleed A Alananzeh
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Pulauz, Pinang, Malaysia
| | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Pulauz, Pinang, Malaysia
| |
Collapse
|
38
|
Abdel Rahman R, Kamal N, Mediani A, Farag MA. How Do Herbal Cigarettes Compare To Tobacco? A Comprehensive Review of Their Sensory Characters, Phytochemicals, and Functional Properties. ACS OMEGA 2022; 7:45797-45809. [PMID: 36570239 PMCID: PMC9773184 DOI: 10.1021/acsomega.2c04708] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Herbal cigarettes, known as tobacco-free or nicotine-free cigarettes, are those recognized as being-tobacco free, being composed of a mixture of various herbs claimed to lessen the smoking habit hazards. However, controversial data regarding its properties occur in the literature with no comprehensive overview or analysis of its effects. Like herbal smokeless tobacco, they are often used to substitute for tobacco products (primarily cigarettes) regarded as a "nonsmoking" aid. This review capitalizes on herbal cigarettes with regard to their quality characteristics, sensory attributes, chemical composition, and health properties to rationalize their choice as a nonsmoking aid. Furthermore, the impacts of heat and/or pyrolysis that occur during smoking on its chemical composition are presented for the first time. Some herbal smokes may produce notable metabolic problems that increase the risk of several chronic metabolic diseases. In general, burning substances from plants can have a variety of negative effects on the body attributed to toxic chemicals such as carbon monoxide, polyaromatics, nicotine, and N-nitrosamines. This review compiles and discusses the phytochemical compositions detected in various herbal cigarettes alongside sensory and quality attributes and health effects.
Collapse
Affiliation(s)
- Rania
T. Abdel Rahman
- Phytochemistry
and National Products Department, Technical Office of Central Administration
of Drug Control, Egyptian Drug Authority
(EDA), Giza 12553, Egypt
| | - Nurkhalida Kamal
- Institute
of Systems Biology (INBIOSIS), Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Ahmed Mediani
- Institute
of Systems Biology (INBIOSIS), Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Mohamed A. Farag
- Pharmacognosy
Department, College of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| |
Collapse
|
39
|
Yin B, Zhang S, Huang Y, Long Y, Chen Y, Zhao S, Zhou A, Cao M, Yin X, Luo D. The antithrombosis effect of dehydroandrographolide succinate: in vitro and in vivo studies. PHARMACEUTICAL BIOLOGY 2022; 60:175-184. [PMID: 35014931 PMCID: PMC8757605 DOI: 10.1080/13880209.2021.2021948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 11/18/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
CONTEXT Dehydroandrographolide succinate (DAS) is mainly used in the clinical treatment of various infectious diseases. Its potential effects on platelet aggregation and blood coagulation systems have not been reported systematically. OBJECTIVE To explore whether DAS exerts an antithrombotic effect and its internal mechanism. MATERIALS AND METHODS Human blood samples and Sprague-Dawley (SD) rats divided into control, aspirin (30 mg/kg), and DAS groups (200, 400 and 600 mg/kg) were used to measure the platelet aggregation rate, coagulation function, coagulation factor activity, and contents of thromboxane B2 (TXB2) and 6-keto-prostaglandin F1α (6-keto-PGF1α). The histopathology of the SD rat gastric mucosa was also observed. All rats were administered intragastric or intraperitoneal injections once a day for 3 consecutive days. RESULTS Compared to control group, DAS significantly inhibited the platelet aggregation rate (ED50 = 386.9 mg/kg) by decreasing TXB2 levels (1531.95 ± 649.90 pg/mL to 511.08 ± 411.82 pg/mL) and activating antithrombin III (AT-III) (103.22 ± 16.22% to 146.46 ± 8.96%) (p < 0.05). In addition, DAS significantly enhanced the coagulation factors FV (304.12 ± 79.65% to 443.44 ± 75.04%), FVII (324.19 ± 48.03% to 790.66 ± 225.56%), FVIII (524.79 ± 115.47% to 679.92 ± 143.34%), FX (34.90 ± 7.40% to 102.76 ± 29.41%) and FXI (38.12 ± 10.33% to 65.47 ± 34.08%), increased the content of Fg (2.18 ± 0.39 to 3.61 ± 0.37 g/L), shorten the PT (10.42 ± 0.44 to 9.22 ± 0.21 s), APTT (16.43 ± 1.4 to 14.07 ± 0.75 s) and TT time (37.04 ± 2.13 to 32.68 ± 1.29 s) (p < 0.05), while the aspirin group showed no such effect on these items but showed reduced activity of FII (89.21 ± 21.72% to 61.83 ± 8.95%) and FVIII (524.79 ± 115.47% to 306.60 ± 29.96%) (p < 0.05). Histopathological changes showed aspirin-induced gastric mucosa haemorrhage and the protective effect of DAS in the gastric mucosa. CONCLUSIONS DAS is more suitable than aspirin in thromboprophylaxis treatment, which provides a reliable theoretical and experimental basis for its clinical application.
