1
|
Esen O, Bailey SJ, Stashuk DW, Howatson G, Goodall S. Influence of nitrate supplementation on motor unit activity during recovery following a sustained ischemic contraction in recreationally active young males. Eur J Nutr 2024; 63:2379-2387. [PMID: 38809323 PMCID: PMC11377467 DOI: 10.1007/s00394-024-03440-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
PURPOSE Dietary nitrate (NO3-) supplementation enhances muscle blood flow and metabolic efficiency in hypoxia, however, its efficacy on neuromuscular function and specifically, the effect on motor unit (MU) activity is less clear. We investigated whether NO3- supplementation affected MU activity following a 3 min sustained ischemic contraction and whether this is influenced by blood flow restriction (BFR) during the recovery period. METHOD In a randomized, double-blinded, cross-over design, 14 males (mean ± SD, 25 ± 6 years) completed two trials following 5 days of supplementation with NO3--rich (NIT) or NO3--depleted (PLA) beetroot juice to modify plasma nitrite (NO2-) concentration (482 ± 92 vs. 198 ± 48 nmol·L-1, p < 0.001). Intramuscular electromyography was used to assess MU potential (MUP) size (duration and area) and mean firing rates (MUFR) during a 3 min submaximal (25% MVC) isometric contraction with BFR. These variables were also assessed during a 90 s recovery period with the first half completed with, and the second half completed without, BFR. RESULTS The change in MUP area and MUFR, did not differ between conditions (all p > 0.05), but NIT elicited a reduction in MUP recovery time during brief isometric contractions (p < 0.001), and during recoveries with (p = 0.002) and without (p = 0.012) BFR. CONCLUSION These novel observations improve understanding of the effects of NO3- on the recovery of neuromuscular function post-exercise and might have implications for recovery of muscle contractile function. TRIAL REGISTRATION The study was registered on clinicaltrials.gov with ID of NCT05993715 on August 08, 2023.
Collapse
Affiliation(s)
- Ozcan Esen
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-Upon-Tyne, NE1 8ST, UK.
- Department of Health Professions, Manchester Metropolitan University, Manchester, UK.
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Daniel W Stashuk
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-Upon-Tyne, NE1 8ST, UK
- Water Research Group, North West University, Potchefstroom, South Africa
| | - Stuart Goodall
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-Upon-Tyne, NE1 8ST, UK
- Physical Activity, Sport and Recreation Research Focus Area, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
2
|
Larsen S. Acute antioxidant supplementation and performance - Should this be considered. Free Radic Biol Med 2024; 224:301-309. [PMID: 39147073 DOI: 10.1016/j.freeradbiomed.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/02/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
It is well known that a training intervention leads to mitochondrial adaptations with increased skeletal muscle mitochondrial biogenesis and function. Studies have recently indicated that skeletal muscle mitochondrial function is important for athletic performance. During exercise reactive oxygen species are released from skeletal muscle potentially leading to adaptations but maybe also to fatigue. Focus has been on how chronic antioxidant supplementation affects a training adaptation, where some studies are reporting an abolished adaptation. Whether acute antioxidant supplementation could have a positive effect on fatigue and performance is interesting and highly relevant in sports where athletes are competing over several consecutive days or on the same day, with preliminary competitions in the morning and finals in the afternoon, where it is important for the athletes to recover fast. This review provides an overview of the effects of acute antioxidant supplementation and whether it leads to improved performance and/or faster recovery in humans.
Collapse
Affiliation(s)
- Steen Larsen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark; Clinical Research Centre, Medical University of Bialystok, Poland; Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark.
| |
Collapse
|
3
|
Ahmadpour A, Fashi M, Hemmatinafar M. Consuming Beetroot Juice Improves Slalom Performance and Reduces Muscle Soreness in Alpine Skiers under Hypoxic Conditions. Curr Dev Nutr 2024; 8:104408. [PMID: 39224139 PMCID: PMC11367456 DOI: 10.1016/j.cdnut.2024.104408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 09/04/2024] Open
Abstract
Background Beetroot juice (BRJ) supplementation has been shown to increase sports performance under hypoxic conditions and to improve athletes' recovery. Objectives In the present study, we aimed to investigate the effect of acute BRJ supplementation on slalom (SL) run performance and muscle soreness (MS) in Alpine skiers at moderate to high altitudes. Methods Ten male Alpine skiers received 220 mL of BRJ (8.9 mmol/L nitrate) or placebo (PLA) in 2 sessions with a 7-d wash out interval in a randomized, crossover, PLA-controlled, double-blind study. The 90-s box jump (BJ90), agility hexagonal obstacle jump (Hex Jump), and wall-sit tests were measured before on-hill SL runs in both sessions. After the functional tests, SL run performance was measured by time to complete 2 runs on the SL course; immediately after each SL run, the rating of perceived exertion (RPE) was recorded. In addition, perceived MS was recorded using the visual analog scale at 12, 24, and 48 h after the SL runs. Results The data were meticulously analyzed using 2-way repeated measures analysis of variance and paired t tests with significance set at P < 0.05. The findings were significant, indicating that compared with PLA, BRJ notably improved wall-sit and BJ90 performances (P < 0.05), while a substantial reduction was observed in RPE, Hex Jump, and MS (P < 0.05). A 1.74% shorter time to complete SL runs was observed in the BRJ group compared with the PLA group; however, there were no significant differences between the PLA and BRJ groups (P > 0.05). Conclusions These results underscore the potential of BRJ supplementation to enhance sports performance and reduce MS in Alpine skiers under hypoxic conditions.
Collapse
Affiliation(s)
- Alireza Ahmadpour
- Department of Biological Sciences in Sports, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Fashi
- Department of Biological Sciences in Sports, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Hemmatinafar
- Department of Sport Science, Faculty of Education and Psychology, Shiraz University, Shiraz, Iran
| |
Collapse
|
4
|
Schaun GZ, Orcy RB, Del Vecchio FB. A Comparative Analysis of Acute Physiological and Perceptual Responses in Whole-Body and Ergometer-Based High-Intensity Interval Training Protocols. Sports (Basel) 2024; 12:166. [PMID: 38921860 PMCID: PMC11207856 DOI: 10.3390/sports12060166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
The primary aim of the present investigation was to compare the acute physiological and perceptual responses between two modes of interval training using a randomized crossover design. More specifically, eleven young adult participants (23 ± 4 years, 77 ± 13 kg, 178 ± 7 cm) performed two protocols: one composed of whole-body calisthenics exercises and another on a cycle ergometer. Both protocols encompassed eight 20 s bouts at intensities equivalent to all-out (HIIT-WB) and 170% of the maximal power output (HIIT-C), respectively, interspersed with 10 s of passive rest. The peak and average heart rate, the rating of perceived effort, and blood lactate, creatine kinase, and lactate dehydrogenase concentrations were measured. Aside from blood lactate (HIIT-WB = 9.4 ± 1.8 mmo/L; HIIT-C = 12.5 ± 2.5 mmol/L, p < 0.05) and the rating of perceived exertion (HIIT-WB = 8.8 ± 0.9; HIIT-C = 9.6 ± 0.5, p < 0.05), physiological responses did not significantly differ between protocols (all p > 0.05), with high average heart rate values (HIIT-WB = 86 ± 6% HRmax; HIIT-C = 87 ± 4% HRmax) and a low magnitude of muscle damage, as inferred by CK and LDH concentrations (HIIT-WB = 205.9 ± 56.3 and 203.5 ± 72.4 U/L; HIIT-C = 234.5 ± 77.1 and 155.1 ± 65.3 U/L), respectively. It can be concluded that both protocols elicit vigorous heart rate responses and a low magnitude of muscle damage and, therefore, appear as viable alternatives to improve aerobic fitness. The inclusion of a whole-body HIIT protocol may be an interesting alternative for training prescription in relation to more common interval training protocols.
Collapse
Affiliation(s)
- Gustavo Z. Schaun
- Centre for Sport Science and University Sports, Department of Sport and Human Movement Science, University of Vienna, 1150 Vienna, Austria
| | - Rafael B. Orcy
- Physical Education School, Universidade Federal de Pelotas, Pelotas 96010-610, RS, Brazil; (R.B.O.); (F.B.D.V.)
| | - Fabrício B. Del Vecchio
- Physical Education School, Universidade Federal de Pelotas, Pelotas 96010-610, RS, Brazil; (R.B.O.); (F.B.D.V.)
| |
Collapse
|
5
|
Przewłócka K, Korewo-Labelle D, Berezka P, Karnia MJ, Kaczor JJ. Current Aspects of Selected Factors to Modulate Brain Health and Sports Performance in Athletes. Nutrients 2024; 16:1842. [PMID: 38931198 PMCID: PMC11206260 DOI: 10.3390/nu16121842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
This review offers a comprehensive evaluation of current aspects related to nutritional strategies, brain modulation, and muscle recovery, focusing on their applications and the underlying mechanisms of physiological adaptation for promoting a healthy brain, not only in athletes but also for recreationally active and inactive individuals. We propose that applying the rule, among others, of good sleep, regular exercise, and a properly balanced diet, defined as "SPARKS", will have a beneficial effect on the function and regeneration processes of the gut-brain-muscle axis. However, adopting the formula, among others, of poor sleep, stress, overtraining, and dysbiosis, defined as "SMOULDER", will have a detrimental impact on the function of this axis and consequently on human health as well as on athletes. Understanding these dynamics is crucial for optimizing brain health and cognitive function. This review highlights the significance of these factors for overall well-being, suggesting that adopting the "SPARKS" approach may benefit not only athletes but also older adults and individuals with health conditions.
Collapse
Affiliation(s)
- Katarzyna Przewłócka
- Division of Physiology, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland;
| | - Daria Korewo-Labelle
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Paweł Berezka
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 80-309 Gdansk, Poland; (P.B.); (M.J.K.)
| | - Mateusz Jakub Karnia
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 80-309 Gdansk, Poland; (P.B.); (M.J.K.)
| | - Jan Jacek Kaczor
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 80-309 Gdansk, Poland; (P.B.); (M.J.K.)
| |
Collapse
|
6
|
Vilar E, Collado-Boira E, Guerrero C, Folch-Ayora A, Salas-Medina P, Hernando C, Baliño P, Muriach M. Is There a Role of Beetroot Consumption on the Recovery of Oxidative Status and Muscle Damage in Ultra-Endurance Runners? Nutrients 2024; 16:583. [PMID: 38474711 DOI: 10.3390/nu16050583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
(1) Background: Ultra-endurance exercise involves a high physical impact, resulting in muscle damage, inflammatory response and production of free radicals that alter the body's oxidative state. Supplementation with antioxidants, such as beetroot, may improve recovery in ultra-endurance runners. The aim of this study was to determine whether there is a correlation between beetroot intake and recovery of serum oxidative status, inflammatory response and muscle damage parameters after an ultra-endurance race. (2) Methods: An observational and longitudinal study was conducted by means of surveys and blood samples collected from 32 runners during the IX Penyagolosa Trails CSP®® race and the two following days. The variables C-reactive protein (CRP), lactate dehydrogenase (LDH), creatine kinase (CK), the activity of the antioxidant enzymes glutathione peroxidase (GPx) and glutathione reductase (GR) as well as the oxidative damage markers malondialdehyde (MDA), carbonyl groups (CG) and loss of muscle strength using the squat jump (SJ) test were analyzed to discriminate whether beetroot consumption can modulate the recovery of ultra-trail runners. (3) Results: Significant differences were observed between runners who ingested beetroot and those who did not, in terms of oxidative status, specifically in serum GPx activity at 24 and 48 h, muscle damage variables CK and LDH and regarding the SJ test results at the finish line. Therefore, the intake of supplements containing beetroot positively influences the recovery of serum oxidative status and muscle damage after ultra-endurance running.
Collapse
Affiliation(s)
- Eva Vilar
- Hospital de La Plana, Vila-Real, 12540 Castellon, Spain
| | - Eladio Collado-Boira
- Unidad Predepartamental de Enfermeria, Jaume I University, 12071 Castellon, Spain
| | - Carlos Guerrero
- Unitat Predepartamental de Medicina, Jaume I University, 12071 Castellón, Spain
| | - Ana Folch-Ayora
- Unidad Predepartamental de Enfermeria, Jaume I University, 12071 Castellon, Spain
| | - Pablo Salas-Medina
- Unidad Predepartamental de Enfermeria, Jaume I University, 12071 Castellon, Spain
| | - Carlos Hernando
- Department of Education and Specific Didactics, Sport Service, Jaume I University, 12071 Castellon, Spain
| | - Pablo Baliño
- Unitat Predepartamental de Medicina, Jaume I University, 12071 Castellón, Spain
| | - María Muriach
- Unitat Predepartamental de Medicina, Jaume I University, 12071 Castellón, Spain
| |
Collapse
|
7
|
Zoughaib WS, Fry MJ, Singhal A, Coggan AR. Beetroot juice supplementation and exercise performance: is there more to the story than just nitrate? Front Nutr 2024; 11:1347242. [PMID: 38445207 PMCID: PMC10912565 DOI: 10.3389/fnut.2024.1347242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
This mini-review summarizes the comparative effects of different sources of dietary nitrate (NO3-), beetroot juice (BRJ) and nitrate salts (NIT), on physiological function and exercise capacity. Our objectives were to determine whether BRJ is superior to NIT in enhancing exercise-related outcomes, and to explore the potential contribution of other putatively beneficial compounds in BRJ beyond NO3-. We conducted a comparative analysis of recent studies focused on the impact of BRJ versus NIT on submaximal oxygen consumption (VO2), endurance performance, adaptations to training, and recovery from muscle-damaging exercise. While both NO3- sources provide benefits, there is some evidence that BRJ may offer additional advantages, specifically in reducing VO2 during high-intensity exercise, magnifying performance improvements with training, and improving recovery post-exercise. These reported differences could be due to the hypothesized antioxidant and/or anti-inflammatory properties of BRJ resulting from the rich spectrum of phytonutrients it contains. However, significant limitations to published studies directly comparing BRJ and NIT make it quite challenging to draw any firm conclusions. We provide recommendations to help guide further research into the important question of whether there is more to the story of BRJ than just NO3-.
