1
|
Girma A. Biology of human respiratory syncytial virus: Current perspectives in immune response and mechanisms against the virus. Virus Res 2024; 350:199483. [PMID: 39396572 PMCID: PMC11513633 DOI: 10.1016/j.virusres.2024.199483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Human respiratory syncytial virus (hRSV) remains a leading cause of morbidity and mortality in infants, young children, and older adults. hRSV infection's limited treatment and vaccine options significantly increase bronchiolitis' morbidity rates. The severity and outcome of viral infection hinge on the innate immune response. Developing vaccines and identifying therapeutic interventions suitable for young children, older adults, and pregnant women relies on comprehending the molecular mechanisms of viral PAMP recognition, genetic factors of the inflammatory response, and antiviral defense. This review covers fundamental elements of hRSV biology, diagnosis, pathogenesis, and the immune response, highlighting prospective options for vaccine development.
Collapse
Affiliation(s)
- Abayeneh Girma
- Department of Biology, College of Natural and Computational Sciences, Mekdela Amba University, P.O. Box 32, Tulu Awuliya, Ethiopia.
| |
Collapse
|
2
|
Yao B, Liu J, Xie J, Li Z, Luo Y, Wang M. Development and Comparative Study of a Mouse Model of Airway Inflammation and Remodeling Induced by Exosomes Derived from Bone Marrow Mesenchymal Stem Cells. Bull Exp Biol Med 2024:10.1007/s10517-024-06221-w. [PMID: 39279005 DOI: 10.1007/s10517-024-06221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Indexed: 09/18/2024]
Abstract
We developed a model of inflammation and airway remodeling in C57 mice provoked by exosomes derived from bone marrow mesenchymal stem cells infected by respiratory syncytial virus (RSV). The mean size of control and infected exosomes in vitro were 167.9 and 118.5 nm, respectively. After induction of modeled pathology, the severity of airway inflammation and its remodeling were analyzed by histopathological methods. In addition, the blood levels of inflammatory factors IL-10, IL-17, transforming growth factor-β (TGF-β), and TNFα were assayed; in the lung tissues, the expression levels of MMP-2, MMP-9, α-smooth muscle actin (α-SMA), and TGF-β were measured. In the developed model, the effects of RSV-induced and non-induced exosomes were compared with those of inactivated and non-inactivated RSV. Intranasal administration of RSV-induced exosomes decreased the levels of serum inflammatory factors IL-10 and IL-17 and increased the expression of serum proinflammatory cytokine TNFα. Increased levels of MMP-2, MMP-9, and α-SMA, enhanced expression of TGF-β in the lung tissue, and pathological staining of the lung tissues indicated infiltration with inflammatory cells and luminal constriction. Thus, RSV-induced exosomes can provoke airway inflammation and remodeling in mice similar to RSV, while non-induced exosomes cannot produce such alterations.
Collapse
Affiliation(s)
- B Yao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - J Liu
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - J Xie
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Z Li
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Y Luo
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - M Wang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| |
Collapse
|
3
|
da Silveira BP, Cohen ND, Lawhon SD, Watson RO, Bordin AI. Protective immune response against Rhodococcus equi: An innate immunity-focused review. Equine Vet J 2024. [PMID: 39258739 DOI: 10.1111/evj.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/30/2024] [Indexed: 09/12/2024]
Abstract
Rhodococcus equi causes pyogranulomatous pneumonia in foals and immunocompromised people. Despite decades of research efforts, no vaccine is available against this common cause of disease and death in foals. The purpose of this narrative review is to summarise the current understanding of interactions between R. equi and the host innate immune system, to describe features of the immune response that are associated with resistance or susceptibility to R. equi infection, and help guide strategies for developing novel approaches for preventing R. equi infections. Virulence of R. equi in foals has been attributed to the virulence associated protein A which allows intracellular survival in macrophages by preventing acidification of R. equi-containing vacuole. Additionally, foal susceptibility to R. equi infection is associated with immaturity and naivety of innate and adaptive immune systems, while adult horses with fully functional immune system are resistant to pneumonia. Specific interaction between R. equi and innate immune cells can result in bacterial survival or death; learning how to manipulate these responses to control infection is critical to prevent pneumonia in foals. Administration of live vaccines and stimulation of innate immune responses appears to improve foals' immune response and has the potential to overcome the challenges of foal active vaccination and elicit protection against pneumonia.
