1
|
Hu ZY, Yang SJ, Chang YH, Wang XQ, Liu RQ, Jiang FW, Chen MS, Wang JX, Liu S, Zhu HM, Shi YS, Zhao Y, Li JL. AHR activation relieves deoxynivalenol-induced disruption of porcine intestinal epithelial barrier functions. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136095. [PMID: 39395393 DOI: 10.1016/j.jhazmat.2024.136095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
Mycotoxins are ubiquitous natural pollutants that pose a serious threat to public health. Deoxynivalenol (DON) as one of the most prominent mycotoxins has a noticeable adverse effect on intestinal barrier function, which depends on the intestinal barrier integrity. However, the potential mechanisms and effective therapeutic strategies remain unclear. Aryl hydrocarbon receptor (AHR) has been implicated in the modulation of intestinal barrier function and inflammation. The study aims to investigate the unique role of AHR in mediating DON-induced intestinal epithelial barrier function. In the current study, we revealed that DON triggered mitochondrial structural damage and functional impairment, leading to oxidative stress and apoptosis in porcine jejunal epithelial cells (IPEC-J2). DON altered the integrity of IPEC-J2 cells by disrupting the distribution and function of tight junction proteins. Additionally, DON activated TNF-α/NF-κB/MLCK signaling pathway, thereby eliciting inflammatory response. Notably, DON inhibited AHR nuclear translocation and attenuated xenobiotic response element promoter activity and its target genes. However, overexpression of AHR mitigated DON-induced disruption of intestinal epithelial barrier functions by suppressing TNF-α/NF-κB/MLCK pathway in IPEC-J2 cells. Our findings indicate that AHR regulates intestinal epithelial barrier function and therefore is a novel therapeutic molecule for intestinal disorders.
Collapse
Affiliation(s)
- Zi-Yan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shang-Jia Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuan-Hang Chang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue-Qi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Rui-Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Fu-Wei Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ming-Shan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jia-Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shuo Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hong-Mei Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu-Sheng Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
2
|
Quin C, Breznik JA, Kennedy AE, DeJong EN, Andary CM, Ermolina S, Davidson DJ, Ma J, Surette MG, Bowdish DME. Monocyte-driven inflamm-aging reduces intestinal barrier function in females. Immun Ageing 2024; 21:65. [PMID: 39350153 PMCID: PMC11440997 DOI: 10.1186/s12979-024-00469-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/21/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND The intestinal barrier encompasses physical and immunological components that act to compartmentalize luminal contents, such as bacteria and endotoxins, from the host. It has been proposed that an age-related decline of intestinal barrier function may allow for the passage of luminal contents into the bloodstream, triggering a low-grade systemic inflammation termed inflamm-aging. Although there is mounting evidence to support this hypothesis in model species, it is unclear if this phenomenon occurs in humans. In addition, despite being well-established that biological sex impacts aging physiology, its influence on intestinal barrier function and inflamm-aging has not been explored. RESULTS In this study, we observed sex differences in markers of intestinal barrier integrity, where females had increased epithelial permeability throughout life as compared to males. With age, females had an age-associated increase in circulating bacterial products and metabolites such as LPS and kynurenine, suggesting reduced barrier function. Females also had age-associated increases in established markers of inflamm-aging, including peripheral blood monocytes as well as TNF and CRP. To determine if impaired barrier function was driving inflamm-aging, we performed a mediation analysis. The results show that the loss of intestinal barrier integrity was not the mediator of inflamm-aging in humans. Instead, persistent, low-grade inflammation with age preceded the increase in circulating bacterial products, which we confirmed using animal models. We found, as in humans, that sex modified age-associated increases in circulating monocytes in mice, and that inflammation mediates the loss of intestinal barrier function. CONCLUSION Taken together, our results suggest that higher basal intestinal permeability in combination with age-associated inflammation, increases circulating LPS in females. Thus, targeting barrier permeability in females may slow the progression of inflamm-aging, but is unlikely to prevent it.
Collapse
Affiliation(s)
- Candice Quin
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland.
| | - Jessica A Breznik
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- McMaster Institute for Research on Aging, Hamilton, ON, Canada
- McMaster Immunology Research Centre, Hamilton, ON, Canada
| | - Allison E Kennedy
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- McMaster Institute for Research on Aging, Hamilton, ON, Canada
- McMaster Immunology Research Centre, Hamilton, ON, Canada
| | - Erica N DeJong
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- McMaster Institute for Research on Aging, Hamilton, ON, Canada
- McMaster Immunology Research Centre, Hamilton, ON, Canada
| | - Catherine M Andary
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- McMaster Institute for Research on Aging, Hamilton, ON, Canada
- McMaster Immunology Research Centre, Hamilton, ON, Canada
| | - Sofya Ermolina
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- McMaster Institute for Research on Aging, Hamilton, ON, Canada
- McMaster Immunology Research Centre, Hamilton, ON, Canada
| | - Donald J Davidson
- Institute for Regeneration and Repair, Centre for Inflammatory Research, University of Edinburgh, Edinburgh, Scotland
| | - Jinhui Ma
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | - Michael G Surette
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Dawn M E Bowdish
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.
- McMaster Institute for Research on Aging, Hamilton, ON, Canada.
- McMaster Immunology Research Centre, Hamilton, ON, Canada.
- Firestone Institute for Respiratory Health, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada.
| |
Collapse
|
3
|
Qi P, Chen X, Tian J, Zhong K, Qi Z, Li M, Xie X. The gut homeostasis-immune system axis: novel insights into rheumatoid arthritis pathogenesis and treatment. Front Immunol 2024; 15:1482214. [PMID: 39391302 PMCID: PMC11464316 DOI: 10.3389/fimmu.2024.1482214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Rheumatoid arthritis is a widely prevalent autoimmune bone disease that imposes a significant burden on global healthcare systems due to its increasing incidence. In recent years, attention has focused on the interaction between gut homeostasis and the immune system, particularly in relation to bone health. Dysbiosis, which refers to an imbalance in the composition and function of the gut microbiota, has been shown to drive immune dysregulation through mechanisms such as the release of pro-inflammatory metabolites, increased gut permeability, and impaired regulatory T cell function. These factors collectively contribute to immune system imbalance, promoting the onset and progression of Rheumatoid arthritis. Dysbiosis induces both local and systemic inflammatory responses, activating key pro-inflammatory cytokines such as tumor necrosis factor-alpha, Interleukin-6, and Interleukin-17, which exacerbate joint inflammation and damage. Investigating the complex interactions between gut homeostasis and immune regulation in the context of Rheumatoid arthritis pathogenesis holds promise for identifying new therapeutic targets, revealing novel mechanisms of disease progression, and offering innovative strategies for clinical treatment.
Collapse
Affiliation(s)
- Peng Qi
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xin Chen
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Jiexiang Tian
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Kexin Zhong
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zhonghua Qi
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Menghan Li
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xingwen Xie
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
4
|
Coperchini F, Greco A, Teliti M, Croce L, Chytiris S, Magri F, Gaetano C, Rotondi M. Inflamm-ageing: How cytokines and nutrition shape the trajectory of ageing. Cytokine Growth Factor Rev 2024:S1359-6101(24)00065-0. [PMID: 39237438 DOI: 10.1016/j.cytogfr.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
Population ageing is increasing in prevalence in most developed countries. Ageing is the decline of functional properties at the cellular, tissue, and organ level. Biochemical changes that occur in all organisms that experience biological ageing are referred to as the "Hallmarks of ageing". Inflammation is a common denominator of the hallmarks of ageing, being mechanistically involved in most age-related health consequences. Inflamm-ageing refers to age-related changes in the inflammatory and immune systems which somehow drive the ageing process towards healthy or unhealthy ageing. Current evidences, support that, reversing the age-related pro-inflammatory status of inflamm-ageing, is able to modulate most hallmarks of ageing. Inflamm-ageing is associated with increased levels of pro-inflammatory molecules (e.g. cytokines, chemokines), ultimately producing a chronic low-grade inflammatory state typically observed in older individuals. It is commonly accepted that, the balance between pro- and anti-inflammatory cytokines/chemokines is one of the factors determining whether healthy or unhealthy ageing occurs. Malnutrition and nutritional imbalances, are highly prevalent in the elderly, playing a role in driving the balance of pro- and anti-inflammatory immunoactive molecules. In particular, malnutrition is a major risk factor for sarcopenia, a phenomenon characterized by loss of muscle mass, which is often referred to as the biological basis for frailty. Given the close relationship between malnutrition and sarcopenia, there is also evidence for a link between malnutrition and frailty. Indeed, changes in cytokine/chemokine levels in elderly patients with malnutrition were demonstrated. The demonstration that specific cytokines play a role in modulating appetite and nutrient sensing and taste reception, provided further evidence for the existence of a link between inflamm-ageing, nutrition and cytokines in shaping the trajectory of ageing. The present review will overview current evidence supporting the role of specific circulating cytokines and chemokines in the relationship between ageing, inflammation, and malnutrition.