Collapse
Affiliation(s)
- William S. Zoughaib
- Department of Kinesiology, School of Health & Human Sciences, Indiana University Indianapolis, Indianapolis, IN, United States
| | - Madison J. Fry
- Department of Kinesiology, School of Health & Human Sciences, Indiana University Indianapolis, Indianapolis, IN, United States
| | - Ahaan Singhal
- School of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Andrew R. Coggan
- Department of Kinesiology, School of Health & Human Sciences, Indiana University Indianapolis, Indianapolis, IN, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
8
|
Martín-Rodríguez A, Belinchón-deMiguel P, Rubio-Zarapuz A, Tornero-Aguilera JF, Martínez-Guardado I, Villanueva-Tobaldo CV, Clemente-Suárez VJ. Advances in Understanding the Interplay between Dietary Practices, Body Composition, and Sports Performance in Athletes. Nutrients 2024; 16:571. [PMID: 38398895 PMCID: PMC10892519 DOI: 10.3390/nu16040571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
The dietary practices of athletes play a crucial role in shaping their body composition, influencing sports performance, training adaptations, and overall health. However, despite the widely acknowledged significance of dietary intake in athletic success, there exists a gap in our understanding of the intricate relationships between nutrition, body composition, and performance. Furthermore, emerging evidence suggests that many athletes fail to adopt optimal nutritional practices, which can impede their potential achievements. In response, this Special Issue seeks to gather research papers that delve into athletes' dietary practices and their potential impacts on body composition and sports performance. Additionally, studies focusing on interventions aimed at optimizing dietary habits are encouraged. This paper outlines the key aspects and points that will be developed in the ensuing articles of this Special Issue.
Collapse
Affiliation(s)
- Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (A.M.-R.); (A.R.-Z.); (V.J.C.-S.)
| | - Pedro Belinchón-deMiguel
- Faculty of Biomedical and Health Sciences, Department of Nursing and Nutrition, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain;
| | - Alejandro Rubio-Zarapuz
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (A.M.-R.); (A.R.-Z.); (V.J.C.-S.)
| | - Jose Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (A.M.-R.); (A.R.-Z.); (V.J.C.-S.)
| | - Ismael Martínez-Guardado
- Faculty of Health Sciences, Camilo José Cela University, C. Castillo de Alarcón, 49, Villafranca del Castillo, 28692 Madrid, Spain;
| | | | - Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (A.M.-R.); (A.R.-Z.); (V.J.C.-S.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| |
Collapse
|
9
|
Evangelista JF, Meirelles CM, Aguiar GS, Alves R, Matsuura C. Effects of Beetroot-Based Supplements on Muscular Endurance and Strength in Healthy Male Individuals: A Systematic Review and Meta-Analysis. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:77-91. [PMID: 37167368 DOI: 10.1080/27697061.2023.2211318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 04/03/2023] [Indexed: 05/13/2023]
Abstract
The aim of this study was to systematically review the current literature and analyze the effects of beetroot-based supplements (BRS) on muscular performance. Randomized controlled trials that assessed the acute or short-term effects of BRS administration on muscular endurance and/or strength in healthy male individuals were retrieved from PubMed, EMBASE, CENTRAL, and Web of Science databases from inception to February 20th, 2023. In addition, we also searched preprint papers in medRxiv.org, bibRxiv.org; thesis and dissertations included in oatd.org; and clinical trials published in ClinicalTrials.gov. Data extraction, risk of bias, and study quality were assessed by 2 authors. Meta-analyses and subgroup analyses of standardized mean differences (SMD) were performed using a random-effects model. A total of 1486 records were identified in the databases and 2 were obtained by manual search in the reference list. Of those, 27 studies attended eligibility criteria and composed this systematic review. BRS administration resulted in a positive effect on muscular endurance (SMD: 0.31; 95% confidence interval (CI): 0.10 to 0.51; p < 0.01; n = 16 studies). There was an overall significative effect for muscular strength (SMD: 0.26; 95% CI: 0.03 to 0.48; p < 0.05; n = 18 studies), but a subgroup analysis showed that significant effects were found when strength was measured in a fatigued (SMD: 0.64; 95% CI: 0.25 to 1.03; p < 0.01), but not resting state. BRS administration have a small ergogenic effect on muscular endurance and attenuate the decline in muscular strength in a fatigued state in healthy male individuals.
Collapse
Affiliation(s)
| | | | - Gabriella Salles Aguiar
- Department of Pharmacology and Psychobiology, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Renata Alves
- Department of Pharmacology and Psychobiology, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Cristiane Matsuura
- Department of Pharmacology and Psychobiology, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
10
|
Abreu R, Oliveira CB, Costa JA, Brito J, Teixeira VH. Effects of dietary supplements on athletic performance in elite soccer players: a systematic review. J Int Soc Sports Nutr 2023; 20:2236060. [PMID: 37462346 DOI: 10.1080/15502783.2023.2236060] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/09/2023] [Indexed: 07/20/2023] Open
Abstract
Dietary supplements are widely used among athletes, and soccer players are no exception. Nevertheless, evidence supporting the use of dietary supplements aiming to enhance performance in soccer is somewhat contradictory, scarce, or even nonexistent. Thus, the present study aimed to systematically review and synthesize the effects of dietary supplements on athletic performance (e.g. distance covered, sprinting, jump performance) in elite soccer players. Studies enrolling highly trained, elite, and world-class soccer players using dietary supplements were searched in MEDLINE/PubMed, Web of Science, Scopus, and EBSCO databases in June 2022. In total, 1043 studies were identified, and 18 met the eligibility criteria. The studies evaluated the impacts on athletic performance of several dietary supplements, including caffeine, creatine, protein, beverages with carbohydrates and electrolytes, tart cherry juice, nitrate-rich beetroot juice, sodium bicarbonate with minerals, yohimbine, and a proprietary nutraceutical blend. Caffeine supplementation in doses between 3 and 6 mg/kg of body mass may improve jump height and sprint ability, particularly in female players, but individual response to caffeine must be considered. Creatine may improve sprint, agility, and in female players, jump performance. Protein supplementation can improve sprint and jump performance between matches, especially if protein ingested from food is not up to recommendations. Beverages containing carbohydrates and electrolytes can be used as part of the strategies to achieve carbohydrate intake during training and match-days but used alone do not benefit athletic performance. Tart cherry juice might be useful for maintaining athletic performance after matches that produce higher force loss and exercise-induced muscle damage, although polyphenols from the diet might attenuate the effects of tart cherry supplementation. Nitrate-rich beetroot concentrate can attenuate performance decrease in the days following matches. Further investigation with sodium bicarbonate alone is necessary, as supplementation protocols with elite players included other substances. Finally, the available data does not support yohimbine supplementation or the use of Resurgex Plus® to improve athletic performance in elite soccer players. Still, more well-designed research with elite soccer players is needed to improve support and advice regarding the use of dietary supplements for athletic performance enhancement.
Collapse
Affiliation(s)
- Rodrigo Abreu
- Portugal Football School, Portuguese Football Federation, FPF, Oeiras, Portugal
- Faculty of Nutrition and Food Science of the University of Porto (FCNAUP), Porto, Portugal
| | - Catarina B Oliveira
- Portugal Football School, Portuguese Football Federation, FPF, Oeiras, Portugal
- NMS, FCM, Universidade NOVA de Lisboa, CHRC, NOVA Medical School, Faculdade de Ciências Médicas, Lisboa, Portugal
| | - Júlio A Costa
- Portugal Football School, Portuguese Football Federation, FPF, Oeiras, Portugal
| | - João Brito
- Portugal Football School, Portuguese Football Federation, FPF, Oeiras, Portugal
| | - Vitor H Teixeira
- Faculty of Nutrition and Food Science of the University of Porto (FCNAUP), Porto, Portugal
- University of Porto, Research Centre in Physical Activity, Health and Leisure, CIAFEL, Faculty of Sport, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- Futebol Clube Do Porto SAD, Porto, Portugal
| |
Collapse
|
11
|
Esen O, Karayigit R, Peart DJ. Acute beetroot juice supplementation did not enhance intermittent running performance in trained rugby players. Eur J Sport Sci 2023; 23:2321-2328. [PMID: 37394944 DOI: 10.1080/17461391.2023.2230942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
ABSTRACTPurpose: Since the effect of dietary nitrate (NO3-) supplementation on rugby performance is unclear, the aim of the present study was to determine the effect of acute NO3- supplementation, on the modified Yo-Yo intermittent recovery level 1 (IR1) performance test in trained male rugby players.Methods: In a randomised, counterbalanced, double-blind, placebo-controlled crossover design, 12 trained rugby union players performed two experimental trials three hours after supplementation of either 140 mL NO3--rich (BRJ; ∼12.8 mmol NO3-) or NO3--depleted (PLA) BRJ. After blood sampling, players performed the modified Yo-Yo IR1 test. Countermovement jumps (CMJ) were also measured before (pre-CMJ) and after (post-CMJ) the prone Yo-Yo IR1 test.Results: Plasma NO3- (BRJ: 570 ± 146 µM vs. PLA: 72 ± 23 µM) and nitrite (NO2-) concentrations (BRJ: 320 ± 123 nM vs. PLA: 103 ± 57 nM) were increased after BRJ compared to PLA supplementation (both P < 0.001). Performance in the modified Yo-Yo IR1 test did not differ between BRJ (542 ± 209 m) and PLA (498 ± 185 m, P = 0.3). The jump height in pre-CMJ and in post-CMJ were similar between trials (both P > 0.05).Conclusions: Acute BRJ supplementation increased plasma NO3- and NO2- concentrations but had no benefit on an intermittent running test that reflects the demands of rugby performance, and CMJ performances. The findings do not support acute high-dose NO3- supplementation as an ergogenic aid to enhance physical performance in trained male rugby players.
Collapse
Affiliation(s)
- Ozcan Esen
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, UK
- Department of Health Professions, Manchester Metropolitan University, Manchester, UK
| | - Raci Karayigit
- Faculty of Sport Sciences, Ankara University, Ankara, Turkiye
| | - Daniel J Peart
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, UK
| |
Collapse
|
12
|
Hemmatinafar M, Zaremoayedi L, Koushkie Jahromi M, Alvarez-Alvarado S, Wong A, Niknam A, Suzuki K, Imanian B, Bagheri R. Effect of Beetroot Juice Supplementation on Muscle Soreness and Performance Recovery after Exercise-Induced Muscle Damage in Female Volleyball Players. Nutrients 2023; 15:3763. [PMID: 37686795 PMCID: PMC10490293 DOI: 10.3390/nu15173763] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Beetroot juice (BRJ) contains various bioactive compounds suggested to be effective in improving athlete recovery. However, the number of studies evaluating the effects of BRJ on recovery and muscle soreness (MS) indicators in female athletes is limited. Therefore, the present study aimed to determine the effects of BRJ consumption on the performance recovery indicators and MS after exercise-induced muscle damage (EIMD) in female volleyball players. METHODS Twelve young female volleyball players were evaluated in this study. We utilized a randomized, cross-over, and double-blind design during two phases with a 30-day interval (wash-out). During each phase, EIMD was performed first, followed by BRJ or placebo (PLA) supplementation for two days (eight servings of 50 mL). Recovery monitoring of performance indicators and MS was performed after EIMD. The results of wall-sit, V sit and reach (VSFT), vertical jump height (VJH), pressure pain threshold (PPT), and thigh swelling (Sw-T) tests were recorded 48 h after EIMD. Also, the Perceived Muscle Soreness was recorded using the visual analog scale (VAS) 12 (MS-12 h), 24 (MS-24 h), and 48 (MS-48 h) hours after EIMD. RESULTS The data were analyzed using two-way repeated measures of ANOVA at p < 0.05. Compared to PLA, BRJ supplementation improves wall-sit performance after EIMD (p < 0.05), while reducing Sw-T and perceived muscle soreness (p < 0.05). However, no significant difference was observed between PLA and BRJ in VJH and VSFT performance after EIMD (p > 0.05). CONCLUSIONS Our findings indicate that the consumption of BRJ in female volleyball players can be useful for improving some recovery indicators, such as muscle endurance, perceived muscle soreness, and tissue edema, after EIMD.
