1
|
He L, Zhang L, Peng Y, He Z. Selenium in cancer management: exploring the therapeutic potential. Front Oncol 2025; 14:1490740. [PMID: 39839762 PMCID: PMC11746096 DOI: 10.3389/fonc.2024.1490740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Selenium (Se) is important and plays significant roles in many biological processes or physiological activities. Prolonged selenium deficiency has been conclusively linked to an elevated risk of various diseases, including but not limited to cancer, cardiovascular disease, inflammatory bowel disease, Keshan disease, and acquired immunodeficiency syndrome. The intricate relationship between selenium status and health outcomes is believed to be characterized by a non-linear U-shaped dose-response curve. This review delves into the significance of maintaining optimal selenium levels and the detrimental effects that can arise from selenium deficiency. Of particular interest is the important role that selenium plays in both prevention and treatment of cancer. Finally, this review also explores the diverse classes of selenium entities, encompassing selenoproteins, selenium compounds and selenium nanoparticles, while examining the mechanisms and molecular targets of their anticancer efficacy.
Collapse
Affiliation(s)
- Lingwen He
- Department of Oncology, Dongguan Songshan Lake Tungwah Hospital, Dongguan, China
| | - Lu Zhang
- Department of Oncology, Dongguan Songshan Lake Tungwah Hospital, Dongguan, China
| | - Yulong Peng
- Department of Oncology, Dongguan Tungwah Hospital, Dongguan, China
| | - Zhijun He
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Yu P, Su L, Li B, Su J, Yuan G. Selenomethionine alleviates Aeromonas hydrophila-induced oxidative stress and ferroptosis via the Nrf2/HO1/GPX4 pathway in grass carp. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109927. [PMID: 39349229 DOI: 10.1016/j.fsi.2024.109927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/12/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Aeromonas hydrophila infection is a severe, acute, and life-threatening disease affecting grass carp (Ctenopharyngodon idella) in aquaculture. Ferroptosis is a novel form of cell death characterized by the accumulation of free iron and harmful lipid peroxides within cells. While selenomethionine (Se-Met) is known to effectively inhibit ferroptosis and alleviate cell damage, its ability to counteract oxidative stress and ferroptosis induced by A. hydrophila remains unclear. The objective of this study is to reveal the possible mechanism behind the ferroptosis phenomenon during A. hydrophila infection. We established a macrophage model of A. hydrophila invasion to monitor the dynamic changes in iron metabolism markers to evaluate the correlation between ferroptotic stress and A. hydrophila infection. A. hydrophila infection induces cytotoxicity and mitochondrial membrane damage via ferroptosis. This damage is attributed to the accumulation of lipid peroxides due to intracellular ferrous ion overload and glutathione depletion. Supplementation of Se-Met reduced mitochondrial damage, enhanced antioxidant enzyme activity and reduced ferroptosis by activating the Nrf2/HO1/GPX4 axis. These findings provide new insights into the regulatory mechanisms of A. hydrophila-induced ferroptosis in teleosts and suggest that targeted inhibition of ferroptosis may offer a novel therapeutic strategy for managing A. hydrophila infections.
Collapse
Affiliation(s)
- Penghui Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; National Aquatic Animal Diseases Para-reference Laboratory (HZAU), Wuhan, 430070, China
| | - Lei Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; National Aquatic Animal Diseases Para-reference Laboratory (HZAU), Wuhan, 430070, China.
| |
Collapse
|
3
|
Zhou C, Wang Z, Ran M, Liu Y, Song Z. Nano-selenium ameliorates microplastics-induced injury: Histology, antioxidant capacity, immunity and intestinal microbiota of grass carp (Ctenopharyngodon idella). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117128. [PMID: 39342759 DOI: 10.1016/j.ecoenv.2024.117128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/20/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Microplastics (MPs) are pollutants widely distributed in the aquatic environments and causing various degrees of aquatic toxicity to aquatic organisms, which has attracted global attention in recent years. Nano-selenium (NSe) has been shown to have the potential to mitigate the harmful impacts of toxic substances. However, there is currently no reported evidence regarding the protective influence of NSe against the adverse effects of MPs. The aim of this study is to determine whether NSe could ameliorate the polystyrene (PS)-MPs-induced injury in grass carp (Ctenopharyngodon idella). The individuals of grass carp were assigned into three groups: (1) the control group fed with basal diet, (2) the PS group fed with basal diet and exposed to PS-MPs, and (3) the NSe group fed with diet supplemented with NSe and exposed to PS-MPs. Our results indicated that NSe administration significantly alleviated the histological damage caused by the PS-MPs in the liver and intestine with lower goblet cell count and larger villus height in the intestine, and significantly lower damage score in the liver. Moreover, NSe mitigated PS-MPs-induced oxidative stress through restoring the activities of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA)) except the intestinal CAT activity. Furthermore, NSe supplementation could help fish maintain lower transcriptional level of the immune-related genes (Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88)), inflammation-related genes (major histocompatibility complex class II (MHC-II) and interleukin 8 (IL-8)) and antioxidant enzyme-related genes (nuclear factor (erythroid-derived 2)-like 2 (Nrf-2) and kelch-like ECH-associated protein 1 (Keap-1)) after PS-MPs exposure. Besides, NSe supplementation dramatically helped maintain the intestinal microbial composition, for example, the proportion of Proteobacteria in the grass carp intestine of the NSe group (41 %) was similar to that of the control group (34 %) while 85 % of the PS group. NSe also played a significant protective role in intestinal microbial diversity, effectively resisting the damage on intestinal microbial diversity due to PS-MPs exposure. PS-MPs reduced the beneficial bacteria and increased the pathogenic microorganism like Aeromonas, which was undeniable signs of intestinal dysbiosis. Functional analysis indicated that PS-MPs affected intestinal microbiota functions like inhibition of metabolism, while NSe could significantly alleviate the damage. Our findings suggested that NSe could ameliorate PS-MPs-induced injury, which could contribute to the better understanding of the ecotoxicological effects of MPs on fish and help develop relevant mitigation strategies.
Collapse
Affiliation(s)
- Chuang Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Observation and Research Station of Sichuan Province of Fish Resources and Environment in Upper Reaches of the Yangtze River, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Zhongyi Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Observation and Research Station of Sichuan Province of Fish Resources and Environment in Upper Reaches of the Yangtze River, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Miling Ran
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Observation and Research Station of Sichuan Province of Fish Resources and Environment in Upper Reaches of the Yangtze River, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yi Liu
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China.
| | - Zhaobin Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Observation and Research Station of Sichuan Province of Fish Resources and Environment in Upper Reaches of the Yangtze River, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
4
|
Ashrafi H, Sadeghi AA, Chamani M. Effect of Organic Selenium Supplementation on the Antioxidant Status, Immune Response, and the Relative Expression of IL-2 and IFN-γ Genes in Ewes During the Hot Season. Biol Trace Elem Res 2024; 202:2052-2061. [PMID: 37540448 DOI: 10.1007/s12011-023-03798-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
This study was conducted to evaluate the effects of different doses of selenium (Se) from Sel-Plex© (selenium-enriched Saccharomyces cerevisiae yeast) supplement on the antioxidant status, the antibody titers against the foot-and-mouth disease virus, and the expression of interleukin-2 (IL-2) and interferon-γ (IFN-γ) genes in ewes during the hot season. Six ewes were kept at 25 °C and received basal diet (the negative control group), and 24 ewes were kept at 38 °C for 5 h per day and received no supplement (the positive control), 0.15, 0.30, and 0.45 mg Se/kg. Ewes in the positive control had higher (P<0.001) liver enzyme activity, malondialdehyde (MDA), and cortisol levels, and lower antibody titer than the negative control. The liver enzymes' lowest (P<0.001) activities were observed in ewes receiving 0.30 and 0.45 mg Se/kg. Ewes receiving 0.30 and 0.45 mg Se/kg had lower MDA levels than other treatments. Ewes receiving 0.30 and 0.45 mg Se/kg had higher (P<0.001) total antioxidant capacity levels than those receiving 0.15 mg Se/kg and the positive control. Se-supplemented groups had lower (P<0.001) relative expression of IL-2 and higher (P<0.04) expression of IFN-γ than the positive control. The antibody titer was the same in the positive control and the group receiving 0.15 mg Se/kg. Ewes fed a diet with 0.30 and 0.45 mg Se/kg had higher (P<0.011) antibody titer than the positive control. The Se supplementation can reverse the decrease of antioxidant capacity and immune function caused by heat stress, and 0.3 mg Se/kg from Sel-Plex©is the best dose.
Collapse
Affiliation(s)
- Hamid Ashrafi
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Asghar Sadeghi
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mohammad Chamani
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Chen Y, Zhang X, Yang J, Feng W, Deng G, Xu S, Guo M. Extracellular Vesicles Derived from Selenium-Deficient MAC-T Cells Aggravated Inflammation and Apoptosis by Triggering the Endoplasmic Reticulum (ER) Stress/PI3K-AKT-mTOR Pathway in Bovine Mammary Epithelial Cells. Antioxidants (Basel) 2023; 12:2077. [PMID: 38136197 PMCID: PMC10740620 DOI: 10.3390/antiox12122077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/28/2023] [Accepted: 11/04/2023] [Indexed: 12/24/2023] Open
Abstract
Selenium (Se) deficiency disrupts intracellular REDOX homeostasis and severely deteriorates immune and anti-inflammatory function in high-yielding periparturient dairy cattle. To investigate the damage of extracellular vesicles derived from Se-deficient MAC-T cells (SeD-EV) on normal mammary epithelial cells, an in vitro model of Se deficiency was established. Se-deficient MAC-T cells produced many ROS, promoting apoptosis and the release of inflammatory factors. Extracellular vesicles were successfully isolated by ultrahigh-speed centrifugation and identified by transmission electron microscopy, particle size analysis, and surface markers (CD63, CD81, HSP70, and TSG101). RNA sequencing was performed on exosomal RNA. A total of 9393 lncRNAs and 63,155 mRNAs transcripts were identified in the SeC and SeD groups, respectively, of which 126 lncRNAs and 955 mRNAs were differentially expressed. Furthermore, SeD-EV promoted apoptosis of normal MAC-T cells by TUNEL analysis. SeD-EV significantly inhibited Bcl-2, while Bax and Cleaved Caspase3 were greatly increased. Antioxidant capacity (CAT, T-AOC, SOD, and GSH-Px) was inhibited in SeD-EV-treated MAC-T cells. Additionally, p-PERK, p-eIF2α, ATF4, CHOP, and XBP1 were all elevated in MAC-T cells supplemented with SeD-EV. In addition, p-PI3K, p-Akt, and p-mTOR were decreased strikingly by SeD-EV. In conclusion, SeD-EV caused oxidative stress, thus triggering apoptosis and inflammation through endoplasmic reticulum stress and the PI3K-Akt-mTOR signaling pathway, which contributed to explaining the mechanism of Se deficiency causing mastitis.
Collapse
Affiliation(s)
- Yu Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.C.); (S.X.)
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiangqian Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (J.Y.); (W.F.); (G.D.)
| | - Jing Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (J.Y.); (W.F.); (G.D.)
| | - Wen Feng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (J.Y.); (W.F.); (G.D.)
| | - Ganzhen Deng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (J.Y.); (W.F.); (G.D.)
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.C.); (S.X.)
| | - Mengyao Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.C.); (S.X.)
| |
Collapse
|
6
|
DeAngelo SL, Győrffy B, Koutmos M, Shah YM. Selenoproteins and tRNA-Sec: regulators of cancer redox homeostasis. Trends Cancer 2023; 9:1006-1018. [PMID: 37716885 PMCID: PMC10843386 DOI: 10.1016/j.trecan.2023.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 09/18/2023]
Abstract
In the past two decades significant progress has been made in uncovering the biological function of selenium. Selenium, an essential trace element, is required for the biogenesis of selenocysteine which is then incorporated into selenoproteins. These selenoproteins have emerged as central regulators of cellular antioxidant capacity and maintenance of redox homeostasis. This review provides a comprehensive examination of the multifaceted functions of selenoproteins with a particular emphasis on their contributions to cellular antioxidant capacity. Additionally, we highlight the promising potential of targeting selenoproteins and the biogenesis of selenocysteine as avenues for therapeutic intervention in cancer. By understanding the intricate relationship between selenium, selenoproteins, and reactive oxygen species (ROS), insights can be gained to develop therapies that exploit the inherent vulnerabilities of cancer cells.
Collapse
Affiliation(s)
- Stephen L DeAngelo
- Department of Cancer Biology, University of Michigan, Ann Arbor, MI, USA
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
| | - Markos Koutmos
- Department of Cancer Biology, University of Michigan, Ann Arbor, MI, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI, USA; Program in Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Yatrik M Shah
- Department of Cancer Biology, University of Michigan, Ann Arbor, MI, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Chen D, Wu H, Shi X, Xu S, Zhang Z. Editorial: Community series in the mechanism of trace elements on regulating immunity in prevention and control of human and animal diseases, volume II. Front Immunol 2023; 14:1215080. [PMID: 37287966 PMCID: PMC10242182 DOI: 10.3389/fimmu.2023.1215080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/15/2023] [Indexed: 06/09/2023] Open
Affiliation(s)
- Dan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hao Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
8
|
Mu J, Lei L, Zheng Y, Liu J, Li J, Li D, Wang G, Liu Y. Oxidative Stress Induced by Selenium Deficiency Contributes to Inflammation, Apoptosis and Necroptosis in the Lungs of Calves. Antioxidants (Basel) 2023; 12:antiox12040796. [PMID: 37107171 PMCID: PMC10135166 DOI: 10.3390/antiox12040796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Selenium is an essential trace element for health that can only be obtained through food. However, the pathological processes of selenium deficiency in cattle have received little attention. This study investigated the effects of selenium deficiency on oxidative stress, apoptosis, inflammation, and necroptosis in the lungs of weaning calves compared with healthy calves as controls. The lung selenium content and the expression of 11 selenoproteins mRNA in selenium-deficient calves were substantially reduced compared with the controls. Pathological results showed engorged alveolar capillaries, thickened alveolar septa, and diffuse interstitial inflammation throughout the alveolar septa. The levels of GSH and T-AOC, as well as the CAT, SOD, and TrxR activities, were significantly decreased compared with healthy calves. MDA and H2O2 were significantly elevated. Meanwhile, the apoptosis activation in the Se-D group was validated. Next, in the Se-D group, several pro-inflammatory cytokines showed higher expression. Further research revealed that the lungs in the Se-D group experienced inflammation via hyperactive NF-κB and MAPK pathways. The high level of expression of c-FLIP, MLKL, RIPK1, and RIPK3 indicated that necroptosis also causes lung damage during selenium deficiency.
