1
|
Qu X, Pan P, Cao S, Ma Y, Yang J, Gao H, Pei X, Yang Y. Immp2l Deficiency Induced Granulosa Cell Senescence Through STAT1/ATF4 Mediated UPR mt and STAT1/(ATF4)/HIF1α/BNIP3 Mediated Mitophagy: Prevented by Enocyanin. Int J Mol Sci 2024; 25:11122. [PMID: 39456903 PMCID: PMC11508440 DOI: 10.3390/ijms252011122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Dysfunctional mitochondria producing excessive ROS are the main factors that cause ovarian aging. Immp2l deficiency causes mitochondrial dysfunction and excessive ROS production, leading to ovarian aging, which is attributed to granulosa cell senescence. The pathway controlling mitochondrial proteostasis and mitochondrial homeostasis of the UPRmt and mitophagy are closely related with the ROS and cell senescence. Our results suggest that Immp2l knockout led to granulosa cell senescence, and enocyanin treatment alleviated Immp2l deficiency-induced granulosa cell senescence, which was accompanied by improvements in mitochondrial function and reduced ROS levels. Interestingly, redox-related protein modifications, including S-glutathionylation and S-nitrosylation, were markedly increased in Immp2l-knockout granulosa cells, and were markedly reduced by enocyanin treatment. Furthermore, STAT1 was significantly increased in Immp2l-knockout granulosa cells and reduced by enocyanin treatment. The co-IP results suggest that the expression of STAT1 was controlled by S-glutathionylation and S-nitrosylation, but not phosphorylation. The UPRmt was impaired in Immp2l-deficient granulosa cells, and unfolded and misfolded proteins aggregated in mitochondria. Then, the HIF1α/BNIP3-mediated mitophagy pathway was activated, but mitophagy was impaired due to the reduced fusion of mitophagosomes and lysosomes. The excessive aggregation of mitochondria increased ROS production, leading to senescence. Hence, Enocyanin treatment alleviated granulosa cell senescence through STAT1/ATF4-mediated UPRmt and STAT1/(ATF4)/HIF1α/BNIP3-mediated mitophagy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiuying Pei
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; (X.Q.); (P.P.); (S.C.); (Y.M.); (J.Y.); (H.G.)
| | - Yanzhou Yang
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; (X.Q.); (P.P.); (S.C.); (Y.M.); (J.Y.); (H.G.)
| |
Collapse
|
2
|
Iglesias MJ, Costigliolo Rojas C, Bianchimano L, Legris M, Schön J, Gergoff Grozeff GE, Bartoli CG, Blázquez MA, Alabadí D, Zurbriggen MD, Casal JJ. Shade-induced ROS/NO reinforce COP1-mediated diffuse cell growth. Proc Natl Acad Sci U S A 2024; 121:e2320187121. [PMID: 39382994 PMCID: PMC11494356 DOI: 10.1073/pnas.2320187121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 08/08/2024] [Indexed: 10/11/2024] Open
Abstract
Canopy shade enhances the activity of PHYTOCHROME INTERACTING FACTORs (PIFs) to boost auxin synthesis in the cotyledons. Auxin, together with local PIFs and their positive regulator CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), promotes hypocotyl growth to facilitate access to light. Whether shade alters the cellular redox status thereby affecting growth responses, remains unexplored. Here, we show that, under shade, high auxin levels increased reactive oxygen species and nitric oxide accumulation in the hypocotyl of Arabidopsis. This nitroxidative environment favored the promotion of hypocotyl growth by COP1 under shade. We demonstrate that COP1 is S-nitrosylated, particularly under shade. Impairing this redox regulation enhanced COP1 degradation by the proteasome and diminished the capacity of COP1 to interact with target proteins and to promote hypocotyl growth. Disabling this regulation also generated transversal asymmetries in hypocotyl growth, indicating poor coordination among different cells, which resulted in random hypocotyl bending and predictably low ability to compete with neighbors. These findings highlight the significance of redox signaling in the control of diffuse growth during shade avoidance.
Collapse
Affiliation(s)
- María José Iglesias
- Fundación Instituto Leloir, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires1405, Argentina
- Departamento de Fisiología, Biología Molecular y Celular and Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires, Buenos Aires1428, Argentina
| | - Cecilia Costigliolo Rojas
- Fundación Instituto Leloir, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires1405, Argentina
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientίficas, Universidad Politécnica de Valencia, Valencia46022, Spain
| | - Luciana Bianchimano
- Fundación Instituto Leloir, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires1405, Argentina
| | - Martina Legris
- Fundación Instituto Leloir, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires1405, Argentina
| | - Jonas Schön
- Institute of Synthetic Biology and Cluster of Excellence in Plant Sciences, University of Düsseldorf, Düsseldorf40225, Germany
| | - Gustavo Esteban Gergoff Grozeff
- Facultades de Ciencias Agrarias y Forestales y de Ciencias Naturales y Museo, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, La Plata1900, Argentina
| | - Carlos Guillermo Bartoli
- Facultades de Ciencias Agrarias y Forestales y de Ciencias Naturales y Museo, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, La Plata1900, Argentina
| | - Miguel A. Blázquez
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientίficas, Universidad Politécnica de Valencia, Valencia46022, Spain
| | - David Alabadí
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientίficas, Universidad Politécnica de Valencia, Valencia46022, Spain
| | - Matias D. Zurbriggen
- Institute of Synthetic Biology and Cluster of Excellence in Plant Sciences, University of Düsseldorf, Düsseldorf40225, Germany
| | - Jorge J. Casal
- Fundación Instituto Leloir, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires1405, Argentina
- Facultad de Agronomía, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Universidad de Buenos Aires, Buenos Aires1417, Argentina
| |
Collapse
|
3
|
Romaldi B, Scirè A, Minnelli C, Frontini A, Casari G, Cianfruglia L, Mobbili G, de Bari L, Antognelli C, Pallardó FV, Armeni T. Overexpression of Glyoxalase 2 in Human Breast Cancer Cells: Implications for Cell Proliferation and Doxorubicin Resistance. Int J Mol Sci 2024; 25:10888. [PMID: 39456676 PMCID: PMC11507095 DOI: 10.3390/ijms252010888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Glyoxalase 2 (Glo2) is an enzyme of the glyoxalase system whose pathway parallels glycolysis and which aims to remove methylglyoxal (MGO). This study analyzed the possible additional roles of the Glo2 enzyme in breast cancer (MCF7) and non-cancer (HDF) cell lines, investigating its presence at the nuclear level and its potential involvement in cell proliferation and chemotherapy resistance. The results revealed that Glo2 is overexpressed in cancer cells, and its expression is higher during the proliferative (S and G2/M) phases of the cell cycle. The study also examined a post-translational modification (PTM) in which Glo2 could be involved, with S-glutathionylation revealing that Glo2 enhances this PTM in cancer cells both in the cytoplasm and nucleus. Inhibition of Glo2 by p-NCBG resulted in increased sensitivity to doxorubicin, a common chemotherapeutic agent. This suggests that Glo2 increases cancer cell resistance to chemotherapy, potentially through its role in regulating oxidative stress. These results highlight Glo2 as a potential therapeutic target to improve the efficacy of existing treatments.
Collapse
Affiliation(s)
- Brenda Romaldi
- Department of Odontostomatologic and Specialized Clinical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (B.R.); (G.C.); (L.C.)
| | - Andrea Scirè
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.S.); (C.M.); (A.F.); (G.M.)
| | - Cristina Minnelli
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.S.); (C.M.); (A.F.); (G.M.)
| | - Andrea Frontini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.S.); (C.M.); (A.F.); (G.M.)
| | - Giulia Casari
- Department of Odontostomatologic and Specialized Clinical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (B.R.); (G.C.); (L.C.)
| | - Laura Cianfruglia
- Department of Odontostomatologic and Specialized Clinical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (B.R.); (G.C.); (L.C.)
| | - Giovanna Mobbili
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.S.); (C.M.); (A.F.); (G.M.)
| | - Lidia de Bari
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), 70126 Bari, Italy;
| | - Cinzia Antognelli
- Department of Medicine and Surgery, Università degli Studi di Perugia, 06129 Perugia, Italy;
| | - Federico V. Pallardó
- Department of Physiology, Medicine and Dentistry School, University of Valencia-INCLIVA, Center for Biomedical Network Research on Rare Diseases (CIBERER), 46010 Valencia, Spain;
| | - Tatiana Armeni
- Department of Odontostomatologic and Specialized Clinical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (B.R.); (G.C.); (L.C.)
| |
Collapse
|
4
|
Bohl K, Wynia-Smith SL, Lipinski RAJ, Smith BC. Inhibition of Sirtuin Deacylase Activity by Peroxynitrite. Biochemistry 2024; 63:2463-2476. [PMID: 39256054 PMCID: PMC11524680 DOI: 10.1021/acs.biochem.4c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Sirtuins are a class of enzymes that deacylate protein lysine residues using NAD+ as a cosubstrate. Sirtuin deacylase activity has been historically regarded as protective; loss of sirtuin deacylase activity potentially increases susceptibility to aging-related disease development. However, which factors may inhibit sirtuins during aging or disease is largely unknown. Increased oxidant and inflammatory byproduct production damages cellular proteins. Previously, we and others found that sirtuin deacylase activity is inhibited by the nitric oxide (NO)-derived cysteine post-translational modification S-nitrosation. However, the comparative ability of the NO-derived oxidant peroxynitrite (ONOO-) to affect human sirtuin activity had not yet been assessed under uniform conditions. Here, we compare the ability of ONOO- (donated from SIN-1) to post-translationally modify and inhibit SIRT1, SIRT2, SIRT3, SIRT5, and SIRT6 deacylase activity. In response to SIN-1 treatment, inhibition of SIRT1, SIRT2, SIRT3, SIRT5, and SIRT6 deacylase activity correlated with increased tyrosine nitration. Mass spectrometry identified multiple novel tyrosine nitration sites in SIRT1, SIRT3, SIRT5, and SIRT6. As each sirtuin isoform has at least one tyrosine nitration site within the catalytic core, nitration may result in sirtuin inhibition. ONOO- can also react with cysteine residues, resulting in sulfenylation; however, only SIRT1 showed detectable peroxynitrite-mediated cysteine sulfenylation. While SIRT2, SIRT3, SIRT5, and SIRT6 showed no detectable sulfenylation, SIRT6 likely undergoes transient sulfenylation, quickly resolving into an intermolecular disulfide bond. These results suggest that the aging-related oxidant peroxynitrite can post-translationally modify and inhibit sirtuins, contributing to susceptibility to aging-related disease.
Collapse
Affiliation(s)
- Kelsey Bohl
- Concordia University of Wisconsin, 12800 N. Lake Shore Drive, Mequon, WI, 53097
| | - Sarah L. Wynia-Smith
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226
| | - Rachel A. Jones Lipinski
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226
| | - Brian C. Smith
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226
| |
Collapse
|
5
|
Boutin C, Clément C, Rivoal J. Post-Translational Modifications to Cysteine Residues in Plant Proteins and Their Impact on the Regulation of Metabolism and Signal Transduction. Int J Mol Sci 2024; 25:9845. [PMID: 39337338 PMCID: PMC11432348 DOI: 10.3390/ijms25189845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Cys is one of the least abundant amino acids in proteins. However, it is often highly conserved and is usually found in important structural and functional regions of proteins. Its unique chemical properties allow it to undergo several post-translational modifications, many of which are mediated by reactive oxygen, nitrogen, sulfur, or carbonyl species. Thus, in addition to their role in catalysis, protein stability, and metal binding, Cys residues are crucial for the redox regulation of metabolism and signal transduction. In this review, we discuss Cys post-translational modifications (PTMs) and their role in plant metabolism and signal transduction. These modifications include the oxidation of the thiol group (S-sulfenylation, S-sulfinylation and S-sulfonylation), the formation of disulfide bridges, S-glutathionylation, persulfidation, S-cyanylation S-nitrosation, S-carbonylation, S-acylation, prenylation, CoAlation, and the formation of thiohemiacetal. For each of these PTMs, we discuss the origin of the modifier, the mechanisms involved in PTM, and their reversibility. Examples of the involvement of Cys PTMs in the modulation of protein structure, function, stability, and localization are presented to highlight their importance in the regulation of plant metabolic and signaling pathways.