Collapse
Affiliation(s)
- Francesca Coperchini
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Alessia Greco
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Marsida Teliti
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia 27100, Italy
| | - Laura Croce
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia 27100, Italy
| | - Spyridon Chytiris
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia 27100, Italy
| | - Flavia Magri
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia 27100, Italy
| | - Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Mario Rotondi
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia 27100, Italy.
| |
Collapse
|
5
|
Solovev I, Sergeeva A, Geraskina A, Shaposhnikov M, Vedunova M, Borysova O, Moskalev A. Aging and physiological barriers: mechanisms of barrier integrity changes and implications for age-related diseases. Mol Biol Rep 2024; 51:917. [PMID: 39158744 DOI: 10.1007/s11033-024-09833-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
The phenomenon of compartmentalization is one of the key traits of life. Biological membranes and histohematic barriers protect the internal environment of the cell and organism from endogenous and exogenous impacts. It is known that the integrity of these barriers decreases with age due to the loss of homeostasis, including age-related gene expression profile changes and the abnormal folding/assembly, crosslinking, and cleavage of barrier-forming macromolecules in addition to morphological changes in cells and tissues. The critical molecular and cellular mechanisms involved in physiological barrier integrity maintenance and aging-associated changes in their functioning are reviewed on different levels: molecular, organelle, cellular, tissue (histohematic, epithelial, and endothelial barriers), and organ one (skin). Biogerontology, which studies physiological barriers in the aspect of age, is still in its infancy; data are being accumulated, but there is no talk of the synthesis of complex theories yet. This paper mainly presents the mechanisms that will become targets of anti-aging therapy only in the future, possibly: pharmacological, cellular, and gene therapies, including potential geroprotectors, hormetins, senomorphic drugs, and senolytics.
Collapse
Affiliation(s)
- Ilya Solovev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st, Syktyvkar, 167982, Russian Federation
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp, Syktyvkar, 167001, Russian Federation
| | - Alena Sergeeva
- Lobachevsky State University, Nizhny Novgorod, 603022, Russian Federation
| | | | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st, Syktyvkar, 167982, Russian Federation
| | - Maria Vedunova
- Laboratory of genetics and epigenetics of aging, Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Moscow, 129226, Russian Federation
| | | | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st, Syktyvkar, 167982, Russian Federation.
- Lobachevsky State University, Nizhny Novgorod, 603022, Russian Federation.
- Laboratory of genetics and epigenetics of aging, Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Moscow, 129226, Russian Federation.
| |
Collapse
|
6
|
Wang J, Mei L, Hao Y, Xu Y, Yang Q, Dai Z, Yang Y, Wu Z, Ji Y. Contemporary Perspectives on the Role of Vitamin D in Enhancing Gut Health and Its Implications for Preventing and Managing Intestinal Diseases. Nutrients 2024; 16:2352. [PMID: 39064795 PMCID: PMC11279818 DOI: 10.3390/nu16142352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Vitamin D, a crucial fat-soluble vitamin, is primarily synthesized in the skin upon exposure to ultraviolet radiation and is widely recognized as a bone-associated hormone. However, recent scientific advancements have unveiled its intricate association with gut health. The intestinal barrier serves as a vital component, safeguarding the intestinal milieu and maintaining overall homeostasis. Deficiencies in vitamin D have been implicated in altering the gut microbiome composition, compromising the integrity of the intestinal mucosal barrier, and predisposing individuals to various intestinal pathologies. Vitamin D exerts its regulatory function by binding to vitamin D receptors (VDR) present in immune cells, thereby modulating the production of pro-inflammatory cytokines and influencing the intestinal barrier function. Notably, numerous studies have reported lower serum vitamin D levels among patients suffering from intestinal diseases, including inflammatory bowel disease, irritable bowel syndrome, and celiac disease, highlighting the growing significance of vitamin D in gut health maintenance. This comprehensive review delves into the latest advancements in understanding the mechanistic role of vitamin D in modulating the gut microbiome and intestinal barrier function, emphasizing its pivotal role in immune regulation. Furthermore, we consolidate and present relevant findings pertaining to the therapeutic potential of vitamin D in the management of intestinal diseases.
Collapse
Affiliation(s)
- Jiaxin Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
| | - Lihua Mei
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
| | - Yanling Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China;
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, Peking University, Beijing 100083, China;
| | - Qing Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China;
| | - Yun Ji
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
| |
Collapse
|
7
|
Bergheim I, Moreno-Navarrete JM. The relevance of intestinal barrier dysfunction, antimicrobial proteins and bacterial endotoxin in metabolic dysfunction-associated steatotic liver disease. Eur J Clin Invest 2024; 54:e14224. [PMID: 38634717 DOI: 10.1111/eci.14224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is a leading cause of end-stage liver disease associated with increased mortality and cardiovascular disease. Obesity and diabetes are the most important risk factors of MASLD. It is well-established that obesity-associated insulin resistance leads to a situation of tissue lipotoxicity characterized by an accumulation of excess fat in non-fat tissues such as the liver, promoting the development of MASLD, and its progression into metabolic dysfunction-associated steatohepatitis. METHODS Here, we aimed to review the impact of disrupted intestinal permeability, antimicrobial proteins and bacterial endotoxin in the development and progression of MASLD. RESULTS AND CONCLUSION Recent studies demonstrated that obesity- and obesogenic diets-associated alterations of intestinal microbiota along with the disruption of intestinal barrier integrity, the alteration in antimicrobial proteins and, in consequence, an enhanced translocation of bacterial endotoxin into bloodstream might contribute to this pathological process through to impacting liver metabolism and inflammation.
Collapse
Affiliation(s)
- Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - José María Moreno-Navarrete
- Nutrition, Eumetabolism and Health Group, Institut d'Investigació Biomèdica de Girona (IDIBGI-CERCA), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, Universitat de Girona, Girona, Spain
| |
Collapse
|
8
|
Reale M, Costantini E, Aielli L, Rienzo AD, Biase GD, Stefano AD, Cacciatore I. Exploring the therapeutic potential of cinnamoyl derivatives in attenuating inflammation in lipopolysaccharide-induced Caco-2 cells. Future Med Chem 2024; 16:1395-1411. [PMID: 39190472 DOI: 10.1080/17568919.2024.2351293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/29/2024] [Indexed: 08/28/2024] Open
Abstract
Aim: In gastrointestinal (GI) diseases, lipopolysaccharide (LPS) exacerbates gut-barrier dysfunction and inflammation. Cinnamoyl derivatives show potential in mitigating LPS-induced inflammation.Materials & methods: We assessed intestinal epithelial barrier function using Trans-epithelial electrical resistance values and measured inflammatory mediators through real-time PCR and ELISA in Caco-2 cells.Results: LPS treatment increased IL-6, IL-1β, TNF-α, PGE2 and TRL4 expression in Caco-2 cells. Pre-treatment with DM1 (1 or 10 μM) effectively countered LPS-induced TLR4 overexpression and reduced IL-6, IL-1β, TNF-α and PGE2 levels.Conclusion: DM1 holds promise in regulating inflammation and maintaining intestinal integrity by suppressing TLR4 and inflammatory mediators in Caco-2 cells. These findings suggest a potential therapeutic avenue for GI diseases.