Collapse
Affiliation(s)
- Bibiana Petri da Silveira
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Noah D Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Sara D Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Robert O Watson
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, School of Medicine, College Station, Texas, USA
| | - Angela I Bordin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| |
Collapse
|
4
|
Yao Y, Yang Y, Ji M, Qin Q, Xu K, Xia Z, Liu H, Yuan L, Yuan Y, Qin L, Du X, Wang L, Zhou K, Wu X, Wang W, Qing B, Xiang Y, Qu X, Yang M, Qin X, Liu C. Airway epithelial-derived exosomes induce acute asthma exacerbation after respiratory syncytial virus infection. MedComm (Beijing) 2024; 5:e621. [PMID: 38938285 PMCID: PMC11208743 DOI: 10.1002/mco2.621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024] Open
Abstract
Acute asthma exacerbation refers to the progressive deterioration of asthma symptoms that is always triggered by virus infection represented by respiratory syncytial virus (RSV). After RSV infection, exaggerated Th2-mediated pulmonary inflammation is the critical pathological response of asthmatic patients with acute exacerbation. Significantly, airway epithelial cells, being the primary targets of RSV infection, play a crucial role in controlling the pulmonary inflammatory response by releasing airway epithelial cell-derived exosomes (AEC-Exos), which potentially influence the development of asthma. However, the specific role of AEC-Exos in acute asthma exacerbation after RSV infection remains obscure. The purpose of this study was to determine the distinct function of AEC-Exos in exacerbating acute asthma following RSV infection. Blockade of exosomes by GW reduce the enhanced pulmonary inflammation significantly. Specifically, the enhanced Th2 inflammation was induced by AEC-Exos thorough transportation of hsa-miR-155-5p-Sirtuin 1 (SIRT1) pathway during acute asthma exacerbation. Targeted inhibition of hsa-miR-155-5p blocks the exaggerated Th2 inflammation effectively in mice with acute asthma exacerbation. In summary, our study showed that during acute asthma exacerbation after RSV infection, AEC-Exos promote the enhanced Th2 inflammation through transportation of increased hsa-miR-155-5p, which was mediated partly through SIRT1-mediated pathway. hsa-miR-155-5p is a potential biomarker for early prediction of acute asthma exacerbation.