Collapse
Affiliation(s)
- Charlie Boutin
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| | - Camille Clément
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| | - Jean Rivoal
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke est, Montréal, QC H1X 2B2, Canada
| |
Collapse
|
6
|
Brustolin Braga C, Milan JC, Andrade Meirelles M, Zavan B, Ferreira-Silva GÁ, Caixeta ES, Ionta M, Pilli RA. Furoxan-piplartine hybrids as effective NO donors and ROS inducers in PC3 cancer cells: design, synthesis, and biological evaluation. RSC Med Chem 2024:d4md00281d. [PMID: 39290383 PMCID: PMC11403579 DOI: 10.1039/d4md00281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Conjugation of the naturally occurring product piplartine (PPT, 1), which is a potent cytotoxic compound and ROS inducer, with a diphenyl sulfonyl-substituted furoxan moiety (namely, 3,4-bis(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide), an important type of NO donor, via an ether linker of different chain lengths is described, characterized and screened for the anticancer potential. The cytotoxicity of the new hybrids was evaluated on a panel of human cancer cell lines (MCF-7, PC3 and OVCAR-3) and two non-cancer human cells (MCF10A and PNT2). In general, the synthesized hybrids were more cytotoxic and selective compared to their furoxan precursors 4-6 and PPT in the above cancer cells. Particularly, PC3 cells are the most sensitive to hybrids 7 and 9 (IC50 values of 240 nM and 50 nM, respectively), while a lower potency was found for the prostate normal cells (IC50 = 17.8 μM and 14.1 μM, respectively), corresponding to selectivity indices of ca. 75 and 280, respectively. NO generation by the PPT-furoxan compounds in PC3 cells was confirmed using the Griess reaction. Furthermore, the cell growth inhibitory effect of 9 was significantly attenuated by the NO scavenger carboxy-PTIO. The intracellular ROS generation by 7 and 9 was also verified, and different assays showed that co-treatment with the antioxidant N-acetyl-l-cysteine (NAC) provided protection against PPT-induced ROS generation. Further mechanistic studies revealed that 7 and 9 had strong cytotoxicity to induce apoptosis in PC3 cells, being mediated, at least in part, by the NO-release and increase in ROS production. Notably, the ability of 9 to induce apoptosis was stronger than that of 7, which may be attributed to higher levels of NO released by 9. Compounds 7 and 9 modulated the expression profiles of critical regulators of cell cycle, such as CDKN1A (p21), c-MYC, and CCND1 (cyclin D1), as well as induced DNA damage. Overall, tethering the furoxan NO-releasing moiety to the cytotoxic natural product PPT had significant impact on the potential anticancer activity and selectivity of the novel hybrid drug candidates, especially 9, as a result of synergistic effects of both furoxan and PPT's ability to release NO, generate ROS, induce DNA damage, and trigger apoptosis.
Collapse
Affiliation(s)
- Carolyne Brustolin Braga
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas UNICAMP CEP 13083-970 Campinas Sao Paulo Brazil
| | - Julio Cesar Milan
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas UNICAMP CEP 13083-970 Campinas Sao Paulo Brazil
| | - Matheus Andrade Meirelles
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas UNICAMP CEP 13083-970 Campinas Sao Paulo Brazil
| | - Bruno Zavan
- Institute of Biomedical Sciences, Federal University of Alfenas UNIFAL-MG 37130-001 Alfenas Minas Gerais Brazil
| | | | - Ester Siqueira Caixeta
- Institute of Biomedical Sciences, Federal University of Alfenas UNIFAL-MG 37130-001 Alfenas Minas Gerais Brazil
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas UNIFAL-MG 37130-001 Alfenas Minas Gerais Brazil
| | - Ronaldo A Pilli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas UNICAMP CEP 13083-970 Campinas Sao Paulo Brazil
| |
Collapse
|
7
|
Li MY, Li YR, Han CF, Zhang J, Zhu RY, Zhang Y, Li J, Jia SR, Han PP. Nitric oxide mediates positive regulation of Nostoc flagelliforme polysaccharide yield via potential S-nitrosylation of G6PDH and UGDH. BMC Biotechnol 2024; 24:58. [PMID: 39174975 PMCID: PMC11342573 DOI: 10.1186/s12896-024-00884-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024] Open
Abstract
Based on our previous findings that salicylic acid and jasmonic acid increased Nostoc flagelliforme polysaccharide yield by regulating intracellular nitric oxide (NO) levels, the mechanism through which NO affects polysaccharide biosynthesis in Nostoc flagelliforme was explored from the perspective of S-nitrosylation (SNO). The addition of NO donor and scavenger showed that intracellular NO had a significant positive effect on the polysaccharide yield of N. flagelliforme. To explore the mechanism, we investigated the relationship between NO levels and the activity of several key enzymes involved in polysaccharide biosynthesis, including fructose 1,6-bisphosphate aldolase (FBA), glucokinase (GK), glucose 6-phosphate dehydrogenase (G6PDH), mitochondrial isocitrate dehydrogenase (ICDH), and UDP-glucose dehydrogenase (UGDH). The enzymatic activities of G6PDH, ICDH, and UGDH were shown to be significantly correlated with the shifts in intracellular NO levels. For further validation, G6PDH, ICDH, and UGDH were heterologously expressed in Escherichia coli and purified via Ni+-NAT affinity chromatography, and subjected to a biotin switch assay and western blot analysis, which revealed that UGDH and G6PDH were susceptible to SNO. Furthermore, mass spectrometry analysis of proteins treated with S-nitrosoglutathione (GSNO) identified the SNO modification sites for UGDH and G6PDH as cysteine 423 and cysteine 249, respectively. These findings suggest that NO modulates polysaccharide biosynthesis in N. flagelliforme through SNO of UGDH and G6PDH. This reveals a potential mechanism through which NO promotes polysaccharide synthesis in N. flagelliforme, while also providing a new strategy for improving the industrial production of polysaccharides.
Collapse
Affiliation(s)
- Meng-Yuan Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P.R. China
| | - Yan-Ru Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P.R. China
| | - Cheng-Feng Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P.R. China
| | - Jie Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P.R. China
| | - Rui-Ying Zhu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P.R. China
| | - Yan Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P.R. China
| | - Jian Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P.R. China
| | - Shi-Ru Jia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P.R. China
| | - Pei-Pei Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, P.R. China.
| |
Collapse
|
8
|
Federici L, Masulli M, De Laurenzi V, Allocati N. The Role of S-Glutathionylation in Health and Disease: A Bird's Eye View. Nutrients 2024; 16:2753. [PMID: 39203889 PMCID: PMC11357436 DOI: 10.3390/nu16162753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Protein glutathionylation is a reversible post-translational modification that involves the attachment of glutathione to cysteine residues. It plays a role in the regulation of several cellular processes and protection against oxidative damage. Glutathionylation (GS-ylation) modulates protein function, inhibits or enhances enzymatic activity, maintains redox homeostasis, and shields several proteins from irreversible oxidative stress. Aberrant GS-ylation patterns are thus implicated in various diseases, particularly those associated with oxidative stress and inflammation, such as cardiovascular diseases, neurodegenerative disorders, cancer, and many others. Research in the recent years has highlighted the potential to manipulate protein GS-ylation for therapeutic purposes with strategies that imply both its enhancement and inhibition according to different cases. Moreover, it has become increasingly evident that monitoring the GS-ylation status of selected proteins offers diagnostic potential in different diseases. In this review, we try to summarize recent research in the field with a focus on our current understanding of the molecular mechanisms related to aberrant protein GS-ylation.
Collapse
Affiliation(s)
- Luca Federici
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’ Annunzio”, 66100 Chieti, Italy; (L.F.); (M.M.); (V.D.L.)
- CAST (Center for Advanced Studies and Technology), University “G. d’ Annunzio”, 66100 Chieti, Italy
| | - Michele Masulli
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’ Annunzio”, 66100 Chieti, Italy; (L.F.); (M.M.); (V.D.L.)
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’ Annunzio”, 66100 Chieti, Italy; (L.F.); (M.M.); (V.D.L.)
- CAST (Center for Advanced Studies and Technology), University “G. d’ Annunzio”, 66100 Chieti, Italy
| | - Nerino Allocati
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’ Annunzio”, 66100 Chieti, Italy; (L.F.); (M.M.); (V.D.L.)
| |
Collapse
|
9
|
Liu Y, Liu Z, Wu X, Fang H, Huang D, Pan X, Liao W. Role of protein S-nitrosylation in plant growth and development. PLANT CELL REPORTS 2024; 43:204. [PMID: 39080060 DOI: 10.1007/s00299-024-03290-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
In plants, nitric oxide (NO) has been widely accepted as a signaling molecule that plays a role in different processes. Among the most relevant pathways by which NO and its derivatives realize their biological functions, post-translational protein modifications are worth mentioning. Protein S-nitrosylation has been the most studied NO-dependent regulatory mechanism; it is emerging as an essential mechanism for transducing NO bioactivity in plants and animals. In recent years, the research of protein S-nitrosylation in plant growth and development has made significant progress, including processes such as seed germination, root development, photosynthetic regulation, flowering regulation, apoptosis, and plant senescence. In this review, we focus on the current state of knowledge on the role of S-nitrosylation in plant growth and development and provide a better understanding of its action mechanisms.
Collapse
Affiliation(s)
- Yayu Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Zhiya Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Xuetong Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Hua Fang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Dengjing Huang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Xuejuan Pan
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
10
|
Yu Y, Zhang L, Zhang D, Dai Q, Hou M, Chen M, Gao F, Liu XL. The role of ferroptosis in acute kidney injury: mechanisms and potential therapeutic targets. Mol Cell Biochem 2024:10.1007/s11010-024-05056-3. [PMID: 38943027 DOI: 10.1007/s11010-024-05056-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Acute kidney injury (AKI) is one of the most common and severe clinical renal syndromes with high morbidity and mortality. Ferroptosis is a form of programmed cell death (PCD), is characterized by iron overload, reactive oxygen species accumulation, and lipid peroxidation. As ferroptosis has been increasingly studied in recent years, it is closely associated with the pathophysiological process of AKI and provides a target for the treatment of AKI. This review offers a comprehensive overview of the regulatory mechanisms of ferroptosis, summarizes its role in various AKI models, and explores its interaction with other forms of cell death, it also presents research on ferroptosis in AKI progression to other diseases. Additionally, the review highlights methods for detecting and assessing AKI through the lens of ferroptosis and describes potential inhibitors of ferroptosis for AKI treatment. Finally, the review presents a perspective on the future of clinical AKI treatment, aiming to stimulate further research on ferroptosis in AKI.
Collapse
Affiliation(s)
- Yanxin Yu
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Lei Zhang
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Die Zhang
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Qiangfang Dai
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Mingzheng Hou
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Meini Chen
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Feng Gao
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Xiao-Long Liu
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China.
| |
Collapse
|
11
|
Gulati M, Thomas JM, Ennis CL, Hernday AD, Rawat M, Nobile CJ. The bacillithiol pathway is required for biofilm formation in Staphylococcus aureus. Microb Pathog 2024; 191:106657. [PMID: 38649100 DOI: 10.1016/j.micpath.2024.106657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Staphylococcus aureus is a major human pathogen that can cause infections that range from superficial skin and mucosal infections to life threatening disseminated infections. S. aureus can attach to medical devices and host tissues and form biofilms that allow the bacteria to evade the host immune system and provide protection from antimicrobial agents. To counter host-generated oxidative and nitrosative stress mechanisms that are part of the normal host responses to invading pathogens, S. aureus utilizes low molecular weight (LMW) thiols, such as bacillithiol (BSH). Additionally, S. aureus synthesizes its own nitric oxide (NO), which combined with its downstream metabolites may also protect the bacteria against specific host responses. We have previously shown that LMW thiols are required for biofilm formation in Mycobacterium smegmatis and Pseudomonas aeruginosa. Here, we show that the S. aureus bshC mutant strain, which is defective in the last step of the BSH pathway and lacks BSH, is impaired in biofilm formation. We also identify a possible S-nitrosobacillithiol reductase (BSNOR), similar in sequence to an S-nitrosomycothiol reductase found in M. smegmatis and show that the putative S. aureus bsnoR mutant strain has reduced levels of BSH and decreased biofilm formation. Our studies also show that NO plays an important role in biofilm formation and that acidified sodium nitrite severely reduces biofilm thickness. These studies provide insight into the roles of oxidative and nitrosative stress mechanisms on biofilm formation and indicate that BSH and NO are key players in normal biofilm formation in S. aureus.