Collapse
Affiliation(s)
- Marcella Reale
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| | - Erica Costantini
- Department of Medicine & Aging Sciences, University "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| | - Lisa Aielli
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| | - Annalisa Di Rienzo
- Department of Pharmacy, University "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| | - Giuseppe Di Biase
- Department of Pharmacy, University "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| | - Antonio Di Stefano
- Department of Pharmacy, University "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| | - Ivana Cacciatore
- Department of Pharmacy, University "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| |
Collapse
|
9
|
Longtine AG, Greenberg NT, Bernaldo de Quirós Y, Brunt VE. The gut microbiome as a modulator of arterial function and age-related arterial dysfunction. Am J Physiol Heart Circ Physiol 2024; 326:H986-H1005. [PMID: 38363212 PMCID: PMC11279790 DOI: 10.1152/ajpheart.00764.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
The arterial system is integral to the proper function of all other organs and tissues. Arterial function is impaired with aging, and arterial dysfunction contributes to the development of numerous age-related diseases, including cardiovascular diseases. The gut microbiome has emerged as an important regulator of both normal host physiological function and impairments in function with aging. The purpose of this review is to summarize more recently published literature demonstrating the role of the gut microbiome in supporting normal arterial development and function and in modulating arterial dysfunction with aging in the absence of overt disease. The gut microbiome can be altered due to a variety of exposures, including physiological aging processes. We explore mechanisms by which the gut microbiome may contribute to age-related arterial dysfunction, with a focus on changes in various gut microbiome-related compounds in circulation. In addition, we discuss how modulating circulating levels of these compounds may be a viable therapeutic approach for improving artery function with aging. Finally, we identify and discuss various experimental considerations and research gaps/areas of future research.
Collapse
Affiliation(s)
- Abigail G Longtine
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Nathan T Greenberg
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Yara Bernaldo de Quirós
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
- Instituto Universitario de Sanidad Animal y Seguridad Alimentaria, Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
| | - Vienna E Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
10
|
Hernández-Martín M, Bocanegra A, Garcimartín A, Issa JÁ, Redondo-Castillejo R, Macho-González A, Benedí J, Sánchez Muniz FJ, López-Oliva ME. Analysis of immunohistomorphological changes in the colonic mucosa in a high-saturated fat and high-cholesterol fed streptozotocin/nicotinamide diabetic rat model. Methods Cell Biol 2024; 185:165-195. [PMID: 38556447 DOI: 10.1016/bs.mcb.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The mucosal surface of gastrointestinal tract is lined with epithelial cells that establish an effective barrier between the lumen and internal environment through intercellular junctions, preventing the passage of potentially harmful substances. The "intestinal barrier function" consist of a defensive system that prevent the passage of antigens, toxins, and microbial products, while maintains the correct development of the epithelial barrier, the immune system and the acquisition of tolerance toward dietary antigens and intestinal microbiota. Intestinal morphology changes subsequent to nutritional variations, stress, aging or diseases, which can also affect the composition of the microbiota, altering the homeostasis of the intestine. A growing body of evidence suggests that alterations in intestinal barrier function favor the development of exaggerated immune responses, leading to metabolic endotoxemia, which seems to be the origin of many chronic metabolic diseases such as type 2 diabetes mellitus (T2DM). Although the mechanisms are still unknown, the interaction between dietary patterns, gut microbiota, intestinal mucosa, and metabolic inflammation seems to be a key factor for the development of T2DM, among other diseases. This chapter details the different techniques that allow evaluating the morphological and molecular alterations that lead of the intestinal barrier dysfunction in a T2DM experimental model. To induce both diabetic metabolic disturbances and gut barrier disruption, Wistar rats were fed a high-saturated fat and high-cholesterol diet and received a single dose of streptozotocin/nicotinamide. This animal model may contribute to clarify the understanding of the role of intestinal barrier dysfunction on the late-stage T2DM etiology.
Collapse
Affiliation(s)
- Marina Hernández-Martín
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Aránzazu Bocanegra
- Department of Pharmacology, Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Alba Garcimartín
- Department of Pharmacology, Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Jousef Ángel Issa
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, Madrid, Spain
| | - Rocío Redondo-Castillejo
- Department of Pharmacology, Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Adrián Macho-González
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain; Department of Nutrition, Pharmacy School, Complutense University of Madrid, Madrid, Spain
| | - Juana Benedí
- Department of Pharmacology, Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Francisco José Sánchez Muniz
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain; Department of Nutrition, Pharmacy School, Complutense University of Madrid, Madrid, Spain
| | - María Elvira López-Oliva
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain.
| |
Collapse
|
11
|
Le Cosquer G, Vergnolle N, Motta JP. Gut microb-aging and its relevance to frailty aging. Microbes Infect 2024; 26:105309. [PMID: 38316374 DOI: 10.1016/j.micinf.2024.105309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
This review explores 'microb-aging' in the gut and its potential link to frailty aging. We explore this connection through alterations in microbiota's taxonomy and metabolism, as well as with concepts of ecological resilience, pathobionts emergence, and biogeography. We examine microb-aging in interconnected body organs, emphasizing the bidirectional relationship with 'inflammaging'. Finally, we discuss how targeting microb-aging could improve screening, diagnostic, and therapeutic approaches in geriatrics.
Collapse
Affiliation(s)
- Guillaume Le Cosquer
- Institute of Digestive Health Research, IRSD, Toulouse University, INSERM U1220, INRAe, ENVT, UPS, 31300 Toulouse, France; Department of Gastroenterology and Pancreatology, Toulouse University Hospital, Toulouse Paul Sabatier University, 31059 Toulouse, France
| | - Nathalie Vergnolle
- Institute of Digestive Health Research, IRSD, Toulouse University, INSERM U1220, INRAe, ENVT, UPS, 31300 Toulouse, France; Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jean-Paul Motta
- Institute of Digestive Health Research, IRSD, Toulouse University, INSERM U1220, INRAe, ENVT, UPS, 31300 Toulouse, France.
| |
Collapse
|
12
|
Napier-Jameson R, Marx O, Norris A. A pair of RNA binding proteins inhibit ion transporter expression to maintain lifespan. Genetics 2024; 226:iyad212. [PMID: 38112749 PMCID: PMC10847721 DOI: 10.1093/genetics/iyad212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023] Open
Abstract
Regulation of lifespan by transcription factors has been well established. More recently, a role for RNA binding proteins (RBPs) in regulating lifespan has also emerged. In both cases, a major challenge is to determine which regulatory targets are functionally responsible for the observed lifespan phenotype. We recently identified a pair of neuronal RBPs, exc-7/ELAVL and mbl-1/Muscleblind, which in Caenorhabditis elegans display synthetic (nonadditive) lifespan defects: single mutants do not affect lifespan, but exc-7; mbl-1 double mutants have strongly reduced lifespan. Such a strong synthetic phenotype represented an opportunity to use transcriptomics to search for potential causative targets that are synthetically regulated. Focus on such genes would allow us to narrow our target search by ignoring the hundreds of genes altered only in single mutants, and provide a shortlist of synthetically regulated candidate targets that might be responsible for the double mutant phenotype. We identified a small handful of genes synthetically dysregulated in double mutants and systematically tested each candidate gene for functional contribution to the exc-7; mbl-1 lifespan phenotype. We identified 1 such gene, the ion transporter nhx-6, which is highly upregulated in double mutants. Overexpression of nhx-6 causes reduced lifespan, and deletion of nhx-6 in an exc-7; mbl-1 background partially restores both lifespan and healthspan. Together, these results reveal that a pair of RBPs mediate lifespan in part by inhibiting expression of an ion transporter, and provide a template for how synthetic phenotypes (including lifespan) can be dissected at the transcriptomic level to reveal potential causative genes.