Collapse
Affiliation(s)
- Jing Mu
- Key Laboratory of Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lei Lei
- Key Laboratory of Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yingce Zheng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jia Liu
- Veterinary Medical Teaching Hospital, Northeast Agricultural University, Harbin 150038, China
| | - Jie Li
- Key Laboratory of Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ding Li
- Key Laboratory of Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Guanbo Wang
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Yun Liu
- Key Laboratory of Comparative Medicine, Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
9
|
Selenium, Stroke, and Infection: A Threefold Relationship; Where Do We Stand and Where Do We Go? Nutrients 2023; 15:nu15061405. [PMID: 36986135 PMCID: PMC10054895 DOI: 10.3390/nu15061405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Stroke is currently the second most common cause of death worldwide and a major cause of serious long-term morbidity. Selenium is a trace element with pleotropic effects on human health. Selenium deficiency has been associated with a prothrombotic state and poor immune response, particularly during infection. Our aim was to synthesize current evidence on the tripartite interrelationship between selenium levels, stroke, and infection. Although evidence is contradictory, most studies support the association between lower serum selenium levels and stroke risk and outcomes. Conversely, limited evidence on the role of selenium supplementation in stroke indicates a potentially beneficial effect of selenium. Notably, the relationship between stroke risk and selenium levels is bimodal rather than linear, with higher levels of serum selenium linked to disturbances of glucose metabolism and high blood pressure, morbidities which are, in turn, substrates for stroke. Another such substrate is an infection, albeit forming a bidirectional relationship with both stroke and the consequences of impaired selenium metabolism. Perturbed selenium homeostasis leads to impaired immune fitness and antioxidant capacity, which both favor infection and inflammation; specific pathogens may also contend with the host for transcriptional control of the selenoproteome, adding a feed-forward loop to this described process. Broader consequences of infection such as endothelial dysfunction, hypercoagulation, and emergent cardiac dysfunction both provide stroke substrates and further feed-forward feedback to the consequences of deficient selenium metabolism. In this review, we provide a synthesis and interpretation of these outlined complex interrelationships that link selenium, stroke, and infection and attempt to decipher their potential impact on human health and disease. Selenium and the unique properties of its proteome could provide both biomarkers and treatment options in patients with stroke, infection, or both.
Collapse
|
10
|
Frydrych A, Krośniak M, Jurowski K. The Role of Chosen Essential Elements (Zn, Cu, Se, Fe, Mn) in Food for Special Medical Purposes (FSMPs) Dedicated to Oncology Patients-Critical Review: State-of-the-Art. Nutrients 2023; 15:1012. [PMID: 36839370 PMCID: PMC9961387 DOI: 10.3390/nu15041012] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023] Open
Abstract
The scoping review aimed to characterise the role of selected essential elements (Zn, Cu, Se, Fe, Mn) in food for special medical purposes (FSMPs) aimed at oncology patients. The scope review was conducted using Scopus, Google Scholar, and Web of Science to find published references on this subject. Data from the reviewed literature were related to the physiological functions of the element in the body, and the effects of deficiencies and excesses, referring to the latest ESPEN and EFSA guidelines, among others. Important dietary indices/parameters based on the literature review are provided for each element. On the basis of the literature, data on the level of elements in patients with cancer were collected. The content of these elements in 100 mL of FSMPs was read from the manufacturers' declarations. The literature has been provided on the importance of each element in cancer. Our findings show that the essential elements (Zn, Cu, Se, Fe, and Mn) of FSMPs for cancer patients are not adequately treated. We suggest solutions to ensure the safe use of FSMPs in oncology patients.
Collapse
Affiliation(s)
- Adrian Frydrych
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Aleja Majora W. Kopisto 2a, 35-959 Rzeszow, Poland
| | - Mirosław Krośniak
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Kamil Jurowski
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Aleja Majora W. Kopisto 2a, 35-959 Rzeszow, Poland
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises, Aleksandrowska 67/93, 91-205 Łódź, Poland
| |
Collapse
|
11
|
Golin A, Tinkov AA, Aschner M, Farina M, da Rocha JBT. Relationship between selenium status, selenoproteins and COVID-19 and other inflammatory diseases: A critical review. J Trace Elem Med Biol 2023; 75:127099. [PMID: 36372013 PMCID: PMC9630303 DOI: 10.1016/j.jtemb.2022.127099] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
The antioxidant effects of selenium as a component of selenoproteins has been thought to modulate host immunity and viral pathogenesis. Accordingly, the association of low dietary selenium status with inflammatory and immunodeficiency has been reported in the literature; however, the causal role of selenium deficiency in chronic inflammatory diseases and viral infection is still undefined. The COVID-19, characterized by acute respiratory syndrome and caused by the novel coronavirus 2, SARS-CoV-2, has infected millions of individuals worldwide since late 2019. The severity and mortality from COVID-19 have been associated with several factor, including age, sex and selenium deficiency. However, available data on selenium status and COVID-19 are limited, and a possible causative role for selenium deficiency in COVID-19 severity has yet to be fully addressed. In this context, we review the relationship between selenium, selenoproteins, COVID-19, immune and inflammatory responses, viral infection, and aging. Regardless of the role of selenium in immune and inflammatory responses, we emphasize that selenium supplementation should be indicated after a selenium deficiency be detected, particularly, in view of the critical role played by selenoproteins in human health. In addition, the levels of selenium should be monitored after the start of supplementation and discontinued as soon as normal levels are reached. Periodic assessment of selenium levels after supplementation is a critical issue to avoid over production of toxic metabolites of selenide because under normal conditions, selenoproteins attain saturated expression levels that limits their potential deleterious metabolic effects.
Collapse
Affiliation(s)
- Anieli Golin
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, Brazil
| | - Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia; Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia; Institute of Bioelementology, Orenburg, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - João Batista Teixeira da Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, Brazil; Departamento de Bioquímica, Instituto Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
12
|
Wen L, Wang Y, Zhang J. Nano‐gold micelles loaded Dox and Elacridar for reversing drug resistance of breast cancer. IET Nanobiotechnol 2022; 17:49-60. [PMID: 36341719 PMCID: PMC10116014 DOI: 10.1049/nbt2.12102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/05/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022] Open
Abstract
The aim of this study was to provide a new effective carrier for rescuing the sensitivity of drug-resistant in breast cancer cells. Nano-gold micelles loaded with Dox and Elacridar (FP-ssD@A-E) were chemically synthesised. With the increase in the amount of Dox and Elacridar, the encapsulation rate of FP-ssD@A-E gradually increased, and the drug loading rate gradually decreased. FP-ss@A-E had a sustained-release effect. Dox, Elacridar, FP-ss@AuNPs, and FP-ssD@A-E significantly improved cell apoptosis, in which, FP-ssD@A-E was the most significant. FP-ssD@A-E significantly decreased the cell viability and improved the Dox uptake. The levels of VEGFR-1, P-gp, IL-6, and i-NOS were significantly decreased after Dox, Dox + Elacridar, FP-ss@AuNPs, and FP-ssD@A-E treatment. It was worth noting that FP-ssD@A-E had the most significant effects. The prepared FP-ssD@A-E micelles, which were spherical in shape, uniform in particle size distribution, and had good drug loading performance and encapsulation efficiency.
Collapse
Affiliation(s)
- Liu‐Jing Wen
- Department of Pharmacy Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center for Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin's Clinical Research Center for Cancer Tianjin China
| | - Yue‐Sheng Wang
- Department of Dentistry Second Hospital Affiliated to Tianjin Medical University Tianjin China
| | - Jie Zhang
- Department of Pharmacy Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center for Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin's Clinical Research Center for Cancer Tianjin China
| |
Collapse
|
13
|
Ahvanooei MRR, Norouzian MA, Vahmani P. Beneficial Effects of Vitamins, Minerals, and Bioactive Peptides on Strengthening the Immune System Against COVID-19 and the Role of Cow's Milk in the Supply of These Nutrients. Biol Trace Elem Res 2022; 200:4664-4677. [PMID: 34837602 PMCID: PMC8627168 DOI: 10.1007/s12011-021-03045-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022]
Abstract
The COVID-19 pandemic, which causes severe respiratory tract infections in humans, has become a global health concern and is spreading rapidly. At present, the most important issue associated with COVID-19 is the immune system and the factors that affect it. It is well known that cow's milk is highly rich in micronutrients that increase and strengthen the immune system. Research shows that the administration of these nutrients is very effective in fighting COVID-19, and a deficiency in any of them can be a weakness in the fight against the virus. On the other hand, cow's milk is accessible to the whole population, and drinking colostrum, raw, and micro-filtered milk from cows vaccinated against SARS-CoV-2 could provide individuals with short-term protection against the SARS-CoV-2 infection until vaccines become commercially available. This review aimed to discuss the effects of milk vitamins, minerals, and bioactive peptides on general health in humans to combat viral diseases, especially COVID-19, and to what extent cow's milk consumption plays a role in providing these metabolites. Cow's milk contains many bioactive compounds that include vitamins, minerals, biogenic amines, nucleotides, oligosaccharides, organic acids, and immunoglobulins. Humans can meet a significant portion of their requirements for vitamins and minerals through the consumption of cow's milk. Recent studies have shown that micronutrients such as vitamins D, E, B, C, and A as well as minerals Zn, Cu, Mg, I, and Se and bioactive peptides, each can have positive and significant effects on strengthening the immune system and general health in humans.
Collapse
Affiliation(s)
- M R Rezaei Ahvanooei
- Department of Animals and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran.
| | - Mohammad Ali Norouzian
- Department of Animals and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran.
| | - Payam Vahmani
- Department of Animal Science, University of California, 2251 Meyer Hall, Davis, CA, 95616, USA
| |
Collapse
|
14
|
Liu S, Yu H, Li P, Wang C, Liu G, Zhang X, Zhang C, Qi M, Ji H. Dietary nano-selenium alleviated intestinal damage of juvenile grass carp ( Ctenopharyngodon idella) induced by high-fat diet: Insight from intestinal morphology, tight junction, inflammation, anti-oxidization and intestinal microbiota. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:235-248. [PMID: 34988305 PMCID: PMC8688880 DOI: 10.1016/j.aninu.2021.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/24/2021] [Accepted: 07/11/2021] [Indexed: 01/30/2023]
Abstract
In recent years, high-fat diet (HFD) has been widely applied in aquaculture, which reduces the intestinal health of cultured fish. The current study evaluated the protective effects of nano-selenium (nano-Se) on intestinal health of juvenile grass carp (Ctenopharyngodon idella) fed with HFD. A total of 135 experimental fish were fed with a regular diet (Con), a HFD (HFD) and a HFD containing nano-Se at 0.6 mg/kg (HSe) for 10 weeks. The results showed that dietary nano-Se significantly improved the survival rate and feed efficiency which were reduced by HFD in juvenile grass carp (P < 0.05). Also, nano-Se (0.6 mg/kg) supplement alleviated intestinal damage caused by the HFD, thus maintaining the integrity of the intestine. Moreover, it significantly up-regulated the expression of genes related to tight junction (ZO-1, c laudin-3 and o ccludin), anti-oxidization (GPx4a andGPx4b), and the protein of ZO-1 in the intestine of juvenile grass carp, which were depressed by the HFD (P < 0.05). Furthermore, nano-Se supplementation significantly suppressed the expressions of genes related to the inflammation, including inflammatory cytokines (IL-8, IL-1β, IFN-γ, TNF-α and IL-6), signaling molecules (TLR4, p38 MAPK and NF-κB p65), and protein expression of NF-κB p65 and TNF-α in the intestine of juvenile grass carp which were induced by the HFD (P < 0.05). Besides, dietary nano-Se normalized the intestinal microbiota imbalance of juvenile grass carp caused by the HFD through increasing the abundance of the beneficial bacteria, e.g., Fusobacteria. Finally, dietary nano-Se increased the production of short chain fatty acids (SCFA) in the intestine, especially for butyric acid and caproic acid, which were negatively related to the increase of intestinal permeability and inflammation. In summary, supply of nano-Se (0.6 mg/kg) in HFD could effectively alleviate intestinal injury of juvenile grass carp by improving intestinal barrier function and reducing intestinal inflammation and oxidative stress. These positive effects may be due to the regulation of nano-Se on intestinal microbiota and the subsequently increased beneficial SCFA levels.