Collapse
Affiliation(s)
- Megha Gulati
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, USA
| | - Jason M Thomas
- Department of Biology, California State University-Fresno, Fresno, CA, USA
| | - Craig L Ennis
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, USA; Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, USA
| | - Aaron D Hernday
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, USA; Health Sciences Research Institute, University of California, Merced, CA, USA
| | - Mamta Rawat
- Department of Biology, California State University-Fresno, Fresno, CA, USA.
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, USA; Health Sciences Research Institute, University of California, Merced, CA, USA.
| |
Collapse
|
12
|
Anjo SI, He Z, Hussain Z, Farooq A, McIntyre A, Laughton CA, Carvalho AN, Finelli MJ. Protein Oxidative Modifications in Neurodegenerative Diseases: From Advances in Detection and Modelling to Their Use as Disease Biomarkers. Antioxidants (Basel) 2024; 13:681. [PMID: 38929122 PMCID: PMC11200609 DOI: 10.3390/antiox13060681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidation-reduction post-translational modifications (redox-PTMs) are chemical alterations to amino acids of proteins. Redox-PTMs participate in the regulation of protein conformation, localization and function, acting as signalling effectors that impact many essential biochemical processes in the cells. Crucially, the dysregulation of redox-PTMs of proteins has been implicated in the pathophysiology of numerous human diseases, including neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. This review aims to highlight the current gaps in knowledge in the field of redox-PTMs biology and to explore new methodological advances in proteomics and computational modelling that will pave the way for a better understanding of the role and therapeutic potential of redox-PTMs of proteins in neurodegenerative diseases. Here, we summarize the main types of redox-PTMs of proteins while providing examples of their occurrence in neurodegenerative diseases and an overview of the state-of-the-art methods used for their detection. We explore the potential of novel computational modelling approaches as essential tools to obtain insights into the precise role of redox-PTMs in regulating protein structure and function. We also discuss the complex crosstalk between various PTMs that occur in living cells. Finally, we argue that redox-PTMs of proteins could be used in the future as diagnosis and prognosis biomarkers for neurodegenerative diseases.
Collapse
Affiliation(s)
- Sandra I. Anjo
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-517 Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Zhicheng He
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Zohaib Hussain
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Aruba Farooq
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alan McIntyre
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Charles A. Laughton
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Andreia Neves Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Mattéa J. Finelli
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
13
|
Chen Y, Li S, Guan B, Yan X, Huang C, Du Y, Yang F, Zhang N, Li Y, Lu J, Wang J, Zhang J, Chen Z, Chen C, Kong X. MAP4K4 exacerbates cardiac microvascular injury in diabetes by facilitating S-nitrosylation modification of Drp1. Cardiovasc Diabetol 2024; 23:164. [PMID: 38724987 PMCID: PMC11084109 DOI: 10.1186/s12933-024-02254-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Dynamin-related protein 1 (Drp1) is a crucial regulator of mitochondrial dynamics, the overactivation of which can lead to cardiovascular disease. Multiple distinct posttranscriptional modifications of Drp1 have been reported, among which S-nitrosylation was recently introduced. However, the detailed regulatory mechanism of S-nitrosylation of Drp1 (SNO-Drp1) in cardiac microvascular dysfunction in diabetes remains elusive. The present study revealed that mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) was consistently upregulated in diabetic cardiomyopathy (DCM) and promoted SNO-Drp1 in cardiac microvascular endothelial cells (CMECs), which in turn led to mitochondrial dysfunction and cardiac microvascular disorder. Further studies confirmed that MAP4K4 promoted SNO-Drp1 at human C644 (mouse C650) by inhibiting glutathione peroxidase 4 (GPX4) expression, through which MAP4K4 stimulated endothelial ferroptosis in diabetes. In contrast, inhibition of MAP4K4 via DMX-5804 significantly reduced endothelial ferroptosis, alleviated cardiac microvascular dysfunction and improved cardiac dysfunction in db/db mice by reducing SNO-Drp1. In parallel, the C650A mutation in mice abolished SNO-Drp1 and the role of Drp1 in promoting cardiac microvascular disorder and cardiac dysfunction. In conclusion, our findings demonstrate that MAP4K4 plays an important role in endothelial dysfunction in DCM and reveal that SNO-Drp1 and ferroptosis activation may act as downstream targets, representing potential therapeutic targets for DCM.
Collapse
Affiliation(s)
- Yuqiong Chen
- Department of Cardiology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 215000, Suzhou, Jiangsu Province, China.
| | - Su Li
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China
| | - Bo Guan
- Department of Geriatrics, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Xiaopei Yan
- Department of Respiratory Medicine, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China
| | - Chao Huang
- Ministry of Science and Technology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, 215002, Suzhou, Jiangsu, China
| | - Yingqiang Du
- Department of Cardiology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 215000, Suzhou, Jiangsu Province, China
| | - Fan Yang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, 210008, Nanjing, China
- Branch of National Clinical Research Center for Metabolic Diseases, 210008, Nanjing, China
| | - Nannan Zhang
- Department of Cardiology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 215000, Suzhou, Jiangsu Province, China
| | - Yafei Li
- Department of Cardiology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 215000, Suzhou, Jiangsu Province, China
| | - Jian Lu
- Department of Critical Care Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jiankang Wang
- Department of Cardiology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 215000, Suzhou, Jiangsu Province, China
| | - Jun Zhang
- Department of Cardiology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 215000, Suzhou, Jiangsu Province, China
| | - Zhangwei Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China.
| | - Chao Chen
- Department of Cardiology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 215000, Suzhou, Jiangsu Province, China.
| | - Xiangqing Kong
- Department of Cardiology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, 215000, Suzhou, Jiangsu Province, China.
- Department of Cardiology, Gulou District, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing City, Jiangsu Province, China.
| |
Collapse
|
14
|
Sun X, Guo C, Huang C, Lv N, Chen H, Huang H, Zhao Y, Sun S, Zhao D, Tian J, Chen X, Zhang Y. GSTP alleviates acute lung injury by S-glutathionylation of KEAP1 and subsequent activation of NRF2 pathway. Redox Biol 2024; 71:103116. [PMID: 38479222 PMCID: PMC10945259 DOI: 10.1016/j.redox.2024.103116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024] Open
Abstract
Oxidative stress plays an important role in the pathogenesis of acute lung injury (ALI). As a typical post-translational modification triggered by oxidative stress, protein S-glutathionylation (PSSG) is regulated by redox signaling pathways and plays diverse roles in oxidative stress conditions. In this study, we found that GSTP downregulation exacerbated LPS-induced injury in human lung epithelial cells and in mice ALI models, confirming the protective effect of GSTP against ALI both in vitro and in vivo. Additionally, a positive correlation was observed between total PSSG level and GSTP expression level in cells and mice lung tissues. Further results demonstrated that GSTP inhibited KEAP1-NRF2 interaction by promoting PSSG process of KEAP1. By the integration of protein mass spectrometry, molecular docking, and site-mutation validation assays, we identified C434 in KEAP1 as the key PSSG site catalyzed by GSTP, which promoted the dissociation of KEAP1-NRF2 complex and activated the subsequent anti-oxidant genes. In vivo experiments with AAV-GSTP mice confirmed that GSTP inhibited LPS-induced lung inflammation by promoting PSSG of KEAP1 and activating the NRF2 downstream antioxidant pathways. Collectively, this study revealed the novel regulatory mechanism of GSTP in the anti-inflammatory function of lungs by modulating PSSG of KEAP1 and the subsequent KEAP1/NRF2 pathway. Targeting at manipulation of GSTP level or activity might be a promising therapeutic strategy for oxidative stress-induced ALI progression.
Collapse
Affiliation(s)
- Xiaolin Sun
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Chaorui Guo
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Chunyan Huang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Ning Lv
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Huili Chen
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, 32827, United States
| | - Haoyan Huang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yulin Zhao
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Di Zhao
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Xijing Chen
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Yongjie Zhang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
15
|
Wolszczak-Biedrzycka B, Dorf J, Matowicka-Karna J, Wojewódzka-Żeleźniakowicz M, Żukowski P, Zalewska A, Maciejczyk M. Significance of nitrosative stress and glycoxidation products in the diagnosis of COVID-19. Sci Rep 2024; 14:9198. [PMID: 38649417 PMCID: PMC11035544 DOI: 10.1038/s41598-024-59876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Nitrosative stress promotes protein glycoxidation, and both processes can occur during an infection with the SARS-CoV-2 virus. Therefore, the aim of this study was to assess selected nitrosative stress parameters and protein glycoxidation products in COVID-19 patients and convalescents relative to healthy subjects, including in reference to the severity of COVID-19 symptoms. The diagnostic utility of nitrosative stress and protein glycoxidation biomarkers was also evaluated in COVID-19 patients. The study involved 218 patients with COVID-19, 69 convalescents, and 48 healthy subjects. Nitrosative stress parameters (NO, S-nitrosothiols, nitrotyrosine) and protein glycoxidation products (tryptophan, kynurenine, N-formylkynurenine, dityrosine, AGEs) were measured in the blood plasma or serum with the use of colorimetric/fluorometric methods. The levels of NO (p = 0.0480), S-nitrosothiols (p = 0.0004), nitrotyrosine (p = 0.0175), kynurenine (p < 0.0001), N-formylkynurenine (p < 0.0001), dityrosine (p < 0.0001), and AGEs (p < 0.0001) were significantly higher, whereas tryptophan fluorescence was significantly (p < 0.0001) lower in COVID-19 patients than in the control group. Significant differences in the analyzed parameters were observed in different stages of COVID-19. In turn, the concentrations of kynurenine (p < 0.0001), N-formylkynurenine (p < 0.0001), dityrosine (p < 0.0001), and AGEs (p < 0.0001) were significantly higher, whereas tryptophan levels were significantly (p < 0.0001) lower in convalescents than in healthy controls. The ROC analysis revealed that protein glycoxidation products can be useful for diagnosing infections with the SARS-CoV-2 virus because they differentiate COVID-19 patients (KN: sensitivity-91.20%, specificity-92.00%; NFK: sensitivity-92.37%, specificity-92.00%; AGEs: sensitivity-99,02%, specificity-100%) and convalescents (KN: sensitivity-82.22%, specificity-84.00%; NFK: sensitivity-82,86%, specificity-86,00%; DT: sensitivity-100%, specificity-100%; AGE: sensitivity-100%, specificity-100%) from healthy subjects with high sensitivity and specificity. Nitrosative stress and protein glycoxidation are intensified both during and after an infection with the SARS-CoV-2 virus. The levels of redox biomarkers fluctuate in different stages of the disease. Circulating biomarkers of nitrosative stress/protein glycoxidation have potential diagnostic utility in both COVID-19 patients and convalescents.