Collapse
Affiliation(s)
- Rebekah Napier-Jameson
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd, Dallas, TX 75205, USA
| | - Olivia Marx
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd, Dallas, TX 75205, USA
| | - Adam Norris
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd, Dallas, TX 75205, USA
| |
Collapse
|
13
|
Zhang CY, Peng XX, Wu Y, Peng MJ, Liu TH, Tan ZJ. Intestinal mucosal microbiota mediate amino acid metabolism involved in the gastrointestinal adaptability to cold and humid environmental stress in mice. Microb Cell Fact 2024; 23:33. [PMID: 38267983 PMCID: PMC10809741 DOI: 10.1186/s12934-024-02307-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024] Open
Abstract
Growing evidence has demonstrated that cold and humid environmental stress triggers gastrointestinal (GI) disorders. In this study, we explored the effects of intestinal microbiota homeostasis on the intestinal mucus barrier and GI disorders by cold and humid environmental stress. Moreover, the inner link between the intestinal mucosal microbiota and metabolites in mice with cold and humid environmental stress was interpreted by integrative analysis of PacBio HiFi sequencing microbial genomics and targeted metabolomics. In the current study, we found (1) after the cold and wet cold and humid environmental stress intervened in the intestinal microbiota disorder and homeostasis mice respectively, the bacterial culturing and fluorescein diacetate (FDA) microbial activity detection of intestinal microbiota including feces, intestinal contents, and intestinal mucosa suggested that the cold and humid environmental stress decreased the colony of culturable bacteria and microbial activity, in which intestinal microbiota disorder aggravated the injury of the intestinal mucus barrier and the GI symptoms related to cold and humid environmental stress; (2) the serum amino acid transferases such as glutamate pyruvic transa (GPT), and glutamic oxaloacetic transaminase (GOT) in cold and humid environmental stressed mice increased significantly, indicating that the intestinal microbiota adapted to cold and humid environmental stress by regulating the host's amino acid metabolism; (3) the integrative analysis of multi-omics illustrated a prediction model based on the microbiota Lactobacillus reuteri abundance and host amino acid level that can predict intestinal mucoprotein Muc2 with an adjusted R2 of 75.0%. In conclusion, the cold and humid environmental stress regulates the neurotransmitter amino acids metabolic function both in intestinal mucosal microbiota and host serum by adjusting the composition of the dominant bacterial population Lactobacillus reuteri, which contributes to the intestinal mucus barrier injury and GI disorders caused by cold and humid environmental stress.
Collapse
Affiliation(s)
- Chen-Yang Zhang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xin-Xin Peng
- Department of Pediatrics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yi Wu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Mai-Jiao Peng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Tiao-Hao Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China.
| | - Zhou-Jin Tan
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
14
|
Lv H, Zhang Z, Fu B, Li Z, Yin T, Liu C, Xu B, Wang D, Li B, Hao J, Zhang L, Wang J. Characteristics of the gut microbiota of patients with symptomatic carotid atherosclerotic plaques positive for bacterial genetic material. Front Cell Infect Microbiol 2024; 13:1296554. [PMID: 38282614 PMCID: PMC10811106 DOI: 10.3389/fcimb.2023.1296554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Background The gut microbiota (GM) is believed to be closely associated with symptomatic carotid atherosclerosis (SCAS), yet more evidence is needed to substantiate the significant role of GM in SCAS. This study, based on the detection of bacterial DNA in carotid plaques, explores the characteristics of GM in SCAS patients with plaque bacterial genetic material positivity, aiming to provide a reference for subsequent research. Methods We enrolled 27 healthy individuals (NHF group) and 23 SCAS patients (PFBS group). We utilized 16S rDNA V3-V4 region gene sequencing to analyze the microbiota in fecal samples from both groups, as well as in plaque samples from the carotid bifurcation extending to the origin of the internal carotid artery in all patients. Results Our results indicate significant differences in the gut microbiota (GM) between SCAS patients and healthy individuals. The detection rate of bacterial DNA in plaque samples was approximately 26%. Compared to patients with negative plaques (PRSOPWNP group), those with positive plaques (PRSOPWPP group) exhibited significant alterations in their GM, particularly an upregulation of 11 bacterial genera (such as Klebsiella and Streptococcus) in the gut, which were also present in the plaques. In terms of microbial gene function prediction, pathways such as Fluorobenzoate degradation were significantly upregulated in the GM of patients with positive plaques. Conclusion In summary, our study is the first to identify significant alterations in the gut microbiota of patients with positive plaques, providing crucial microbial evidence for further exploration of the pathogenesis of SCAS.
Collapse
Affiliation(s)
- Hang Lv
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Zhiyuan Zhang
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Bo Fu
- Department of Precision Medicine, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Zhongchen Li
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Tengkun Yin
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Chao Liu
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Bin Xu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Dawei Wang
- Department of Orthopedics, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Baojie Li
- Bio-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Jiheng Hao
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Liyong Zhang
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Jiyue Wang
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| |
Collapse
|
15
|
Homolak J. Gastrointestinal redox homeostasis in ageing. Biogerontology 2023; 24:741-752. [PMID: 37436501 DOI: 10.1007/s10522-023-10049-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
The gastrointestinal (GI) barrier acts as the primary interface between humans and the external environment. It constantly faces the risk of inflammation and oxidative stress due to exposure to foreign substances and microorganisms. Thus, maintaining the structural and functional integrity of the GI barrier is crucial for overall well-being, as it helps prevent systemic inflammation and oxidative stress, which are major contributors to age-related diseases. A healthy gut relies on maintaining gut redox homeostasis, which involves several essential elements. Firstly, it requires establishing a baseline electrophilic tone and an electrophilic mucosal gradient. Secondly, the electrophilic system needs to have sufficient capacity to generate reactive oxygen species, enabling effective elimination of invading microorganisms and rapid restoration of the barrier integrity following breaches. These elements depend on physiological redox signaling mediated by electrophilic pathways such as NOX2 and the H2O2 pathway. Additionally, the nucleophilic arm of redox homeostasis should exhibit sufficient reactivity to restore the redox balance after an electrophilic surge. Factors contributing to the nucleophilic arm include the availability of reductive substrates and redox signaling mediated by the cytoprotective Keap1-Nrf2 pathway. Future research should focus on identifying preventive and therapeutic strategies that enhance the strength and responsiveness of GI redox homeostasis. These strategies aim to reduce the vulnerability of the gut to harmful stimuli and address the decline in reactivity often observed during the aging process. By strengthening GI redox homeostasis, we can potentially mitigate the risks associated with age-related gut dyshomeostasis and optimize overall health and longevity.
Collapse
Affiliation(s)
- Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, 10 000, Zagreb, Croatia.
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 12, 10 000, Zagreb, Croatia.
| |
Collapse
|
16
|
Zhang L, Yan J, Zhang C, Feng S, Zhan Z, Bao Y, Zhang S, Chao G. Improving intestinal inflammaging to delay aging? A new perspective. Mech Ageing Dev 2023; 214:111841. [PMID: 37393959 DOI: 10.1016/j.mad.2023.111841] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Greying population is becoming an increasingly critical issue for social development. In advanced aging context, organismal multiple tissues and organs experience a progressive deterioration, initially presenting with functional decline, followed by structural disruption and eventually organ failure. The aging of the gut is one of the key links. Decreased gut function leads to reduced nutrient absorption and can perturb systemic metabolic rates. The degeneration of the intestinal structure causes the migration of harmful components such as pathogens and toxins, inducing pathophysiological changes in other organs through the "brain-gut axis" and "liver-gut axis". There is no accepted singular underlying mechanism of aged gut. While the inflamm-aging theory was first proposed in 2000, the mutual promotion of chronic inflammation and aging has attracted much attention. Numerous studies have established that gut microbiome composition, gut immune function, and gut barrier integrity are involved in the formation of inflammaging in the aging gut. Remarkably, inflammaging additionally drives the development of aging-like phenotypes, such as microbiota dysbiosis and impaired intestinal barrier, via a broad array of inflammatory mediators. Here we demonstrate the mechanisms of inflammaging in the gut and explore whether aging-like phenotypes in the gut can be negated by improving gut inflammaging.