Collapse
Affiliation(s)
- Mohammad Hemmatinafar
- Department of Sport Science, Faculty of Education and Psychology, Shiraz University, Shiraz 71946-84334, Iran
| | - Leila Zaremoayedi
- Department of Sport Science, Faculty of Education and Psychology, Shiraz University, Shiraz 71946-84334, Iran
| | - Maryam Koushkie Jahromi
- Department of Sport Science, Faculty of Education and Psychology, Shiraz University, Shiraz 71946-84334, Iran
| | - Stacey Alvarez-Alvarado
- Department of Neurology, College of Medicine—Jacksonville, University of Florida, Jacksonville, FL 32209, USA
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, TX 22207, USA
| | - Alireza Niknam
- Department of Sport Science, Faculty of Education and Psychology, Shiraz University, Shiraz 71946-84334, Iran
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
| | - Babak Imanian
- Department of Sport Science, Faculty of Education and Psychology, Shiraz University, Shiraz 71946-84334, Iran
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan 81746-73441, Iran
| |
Collapse
|
13
|
Thurlow F, Weakley J, Townshend AD, Timmins RG, Morrison M, McLaren SJ. The Acute Demands of Repeated-Sprint Training on Physiological, Neuromuscular, Perceptual and Performance Outcomes in Team Sport Athletes: A Systematic Review and Meta-analysis. Sports Med 2023; 53:1609-1640. [PMID: 37222864 PMCID: PMC10356687 DOI: 10.1007/s40279-023-01853-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND Repeated-sprint training (RST) involves maximal-effort, short-duration sprints (≤ 10 s) interspersed with brief recovery periods (≤ 60 s). Knowledge about the acute demands of RST and the influence of programming variables has implications for training prescription. OBJECTIVES To investigate the physiological, neuromuscular, perceptual and performance demands of RST, while also examining the moderating effects of programming variables (sprint modality, number of repetitions per set, sprint repetition distance, inter-repetition rest modality and inter-repetition rest duration) on these outcomes. METHODS The databases Pubmed, SPORTDiscus, MEDLINE and Scopus were searched for original research articles investigating overground running RST in team sport athletes ≥ 16 years. Eligible data were analysed using multi-level mixed effects meta-analysis, with meta-regression performed on outcomes with ~ 50 samples (10 per moderator) to examine the influence of programming factors. Effects were evaluated based on coverage of their confidence (compatibility) limits (CL) against elected thresholds of practical importance. RESULTS From 908 data samples nested within 176 studies eligible for meta-analysis, the pooled effects (± 90% CL) of RST were as follows: average heart rate (HRavg) of 163 ± 9 bpm, peak heart rate (HRpeak) of 182 ± 3 bpm, average oxygen consumption of 42.4 ± 10.1 mL·kg-1·min-1, end-set blood lactate concentration (B[La]) of 10.7 ± 0.6 mmol·L-1, deciMax session ratings of perceived exertion (sRPE) of 6.5 ± 0.5 au, average sprint time (Savg) of 5.57 ± 0.26 s, best sprint time (Sbest) of 5.52 ± 0.27 s and percentage sprint decrement (Sdec) of 5.0 ± 0.3%. When compared with a reference protocol of 6 × 30 m straight-line sprints with 20 s passive inter-repetition rest, shuttle-based sprints were associated with a substantial increase in repetition time (Savg: 1.42 ± 0.11 s, Sbest: 1.55 ± 0.13 s), whereas the effect on sRPE was trivial (0.6 ± 0.9 au). Performing two more repetitions per set had a trivial effect on HRpeak (0.8 ± 1.0 bpm), B[La] (0.3 ± 0.2 mmol·L-1), sRPE (0.2 ± 0.2 au), Savg (0.01 ± 0.03) and Sdec (0.4; ± 0.2%). Sprinting 10 m further per repetition was associated with a substantial increase in B[La] (2.7; ± 0.7 mmol·L-1) and Sdec (1.7 ± 0.4%), whereas the effect on sRPE was trivial (0.7 ± 0.6). Resting for 10 s longer between repetitions was associated with a substantial reduction in B[La] (-1.1 ± 0.5 mmol·L-1), Savg (-0.09 ± 0.06 s) and Sdec (-1.4 ± 0.4%), while the effects on HRpeak (-0.7 ± 1.8 bpm) and sRPE (-0.5 ± 0.5 au) were trivial. All other moderating effects were compatible with both trivial and substantial effects [i.e. equal coverage of the confidence interval (CI) across a trivial and a substantial region in only one direction], or inconclusive (i.e. the CI spanned across substantial and trivial regions in both positive and negative directions). CONCLUSIONS The physiological, neuromuscular, perceptual and performance demands of RST are substantial, with some of these outcomes moderated by the manipulation of programming variables. To amplify physiological demands and performance decrement, longer sprint distances (> 30 m) and shorter, inter-repetition rest (≤ 20 s) are recommended. Alternatively, to mitigate fatigue and enhance acute sprint performance, shorter sprint distances (e.g. 15-25 m) with longer, passive inter-repetition rest (≥ 30 s) are recommended.
Collapse
Affiliation(s)
- Fraser Thurlow
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, Australia.
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Brisbane, Australia.
| | - Jonathon Weakley
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, Australia
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Brisbane, Australia
| | - Andrew D Townshend
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, Australia
| | - Ryan G Timmins
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Brisbane, Australia
| | - Matthew Morrison
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Brisbane, Australia
| | - Shaun J McLaren
- Newcastle Falcons Rugby Club, Newcastle Upon Tyne, UK
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
14
|
López-Samanes Á, Pérez-Lopez A, Morencos E, Muñoz A, Kühn A, Sánchez-Migallón V, Moreno-Pérez V, González-Frutos P, Bach-Faig A, Roberts J, Domínguez R. Beetroot juice ingestion does not improve neuromuscular performance and match-play demands in elite female hockey players: a randomized, double-blind, placebo-controlled study. Eur J Nutr 2023; 62:1123-1130. [PMID: 36401662 DOI: 10.1007/s00394-022-03052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 11/03/2022] [Indexed: 11/20/2022]
Abstract
PURPOSE Beetroot juice is a dietary supplement that contains high levels of inorganic nitrate (NO3-) and that its intake has proven effective at increasing blood nitric oxide (NO) concentrations improving endurance performance. However, the effect of this supplement in team sport performance, especially in female athletes, has been barely studied. This study aimed to compare the acute effects of beetroot juice supplementation on neuromuscular performance and match-play demands in elite female field hockey players. METHODS Eleven elite female hockey players (22.8 ± 5.1 years) belonging to a bronze team medal in Eurohockey Club Champions Cup participated in this study. Participants were randomly divided into two groups undergoing a test battery with beetroot juice (70 mL, 6.4 mmol NO3-) or placebo (70 mL, 0.04 mmol NO3-) in two different days with one week between protocols. The neuromuscular test battery consisted of a countermovement jump, isometric handgrip strength (i.e., dominant hand), 20 m-sprint and repeated sprint ability test (RSA). Afterward, a simulated hockey match play (2 × 12.5 min) was performed and recorded by Global Positioning System (GPS). RESULTS No statistically significant improvements were observed in any physical parameters analysed comparing beetroot juice compared to placebo ingestion, countermovement jump (p = 0.776, ES = 0.16), isometric handgrip strength (p = 0.829; ES = - 0.08), 20 m sprint test (p = 0.227; ES = - 0.23), mean repeated sprint ability (p = 0.955, ES = 0.03) and in any physical match demands measured by GPS (p = 0.243-1.000; ES = 0.02-0.47). CONCLUSION Acute beetroot juice supplementation did not produce any statistically significant improvement in neuromuscular performance or match-play demands in elite female field hockey players. TRIAL REGISTRATION The study was registered in ClinicalTrials.gov with the following ID: NCT05209139. The study was retrospectively registered by 26 January 2022.
Collapse
Affiliation(s)
- Álvaro López-Samanes
- Exercise Physiology Group, School of Physiotherapy, Faculty of Health Sciences, Universidad Francisco de Vitoria Carretera Pozuelo a Majadahonda, Km 1.800, 28223, Pozuelo de Alarcón, Madrid, Spain.
| | - Alberto Pérez-Lopez
- Facultad de Medicina y Ciencias de la Salud, Departamento de Ciencias Biomédicas, Área de Educación Física y Deportiva, Universidad de Alcalá, Madrid, Spain
| | - Esther Morencos
- Exercise and Sport Sciences, Faculty of Health Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Alejandro Muñoz
- Exercise Physiology Group, School of Physiotherapy, Faculty of Health Sciences, Universidad Francisco de Vitoria Carretera Pozuelo a Majadahonda, Km 1.800, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Adriaan Kühn
- Institute of International Politics, Universidad Francisco de Vitoria, Madrid, Spain
| | - Violeta Sánchez-Migallón
- Exercise Physiology Group, School of Physiotherapy, Faculty of Health Sciences, Universidad Francisco de Vitoria Carretera Pozuelo a Majadahonda, Km 1.800, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Víctor Moreno-Pérez
- Center for Translational Research in Physiotherapy, Department of Pathology and Surgery, Universidad Miguel Hernández, San Juan, Spain
| | - Pablo González-Frutos
- Exercise and Sport Sciences, Faculty of Health Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Anna Bach-Faig
- FoodLab Research Group, Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Justin Roberts
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge, UK
| | - Raúl Domínguez
- Departamento de Motricidad Humana y Rendimiento Deportivo, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
15
|
Dorożyński B, Osowski M, Balwierz R, Biernat P, Jasicka-Misiak I. Application of beetroot's nitrates juice in team sports. Sci Sports 2023. [DOI: 10.1016/j.scispo.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
16
|
Mohd Daud SM, Sukri NM, Johari MH, Gnanou J, Manaf FA. Pure Juice Supplementation: Its Effect on Muscle Recovery and Sports Performance. Malays J Med Sci 2023; 30:31-48. [PMID: 36875192 PMCID: PMC9984102 DOI: 10.21315/mjms2023.30.1.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/07/2021] [Indexed: 03/05/2023] Open
Abstract
Strenuous exercise causes increased production of reactive oxygen species (ROS), creating an imbalance between ROS and antioxidants. The reduced antioxidant defence leads to defective elimination of ROS and consequently, delayed-onset muscle soreness (DOMS). DOMS due to exhaustive or prolonged exercise typically peaks between 24 h and 72 h after exercise results in soreness, inflammation, pain and decreased muscle function. As a result, muscle strength will be reduced progressively and this situation might be detrimental to one's athletic performance, especially amidst competition season. Therefore, supplementation to improve muscle recovery and sports performance has become a common practice among athletes. However, it is suggested to consume natural-based fruit-derived antioxidants as a more effective and safe nutritional strategy. Fruits containing a high amount of polyphenol protect muscle cells from excessive and harmful ROS due to their anti-inflammatory and antioxidant characteristics. To date, there are several expended studies on the consumption of supplements from various antioxidant-rich fruits to provide evidence on their effectiveness, giving better solutions and wider choices of supplementation to the athletes. Therefore, this review aims to provide a comprehensive overview of nutritional standpoint from previous literature on the effect of fruit juices supplementation on muscle recovery and sports performance.
Collapse
Affiliation(s)
- Siti Maizura Mohd Daud
- Defence Fitness Academy, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Nursyuhada Mohd Sukri
- Defence Fitness Academy, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Mohamad Hanapi Johari
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Justin Gnanou
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Faizal Abdul Manaf
- Defence Fitness Academy, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Moreno B, Morencos E, Vicente-Campos D, Muñoz A, González-García J, Veiga S. Effects of beetroot juice intake on repeated performance of competitive swimmers. Front Physiol 2023; 13:1076295. [PMID: 36703935 PMCID: PMC9871287 DOI: 10.3389/fphys.2022.1076295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Beetroot juice is a sport supplement with a high level of evidence on the physical performance enhancement. However, in swimming, there is no clear data about the effects of beetroot juice on performance. Objective: To investigate whether an acute intake of beetroot juice (BJ) improves the performance of competitive swimmers in a repeated maximum swimming effort. Method: Thirteen national-level swimmers (six females and seven males), participated in this randomized, double-blind crossover study. In two different trials, swimmers ingested a 70-mL placebo shot (.04 mmol NO3 -; PLA) or a 70-mL Beet-It shot (6.4 mmol of NO3 -beet juice [BJ]) 3 h before undergoing a 6 × 100-m front-crawl maximal effort test with 7 min rest between each 100 m. Results: Overall, 100-m times showed no difference between the BJ and PLA groups (p = .364), although a possibly shorter time was observed for BJ in the last repetition (p = .104; mean difference [MD] = -.99 s, mean-based inference [MBI] = 49/51/0). Participants in the BJ condition showed a possibly lower rate of perceived exertion in the first (p = .242, MD = -.85, MBI = 70/28/2) and second repetitions (p = .165, MD = 1.15, MBI = 83/16/1), whereas Total Quality Recovery scale scores were likely higher in the first (p = .110, MD = 1.15, MBI = 83/16/1) and third (p = .082, MD = -.77, MBI = 70/29/1) repetitions compared with those in the PLA group. Blood lactate concentration [La+] levels showed no differences between groups in any of the repetitions (p > .05, unclear), and we observed an increase in 100-m times for both BJ and PLA (BJ: p = .014, MD = -1.51 s; PLA: p = .029, MD = -1.57 s) after the fifth repetition. Conclusion: No clear differences in performance were observed in a 6 × 100-m repeated sprint test by competitive swimmers when supplementing (or not) with BJ. However, there was a trend toward a better recovery between efforts and a better tolerance of fatigue when swimmers ingested BJ.
Collapse
Affiliation(s)
- Berta Moreno
- Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain,Departamento de Deportes, Universidad Politécnica de Madrid, Madrid, Spain
| | - Esther Morencos
- Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - Davinia Vicente-Campos
- Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - Alejandro Muñoz
- Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - Jaime González-García
- Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - Santiago Veiga
- Departamento de Deportes, Universidad Politécnica de Madrid, Madrid, Spain,*Correspondence: Santiago Veiga,
| |
Collapse
|
18
|
Nutritional Compounds to Improve Post-Exercise Recovery. Nutrients 2022; 14:nu14235069. [PMID: 36501099 PMCID: PMC9736198 DOI: 10.3390/nu14235069] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022] Open
Abstract
The metabolic and mechanical stresses associated with muscle-fatiguing exercise result in perturbations to bodily tissues that lead to exercise-induced muscle damage (EIMD), a state of fatigue involving oxidative stress and inflammation that is accompanied by muscle weakness, pain and a reduced ability to perform subsequent training sessions or competitions. This review collates evidence from previous research on a wide range of nutritional compounds that have the potential to speed up post-exercise recovery. We show that of the numerous compounds investigated thus far, only two-tart cherry and omega-3 fatty acids-are supported by substantial research evidence. Further studies are required to clarify the potential effects of other compounds presented here, many of which have been used since ancient times to treat conditions associated with inflammation and disease.
Collapse
|
19
|
Effects of Polyphenol Consumption on Recovery in Team Sport Athletes of Both Sexes: A Systematic Review. Nutrients 2022; 14:nu14194085. [PMID: 36235737 PMCID: PMC9573146 DOI: 10.3390/nu14194085] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/08/2022] Open
Abstract
Previous studies have shown that polyphenol consumption enhances recovery of the muscle after exercise-induced muscle damage (EIMD). However, EIMD markers have not been studied by sport type. The main aim of this research was to perform a systematic review to determine the efficacy of polyphenolic consumption in increasing muscle recovery for performing team sport skills. Eligible studies included, following PICOS structure, presented at least one of the following outcomes: maximal isometric voluntary contraction (MVIC); countermovement jump (CMJ); delayed onset muscle soreness (DOMS); 20 m sprint test; creatine kinase (CK); and C-reactive protein (hsCRP). A structured search was carried out following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. The risk of bias was assessed using the PEDro scale tool. The review showed a possibly positive impact of polyphenol consumption on recovery after EIMD in team sports athletes. No differences were found between sexes. Considering the limitations, there is moderate to very low certainty of polyphenol supplementation effects on recovery of team sport females and males. A dose of 60 mL/day, divided into two times per day, ingested for >7 days may present positive effects on muscle function and muscle soreness in team sport athletes. However, further investigation is required, specifically in females.