Collapse
Affiliation(s)
- Bowen Yin
- Clinical Laboratory, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Shuhua Zhang
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Yuxi Huang
- Dalian Key Laboratory of Marine Animal Disease Control and Prevention, College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Yuanzhu Long
- Nanchang Maternal and Child Health Care Family Planning Service Centre, Nanchang, China
| | - Yiguo Chen
- Clinical Laboratory, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Shiyun Zhao
- Chinese Medicine Research Institute, Academy of Jiangxi Provincial Traditional Chinese Medicine, Nanchang
| | - Aiqun Zhou
- Clinical Laboratory, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Minghua Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Xiaoming Yin
- Clinical Laboratory, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
40
|
Hossen SM, Yusuf A, Emon NU, Alam N, Sami SA, Polash SH, Nur MA, Mitra S, Uddin MH, Emran TB. Biochemical and Pharmacological aspects of Ganoderma lucidum: Exponent from the in vivo and computational investigations. Biochem Biophys Rep 2022; 32:101371. [PMID: 36386440 PMCID: PMC9650014 DOI: 10.1016/j.bbrep.2022.101371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Ganoderma lucidum is known as lingzhi mushroom, which is said to have medicinal properties by the local residents. This research was focused to assess the antidepressant, anxiolytic, and sedative activities of the mentioned mushroom extracts by means of in vivo and in silico approaches. The antidepressant, anxiolytic, and sedative properties of the methanol extracts of G. lucidum (MEGL) were assessed using the forced swim test hole board, open field test, elevated plus maze, hole cross test, and thiopental sodium-induced sleeping time. The extracts revealed significant antidepressant, anxiolytic, and sedative activities in a dose-dependent manner. Rutin and quercetin were found to be the most effective enzyme inhibitors in the molecular docking study. According to the findings of in vivo and molecular docking study, it could be forecast that, the extract could have substantial antidepressant, anxiolytic, and sedative characteristics and deep molecular strategies on this extracts might create a target for the development of novel therapeutics. Further investigations are needed to appraise the molecular mechanisms implicated and isolate the bioactive components.
Collapse
Affiliation(s)
- S.M. Moazzem Hossen
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chattogram, 4331, Bangladesh
| | - A.T.M. Yusuf
- Department of Pharmacy, University of Science & Technology Chittagong, Chattogram, 4202, Bangladesh
| | - Nazim Uddin Emon
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Najmul Alam
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Saad Ahmed Sami
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chattogram, 4331, Bangladesh
- Department of Pharmacy, Faculty of Pharmacy, Varendra University, Rajshahi 6204, Bangladesh
| | - Shajjad Hossain Polash
- Department of Pharmacy, University of Science & Technology Chittagong, Chattogram, 4202, Bangladesh
| | | | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mohammad Helal Uddin
- Department of Applied Chemistry & Chemical Engineering, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| |
Collapse
|
41
|
Sarkar C, Mondal M, Al-Khafaji K, El-Kersh DM, Jamaddar S, Ray P, Roy UK, Afroze M, Moniruzzaman M, Khan M, Asha UH, Khalipha ABR, Mori E, de Lacerda BCGV, Araújo IM, Coutinho HDM, Shill MC, Islam MT. GC–MS analysis, and evaluation of protective effect of Piper chaba stem bark against paracetamol-induced liver damage in Sprague-Dawley rats: Possible defensive mechanism by targeting CYP2E1 enzyme through in silico study. Life Sci 2022; 309:121044. [DOI: 10.1016/j.lfs.2022.121044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 10/31/2022]
|
42
|