Collapse
Affiliation(s)
- Lan Zhang
- Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, China
| | - Junbin Yan
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, The Xin Hua Hospital of Zhejiang Province, Hangzhou 310000, China
| | - Chi Zhang
- Endoscopic Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, China
| | - Shuyan Feng
- Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Zheli Zhan
- Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, China
| | - Yang Bao
- Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, China
| | - Shuo Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, The Xin Hua Hospital of Zhejiang Province, Hangzhou 310000, China.
| | - Guanqun Chao
- Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
17
|
Pojero F, Gervasi F, Fiore SD, Aiello A, Bonacci S, Caldarella R, Attanzio A, Candore G, Caruso C, Ligotti ME, Procopio A, Restivo I, Tesoriere L, Allegra M, Accardi G. Anti-Inflammatory Effects of Nutritionally Relevant Concentrations of Oleuropein and Hydroxytyrosol on Peripheral Blood Mononuclear Cells: An Age-Related Analysis. Int J Mol Sci 2023; 24:11029. [PMID: 37446206 DOI: 10.3390/ijms241311029] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Immunosenescence and inflammaging facilitate the insurgence of chronic diseases. The Mediterranean diet is a non-invasive intervention to improve the chronic low-grade inflammatory status associated with aging. Olive oil oleuropein (OLE) and hydroxytyrosol (HT) demonstrated a controversial modulatory action on inflammation in vitro when tested at concentrations exceeding those detectable in human plasma. We studied the potential anti-inflammatory effects of OLE and HT at nutritionally relevant concentrations on peripheral blood mononuclear cells (PBMCs) as regards cell viability, frequency of leukocyte subsets, and cytokine release, performing an age-focused analysis on two groups of subjects: Adult (age 18-64 years) and Senior (age ≥ 65 years). OLE and HT were used alone or as a pre-treatment before challenging PBMCs with lipopolysaccharide (LPS). Both polyphenols had no effect on cell viability irrespective of LPS, but 5 µM HT had an LPS-like effect on monocytes, reducing the intermediate subset in Adult subjects. OLE and HT had no effect on LPS-triggered release of TNF-α, IL-6 and IL-8, but 5 µM HT reduced IL-10 secretion by PBMCs from Adult vs. Senior group. In summary, nutritionally relevant concentrations of OLE and HT elicit no anti-inflammatory effect and influence the frequency of immune cell subsets with age-related different outcomes.
Collapse
Affiliation(s)
- Fanny Pojero
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Francesco Gervasi
- Specialistic Oncology Laboratory Unit, ARNAS Hospitals Civico Di Cristina e Benfratelli, 90127 Palermo, Italy
| | - Salvatore Davide Fiore
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Sonia Bonacci
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Rosalia Caldarella
- Department of Laboratory Medicine, "P. Giaccone" University Hospital, 90127 Palermo, Italy
| | - Alessandro Attanzio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Antonio Procopio
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Ignazio Restivo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Luisa Tesoriere
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Mario Allegra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| |
Collapse
|
18
|
Napier-Jameson R, Marx O, Norris A. A pair of RNA binding proteins inhibit ion transporter expression to maintain lifespan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540279. [PMID: 37214828 PMCID: PMC10197639 DOI: 10.1101/2023.05.10.540279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Regulation of lifespan by transcription factors has been well established. More recently a role for RNA binding proteins (RBPs) in regulating lifespan has also emerged. In both cases, a major challenge is to determine which regulatory targets are functionally responsible for the observed lifespan phenotype. We recently identified a pair of RBPs, exc-7/ELAVL and mbl-1/Muscleblind, which display synthetic (non-additive) lifespan defects: single mutants do not affect lifespan, but exc-7; mbl-1 double mutants have strongly reduced lifespan. Such a strong synthetic phenotype represented an opportunity to use transcriptomics to search for potential causative targets that are synthetically regulated. Focus on such genes would allow us to narrow our target search by ignoring the hundreds of genes altered only in single mutants, and provide a shortlist of synthetically-regulated candidate targets that might be responsible for the double mutant phenotype. We identified a small handful of genes synthetically dysregulated in double mutants and systematically tested each candidate gene for functional contribution to the exc-7; mbl-1 lifespan phenotype. We identified one such gene, the ion transporter nhx-6, which is highly upregulated in double mutants. Overexpression of nhx-6 causes reduced lifespan, and deletion of nhx-6 in an exc-7; mbl-1 background partially restores both lifespan and healthspan. Together, these results reveal that a pair of RBPs mediate lifespan in part by inhibiting expression of an ion transporter, and provide a template for how synthetic phenotypes (including lifespan) can be dissected at the transcriptomic level to reveal potential causative genes.
Collapse
|
19
|
Liang J, Zhou Y, Cheng X, Chen J, Cao H, Guo X, Zhang C, Zhuang Y, Hu G. Baicalin Attenuates H 2O 2-Induced Oxidative Stress by Regulating the AMPK/Nrf2 Signaling Pathway in IPEC-J2 Cells. Int J Mol Sci 2023; 24:ijms24119435. [PMID: 37298392 DOI: 10.3390/ijms24119435] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 06/12/2023] Open
Abstract
Oxidative stress can adversely affect the health status of the body, more specifically by causing intestinal damage by disrupting the permeability of the intestinal barrier. This is closely related to intestinal epithelial cell apoptosis caused by the mass production of reactive oxygen species (ROS). Baicalin (Bai) is a major active ingredient in Chinese traditional herbal medicine that has antioxidant, anti-inflammatory, and anti-cancer properties. The purpose of this study was to explore the underlying mechanisms by which Bai protects against hydrogen peroxide (H2O2)-induced intestinal injury in vitro. Our results indicated that H2O2 treatment caused injury to IPEC-J2 cells, resulting in their apoptosis. However, Bai treatment attenuated H2O2-induced IPEC-J2 cell damage by up-regulating the mRNA and protein expression of ZO-1, Occludin, and Claudin1. Besides, Bai treatment prevented H2O2-induced ROS and MDA production and increased the activities of antioxidant enzymes (SOD, CAT, and GSH-PX). Moreover, Bai treatment also attenuated H2O2-induced apoptosis in IPEC-J2 cells by down-regulating the mRNA expression of Caspase-3 and Caspase-9 and up-regulating the mRNA expression of FAS and Bax, which are involved in the inhibition of mitochondrial pathways. The expression of Nrf2 increased after treatment with H2O2, and Bai can alleviate this phenomenon. Meanwhile, Bai down-regulated the ratio of phosphorylated AMPK to unphosphorylated AMPK, which is indicative of the mRNA abundance of antioxidant-related genes. In addition, knockdown of AMPK by short-hairpin RNA (shRNA) significantly reduced the protein levels of AMPK and Nrf2, increased the percentage of apoptotic cells, and abrogated Bai-mediated protection against oxidative stress. Collectively, our results indicated that Bai attenuated H2O2-induced cell injury and apoptosis in IPEC-J2 cells through improving the antioxidant capacity through the inhibition of the oxidative stress-mediated AMPK/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Jiahua Liang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, China
| | - Ying Zhou
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, China
| | - Xinyi Cheng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, China
| | - Jiaqi Chen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, China
| |
Collapse
|
20
|
Zhang Y, Jiang Y, Li H, Wang J, Li C, Zhang D. Effect of STING signaling on intestinal barrier damage in severe acute pancreatitis. Exp Cell Res 2023; 428:113630. [PMID: 37196844 DOI: 10.1016/j.yexcr.2023.113630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Patients with severe acute pancreatitis (SAP) have a compromised intestinal barrier with decreased barrier function and increased cell death. Intestinal epithelial cells (IECs) create a physicochemical barrier that anchors bacteria in the intestine. Recent studies have shown that the stimulator of interferons genes (STING) signaling pathway plays an important function in a number of inflammatory conditions. METHODS The rat SAP model was established by retrograde injection of freshly prepared sodium taurocholate into the biliopancreatic duct. Serum amylase (AMY), lipase (LIPA), interleukin (IL)-6, interferon (IFN)-β, tumor necrosis factor (TNF)-α, intestinal-type fatty acid binding protein (FABP2), diamine oxidase (DAO) and endotoxin (ET) levels were measured in rats. H&E staining was used to assess histological changes in the intestine and pancreas. The expression of intestinal epithelial cell tight junction (TJ) proteins and STING signaling pathway proteins and genes were measured by RT- PCR, Western blot and immunofluorescence staining were used to analyze. The expression of STING signaling pathway proteins in pancreas were measured by Western blot were used to analyze. TUNEL was used to detect IECs death. RESULTS Upregulation of STING pathway-related proteins and genes occurred after sap-induced IECs. In addition, C-176 reduced serum AMY, LIPA, TNF-α, IL-6, INF-β, FABP2, DAO and endotoxin levels and decreased pancreatic and intestinal histopathological injury in SAP rats; DMXAA aggravated serum AMY, LIPA, TNF-α, IL-6, INF-β, FABP2, DAO and endotoxin levels and increased pancreatic and intestinal histopathological injury in SAP rats. CONLUSIONS The results suggest that inhibition of STING signaling can alleviate IECs after SAP, and activation of STING signaling can aggravate IECs after SAP.