Collapse
Affiliation(s)
- Sha Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Haibo Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Pengju Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Chi Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Guohao Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaotian Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Cheng Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Meng Qi
- Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs, Ankang, 725000, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
15
|
Zheng Y, Xie T, Li S, Wang W, Wang Y, Cao Z, Yang H. Effects of Selenium as a Dietary Source on Performance, Inflammation, Cell Damage, and Reproduction of Livestock Induced by Heat Stress: A Review. Front Immunol 2022; 12:820853. [PMID: 35116042 PMCID: PMC8803637 DOI: 10.3389/fimmu.2021.820853] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Heat stress as a result of global warming has harmful consequences for livestock and is thus becoming an urgent issue for animal husbandry worldwide. Ruminants, growing pigs, and poultry are very susceptible to heat stress because of their fast growth, rapid metabolism, high production levels, and sensitivity to temperature. Heat stress compromises the efficiency of animal husbandry by affecting performance, gastrointestinal health, reproductive physiology, and causing cell damage. Selenium (Se) is an essential nutritional trace element for livestock production, which acts as a structural component in at least 25 selenoproteins (SELs); it is involved in thyroid hormone synthesis, and plays a key role in the antioxidant defense system. Dietary Se supplementation has been confirmed to support gastrointestinal health, production performance, and reproductive physiology under conditions of heat stress. The underlying mechanisms include the regulation of nutrient digestibility influenced by gastrointestinal microorganisms, antioxidant status, and immunocompetence. Moreover, heat stress damage to the gastrointestinal and mammary barrier is closely related to cell physiological functions, such as the fluidity and stability of cellular membranes, and the inhibition of receptors as well as transmembrane transport protein function. Se also plays an important role in inhibiting cell apoptosis and reducing cell inflammatory response induced by heat stress. This review highlights the progress of research regarding the dietary supplementation of Se in the mitigation of heat stress, addressing its mechanism and explaining the effect of Se on cell damage caused by heat stress, in order to provide a theoretical reference for the use of Se to mitigate heat stress in livestock.
Collapse
Affiliation(s)
| | | | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | | | | |
Collapse
|
16
|
Exploring the Immune-Boosting Functions of Vitamins and Minerals as Nutritional Food Bioactive Compounds: A Comprehensive Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020555. [PMID: 35056870 PMCID: PMC8779769 DOI: 10.3390/molecules27020555] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 02/06/2023]
Abstract
Food components have long been recognized to play a fundamental role in the growth and development of the human body, conferring protective functionalities against foreign matter that can be severe public health problems. Micronutrients such as vitamins and minerals are essential to the human body, and individuals must meet their daily requirements through dietary sources. Micronutrients act as immunomodulators and protect the host immune response, thus preventing immune evasion by pathogenic organisms. Several experimental investigations have been undertaken to appraise the immunomodulatory functions of vitamins and minerals. Based on these experimental findings, this review describes the immune-boosting functionalities of micronutrients and the mechanisms of action through which these functions are mediated. Deficiencies of vitamins and minerals in plasma concentrations can lead to a reduction in the performance of the immune system functioning, representing a key contributor to unfavorable immunological states. This review provides a descriptive overview of the characteristics of the immune system and the utilization of micronutrients (vitamins and minerals) in preventative strategies designed to reduce morbidity and mortality among patients suffering from immune invasions or autoimmune disorders.
Collapse
|
17
|
Sobczyk MK, Gaunt TR. The Effect of Circulating Zinc, Selenium, Copper and Vitamin K 1 on COVID-19 Outcomes: A Mendelian Randomization Study. Nutrients 2022; 14:233. [PMID: 35057415 PMCID: PMC8780111 DOI: 10.3390/nu14020233] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/22/2022] Open
Abstract
Background & Aims: Previous results from observational, interventional studies and in vitro experiments suggest that certain micronutrients possess anti-viral and immunomodulatory activities. In particular, it has been hypothesized that zinc, selenium, copper and vitamin K1 have strong potential for prophylaxis and treatment of COVID-19. We aimed to test whether genetically predicted Zn, Se, Cu or vitamin K1 levels have a causal effect on COVID-19 related outcomes, including risk of infection, hospitalization and critical illness. Methods: We employed a two-sample Mendelian Randomization (MR) analysis. Our genetic variants derived from European-ancestry GWAS reflected circulating levels of Zn, Cu, Se in red blood cells as well as Se and vitamin K1 in serum/plasma. For the COVID-19 outcome GWAS, we used infection, hospitalization or critical illness. Our inverse-variance weighted (IVW) MR analysis was complemented by sensitivity analyses including a more liberal selection of variants at a genome-wide sub-significant threshold, MR-Egger and weighted median/mode tests. Results: Circulating micronutrient levels show limited evidence of association with COVID-19 infection, with the odds ratio [OR] ranging from 0.97 (95% CI: 0.87-1.08, p-value = 0.55) for zinc to 1.07 (95% CI: 1.00-1.14, p-value = 0.06)-i.e., no beneficial effect for copper was observed per 1 SD increase in exposure. Similarly minimal evidence was obtained for the hospitalization and critical illness outcomes with OR from 0.98 (95% CI: 0.87-1.09, p-value = 0.66) for vitamin K1 to 1.07 (95% CI: 0.88-1.29, p-value = 0.49) for copper, and from 0.93 (95% CI: 0.72-1.19, p-value = 0.55) for vitamin K1 to 1.21 (95% CI: 0.79-1.86, p-value = 0.39) for zinc, respectively. Conclusions: This study does not provide evidence that supplementation with zinc, selenium, copper or vitamin K1 can prevent SARS-CoV-2 infection, critical illness or hospitalization for COVID-19.
Collapse
Affiliation(s)
- Maria K. Sobczyk
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK;
| | | |
Collapse
|
18
|
Camacho-Moll ME, Sampayo-Reyes A, Castorena-Torres F, Lozano-Garza G, Alarcón-Galván G, Hernández A, Marcos R, Alcocer-González JM, Tamez-Guerra R, Bermúdez de León M. Selenite Downregulates STAT3 Expression and Provokes Lymphocytosis in the Liver of Chronically Exposed Syrian Golden Hamsters. Molecules 2021; 26:molecules26185614. [PMID: 34577085 PMCID: PMC8465886 DOI: 10.3390/molecules26185614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/30/2021] [Accepted: 09/04/2021] [Indexed: 12/01/2022] Open
Abstract
Arsenic is considered a worldwide pollutant that can be present in drinking water. Arsenic exposure is associated with various diseases, including cancer. Antioxidants as selenite and α-tocopherol-succinate have been shown to modulate arsenic toxic effects. Since changes in STAT3 and PSMD10 gene expression have been associated with carcinogenesis, the aim of this study was to evaluate the effect of arsenic exposure and co-treatments with selenite or α-tocopherol-succinate on the expression of these genes, in the livers of chronically exposed Syrian golden hamsters. Animals were divided into six groups: (i) control, (ii) chronically treated with 100 ppm arsenic, (iii) treated with 6 ppm α-tocopherol-succinate (α-TOS), (iv) treated with 8.5 ppm selenite, (v) treated with arsenic + α-TOS, and (vi) treated with arsenic + selenite. Urine samples and livers were collected after 20 weeks of continuous exposure. The urine samples were analyzed for arsenic species by atomic absorption spectrophotometry, and real-time RT-qPCR analysis was performed for gene expression evaluation. A reduction in STAT3 expression was observed in the selenite-treated group. No differences in PSMD10 expression were found among groups. Histopathological analysis revealed hepatic lymphocytosis in selenite-treated animals. As a conclusion, long-term exposure to arsenic does not significantly alter the expression of STAT3 and PSMD10 oncogenes in the livers of hamsters; however, selenite down-regulates STAT3 expression and provokes lymphocytosis.
Collapse
Affiliation(s)
- María Elena Camacho-Moll
- Centro de Investigación Biomédica del Noreste, Departamento de Biología Molecular, Instituto Mexicano del Seguro Social, Monterrey 64720, Nuevo León, Mexico; (M.E.C.-M.); (G.L.-G.)
- Departamento de Ciencias Básicas, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, San Pedro Garza García 66238, Nuevo León, Mexico;
| | - Adriana Sampayo-Reyes
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico; (A.S.-R.); (J.M.A.-G.); (R.T.-G.)
| | | | - Gerardo Lozano-Garza
- Centro de Investigación Biomédica del Noreste, Departamento de Biología Molecular, Instituto Mexicano del Seguro Social, Monterrey 64720, Nuevo León, Mexico; (M.E.C.-M.); (G.L.-G.)
| | - Gabriela Alarcón-Galván
- Departamento de Ciencias Básicas, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, San Pedro Garza García 66238, Nuevo León, Mexico;
| | - Alba Hernández
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (A.H.); (R.M.)
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, 28029 Madrid, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (A.H.); (R.M.)
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, 28029 Madrid, Spain
| | - Juan Manuel Alcocer-González
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico; (A.S.-R.); (J.M.A.-G.); (R.T.-G.)
| | - Reyes Tamez-Guerra
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico; (A.S.-R.); (J.M.A.-G.); (R.T.-G.)
| | - Mario Bermúdez de León
- Centro de Investigación Biomédica del Noreste, Departamento de Biología Molecular, Instituto Mexicano del Seguro Social, Monterrey 64720, Nuevo León, Mexico; (M.E.C.-M.); (G.L.-G.)
- Departamento de Ciencias Básicas, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, San Pedro Garza García 66238, Nuevo León, Mexico;
- Correspondence: ; Tel.: +52-81-8190-4035
| |
Collapse
|
19
|
Kim BY, Jang SY, Choi DH, Jung CH, Mok JO, Kim CH. Anti-inflammatory and Antioxidant Effects of Selenium on Orbital Fibroblasts of Patients With Graves Ophthalmopathy. Ophthalmic Plast Reconstr Surg 2021; 37:476-481. [PMID: 33782320 DOI: 10.1097/iop.0000000000001931] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE In the present study, the authors investigated the effects of selenium on inflammation, hyaluronan production, and oxidative stress in primary cultured orbital fibroblasts of patients with Graves ophthalmopathy (GO). METHODS Orbital adipose/connective tissue specimens were obtained during the course of orbital surgery for patients with GO (n = 7) and other noninflammatory problems (n = 5). After incubation with various concentrations of sodium selenite for 48 hours, supernatants from primary cultures were collected. Hyaluronan and cytokine levels were measured using commercially available enzyme-linked immunosorbent assay kits. To determine the effect of selenium on reactive oxygen species (ROS) production stimulated by H2O2 (100 μM) for 30 minutes, the cells were pretreated with various concentrations of sodium selenite for 60 minutes. RESULTS Interleukin (IL)-6 and tumor necrosis factor-alpha levels were significantly higher in orbital fibroblasts of patients with GO than in orbital fibroblasts of control patients. Hyaluronan production was suppressed by selenium in cultured orbital fibroblasts of patients with GO. Inflammatory cytokines such as IL-1α, IL-8, and tumor necrosis factor-alpha were suppressed by selenium in cultured orbital fibroblasts of patients with GO. IL-1β and IL-6 were not suppressed by selenium in cultured orbital fibroblasts of patients with GO. Selenium pretreatment reduced intracellular ROS generation stimulated by H2O2 in cultured orbital fibroblasts of patients with GO. CONCLUSIONS In conclusion, hyaluronan production, inflammatory cytokines, and intracellular ROS generation were suppressed by selenium in cultured orbital fibroblasts of patients with GO. Several inflammatory cytokines may be suppressed by selenium in cultured orbital fibroblasts of patients with GO. This study provide the basis for use of selenium in the treatment of GO.
Collapse
Affiliation(s)
- Bo-Yeon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine
| | - Sun-Young Jang
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Dug-Hyun Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine
| | - Chan-Hee Jung
- Division of Endocrinology and Metabolism, Department of Internal Medicine
| | - Ji-Oh Mok
- Division of Endocrinology and Metabolism, Department of Internal Medicine
| | - Chul-Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine
| |
Collapse
|
20
|
Selenium stimulates the antitumour immunity: Insights to future research. Eur J Cancer 2021; 155:256-267. [PMID: 34392068 DOI: 10.1016/j.ejca.2021.07.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/10/2023]
Abstract
Selenium is an essential trace element for regulating immune functions through redox-regulating activity of selenoproteins (e.g. glutathione peroxidase), protecting immune cells from oxidative stress. However, in cancer, selenium has biological bimodal action depending on the concentration. At nutritional low doses, selenium, depending on its form, may act as an antioxidant, protecting against oxidative stress, supporting cell survival and growth, thus, plays a chemo-preventive role; while, at supra-nutritional higher pharmacological doses, selenium acts as pro-oxidant inducing redox signalling and cell death. To date, many studies have been conducted on the benefits of selenium intake in reducing the risk of cancer incidence at the nutritional level, indicating that likely selenium functions as an immunostimulator, i.e. reversing the immunosuppression in tumour microenvironment towards antitumour immunity by activating immune cells (e.g. M1 macrophages and CD8+ T-lymphocytes) and releasing pro-inflammatory cytokines such as interferon-gamma; whereas, fewer studies have explored the effects of supra-nutritional or pharmacological doses of selenium in cancer immunity. This review, thus, systematically analyses the current knowledge about how selenium stimulates the immune system against cancer and lay the groundwork for future research. Such knowledge can be promising to design combinatorial therapies with Selenium-based compounds and other modalities like immunotherapy to lower the adverse effects and increase the efficacy of treatments.
Collapse
|
21
|
Capelle CM, Zeng N, Danileviciute E, Rodrigues SF, Ollert M, Balling R, He FQ. Identification of VIMP as a gene inhibiting cytokine production in human CD4+ effector T cells. iScience 2021; 24:102289. [PMID: 33851102 PMCID: PMC8024663 DOI: 10.1016/j.isci.2021.102289] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/08/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
Many players regulating the CD4+ T cell-mediated inflammatory response have already been identified. However, the critical nodes that constitute the regulatory and signaling networks underlying CD4 T cell responses are still missing. Using a correlation-network-guided approach, here we identified VIMP (VCP-interacting membrane protein), one of the 25 genes encoding selenoproteins in humans, as a gene regulating the effector functions of human CD4 T cells, especially production of several cytokines including IL2 and CSF2. We identified VIMP as an endogenous inhibitor of cytokine production in CD4 effector T cells via both the E2F5 transcription regulatory pathway and the Ca2+/NFATC2 signaling pathway. Our work not only indicates that VIMP might be a promising therapeutic target for various inflammation-associated diseases but also shows that our network-guided approach can significantly aid in predicting new functions of the genes of interest.