Malheiros J, Simões DM, Figueirinha A, Cotrim MD, Fonseca DA. Agrimonia eupatoria L.: An integrative perspective on ethnomedicinal use, phenolic composition and pharmacological activity. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115498. [PMID: 35752261 DOI: 10.1016/j.jep.2022.115498] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/01/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Agrimonia eupatoria L., a plant which belongs to the Rosaceae family, is widespread in temperate regions, particularly throughout the northern hemisphere. In folk medicine, this plant species has been used for its astringent, anti-inflammatory, analgesic and hypotensive properties as well as in gastrointestinal disorders. As these biological properties have been linked to its phenolic composition, this plant species could be an interesting source of bioactive compounds with therapeutic potential. AIM OF THE STUDY The aim of the present review is to provide a comprehensive overview of the scientific literature on A. eupatoria, particularly in regard to its ethnobotanics and ethnomedicinal uses, phenolic composition and biological and pharmacological activities. MATERIAL AND METHODS Literature was retrieved from several bibliographic sources, namely PubMed, ScienceDirect and Google Scholar, since the first report on A. eupatoria in 1993. RESULTS Regarding the phytochemical composition, A. eupatoria is rich in phenolic acids, flavonoids and tannins. The most commonly reported compounds are astragalin, cynaroside, hyperoside, isoquercitrin, isovitexin, rutin, catechin, procyanidin B3 and agrimoniin. In terms of bioactivity, extracts or fractions obtained from this plant species have shown antioxidant, antimicrobial, antidiabetic, antinociceptive and anti-inflammatory properties, among others. So far, two clinical studies with the infusion of A. eupatoria have shown hepatoprotective properties as well as a protective role in cardiovascular disease, metabolic disorders and diabetes. CONCLUSIONS In this review, an integrative perspective on ethnomedicinal use, phenolic composition and pharmacological activity of A. eupatoria has been provided. As can be seen, this plant species exhibits several potential applications, including those beyond its traditional ethnomedicinal uses, as the safety of its consumption has been shown clinically. There still is limited pharmacological evidence that corroborates the ethnomedicinal uses of this plant species as well as regarding the specific bioactive compounds.
Collapse
Affiliation(s)
- Jéssica Malheiros
- Univ Coimbra, Faculty of Pharmacy, Laboratory of Pharmacology and Pharmaceutical Care, 3000-548, Coimbra, Portugal; Univ Coimbra, Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), 3000-548, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology, 3000-548, Coimbra, Portugal.
| | - Daniela M Simões
- Univ Coimbra, Faculty of Pharmacy, Laboratory of Pharmacology and Pharmaceutical Care, 3000-548, Coimbra, Portugal; Univ Coimbra, Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), 3000-548, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology, 3000-548, Coimbra, Portugal.
| | - Artur Figueirinha
- Univ Coimbra, Faculty of Pharmacy, Laboratory of Pharmacognosy, 3000-548, Coimbra, Portugal; LAQV, REQUIMTE, Faculty of Pharmacy of University of Coimbra, University of Coimbra, Coimbra, Portugal.
| | - Maria Dulce Cotrim
- Univ Coimbra, Faculty of Pharmacy, Laboratory of Pharmacology and Pharmaceutical Care, 3000-548, Coimbra, Portugal; Univ Coimbra, Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), 3000-548, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology, 3000-548, Coimbra, Portugal.
| | - Diogo A Fonseca
- Univ Coimbra, Faculty of Pharmacy, Laboratory of Pharmacology and Pharmaceutical Care, 3000-548, Coimbra, Portugal; Univ Coimbra, Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), 3000-548, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology, 3000-548, Coimbra, Portugal.