Collapse
Affiliation(s)
- Yongkang Zhang
- Department of the First General Surgery, Qingdao Municipal Hospital, Dalian Medical University, No. 1 Jiaozhou Road, Qingdao, 266011, Shandong, China
| | - Yingjian Jiang
- Department of the First General Surgery, Qingdao Municipal Hospital, Dalian Medical University, No. 1 Jiaozhou Road, Qingdao, 266011, Shandong, China
| | - Hongbo Li
- Department of the First General Surgery, Qingdao Municipal Hospital, Dalian Medical University, No. 1 Jiaozhou Road, Qingdao, 266011, Shandong, China
| | - Jiang Wang
- Department of the First General Surgery, Qingdao Municipal Hospital, Dalian Medical University, No. 1 Jiaozhou Road, Qingdao, 266011, Shandong, China
| | - Chang Li
- Department of the First General Surgery, Qingdao Municipal Hospital, Dalian Medical University, No. 1 Jiaozhou Road, Qingdao, 266011, Shandong, China
| | - Dianliang Zhang
- Department of the First General Surgery, Qingdao Municipal Hospital, Dalian Medical University, No. 1 Jiaozhou Road, Qingdao, 266011, Shandong, China.
| |
Collapse
|
21
|
Chiba T, Maeda T. Human Milk Exosomes Induce ZO-1 Expression via Inhibition of REDD1 Expression in Human Intestinal Epithelial Cells. Biol Pharm Bull 2023; 46:893-897. [PMID: 37394640 DOI: 10.1248/bpb.b22-00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Human milk exosomes (HMEs) enhance intestinal barrier function and contribute to an improvement in inflammation and mucosal injury, such as necrotizing enteritis (NEC), in infants. Here, we aimed to elucidate the intracellular factors involved in HME-induced expression of zonula occludens-1 (ZO-1), a tight junction protein, in Caco-2 human intestinal epithelial cells. HME treatment for 72 h significantly increased transepithelial electrical resistance in these cells. The mean ZO-1 protein levels in cells treated with HME for 72 h were significantly higher than those in the control cells. The mRNA and protein levels of regulated in development and DNA damage response 1 (REDD1) in HME-treated cells were significantly lower than those in the control cells. Although HME treatment did not increase the mechanistic target of rapamycin (mTOR) level in Caco-2 cells, it significantly increased the phosphorylated mTOR (p-mTOR) level and p-mTOR/mTOR ratio. The ZO-1 protein levels in cells treated with an inducer of REDD1, cobalt chloride (CoCl2) alone were significantly lower than those in the control cells. However, ZO-1 protein levels in cells co-treated with HME and CoCl2 were significantly higher than those in cells treated with CoCl2 alone. Additionally, REDD1 protein levels in cells treated with CoCl2 alone were significantly higher than those in the control cells. However, REDD1 protein levels in cells co-treated with HME and CoCl2 were significantly lower than those in cells treated with CoCl2 alone. This HME-mediated effect may contribute to the development of barrier function in the infant intestine and protect infants from diseases.
Collapse
Affiliation(s)
- Takeshi Chiba
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science
- Creation Research Institute of Life Science in KITA-no-DAICHI, Hokkaido University of Science
| | - Tomoji Maeda
- Department of Clinical Pharmacology and Pharmaceutics, Nihon Pharmaceutical University
| |
Collapse
|
22
|
Effects of Oleuropein and Hydroxytyrosol on Inflammatory Mediators: Consequences on Inflammaging. Int J Mol Sci 2022; 24:ijms24010380. [PMID: 36613822 PMCID: PMC9820525 DOI: 10.3390/ijms24010380] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Aging is associated with a low-grade, systemic inflammatory state defined as "inflammaging", ruled by the loss of proper regulation of the immune system leading to the accumulation of pro-inflammatory mediators. Such a condition is closely connected to an increased risk of developing chronic diseases. A number of studies demonstrate that olive oil phenolic compound oleuropein and its derivative hydroxytyrosol contribute to modulating tissue inflammation and oxidative stress, thus becoming attractive potential candidates to be used in the context of nutraceutical interventions, in order to ameliorate systemic inflammation in aging subjects. In this review, we aim to summarize the available data about the anti-inflammatory properties of oleuropein and hydroxytyrosol, discussing them in the light of molecular pathways involved in the synthesis and release of inflammatory mediators in inflammaging.
Collapse
|
23
|
Zhang X, Wang A, Chen Y, Bao J, Xing H. Intestinal barrier dysfunction induced by ammonia exposure in pigs in vivo and in vitro: The protective role of L-selenomethionine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114325. [PMID: 36436255 DOI: 10.1016/j.ecoenv.2022.114325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/17/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Ammonia has been reported to have a variety of toxicity to aquatic animals, farm animals and humans. However, its potential toxicity on the intestines remains unknown. L-selenomethionine is one of the important organic selenium sources. However, the mitigating effect of L-selenomethionine on ammonia exposure toxicity is still lacking. Therefore, in this study, the mechanism of toxic action of ammonia on intestinal tract and the detoxification effect of L-selenomethionine were examined. We evaluated the intestinal toxicity of ammonia and the alleviating effect of L-selenomethionine in an in vivo model, and then verified it in vitro model by a variety of cutting-edge experimental techniques. Our results showed that ammonia exposure causes oxidative stress, necroptosis, Th1/Th2 imbalance and inflammation in the intestinal tissue and the intestinal cells, and L-selenomethionine had a significant mitigation effect on the changes of these indexes induced by ammonia. In conclusion, ammonia exposure caused oxidative stress and Th1/Th2 imbalance in the porcine small intestine and IPEC-J2 cells, and that excessive ROS accumulation-mediated necroptosis targeted inflammatory responses, resulting in the destruction of tight connections of intestinal cells, thereby causing intestinal barrier dysfunction. L-selenomethionine could effectively reduce the intestinal injury caused by ammonia exposure and antagonize the toxic effect of ammonia.