Collapse
Affiliation(s)
- Christophe M. Capelle
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, 4354 Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 2, avenue de Université, 4365 Esch-sur-Alzette, Luxembourg
| | - Ni Zeng
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, 4354 Esch-sur-Alzette, Luxembourg
| | - Egle Danileviciute
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, 4354 Esch-sur-Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6, avenue du Swing, 4367 Belvaux, Luxembourg
| | - Sabrina Freitas Rodrigues
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6, avenue du Swing, 4367 Belvaux, Luxembourg
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, 4354 Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis (ORCA), University of Southern Denmark, Odense, 5000 C, Denmark
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6, avenue du Swing, 4367 Belvaux, Luxembourg
| | - Feng Q. He
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, 4354 Esch-sur-Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6, avenue du Swing, 4367 Belvaux, Luxembourg
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| |
Collapse
|
22
|
Wang D, Jia D, He R, Lian S, Wang J, Wu R. Association Between Serum Selenium Level and Subclinical Mastitis in Dairy Cattle. Biol Trace Elem Res 2021; 199:1389-1396. [PMID: 32583225 DOI: 10.1007/s12011-020-02261-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022]
Abstract
Selenium is an important element in nutrition, showing great potential in the udder health of dairy cattle and in the control of subclinical mastitis. However, there are few studies on selenium and subclinical mastitis in cows, and the correlation is not clear. A trial was designed to investigate the association between serum selenium levels and the immune and antioxidant capacity of dairy cattle with subclinical mastitis. Fifty cattle in early lactation with similar background information were selected randomly from an intensive dairy farm. Blood samples were collected for the detection of serum selenium levels by ICP-optic emission spectrometer. The cattle were divided into a low-selenium group (< 0.05 mg/L) and three normal selenium groups with different serum selenium levels (0.05-0.08 mg/L). The somatic cell count, immune indexes, and other indexes in the milk of each group were detected. The somatic cell count was found to be negatively correlated with serum selenium level. GSH-Px had a low positive correlation and IL-6 had a low negative correlation with serum selenium level. With a serum glutathione peroxidase < 148 U/L and IL-6 > 451 pg/mL, the risk of subclinical mastitis in dairy cattle increased.
Collapse
Affiliation(s)
- Di Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No.5 Xinfeng Road, High and new technology development zone, Daqing, 163319, Heilongjiang, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, 163319, People's Republic of China
| | - Daqing Jia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No.5 Xinfeng Road, High and new technology development zone, Daqing, 163319, Heilongjiang, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, 163319, People's Republic of China
| | - Ronghe He
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No.5 Xinfeng Road, High and new technology development zone, Daqing, 163319, Heilongjiang, People's Republic of China
- Jixi Agricultural and Rural Bureau, Jixi, 158100, People's Republic of China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No.5 Xinfeng Road, High and new technology development zone, Daqing, 163319, Heilongjiang, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, 163319, People's Republic of China
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No.5 Xinfeng Road, High and new technology development zone, Daqing, 163319, Heilongjiang, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, 163319, People's Republic of China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No.5 Xinfeng Road, High and new technology development zone, Daqing, 163319, Heilongjiang, People's Republic of China.
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, 163319, People's Republic of China.
| |
Collapse
|
23
|
Bermano G, Méplan C, Mercer DK, Hesketh JE. Selenium and viral infection: are there lessons for COVID-19? Br J Nutr 2021; 125:618-627. [PMID: 32758306 PMCID: PMC7503044 DOI: 10.1017/s0007114520003128] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023]
Abstract
Se is a micronutrient essential for human health. Sub-optimal Se status is common, occurring in a significant proportion of the population across the world including parts of Europe and China. Human and animal studies have shown that Se status is a key determinant of the host response to viral infections. In this review, we address the question whether Se intake is a factor in determining the severity of response to coronavirus disease 2019 (COVID-19). Emphasis is placed on epidemiological and animal studies which suggest that Se affects host response to RNA viruses and on the molecular mechanisms by which Se and selenoproteins modulate the inter-linked redox homeostasis, stress response and inflammatory response. Together these studies indicate that Se status is an important factor in determining the host response to viral infections. Therefore, we conclude that Se status is likely to influence human response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and that Se status is one (of several) risk factors which may impact on the outcome of SARS-CoV-2 infection, particularly in populations where Se intake is sub-optimal or low. We suggest the use of appropriate markers to assess the Se status of COVID-19 patients and possible supplementation may be beneficial in limiting the severity of symptoms, especially in countries where Se status is regarded as sub-optimal.
Collapse
Affiliation(s)
- Giovanna Bermano
- Centre for Obesity Research and Education (CORE), School of Pharmacy and Life Sciences, Robert Gordon University, AberdeenAB10 7GJ, UK
| | - Catherine Méplan
- School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon TyneNE2 4HH, UK
| | - Derry K. Mercer
- Centre for Obesity Research and Education (CORE), School of Pharmacy and Life Sciences, Robert Gordon University, AberdeenAB10 7GJ, UK
| | - John E. Hesketh
- Centre for Obesity Research and Education (CORE), School of Pharmacy and Life Sciences, Robert Gordon University, AberdeenAB10 7GJ, UK
| |
Collapse
|
24
|
Samra K, Kuganesan M, Smith W, Kleyman A, Tidswell R, Arulkumaran N, Singer M, Dyson A. The Pharmacology and Therapeutic Utility of Sodium Hydroselenide. Int J Mol Sci 2021; 22:3258. [PMID: 33806825 PMCID: PMC8005069 DOI: 10.3390/ijms22063258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 01/05/2023] Open
Abstract
Metabolically active gasotransmitters (nitric oxide, carbon monoxide and hydrogen sulfide) are important signalling molecules that show therapeutic utility in oxidative pathologies. The reduced form of selenium, hydrogen selenide (HSe-/H2Se), shares some characteristics with these molecules. The simple selenide salt, sodium hydroselenide (NaHSe) showed significant metabolic activity, dose-dependently decreasing ex vivo O2 consumption (rat soleus muscle, liver) and transiently inhibiting mitochondrial cytochrome C oxidase (liver, heart). Pharmacological manipulation of selenoprotein expression in HepG2 human hepatocytes revealed that the oxidation status of selenium impacts on protein expression; reduced selenide (NaHSe) increased, whereas (oxidized) sodium selenite decreased the abundance of two ubiquitous selenoproteins. An inhibitor of endogenous sulfide production (DL-propargylglycine; PAG) also reduced selenoprotein expression; this was reversed by exogenous NaHSe, but not sodium hydrosulfide (NaHS). NaHSe also conferred cytoprotection against an oxidative challenge (H2O2), and this was associated with an increase in mitochondrial membrane potential. Anesthetized Wistar rats receiving intravenous NaHSe exhibited significant bradycardia, metabolic acidosis and hyperlactataemia. In summary, NaHSe modulates metabolism by inhibition of cytochrome C oxidase. Modification of selenoprotein expression revealed the importance of oxidation status of selenium therapies, with implications for current clinical practice. The utility of NaHSe as a research tool and putative therapeutic is discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alex Dyson
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, Gower Street, London WC1E 6BT, UK; (K.S.); (M.K.); (W.S.); (A.K.); (R.T.); (N.A.); (M.S.)
| |
Collapse
|
25
|
Zhang J, Saad R, Taylor EW, Rayman MP. Selenium and selenoproteins in viral infection with potential relevance to COVID-19. Redox Biol 2020; 37:101715. [PMID: 32992282 PMCID: PMC7481318 DOI: 10.1016/j.redox.2020.101715] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023] Open
Abstract
Selenium is a trace element essential to human health largely because of its incorporation into selenoproteins that have a wide range of protective functions. Selenium has an ongoing history of reducing the incidence and severity of various viral infections; for example, a German study found selenium status to be significantly higher in serum samples from surviving than non-surviving COVID-19 patients. Furthermore, a significant, positive, linear association was found between the cure rate of Chinese patients with COVID-19 and regional selenium status. Moreover, the cure rate continued to rise beyond the selenium intake required to optimise selenoproteins, suggesting that selenoproteins are probably not the whole story. Nonetheless, the significantly reduced expression of a number of selenoproteins, including those involved in controlling ER stress, along with increased expression of IL-6 in SARS-CoV-2 infected cells in culture suggests a potential link between reduced selenoprotein expression and COVID-19-associated inflammation. In this comprehensive review, we describe the history of selenium in viral infections and then go on to assess the potential benefits of adequate and even supra-nutritional selenium status. We discuss the indispensable function of the selenoproteins in coordinating a successful immune response and follow by reviewing cytokine excess, a key mediator of morbidity and mortality in COVID-19, and its relationship to selenium status. We comment on the fact that the synthetic redox-active selenium compound, ebselen, has been found experimentally to be a strong inhibitor of the main SARS-CoV-2 protease that enables viral maturation within the host. That finding suggests that redox-active selenium species formed at high selenium intake might hypothetically inhibit SARS-CoV-2 proteases. We consider the tactics that SARS-CoV-2 could employ to evade an adequate host response by interfering with the human selenoprotein system. Recognition of the myriad mechanisms by which selenium might potentially benefit COVID-19 patients provides a rationale for randomised, controlled trials of selenium supplementation in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jinsong Zhang
- Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, PR China
| | - Ramy Saad
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK; Royal Sussex County Hospital, Brighton, BN2 5BE, UK
| | - Ethan Will Taylor
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, NC 27402, USA
| | - Margaret P Rayman
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| |
Collapse
|
26
|
He X, Lin Y, Lian S, Sun D, Guo D, Wang J, Wu R. Selenium Deficiency in Chickens Induces Intestinal Mucosal Injury by Affecting the Mucosa Morphology, SIgA Secretion, and GSH-Px Activity. Biol Trace Elem Res 2020; 197:660-666. [PMID: 31925740 DOI: 10.1007/s12011-019-02017-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 12/15/2019] [Indexed: 12/21/2022]
Abstract
The small intestine is one of the target organs of dietary selenium (Se) deficiency. Our objective was to investigate the effects of Se deficiency on small intestinal mucosa morphology and function in chickens. In the present study, 1-day (d)-old chickens were fed either a commercial diet with 0.15 mg/kg Se (control group) or a Se-deficient diet with 0.016 mg/kg Se (Se-group). The average daily weight gain, Se content in the blood, secretory immunoglobulin A (SIgA) secretion, and glutathione peroxidase (GSH-Px) activity in the small intestine in chickens were examined after 10, 20, 30, and 40 days of feeding. We also observed the morphology of the small intestine and recorded the number of intraepithelial lymphocytes (IELs). The average daily weight gain decreased; the level of Se in the blood decreased significantly; and SIgA secretion and GSH-Px activity in the duodenum, jejunum, and ileum decreased to different degrees. Histological analysis showed that the villus length, crypt depth, mucosal thickness, and number of IELs in the small intestine decreased to different extents in different periods. In the Se-group, longer feeding times were associated with more severe injury to physiological structure and function in the intestinal mucosa in chickens. In conclusion, Se deficiency induced injury of the mucosal immune barrier and physical barrier of the small intestine, and decreased the growth performance and antioxidant capacity in chickens.
Collapse
Affiliation(s)
- Xianjing He
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No.5 Xinfeng Road, High and New Technology Development Zone, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Yucai Lin
- College of Agriculture and Animal Husbandry Engineering, Heilongjiang Polytechnic, Harbin, 150080, People's Republic of China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No.5 Xinfeng Road, High and New Technology Development Zone, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No.5 Xinfeng Road, High and New Technology Development Zone, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No.5 Xinfeng Road, High and New Technology Development Zone, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No.5 Xinfeng Road, High and New Technology Development Zone, Daqing, 163319, Heilongjiang, People's Republic of China.
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No.5 Xinfeng Road, High and New Technology Development Zone, Daqing, 163319, Heilongjiang, People's Republic of China.
| |
Collapse
|
27
|
Santesmasses D, Mariotti M, Gladyshev VN. Bioinformatics of Selenoproteins. Antioxid Redox Signal 2020; 33:525-536. [PMID: 32031018 PMCID: PMC7409585 DOI: 10.1089/ars.2020.8044] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Significance: Bioinformatics has brought important insights into the field of selenium research. The progress made in the development of computational tools in the last two decades, coordinated with growing genome resources, provided new opportunities to study selenoproteins. The present review discusses existing tools for selenoprotein gene finding and other bioinformatic approaches to study the biology of selenium. Recent Advances: The availability of complete selenoproteomes allowed assessing a global distribution of the use of selenocysteine (Sec) across the tree of life, as well as studying the evolution of selenoproteins and their biosynthetic pathway. Beyond gene identification and characterization, human genetic variants in selenoprotein genes were used to examine adaptations to selenium levels in diverse human populations and to estimate selective constraints against gene loss. Critical Issues: The synthesis of selenoproteins is essential for development in mice. In humans, several mutations in selenoprotein genes have been linked to rare congenital disorders. And yet, the mechanism of Sec insertion and the regulation of selenoprotein synthesis in mammalian cells are not completely understood. Future Directions: Omics technologies offer new possibilities to study selenoproteins and mechanisms of Sec incorporation in cells, tissues, and organisms.