Collapse
|
20
|
Gamonales JM, Rojas-Valverde D, Muñoz-Jiménez J, Serrano-Moreno W, Ibáñez SJ. Effectiveness of Nitrate Intake on Recovery from Exercise-Related Fatigue: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12021. [PMID: 36231323 PMCID: PMC9566188 DOI: 10.3390/ijerph191912021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Recovery between efforts is critical to achieving optimal physical and sports performance. In this sense, many nutritional supplements that have been proven to improve recovery and physical and physiological performance are widely used. Supplements such as nitrates (NO3-), including organic foods such as beets, promote muscle recovery and relieve fatigue. This study aimed to comprehensively summarise the available literature on the effect of NO3- consumption on exercise-related fatigue and muscle damage. METHODS A systematic search was carried out based on the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) using electronic databases (e.g., PubMed, Scopus, and Web of Science). From a total of 1634 studies identified, 15 studies were included in this review. RESULTS Based on the review, NO3- intake provokes physiological and metabolic responses that could potentially boost exercise-related recovery. NO3- could improve recovery indicators related to strength, pain, inflammation, and muscle damage. CONCLUSIONS Despite the relative proven effectiveness of NO3- on recovery after aerobic and anaerobic efforts, based on the heterogeneity of the procedures (e.g., dosage, chronic vs. acute intake, participants' characteristics, variables and outcomes), it could be premature to suggest its extended use in sports.
Collapse
Affiliation(s)
- José M. Gamonales
- Research Group in Optimization of Training and Sports Performance (GOERD), University of Extremadura, Av. De la Universidad, s/n, 10003 Cáceres, Spain
- Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Spain
| | - Daniel Rojas-Valverde
- Núcleo de Estudios Para el Alto Rendimiento y la Salud (NARS-CIDISAD), Escuela Ciencia del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional, Heredia 863000, Costa Rica
- Clínica de Lesiones Deportivas (Rehab&Readapt), Escuela Ciencia del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional, Heredia 863000, Costa Rica
| | - Jesús Muñoz-Jiménez
- Research Group in Optimization of Training and Sports Performance (GOERD), University of Extremadura, Av. De la Universidad, s/n, 10003 Cáceres, Spain
| | - Walter Serrano-Moreno
- Posgrado en Ciencias Médicas, Facultad de Medicina, Universidad de Colima, Colima 28040, Mexico
| | - Sergio J. Ibáñez
- Research Group in Optimization of Training and Sports Performance (GOERD), University of Extremadura, Av. De la Universidad, s/n, 10003 Cáceres, Spain
| |
Collapse
|
21
|
Jurado-Castro JM, Campos-Perez J, Ranchal-Sanchez A, Durán-López N, Domínguez R. Acute Effects of Beetroot Juice Supplements on Lower-Body Strength in Female Athletes: Double-Blind Crossover Randomized Trial. Sports Health 2022; 14:812-821. [PMID: 35603411 DOI: 10.1177/19417381221083590] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Beetroot juice (BRJ) is used as an ergogenic aid, but no previous study has analyzed the effect this supplement has on the production of explosive force and muscular endurance in physically active women. HYPOTHESIS BRJ improves explosive force and muscular endurance in the lower limbs of physically active women. STUDY DESIGN Randomized double-blind crossover study. LEVEL OF EVIDENCE Level 3. METHODS Fourteen physically active women performed a countermovement jump (CMJ) test, a back squat test for assessing velocity and power at 50% and 75% of one-repetition maximum (1RM), and the number of repetitions on a muscular endurance test consisting of 3 sets at 75% of 1RM in a resistance training protocol comprising 3 exercises (back squat, leg press, and leg extension). The participants performed the test in 2 sessions, 150 minutes after ingesting 70 mL of either BRJ (400 mg of nitrate) or a placebo (PLA). RESULTS A greater maximum height was achieved in the CMJ after consuming BRJ compared with a PLA (P = 0.04; effect size (ES) = 0.34). After a BRJ supplement at 50% 1RM, a higher mean velocity [+6.7%; P = 0.03; (ES) = 0.39 (-0.40 to 1.17)], peak velocity (+6%; P = 0.04; ES = 0.39 [-0.40 to 1.17]), mean power (+7.3%; P = 0.02; ES = 0.30 [-0.48 to 1.08]) and peak power (+6%; P = 0.04; ES = 0.20 [-0.59 to 0.98]) were attained in the back squat test. In the muscular endurance test, BRJ increased performance compared with the PLA (P < 0.00; ηp2 = 0.651). CONCLUSION BRJ supplements exert an ergogenic effect on the ability to produce explosive force and muscular endurance in the lower limbs in physically active women. CLINICAL RELEVANCE If physically active women took a BRJ supplement 120 minutes before resistance training their performance could be enhanced.
Collapse
Affiliation(s)
- Jose Manuel Jurado-Castro
- Metabolism and Investigation Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Córdoba, Spain.,Escuela Universitaria de Osuna (Centro Adscrito a la Universidad de Sevilla), Osuna, Spain
| | - Julian Campos-Perez
- Department of Food Science and Technology, Rabanales University Campus, University of Cordoba, Córdoba, Spain
| | - Antonio Ranchal-Sanchez
- Department of Nursing, Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, University of Cordoba, Córdoba, Spain.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, University of Cordoba, Spain
| | - Natalia Durán-López
- Department of Nursing, Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, University of Cordoba, Córdoba, Spain
| | - Raúl Domínguez
- Departamento de Motricidad Humana y Rendimiento Deportivo, Universidad de Sevilla, Sevilla, Spain.,Studies Research Group in Neuromuscular Responses (GEPREN), University of Lavras, Lavras, Brazil
| |
Collapse
|
22
|
Gonçalves AC, Gaspar D, Flores-Félix JD, Falcão A, Alves G, Silva LR. Effects of Functional Phenolics Dietary Supplementation on Athletes' Performance and Recovery: A Review. Int J Mol Sci 2022; 23:4652. [PMID: 35563043 PMCID: PMC9102074 DOI: 10.3390/ijms23094652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, many efforts have been made to identify micronutrients or nutritional strategies capable of preventing, or at least, attenuating, exercise-induced muscle damage and oxidative stress, and improving athlete performance. The reason is that most exercises induce various changes in mitochondria and cellular cytosol that lead to the generation of reactive species and free radicals whose accumulation can be harmful to human health. Among them, supplementation with phenolic compounds seems to be a promising approach since their chemical structure, composed of catechol, pyrogallol, and methoxy groups, gives them remarkable health-promoting properties, such as the ability to suppress inflammatory processes, counteract oxidative damage, boost the immune system, and thus, reduce muscle soreness and accelerate recovery. Phenolic compounds have also already been shown to be effective in improving temporal performance and reducing psychological stress and fatigue. Therefore, the aim of this review is to summarize and discuss the current knowledge on the effects of dietary phenolics on physical performance and recovery in athletes and sports practitioners. Overall, the reports show that phenolics exert important benefits on exercise-induced muscle damage as well as play a biological/physiological role in improving physical performance.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Dário Gaspar
- Department of Sport Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal;
| | - José David Flores-Félix
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
| | - Amílcar Falcão
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
- CPIRN-UDI/IPG—Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|
23
|
Tan R, Cano L, Lago-Rodríguez Á, Domínguez R. The Effects of Dietary Nitrate Supplementation on Explosive Exercise Performance: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020762. [PMID: 35055584 PMCID: PMC8775572 DOI: 10.3390/ijerph19020762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
Dietary nitrate supplementation is evidenced to induce physiological effects on skeletal muscle function in fast-twitch muscle fibers and may enhance high-intensity exercise performance. An important component of sport-specific skills is the ability to perform explosive movements; however, it is unclear if nitrate supplementation can impact explosive efforts. We examined the existing evidence to determine whether nitrate supplementation improves explosive efforts lasting ≤ 6 s. PubMed, Scopus and Directory of Open Access Journals (DOAJ) were searched for articles using the following search strategy: (nitrate OR nitrite OR beetroot) AND (supplement OR supplementation) AND (explosive OR power OR high intensity OR high-intensity OR sprint* OR “athletic performance”). Out of 810 studies, 18 were eligible according to inclusion criteria. Results showed that 4 of the 10 sprint-type studies observed improved sprint time, power output, and total work in cycling or running, whereas 4 of the 10 resistance-based exercise studies observed improvements to power and velocity of free-weight bench press as well as isokinetic knee extension and flexion at certain angular velocities. These results suggest that nitrate potentially improves explosive exercise performance, but further work is required to clarify the factors influencing the efficacy of nitrate in different exercise modalities.
Collapse
Affiliation(s)
- Rachel Tan
- Faculty of Sports Medicine, Natural Sciences Division, Pepperdine University, Malibu, CA 90263, USA;
| | - Leire Cano
- Independent Researcher, 48991 Getxo, Spain;
| | - Ángel Lago-Rodríguez
- Movement, Brain and Health Group, Center of Higher Education Alberta Giménez, 07013 Palma de Mallorca, Spain
- Correspondence: ; Tel.: +34-680-330-105
| | - Raúl Domínguez
- Departamento de Motricidad Humana y Rendimiento, Universidad de Sevilla, 41013 Sevilla, Spain;
- Studies Research Group in Neuromuscular Responses (GEPREN), University of Lavras, Lavras 37200-000, Brazil
| |
Collapse
|
24
|
Dietary Supplementation for Attenuating Exercise-Induced Muscle Damage and Delayed-Onset Muscle Soreness in Humans. Nutrients 2021; 14:nu14010070. [PMID: 35010943 PMCID: PMC8746365 DOI: 10.3390/nu14010070] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Dietary supplements are widely used as a nutritional strategy to improve and maintain performance and achieve faster recovery in sports and exercise. Exercise-induced muscle damage (EIMD) is caused by mechanical stress and subsequent inflammatory responses including reactive oxygen species and cytokine production. Therefore, dietary supplements with anti-inflammatory and antioxidant properties have the potential to prevent and reduce muscle damage and symptoms characterized by loss of muscle strength and delayed-onset muscle soreness (DOMS). However, only a few supplements are considered to be effective at present. This review focuses on the effects of dietary supplements derived from phytochemicals and listed in the International Olympic Committee consensus statement on muscle damage evaluated by blood myofiber damage markers, muscle soreness, performance, and inflammatory and oxidative stress markers. In this review, the effects of dietary supplements are also discussed in terms of study design (i.e., parallel and crossover studies), exercise model, and such subject characteristics as physical fitness level. Future perspectives and considerations for the use of dietary supplements to alleviate EIMD and DOMS are also discussed.
Collapse
|
25
|
Penggalih MHST, Niamilah I, Pramesti YP, Bactiar N, Wardhani SK. PENGARUH PEMBERIAN JUS BIT TERFORTIFIKASI FESO4 INSTAN (JUS BEEFE) DALAM MENANGGULANGI ANEMIA ATLET REMAJA PUTRI. JURNAL TEKNOLOGI DAN INDUSTRI PANGAN 2021. [DOI: 10.6066/jtip.2021.32.2.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Prolonged physical exercise has the risk of increasing free radicals which will affect the breakdown of red blood cells and promote the risk of decreased hemoglobin. Adolescent female athletes have a risk of decreasing hemoglobin due to menstruation. This situation can get worse if the athletes have iron defi-ciency or anemia as the result of poor diet choice. Increased radicals and anemia affect the amount of oxygen carried to the tissues and the maximum volume of oxygen an individual can use to produce energy (VO2 max). Beets have benefits for athlete's performance and have been developed into an instant drink. The purpose of this study was to determine the effect of an instant FeSO4 fortified beet juice (BeeFe juice) in overcoming anemia on female adolescent athletes. This research using an experimental study with controlled trial pre-posttest design. Twenty-nine adolescent female athletes, aged 13-19 years, were divided into two groups. Fe tablet supplementation (containing Fe 60 mg) was given to 15 athletes in the control group and BeeFe juice (containing Fe 17 mg) was given to 14 athletes in the treatment group du-ring the luteal and menstruation phase (±14 days). Hemoglobin levels, Malondialdehyde (MDA) and maxi-mal oxygen volume (VO2 max) were examined before and after the intervention. Data were analyzed using paired t-test and independent t-test IBM SPSS version 22. This research has obtained Ethical Appro-val with number KE/FK/0633/EC/2018 from the Ethical Commission of FKKMK UGM. The results showed no significant difference between the group given Fe tablets and the group given BeeFe juice on hemo-globin levels (P>0.05), MDA levels (P>0.05), and VO2 max levels (P>0.05) in the menstrual and luteal phases of menstruation. It can be concluded that BeeFe juice has the same effectiveness as commercial Fe tablets. BeeFe juice can be an alternative food ingredient in iron supplementation.
Collapse
|
26
|
Wong TH, Sim A, Burns SF. The Effect of Beetroot Ingestion on High-Intensity Interval Training: A Systematic Review and Meta-Analysis. Nutrients 2021; 13:3674. [PMID: 34835931 PMCID: PMC8618171 DOI: 10.3390/nu13113674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023] Open
Abstract
Dietary nitrate supplementation has shown promising ergogenic effects on endurance exercise. However, at present there is no systematic analysis evaluating the effects of acute or chronic nitrate supplementation on performance measures during high-intensity interval training (HIIT) and sprint interval training (SIT). The main aim of this systematic review and meta-analysis was to evaluate the evidence for supplementation of dietary beetroot-a common source of nitrate-to improve peak and mean power output during HIIT and SIT. A systematic literature search was carried out following PRISMA guidelines and the PICOS framework within the following databases: PubMed, ProQuest, ScienceDirect, and SPORTDiscus. Search terms used were: ((nitrate OR nitrite OR beetroot) AND (HIIT or high intensity or sprint interval or SIT) AND (performance)). A total of 17 studies were included and reviewed independently. Seven studies applied an acute supplementation strategy and ten studies applied chronic supplementation. The standardised mean difference for mean power output showed an overall trivial, non-significant effect in favour of placebo (Hedges' g = -0.05, 95% CI -0.32 to 0.21, Z = 0.39, p = 0.69). The standardised mean difference for peak power output showed a trivial, non-significant effect in favour of the beetroot juice intervention (Hedges' g = 0.08, 95% CI -0.14 to 0.30, Z = 0.72, p = 0.47). The present meta-analysis showed trivial statistical heterogeneity in power output, but the variation in the exercise protocols, nitrate dosage, type of beetroot products, supplementation strategy, and duration among studies restricted a firm conclusion of the effect of beetroot supplementation on HIIT performance. Our findings suggest that beetroot supplementation offers no significant improvement to peak or mean power output during HIIT or SIT. Future research could further examine the ergogenic potential by optimising the beetroot supplementation strategy in terms of dosage, timing, and type of beetroot product. The potential combined effect of other ingredients in the beetroot products should not be undermined. Finally, a chronic supplementation protocol with a higher beetroot dosage (>12.9 mmol/day for 6 days) is recommended for future HIIT and SIT study.