Collapse
Affiliation(s)
- Xinxin Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Anqi Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Ying Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Houjuan Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
24
|
Chiba T, Takaguri A, Kooka A, Kowatari K, Yoshizawa M, Fukushi Y, Hongo F, Sato H, Fujisawa M, Wada S, Maeda T. Suppression of milk-derived miR-148a caused by stress plays a role in the decrease in intestinal ZO-1 expression in infants. Clin Nutr 2022; 41:2691-2698. [PMID: 36343560 DOI: 10.1016/j.clnu.2022.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/17/2022] [Accepted: 10/09/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND & AIMS Milk-derived miR-148a-3p (miR-148a), which is abundant in breast milk, has been shown to be associated with the development of infants' intestines. Although it is well known that stress during lactation changes milk constituents in terms of lipid and protein, no studies have examined the influence of stress on miR-148a expression in breast milk. The objective of this study is to investigate the relationship between stress and miR-148a expression in milk, and to evaluate whether the changes in milk-derived miR-148a expression-caused by the mother's exposure to stress-influence intestinal ZO-1 expression in infants. METHODS The participants of this study were healthy Japanese women who were nursing. Psychological stress evaluation of the subjects was conducted using a short form of the Profile of Mood State Second Edition-Adult (POMS-2). Additionally, miR-148a expressions in restraint stressed nursing mice were investigated using quantitative real-time PCR. The levels of a tight junction protein zonula occludens-1 (ZO-1) and DNA methyltransferase 1 (DNMT1), which is a direct target of miR-148a, in ileum in neonatal mice breastfed by stressed nursing mice were investigated using Western blot. Furthermore, to investigate the influence of miR-148a on ZO-1 expression within the intestine, the levels of ZO-1 and DNMT1 in human intestinal epithelial Caco-2 cells with lentivirus-mediated miR-148a overexpression were evaluated. RESULTS A significantly negative correlation was observed between relative miR-148a expression in breast milk and the total mood disturbance T-score. Each T-score on negative mood subscales of anger-hostility, confusion-bewilderment, depression-dejection, fatigue-inertia, and tension-anxiety was significantly negatively correlated with relative miR-148a expression in breast milk: a positive mood subscale vigor-activity T-score was significantly positively correlated with relative miR-148a expression in breast milk. A positive mood friendliness T-score, estimated separately from other scores, was significantly positively correlated with relative miR-148a expression in breast milk. Additionally, the relative expression of miR-148a in the milk obtained from stressed mice was significantly lower than that of control mice. The relative level of ZO-1 in ileum of neonatal mice nursed by stressed mice was significantly lower than that of neonatal mice nursed by control mice. Additionally, the relative level of DNMT1 in ileum of neonatal mice nursed by stressed mice was significantly higher than that of neonatal mice nursed by control mice. Furthermore, the relative level of ZO-1 in miR-148a-overexpressed Caco-2 cells was significantly higher than that in control cells. The relative level of DNMT1 in miR-148a-overexpressed Caco-2 cells was significantly lower than that in control cells. CONCLUSIONS Mothers' exposure to stress during lactation may cause miR-148a expression in breast milk. Additionally, stressed-induced suppression of miR-148a expression in breast milk may cause a decrease in intestinal ZO-1 level via the increase in DNMT1 in infants' intestines. These observations are beneficial information for breastfeeding mothers and their families and perinatal medical professionals. Our findings encourage monitoring maternal psychological stress during lactation to promote breastfeeding and adequate infant nutrition.
Collapse
Affiliation(s)
- Takeshi Chiba
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 15-4-1, Maeda 7-jo, Teine-ku, Sapporo-shi, Hokkaido, Japan; Creation Research Institute of Life Science in KITA-no-DAICHI, Hokkaido University of Science, 15-4-1, Maeda 7-jo, Teine-ku, Sapporo-shi, Hokkaido, Japan.
| | - Akira Takaguri
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 15-4-1, Maeda 7-jo, Teine-ku, Sapporo-shi, Hokkaido, Japan; Creation Research Institute of Life Science in KITA-no-DAICHI, Hokkaido University of Science, 15-4-1, Maeda 7-jo, Teine-ku, Sapporo-shi, Hokkaido, Japan
| | - Aya Kooka
- Department of Pharmacy, Teine Keijinkai Hospital, 12-1-10, Maeda 1-jo, Teine-ku, Sapporo-shi, Hokkaido, Japan
| | - Kiyoko Kowatari
- Department of Nursing, Teine Keijinkai Hospital, 12-1-10, Maeda 1-jo, Teine-ku, Sapporo-shi, Hokkaido, Japan
| | - Megumi Yoshizawa
- Department of Nursing, Teine Keijinkai Hospital, 12-1-10, Maeda 1-jo, Teine-ku, Sapporo-shi, Hokkaido, Japan
| | - Yoshiyuki Fukushi
- Department of Obstetrics and Gynecology, Teine Keijinkai Hospital, 12-1-10, Maeda 1-jo, Teine-ku, Sapporo-shi, Hokkaido, Japan
| | - Fuminori Hongo
- Department of Pharmacy, Teine Keijinkai Hospital, 12-1-10, Maeda 1-jo, Teine-ku, Sapporo-shi, Hokkaido, Japan
| | - Hideki Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 15-4-1, Maeda 7-jo, Teine-ku, Sapporo-shi, Hokkaido, Japan
| | - Miho Fujisawa
- Center for Liberal Arts and Sciences, Iwate Medical University, 1-1-1, Idaidori, Yahaba-cho, Shiwagun, Iwate, Japan
| | - Shinichiro Wada
- Department of Obstetrics and Gynecology, Teine Keijinkai Hospital, 12-1-10, Maeda 1-jo, Teine-ku, Sapporo-shi, Hokkaido, Japan
| | - Tomoji Maeda
- Department of Clinical Pharmacology and Pharmaceutics, Nihon Pharmaceutical University, Kitaadachi-gun, Saitama-shi, Japan
| |
Collapse
|
25
|
Wang L, Wang S, Zhang Q, He C, Fu C, Wei Q. The role of the gut microbiota in health and cardiovascular diseases. MOLECULAR BIOMEDICINE 2022; 3:30. [PMID: 36219347 PMCID: PMC9554112 DOI: 10.1186/s43556-022-00091-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The gut microbiota is critical to human health, such as digesting nutrients, forming the intestinal epithelial barrier, regulating immune function, producing vitamins and hormones, and producing metabolites to interact with the host. Meanwhile, increasing evidence indicates that the gut microbiota has a strong correlation with the occurrence, progression and treatment of cardiovascular diseases (CVDs). In patients with CVDs and corresponding risk factors, the composition and ratio of gut microbiota have significant differences compared with their healthy counterparts. Therefore, gut microbiota dysbiosis, gut microbiota-generated metabolites, and the related signaling pathway may serve as explanations for some of the mechanisms about the occurrence and development of CVDs. Several studies have also demonstrated that many traditional and latest therapeutic treatments of CVDs are associated with the gut microbiota and its generated metabolites and related signaling pathways. Given that information, we summarized the latest advances in the current research regarding the effect of gut microbiota on health, the main cardiovascular risk factors, and CVDs, highlighted the roles and mechanisms of several metabolites, and introduced corresponding promising treatments for CVDs regarding the gut microbiota. Therefore, this review mainly focuses on exploring the role of gut microbiota related metabolites and their therapeutic potential in CVDs, which may eventually provide better solutions in the development of therapeutic treatment as well as the prevention of CVDs.