Collapse
Affiliation(s)
- Didac Santesmasses
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Marco Mariotti
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Zhang Y, Hu B, Wang M, Tong J, Pan J, Wang N, Gong P, Long M. Selenium Protects against Zearalenone-Induced Oxidative Stress and Apoptosis in the Mouse Kidney by Inhibiting Endoplasmic Reticulum Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6059058. [PMID: 32850001 PMCID: PMC7439790 DOI: 10.1155/2020/6059058] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/21/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022]
Abstract
This study assessed the molecular mechanism of selenium (Se) protecting against kidney injury induced by zearalenone (ZEA) in mice. The experimental mice were divided into 4 groups including the control group, the Se group, the ZEA group, and the Se+ZEA group; ZEA and Se were administered orally for 28 days. The changes in renal biochemical index (BUN, UA, and CRE), biochemical change of kidney damage such as BUN, UA, and CRE, and oxidative damage such as MDA, T-SOD, and GSH-Px were investigated. Pathological sections and TUNEL staining were used to analyze renal pathological changes and cell apoptosis. qRT-PCR and Western blot were employed to detect the expression of genes and proteins which were related with endoplasmic reticulum stress. The results showed that ZEA increased the concentration of BUN, UA, and CRE and the content of MDA and decreased the activities of T-SOD and GSH-Px in the mouse kidneys. However, Se reversed above changes of the biochemical and antioxidant indexes of renal injury. Moreover, the results also showed that ZEA can increase the expression of Bax, caspase-12, caspase-3, Bip, CHOP, JNK protein, and mRNA and decrease the expression of Bcl-2 protein and mRNA. But Se reversed these proteins and genes related to endoplasmic reticulum stress and apoptosis. It can be concluded that Se protected against the kidney damage induced by ZEA. Se may protect the kidney from ZEA-induced apoptosis and oxidative stress by inhibiting ERS.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Bo Hu
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Science, Urumqi 830000, China
| | - Mingyang Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jingjing Tong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jianwen Pan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Nan Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ping Gong
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Science, Urumqi 830000, China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
29
|
Stolwijk JM, Garje R, Sieren JC, Buettner GR, Zakharia Y. Understanding the Redox Biology of Selenium in the Search of Targeted Cancer Therapies. Antioxidants (Basel) 2020; 9:E420. [PMID: 32414091 PMCID: PMC7278812 DOI: 10.3390/antiox9050420] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/24/2020] [Accepted: 05/10/2020] [Indexed: 12/18/2022] Open
Abstract
Selenium (Se) is an essential trace nutrient required for optimal human health. It has long been suggested that selenium has anti-cancer properties. However, clinical trials have shown inconclusive results on the potential of Se to prevent cancer. The suggested role of Se in the prevention of cancer is centered around its role as an antioxidant. Recently, the potential of selenium as a drug rather than a supplement has been uncovered. Selenium compounds can generate reactive oxygen species that could enhance the treatment of cancer. Transformed cells have high oxidative distress. As normal cells have a greater capacity to meet oxidative challenges than tumor cells, increasing the flux of oxidants with high dose selenium treatment could result in cancer-specific cell killing. If the availability of Se is limited, supplementation of Se can increase the expression and activities of Se-dependent proteins and enzymes. In cell culture, selenium deficiency is often overlooked. We review the importance of achieving normal selenium biology and how Se deficiency can lead to adverse effects. We examine the vital role of selenium in the prevention and treatment of cancer. Finally, we examine the properties of Se-compounds to better understand how each can be used to address different research questions.
Collapse
Affiliation(s)
- Jeffrey M. Stolwijk
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242, USA;
| | - Rohan Garje
- Department of Internal Medicine, Division of Medical Oncology and Hematology, The University of Iowa Hospital and Clinics—Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA;
| | - Jessica C. Sieren
- Departments of Radiology and Biomedical Engineering, The University of Iowa, Iowa City, IA 52242, USA;
| | - Garry R. Buettner
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242, USA;
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
| | - Yousef Zakharia
- Department of Internal Medicine, Division of Medical Oncology and Hematology, The University of Iowa Hospital and Clinics—Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA;
| |
Collapse
|
30
|
Taylor RM, Mendoza KM, Abrahante JE, Reed KM, Sunde RA. The hepatic transcriptome of the turkey poult (Meleagris gallopavo) is minimally altered by high inorganic dietary selenium. PLoS One 2020; 15:e0232160. [PMID: 32379770 PMCID: PMC7205448 DOI: 10.1371/journal.pone.0232160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022] Open
Abstract
There is interest in supplementing animals and humans with selenium (Se) above Se-adequate levels, but the only good biomarker for toxicity is tissue Se. We targeted liver because turkeys fed 5 μg Se/g have hepatic Se concentrations 6-fold above Se-adequate (0.4 μg Se/g) levels without effects on growth or health. Our objectives were (i) to identify transcript biomarkers for high Se status, which in turn would (ii) suggest proteins and pathways used by animals to adapt to high Se. Turkey poults were fed 0, 0.025, 0.4, 0.75 and 1.0 μg Se/g diet in experiment 1, and fed 0.4, 2.0 and 5.0 μg Se/g in experiment 2, as selenite, and the full liver transcriptome determined by RNA-Seq. The major effect of Se-deficiency was to down-regulate expression of a subset of selenoprotein transcripts, with little significant effect on general transcript expression. In response to high Se intake (2 and 5 μg Se/g) relative to Se-adequate turkeys, there were only a limited number of significant differentially expressed transcripts, all with only relatively small fold-changes. No transcript showed a consistent pattern of altered expression in response to high Se intakes across the 1, 2 and 5 μg Se/g treatments, and there were no associated metabolic pathways and biological functions that were significant and consistently found with high Se supplementation. Gene set enrichment analysis also found no gene sets that were consistently altered by high-Se and supernutritional-Se. A comparison of differentially expressed transcript sets with high Se transcript sets identified in mice provided high Se (~3 μg Se/g) also failed to identify common differentially expressed transcript sets between these two species. Collectively, this study indicates that turkeys do not alter gene expression in the liver as a homeostatic mechanism to adapt to high Se.
Collapse
Affiliation(s)
- Rachel M. Taylor
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kristelle M. Mendoza
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Juan E. Abrahante
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kent M. Reed
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Roger A. Sunde
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
31
|
Serra M, Columbano A, Ammarah U, Mazzone M, Menga A. Understanding Metal Dynamics Between Cancer Cells and Macrophages: Competition or Synergism? Front Oncol 2020; 10:646. [PMID: 32426284 PMCID: PMC7203474 DOI: 10.3389/fonc.2020.00646] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Metal ions, such as selenium, copper, zinc, and iron are naturally present in the environment (air, drinking water, and food) and are vital for cellular functions at chemical, molecular, and biological levels. These trace elements are involved in various biochemical reactions by acting as cofactors for many enzymes and control important biological processes by binding to the receptors and transcription factors. Moreover, they are essential for the stabilization of the cellular structures and for the maintenance of genome stability. A body of preclinical and clinical evidence indicates that dysregulation of metal homeostasis, both at intracellular and tissue level, contributes to the pathogenesis of many different types of cancer. These trace minerals play a crucial role in preventing or accelerating neoplastic cell transformation and in modulating the inflammatory and pro-tumorigenic response in immune cells, such as macrophages, by controlling a plethora of metabolic reactions. In this context, macrophages and cancer cells interact in different manners and some of these interactions are modulated by availability of metals. The current review discusses the new findings and focuses on the involvement of these micronutrients in metabolic and cellular signaling mechanisms that influence macrophage functions, onset of cancer and its progression. An improved understanding of "metallic" cross-talk between macrophages and cancer cells may pave the way for innovative pharmaceutical or dietary interventions in order to restore the balance of these trace elements and also strengthen the chemotherapeutic treatment.
Collapse
Affiliation(s)
- Marina Serra
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium
| | - Amedeo Columbano
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Ummi Ammarah
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center – MBC, University of Torino, Turin, Italy
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center – MBC, University of Torino, Turin, Italy
| | - Alessio Menga
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center – MBC, University of Torino, Turin, Italy
| |
Collapse
|
32
|
Chen LL, Huang JQ, Xiao Y, Wu YY, Ren FZ, Lei XG. Knockout of Selenoprotein V Affects Regulation of Selenoprotein Expression by Dietary Selenium and Fat Intakes in Mice. J Nutr 2020; 150:483-491. [PMID: 31773160 DOI: 10.1093/jn/nxz287] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/23/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The metabolic function of selenoprotein V (SELENOV) remains unknown. OBJECTIVES Two experiments were conducted to determine effects of the Selenov knockout (KO) on selenium concentration and mRNA, protein, and/or activity of 4 major selenoproteins [glutathione peroxidase (GPX) 1, GPX4, thioredoxin reductase-1 (TXNRD1), and selenoprotein P (SELENOP)] in the serum, liver, testis, and/or white adipose tissue (WAT) of mice fed different dietary selenium and fat concentrations. METHODS In Experiment (Expt) 1, 40 KO and 40 wild-type (WT) mice (males, 8 wk old) were fed (n = 10/genotype) a casein-sucrose basal diet plus 0, 0.3, 1, or 3 mg Se/kg (as sodium selenite) for 32 wk . In Expt 2, 20 KO and 20 WT mice (males, 8 wk old) were fed (n = 10/genotype) a normal-fat diet (NF; 10% calories from fat) or a high-fat diet (HF; 60% calories from fat) for 19 wk. RESULTS In Expt 1, the KO caused consistent or substantial decreases (P < 0.05) of mRNA amounts of Gpx1, Txnrd1, and Selenop in the testis (≤52%), but selenium concentrations (19-29%) and GPX activities (≤ 50%) were decreased in the liver across different dietary selenium concentrations . Hepatic and testis GPX1 protein was elevated (≤31%) and decreased (≤45%) by the KO, respectively. In Expt 2, the genotype and dietary fat intake exerted interaction effects ( P < 0.05) on Gpx1 mRNA amounts in the WAT; Gpx1, Txnrd1, and Selenop mRNA amounts and TXNRD activities in the testis; and selenium concentrations in the serum and liver. However, these 2 treatments produced largely independent or additive effects (P < 0.05) on the GPX1 and SELENOP protein amounts in the liver and testis (up to ± 50% changes). CONCLUSIONS The KO-mediated changes in the tissue selenium concentrations and functional expression of 3 major selenoproteins implied potential for SELENOV in regulating body selenium metabolism in the mouse.
Collapse
Affiliation(s)
- Ling-Li Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, People's Republic of China.,Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Jia-Qiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, People's Republic of China.,Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Yao Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yuan-Yuan Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, People's Republic of China
| | - Fa-Zheng Ren
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
33
|
A descriptive report of the selenium distribution in tissues from pigs with mulberry heart disease (MHD). Porcine Health Manag 2019; 5:17. [PMID: 31497310 PMCID: PMC6717635 DOI: 10.1186/s40813-019-0124-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/14/2019] [Indexed: 11/10/2022] Open
Abstract
Background Mulberry Heart Disease (MHD) is a condition affecting mainly young pigs in excellent body condition. Feed efficient pigs showing high average daily gains are more likely to be affected. MHD has been described as a challenge in Norwegian pig production over the last decade despite abundant supplies of vitamin E, and selenium (Se) close to the upper limits set by the EU. From 2015 to 2017, samples from documented MHD field cases were collected and compared with controls regarding post mortem findings and Se concentrations in numerous internal and external organs were determined in order to characterize the Se distribution, and to identify any differences between MHD cases and controls. Case presentation Eight MHD cases from commercial farms and a pet pig producer located in the South West and East of Norway, and three control animals originating from these farms were included in this study. MHD cases and controls were weaned pigs with an average bodyweight (BW) of 17 kg (range 9 to 46 kg BW), with the exception of one pet piglet (Mangalica, 6 kg BW) that had only received sow milk. Selenium was determined in samples from the cardiovascular, digestive, immune, endocrine, integumentary, muscular, respiratory and urinary systems using inductively coupled plasma mass spectrometry (QQQ ICP-MS). All pigs with MHD suffered sudden deaths. Control animals were euthanized without being bled prior to necropsy and sampling. Significantly different mean Se concentrations between MHD cases and controls were found in cardiac samples as well as almost all skeletal muscles (P < 0.05). Based on the samples from ten different muscles (except the cardiac samples), mean Se concentrations in MHD cases were 0.34 (0.01) mg/ kg DM compared with 0.65 (0.02) mg/ kg DM in control pigs (P < 0.0001). In cardiac samples, mean Se concentrations from MHD cases were 0.87 (0.02) mg/ kg DM vs. 1.12 (0.04) mg/ kg DM (P < 0.0001). Additionally, significantly lower Se concentrations compared with controls were found in the liver as well as the caecum, duodenum, gastric ventricle, jejunum, kidney, skin and thymus samples. Conclusions Based on the present work, the current common practice regarding tissue analyses in MHD cases could be refined to include other organs than liver and heart. The evident differences in mean Se concentrations in 9 out of 10 samples from the muscular system, could make such samples relevant for complementary measurements of Se concentrations to help confirm the MHD diagnosis. We find it interesting that although our limited number of sampled pigs are different in terms of genetics, size and feeding regimes, the variation of Se concentrations in a given organ was low between MHD cases. Since this report includes a limited number of MHD cases and controls, our results should be corroborated by a controlled, larger study.
Collapse
|
34
|
Processive Recoding and Metazoan Evolution of Selenoprotein P: Up to 132 UGAs in Molluscs. J Mol Biol 2019; 431:4381-4407. [PMID: 31442478 DOI: 10.1016/j.jmb.2019.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/05/2019] [Accepted: 08/11/2019] [Indexed: 02/06/2023]
Abstract
Selenoproteins typically contain a single selenocysteine, the 21st amino acid, encoded by a context-redefined UGA. However, human selenoprotein P (SelenoP) has a redox-functioning selenocysteine in its N-terminal domain and nine selenium transporter-functioning selenocysteines in its C-terminal domain. Here we show that diverse SelenoP genes are present across metazoa with highly variable numbers of Sec-UGAs, ranging from a single UGA in certain insects, to 9 in common spider, and up to 132 in bivalve molluscs. SelenoP genes were shaped by a dynamic evolutionary process linked to selenium usage. Gene evolution featured modular expansions of an ancestral multi-Sec domain, which led to particularly Sec-rich SelenoP proteins in many aquatic organisms. We focused on molluscs, and chose Pacific oyster Magallana gigas as experimental model. We show that oyster SelenoP mRNA with 46 UGAs is translated full-length in vivo. Ribosome profiling indicates that selenocysteine specification occurs with ∼5% efficiency at UGA1 and approaches 100% efficiency at distal 3' UGAs. We report genetic elements relevant to its expression, including a leader open reading frame and an RNA structure overlapping the initiation codon that modulates ribosome progression in a selenium-dependent manner. Unlike their mammalian counterparts, the two SECIS elements in oyster SelenoP (3'UTR recoding elements) do not show functional differentiation in vitro. Oysters can increase their tissue selenium level up to 50-fold upon supplementation, which also results in extensive changes in selenoprotein expression.