Collapse
Affiliation(s)
| | | | - Stephen F. Burns
- Physical Education and Sports Science, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore; (T.H.W.); (A.S.)
| |
Collapse
|
27
|
Moreira LDSG, Fanton S, Cardozo L, Borges NA, Combet E, Shiels PG, Stenvinkel P, Mafra D. Pink pressure: beetroot (Beta vulgaris rubra) as a possible novel medical therapy for chronic kidney disease. Nutr Rev 2021; 80:1041-1061. [PMID: 34613396 DOI: 10.1093/nutrit/nuab074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease (CKD) manifests with systemic inflammation, oxidative stress, and gut dysbiosis, resulting in metabolic disorders and elevated rates of cardiovascular disease-associated death. These all correlate with a high economic cost to healthcare systems. Growing evidence indicates that diet is an indispensable ally in the prevention and management of CKD and its complications. In this context, the root vegetable beetroot (Beta vulgaris rubra) deserves special attention because it is a source of several bioactive compounds, such as nitrate, betaine, and betalain, and has shown beneficial effects in CKD, including reduction of blood pressure, anti-inflammatory effects, and antioxidant actions by scavenging radical oxidative species, as observed in preclinical studies. Beetroot consumption as a possible therapeutic strategy to improve the clinical treatment of patients with CKD and future directions for clinical studies are addressed in this narrative review.
Collapse
Affiliation(s)
- Laís de Souza Gouveia Moreira
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Susane Fanton
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ludmila Cardozo
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Natalia A Borges
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Emilie Combet
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Paul G Shiels
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Stenvinkel
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Denise Mafra
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
28
|
Miraftabi H, Avazpoor Z, Berjisian E, Sarshin A, Rezaei S, Domínguez R, Reale R, Franchini E, Samanipour MH, Koozehchian MS, Willems MET, Rafiei R, Naderi A. Effects of Beetroot Juice Supplementation on Cognitive Function, Aerobic and Anaerobic Performances of Trained Male Taekwondo Athletes: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910202. [PMID: 34639501 PMCID: PMC8507686 DOI: 10.3390/ijerph181910202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022]
Abstract
Studies have shown that nitrate (NO3−)-rich beetroot juice (BJ) supplementation improves endurance and high-intensity intermittent exercise. The dose–response effects on taekwondo following BJ supplementation are yet to be determined. This study aimed to investigate two acute doses of 400 mg of NO3− (BJ-400) and 800 mg of NO3− (BJ-800) on taekwondo-specific performance and cognitive function tests compared with a placebo (PL) and control (CON) conditions. Eight trained male taekwondo athletes (age: 20 ± 4 years, height: 180 ± 2 cm, body mass: 64.8 ± 4.0 kg) completed four experimental trials using a randomized, double-blind placebo-controlled design: BJ-400, BJ-800, PL, and CON. Participants consumed two doses of BJ-400 and BJ-800 or nitrate-depleted PL at 2.5 h prior to performing the Multiple Frequency Speed of Kick Test (FSKT). Countermovement jump (CMJ) was performed before the (FSKT) and PSTT, whereas cognitive function was assessed (via the Stroop test) before and after supplementation and 10 min following PSTT. Blood lactate was collected before the CMJ tests immediately and 3 min after the FSKT and PSST; rating of perceived exertion (RPE) was recorded during and after both specific taekwondo tests. No significant differences (p > 0.05), with moderate and large effect sizes, between conditions were observed for PSTT and FSKT performances. In addition, blood lactate, RPE, heart rate, and CMJ height were not significantly different among conditions (p > 0.05). However, after the PSTT test, cognitive function was higher in BJ-400 compared to other treatments (p < 0.05). It was concluded that acute intake of 400 and 800 mg of NO3− rich BJ reported a moderate to large effect size in anaerobic and aerobic; however, no statistical differences were found in taekwondo-specific performance.
Collapse
Affiliation(s)
- Hossein Miraftabi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Tehran University, Tehran 1417935840, Iran; (H.M.); (Z.A.); (E.B.); (R.R.)
| | - Zahra Avazpoor
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Tehran University, Tehran 1417935840, Iran; (H.M.); (Z.A.); (E.B.); (R.R.)
| | - Erfan Berjisian
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Tehran University, Tehran 1417935840, Iran; (H.M.); (Z.A.); (E.B.); (R.R.)
| | - Amir Sarshin
- Clinical Care and Health Promotion Research Center, Karaj Branch, Islamic Azad University, Karaj 3149968111, Iran;
| | - Sajjad Rezaei
- Department of Physical Education & Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran 1411713116, Iran;
| | - Raúl Domínguez
- Departamento de Motricidad Humana y Rendimiento Deportivo, Faculty of Education Sciences, Universidad de Sevilla, 41018 Sevilla, Spain;
- Studies Research Group in Neuromuscular Responses (GEPREN), University of Lavras, Lavras 37200-000, Brazil
| | - Reid Reale
- USA.UFC Performance Institute, Shanghai 200072, China;
| | - Emerson Franchini
- School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, Brazil;
| | | | - Majid S. Koozehchian
- Department of Kinesiology, Jacksonville State University, Jacksonville, AL 36265, USA;
| | - Mark E. T. Willems
- Institute of Sport, Nursing and Allied Health, College Lane, University of Chichester, Chichester PO19 6PE, UK;
| | - Ramin Rafiei
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Tehran University, Tehran 1417935840, Iran; (H.M.); (Z.A.); (E.B.); (R.R.)
| | - Alireza Naderi
- Department of Sport Physiology, Boroujerd Branch, Islamic Azad University, Boroujerd 6915136111, Iran
- Correspondence: ; Tel.: +98-91-0448-6440
| |
Collapse
|
29
|
Rickards L, Lynn A, Harrop D, Barker ME, Russell M, Ranchordas MK. Effect of Polyphenol-Rich Foods, Juices, and Concentrates on Recovery from Exercise Induced Muscle Damage: A Systematic Review and Meta-Analysis. Nutrients 2021; 13:nu13092988. [PMID: 34578866 PMCID: PMC8465563 DOI: 10.3390/nu13092988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 01/18/2023] Open
Abstract
Objectives. To determine the effects of consuming polyphenol-rich foods, juices and concentrates on recovery from exercise-induced muscle damage (EIMD). Method. Eligibility criteria. Randomised and quasi-randomised placebo-controlled trials with a parallel or cross-over design evaluating the effects of consuming polyphenol-rich foods, juices and concentrates on recovery from EIMD in humans. Eligible studies included at least one of the primary outcome measures: maximal isometric voluntary contraction; MIVC, delayed onset muscle soreness; DOMS, or countermovement jump; CMJ. Information sources. AMED, Cochrane Central Register of Controlled Trials, International Clinical Trials Registry Platform, PUBMED, SCOPUS (Elsevier), SPORTDiscus (EBSCO), and the UK Clinical Trials Gateway were searched from inception to September 2020. Risk of bias and quality of evidence. Risk of bias was assessed using Cochrane Risk of Bias 2 tool. Quality of the evidence was assessed using the Grading of Recommendations, Assessment, Development and Evaluation framework. Synthesis of results. Random effects models were used to determine the effect of polyphenol supplementation on recovery from EIMD. Data are presented as standardised mean differences (SMD) with 95% confidence intervals (CI). Results. Included studies. Twenty-five studies were included; 15 had a parallel, and 10 had a cross-over design. A total of 527 participants (male: n = 425; female: n = 102) were included in the meta-analysis. Synthesis of results. Consumption of polyphenol-rich foods, juices and concentrates accelerated recovery of MIVC immediately post-exercise (SMD = 0.23, 95% CI 0.04, 0.42; p = 0.02; low-quality evidence), 24 h (SMD = 0.39, 95% CI 0.15, 0.62; p = 0.001; low-quality evidence), 48 h (SMD = 0.48, 95% CI 0.28, 0.67; p < 0.001; moderate-quality evidence), 72 h (SMD = 0.29, 95% CI 0.11, 0.46; p = 0.001; low-quality evidence) and 96 h post-exercise (SMD = 0.50, 95% CI 0.16, 0.83; p = 0.004; very low-quality evidence). DOMS was reduced at 24 h (SMD = −0.29, 95% CI −0.47, −0.11; p = 0.002; low-quality evidence), 48 h (SMD = −0.28, 95% CI −0.46, −0.09; p = 0.003; low-quality evidence) and 72 h post-exercise (SMD = −0.46, 95% CI −0.69, −0.24; p < 0.001; very low-quality evidence). CMJ height was greater immediately post-exercise (SMD = 0.27, 95% CI 0.01, 0.53; p = 0.04; low-quality evidence), at 24 h (SMD = 0.47, 95% CI 0.11, 0.83; p = 0.01; very low-quality evidence), 48 h (SMD = 0.58, 95% CI 0.24, 0.91; p < 0.001; very low-quality evidence) and 72 h post-exercise (SMD = 0.57, 95% CI 0.03, 1.10; p = 0.04; very low-quality evidence). Polyphenol supplementation did not alter creatine kinase, c-reactive protein, and interleukin−6 at any time points. At 72 h post-exercise, protein carbonyls (SMD = −0.64, 95% CI −1.14, −0.14; p = 0.01) were reduced. Discussion. Limitations of evidence. Risk of bias was high for 10 studies and moderate for 15. Sensitivity analyses excluding the high risk of bias studies reduced the SMDs for MIVC and DOMS, and for CMJ effects at 24 and 48 h were no longer statistically significant. Interpretation. Consuming polyphenol-rich foods, juices and concentrates accelerated recovery of muscle function while reducing muscle soreness in humans. Maximal benefit occurred 48–72 h post-exercise, however, the certainty of the evidence was moderate to very low. Supplementation could be useful when there is limited time between competitive events and impaired recovery could negatively impact performance.
Collapse
Affiliation(s)
- Lee Rickards
- Academy of Sport & Physical Activity, Sheffield Hallam University, Sheffield S10 2BP, UK; (L.R.); (D.H.)
| | - Anthony Lynn
- Department of Service Sector, Management Business School, Sheffield Hallam University, Sheffield S1 1WP, UK; (A.L.); (M.E.B.)
| | - Deborah Harrop
- Academy of Sport & Physical Activity, Sheffield Hallam University, Sheffield S10 2BP, UK; (L.R.); (D.H.)
| | - Margo E. Barker
- Department of Service Sector, Management Business School, Sheffield Hallam University, Sheffield S1 1WP, UK; (A.L.); (M.E.B.)
| | - Mark Russell
- School of Social and Health Sciences, Leeds Trinity University, Leeds LS18 5HD, UK;
| | - Mayur K. Ranchordas
- Academy of Sport & Physical Activity, Sheffield Hallam University, Sheffield S10 2BP, UK; (L.R.); (D.H.)
- Correspondence: ; Tel.: +44-11-4225-5678
| |
Collapse
|
30
|
Rojano-Ortega D, Peña Amaro J, Berral-Aguilar AJ, Berral-de la Rosa FJ. Effects of Beetroot Supplementation on Recovery After Exercise-Induced Muscle Damage: A Systematic Review. Sports Health 2021; 14:556-565. [PMID: 34399653 DOI: 10.1177/19417381211036412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
CONTEXT Beetroots have antioxidant and anti-inflammatory properties, which may help attenuate inflammation and oxidative stress, enhancing recovery from exercise-induced muscle damage (EIMD). OBJECTIVE To evaluate the effects of beetroot supplementation on oxidative stress, inflammation, and recovery after EIMD. DATA SOURCES SPORTDiscus, PubMed, Web of Science, and Scopus databases were searched, and hand-searching was performed by looking to relevant studies that were cited in other studies. STUDY SELECTION For a study to be included in this review, the following inclusion criteria had to be met: (1) research conducted with human participants, (2) original articles in peer-reviewed publications, (3) original studies that had investigated beetroot supplementation intervention on muscle damage and recovery, (4) research conducted with 1 control/placebo group, and (5) articles published from inception to October 2020. STUDY DESIGN Systematic review using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement. LEVEL OF EVIDENCE Level 3. DATA EXTRACTION Two of the 4 authors independently extracted data and assessed the methodological quality of the articles with the PEDro scale. All discrepancies were resolved through a consensus meeting. RESULTS A total of 9 studies were included in this review. The methodological quality of the included studies ranged from moderate to high. Most of the studies found a better recovery of functional variables and muscle soreness, but improvements in markers of muscle damage, inflammation, and oxidative stress were not reported. CONCLUSION The existing evidence suggests that a short-term beetroot supplementation has the potential to accelerate recovery of functional measures and muscle soreness, but further research is needed to clarify if a longer supplementation period (with some days before exercise and some days after) could also promote recovery of markers of muscle damage, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Daniel Rojano-Ortega
- Department of Informatics and Sports, University Pablo de Olavide, Seville, Spain
| | - José Peña Amaro
- Department of Morphological and Socio-sanitary Sciences, University of Córdoba, Córdoba, Spain
| | | | | |
Collapse
|
31
|
Four Days of Blueberry Powder Supplementation Lowers the Blood Lactate Response to Running But Has No Effect on Time-Trial Performance. Int J Sport Nutr Exerc Metab 2021; 29:636-642. [PMID: 31629347 DOI: 10.1123/ijsnem.2019-0040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 11/18/2022]
Abstract
Blueberries are abundant with anthocyanins possessing antioxidant and anti-inflammatory properties. As these properties combat fatigue and promote recovery, blueberry supplementation may enhance performance and recovery. Thus, the objectives were to examine the effects of two blueberry supplementation protocols on running performance, physiological responses, and short-term recovery. Using a randomized, double-blind, placebo (PLA)-controlled crossover design, 14 runners completed an 8-km time trial (TT) after supplementation with 4 days of blueberries (4DAY), 4 days of a PLA, or 2 days of placebo followed by 2 days of blueberries (2DAY). Heart rate and ratings of perceived exertion were monitored during the TT. Blood lactate, vertical jump, reactive strength index, and salivary markers were assessed before and after. No significant differences were observed for time to complete the TT (PLA: 3,010 ± 459 s; 2DAY: 3,014 ± 488 s; 4DAY: 3,011 ± 423 s), heart rate, ratings of perceived exertion, or any of the salivary markers. An interaction effect (p = .027) was observed for blood lactate, with lower post-TT concentrations in 4DAY (5.4 ± 2.0 mmol/L) than PLA (6.6 ± 2.5 mmol/L; p = .038) and 2DAY (7.4 ± 3.4 mmol/L; p = .034). Post-TT decreases in vertical jump height were not different, whereas the decline in reactive strength index was less following 4DAY (-6.1% ± 13.5%) than the other conditions (PLA: -12.6% ± 10.1%; 2DAY: -11.6% ± 11.5%; p = .038). Two days of supplementation did not influence performance or physiological stress. Although 4 days of supplementation did not alter performance, it blunted the increase in blood lactate, perhaps reflecting altered lactate production and/or clearance, and offset the decrease in dynamic muscle function post-TT, as indicated by the reactive strength index differences.