| |
Collapse
|
43
|
Wang L, Kong D, Tian J, Zhao W, Chen Y, An Y, Liu X, Wang F, Cai F, Sun X, Liu Q, Zhang W, Tian J, Zhou H. Tapinanthus species: A review of botany and biology, secondary metabolites, ethnomedical uses, current pharmacology and toxicology. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115462. [PMID: 35714877 DOI: 10.1016/j.jep.2022.115462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/05/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tapinanthus species are hemiparasites that grow on diverse hosts in African regions. Tapinanthus species are locally known as "all purpose herbs" as they are traditionally used to treat various diseases such as diabetes, hypertension, cancer, inflammation, malaria, anemia, anxiety, itching, and so on. AIM OF THE STUDY A comprehensive review on research outcomes and future perspectives of Tapinanthus species are presented to provide a reference for relevant researchers. MATERIALS AND METHODS The references regarding Tapinanthus species were retrieved from Google Scholar, Web of Science, Sci-finder, PubMed, Elsevier, Wiley, China National Knowledge Infrastructure, Open Access Library, and SpringerLink between 1963 and 2022. Scientific plant names were provided by "The Plant List" (www.theplantlist.org) and "The world Flora Online" (www.worldfloraonline.org). RESULTS Even though Tapinanthus species are regarded as notorious pests that can undermine various hosts, they are, as omnipotent herbs in folklore, meaningful for the development of potential phytomedicine sources. Phytochemistry screening has revealed the presence of glycosides, triterpenoids, flavonoids, alkaloids, tannins, steroids, anthraquinones. Among them, the chemical structures of 40 compounds have been elucidated by phytochemical methods without alkaloids and anthraquinones. These secondary metabolites might be responsible for ethnomedical uses and bioactivities of Tapinanthus species. Current research has provided scientific evidence for traditional uses of Tapinanthus species, especially unraveling hypoglycemic, hepatoprotective, antioxidant, antibacterial, anti-anxiety, anti-depression, anti-inflammatory, and other pharmacological properties. Given the fact that ethnomedical uses served as a valuable reference for pharmacology, however, some records to treat arthritis, fever, itching, dysentery, stomach pain, and anemia, have not been confirmed in current research. Furthermore, the toxic effects of Tapinanthus species were susceptible to the dosages, with relative safety across a wide range. CONCLUSIONS To reasonably yield Tapinanthus species, artificial culture might be a promising method to develop in the future. The discrepancies between phytochemistry screening and structure elucidation, as well as between ethnomedical uses and current pharmacology, need to be further clarified. The identification of bioactive compounds in crude extracts and fractions, the illustration of the underlying mechanisms of pharmacology, along with the addition of cytotoxicity, genotoxicity, and clinical trials of toxic tests, should be carried out in depth. This review highlights that Tapinanthus species can be considered promising phytomedicine sources as long as we adhere to digging more deeply into their potential role.
Collapse
Affiliation(s)
- Lu Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Degang Kong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Jinli Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Wei Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Yueru Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Ying An
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Xue Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Fulin Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Fujie Cai
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Xiaohui Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Qing Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Wenru Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Jingzhen Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China
| | - Honglei Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong Province, PR China.
| |
Collapse
|
44
|
Yang W, Liu J, Zhang Q, Liu H, Lv Z, Zhang C, Jiao Z. Changes in nutritional composition, volatile organic compounds and antioxidant activity of peach pulp fermented by lactobacillus. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Arora P, Athari SS, Nainwal LM. Piperine attenuates production of inflammatory biomarkers, oxidative stress and neutrophils in lungs of cigarette smoke-exposed experimental mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
46
|
Recent trends in extraction, identification and quantification methods of Centella asiatica phytochemicals with potential applications in food industry and therapeutic relevance: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Andrographis paniculata Dosage Forms and Advances in Nanoparticulate Delivery Systems: An Overview. Molecules 2022; 27:molecules27196164. [PMID: 36234698 PMCID: PMC9570691 DOI: 10.3390/molecules27196164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Andrographis paniculata is a well-known Asian medicinal plant with a major phytoconstituent of diterpene lactones, such as andrographolide, 14-deoxyandrographolide, and neoandrographolide. A World Health Organization (WHO) monograph on selected medicinal plants showed that A. paniculata extracts and its major diterpene lactones have promising anti-inflammatory, antidiabetic, antimalarial, anticancer, antifungal, antibacterial, antioxidant, and hypoglycemic activities. However, these active phytochemicals have poor water solubility and bioavailability when delivered in a conventional dosage form. These biological barriers can be mitigated if the extract or isolated compound are delivered as nanoparticles. This review discusses existing studies and marketed products of A. paniculata in solid, liquid, semi-solid, and gaseous dosage forms, either as an extract or isolated pure compounds, as well as their deficits in reaching maximum bioavailability. The pharmaceutics and pharmacological activity of A. paniculata as a nano-delivery system are also discussed.