Collapse
|
35
|
Khan AZ, Khan IU, Khan S, Afzal S, Hamid M, Tariq M, Haq IU, Ullah N, Khan MA, Bilal S, Huwang K, Liu R. Selenium-enriched probiotics improve hepatic protection by regulating pro-inflammatory cytokines and antioxidant capacity in broilers under heat stress conditions. J Adv Vet Anim Res 2019; 6:355-361. [PMID: 31583232 PMCID: PMC6760513 DOI: 10.5455/javar.2019.f354] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/12/2019] [Accepted: 06/16/2019] [Indexed: 12/17/2022] Open
Abstract
Objective: High ambient temperature in poultry is a challenging and fatal stress among environmental factors. It affects the production quality, damages the liver, and increases mortality in broilers. The present study is focused to explore appropriate utilization of Selenium (Se) as a feed additive in broiler chickens against high temperature. Materials and Methods: Day-old male broiler chickens (Ross 308) (n = 200) were grouped according to the supplements used in their basal diets such as: corn-soybean basal diet as control (Con), a basal diet containing sodium selenite, basal diet with probiotics, and a basal diet containing selenium-enriched probiotics (SP). At the end of the experimental period of 42 days, the liver was isolated and was used to determine the antioxidant capacity through a spectrophotometer. Inflammatory and anti-inflammatory cytokines production in the liver was measured through a real-time polymerase chain reaction. Results: Hepatic analyses revealed the decreased level of malondialdehyde, whereas glutathione, glutathione peroxidase (GSH-Px), and superoxide dismutase levels were increased in the SP group. Furthermore, supplementation of SP significantly up-regulated the mRNA expression of glutathione peroxidase 1 (GPx1), GPx4, IL6, and IL10 and down-regulated the expression of pro-inflammatory cytokines. Conclusion: It is thus concluded that SP as a potential nutritive supplement may facilitate hepatic protection by suppressing hepatic oxidation, inflammation, and necrosis during the high ambient temperature of summer.
Collapse
Affiliation(s)
- Alam Zeb Khan
- Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Imdad Ullah Khan
- Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Shakirullah Khan
- Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Samreen Afzal
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mohammad Hamid
- Institute of Nutritional and Metabolic Disorders of Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Tariq
- Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Ikram Ul Haq
- Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Naimat Ullah
- Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Mumtaz Ali Khan
- University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Shahid Bilal
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Kehe Huwang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
36
|
Fu J, Yang T, Wang W, Xu S. Effect of selenium antagonist lead-induced damage on Th1/Th2 imbalance in the peripheral blood lymphocytes of chickens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 175:74-82. [PMID: 30889402 DOI: 10.1016/j.ecoenv.2019.03.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Lead (Pb) is a type of toxic metal that can hurt the immune system. Selenium (Se) can reduce the damage caused by heavy metals. To investigate the effects of Se against Pb on bird immune cells, as well as the immunotoxin mechanism of Pb, Se supplementation and/or Pb poisoning chicken models were established. One hundred eighty 1-year-old broiler chickens were randomly divided into four groups (n = 6). The four groups were the control group, the selenium-rich group (Se group), the Pb supplementation group (Pb group) and the Se and Pb compound group (Se + Pb group). The peripheral blood lymphocytes of chickens were collected to test the selenoproteins and cytokine mRNA levels at 30 and 60 d. Determination of the content of Se and Pb in the serum, principal component analysis and ingenuity pathway analysis were performed at the two time points. As a result, Pb exposure increased the content of Pb, activating the Th1/Th2 pathway in peripheral blood lymphocytes. Additionally, this experiment showed that Se supplementation and Pb exposure could influence the mRNA levels of selenoproteins and cytokines in the peripheral blood lymphocytes of chickens. However, all of the parameters that we detected in the experiment indicated that Se supplementation could alleviate the increase of selenoproteins and cytokine mRNA levels and the Th1/Th2 imbalance induced by Pb in peripheral blood lymphocytes. In summary, Se can alleviate the toxic effects caused by Pb in the peripheral blood lymphocytes of chickens, suggesting the antagonism between Se and Pb.
Collapse
Affiliation(s)
- Jiaxing Fu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tianshu Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
37
|
Irimie AI, Braicu C, Pasca S, Magdo L, Gulei D, Cojocneanu R, Ciocan C, Olariu A, Coza O, Berindan-Neagoe I. Role of Key Micronutrients from Nutrigenetic and Nutrigenomic Perspectives in Cancer Prevention. ACTA ACUST UNITED AC 2019; 55:medicina55060283. [PMID: 31216637 PMCID: PMC6630934 DOI: 10.3390/medicina55060283] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/28/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023]
Abstract
Regarding cancer as a genetic multi-factorial disease, a number of aspects need to be investigated and analyzed in terms of cancer's predisposition, development and prognosis. One of these multi-dimensional factors, which has gained increased attention in the oncological field due to its unelucidated role in risk assessment for cancer, is diet. Moreover, as studies advance, a clearer connection between diet and the molecular alteration of patients is becoming identifiable and quantifiable, thereby replacing the old general view associating specific phenotypical changes with the differential intake of nutrients. Respectively, there are two major fields concentrated on the interrelation between genome and diet: nutrigenetics and nutrigenomics. Nutrigenetics studies the effects of nutrition at the gene level, whereas nutrigenomics studies the effect of nutrients on genome and transcriptome patterns. By precisely evaluating the interaction between the genomic profile of patients and their nutrient intake, it is possible to envision a concept of personalized medicine encompassing nutrition and health care. The list of nutrients that could have an inhibitory effect on cancer development is quite extensive, with evidence in the scientific literature. The administration of these nutrients showed significant results in vitro and in vivo regarding cancer inhibition, although more studies regarding administration in effective doses in actual patients need to be done.
Collapse
Affiliation(s)
- Alexandra Iulia Irimie
- Department of Prosthetic Dentistry and Dental Materials, Division Dental Propaedeutics, Aesthetic, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Sergiu Pasca
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Lorand Magdo
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Diana Gulei
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Roxana Cojocneanu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Cristina Ciocan
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Andrei Olariu
- Nordlogic Software, 10-12, Rene Descartes Street 400486 Cluj-Napoca, Romania.
| | - Ovidiu Coza
- Department of Radiotherapy with High Energies and Brachytherapy, Oncology Institute "Prof. Dr. Ion Chiricuta", Street Republicii, No. 34-36, 400015 Cluj-Napoca, Romania.
- Department of Radiotherapy and Medical Oncology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Street Louis Pasteur, No. 4, 400349 Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
- Department of Functional Genomics and Experimental Pathology, "Prof. Dr. Ion Chiricuta" The Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania.
| |
Collapse
|
38
|
Yim SH, Clish CB, Gladyshev VN. Selenium Deficiency Is Associated with Pro-longevity Mechanisms. Cell Rep 2019; 27:2785-2797.e3. [PMID: 31141699 PMCID: PMC6689410 DOI: 10.1016/j.celrep.2019.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 11/21/2018] [Accepted: 04/29/2019] [Indexed: 12/15/2022] Open
Abstract
Selenium (Se) is an essential trace element because of its presence in selenoproteins in the form of selenocysteine residue. Both Se deficiency, which compromises selenoprotein functions, and excess Se, which is toxic, have been associated with altered redox homeostasis and adverse health conditions. Surprisingly, we found that, although Se deficiency led to a drastic decline in selenoprotein expression, mice subjected to this dietary regimen for their entire life had normal lifespans. To understand the molecular mechanisms involved, we performed systemic analyses at the level of metabolome, transcriptome, and microRNA profiling. These analyses revealed that Se deficiency reduced amino acid levels, elevated mononucleotides, altered metabolism, and activated signaling pathways linked to longevity-related nutrient sensing. The data show that the metabolic control associated with nutrient sensing coordinately responds to suppressed selenoprotein functions, resulting in normal lifespan under Se deficiency.
Collapse
Affiliation(s)
- Sun Hee Yim
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
39
|
Role of Zinc and Selenium in Oxidative Stress and Immunosenescence: Implications for Healthy Aging and Longevity. HANDBOOK OF IMMUNOSENESCENCE 2019. [PMCID: PMC7121636 DOI: 10.1007/978-3-319-99375-1_66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aging is a complex process that includes gradual and spontaneous biochemical and physiological changes which contributes to a decline in performance and increased susceptibility to diseases. Zn and Se are essential trace elements that play a pivotal role in immune functions and antioxidant defense and, consequently, are claimed to play also a role in successful aging trajectories. Consistently with their nature of essential trace elements, a plethora of data obtained “in vitro” and “in vivo” (in humans and animal models) support the relevance of Zn and Se for both the innate and adoptive immune response. Moreover, Zn and Se are strictly involved in the synthesis and regulation of activity of proteins and enzymes, e.g., metallothioneins (MT) and glutathione peroxidase (GPX), that are necessary for our endogenous antioxidant response. This is clearly important to protect our cells from oxidative damage and to slow the decline of our immune system with aging. Age-related changes affecting tissue levels of Zn and Se may indicate that the risk of Zn and Se deficiency increases with aging. However, it is still unclear which of these changes can be the consequence of a “real deficiency” and which can be part of our physiological compensatory response to the accumulating damage occurring in aging. Furthermore, the upregulation of antioxidant proteins (Zn and Se dependent) may be a manifestation of self-induced oxidative stress. By the way, Zn and Se dependent proteins are modulated not only by nutritional status, but also by well-known hallmarks of aging that play antagonistic functions, such as the deregulated nutrient sensing pathways and cellular senescence. Thus, it is not an easy task to conduct Zn or Se supplementation in elderly and it is emerging consistent that these kind of supplementation requires an individualized approach. Anyway, there is consistent support that supplementation with Zn using doses around 10 mg/day is generally safe in elderly and may even improve part of immune performances in those subjects with a baseline deficiency. Regarding Se supplementation, it may induce both beneficial and detrimental effects on cellular immunity depending on the form of Se, supplemental dose, and delivery matrix. The nutritional association of supplements based on “Zn plus Se” is hypothesized to provide additional benefits, but this will likely need a more complex individualized approach. The improvement of our knowledge around screening and detection of Zn and Se deficiency in aging could lead to substantial benefits in terms of efficacy of nutritional supplements aimed at ameliorate performance and health in aging.
Collapse
|
40
|
Collery P. Strategies for the development of selenium-based anticancer drugs. J Trace Elem Med Biol 2018; 50:498-507. [PMID: 29548612 DOI: 10.1016/j.jtemb.2018.02.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 02/20/2018] [Accepted: 02/26/2018] [Indexed: 02/07/2023]
Abstract
Many experimental models demonstrated that inorganic and organic selenium (Se) compounds may have an anticancer activity. However, large clinical studies failed to demonstrate that Se supplementations may prevent the outcome of cancers. Moreover, there are few randomized trials in cancer patients and there is not yet any Se compound recognized as anticancer drug. There is still a need to develop new Se compounds with new strategies. For that, it may be necessary to consider that Se compounds may have a dual role, either as anti-oxidant or as pro-oxidant. Experimental studies demonstrated that it is as pro-oxidant that Se compounds have anticancer effects, even though cancer cells have a pro-oxidant status. The oxidative status differs according to the type of cancer, the stage of the disease and to other parameters. We propose to adapt the doses of the Se compounds to markers of the oxidative stress, but also to markers of angiogenesis, which is strongly related with the oxidative status. A dual role of Se on angiogenesis has also been noted, either as pro-angiogenesis or as anti-angiogenesis. The objective for the development of new Se compounds, having a great selectivity on cancer cells, could be to try to normalize these oxidative and angiogenic markers in cancer patients, with an individual adaptation of doses.
Collapse
Affiliation(s)
- Philippe Collery
- Society for the Coordination of Therapeutic Researches, 20220 Algajola, France.
| |
Collapse
|
41
|
Zanetti TA, Biazi BI, Baranoski A, D'Epiro GFR, Corveloni AC, Semprebon SC, Coatti GC, Mantovani MS. Response of HepG2/C3A cells supplemented with sodium selenite to hydrogen peroxide-induced oxidative stress. J Trace Elem Med Biol 2018; 50:209-215. [PMID: 30262281 DOI: 10.1016/j.jtemb.2018.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/20/2018] [Accepted: 07/09/2018] [Indexed: 10/28/2022]
Abstract
Oxidative stress (OS) is involved in the onset of various pathological processes, and sodium selenite (Na2SeO3) is known to have antioxidant activity. This study evaluated the cellular response of human HepG2/C3A cells supplemented with Na2SeO3 when exposed to hydrogen peroxide (H2O2)-induced OS. We analyzed cytotoxicity, cell proliferation, and genotoxicity in comparison with molecular data of mRNA and protein expression. The MTT and comet assays revealed that Na2SeO3 conferred cytoprotective and anti-genotoxic effects. In contrast, RTCA (Real-Time Cell Analysis) and flow cytometry analysis revealed that Na2SeO3 did not inhibit H2O2-induced anti-proliferative effects or cell cycle arrest (G2/M). Cells exposed simultaneously to Na2SeO3 and H2O2 showed overexpression of GPX1 mRNA, indicating that Na2SeO3 influenced the cellular antioxidant system. Furthermore, downregulation of CAT mRNA and SOD1 and PRX2 proteins induced by H2O2, was minimal after the Na2SeO3+H2O2 treatment. Although normalization of CCN2B mRNA expression by Na2SeO3 was observed after the Na2SeO3+H2O2 treatment, this was not observed for other genes such as CDKN1A, CDKN1C, and CDKN2B, which are related to cell cycle control, nor for GADD45A, which is involved in the cellular response to DNA damage. Furthermore, both CDKN1B and CDKN1C expression were downregulated in HepG2/C3A cells treated with Na2SeO3 only. Our results indicate that cellular response to Na2SeO3 involved the modulation of the antioxidant system. Na2SeO3 was unable completely recover HepG2/C3A cells from H2O2-induced oxidative damage, as evidenced by analysis of cell proliferation kinetics, cell cycle assay, and expression of key genes involved in cell cycle progression and response to DNA damage.