Collapse
|
32
|
Jones L, Bailey SJ, Rowland SN, Alsharif N, Shannon OM, Clifford T. The Effect of Nitrate-Rich Beetroot Juice on Markers of Exercise-Induced Muscle Damage: A Systematic Review and Meta-Analysis of Human Intervention Trials. J Diet Suppl 2021; 19:749-771. [PMID: 34151694 DOI: 10.1080/19390211.2021.1939472] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This systematic review and meta-analysis of randomized controlled trials examined whether dietary nitrate supplementation attenuates exercise-induced muscle damage (EIMD) and is reported according to the PRISMA guidelines. Medline and SPORTDiscus databases were searched from inception to June 2020. Inclusion criteria were studies in adult humans consuming inorganic nitrate before and after exercise and that measured markers implicated in the etiology of EIMD (muscle function, muscle soreness, inflammation, myocellular protein efflux, oxidative stress, range of motion) <168 h post. The Cochrane Collaboration risk of bias two tool was used to critically appraise the studies; forest plots were generated with random-effects models and standardized mean differences (SMD). Nine studies were included in the systematic review and six in the meta-analysis. All studies were rated to have some concerns for risk of bias. All trials in the meta-analysis provided nitrate as beetroot juice, which accelerated isometric strength recovery 72 h post-exercise (SMD: 0.54, p = 0.01) and countermovement jump performance 24-72 h post-exercise (SMD range: 0.75-1.32, p < 0.03). Pressure pain threshold was greater with beetroot juice 48 (SMD: 0.58, p = 0.03) and 72 h post-exercise (SMD: 0.61, p = 0.02). Beetroot juice had no effect on markers of oxidative stress and creatine kinase (p > 0.05), but c-reactive protein was higher vs. placebo at 48 h post-exercise (SMD: 0.55, p = 0.03). These findings suggest that nitrate-rich beetroot juice may attenuate some markers of EIMD, but more large-scale controlled trials in elite athletes are needed.
Collapse
Affiliation(s)
- Louise Jones
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Samantha N Rowland
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Nehal Alsharif
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Oliver M Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
33
|
Marshall AR, Rimmer JE, Shah N, Bye K, Kipps C, Woods DR, O'Hara J, Boos CJ, Barlow M. Marching to the Beet: The effect of dietary nitrate supplementation on high altitude exercise performance and adaptation during a military trekking expedition. Nitric Oxide 2021; 113-114:70-77. [PMID: 34051342 DOI: 10.1016/j.niox.2021.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/19/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The aim was to investigate the effect of dietary nitrate supplementation (in the form of beetroot juice, BRJ) for 20 days on salivary nitrite (a potential precursor of bioactive nitric oxide), exercise performance and high altitude (HA) acclimatisation in field conditions (hypobaric hypoxia). METHODS This was a single-blinded randomised control study of 22 healthy adult participants (12 men, 10 women, mean age 28 ± 12 years) across a HA military expedition. Participants were randomised pre-ascent to receive two 70 ml dose per day of either BRJ (~12.5 mmol nitrate per day; n = 11) or non-nitrate calorie matched control (n = 11). Participants ingested supplement doses daily, beginning 3 days prior to departure and continued until the highest sleeping altitude (4800 m) reached on day 17 of the expedition. Data were collected at baseline (44 m altitude), at 2350 m (day 9), 3400 m (day 12) and 4800 m (day 17). RESULTS BRJ enhanced the salivary levels of nitrite (p = 0.007). There was a significant decrease in peripheral oxygen saturation and there were increases in heart rate, diastolic blood pressure, and rating of perceived exertion with increasing altitude (p=<0.001). Harvard Step Test fitness scores significantly declined at 4800 m in the control group (p = 0.003) compared with baseline. In contrast, there was no decline in fitness scores at 4800 m compared with baseline (p = 0.26) in the BRJ group. Heart rate recovery speed following exercise at 4800 m was significantly prolonged in the control group (p=<0.01) but was unchanged in the BRJ group (p = 0.61). BRJ did not affect the burden of HA illness (p = 1.00). CONCLUSIONS BRJ increases salivary nitrite levels and ameliorates the decline in fitness at altitude but does not affect the occurrence of HA illness.
Collapse
Affiliation(s)
- Anna R Marshall
- Department of Surgical and Interventional Sciences, Institute of Sport, Exercise & Health, UCL, London, WC1E 6B, UK.
| | | | - Nishma Shah
- Department of Surgical and Interventional Sciences, Institute of Sport, Exercise & Health, UCL, London, WC1E 6B, UK
| | - Kyo Bye
- Defence Medical Services, Lichfield, WS14 9PY, UK
| | - Courtney Kipps
- Department of Surgical and Interventional Sciences, Institute of Sport, Exercise & Health, UCL, London, WC1E 6B, UK
| | - David R Woods
- Defence Medical Services, Lichfield, WS14 9PY, UK; Carneige School of Sport, Leeds Beckett University, Leeds, LS16 5LF, UK; Northumbria and Newcastle NHS Trusts, Wansbeck General and Royal Victoria Infirmary, Newcastle, NE66 2NS, UK
| | - John O'Hara
- Carneige School of Sport, Leeds Beckett University, Leeds, LS16 5LF, UK
| | - Christopher J Boos
- Carneige School of Sport, Leeds Beckett University, Leeds, LS16 5LF, UK; Department of Cardiology, Poole Hospital NHS Foundation Trust, Poole, BH15 2JB, UK; Department of Postgraduate Medical Education, Bournemouth University, Bournemouth, BH1 3LT, UK
| | - Matthew Barlow
- Carneige School of Sport, Leeds Beckett University, Leeds, LS16 5LF, UK
| |
Collapse
|
34
|
The 4R's Framework of Nutritional Strategies for Post-Exercise Recovery: A Review with Emphasis on New Generation of Carbohydrates. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:ijerph18010103. [PMID: 33375691 PMCID: PMC7796021 DOI: 10.3390/ijerph18010103] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022]
Abstract
Post-exercise recovery is a broad term that refers to the restoration of training capacity. After training or competition, there is fatigue accumulation and a reduction in sports performance. In the hours and days following training, the body recovers and performance is expected to return to normal or improve. ScienceDirect, PubMed/MEDLINE, and Google Scholar databases were reviewed to identify studies and position declarations examining the relationship between nutrition and sports recovery. As an evidence-based framework, a 4R’s approach to optimizing post-exercise recovery was identified: (i) Rehydration—a fundamental process that will depend on the athlete, environment and sports event; (ii) Refuel—the consumption of carbohydrates is not only important to replenish the glycogen reserves but also to contribute to the energy requirements for the immune system and tissue reparation. Several bioengineered carbohydrates were discussed but further research is needed; (iii) Repair—post-exercise ingestion of high-quality protein and creatine monohydrate benefit the tissue growth and repair; and (iv) Rest—pre-sleep nutrition has a restorative effect that facilitates the recovery of the musculoskeletal, endocrine, immune, and nervous systems. Nutritional consultancy based on the 4R’s is important for the wise stewardship of the hydration, feeding, and supplementation strategies to achieve a timely recovery.
Collapse
|
35
|
Rojas-Valverde D, Montoya-Rodríguez J, Azofeifa-Mora C, Sanchez-Urena B. Effectiveness of beetroot juice derived nitrates supplementation on fatigue resistance during repeated-sprints: a systematic review. Crit Rev Food Sci Nutr 2020; 61:3395-3406. [PMID: 32715742 DOI: 10.1080/10408398.2020.1798351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In recent decades, the search for non-doping substances that enhance sports performance has increased. Ergogenic aids such as beetroot juice (BRJ) and BRJ rich in nitrates (NO3-) are widely used to cause physiological benefits that may lead to physical improvements. Therefore, the purpose of this systematic review was to explore the knowledge reported to date on the NO3- derived from BRJ intake effect on fatigue resistance during repeated sprints. A digital search was conducted following systematic review guidelines, and 18 studies met inclusion criteria from a total of 209 articles. In a third of the selected studies, the consumption of beet juice rich in NO3- contributes to an increase in nitrites in plasma that led to the rise in peak power, mean power, number of sprint repetitions, total work and time to task failure, and causes a decrease in fatigue index and sprints times. Some different dose has been proposed for both chronic and acute protocols. It seems that a chronic intake of ∼5-6 mmol of NO3- in 70 ml of BRJ, twice a day, for a minimum of 3-6 days could lead to a fatigue resistance improvement during repeated sprints. Besides, acute intake of NO3- 2.5-3 h before physical exertion or a dose of 250 ml/d to 500 ml/d of BRJ could lead to similar effective results. This systematic review presents some improvements (1.2-5.38%) in fatigue resistance during repeated sprints when consuming BRJ derived NO3-. The in-field practical meaning of these results should be explored.
Collapse
Affiliation(s)
- Daniel Rojas-Valverde
- Centro de Investigación y Diagnóstico en Salud y Deporte (CIDISAD), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), Universidad Nacional de Costa Rica, Heredia, Costa Rica.,Grupo de Avances en el Entrenamiento Deportivo y Acondicionamiento Físico (GAEDAF), Facultad Ciencias del Deporte), Universidad de Extremadura, Caceres, Spain
| | - Jaqueline Montoya-Rodríguez
- Centro de Investigación y Diagnóstico en Salud y Deporte (CIDISAD), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), National University of Costa Rica, Heredia, Costa Rica
| | - Christian Azofeifa-Mora
- Programa de Ciencias del Ejercicio y la Salud (PROCESA), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), National University of Costa Rica, Heredia, Costa Rica
| | - Braulio Sanchez-Urena
- Programa de Ciencias del Ejercicio y la Salud (PROCESA), Escuela Ciencias del Movimiento Humano y Calidad de Vida (CIEMHCAVI), National University of Costa Rica, Heredia, Costa Rica
| |
Collapse
|
36
|
Jonvik KL, Hoogervorst D, Peelen HB, de Niet M, Verdijk LB, van Loon LJC, van Dijk JW. The impact of beetroot juice supplementation on muscular endurance, maximal strength and countermovement jump performance. Eur J Sport Sci 2020; 21:871-878. [PMID: 32594854 DOI: 10.1080/17461391.2020.1788649] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose: Dietary nitrate has been shown to enhance muscle contractile function and has, therefore, been linked to increased muscle power and sprint exercise performance. However, the impact of dietary nitrate supplementation on maximal strength, performance and muscular endurance remains to be established. Methods: Fifteen recreationally active males (25 ± 4 y, BMI 24 ± 3 kg/m2) participated in a randomized double-blinded cross-over study comprising two 6-d supplementation periods; 140 mL/d nitrate-rich (BR; 985 mg/d) and nitrate-depleted (PLA; 0.37 mg/d) beetroot juice. Three hours following the last supplement, we assessed countermovement jump (CMJ) performance, maximal strength and power of the upper leg by voluntary isometric (30° and 60° angle) and isokinetic contractions (60, 120, 180 and 300°·s-1), and muscular endurance (total workload) by 30 reciprocal isokinetic voluntary contractions at 180°·s-1. Results: Despite differences in plasma nitrate (BR: 879 ± 239 vs. PLA: 33 ± 13 μmol/L, P < 0.001) and nitrite (BR: 463 ± 217 vs. PLA: 176 ± 50 nmol/L, P < 0.001) concentrations prior to exercise testing, CMJ height (BR: 39.3 ± 6.3 vs. PLA: 39.6 ± 6.3 cm; P = 0.39) and muscular endurance (BR: 3.93 ± 0.69 vs. PLA: 3.90 ± 0.66 kJ; P = 0.74) were not different between treatments. In line, isometric strength (P > 0.50 for both angles) and isokinetic knee extension power (P > 0.33 for all velocities) did not differ between treatments. Isokinetic knee flexion power was significantly higher following BR compared with PLA ingestion at 60°·s-1 (P = 0.001), but not at 120°·s-1 (P = 0.24), 180°·s-1 (P = 0.066), and 300°·s-1 (P = 0.36). Conclusion: Nitrate supplementation does not improve maximal strength, countermovement jump performance and muscular endurance in healthy, active males.