Collapse
Affiliation(s)
- Blanka Wolszczak-Biedrzycka
- Department of Psychology and Sociology of Health and Public Health, University of Warmia and Mazury in Olsztyn, 10-900, Olsztyn, Poland.
| | - Justyna Dorf
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15-089, Białystok, Poland
| | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15-089, Białystok, Poland
| | | | - Piotr Żukowski
- Department of Restorative Dentistry, Croydon University Hospital, 530 London Road, Croydon, Surrey, CR7 7YE, UK
| | - Anna Zalewska
- Independent Laboratory of Experimental Dentistry, Medical University of Bialystok, 15-089, Białystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 15-089, Białystok, Poland
| |
Collapse
|
16
|
Nosareva OL, Stepovaya EA, Litvinova LS, Yurova KA. Heat Shock Protein HSP27 and the Status of the Glutathione System in Dexamethasone-Induced Apoptosis of Jurkat Tumor Cells. Bull Exp Biol Med 2024; 176:617-619. [PMID: 38730108 DOI: 10.1007/s10517-024-06079-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Indexed: 05/12/2024]
Abstract
We studied the effect of the HSP27 inhibitor, 5-(5-ethyl-2-hydroxy-4-methoxyphenyl)-4-(4-methoxyphenyl)-isoxazole, at a final concentration of 0.1 μM and/or the apoptosis inducer dexamethasone at a final concentration of 10 μM on the content of hydroxyl radical, reduced and oxidized glutathione, HSP27, activity of glutathione reductase, glutathione peroxidase, caspase-3, and the number of Annexin+ Jurkat tumor cells. The involvement of HSP27 in apoptosis of Jurkat tumor cells was demonstrated. Simultaneous exposure to the HSP27 inhibitor and dexamethasone resulted in an increase in the level of HSP27 against the background of developing oxidative stress (increase in the concentration of hydroxyl radicals and changes in the state of the glutathione system).
Collapse
Affiliation(s)
- O L Nosareva
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia.
| | - E A Stepovaya
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - L S Litvinova
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - K A Yurova
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| |
Collapse
|
17
|
Babuta P, Deswal R. Differential S-nitrosylation and characterization of purified S-nitrosoglutathione reductase (GSNOR) from Brassica juncea shows multiple forms of the enzyme. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108404. [PMID: 38330777 DOI: 10.1016/j.plaphy.2024.108404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
S-nitrosoglutathione reductase (GSNOR). a master regulator of NO homeostasis, is a single-copy gene in most plants. In Lotus japonicus, two GSNOR isoforms were identified exhibiting similar kinetic properties but differential tissue-specific expressions. Previously, a genome-wide identification in Brassica juncea revealed four copies of GSNOR, each encoding proteins that vary in subunit molecular weights and pI. Here, we report multiple forms of GSNOR using 2D immunoblot which showed 4 immunopositive spots of 41.5 kDa (pl 5.79 and 6.78) and 43 kDa (pl 6.16 and 6.23). To confirm, purification of GSNOR using anion-exchange chromatography yielded 2 distinct pools (GSNOR-A & GSNOR-B) with GSNOR activities. Subsequently, affinity-based purification resulted in 1 polypeptide from GSNOR-A and 2 polypeptides from GSNOR-B. Size exclusion-HPLC confirmed 3 GSNORs with molecular weight of 87.48 ± 2.74 KDa (GSNOR-A); 87.36 ± 3.25 and 82.74 ± 2.75 kDa (GSNOR-B). Kinetic analysis showed Km of 118 ± 11 μM and Vmax of 287 ± 22 nkat/mg for GSNOR-A, whereas Km of 96.4 ± 8 μM and Vmax of 349 ± 15 nkat/mg for GSNOR-B. S-nitrosylation and inhibition by NO showed redox regulation of all BjGSNORs. Both purified GSNORs exhibited variable denitrosylation efficiency as depicted by Biotin Switch assay. To the best of our knowledge, this is the first report confirming multiple isoforms of GSNOR in B. juncea.
Collapse
Affiliation(s)
- Priyanka Babuta
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, 110007, India
| | - Renu Deswal
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
18
|
Zhou N, Zhang Y, Jiao Y, Nan J, Xia A, Mu B, Lin G, Li X, Zhang S, Yang S, Li L. Discovery of a novel pyroptosis inhibitor acting though modulating glutathionylation to suppress NLRP3-related signal pathway. Int Immunopharmacol 2024; 127:111314. [PMID: 38081102 DOI: 10.1016/j.intimp.2023.111314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 01/18/2024]
Abstract
Pyroptosis is a proinflammatory type of regulated cell death and has been involved in many pathological processes. Inhibition of pyroptosis is thought to be a promising strategy for the treatment of related diseases. Here, we performed a phenotypic screening against NLRP3-dependent pyroptosis and obtained the novel compound N77 after structure optimization. N77 showed a half-maximal effective concentration (EC50) of 0.070 ± 0.008 μM against cell pyroptosis induced by nigericin, and exhibited a remarkable ability to prevent NLRP3-dependent inflammasome activation and the release of IL-1β. Chemical proteomics revealed the biological target of N77 to be glutathione-S-transferase Mu 1 (GSTM1); our mechanism of action studies indicated that GSTM1 might act as a negative regulator of NLRP3 inflammasome activation by modulating the glutathionylation of caspase-1. In vivo, N77 substantially alleviated the inflammatory reaction in a pyroptosis-related acute keratitis model. Overall, we identified a novel pyroptosis inhibitor and revealed a new regulatory mechanism of pyroptosis. Our findings suggest an alternative potential therapeutic strategy for pyroptosis-related diseases.
Collapse
Affiliation(s)
- Nenghua Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yun Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Ophthalmology and Macular Disease Research Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Jiao
- Laboratory of Anaesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu China
| | - Jinshan Nan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Anjie Xia
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Ophthalmology and Macular Disease Research Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Mu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Basic Medical College of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Guifeng Lin
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xun Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Ophthalmology and Macular Disease Research Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shanshan Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shengyong Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Linli Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
19
|
Pawłowska M, Mila-Kierzenkowska C, Szczegielniak J, Woźniak A. Oxidative Stress in Parasitic Diseases-Reactive Oxygen Species as Mediators of Interactions between the Host and the Parasites. Antioxidants (Basel) 2023; 13:38. [PMID: 38247462 PMCID: PMC10812656 DOI: 10.3390/antiox13010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Oxidative stress plays a significant role in the development and course of parasitic infections, both in the attacked host organism and the parasite organism struggling to survive. The host uses large amounts of reactive oxygen species (ROS), mainly superoxide anion (O2•-) and hydrogen peroxide (H2O2), to fight the developing parasitic disease. On the other hand, the parasite develops the most effective defense mechanisms and resistance to the effects of ROS and strives to survive in the host organism it has colonized, using the resources and living environment available for its development and causing the host's weakening. The paper reviews the literature on the role of oxidative stress in parasitic diseases, which are the most critical epidemiological problem worldwide. The most common parasitosis in the world is malaria, with 300-500 million new cases and about 1 million deaths reported annually. In Europe and Poland, the essential problem is intestinal parasites. Due to a parasitic infection, the concentration of antioxidants in the host decreases, and the concentration of products of cellular components oxidation increases. In response to the increased number of reactive oxygen species attacking it, the parasites have developed effective defense mechanisms, including primarily the action of antioxidant enzymes, especially superoxide dismutase and nicotinamide adenine dinucleotide phosphate hydrogen (NADPH)-dependent complexes glutathione and thioredoxin.
Collapse
Affiliation(s)
- Marta Pawłowska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (C.M.-K.); (A.W.)
| | - Celestyna Mila-Kierzenkowska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (C.M.-K.); (A.W.)
| | - Jan Szczegielniak
- Physiotherapy Department, Faculty of Physical Education and Physiotherapy, Opole University of Technology, 45-758 Opole, Poland;
- Ministry of Internal Affairs and Administration’s Specialist Hospital of St. John Paul II, 48-340 Glucholazy, Poland
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (C.M.-K.); (A.W.)
| |
Collapse
|
20
|
Fronza MG, Ferreira BF, Pavan-Silva I, Guimarães FS, Lisboa SF. "NO" Time in Fear Response: Possible Implication of Nitric-Oxide-Related Mechanisms in PTSD. Molecules 2023; 29:89. [PMID: 38202672 PMCID: PMC10779493 DOI: 10.3390/molecules29010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric condition characterized by persistent fear responses and altered neurotransmitter functioning due to traumatic experiences. Stress predominantly affects glutamate, a neurotransmitter crucial for synaptic plasticity and memory formation. Activation of the N-Methyl-D-Aspartate glutamate receptors (NMDAR) can trigger the formation of a complex comprising postsynaptic density protein-95 (PSD95), the neuronal nitric oxide synthase (nNOS), and its adaptor protein (NOS1AP). This complex is pivotal in activating nNOS and nitric oxide (NO) production, which, in turn, activates downstream pathways that modulate neuronal signaling, including synaptic plasticity/transmission, inflammation, and cell death. The involvement of nNOS and NOS1AP in the susceptibility of PTSD and its comorbidities has been widely shown. Therefore, understanding the interplay between stress, fear, and NO is essential for comprehending the maintenance and progression of PTSD, since NO is involved in fear acquisition and extinction processes. Moreover, NO induces post-translational modifications (PTMs), including S-nitrosylation and nitration, which alter protein function and structure for intracellular signaling. Although evidence suggests that NO influences synaptic plasticity and memory processing, the specific role of PTMs in the pathophysiology of PTSD remains unclear. This review highlights pathways modulated by NO that could be relevant to stress and PTSD.
Collapse
Affiliation(s)
- Mariana G. Fronza
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Bruna F. Ferreira
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Isabela Pavan-Silva
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Francisco S. Guimarães
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Sabrina F. Lisboa
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
- Biomolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo 14040-903, Brazil
| |
Collapse
|
21
|
Méndez-López E, Aranda MA. A regulatory role for the redox status of the pepino mosaic virus coat protein. PLoS Pathog 2023; 19:e1011732. [PMID: 37851701 PMCID: PMC10615272 DOI: 10.1371/journal.ppat.1011732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/30/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023] Open
Abstract
Cysteine oxidations play important regulatory roles during animal virus infections. Despite the importance of redox modifications during plant infections, no plant virus protein has yet been shown to be regulated by cysteine oxidation. The potexvirus pepino mosaic virus (PepMV) is pandemic in tomato crops. Previously we modeled the structure of the PepMV particle and coat protein (CP) by cryo-electron microscopy and identified critical residues of the CP RNA-binding pocket that interact with the viral RNA during particle formation and viral cell-to-cell movement. The PepMV CP has a single cysteine residue (Cys127) central to its RNA binding pocket, which is highly conserved. Here we show that the Cys127Ser replacement diminishes PepMV fitness, and that PepMV CPWT is oxidized in vivo while CPC127S is not. We also show that Cys127 gets spontaneously glutathionylated in vitro, and that S-glutathionylation blocks in vitro the formation of virion-like particles (VLPs). VLPs longer than 200 nm could be formed after in planta CPC127S overexpression, while very short and dispersed VLPs were observed after CPWT overexpression. Our results strongly suggest that the CP redox status regulates CP functions via cysteine oxidation.
Collapse
Affiliation(s)
- Eduardo Méndez-López
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Department of Stress Biology and Plant Pathology, Campus Universitario de Espinardo, Murcia, Spain
| | - Miguel A. Aranda
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Department of Stress Biology and Plant Pathology, Campus Universitario de Espinardo, Murcia, Spain
| |
Collapse
|
22
|
Mollace R, Scarano F, Bava I, Carresi C, Maiuolo J, Tavernese A, Gliozzi M, Musolino V, Muscoli S, Palma E, Muscoli C, Salvemini D, Federici M, Macrì R, Mollace V. Modulation of the nitric oxide/cGMP pathway in cardiac contraction and relaxation: Potential role in heart failure treatment. Pharmacol Res 2023; 196:106931. [PMID: 37722519 DOI: 10.1016/j.phrs.2023.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Evidence exists that heart failure (HF) has an overall impact of 1-2 % in the global population being often associated with comorbidities that contribute to increased disease prevalence, hospitalization, and mortality. Recent advances in pharmacological approaches have significantly improved clinical outcomes for patients with vascular injury and HF. Nevertheless, there remains an unmet need to clarify the crucial role of nitric oxide/cyclic guanosine 3',5'-monophosphate (NO/cGMP) signalling in cardiac contraction and relaxation, to better identify the key mechanisms involved in the pathophysiology of myocardial dysfunction both with reduced (HFrEF) as well as preserved ejection fraction (HFpEF). Indeed, NO signalling plays a crucial role in cardiovascular homeostasis and its dysregulation induces a significant increase in oxidative and nitrosative stress, producing anatomical and physiological cardiac alterations that can lead to heart failure. The present review aims to examine the molecular mechanisms involved in the bioavailability of NO and its modulation of downstream pathways. In particular, we focus on the main therapeutic targets and emphasize the recent evidence of preclinical and clinical studies, describing the different emerging therapeutic strategies developed to counteract NO impaired signalling and cardiovascular disease (CVD) development.