Collapse
Affiliation(s)
- Ye Yao
- Department of Respiratory MedicineNational Clinical Research Center for Respiratory DiseasesXiangya HospitalCentral South UniversityChangshaChina
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaHunanChina
| | - Yu Yang
- Department of Respiratory MedicineNational Clinical Research Center for Respiratory DiseasesXiangya HospitalCentral South UniversityChangshaChina
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaHunanChina
| | - Ming Ji
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaHunanChina
| | - Qingwu Qin
- Department of Pulmonary and Critical Care Medicinethe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Kun Xu
- Department of preventive medicine, School of MedicineHunan Normal UniversityChangshaChina
| | - Zhenkun Xia
- Department of Thoracic Surgerythe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Huijun Liu
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaHunanChina
| | - Lin Yuan
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaHunanChina
| | - Yunchang Yuan
- Department of Thoracic Surgerythe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Ling Qin
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaHunanChina
- Basic and Clinical Research Laboratory of Major Respiratory DiseasesCentral South UniversityChangshaHunanChina
| | - Xizi Du
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaHunanChina
| | - Leyuan Wang
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaHunanChina
| | - Kai Zhou
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaHunanChina
| | - Xinyu Wu
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaHunanChina
| | - Weijie Wang
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaHunanChina
| | - Bei Qing
- Department of Thoracic Surgerythe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yang Xiang
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaHunanChina
| | - Xiangping Qu
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaHunanChina
| | - Ming Yang
- Centre for Asthma and Respiratory DiseaseSchool of Biomedical Sciences and PharmacyFaculty of Health and MedicineUniversity of Newcastle and Hunter Medical Research InstituteCallaghanNew South WalesAustralia
| | - Xiaoqun Qin
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaHunanChina
| | - Chi Liu
- Department of Respiratory MedicineNational Clinical Research Center for Respiratory DiseasesXiangya HospitalCentral South UniversityChangshaChina
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaHunanChina
- Basic and Clinical Research Laboratory of Major Respiratory DiseasesCentral South UniversityChangshaHunanChina
| |
Collapse
|
5
|
Peters S, Mohort K, Claus H, Stigloher C, Schubert-Unkmeir A. Interaction of Neisseria meningitidis carrier and disease isolates of MenB cc32 and MenW cc22 with epithelial cells of the nasopharyngeal barrier. Front Cell Infect Microbiol 2024; 14:1389527. [PMID: 38756230 PMCID: PMC11096551 DOI: 10.3389/fcimb.2024.1389527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Neisseria meningitidis (Nm, the meningococcus) is considered an asymptomatic colonizer of the upper respiratory tract and a transient member of its microbiome. It is assumed that the spread of N. meningitidis into the bloodstream occurs via transcytosis of the nasopharyngeal epithelial barrier without destroying the barrier layer. Here, we used Calu-3 respiratory epithelial cells that were grown under air-liquid-interface conditions to induce formation of pseudostratified layers and mucus production. The number of bacterial localizations in the outer mucus, as well as cellular adhesion, invasion and transmigration of different carrier and disease N. meningitidis isolates belonging to MenB:cc32 and MenW:cc22 lineages was assessed. In addition, the effect on barrier integrity and cytokine release was determined. Our findings showed that all strains tested resided primarily in the outer mucus layer after 24 h of infection (>80%). Nonetheless, both MenB:cc32 and MenW:cc22 carrier and disease isolates reached the surface of the epithelial cells and overcame the barrier. Interestingly, we observed a significant difference in the number of bacteria transmigrating the epithelial cell barrier, with the representative disease isolates being more efficient to transmigrate compared to carrier isolates. This could be attributed to the capacity of the disease isolates to invade, however could not be assigned to expression of the outer membrane protein Opc. Moreover, we found that the representative meningococcal isolates tested in this study did not damage the epithelial barrier, as shown by TEER measurement, FITC-dextran permeability assays, and expression of cell-junction components.