Collapse
Affiliation(s)
- Kristin L Jonvik
- School of Sport and Exercise, HAN University of Applied Sciences, Nijmegen, Netherlands
| | - Daan Hoogervorst
- School of Sport and Exercise, HAN University of Applied Sciences, Nijmegen, Netherlands
| | - Harmen B Peelen
- Department of Movement and Sports Science, Ghent University, Ghent, Belgium
| | - Mark de Niet
- School of Sport and Exercise, HAN University of Applied Sciences, Nijmegen, Netherlands
| | - Lex B Verdijk
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Luc J C van Loon
- School of Sport and Exercise, HAN University of Applied Sciences, Nijmegen, Netherlands.,Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jan-Willem van Dijk
- School of Sport and Exercise, HAN University of Applied Sciences, Nijmegen, Netherlands
| |
Collapse
|
37
|
Bongiovanni T, Genovesi F, Nemmer M, Carling C, Alberti G, Howatson G. Nutritional interventions for reducing the signs and symptoms of exercise-induced muscle damage and accelerate recovery in athletes: current knowledge, practical application and future perspectives. Eur J Appl Physiol 2020; 120:1965-1996. [PMID: 32661771 DOI: 10.1007/s00421-020-04432-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/04/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE This review provides an overview of the current knowledge of the nutritional strategies to treat the signs and symptoms related to EIMD. These strategies have been organized into the following sections based upon the quality and quantity of the scientific support available: (1) interventions with a good level of evidence; (2) interventions with some evidence and require more research; and (3) potential nutritional interventions with little to-no-evidence to support efficacy. METHOD Pubmed, EMBASE, Scopus and Web of Science were used. The search terms 'EIMD' and 'exercise-induced muscle damage' were individually concatenated with 'supplementation', 'athletes', 'recovery', 'adaptation', 'nutritional strategies', hormesis'. RESULT Supplementation with tart cherries, beetroot, pomegranate, creatine monohydrate and vitamin D appear to provide a prophylactic effect in reducing EIMD. β-hydroxy β-methylbutyrate, and the ingestion of protein, BCAA and milk could represent promising strategies to manage EIMD. Other nutritional interventions were identified but offered limited effect in the treatment of EIMD; however, inconsistencies in the dose and frequency of interventions might account for the lack of consensus regarding their efficacy. CONCLUSION There are clearly varying levels of evidence and practitioners should be mindful to refer to this evidence-base when prescribing to clients and athletes. One concern is the potential for these interventions to interfere with the exercise-recovery-adaptation continuum. Whilst there is no evidence that these interventions will blunt adaptation, it seems pragmatic to use a periodised approach to administering these strategies until data are in place to provide and evidence base on any interference effect on adaptation.
Collapse
Affiliation(s)
- Tindaro Bongiovanni
- Department of Health, Performance and Recovery, Parma Calcio 1913, Parma, Italy.
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Milano, Italy.
| | | | - Monika Nemmer
- Nutrition Department Liverpool Football Club, Liverpool, UK
| | - Christopher Carling
- Centre for Elite Performance, French Football Federation, 75015, Paris, France
| | - Giampietro Alberti
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Milano, Italy
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
- Water Research Group, North West University, Potchefstroom, South Africa
| |
Collapse
|
38
|
Williamson J, Hughes CM, Burke G, Davison GW. A combined γ-H2AX and 53BP1 approach to determine the DNA damage-repair response to exercise in hypoxia. Free Radic Biol Med 2020; 154:9-17. [PMID: 32360611 DOI: 10.1016/j.freeradbiomed.2020.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 12/19/2022]
Abstract
This study examines the interplay between exercise and hypoxia in relation to the DNA damage-repair response; with specific interest to DNA double strand damage. Following two V̇O2max tests, 14 healthy, male participants completed two exercise trials (hypoxia; 12% FiO2, normoxia; 20.9% FiO2) consisting of cycling for 30-min at 80-85% of V̇O2max relative to the environmental condition. Blood was sampled pre-, immediately post-, 2-, and 4-h post-exercise with additional blood cultured in vitro for 24-, 48-, and 72-h following the experimental trial. Samples were analysed for single- and double-strand DNA damage, FPG-sensitive sites, lipid hydroperoxides, lipid soluble antioxidants, and the ascorbyl free radical quantified by EPR. Exercise increased single strand breaks and FPG-sensitive sites (P < 0.05) which was exacerbated following hypoxia (P = 0.02) and a similar increase in DNA double strand breaks occurred as a result of hypoxia per se (P < 0.000). With respect to the DNA damage-repair response, single strand breaks, FPG-sensitive sites, and double strand lesions were fully repaired by the 4- (in vivo), 24-, and 48-h (in vitro) time-points respectively. Changes in lipid hydroperoxides (P = 0.001), the ascorbyl free radical (P = 0.02), and lipid soluble antioxidants (P > 0.05), were also observed following exercise in hypoxia. These findings highlight significant single- and double strand DNA damage and oxidative stress as a function of high-intensity exercise, which is substantially exacerbated in hypoxia and may be attributed to multiple mechanisms of ROS generation. In addition, full repair of DNA damage (SSB, DSB, and FPG-sensitive sites) was observed within 24- and 48-h of normoxic and hypoxic exercise, respectively.
Collapse
Affiliation(s)
- Josh Williamson
- Ulster University, Sport and Exercise Research Institute, Newtownabbey, Northern Ireland, United Kingdom
| | - Ciara M Hughes
- Ulster University, Nursing and Health Research Institute, Newtownabbey, Northern Ireland, United Kingdom
| | - George Burke
- Ulster University, Engineering Research Institute, Newtownabbey, Northern Ireland, United Kingdom
| | - Gareth W Davison
- Ulster University, Sport and Exercise Research Institute, Newtownabbey, Northern Ireland, United Kingdom.
| |
Collapse
|
39
|
Reynolds CME, Evans M, Halpenny C, Hughes C, Jordan S, Quinn A, Hone M, Egan B. Acute ingestion of beetroot juice does not improve short-duration repeated sprint running performance in male team sport athletes. J Sports Sci 2020; 38:2063-2070. [DOI: 10.1080/02640414.2020.1770409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ciara M. E. Reynolds
- UCD Institute for Sport & Health, School of Public Health, Physiotherapy, and Sports Science, University College Dublin, Dublin, Ireland
| | - Mark Evans
- UCD Institute for Sport & Health, School of Public Health, Physiotherapy, and Sports Science, University College Dublin, Dublin, Ireland
- Florida Institute for Human and Machine Cognition, Pensacola, FL, USA
| | - Catherine Halpenny
- UCD Institute for Sport & Health, School of Public Health, Physiotherapy, and Sports Science, University College Dublin, Dublin, Ireland
| | - Caoimhe Hughes
- UCD Institute for Sport & Health, School of Public Health, Physiotherapy, and Sports Science, University College Dublin, Dublin, Ireland
| | - Stephen Jordan
- UCD Institute for Sport & Health, School of Public Health, Physiotherapy, and Sports Science, University College Dublin, Dublin, Ireland
| | - Alyssa Quinn
- UCD Institute for Sport & Health, School of Public Health, Physiotherapy, and Sports Science, University College Dublin, Dublin, Ireland
| | - Michelle Hone
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Brendan Egan
- UCD Institute for Sport & Health, School of Public Health, Physiotherapy, and Sports Science, University College Dublin, Dublin, Ireland
- Florida Institute for Human and Machine Cognition, Pensacola, FL, USA
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| |
Collapse
|
40
|
Collins SM, Kearns D. The Effect of Beetroot Supplementation on High-Intensity Functional Training Performance. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2020; 13:667-676. [PMID: 32509115 PMCID: PMC7241616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nitrate supplementation (NO3 -) has been shown to improve athletic performance for short-duration, vigorous activity, as well as long-duration, aerobic activity. The purpose was to explore the effects of beetroot supplementation (BR) on high-intensity functional training (HIFT) performance. Twenty-four HIFT participants (25 ± 6.5 years, 175.17 ± 8.1 cm, 84.94 ± 12.09 kg), who attended HIFT classes at least 3 days per week for the past 3 months, performed a benchmark performance test (5 rounds of a 400-m run followed by 15 overhead squats with a 95-lb (for males)/65-lb (for females) barbell). In a randomized order, 72 hrs apart, participants were tested under a control session and once after consuming 70 mL beetroot nitrate supplement, Beet It®, 2 hours prior to beginning the assigned benchmark test. For both benchmark tests, time to completion, pre- and post-exercise blood lactate levels, RPE, and pre-, during, and post-exercising heart rates were measured. There was no significant difference (p < 0.05) between the control (930 ± 192.6 sec) and supplement (952.8 ± 205.8 sec) on time to complete the performance test. Post-exercise blood lactate (11.14 ± 2.84 mm/dL) was not significantly different (p < 0.05) than the control (12.00 ± 2.53 mm/dL). Additionally, mean RPE for BR supplement (14.78 ± 2.50) was not significantly different (p < 0.05) than the control (14.92 ± 2.12). The short duration and high intensity of the workout, which included both anaerobic and aerobic components, may have mitigated the cardiovascular effect of beetroot nitrates unlike previous research that found significant positive effects between beetroot nitrates and exercise performance.
Collapse
Affiliation(s)
- Sean M Collins
- Exercise Physiology Department, University of Lynchburg, Lynchburg, VA, USA
| | - Danielle Kearns
- Exercise Physiology Department, University of Lynchburg, Lynchburg, VA, USA
| |
Collapse
|
41
|
de Mejia EG, Zhang Q, Penta K, Eroglu A, Lila MA. The Colors of Health: Chemistry, Bioactivity, and Market Demand for Colorful Foods and Natural Food Sources of Colorants. Annu Rev Food Sci Technol 2020; 11:145-182. [PMID: 32126181 DOI: 10.1146/annurev-food-032519-051729] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is an increasing consumer demand for natural colors in foods. However, there is a limited number of available natural food sources for use by the food industry because of technical and regulatory limitations. Natural colors are less stable and have less vibrant hues compared to their synthetic color counterparts. Natural pigments also have known health benefits that are seldom leveraged by the food industry. Betalains, carotenoids, phycocyanins, and anthocyanins are major food colorants used in the food industry that have documented biological effects, particularly in the prevention and management of chronic diseases such as diabetes, obesity, and cardiovascular disease. The color industry needs new sources of stable, functional, and safe natural food colorants. New opportunities include sourcing new colors from microbial sources and via the use of genetic biotechnology. In all cases, there is an imperative need for toxicological evaluation to pave the way for their regulatory approval.
Collapse
Affiliation(s)
- Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Illinois 61801, USA;
| | - Qiaozhi Zhang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Kayla Penta
- Department of Molecular and Structural Biochemistry and Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, North Carolina 28081, USA
| | - Abdulkerim Eroglu
- Department of Molecular and Structural Biochemistry and Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, North Carolina 28081, USA
| | - Mary Ann Lila
- Department of Food, Bioprocessing & Nutrition Sciences and Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, North Carolina 28081, USA
| |
Collapse
|
42
|
Daab W, Bouzid MA, Lajri M, Bouchiba M, Saafi MA, Rebai H. Chronic Beetroot Juice Supplementation Accelerates Recovery Kinetics following Simulated Match Play in Soccer Players. J Am Coll Nutr 2020; 40:61-69. [PMID: 32125249 DOI: 10.1080/07315724.2020.1735571] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To assess the effect of beetroot juice (BET) on recovery kinetics of physical performance, muscle damage and perceived muscle soreness after simulated soccer match play in soccer players. METHOD In a randomized, double-blind, crossover design, thirteen soccer players completed the Loughborough Intermittent Shuttle Test LIST. Players received either BET or placebo (PLA) (2*150) for 7 days (3 days pre-exercise, on the day trial, and 3 days post-exercise). Physical performance (Squat jump: SJ, countermovement jump: CMJ, maximal voluntary contraction: MVC, and 20 meters sprint: SP), blood markers of muscle damage (creatine kinase: CK, Lactate dehydrogenase: LDH), inflammatory parameter (C-reactive protein: CRP) and perceived muscle soreness (DOMS) were assessed at baseline, 0 h, 24 h, 48 h and 72 h following the exercise. RESULTS Following the LIST, a decrease was observed in CMJ, MVC and SP at 0 h, 24 h, 48 h in both conditions (p < 0.05). However, compared to PLA session, this decrease was significantly attenuated with BET for CMJ at 24 h and at 48 h and for MVC at 0 h, 24 h, 48 h and for SP at 48 h after the LIST (p < 0.05). Likewise, DOMS values were significantly lower with BET compared to PLA condition immediately and at 24 h after exercise.CK, LDH and CRP levels increased at 0 h and at 24 h post exercise in both conditions (p < 0.05), but without any significant difference between the two condition (p > 0.05). CONCLUSION The results of the present study suggest that chronic beetroot juice supplementation reduces post exercise perceived muscle soreness and maintain better performance during the recovery period in soccer players.
Collapse
Affiliation(s)
- Wael Daab
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Tunisia
| | - Mohamed Amine Bouzid
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Tunisia
| | - Mehdi Lajri
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Tunisia
| | - Mustapha Bouchiba
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Tunisia
| | - Mohamed Ali Saafi
- Faculté de Médecine Monastir, l'Unité de Recherche 99/UR/08-27, Technologie et Imagerie Médicale, Monastir, Tunisia
| | - Haithem Rebai
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Tunisia
| |
Collapse
|
43
|
López-Samanes Á, Pérez-López A, Moreno-Pérez V, Nakamura FY, Acebes-Sánchez J, Quintana-Milla I, Sánchez-Oliver AJ, Moreno-Pérez D, Fernández-Elías VE, Domínguez R. Effects of Beetroot Juice Ingestion on Physical Performance in Highly Competitive Tennis Players. Nutrients 2020; 12:nu12020584. [PMID: 32102263 PMCID: PMC7071491 DOI: 10.3390/nu12020584] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 02/01/2023] Open
Abstract
Beetroot juice (BJ) contains high levels of inorganic nitrate (NO3−) and its intake has good evidence in increasing blood nitrate/nitrite concentrations. The ingestion of BJ has been associated with improvements in physical performance of endurance sports, however the literature in intermittent sports is scarce. The aim of this study was to investigate whether BJ could improve physical performance in tennis players. Thirteen well-trained tennis players (25.4 ± 5.1 years) participated in the study during their preparatory period for the tennis season. Subjects were randomly divided into two groups and performed a neuromuscular test battery after either BJ or placebo (PLA) consumption. Both trials were executed on two separate days, in randomized order, with one week of wash out period. The test battery consisted of serve velocity test (SVT), countermovement jump (CMJ), isometric handgrip strength (IHS), 5-0-5 agility test (5-0-5), and 10 m sprint (10-m). No significant differences were found in SVT (1.19%; p = 0.536), CMJ (0.96%; p = 0.327), IHS (4.06%; p = 0.069), 5-0-5 dominant and nondominant side (1.11–2.02%; p = 0.071–0.191) and 10-m (1.05%; p = 0.277) when comparing BJ and PLA ingestion. Thus, our data suggest that low doses of BJ (70 mL) consumption do not enhance tennis physical performance.