Collapse
Affiliation(s)
- Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Irene Bava
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Jessica Maiuolo
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Annamaria Tavernese
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Saverio Muscoli
- Division of Cardiology, Foundation PTV Polyclinic Tor Vergata, Rome 00133, Italy
| | - Ernesto Palma
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Carolina Muscoli
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy.
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Renato Dulbecco Institute, Lamezia Terme, Catanzaro 88046, Italy.
| |
Collapse
|
23
|
Kwok WTH, Kwak HA, Andreazza AC. N-acetylcysteine modulates rotenone-induced mitochondrial Complex I dysfunction in THP-1 cells. Mitochondrion 2023; 72:1-10. [PMID: 37419232 DOI: 10.1016/j.mito.2023.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/12/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Mitochondrial Complex I dysfunction and oxidative stress have been part of the pathophysiology of several diseases ranging from mitochondrial disease to chronic diseases such as diabetes, mood disorders and Parkinson's Disease. Nonetheless, to investigate the potential of mitochondria-targeted therapeutic strategies for these conditions, there is a need further our understanding on how cells respond and adapt in the presence of Complex I dysfunction. In this study, we used low doses of rotenone, a classical inhibitor of mitochondrial complex I, to mimic peripheral mitochondrial dysfunction in THP-1 cells, a human monocytic cell line, and explored the effects of N-acetylcysteine on preventing this rotenone-induced mitochondrial dysfunction. Our results show that in THP-1 cells, rotenone exposure led to increases in mitochondrial superoxide, levels of cell-free mitochondrial DNA, and protein levels of the NDUFS7 subunit. N-acetylcysteine (NAC) pre-treatment ameliorated the rotenone-induced increase of cell-free mitochondrial DNA and NDUFS7 protein levels, but not mitochondrial superoxide. Furthermore, rotenone exposure did not affect protein levels of the NDUFV1 subunit but induced NDUFV1 glutathionylation. In summary, NAC may help to mitigate the effects of rotenone on Complex I and preserve the normal function of mitochondria in THP-1 cells.
Collapse
Affiliation(s)
- Winston Tse-Hou Kwok
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Haejin Angela Kwak
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Ana Cristina Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Mitochondrial Innovation Initiative, Toronto, ON, Canada.
| |
Collapse
|
24
|
Perjési P. Preface to the Special Issue "Glutathione: Chemistry and Biochemistry". Molecules 2023; 28:5993. [PMID: 37630245 PMCID: PMC10460063 DOI: 10.3390/molecules28165993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
This year we celebrate the 135th anniversary of the discovery of glutathione (L-γ-glutamyl-L-cysteinyl-glycine) [...].
Collapse
Affiliation(s)
- Pál Perjési
- Institute of Pharmaceutical Chemistry, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
25
|
Qi X, Chen J, Jiang X, Lu D, Yu X, Lin H, Monroy EY, Wang MC, Wang J. Quantification of glutathione with high throughput live-cell imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.11.548586. [PMID: 37503234 PMCID: PMC10369946 DOI: 10.1101/2023.07.11.548586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Reduction oxidation (redox) reactions are central in life and altered redox state is associated with a spectrum of human diseases. Glutathione (GSH) is the most abundant antioxidant in eukaryotic cells and plays critical roles in maintaining redox homeostasis. Thus, measuring intracellular GSH level is an important method to assess the redox state of organism. The currently available GSH probes are based on irreversible chemical reactions with glutathione and can't monitor the real-time glutathione dynamics. Our group developed the first reversible reaction based fluorescent probe for glutathione, which can measure glutathione levels at high resolution using a confocal microscope and in the bulk scale with a flow cytometry. Most importantly it can quantitatively monitor the real-time GSH dynamics in living cells. Using the 2 nd generation of GSH probe, RealThiol (RT), this study measured the GSH level in living Hela cells after treatment with varying concentrations of DL-Buthionine sulfoximine (BSO) which inhibits GSH synthesis, using a high throughput imaging system, Cytation™ 5 cell imaging reader. The results revealed that GSH probe RT at the concentration of 2.0 µM accurately monitored the BSO treatment effect on GSH level in the Hela cells. The present results demonstrated that the GSH probe RT is sensitive and precise in GSH measurement in living cells at a high throughput imaging platform and has the potential to be applied to any cell lines.
Collapse
|
26
|
Qiao X, Kang L, Shi C, Ye A, Wu D, Huang Y, Deng M, Wang J, Zhao Y, Chen C. Exploring the precision redox map during fasting-refeeding and satiation in C. elegans. STRESS BIOLOGY 2023; 3:17. [PMID: 37676352 PMCID: PMC10442001 DOI: 10.1007/s44154-023-00096-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/22/2023] [Indexed: 09/08/2023]
Abstract
Fasting is a popular dietary strategy because it grants numerous advantages, and redox regulation is one mechanism involved. However, the precise redox changes with respect to the redox species, organelles and tissues remain unclear, which hinders the understanding of the metabolic mechanism, and exploring the precision redox map under various dietary statuses is of great significance. Twelve redox-sensitive C. elegans strains stably expressing genetically encoded redox fluorescent probes (Hyperion sensing H2O2 and Grx1-roGFP2 sensing GSH/GSSG) in three organelles (cytoplasm, mitochondria and endoplasmic reticulum (ER)) were constructed in two tissues (body wall muscle and neurons) and were confirmed to respond to redox challenge. The H2O2 and GSSG/GSH redox changes in two tissues and three organelles were obtained by confocal microscopy during fasting, refeeding, and satiation. We found that under fasting condition, H2O2 decreased in most compartments, except for an increase in mitochondria, while GSSG/GSH increased in the cytoplasm of body muscle and the ER of neurons. After refeeding, the redox changes in H2O2 and GSSG/GSH caused by fasting were reversed in most organelles of the body wall muscle and neurons. In the satiated state, H2O2 increased markedly in the cytoplasm, mitochondria and ER of muscle and the ER of neurons, while GSSG/GSH exhibited no change in most organelles of the two tissues except for an increase in the ER of muscle. Our study systematically and precisely presents the redox characteristics under different dietary states in living animals and provides a basis for further investigating the redox mechanism in metabolism and optimizing dietary guidance.
Collapse
Affiliation(s)
- Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lu Kang
- School of Basic Medical Sciences of Southwest Medical University, Luzhou, 646000, China
| | - Chang Shi
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aojun Ye
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongli Wu
- School of Basic Medical Sciences of Southwest Medical University, Luzhou, 646000, China
| | - Yuyunfei Huang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghao Deng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiarui Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuzheng Zhao
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- School of Basic Medical Sciences of Southwest Medical University, Luzhou, 646000, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
27
|
Jena AB, Samal RR, Bhol NK, Duttaroy AK. Cellular Red-Ox system in health and disease: The latest update. Biomed Pharmacother 2023; 162:114606. [PMID: 36989716 DOI: 10.1016/j.biopha.2023.114606] [Citation(s) in RCA: 105] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Cells are continually exposed to reactive oxygen species (ROS) generated during cellular metabolism. Apoptosis, necrosis, and autophagy are biological processes involving a feedback cycle that causes ROS molecules to induce oxidative stress. To adapt to ROS exposure, living cells develop various defense mechanisms to neutralize and use ROS as a signaling molecule. The cellular redox networks combine signaling pathways that regulate cell metabolism, energy, cell survival, and cell death. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) are essential antioxidant enzymes that are required for scavenging ROS in various cell compartments and response to stressful situations. Among the non-enzymatic defenses, vitamin C, glutathione (GSH), polyphenols, carotenoids, vitamin E, etc., are also essential. This review article describes how ROS are produced as byproducts of oxidation/reduction (redox) processes and how the antioxidants defense system is directly or indirectly engaged in scavenging ROS. In addition, we used computational methods to determine the comparative profile of binding energies of several antioxidants with antioxidant enzymes. The computational analysis demonstrates that antioxidants with a high affinity for antioxidant enzymes regulate their structures.
Collapse
Affiliation(s)
- Atala Bihari Jena
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rashmi Rekha Samal
- CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751 013, India
| | - Nitish Kumar Bhol
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway.
| |
Collapse
|
28
|
Cassier-Chauvat C, Marceau F, Farci S, Ouchane S, Chauvat F. The Glutathione System: A Journey from Cyanobacteria to Higher Eukaryotes. Antioxidants (Basel) 2023; 12:1199. [PMID: 37371929 DOI: 10.3390/antiox12061199] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
From bacteria to plants and humans, the glutathione system plays a pleiotropic role in cell defense against metabolic, oxidative and metal stresses. Glutathione (GSH), the γ-L-glutamyl-L-cysteinyl-glycine nucleophile tri-peptide, is the central player of this system that acts in redox homeostasis, detoxification and iron metabolism in most living organisms. GSH directly scavenges diverse reactive oxygen species (ROS), such as singlet oxygen, superoxide anion, hydrogen peroxide, hydroxyl radical, nitric oxide and carbon radicals. It also serves as a cofactor for various enzymes, such as glutaredoxins (Grxs), glutathione peroxidases (Gpxs), glutathione reductase (GR) and glutathione-S-transferases (GSTs), which play crucial roles in cell detoxication. This review summarizes what is known concerning the GSH-system (GSH, GSH-derived metabolites and GSH-dependent enzymes) in selected model organisms (Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana and human), emphasizing cyanobacteria for the following reasons. Cyanobacteria are environmentally crucial and biotechnologically important organisms that are regarded as having evolved photosynthesis and the GSH system to protect themselves against the ROS produced by their active photoautotrophic metabolism. Furthermore, cyanobacteria synthesize the GSH-derived metabolites, ergothioneine and phytochelatin, that play crucial roles in cell detoxication in humans and plants, respectively. Cyanobacteria also synthesize the thiol-less GSH homologs ophthalmate and norophthalmate that serve as biomarkers of various diseases in humans. Hence, cyanobacteria are well-suited to thoroughly analyze the role/specificity/redundancy of the players of the GSH-system using a genetic approach (deletion/overproduction) that is hardly feasible with other model organisms (E. coli and S. cerevisiae do not synthesize ergothioneine, while plants and humans acquire it from their soil and their diet, respectively).
Collapse
Affiliation(s)
- Corinne Cassier-Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Fanny Marceau
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Sandrine Farci
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Soufian Ouchane
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Franck Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| |
Collapse
|
29
|
Yu X, Mao C, Zong S, Khan A, Wang W, Yun H, Zhang P, Shigaki T, Fang Y, Han H, Li X. Transcriptome analysis reveals self-redox mineralization mechanism of azo dyes and novel decolorizing hydrolases in Aspergillus tabacinus LZ-M. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121459. [PMID: 36934962 DOI: 10.1016/j.envpol.2023.121459] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Bio-degradation is the most affordable method of azo dye decontamination, while its drawbacks such as aromatic amines accumulation and low degradation efficiency must be overcome. In this study, a novel mechanism of azo dye degradation by a fungus was discovered. At a concentration of 400 mg/L, the decolorization efficiency of Acid Red 73 (AR73) by Aspergillus tabacinus LZ-M was 90.28%. Metabolite analysis and transcriptome sequencing analysis revealed a self-redox process of AR73 degradation, where the electrons generated in carbon oxidation were transferred to the reduction of -C-N = and -NN. The metabolites, 2-hydroxynaphthalene and N-phenylnitrous amide were mineralized into CO2 through catechol pathway and a glycolytic process. Furthermore, the mineralization ratio of dye was computed to be 31.8% by the carbon balance and electron balance. By using comparative transcriptome, a novel decoloring enzyme Ord95 was discovered in unknown genes through gene cloning. It hydrolyzed AR73 into 2-hydroxynaphthalene and N-phenylnitrous amide, containing a glutathione S-transferase domain with three arginines as key active sites. Here the new mechanism of azo dye degradation was discovered with identification of a novel enzyme in Aspergillus tabacinus LZ-M.