Collapse
Affiliation(s)
- Thalita Alves Zanetti
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil.
| | - Bruna Isabela Biazi
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil
| | - Adrivanio Baranoski
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil
| | - Gláucia Fernanda Rocha D'Epiro
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil
| | - Amanda Cristina Corveloni
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil
| | - Simone Cristine Semprebon
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil
| | - Giuliana Castello Coatti
- Human Genome and Stem-Cell Research Center. Institute of Biosciences, University of São Paulo - USP, Rua do Matão - Travessa 13, n. 106, São Paulo, São Paulo, Brazil
| | - Mário Sérgio Mantovani
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil
| |
Collapse
|
42
|
Avery JC, Hoffmann PR. Selenium, Selenoproteins, and Immunity. Nutrients 2018; 10:E1203. [PMID: 30200430 PMCID: PMC6163284 DOI: 10.3390/nu10091203] [Citation(s) in RCA: 516] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 12/14/2022] Open
Abstract
Selenium is an essential micronutrient that plays a crucial role in development and a wide variety of physiological processes including effect immune responses. The immune system relies on adequate dietary selenium intake and this nutrient exerts its biological effects mostly through its incorporation into selenoproteins. The selenoproteome contains 25 members in humans that exhibit a wide variety of functions. The development of high-throughput omic approaches and novel bioinformatics tools has led to new insights regarding the effects of selenium and selenoproteins in human immuno-biology. Equally important are the innovative experimental systems that have emerged to interrogate molecular mechanisms underlying those effects. This review presents a summary of the current understanding of the role of selenium and selenoproteins in regulating immune cell functions and how dysregulation of these processes may lead to inflammation or immune-related diseases.
Collapse
Affiliation(s)
- Joseph C Avery
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA.
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA.
| |
Collapse
|
43
|
Dalia AM, Loh TC, Sazili AQ, Jahromi MF, Samsudin AA. Effects of vitamin E, inorganic selenium, bacterial organic selenium, and their combinations on immunity response in broiler chickens. BMC Vet Res 2018; 14:249. [PMID: 30143038 PMCID: PMC6109295 DOI: 10.1186/s12917-018-1578-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 08/17/2018] [Indexed: 01/19/2023] Open
Abstract
Background Selenium (Se) and vitamin E (Vit E) can act synergistically and affect biological processes, mainly antioxidant and immunity. The use of excess dietary Vit E and Se in animals’ feed could enhance immune response and induce disease resistance. Moreover, different Se sources may provide different alterations in the immune system. Accordingly, the aim of the current study was to assess the impact of dietary supplementation of Vit E, inorganic Se (sodium selenite, SS), bacterial organic Se of ADS18, and their different combinations on the plasma immunoglobulins, ceacum microbial population, and splenic cytokines gene expression in broiler chickens. Results Present results showed that, Se and Vit E synergistic effect was clear in plasma IgM level at day 42 and in splenic cytokines expression (TNF-α, IFN-γ, IL-2, IL-10). The combination of 0.3 mg/kg ADS18-Se with 100 mg/kg Vit E showed the highest IgM level compared to Vit E- SS complex. The combination of either SS or ADS18-Se with Vit E had no significant effect on IFN- γ and IL-10 compared to Vit E alone, while Vit E alone showed the significantly lowest TNF-α compared to the Se combinations. Supplementation of 100 mg/kg Vit E had no effect on microbial population except a slight reduction in Salmonella spp. The main effect of Se sources was that both sources increased the day 42 IgA and IgG level compared to NS group. ADS18-Se modulate the caecum microbial population via enhancing beneficial bacteria and suppressing the E-coli and Salmonella spp. while both Se and Vit E factors had no effect on lymphoid organ weights. Conclusions The inclusion of 100 mg/kg Vit E with 0.3 mg/kg ADS18-Se, effectively could support the immune system through regulation of some cytokines expression and immunoglobulin levels more than using ADS18-Se alone, while no difference was observed between using SS alone or combined with Vit E.
Collapse
Affiliation(s)
- A M Dalia
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Department of Animal Nutrition, Faculty of Animal Production, University of Khartoum, Khartoum, Sudan
| | - T C Loh
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - A Q Sazili
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - M F Jahromi
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - A A Samsudin
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
44
|
Volpato A, Da Silva AS, Crecencio RB, Tomasi T, Fortuoso BF, Ribeiro MP, Secco R, Pereira WAB, Bottari NB, Schetinger MRC, Morsch VMM, Baldissera MD, Stefani LM, Machado G. A prophylactic protocol to stimulate the immune response also controls infectious disease and, consequently, minimizes diarrhea in newborn heifers. Microb Pathog 2018; 121:262-268. [PMID: 29800701 DOI: 10.1016/j.micpath.2018.05.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 10/16/2022]
Abstract
The immunostimulatory and immunomodulatory properties of selenium (Se), an essential trace element for animals, has increase its use because may prevent/or reduce the occurrence of infectious diseases. Thus, the aim of this study was to verify whether Se and vitamins (A and E) applied via subcutaneous associated with secnidazole via oral exert positive effects in the antioxidant and immune systems, as well as whether prevent infections caused by protozoan and bacteria, and consequently, reduce the number of cases of diarrhea in heifers. Thirty-two newborn Holstein heifers were divided into two groups with sixteen animals each: the control group and the treated group that received sodium selenite (0.2 mg/kg) and vitamins A (35 mg/kg) and E (1 mg/kg) with one day of life, and a second application associated with secnidazole (400 mg/animal) on day 10 of life. Sample collection (blood and feces) were performed on days 1, 15, 30, 45 and 60 of life. Heifers from the treated group showed higher hematocrit values compared to the control group on day 60 of life, while total serum protein levels were higher on days 15 and 30. The ceruloplasmin (days 15, 30 and 60), IgG of heavy chain (days 15, 30, 45 and 60), IgG of light chain (days 45 and 60) and haptoglobin (days 15, 30, 45 and 60) were higher in the treated group compared to the control group. Serum levels of glucose decreased in treated animals on day 60 of life, while serum levels of albumin, triglycerides, urea, cholesterol, thiobarbituric acid reactive substances, reactive oxygen species and glutathione S-transferase activity did not differ between groups. Secnidazole was able to prevent infections caused by Giardia duodenalis in the first few days of life, but no difference was observed between groups. Moreover, there was no difference on total bacteria count and the incidence of diarrhea between groups. No difference on weight gain was observed on day 60 of life, but on day 210 of life treated animals had higher weight gain compared to the control group. Based on these evidences, we concluded that the injectable application of Se and vitamins (A and E) associated to secnidazole can improve the immunological system, and consequently, favor animal's performance.
Collapse
Affiliation(s)
- Andreia Volpato
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), SC, Brazil
| | - Aleksandro S Da Silva
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), SC, Brazil; Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, SC, Brazil.
| | - Regiane B Crecencio
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), SC, Brazil
| | - Thainã Tomasi
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, SC, Brazil
| | - Bruno F Fortuoso
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, SC, Brazil
| | - Marluciana P Ribeiro
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), SC, Brazil
| | - Rodrigo Secco
- Veterinary Medicine, Instituto Federal Catarinense, Concórdia, Brazil
| | | | - Nathieli B Bottari
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Maria Rosa C Schetinger
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Vera Maria M Morsch
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Matheus D Baldissera
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Lenita M Stefani
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), SC, Brazil; Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, SC, Brazil
| | - Gustavo Machado
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, USA
| |
Collapse
|
45
|
Emerging roles of endoplasmic reticulum-resident selenoproteins in the regulation of cellular stress responses and the implications for metabolic disease. Biochem J 2018; 475:1037-1057. [PMID: 29559580 DOI: 10.1042/bcj20170920] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/25/2022]
Abstract
Chronic metabolic stress leads to cellular dysfunction, characterized by excessive reactive oxygen species, endoplasmic reticulum (ER) stress and inflammation, which has been implicated in the pathogenesis of obesity, type 2 diabetes and cardiovascular disease. The ER is gaining recognition as a key organelle in integrating cellular stress responses. ER homeostasis is tightly regulated by a complex antioxidant system, which includes the seven ER-resident selenoproteins - 15 kDa selenoprotein, type 2 iodothyronine deiodinase and selenoproteins S, N, K, M and T. Here, the findings from biochemical, cell-based and mouse studies investigating the function of ER-resident selenoproteins are reviewed. Human experimental and genetic studies are drawn upon to highlight the relevance of these selenoproteins to the pathogenesis of metabolic disease. ER-resident selenoproteins have discrete roles in the regulation of oxidative, ER and inflammatory stress responses, as well as intracellular calcium homeostasis. To date, only two of these ER-resident selenoproteins, selenoproteins S and N have been implicated in human disease. Nonetheless, the potential of all seven ER-resident selenoproteins to ameliorate metabolic dysfunction warrants further investigation.
Collapse
|
46
|
On elongation factor eEFSec, its role and mechanism during selenium incorporation into nascent selenoproteins. Biochim Biophys Acta Gen Subj 2018; 1862:2463-2472. [PMID: 29555379 DOI: 10.1016/j.bbagen.2018.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/28/2018] [Accepted: 03/12/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Selenium, an essential dietary micronutrient, is incorporated into proteins as the amino acid selenocysteine (Sec) in response to in-frame UGA codons. Complex machinery ensures accurate recoding of Sec codons in higher organisms. A specialized elongation factor eEFSec is central to the process. SCOPE OF REVIEW Selenoprotein synthesis relies on selenocysteinyl-tRNASec (Sec-tRNASec), selenocysteine inserting sequence (SECIS) and other selenoprotein mRNA elements, an in-trans SECIS binding protein 2 (SBP2) protein factor, and eEFSec. The exact mechanisms of discrete steps of the Sec UGA recoding are not well understood. However, recent studies on mammalian model systems have revealed the first insights into these mechanisms. Herein, we summarize the current knowledge about the structure and role of mammalian eEFSec. MAJOR CONCLUSIONS eEFSec folds into a chalice-like structure resembling that of the archaeal and bacterial orthologues SelB and the initiation protein factor IF2/eIF5B. The three N-terminal domains harbor major functional sites and adopt an EF-Tu-like fold. The C-terminal domain 4 binds to Sec-tRNASec and SBP2, senses distinct binding domains, and modulates the GTPase activity. Remarkably, GTP hydrolysis does not induce a canonical conformational change in eEFSec, but instead promotes a slight ratchet of domains 1 and 2 and a lever-like movement of domain 4, which may be critical for the release of Sec-tRNASec on the ribosome. GENERAL SIGNIFICANCE Based on current findings, a non-canonical mechanism for elongation of selenoprotein synthesis at the Sec UGA codon is proposed. Although incomplete, our understanding of this fundamental biological process is significantly improved, and it is being harnessed for biomedical and synthetic biology initiatives. This article is part of a Special Issue entitled "Selenium research" in celebration of 200 years of selenium discovery, edited by Dr. Elias Arnér and Dr. Regina Brigelius-Flohe.