Collapse
Affiliation(s)
- Álvaro López-Samanes
- School of Physiotherapy, Faculty of Health Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain
- Correspondence: ; Tel.: +34-91-709-1400 (ext. 1955)
| | - Alberto Pérez-López
- Department of Biomedical Sciences, Area of Sport and Physical Education, Faculty of Medicine and Health Sciences, University of Alcalá, 28805 Madrid, Spain;
| | - Victor Moreno-Pérez
- Center for Translational Research in Physiotherapy, Department of Pathology and Surgery, Universidad Miguel Hernández, Elche, San Juan, 03202 Alicante, Spain;
| | - Fabio Yuzo Nakamura
- Associate Graduate Program in Physical Education UPE/UFPB, 58051-970 João Pessoa, PB, Brazil;
| | - Jorge Acebes-Sánchez
- Exercise and Sport Sciences, Faculty of Health Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain; (J.A.-S.); (I.Q.-M.)
| | - Iñaki Quintana-Milla
- Exercise and Sport Sciences, Faculty of Health Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain; (J.A.-S.); (I.Q.-M.)
| | - Antonio J. Sánchez-Oliver
- Departamento de Motricidad Humana y Rendimiento Deportivo, Universidad de Sevilla, 41013 Sevilla, Spain;
| | - Diego Moreno-Pérez
- Department of Education, Research and Evaluation Methods, Universidad Pontifica de Comillas, 28015 Madrid, Spain;
| | | | - Raúl Domínguez
- College of Health Sciences, Isabel I University, 09003 Burgos, Spain;
| |
Collapse
|
44
|
Does Acute Beetroot Juice Supplementation Improve Neuromuscular Performance and Match Activity in Young Basketball Players? A Randomized, Placebo-Controlled Study. Nutrients 2020; 12:nu12010188. [PMID: 31936621 PMCID: PMC7019528 DOI: 10.3390/nu12010188] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/28/2019] [Accepted: 01/07/2020] [Indexed: 01/08/2023] Open
Abstract
Whereas beetroot juice (BJ) supplementation is shown to increase physical performance in endurance activities, its benefits in team sports has been barely studied. In this randomized placebo-controlled study, we investigated the effects of BJ acute supplementation in improving neuromuscular performance and physical match activity in basketball. Ten young male competitive basketball players aged 15–16 years received 140 mL of BJ or placebo (PLA) on two separated days in a balanced cross-over design. Testing sessions comprised a neuromuscular test battery consisting of a countermovement jump (CMJ), isometric handgrip strength, 10-m/20-m sprint and agility T-test, followed by a 40-minute simulated basketball match. Physical match activity (distances, speeds, accelerations, and decelerations) was monitored using an inertial tracking system (Wimu ProTM) Results revealed no significant effects of BJ on CMJ (p = 0.304, ES = 0.13), isometric handgrip strength (p = 0.777, ES = 0.06), 10-m (p = 0.820, ES = 0.10), and 20-m sprint (p = 0.540, ES = 0.13), agility T-test (p = 0.979, ES ≤ 0.01) and any physical match demands (p > 0.151, ES = 0.13–0.48). Acute moderate doses of BJ (12.8 mmol of NO3−) was not effective in improving neuromuscular performance (jump height, isometric handgrip strength, sprint, and agility) or physical match requirements in young trained basketball players the day of the competition.
Collapse
|
45
|
A Single Dose of Beetroot Juice Does Not Change Blood Pressure Response Mediated by Acute Aerobic Exercise in Hypertensive Postmenopausal Women. Nutrients 2019; 11:nu11061327. [PMID: 31200505 PMCID: PMC6627101 DOI: 10.3390/nu11061327] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To verify if acute intake of beetroot juice potentiates post-exercise hypotension (PEH) in hypertensive postmenopausal women. METHODS Thirteen hypertensive postmenopausal women (58.1 ± 4.62 years and 27.4 ± 4.25 kg/m²) were recruited to participate in three experimental sessions, taking three different beverages: Beetroot juice (BJ), placebo nitrate-depleted BJ (PLA), and orange flavored non-caloric drink (OFD). The participants performed moderate aerobic exercise training on a treadmill, at 65-70% of heart rate reserve (HRR), for 40 min. After an overnight fast, the protocol started at 07h when the first resting blood pressure (BP) was measured. The beverage was ingested at 07h30 and BP was monitored until the exercise training started, at 09h30. After the end of the exercise session, BP was measured every 15 min over a 90-min period. Saliva samples were collected at rest, immediately before and after exercise, and 90 min after exercise for nitrite (NO2-) analysis. RESULTS There was an increase in salivary NO2- with BJ intake when compared to OFD and PLA. A slight increase in salivary NO2- was observed with PLA when compared to OFD (p < 0.05), however, PLA resulted in lower salivary NO2- when compared to BJ (p < 0.001). There were no changes in salivary NO2- with the OFD. Systolic and diastolic BP decreased (p < 0.001) on all post exercise time points after all interventions, with no difference between the three beverages. CONCLUSION Acute BJ intake does not change PEH responses in hypertensive postmenopausal women, even though there is an increase in salivary NO2-.
Collapse
|
46
|
Jackman JS, Bell PG, Gill S, van Someren K, Davison GW, Cockburn E. Assessing the usefulness of acute physiological responses following resistance exercise: sensitivity, magnitude of change, and time course of measures. Appl Physiol Nutr Metab 2019; 44:309-319. [DOI: 10.1139/apnm-2018-0200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A variety of strategies exist to modulate the acute physiological responses following resistance exercise aimed at enhancing recovery and/or adaptation processes. To assess the true impact of these strategies, it is important to know the ability of different measures to detect meaningful change. We investigated the sensitivity of measures used to quantify acute physiological responses to resistance exercise and constructed a physiological profile to characterise the magnitude of change and the time course of these responses. Eight males accustomed to regular resistance exercise performed experimental sessions during a “control week”, void of an exercise stimulus. The following week, termed the “exercise week”, participants repeated this sequence of experimental sessions, and they also performed a bout of lower-limb resistance exercise following the baseline assessments. Assessments were conducted at baseline and at 2, 6, 24, 48, 72, and 96 h after the intervention. On the basis of the signal-to-noise ratio, the most sensitive measures were maximal voluntary isometric contraction, 20-m sprint, countermovement jump peak force, rate of force development (100–200 ms), muscle soreness, Daily Analysis Of Life Demands For Athletes part B, limb girth, matrix metalloproteinase-9, interleukin-6, creatine kinase, and high-sensitivity C-reactive protein with ratios >1.5. Clear changes in these measures following resistance exercise were determined via magnitude-based inferences. These findings highlight measures that can detect real changes in acute physiological responses following resistance exercise in trained individuals. Researchers investigating strategies to manipulate acute physiological responses for recovery and/or adaptation can use these measures, as well as the recommended sampling points, to be confident that their interventions are making a worthwhile impact.
Collapse
Affiliation(s)
| | - Phillip G. Bell
- Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle NE1 8ST, UK
| | - Simone Gill
- Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6UR, UK
| | - Ken van Someren
- Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle NE1 8ST, UK
| | - Gareth W. Davison
- Sport and Exercise Sciences Research Institute, Ulster University, Ulster BT37 0QB, UK
| | - Emma Cockburn
- London Sport Institute, Middlesex University, London NW4 4BT, UK
- School of Biomedical Sciences, Newcastle University, Newcastle NE1 7RU, UK
| |
Collapse
|
47
|
Harty PS, Cottet ML, Malloy JK, Kerksick CM. Nutritional and Supplementation Strategies to Prevent and Attenuate Exercise-Induced Muscle Damage: a Brief Review. SPORTS MEDICINE - OPEN 2019; 5:1. [PMID: 30617517 PMCID: PMC6323061 DOI: 10.1186/s40798-018-0176-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 12/04/2018] [Indexed: 12/21/2022]
Abstract
Exercise-induced muscle damage (EIMD) is typically caused by unaccustomed exercise and results in pain, soreness, inflammation, and reduced muscle function. These negative outcomes may cause discomfort and impair subsequent athletic performance or training quality, particularly in individuals who have limited time to recover between training sessions or competitions. In recent years, a multitude of techniques including massage, cryotherapy, and stretching have been employed to combat the signs and symptoms of EIMD, with mixed results. Likewise, many varied nutritional and supplementation interventions intended to treat EIMD-related outcomes have gained prominence in the literature. To date, several review articles have been published that explore the many recovery strategies purported to minimize indirect markers of muscle damage. However, these articles are very limited from a nutritional standpoint. Thus, the purpose of this review is to briefly and comprehensively summarize many of these strategies that have been shown to positively influence the recovery process after damaging exercise. These strategies have been organized into the following sections based on nutrient source: fruits and fruit-derived supplements, vegetables and plant-derived supplements, herbs and herbal supplements, amino acid and protein supplements, vitamin supplements, and other supplements.
Collapse
Affiliation(s)
- Patrick S. Harty
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO 63301 USA
| | - Megan L. Cottet
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO 63301 USA
| | - James K. Malloy
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO 63301 USA
| | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO 63301 USA
| |
Collapse
|
48
|
Time-Trial Performance in World-Class Speed Skaters After Chronic Nitrate Ingestion. Int J Sports Physiol Perform 2018; 13:1317-1323. [PMID: 29745787 DOI: 10.1123/ijspp.2017-0724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE Nitrate supplementation can increase tolerance to high-intensity work rates; however, limited data exist on the recovery of performance. The authors tested whether 5 d of nitrate supplementation could improve repeated time-trial performance in speed skating. METHODS Using a double-blind, placebo-controlled, crossover design, 9 international-level short-track speed skaters ingested 1 high (juice blend, ∼6.5 mmol nitrate; HI) or low dose (juice blend, ∼1 mmol nitrate; LO) per day on days 1-4. After a double dose of either HI or LO on day 5, athletes performed 2 on-ice 1000-m time trials, separated by 35 min, to simulate competition races. Differences between HI and LO were compared with the smallest practically important difference. RESULTS Salivary [nitrate] and [nitrite] were higher in HI than LO before the first (nitrate: 81%, effect size [ES]: 1.76; nitrite: 72%, ES: 1.73) and second pursuits (nitrate: 81%, ES: 1.92; nitrite: 71%, ES: 1.78). However, there was no difference in performance in the first (LO: 90.92 [4.08] s; HI: 90.95 [4.06] s, ES: 0.01) or the second time trial (LO: 91.16 [4.06] s; HI: 91.55 [4.40] s, ES: 0.09). Plasma [lactate] measured after the trials (LO: 14.8 [1.1] mM; HI: 14.8 [1.2] mM, ES: 0.01) and at the end of the recovery period (LO: 9.8 [2.1] mM; HI: 10.2 [1.9] mM, ES: 0.05) was not different between treatments. CONCLUSION Five days of high-dose nitrate supplementation did not change physiological responses and failed to improve single and repeated time-trial performances in world-class short-track speed skaters. These data suggest that nitrate ingestion up to 6.5 mmol does not enhance recovery from supramaximal exercise in world-class athletes.
Collapse
|
49
|
Selected In-Season Nutritional Strategies to Enhance Recovery for Team Sport Athletes: A Practical Overview. Sports Med 2018; 47:2201-2218. [PMID: 28702900 PMCID: PMC5633631 DOI: 10.1007/s40279-017-0759-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Team sport athletes face a variety of nutritional challenges related to recovery during the competitive season. The purpose of this article is to review nutrition strategies related to muscle regeneration, glycogen restoration, fatigue, physical and immune health, and preparation for subsequent training bouts and competitions. Given the limited opportunities to recover between training bouts and games throughout the competitive season, athletes must be deliberate in their recovery strategy. Foundational components of recovery related to protein, carbohydrates, and fluid have been extensively reviewed and accepted. Micronutrients and supplements that may be efficacious for promoting recovery include vitamin D, omega-3 polyunsaturated fatty acids, creatine, collagen/vitamin C, and antioxidants. Curcumin and bromelain may also provide a recovery benefit during the competitive season but future research is warranted prior to incorporating supplemental dosages into the athlete's diet. Air travel poses nutritional challenges related to nutrient timing and quality. Incorporating strategies to consume efficacious micronutrients and ingredients is necessary to support athlete recovery in season.
Collapse
|
50
|
Huang Q, Ma S, Tominaga T, Suzuki K, Liu C. An 8-Week, Low Carbohydrate, High Fat, Ketogenic Diet Enhanced Exhaustive Exercise Capacity in Mice Part 2: Effect on Fatigue Recovery, Post-Exercise Biomarkers and Anti-Oxidation Capacity. Nutrients 2018; 10:E1339. [PMID: 30241310 PMCID: PMC6212995 DOI: 10.3390/nu10101339] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 01/25/2023] Open
Abstract
A low-carbohydrate, high-fat ketogenic diet (KD) is a nutritional approach ensuring that the body utilizes lipids. In our previous study, we found that an eight-week ketogenic high-fat, low-carbohydrate diet increased the capacity of endurance exercise in mice without aggravated muscle injury, despite the decrease of absolute muscle volume. The potential mechanism is most possibly to be enhanced capacity to mobilize and utilize fat. In the present study, we investigated whether a ketogenic diet influences post-exercise recovery by measuring blood biomarkers, muscle and liver oxidative state as well as fatigue recovery 24 h post exercise by employing an open-field locomotion test. Several biochemistry markers indicating exercise-induced injury after exhaustive exercise were improved by KD, followed by a 24-h rest with free feed access, including lactate. No aggravated hepatic oxidative damage was observed, whereas muscular oxidative stress was increased by KD. Accelerated recovery induced by exhaustive exercise was also observed from blood biomarkers of injury. For fatigue recovery, lactate concentration, a marker often employed as exhaustion index was lowered by KD, whereas an open field test showed that KD application contributed to increased locomotion after exhaustive exercise, followed by a 24-h rest. These results suggest that KD has the potential to be used as a fatigue-preventing and/or recovery-promoting diet approach in endurance athletes.
Collapse
Affiliation(s)
- Qingyi Huang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan.
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China.
| | - Sihui Ma
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan.
| | - Takaki Tominaga
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan.
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan.
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China.
| |
Collapse
|