Collapse
Affiliation(s)
- Xuan Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Chunlan Mao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Simin Zong
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Wenxue Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Hui Yun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Peng Zhang
- Key Laboratory for Resources Utilization Technoloy of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, 730020, Gansu, China
| | - Toshiro Shigaki
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yitian Fang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
30
|
Chakraborty S, Sircar E, Mishra A, Choudhuri A, Dutta S, Bhattacharyya C, Chakraborty S, Bhaumik T, Si S, Rao S, Sarma A, Ray A, Sachin K, Sengupta R. De-glutathionylases: The resilient underdogs to keep neurodegeneration at bay. Biochem Biophys Res Commun 2023; 653:83-92. [PMID: 36863212 DOI: 10.1016/j.bbrc.2023.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Proteins become S-glutathionylated as a result of the derivatization of their cysteine thiols with the thiolate anion derivative of glutathione; this process is frequently linked to diseases and protein misbehavior. Along with the other well-known oxidative modifications like S-nitrosylation, S-glutathionylation has quickly emerged as a major contributor to a number of diseases, with a focus on neurodegeneration. The immense clinical significance of S-glutathionylation in cell signaling and the genesis of diseases are progressively coming to light with advanced research, which is also creating new opportunities for prompt diagnostics that utilize this phenomenon. In-depth investigation in recent years has revealed other significant deglutathionylases in addition to glutaredoxin, necessitating the hunt for their specific substrates. The precise catalytic mechanisms of these enzymes must also be understood, along with how the intracellular environment affects their impact on protein conformation and function. These insights must then be extrapolated to the understanding of neurodegeneration and the introduction of novel and clever therapeutic approaches to clinics. Clarifying the importance of the functional overlap of glutaredoxin and other deglutathionylases and examining their complementary functions as defense systems in the face of stress are essential prerequisites for predicting and promoting cell survival under high oxidative/nitrosative stress.
Collapse
Affiliation(s)
- Surupa Chakraborty
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Esha Sircar
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India; Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, Uttarakhand, India
| | - Akansha Mishra
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Ankita Choudhuri
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Sreejita Dutta
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Camelia Bhattacharyya
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Souhridhra Chakraborty
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Tamal Bhaumik
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Somsundar Si
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Suhasini Rao
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Anish Sarma
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Anirban Ray
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Kumar Sachin
- Himalayan School of Biosciences, Swami Rama Himalayan University, 248016, Jolly Grant, Dehradun, India
| | - Rajib Sengupta
- Amity Institute of Biotechnology Kolkata, Amity University, Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India.
| |
Collapse
|
31
|
Iji OT, Ajibade TO, Esan OO, Awoyomi OV, Oyagbemi AA, Adetona MO, Omobowale TO, Yakubu MA, Oguntibeju OO, Nwulia E. Ameliorative effects of glycine on cobalt chloride-induced hepato-renal toxicity in rats. Animal Model Exp Med 2023; 6:168-177. [PMID: 37141004 PMCID: PMC10158950 DOI: 10.1002/ame2.12315] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/21/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND The important roles of liver and kidney in the elimination of injurious chemicals make them highly susceptible to the noxious activities of various toxicants including cobalt chloride (CoCl2 ). This study was designed to investigate the role of glycine in the mitigation of hepato-renal toxicities associated with CoCl2 exposure. METHODS Forty-two (42) male rats were grouped as Control; (CoCl2 ; 300 ppm); CoCl2 + Glycine (50 mg/kg); CoCl2 + Glycine (100 mg/kg); Glycine (50 mg/kg); and Glycine (100 mg/kg). The markers of hepatic and renal damage, oxidative stress, the antioxidant defense system, histopathology, and immunohistochemical localization of neutrophil gelatinase associated lipocalin (NGAL) and renal podocin were evaluated. RESULTS Glycine significantly reduced the markers of oxidative stress (malondialdehyde content and H2 O2 generation), liver function tests (ALT, AST, and ALP), markers of renal function (creatinine and BUN), and decreased the expression of neutrophil gelatinase-associated lipocalin (NGAL) and podocin compared with rats exposed to CoCl2 toxicity without glycine treatment. Histopathology lesions including patchy tubular epithelial necrosis, tubular epithelial degeneration and periglomerular inflammation in renal tissues, and severe portal hepatocellular necrosis, inflammation, and duct hyperplasia were observed in hepatic tissues of rats exposed to CoCl2 toxicity, but were mild to absent in glycine-treated rats. CONCLUSION The results of this study clearly demonstrate protective effects of glycine against CoCl2 -induced tissue injuries and derangement of physiological activities of the hepatic and renal systems in rats. The protective effects are mediated via augmentation of total antioxidant capacity and upregulation of NGAL and podocin expression.
Collapse
Affiliation(s)
| | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwaseun Olanrewaju Esan
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Moses Olusola Adetona
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Momoh Audu Yakubu
- Department of Environmental and Interdisciplinary Sciences, College of Science, Engineering & Technology, COPHS, Texas Southern University, Houston, Texas, USA
| | - Oluwafemi Omoniyi Oguntibeju
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Evaristus Nwulia
- Department of Psychiatry and Behavioral Sciences, Howard University Hospital, College of Medicine, Howard University, Washington, District of Columbia, USA
| |
Collapse
|
32
|
Vázquez-Meza H, Vilchis-Landeros MM, Vázquez-Carrada M, Uribe-Ramírez D, Matuz-Mares D. Cellular Compartmentalization, Glutathione Transport and Its Relevance in Some Pathologies. Antioxidants (Basel) 2023; 12:antiox12040834. [PMID: 37107209 PMCID: PMC10135322 DOI: 10.3390/antiox12040834] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Reduced glutathione (GSH) is the most abundant non-protein endogenous thiol. It is a ubiquitous molecule produced in most organs, but its synthesis is predominantly in the liver, the tissue in charge of storing and distributing it. GSH is involved in the detoxification of free radicals, peroxides and xenobiotics (drugs, pollutants, carcinogens, etc.), protects biological membranes from lipid peroxidation, and is an important regulator of cell homeostasis, since it participates in signaling redox, regulation of the synthesis and degradation of proteins (S-glutathionylation), signal transduction, various apoptotic processes, gene expression, cell proliferation, DNA and RNA synthesis, etc. GSH transport is a vital step in cellular homeostasis supported by the liver through providing extrahepatic organs (such as the kidney, lung, intestine, and brain, among others) with the said antioxidant. The wide range of functions within the cell in which glutathione is involved shows that glutathione’s role in cellular homeostasis goes beyond being a simple antioxidant agent; therefore, the importance of this tripeptide needs to be reassessed from a broader metabolic perspective.
Collapse
|
33
|
Thermogenic Adipose Redox Mechanisms: Potential Targets for Metabolic Disease Therapies. Antioxidants (Basel) 2023; 12:antiox12010196. [PMID: 36671058 PMCID: PMC9854447 DOI: 10.3390/antiox12010196] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Metabolic diseases, such as diabetes and non-alcoholic fatty liver disease (NAFLD), have several negative health outcomes on affected humans. Dysregulated energy metabolism is a key component underlying the pathophysiology of these conditions. Adipose tissue is a fundamental regulator of energy homeostasis that utilizes several redox reactions to carry out the metabolism. Brown and beige adipose tissues, in particular, perform highly oxidative reactions during non-shivering thermogenesis to dissipate energy as heat. The appropriate regulation of energy metabolism then requires coordinated antioxidant mechanisms to counterbalance the oxidation reactions. Indeed, non-shivering thermogenesis activation can cause striking changes in concentrations of both oxidants and antioxidants in order to adapt to various oxidative environments. Current therapeutic options for metabolic diseases either translate poorly from rodent models to humans (in part due to the challenges of creating a physiologically relevant rodent model) or tend to have numerous side effects, necessitating novel therapies. As increased brown adipose tissue activity results in enhanced energy expenditure and is associated with beneficial effects on metabolic health, such as decreased obesity, it has gathered great interest as a modulator of metabolic disease. One potential reason for the beneficial health effects may be that although non-shivering thermogenesis is enormously oxidative, it is also associated with decreased oxidant formation after its activation. However, targeting its redox mechanisms specifically to alter metabolic disease remains an underexplored area. Therefore, this review will discuss the role of adipose tissue in energy homeostasis, non-shivering thermogenesis in adults, and redox mechanisms that may serve as novel therapeutic targets of metabolic disease.
Collapse
|
34
|
Bo W, Chen Y. Lenvatinib resistance mechanism and potential ways to conquer. Front Pharmacol 2023; 14:1153991. [PMID: 37153782 PMCID: PMC10157404 DOI: 10.3389/fphar.2023.1153991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/03/2023] [Indexed: 05/10/2023] Open
Abstract
Lenvatinib (LVN) has been appoved to treat advanced renal cell carcinoma, differentiated thyroid carcinoma, hepatocellular carcinoma. Further other cancer types also have been tried in pre-clinic and clinic without approvation by FDA. The extensive use of lenvastinib in clinical practice is sufficient to illustrate its important therapeutic role. Although the drug resistance has not arised largely in clinical, the studies focusing on the resistance of LVN increasingly. In order to keep up with the latest progress of resistance caused by LVN, we summerized the latest studies from identify published reports. In this review, we found the latest report about resistance caused by lenvatinib, which were contained the hotspot mechanism such as the epithelial-mesenchymal transition, ferroptosis, RNA modification and so on. The potential ways to conquer the resistance of LVN were embraced by nanotechnology, CRISPR technology and traditional combined strategy. The latest literature review of LVN caused resistance would bring some ways for further study of LVN. We call for more attention to the pharmacological parameters of LVN in clinic, which was rarely and would supply key elements for drug itself in human beings and help to find the resistance target or idea for further study.
Collapse
Affiliation(s)
- Wentao Bo
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Chen
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Yan Chen,
| |
Collapse
|
35
|
Wu D, Su S, Zha X, Wei Y, Yang G, Huang Q, Yang Y, Xia L, Fan S, Peng X. Glutamine promotes O-GlcNAcylation of G6PD and inhibits AGR2 S-glutathionylation to maintain the intestinal mucus barrier in burned septic mice. Redox Biol 2022; 59:102581. [PMID: 36565645 PMCID: PMC9800542 DOI: 10.1016/j.redox.2022.102581] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Mucus forms the first line of defence of the intestinal mucosa barrier, and mucin is its core component. Glutamine is a vital energy substance for goblet cells; it can promote mucus synthesis and alleviate damage to the intestinal mucus barrier after burn injury, but its mechanism is not fully understood. This study focused on the molecular mechanisms underlying the effects of glutamine on the synthesis and modification of mucin 2 (MUC2) by using animal and cellular models of burn sepsis. We found that anterior gradient-2 (AGR2) plays a key role in the posttranslational modification of MUC2. Oxidative stress induced by burn sepsis enhanced the S-glutathionylation of AGR2, interfered with the processing and modification of MUC2 precursors by AGR2 and blocked the synthesis of mature MUC2. Further studies revealed that NADPH, catalysed by glucose-6-phosphate dehydrogenase (G6PD), is a key molecule in inhibiting oxidative stress and regulating AGR2 activity. Glutamine promotes O-linked N-acetylglucosamine (O-GlcNAc) modification of G6PD via the hexosamine pathway, which facilitates G6PD homodimer formation and increases NADPH synthesis, thereby inhibiting AGR2 S-glutathionylation and promoting MUC2 maturation, ultimately reducing damage to the intestinal mucus barrier after burn sepsis. Overall, we have demonstrated that the central mechanisms of glutamine in promoting MUC2 maturation and maintaining the intestinal mucus barrier are the enhancement of G6PD glycosylation and inhibition of AGR2 S-glutathionylation.