Collapse
|
48
|
Panchal NK, Swarnalatha P, Prince SE. Trichopus zeylanicus ameliorates ibuprofen inebriated hepatotoxicity and enteropathy: an insight into its modulatory impact on pro/anti-inflammatory cytokines and apoptotic signaling pathways. Inflammopharmacology 2022; 30:2229-2242. [PMID: 36008576 PMCID: PMC9410745 DOI: 10.1007/s10787-022-01052-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Ibuprofen is a nonsteroidal anti-inflammatory drug that is commonly used for its analgesic, antipyretic and anti-inflammatory effects worldwide. However ibuprofen comes with serious unavoidable adverse effects on various organs when used for long duration or overdosed. Trichopus zeylanicus is a medicinal plant endemic to India owning various beneficial properties and is been used in treating various ailments. Therefore, the objective of this study was to evaluate the ameliorative effect of aqueous leaves’ extract of Trichopus zeylanicus against ibuprofen-induced hepatic toxicity and enteropathy in rats. Overall in this study 30 male albino rats were used, which were divided into five groups (six in each group). Group-I was normal control, Group-II was ibuprofen (400 mg/kg/day) inebriated group, Group-III was silymarin (25 mg/kg/day) pretreated + ibuprofen (400 mg/kg/day), Group-IV was ALETZ (1000 mg/kg/day) pretreated + ibuprofen (400 mg/kg/day), and Group-V was ALETZ alone (1000 mg/kg/day) group. The duration of the administration was for five days, followed by scarifying rats on the sixth day. Later the rats were assessed for liver and intestine enzyme markers, antioxidant parameters along with histopathological changes. In addition the pro-inflammatory markers such as TNF-α, IL-6 and IL-1β as well as anti-inflammatory cytokine IL-10 levels were measured using ELISA. Lastly the expression pattern of apoptotic signaling markers such as caspase-3, caspase-8 and Bcl-2 was evaluated using western blot. The results obtained from this study showed changes in levels of aforesaid parameter which presented the toxic effect of ibuprofen on liver and small intestine. Pre-treatment of ALETZ in ibuprofen-inebriated group was able to normalize the adverse effect caused due to ibuprofen. The conclusion of the study deduces that pre-treatment with ALETZ alleviates by modulating oxidative stress, inflammation, and apoptosis in ibuprofen inebriated rats, indicating its protective mechanism.
Collapse
Affiliation(s)
- Nagesh Kishan Panchal
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India
| | - Purushotham Swarnalatha
- Department of Information Security, School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India, 632104
| | - Sabina Evan Prince
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India.
| |
Collapse
|
49
|
Songvut P, Suriyo T, Panomvana D, Rangkadilok N, Satayavivad J. A comprehensive review on disposition kinetics and dosage of oral administration of Andrographis paniculata, an alternative herbal medicine, in co-treatment of coronavirus disease. Front Pharmacol 2022; 13:952660. [PMID: 36059950 PMCID: PMC9437296 DOI: 10.3389/fphar.2022.952660] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a present global health crisis that is driving the investigation of alternative phytomedicines for antiviral purposes. The evidence suggests that Andrographis paniculata crude or extract is a promising candidate for treating symptoms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This review aims to consolidate the available reports on the disposition kinetics of andrographolide, a main active component of A. paniculata. The second objective of this review is to summarize the available reports on an appropriate oral dosage for the use of andrographolide in upper respiratory tract infections (URTIs) and other viral infectious diseases. The data were collected from the literature on absorption, distribution, biotransformation, and excretion of andrographolide, and information was also obtained from scientific databases about the use of A. paniculata. The finding of this review on pharmacokinetics indicates that andrographolide is slightly absorbed into the blood circulation and exhibits poor oral bioavailability, whereas its distribution process is unrestricted. In the termination phase, andrographolide preferentially undergoes biotransformation partly through phase I hydroxylation and phase II conjugation, and it is then eliminated via the renal excretion and hepatobiliary system. The key summary of the recommended dosage for andrographolide in uncomplicated URTI treatment is 30 mg/day for children and 60 mg/day for adults. The dose for adult patients with pharyngotonsillitis could be increased to 180 mg/day, but not exceed 360 mg/day. Co-treatment with A. paniculata in concert with the standard supportive care for influenza reduced the severity of symptoms, shortened treatment duration, and decreased the risk of developing post-influenza complications. The recommended starting dose for use in patients with mild COVID-19 is 180 mg/day of andrographolide, based on the dose used in patients experiencing a URTI with inflammation. This review is not only applicable for evaluating the appropriate doses of andrographolide for antiviral treatments but also encourages future research evaluating the effectiveness of these recommended dosages during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Phanit Songvut