Collapse
Affiliation(s)
- Simon Peters
- Institute for Hygiene and Microbiology, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Katherina Mohort
- Institute for Hygiene and Microbiology, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Heike Claus
- Institute for Hygiene and Microbiology, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Christian Stigloher
- Imaging Core Facility, Biocenter, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | | |
Collapse
|
6
|
Sivaraman K, Liu B, Martinez-Delgado B, Held J, Büttner M, Illig T, Volland S, Gomez-Mariano G, Jedicke N, Yevsa T, Welte T, DeLuca DS, Wrenger S, Olejnicka B, Janciauskiene S. Human Bronchial Epithelial Cell Transcriptome Changes in Response to Serum from Patients with Different Status of Inflammation. Lung 2024; 202:157-170. [PMID: 38494528 PMCID: PMC11009779 DOI: 10.1007/s00408-024-00679-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/02/2024] [Indexed: 03/19/2024]
Abstract
PURPOSE To investigate the transcriptome of human bronchial epithelial cells (HBEC) in response to serum from patients with different degrees of inflammation. METHODS Serum from 19 COVID-19 patients obtained from the Hannover Unified Biobank was used. At the time of sampling, 5 patients had a WHO Clinical Progression Scale (WHO-CPS) score of 9 (severe illness). The remaining 14 patients had a WHO-CPS of below 9 (range 1-7), and lower illness. Multiplex immunoassay was used to assess serum inflammatory markers. The culture medium of HBEC was supplemented with 2% of the patient's serum, and the cells were cultured at 37 °C, 5% CO2 for 18 h. Subsequently, cellular RNA was used for RNA-Seq. RESULTS Patients with scores below 9 had significantly lower albumin and serum levels of E-selectin, IL-8, and MCP-1 than patients with scores of 9. Principal component analysis based on 500 "core genes" of RNA-seq segregated cells into two subsets: exposed to serum from 4 (I) and 15 (II) patients. Cells from a subset (I) treated with serum from 4 patients with a score of 9 showed 5566 differentially expressed genes of which 2793 were up- and 2773 downregulated in comparison with cells of subset II treated with serum from 14 patients with scores between 1 and 7 and one with score = 9. In subset I cells, a higher expression of TLR4 and CXCL8 but a lower CDH1, ACE2, and HMOX1, and greater effects on genes involved in metabolic regulation, cytoskeletal organization, and kinase activity pathways were observed. CONCLUSION This simple model could be useful to characterize patient serum and epithelial cell properties.
Collapse
Affiliation(s)
- Kokilavani Sivaraman
- Department of Pulmonary and Infectious Diseases, Hannover Medical School, BREATH German Center for Lung Research (DZL), Feodor-Lynen-Str. 23, 30625, Hannover, Germany
| | - Bin Liu
- Department of Pulmonary and Infectious Diseases, Hannover Medical School, BREATH German Center for Lung Research (DZL), Feodor-Lynen-Str. 23, 30625, Hannover, Germany
| | - Beatriz Martinez-Delgado
- Department of Molecular Genetics, Institute of Health Carlos III, Institute for Rare Diseases Research, CIBER of Rare Diseases (CIBERER), Majadahonda, 28220, Madrid, Spain
| | - Julia Held
- Department of Pulmonary and Infectious Diseases, Hannover Medical School, BREATH German Center for Lung Research (DZL), Feodor-Lynen-Str. 23, 30625, Hannover, Germany
| | - Manuela Büttner
- Hannover Medical School, Central Animal Facility, Hannover, Germany
| | - Thomas Illig
- Hannover Medical School, Hannover Unified Biobank, Hannover, Germany
| | - Sonja Volland
- Hannover Medical School, Hannover Unified Biobank, Hannover, Germany
| | - Gema Gomez-Mariano
- Department of Molecular Genetics, Institute of Health Carlos III, Institute for Rare Diseases Research, CIBER of Rare Diseases (CIBERER), Majadahonda, 28220, Madrid, Spain
| | - Nils Jedicke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Tetyana Yevsa
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Department of Pulmonary and Infectious Diseases, Hannover Medical School, BREATH German Center for Lung Research (DZL), Feodor-Lynen-Str. 23, 30625, Hannover, Germany
| | - David S DeLuca
- Department of Pulmonary and Infectious Diseases, Hannover Medical School, BREATH German Center for Lung Research (DZL), Feodor-Lynen-Str. 23, 30625, Hannover, Germany
| | - Sabine Wrenger
- Department of Pulmonary and Infectious Diseases, Hannover Medical School, BREATH German Center for Lung Research (DZL), Feodor-Lynen-Str. 23, 30625, Hannover, Germany
| | - Beata Olejnicka
- Department of Pulmonary and Infectious Diseases, Hannover Medical School, BREATH German Center for Lung Research (DZL), Feodor-Lynen-Str. 23, 30625, Hannover, Germany
| | - Sabina Janciauskiene
- Department of Pulmonary and Infectious Diseases, Hannover Medical School, BREATH German Center for Lung Research (DZL), Feodor-Lynen-Str. 23, 30625, Hannover, Germany.