Collapse
Affiliation(s)
- Dan Wu
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Sen Su
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Xule Zha
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Yan Wei
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Gang Yang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Qianying Huang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Yongjun Yang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Lin Xia
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Shijun Fan
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Xi Peng
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Shriners Burns Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
Li S, Wang R, Wang Y, Liu Y, Qiao Y, Li P, Chen J, Pan S, Feng Q, Liu Z, Liu D. Ferroptosis: A new insight for treatment of acute kidney injury. Front Pharmacol 2022; 13:1065867. [PMID: 36467031 PMCID: PMC9714487 DOI: 10.3389/fphar.2022.1065867] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/07/2022] [Indexed: 09/16/2023] Open
Abstract
Acute kidney injury (AKI), one of the most prevalent clinical diseases with a high incidence rate worldwide, is characterized by a rapid deterioration of renal function and further triggers the accumulation of metabolic waste and toxins, leading to complications and dysfunction of other organs. Multiple pathogenic factors, such as rhabdomyolysis, infection, nephrotoxic medications, and ischemia-reperfusion injury, contribute to the onset and progression of AKI. However, the detailed mechanism remains unclear. Ferroptosis, a recently identified mechanism of nonapoptotic cell death, is iron-dependent and caused by lipid peroxide accumulation in cells. A variety of studies have demonstrated that ferroptosis plays a significant role in AKI development, in contrast to other forms of cell death, such as apoptosis, necroptosis, and pyroptosis. In this review, we systemically summarized the definition, primary biochemical mechanisms, key regulators and associated pharmacological research progress of ferroptosis in AKI. We further discussed its therapeutic potential for the prevention of AKI, in the hope of providing a useful reference for further basic and clinical studies.
Collapse
Affiliation(s)
- Shiyang Li
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Rui Wang
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Yixue Wang
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Yong Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Yingjin Qiao
- Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peipei Li
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Jingfang Chen
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Qi Feng
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dongwei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| |
Collapse
|
37
|
Li X, Zhang T, Day NJ, Feng S, Gaffrey MJ, Qian WJ. Defining the S-Glutathionylation Proteome by Biochemical and Mass Spectrometric Approaches. Antioxidants (Basel) 2022; 11:2272. [PMID: 36421458 PMCID: PMC9687251 DOI: 10.3390/antiox11112272] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 08/27/2023] Open
Abstract
Protein S-glutathionylation (SSG) is a reversible post-translational modification (PTM) featuring the conjugation of glutathione to a protein cysteine thiol. SSG can alter protein structure, activity, subcellular localization, and interaction with small molecules and other proteins. Thus, it plays a critical role in redox signaling and regulation in various physiological activities and pathological events. In this review, we summarize current biochemical and analytical approaches for characterizing SSG at both the proteome level and at individual protein levels. To illustrate the mechanism underlying SSG-mediated redox regulation, we highlight recent examples of functional and structural consequences of SSG modifications. Finally, we discuss the analytical challenges in characterizing SSG and the thiol PTM landscape, future directions for understanding of the role of SSG in redox signaling and regulation and its interplay with other PTMs, and the potential role of computational approaches to accelerate functional discovery.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| |
Collapse
|
38
|
Zhang Y, Jelleschitz J, Grune T, Chen W, Zhao Y, Jia M, Wang Y, Liu Z, Höhn A. Methionine restriction - Association with redox homeostasis and implications on aging and diseases. Redox Biol 2022; 57:102464. [PMID: 36152485 PMCID: PMC9508608 DOI: 10.1016/j.redox.2022.102464] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022] Open
Abstract
Methionine is an essential amino acid, involved in the promotion of growth, immunity, and regulation of energy metabolism. Over the decades, research has long focused on the beneficial effects of methionine supplementation, while data on positive effects of methionine restriction (MR) were first published in 1993. MR is a low-methionine dietary intervention that has been reported to ameliorate aging and aging-related health concomitants and diseases, such as obesity, type 2 diabetes, and cognitive disorders. In addition, MR seems to be an approach to prolong lifespan which has been validated extensively in various animal models, such as Caenorhabditis elegans, Drosophila, yeast, and murine models. MR appears to be associated with a reduction in oxidative stress via so far mainly undiscovered mechanisms, and these changes in redox status appear to be one of the underlying mechanisms for lifespan extension and beneficial health effects. In the present review, the association of methionine metabolism pathways with redox homeostasis is described. In addition, the effects of MR on lifespan, age-related implications, comorbidities, and diseases are discussed.
Collapse
Affiliation(s)
- Yuyu Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Julia Jelleschitz
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Tilman Grune
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), Berlin, Germany; Institute of Nutrition, University of Potsdam, Nuthetal, 14558, Germany
| | - Weixuan Chen
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yihang Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengzhen Jia
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yajie Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Annika Höhn
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
| |
Collapse
|
39
|
Chakraborty S, Sircar E, Bhattacharyya C, Choudhuri A, Mishra A, Dutta S, Bhatta S, Sachin K, Sengupta R. S-Denitrosylation: A Crosstalk between Glutathione and Redoxin Systems. Antioxidants (Basel) 2022; 11:1921. [PMID: 36290644 PMCID: PMC9598160 DOI: 10.3390/antiox11101921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 08/27/2023] Open
Abstract
S-nitrosylation of proteins occurs as a consequence of the derivatization of cysteine thiols with nitric oxide (NO) and is often associated with diseases and protein malfunction. Aberrant S-nitrosylation, in addition to other genetic and epigenetic factors, has gained rapid importance as a prime cause of various metabolic, respiratory, and cardiac disorders, with a major emphasis on cancer and neurodegeneration. The S-nitrosoproteome, a term used to collectively refer to the diverse and dynamic repertoire of S-nitrosylated proteins, is relatively less explored in the field of redox biochemistry, in contrast to other covalently modified versions of the same set of proteins. Advancing research is gradually unveiling the enormous clinical importance of S-nitrosylation in the etiology of diseases and is opening up new avenues of prompt diagnosis that harness this phenomenon. Ever since the discovery of the two robust and highly conserved S-nitrosoglutathione reductase and thioredoxin systems as candidate denitrosylases, years of rampant speculation centered around the identification of specific substrates and other candidate denitrosylases, subcellular localization of both substrates and denitrosylases, the position of susceptible thiols, mechanisms of S-denitrosylation under basal and stimulus-dependent conditions, impact on protein conformation and function, and extrapolating these findings towards the understanding of diseases, aging and the development of novel therapeutic strategies. However, newer insights in the ever-expanding field of redox biology reveal distinct gaps in exploring the crucial crosstalk between the redoxins/major denitrosylase systems. Clarifying the importance of the functional overlap of the glutaredoxin, glutathione, and thioredoxin systems and examining their complementary functions as denitrosylases and antioxidant enzymatic defense systems are essential prerequisites for devising a rationale that could aid in predicting the extent of cell survival under high oxidative/nitrosative stress while taking into account the existence of the alternative and compensatory regulatory mechanisms. This review thus attempts to highlight major gaps in our understanding of the robust cellular redox regulation system, which is upheld by the concerted efforts of various denitrosylases and antioxidants.
Collapse
Affiliation(s)
- Surupa Chakraborty
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Esha Sircar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India
| | - Camelia Bhattacharyya
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Ankita Choudhuri
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Akansha Mishra
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Sreejita Dutta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Sneha Bhatta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Kumar Sachin
- Department of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| | - Rajib Sengupta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| |
Collapse
|
40
|
Bettendorff L. Reduced Nucleotides, Thiols and O 2 in Cellular Redox Balance: A Biochemist's View. Antioxidants (Basel) 2022; 11:1877. [PMID: 36290600 PMCID: PMC9598635 DOI: 10.3390/antiox11101877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 07/30/2023] Open
Abstract
In the present review, which is aimed at researchers, teachers and students in life sciences, we try to show how the physicochemical properties of the elements and molecules define the concept of redox balance. Living organism are open systems traversed by fluxes of energy and matter. During catabolic oxidative metabolism, matter-mostly hydrogenated organic molecules-is oxidized and ultimately released as CO2. Electrons are passed over to coupling molecules, such as NAD+ and FAD, whose reduced forms serve as electrons donors in anabolic reactions. Early photosynthetic activity led to the accumulation of O2 and the transformation of the reduction to an oxidizing atmosphere, favoring the development of oxidative metabolism in living organisms. We focus on the specific properties of O2 that provide the chemical energy for the combustion reactions occurring in living cells. We explain the concepts of redox potential and redox balance in complex systems such as living cells, we present the main redox couples involved in cellular redox balance and we discuss the chemical properties underlying their cellular roles and, in particular, their antioxidant properties in the defense against reactive oxygen species (ROS). Finally, we try to provide an integrative view emphasizing the interplay between metabolism, oxidative stress and metabolic compartmentation in mammalian cells.
Collapse
Affiliation(s)
- Lucien Bettendorff
- Laboratory of Neurophysiology, GIGA Neurosciences, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
41
|
Corteselli E, Aboushousha R, Janssen-Heininger Y. S-Glutathionylation-Controlled Apoptosis of Lung Epithelial Cells; Potential Implications for Lung Fibrosis. Antioxidants (Basel) 2022; 11:antiox11091789. [PMID: 36139863 PMCID: PMC9495907 DOI: 10.3390/antiox11091789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Glutathione (GSH), a major antioxidant in mammalian cells, regulates several vital cellular processes, such as nutrient metabolism, protein synthesis, and immune responses. In addition to its role in antioxidant defense, GSH controls biological processes through its conjugation to reactive protein cysteines in a post-translational modification known as protein S-glutathionylation (PSSG). PSSG has recently been implicated in the pathogenesis of multiple diseases including idiopathic pulmonary fibrosis (IPF). Hallmarks of IPF include repeated injury to the alveolar epithelium with aberrant tissue repair, epithelial cell apoptosis and fibroblast resistance to apoptosis, and the accumulation of extracellular matrix and distortion of normal lung architecture. Several studies have linked oxidative stress and PSSG to the development and progression of IPF. Additionally, it has been suggested that the loss of epithelial cell homeostasis and increased apoptosis, accompanied by the release of various metabolites, creates a vicious cycle that aggravates disease progression. In this short review, we highlight some recent studies that link PSSG to epithelial cell apoptosis and highlight the potential implication of metabolites secreted by apoptotic cells.
Collapse
|
42
|
Yang PW, Jiao JY, Chen Z, Zhu XY, Cheng CS. Keep a watchful eye on methionine adenosyltransferases, novel therapeutic opportunities for hepatobiliary and pancreatic tumours. Biochim Biophys Acta Rev Cancer 2022; 1877:188793. [PMID: 36089205 DOI: 10.1016/j.bbcan.2022.188793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/31/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022]
Abstract
Methionine adenosyltransferases (MATs) synthesize S-adenosylmethionine (SAM) from methionine, which provides methyl groups for DNA, RNA, protein, and lipid methylation. MATs play a critical role in cellular processes, including growth, proliferation, and differentiation, and have been implicated in tumour development and progression. The expression of MATs is altered in hepatobiliary and pancreatic (HBP) cancers, which serves as a rare biomarker for early diagnosis and prognosis prediction of HBP cancers. Independent of SAM depletion in cells, MATs are often dysregulated at the transcriptional, post-transcriptional, and post-translational levels. Dysregulation of MATs is involved in carcinogenesis, chemotherapy resistance, T cell exhaustion, activation of tumour-associated macrophages, cancer stemness, and activation of tumourigenic pathways. Targeting MATs both directly and indirectly is a potential therapeutic strategy. This review summarizes the dysregulations of MATs, their proposed mechanism, diagnostic and prognostic roles, and potential therapeutic effects in context of HBP cancers.
Collapse
Affiliation(s)
- Pei-Wen Yang
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ju-Ying Jiao
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhen Chen
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiao-Yan Zhu
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Chien-Shan Cheng
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
43
|
Focus on Nitric Oxide Homeostasis: Direct and Indirect Enzymatic Regulation of Protein Denitrosation Reactions in Plants. Antioxidants (Basel) 2022; 11:antiox11071411. [PMID: 35883902 PMCID: PMC9311986 DOI: 10.3390/antiox11071411] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Protein cysteines (Cys) undergo a multitude of different reactive oxygen species (ROS), reactive sulfur species (RSS), and/or reactive nitrogen species (RNS)-derived modifications. S-nitrosation (also referred to as nitrosylation), the addition of a nitric oxide (NO) group to reactive Cys thiols, can alter protein stability and activity and can result in changes of protein subcellular localization. Although it is clear that this nitrosative posttranslational modification (PTM) regulates multiple signal transduction pathways in plants, the enzymatic systems that catalyze the reverse S-denitrosation reaction are poorly understood. This review provides an overview of the biochemistry and regulation of nitro-oxidative modifications of protein Cys residues with a focus on NO production and S-nitrosation. In addition, the importance and recent advances in defining enzymatic systems proposed to be involved in regulating S-denitrosation are addressed, specifically cytosolic thioredoxins (TRX) and the newly identified aldo-keto reductases (AKR).