Collapse
|
47
|
Vinceti M, Filippini T, Del Giovane C, Dennert G, Zwahlen M, Brinkman M, Zeegers MPA, Horneber M, D'Amico R, Crespi CM. Selenium for preventing cancer. Cochrane Database Syst Rev 2018; 1:CD005195. [PMID: 29376219 PMCID: PMC6491296 DOI: 10.1002/14651858.cd005195.pub4] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND This review is the third update of the Cochrane review "Selenium for preventing cancer". Selenium is a naturally occurring element with both nutritional and toxicological properties. Higher selenium exposure and selenium supplements have been suggested to protect against several types of cancer. OBJECTIVES To gather and present evidence needed to address two research questions:1. What is the aetiological relationship between selenium exposure and cancer risk in humans?2. Describe the efficacy of selenium supplementation for cancer prevention in humans. SEARCH METHODS We updated electronic searches of the Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 2), MEDLINE (Ovid, 2013 to January 2017, week 4), and Embase (2013 to 2017, week 6), as well as searches of clinical trial registries. SELECTION CRITERIA We included randomised controlled trials (RCTs) and longitudinal observational studies that enrolled adult participants. DATA COLLECTION AND ANALYSIS We performed random-effects (RE) meta-analyses when two or more RCTs were available for a specific outcome. We conducted RE meta-analyses when five or more observational studies were available for a specific outcome. We assessed risk of bias in RCTs and in observational studies using Cochrane's risk assessment tool and the Newcastle-Ottawa Scale, respectively. We considered in the primary analysis data pooled from RCTs with low risk of bias. We assessed the certainty of evidence by using the GRADE approach. MAIN RESULTS We included 83 studies in this updated review: two additional RCTs (10 in total) and a few additional trial reports for previously included studies. RCTs involved 27,232 participants allocated to either selenium supplements or placebo. For analyses of RCTs with low risk of bias, the summary risk ratio (RR) for any cancer incidence was 1.01 (95% confidence interval (CI) 0.93 to 1.10; 3 studies, 19,475 participants; high-certainty evidence). The RR for estimated cancer mortality was 1.02 (95% CI 0.80 to 1.30; 1 study, 17,444 participants). For the most frequently investigated site-specific cancers, investigators provided little evidence of any effect of selenium supplementation. Two RCTs with 19,009 participants indicated that colorectal cancer was unaffected by selenium administration (RR 0.99, 95% CI 0.69 to 1.43), as were non-melanoma skin cancer (RR 1.16, 95% CI 0.30 to 4.42; 2 studies, 2027 participants), lung cancer (RR 1.16, 95% CI 0.89 to 1.50; 2 studies, 19,009 participants), breast cancer (RR 2.04, 95% CI 0.44 to 9.55; 1 study, 802 participants), bladder cancer (RR 1.07, 95% CI 0.76 to 1.52; 2 studies, 19,009 participants), and prostate cancer (RR 1.01, 95% CI 0.90 to 1.14; 4 studies, 18,942 participants). Certainty of the evidence was high for all of these cancer sites, except for breast cancer, which was of moderate certainty owing to imprecision, and non-melanoma skin cancer, which we judged as moderate certainty owing to high heterogeneity. RCTs with low risk of bias suggested increased melanoma risk.Results for most outcomes were similar when we included all RCTs in the meta-analysis, regardless of risk of bias. Selenium supplementation did not reduce overall cancer incidence (RR 0.99, 95% CI 0.86 to 1.14; 5 studies, 21,860 participants) nor mortality (RR 0.81, 95% CI 0.49 to 1.32; 2 studies, 18,698 participants). Summary RRs for site-specific cancers showed limited changes compared with estimates from high-quality studies alone, except for liver cancer, for which results were reversed.In the largest trial, the Selenium and Vitamin E Cancer Trial, selenium supplementation increased risks of alopecia and dermatitis, and for participants with highest background selenium status, supplementation also increased risk of high-grade prostate cancer. RCTs showed a slightly increased risk of type 2 diabetes associated with supplementation. A hypothesis generated by the Nutritional Prevention of Cancer Trial - that individuals with low blood selenium levels could reduce their risk of cancer (particularly prostate cancer) by increasing selenium intake - has not been confirmed. As RCT participants have been overwhelmingly male (88%), we could not assess the potential influence of sex or gender.We included 15 additional observational cohort studies (70 in total; over 2,360,000 participants). We found that lower cancer incidence (summary odds ratio (OR) 0.72, 95% CI 0.55 to 0.93; 7 studies, 76,239 participants) and lower cancer mortality (OR 0.76, 95% CI 0.59 to 0.97; 7 studies, 183,863 participants) were associated with the highest category of selenium exposure compared with the lowest. Cancer incidence was lower in men (OR 0.72, 95% CI 0.46 to 1.14, 4 studies, 29,365 men) than in women (OR 0.90, 95% CI 0.45 to 1.77, 2 studies, 18,244 women). Data show a decrease in risk of site-specific cancers for stomach, colorectal, lung, breast, bladder, and prostate cancers. However, these studies have major weaknesses due to study design, exposure misclassification, and potential unmeasured confounding due to lifestyle or nutritional factors covarying with selenium exposure beyond those taken into account in multi-variable analyses. In addition, no evidence of a dose-response relation between selenium status and cancer risk emerged. Certainty of evidence was very low for each outcome. Some studies suggested that genetic factors might modify the relation between selenium and cancer risk - an issue that merits further investigation. AUTHORS' CONCLUSIONS Well-designed and well-conducted RCTs have shown no beneficial effect of selenium supplements in reducing cancer risk (high certainty of evidence). Some RCTs have raised concerns by reporting a higher incidence of high-grade prostate cancer and type 2 diabetes in participants with selenium supplementation. No clear evidence of an influence of baseline participant selenium status on outcomes has emerged in these studies.Observational longitudinal studies have shown an inverse association between selenium exposure and risk of some cancer types, but null and direct relations have also been reported, and no systematic pattern suggesting dose-response relations has emerged. These studies suffer from limitations inherent to the observational design, including exposure misclassification and unmeasured confounding.Overall, there is no evidence to suggest that increasing selenium intake through diet or supplementation prevents cancer in humans. However, more research is needed to assess whether selenium may modify the risk of cancer in individuals with a specific genetic background or nutritional status, and to investigate possible differential effects of various forms of selenium.
Collapse
Affiliation(s)
- Marco Vinceti
- Boston University School of Public HealthDepartment of Epidemiology715 Albany StreetBoston, MAUSA02118
- University of Modena and Reggio EmiliaResearch Center in Environmental, Nutritional and Genetic Epidemiology (CREAGEN), Department of Biomedical, Metabolic and Neural SciencesVia Campi 287ModenaItaly41125
| | - Tommaso Filippini
- University of Modena and Reggio EmiliaResearch Center in Environmental, Nutritional and Genetic Epidemiology (CREAGEN), Department of Biomedical, Metabolic and Neural SciencesVia Campi 287ModenaItaly41125
| | - Cinzia Del Giovane
- University of BernInstitute of Primary Health Care (BIHAM)Gesellschaftsstrasse 49BernSwitzerland3012
- University of Modena and Reggio EmiliaCochrane Italy, Department of Diagnostic, Clinical and Public Health MedicineVia del Pozzo, 71ModenaItaly41100
| | - Gabriele Dennert
- University of Applied Sciences DortmundSocial Medicine and Public Health with Focus on Gender and Diversity, Department of Applied Social SciencesEmil‐Figge‐Str. 44DortmundGermanyD‐44227
| | - Marcel Zwahlen
- University of BernInstitute of Social and Preventive Medicine (ISPM)Finkelhubelweg11BernSwitzerland3012
| | - Maree Brinkman
- Nutrition Biomed Research InstituteDepartment of Nutritional Epidemiology and Clinical StudiesArgyle Place SouthMelbourneVictoriaAustralia3053
- Chairgroup of Complex Genetics and Epidemiology, School for Nutrition and Translational Research in Metabolism, Care and Public Health Research InstituteUnit of Nutritional and Cancer EpidemiologyMaastricht UniversityMaastrichtNetherlands
| | | | - Markus Horneber
- Paracelsus Medical University, Klinikum NurembergDepartment of Internal Medicine, Division of Oncology and HematologyProf.‐Ernst‐Nathan‐Str. 1NurembergGermanyD‐90419
| | - Roberto D'Amico
- University of Modena and Reggio EmiliaCochrane Italy, Department of Diagnostic, Clinical and Public Health MedicineVia del Pozzo, 71ModenaItaly41100
| | - Catherine M Crespi
- University of California Los AngelesBiostatisticsFielding School of Public Health650 Charles Young Drive South, A2‐125 CHS, Box 956900Los AngelesCaliforniaUSA90095‐6900
| | | |
Collapse
|
48
|
Wu S, Mariotti M, Santesmasses D, Hill KE, Baclaocos J, Aparicio-Prat E, Li S, Mackrill J, Wu Y, Howard MT, Capecchi M, Guigó R, Burk RF, Atkins JF. Human selenoprotein P and S variant mRNAs with different numbers of SECIS elements and inferences from mutant mice of the roles of multiple SECIS elements. Open Biol 2017; 6:rsob.160241. [PMID: 27881738 PMCID: PMC5133445 DOI: 10.1098/rsob.160241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/14/2016] [Indexed: 01/04/2023] Open
Abstract
Dynamic redefinition of the 10 UGAs in human and mouse selenoprotein P (Sepp1) mRNAs to specify selenocysteine instead of termination involves two 3' UTR structural elements (SECIS) and is regulated by selenium availability. In addition to the previously known human Sepp1 mRNA poly(A) addition site just 3' of SECIS 2, two further sites were identified with one resulting in 10-25% of the mRNA lacking SECIS 2. To address function, mutant mice were generated with either SECIS 1 or SECIS 2 deleted or with the first UGA substituted with a serine codon. They were fed on either high or selenium-deficient diets. The mutants had very different effects on the proportions of shorter and longer product Sepp1 protein isoforms isolated from plasma, and on viability. Spatially and functionally distinctive effects of the two SECIS elements on UGA decoding were inferred. We also bioinformatically identify two selenoprotein S mRNAs with different 5' sequences predicted to yield products with different N-termini. These results provide insights into SECIS function and mRNA processing in selenoprotein isoform diversity.
Collapse
Affiliation(s)
- Sen Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Marco Mariotti
- Center for Genomic Regulation, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Didac Santesmasses
- Center for Genomic Regulation, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Kristina E Hill
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Janinah Baclaocos
- Department of Biochemistry, University College Cork, Cork, Republic of Ireland
| | - Estel Aparicio-Prat
- Center for Genomic Regulation, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Shuping Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - John Mackrill
- Department of Physiology, University College Cork, Cork, Republic of Ireland
| | - Yuanyuan Wu
- Department of Human Genetics, University of Utah, Salt Lake City, UT 8412-5330, USA
| | - Michael T Howard
- Department of Human Genetics, University of Utah, Salt Lake City, UT 8412-5330, USA
| | - Mario Capecchi
- Department of Human Genetics, University of Utah, Salt Lake City, UT 8412-5330, USA
| | - Roderic Guigó
- Center for Genomic Regulation, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Raymond F Burk
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - John F Atkins
- Department of Biochemistry, University College Cork, Cork, Republic of Ireland .,Department of Human Genetics, University of Utah, Salt Lake City, UT 8412-5330, USA
| |
Collapse
|
49
|
McLachlan SM, Aliesky H, Banuelos B, Hee SSQ, Rapoport B. Variable Effects of Dietary Selenium in Mice That Spontaneously Develop a Spectrum of Thyroid Autoantibodies. Endocrinology 2017; 158:3754-3764. [PMID: 28938453 PMCID: PMC5695827 DOI: 10.1210/en.2017-00275] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/18/2017] [Indexed: 12/16/2022]
Abstract
Selenium (Se) is a critical element in thyroid function, and variable dietary Se intake influences immunity. Consequently, dietary Se could influence development of thyroid autoimmunity and provide an adjunct to treat autoimmune thyroid dysfunction. Nonobese diabetic (NOD).H2h4 mice spontaneously develop autoantibodies to thyroglobulin (Tg) and thyroid peroxidase (TPO). This mouse strain expressing a human thyroid-stimulating hormone receptor (TSHR) A-subunit transgene in the thyroid also develops pathogenic TSHR autoantibodies. In this report, we investigated whether dietary Se influences these immune processes. Male and female wild-type and transgenic NOD.H2h4 mice were maintained on normal-, low-, or high-Se (0.1, 0, or 1.0 mg/kg) rodent diets. After 4 months, Se serum levels were extremely low or significantly increased on 0 or 1.0 mg/kg Se, respectively. Varying Se intake affected Tg antibody (TgAb) levels after 2 (but not 4) months; conversely, TPO antibody (TPOAb) levels were altered by dietary Se after 4 (but not 2) months. These data correspond to the earlier development of TgAb than TPOAb in NOD.H2h4 mice. In males, TgAb levels were enhanced by high Se and in females by low Se intake. Se intake had no effect on pathogenic TSHR autoantibodies in TSHR transgenic NOD.H2h4 females. In conclusion, in susceptible NOD.H2h4 mice, we found no evidence that a higher dietary Se intake ameliorates thyroid autoimmunity by reducing autoantibodies to Tg, TPO, or the TSHR. Instead, our finding that low dietary Se potentiates the development of autoantibodies to Tg and TPO in females is consistent with reports in humans of an increased prevalence of autoimmune thyroiditis in low-Se regions.
Collapse
Affiliation(s)
- Sandra M. McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, and University of California, Los Angeles, School of Medicine, Los Angeles, California 90095
| | - Holly Aliesky
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, and University of California, Los Angeles, School of Medicine, Los Angeles, California 90095
| | - Bianca Banuelos
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, and University of California, Los Angeles, School of Medicine, Los Angeles, California 90095
| | - Shane S. Que Hee
- Department of Environmental Health Sciences and Center for Occupational and Environmental Health, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California 90095
| | - Basil Rapoport
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, and University of California, Los Angeles, School of Medicine, Los Angeles, California 90095
| |
Collapse
|
50
|
Yu SS, Du JL. Selenoprotein S: a therapeutic target for diabetes and macroangiopathy? Cardiovasc Diabetol 2017; 16:101. [PMID: 28797256 PMCID: PMC5553675 DOI: 10.1186/s12933-017-0585-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/01/2017] [Indexed: 12/14/2022] Open
Abstract
Inflammatory response, oxidative stress, and endoplasmic reticulum (ER) stress are important pathophysiological bases of the occurrence and development of diabetes mellitus (DM) and macroangiopathy complications. Selenoprotein S (SELENOS) is involved in the regulation of these mechanisms; therefore, its association with DM and macroangiopathy has gradually received attention from scholars worldwide. SELENOS has different biological functions in different tissues and organs: it exerts antioxidant protection and has anti-ER stress effects in the pancreas and blood vessels, while it promotes the occurrence and development of insulin resistance in the liver, adipose tissue, and skeletal muscle. In addition, studies have confirmed that some SELENOS gene polymorphisms can influence the inflammatory response and are closely associated with the risk for developing DM and macroangiopathy. Therefore, comprehensive understanding of the association between SELENOS and inflammation, oxidative stress, and ER stress may better elucidate and supplement the pathogenic mechanisms of DM and macroangiopathy complications. Furthermore, in-depth investigation of the association of SELENOS function in different tissues and organs with DM and macroangiopathy may facilitate the development of new strategies for the prevention and treatment of DM and macrovascular complications. Here, we summarize the consensus and controversy regarding functions of SELENOS on currently available evidence.
Collapse
Affiliation(s)
- Shan-Shan Yu
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Jian-Ling Du
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.
| |
Collapse
|