Collapse
Affiliation(s)
- Lu Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Shiqi Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Qing Zhang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chengqi He
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chenying Fu
- grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,grid.412901.f0000 0004 1770 1022Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Quan Wei
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| |
Collapse
|
26
|
Guo W, Luo L, Meng Y, Chen W, Yu L, Zhang C, Qiu Z, Cao P. Luteolin alleviates methionine-choline-deficient diet-induced non-alcoholic steatohepatitis by modulating host serum metabolome and gut microbiome. Front Nutr 2022; 9:936237. [PMID: 35990349 PMCID: PMC9389599 DOI: 10.3389/fnut.2022.936237] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background and purpose Previous studies have indicated the protective effects of luteolin against non-alcoholic steatohepatitis (NASH), but the definite underlying mechanism still remains unclear. This study aimed to explore the metabolomic and metagenomic signatures of NASH with luteolin supplementation. Experimental approach Mice were fed with a methionine–choline-deficient (MCD) diet containing 0.05% luteolin for 6 weeks. NASH severity was determined based on the liver histological observations, serum and hepatic biochemical measurements. Targeted metabolomics was conducted to identify differential metabolites in mice serum. 16S rRNA sequencing was conducted to assess the gut microbiota composition and function in mice colon. Results In detail, luteolin treatment significantly alleviated MCD diet-induced hepatic lipid deposition, liver function damage, and oxidative stress. Targeted plasma metabolomics revealed that 5-hydroxyindole, LPE (0:0/22:5), indole 3-phosphate, and N-phenylacetylphenylalanine were remarkably elevated, and homogentisic acid, thiamine, KN-93, PC (16:1e/8, 9-EpETE), carnitine C9:1-OH, FFA (18:4) and carnitine C8:1 were significantly decreased in NASH group as compared to normal group, which could be profoundly reversed after luteolin treatment. 16S rRNA sequencing indicated that luteolin supplementation significantly increased Erysipelatoclostridium and Pseudomonas as well as decreased Faecalibaculum at genus level. Most importantly, a negative association between thiamine and Faecalibaculum was observed based on Spearman's correlation analysis, which may play an important role in the preventive effects of luteolin against NASH. Conclusion Collectively, luteolin may alleviate the NASH by modulating serum metabolome and gut microbiome, which supports its use as a dietary supplement for NASH prevention.
Collapse
Affiliation(s)
- Wei Guo
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Yan Meng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Wen Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Lixiu Yu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Cong Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhenpeng Qiu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| |
Collapse
|
27
|
Richter JF, Hildner M, Mrowka R, Schmauder R. Probing the leak pathway: Live-cell imaging of macromolecule passage through epithelia. Ann N Y Acad Sci 2022; 1516:151-161. [PMID: 35766317 DOI: 10.1111/nyas.14847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Epithelia compartmentalize multicellular organisms and provide interfacing between the inside and outside. Apart from regulating the exchange of solutes, uptake of nutrients, and excretion of waste products, their major function is to prevent uncontrolled access of foreign material to immune-competent compartments. Progress in understanding this barrier function toward larger solutes and its possible defects, as can be seen in a variety of diseases, is largely hampered by a lack of methods to spatiotemporally resolve transepithelial passage of macromolecules. Using different cell culture epithelia, we applied biotinylated dextran tracers carrying an acceptor fluorophore. These bind to cell-adherent avidin carrying donor fluorophore at the basolateral membranes of single-layered epithelial sheets. Confocal fluorescence microscopy was applied to living epithelia in order to image apical-to-basolateral tracer passage as a Förster resonance energy transfer signal of the fluorescent dextran-avidin pair over time. Stimulated macromolecule passage using barrier-perturbing agents proved its effectiveness for the leak imaging method presented herein. Over hours of imaging, spontaneous leaks were rare, occurring transiently on the scale of minutes and for the most part associated with rearranging cell junctions. The discussed approach to leak imaging is expected to promote the understanding of epithelial barriers, particularly, the nature and dynamics of the epithelial cell leak pathway.
Collapse
Affiliation(s)
- Jan F Richter
- Jena University Hospital, Institute of Anatomy II, Friedrich Schiller University Jena, Jena, Germany
| | - Markus Hildner
- Jena University Hospital, Institute of Anatomy II, Friedrich Schiller University Jena, Jena, Germany
| | - Ralf Mrowka
- Jena University Hospital, KIM III Department of Experimental Nephrology, Friedrich Schiller University Jena, Jena, Germany
| | - Ralf Schmauder
- Jena University Hospital, Institute of Physiology II, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
28
|
Wang Z, Li F, Liu J, Luo Y, Guo H, Yang Q, Xu C, Ma S, Chen H. Intestinal Microbiota - An Unmissable Bridge to Severe Acute Pancreatitis-Associated Acute Lung Injury. Front Immunol 2022; 13:913178. [PMID: 35774796 PMCID: PMC9237221 DOI: 10.3389/fimmu.2022.913178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/11/2022] [Indexed: 11/28/2022] Open
Abstract
Severe acute pancreatitis (SAP), one of the most serious abdominal emergencies in general surgery, is characterized by acute and rapid onset as well as high mortality, which often leads to multiple organ failure (MOF). Acute lung injury (ALI), the earliest accompanied organ dysfunction, is the most common cause of death in patients following the SAP onset. The exact pathogenesis of ALI during SAP, however, remains unclear. In recent years, advances in the microbiota-gut-lung axis have led to a better understanding of SAP-associated lung injury (PALI). In addition, the bidirectional communications between intestinal microbes and the lung are becoming more apparent. This paper aims to review the mechanisms of an imbalanced intestinal microbiota contributing to the development of PALI, which is mediated by the disruption of physical, chemical, and immune barriers in the intestine, promotes bacterial translocation, and results in the activation of abnormal immune responses in severe pancreatitis. The pathogen-associated molecular patterns (PAMPs) mediated immunol mechanisms in the occurrence of PALI via binding with pattern recognition receptors (PRRs) through the microbiota-gut-lung axis are focused in this study. Moreover, the potential therapeutic strategies for alleviating PALI by regulating the composition or the function of the intestinal microbiota are discussed in this review. The aim of this study is to provide new ideas and therapeutic tools for PALI patients.
Collapse
Affiliation(s)
- Zhengjian Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fan Li
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jin Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haoya Guo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qi Yang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Shurong Ma
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Shurong Ma, ; Hailong Chen,
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Shurong Ma, ; Hailong Chen,
| |
Collapse
|
29
|
da Silva Brito WA, Mutter F, Wende K, Cecchini AL, Schmidt A, Bekeschus S. Consequences of nano and microplastic exposure in rodent models: the known and unknown. Part Fibre Toxicol 2022; 19:28. [PMID: 35449034 PMCID: PMC9027452 DOI: 10.1186/s12989-022-00473-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/14/2022] [Indexed: 12/13/2022] Open
Abstract
The ubiquitous nature of micro- (MP) and nanoplastics (NP) is a growing environmental concern. However, their potential impact on human health remains unknown. Research increasingly focused on using rodent models to understand the effects of exposure to individual plastic polymers. In vivo data showed critical exposure effects depending on particle size, polymer, shape, charge, concentration, and exposure routes. Those effects included local inflammation, oxidative stress, and metabolic disruption, leading to gastrointestinal toxicity, hepatotoxicity, reproduction disorders, and neurotoxic effects. This review distillates the current knowledge regarding rodent models exposed to MP and NP with different experimental designs assessing biodistribution, bioaccumulation, and biological responses. Rodents exposed to MP and NP showed particle accumulation in several tissues. Critical responses included local inflammation and oxidative stress, leading to microbiota dysbiosis, metabolic, hepatic, and reproductive disorders, and diseases exacerbation. Most studies used MP and NP commercially provided and doses higher than found in environmental exposure. Hence, standardized sampling techniques and improved characterization of environmental MP and NP are needed and may help in toxicity assessments of relevant particle mixtures, filling knowledge gaps in the literature.
Collapse
Affiliation(s)
- Walison Augusto da Silva Brito
- Leibniz Institute for Plasma Science and Technology (INP), ZIK Plasmatis, Felix-Hausdorff-Str. 2, Greifswald, Germany.,Department of General Pathology, State University of Londrina, Rodovia Celso Garcia Cid, Londrina, Brazil
| | - Fiona Mutter
- Leibniz Institute for Plasma Science and Technology (INP), ZIK Plasmatis, Felix-Hausdorff-Str. 2, Greifswald, Germany
| | - Kristian Wende
- Leibniz Institute for Plasma Science and Technology (INP), ZIK Plasmatis, Felix-Hausdorff-Str. 2, Greifswald, Germany
| | | | - Anke Schmidt
- Leibniz Institute for Plasma Science and Technology (INP), ZIK Plasmatis, Felix-Hausdorff-Str. 2, Greifswald, Germany
| | - Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology (INP), ZIK Plasmatis, Felix-Hausdorff-Str. 2, Greifswald, Germany.
| |
Collapse
|