Collapse
|
44
|
Corpas FJ, González-Gordo S, Rodríguez-Ruiz M, Muñoz-Vargas MA, Palma JM. Thiol-based Oxidative Posttranslational Modifications (OxiPTMs) of Plant Proteins. PLANT & CELL PHYSIOLOGY 2022; 63:889-900. [PMID: 35323963 PMCID: PMC9282725 DOI: 10.1093/pcp/pcac036] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/21/2022] [Indexed: 06/01/2023]
Abstract
The thiol group of cysteine (Cys) residues, often present in the active center of the protein, is of particular importance to protein function, which is significantly determined by the redox state of a protein's environment. Our knowledge of different thiol-based oxidative posttranslational modifications (oxiPTMs), which compete for specific protein thiol groups, has increased over the last 10 years. The principal oxiPTMs include S-sulfenylation, S-glutathionylation, S-nitrosation, persulfidation, S-cyanylation and S-acylation. The role of each oxiPTM depends on the redox cellular state, which in turn depends on cellular homeostasis under either optimal or stressful conditions. Under such conditions, the metabolism of molecules such as glutathione, NADPH (reduced nicotinamide adenine dinucleotide phosphate), nitric oxide, hydrogen sulfide and hydrogen peroxide can be altered, exacerbated and, consequently, outside the cell's control. This review provides a broad overview of these oxiPTMs under physiological and unfavorable conditions, which can regulate the function of target proteins.
Collapse
Affiliation(s)
- Francisco J Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| | - Salvador González-Gordo
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| | - Marta Rodríguez-Ruiz
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| | - María A Muñoz-Vargas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| | - José M Palma
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| |
Collapse
|
45
|
Biomarkers of Oxidative Stress Tethered to Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9154295. [PMID: 35783193 PMCID: PMC9249518 DOI: 10.1155/2022/9154295] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease (CVD) is a broad term that incorporated a group of conditions that affect the blood vessels and the heart. CVD is a foremost cause of fatalities around the world. Multiple pathophysiological mechanisms are involved in CVD; however, oxidative stress plays a vital role in generating reactive oxygen species (ROS). Oxidative stress occurs when the concentration of oxidants exceeds the potency of antioxidants within the body while producing reactive nitrogen species (RNS). ROS generated by oxidative stress disrupts cell signaling, DNA damage, lipids, and proteins, thereby resulting in inflammation and apoptosis. Mitochondria is the primary source of ROS production within cells. Increased ROS production reduces nitric oxide (NO) bioavailability, which elevates vasoconstriction within the arteries and contributes to the development of hypertension. ROS production has also been linked to the development of atherosclerotic plaque. Antioxidants can decrease oxidative stress in the body; however, various therapeutic drugs have been designed to treat oxidative stress damage due to CVD. The present review provides a detailed narrative of the oxidative stress and ROS generation with a primary focus on the oxidative stress biomarker and its association with CVD. We have also discussed the complex relationship between inflammation and endothelial dysfunction in CVD as well as oxidative stress-induced obesity in CVD. Finally, we discussed the role of antioxidants in reducing oxidative stress in CVD.
Collapse
|
46
|
Sengupta S, Nath R, Bhuyan R, Bhattacharjee A. Variation in glucose metabolism under acidified sodium nitrite mediated nitrosative stress in Saccharomyces cerevisiae. J Appl Microbiol 2022; 133:1660-1675. [PMID: 35702895 DOI: 10.1111/jam.15669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022]
Abstract
AIMS The work aimed to understand the important changes during glucose metabolism in Saccharomyces cerevisiae under acidified sodium nitrite (ac.NaNO2 ) mediated nitrosative stress. METHODS AND RESULTS Confocal microscopy and fluorescence-activated cell sorting analysis were performed to investigate the generation of reactive nitrogen and oxygen species, and redox homeostasis under nitrosative stress was also characterized. Quantitative PCR analysis revealed that the expression of ADH genes was upregulated under such condition, whereas the ACO2 gene was downregulated. Some of the enzymes of the tricarboxylic acid cycle were partially inhibited, whereas malate metabolism and alcoholic fermentation were increased under nitrosative stress. Kinetics of ethanol production was also characterized. A network analysis was conducted to validate our findings. In the presence of ac.NaNO2 , in vitro protein tyrosine nitration formation was checked by western blotting using pure alcohol dehydrogenase and aconitase. CONCLUSIONS Alcoholic fermentation rate was increased under stress condition and this altered metabolism might be conjoined with the defence machinery to overcome the nitrosative stress. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first work of this kind where the role of metabolism under nitrosative stress has been characterized in S. cerevisiae and it will provide a base to develop an alternative method of industrial ethanol production.
Collapse
Affiliation(s)
- Swarnab Sengupta
- Department of Microbiology, University of North Bengal, Raja Rammohunpur, West Bengal, India
| | - Rohan Nath
- Department of Microbiology, University of North Bengal, Raja Rammohunpur, West Bengal, India
| | - Rajabrata Bhuyan
- Department of Bio-Science and Biotechnology, Banasthali Vidyapith (Deemed) University, Banasthali, Rajasthan, India
| | - Arindam Bhattacharjee
- Department of Microbiology, University of North Bengal, Raja Rammohunpur, West Bengal, India
| |
Collapse
|
47
|
Maurya M, Jaiswal A, Gupta S, Ali W, Gaikwad AN, Dikshit M, Barthwal MK. Galectin-3 S-glutathionylation regulates its effect on adipocyte insulin signaling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119234. [PMID: 35143900 DOI: 10.1016/j.bbamcr.2022.119234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Protein-S-glutathionylation promotes redox signaling in physiological and oxidative distress conditions. Galectin-3 (Gal-3) promotes insulin resistance by down-regulating adipocyte insulin signaling, however, its S-glutathionylation and significance is not known. In this context, we report reversible S-glutathionylation of Gal-3. Site-directed mutagenesis established Gal-3 Cys187 as the putative S-glutathionylation site. Glutathionylated Gal-3 prevents Gal-3(WT)-Insulin Receptor interaction and facilitates insulin-induced murine adipocyte p-IRS1(tyr895) and p-AKT(ser473) signaling and glucose uptake in a Gal-3 Cys187 glutathionylation dependent manner in murine adipocytes, as assessed by Western blotting and 2-NBDG uptake assay respectively. Pre-glutathionylated Gal-3 at Cys187 resisted irreversible oxidation by H2O2. M2 macrophages showed enhanced Gal-3 S-glutathionylation when compared to M1 phenotype. Serum and stromal vascular fraction (SVF) isolated from control mice showed increased Gal-3 S-glutathionylation as compared to db/db mice. A significant increase in Gal-3 S-glutathionylation was observed in metformin-treated db/db mice when compared to db/db mice alone. Similar to murine, enhanced Gal-3 S-glutathionylation is observed in primary human monocyte derived M2 macrophages when compared to the M1 macrophage phenotype and Gal-3 regulates primary human adipocyte insulin signaling in a glutathionylation dependent manner. Collectively, we identified Gal-3 S-glutathionylation as a protective phenomenon, which relieves its inhibitory effect on adipocyte insulin signaling.
Collapse
Affiliation(s)
- Mohita Maurya
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anant Jaiswal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sanchita Gupta
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Wahid Ali
- King George's Medical University, Lucknow 226003, India
| | | | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Manoj Kumar Barthwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India.
| |
Collapse
|
48
|
Sun L, Liu Y. Clinical Factors of Blood Transfusion-Related Acute Lung Injury and Changes in Levels of Treg-Related Cytokines. Emerg Med Int 2022; 2022:7344375. [PMID: 35669166 PMCID: PMC9167010 DOI: 10.1155/2022/7344375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
Objective Analysis of clinical factors and changes in regulatory T cell (Treg)-related cytokine levels in transfusion-associated acute lung injury (TRALI). Methods 62 patients who underwent blood transfusion and developed TRALI (TRALI group) in our hospital between January 2018 and December 2021 and 58 patients who did not develop TRALI (non-TRALI group) from blood transfusion were selected to collect clinical data from patients and construct a logistic regression model to analyze clinical risk factors for TRALI. Based on the prognosis of TRALI patients, they were divided into survival group (50 cases) and death group (12 cases), and serum CD4 + CD25 + Treg and Treg-related cytokines (interleukin 10 (IL-10), transforming growth factor-β (TGF-β)) levels were compared between the two groups, and the correlation between CD4 + CD25 + Treg and IL-10 and TGF-β was analyzed by Pearson. Results The differences in smoking history, human leukocyte antigen (HLA) antibody II, pretransfusion shock, and CD4 + CD25 + Treg between the TRALI group and non-TRALI group were statistically significant (P < 0.05). Logistic regression analysis showed that HLA antibody II and increased CD4 + CD25 + Treg were independent risk factors of TRALI (P < 0.05). The levels of CD4 + CD25 + Treg, IL-10, and TGF-β in the death group were significantly higher than those in the survival group (P < 0.05). CD4 + CD25 + Treg was positively correlated with levels of IL-10 and TGF-β (P < 0.05). Conclusion Elevated HLA antibody II and CD4 + CD25 + Treg are the main clinical risk factors for TRALI, and CD4 + CD25 + Treg may be involved in immunosuppression by increasing the expression levels of IL-10 and TGF-β. Early clinical monitoring of changes in Treg-related cytokine levels can provide some guidance for prognostic assessment of TRALI patients.
Collapse
Affiliation(s)
- Lifang Sun
- Department of Blood Transfusion, Tianshui First People's Hospital, Tianshui, Gansu 741000, China
| | - Yu Liu
- Department of Laboratory, Tianshui First People's Hospital, Tianshui, Gansu 741000, China
| |
Collapse
|
49
|
Henrik SZŐKE, István BÓKKON, David M, Jan V, Ágnes K, Zoltán K, Ferenc F, Tibor K, László SL, Ádám D, Odilia M, Andrea K. The innate immune system and fever under redox control: A Narrative Review. Curr Med Chem 2022; 29:4324-4362. [DOI: 10.2174/0929867329666220203122239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/21/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022]
Abstract
ABSTRACT:
In living cells, redox potential is vitally important for normal physiological processes that are closely regulated by antioxidants, free amino acids and proteins that either have reactive oxygen and nitrogen species capture capability or can be compartmentalized. Although hundreds of experiments support the regulatory role of free radicals and their derivatives, several authors continue to claim that these perform only harmful and non-regulatory functions. In this paper we show that countless intracellular and extracellular signal pathways are directly or indirectly linked to regulated redox processes. We also briefly discuss how artificial oxidative stress can have important therapeutic potential and the possible negative effects of popular antioxidant supplements.
Next, we present the argument supported by a large number of studies that several major components of innate immunity, as well as fever, is also essentially associated with regulated redox processes. Our goal is to point out that the production of excess or unregulated free radicals and reactive species can be secondary processes due to the perturbed cellular signal pathways. However, researchers on pharmacology should consider the important role of redox mechanisms in the innate immune system and fever.
Collapse
Affiliation(s)
- SZŐKE Henrik
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| | - BÓKKON István
- Neuroscience and Consciousness Research Department, Vision Research Institute,
Lowell, MA, USA
| | - martin David
- Department of Human Medicine, University Witten/Herdecke, Witten, Germany
| | - Vagedes Jan
- University Children’s Hospital, Tuebingen University, Tuebingen, Germany
| | - kiss Ágnes
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| | - kovács Zoltán
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| | - fekete Ferenc
- Department of Nyerges Gábor Pediatric Infectology, Heim Pál National Pediatric Institute, Budapest, Hungary
| | - kocsis Tibor
- Department of Clinical Governance, Hungarian National Ambulance Service, Budapest, Hungary
| | | | | | | | - kisbenedek Andrea
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| |
Collapse
|
50
|
Sengupta S, Nath R, Bhattacharjee A. Characterizing the effect of S-nitrosoglutathione on Saccharomyces cerevisiae: Upregulation of alcohol dehydrogenase and inactivation of aconitase. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|