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Tawit Suriyo
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Duangchit Panomvana
- Translational Research Unit, Chulabhorn Research Institute, Bangkok, Thailand
| | - Nuchanart Rangkadilok
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Jutamaad Satayavivad
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
- *Correspondence: Jutamaad Satayavivad,
| |
Collapse
|
50
|
Tanwettiyanont J, Piriyachananusorn N, Sangsoi L, Boonsong B, Sunpapoa C, Tanamatayarat P, Na-Ek N, Kanchanasurakit S. Use of Andrographis paniculata (Burm.f.) Wall. ex Nees and risk of pneumonia in hospitalised patients with mild coronavirus disease 2019: A retrospective cohort study. Front Med (Lausanne) 2022; 9:947373. [PMID: 36035418 PMCID: PMC9399469 DOI: 10.3389/fmed.2022.947373] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022] Open
Abstract
Background Andrographis paniculata (Burm.f.) Wall. ex Nees (AP) has been widely used in Thailand to treat mild COVID-19 infections since early 2020; however, supporting evidence is scarce and ambiguous. Thus, this study aimed to examine whether the use of AP is associated with a decreased risk of pneumonia in hospitalised mild COVID-19 patients. Materials and methods We collected data between March 2020 and August 2021 from COVID-19 patients admitted to one hospital in Thailand. Patients whose infection was confirmed by real-time polymerase chain reaction, had normal chest radiography and did not receive favipiravir at admission were included and categorised as either AP (deriving from a dried and ground aerial part of the plant), given as capsules with a total daily dose of 180 mg andrographolide for 5 days or standard of care. They were followed for pneumonia confirmed by chest radiography. Multiple logistic regression was used for the analysis controlling for age, sex, diabetes, hypertension, statin use, and antihypertensive drug use. Results A total of 605 out of 1,054 patients (mostly unvaccinated) were included in the analysis. Of these, 59 patients (9.8%) developed pneumonia during the median follow-up of 7 days. The incidence rates of pneumonia were 13.93 (95% CI 10.09, 19.23) and 12.47 (95% CI 8.21, 18.94) per 1,000 person-days in the AP and standard of care groups, respectively. Compared to the standard of care group, the odds ratios of having pneumonia in the AP group were 1.24 (95% CI 0.71, 2.16; unadjusted model) and 1.42 (95% CI 0.79, 2.55; fully adjusted model). All sensitivity analyses were consistent with the main results. Conclusion The use of AP was not significantly associated with a decreased risk of pneumonia in mild COVID-19 patients. While waiting for insights from ongoing trials, AP’s use in COVID-19 should be done with caution.
Collapse
Affiliation(s)
- Jeeranan Tanwettiyanont
- Division of Clinical Pharmacy, Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | | | - Lilit Sangsoi
- Division of Pharmaceutical Care, Department of Pharmacy, Phrae Hospital, Phrae, Thailand
| | - Benjawan Boonsong
- Division of Pharmaceutical Care, Department of Pharmacy, Phrae Hospital, Phrae, Thailand
| | - Chamlong Sunpapoa
- Division of Internal Medicine, Department of Nurse, Phrae Hospital, Phrae, Thailand
| | - Patcharawan Tanamatayarat
- Division of Pharmacy and Technology, Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Unit of Excellence Technologies for Natural Products and Herbs, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Nat Na-Ek
- Pharmacoepidemiology, Social and Administrative Pharmacy (P-SAP) Research Unit, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Division of Social and Administration Pharmacy, Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- *Correspondence: Nat Na-Ek,
| | - Sukrit Kanchanasurakit
- Division of Clinical Pharmacy, Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Division of Pharmaceutical Care, Department of Pharmacy, Phrae Hospital, Phrae, Thailand
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Unit of Excellence on Clinical Outcomes Research and IntegratioN (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Unit of Excellence on Herbal Medicine, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Sukrit Kanchanasurakit,
| |
Collapse
|