| |
Collapse
|
7
|
Baek SM, Kim MN, Kim EG, Lee YJ, Park CH, Kim MJ, Kim KW, Sohn MH. Activated Leukocyte Cell Adhesion Molecule Regulates the Expression of Interleukin-33 in RSV Induced Airway Inflammation by Regulating MAPK Signaling Pathways. Lung 2024; 202:127-137. [PMID: 38502305 DOI: 10.1007/s00408-024-00682-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/07/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE The respiratory syncytial virus (RSV) is a common respiratory virus that causes acute lower respiratory tract infectious diseases, particularly in young children and older individuals. Activated leukocyte cell adhesion molecule (ALCAM) is a membrane glycoprotein expressed in various cell types, including epithelial cells, and is associated with inflammatory responses and various cancers. However, the precise role of ALCAM in RSV-induced airway inflammation remains unclear, and our study aimed to explore this gap in the literature. METHODS C57BL/6 wild-type, ALCAM knockout mice and airway epithelial cells were infected with RSV and the expression of ALCAM and inflammatory cytokines were measured. We also conducted further experiments using Anti-ALCAM antibody and recombinant ALCAM in airway epithelial cells. RESULTS The expression levels of ALCAM and inflammatory cytokines increased in both RSV-infected mice and airway epithelial cells. Interestingly, IL-33 expression was significantly reduced in ALCAM-knockdown cells compared to control cells following RSV infection. Anti-ALCAM antibody treatment also reduced IL-33 expression following RSV infection. Furthermore, the phosphorylation of ERK1/2, p38, and JNK was diminished in ALCAM-knockdown cells compared to control cells following RSV infection. Notably, in the control cells, inhibition of these pathways significantly decreased the expression of IL-33. In vivo study also confirmed a reduction in inflammation induced by RSV infection in ALCAM deficient mice compared to wild-type mice. CONCLUSION These findings demonstrate that ALCAM contributes to RSV-induced airway inflammation at least partly by influencing IL-33 expression through mitogen-activated protein kinase signaling pathways. These results suggest that targeting ALCAM could be a potential therapeutic strategy for alleviating IL-33-associated lung diseases.
Collapse
Affiliation(s)
- Seung Min Baek
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea
| | - Mi Na Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea
| | - Eun Gyul Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea
| | - Yu Jin Lee
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea
| | - Chang Hyun Park
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea
| | - Min Jung Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea.
- Department of Pediatrics, Yongin Severance Hospital, Yonsei University College of Medicine, 363 Dongbaekjukjeon-daero, Giheung-gu, Yongin, South Korea.
| | - Kyung Won Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea
| | - Myung Hyun Sohn
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea.
| |
Collapse
|
8
|
van Kasteren PB, Gelderloos AT, Nicolaie MA, den Hartog G, Vissers M, Luytjes W, Rots NY, van Beek J. Prevalence of human respiratory pathogens and associated mucosal cytokine levels in young children and adults: a cross-sectional observational study in the Netherlands during the winter of 2012/2013. Pathog Dis 2024; 82:ftae010. [PMID: 38714349 PMCID: PMC11132126 DOI: 10.1093/femspd/ftae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/16/2024] [Accepted: 05/06/2024] [Indexed: 05/09/2024] Open
Abstract
Respiratory pathogens can cause severe disease and even death, especially in the very young and very old. Studies investigating their prevalence often focus on individuals presenting to healthcare providers with symptoms. However, the design of prevention strategies, e.g. which target groups to vaccinate, will benefit from knowledge on the prevalence of, risk factors for and host response to these pathogens in the general population. In this study, upper respiratory samples (n = 1311) were collected cross-sectionally during winter from 11- and 24-month old children, their parents, and adults ≥60 years of age that were recruited irrespective of seeking medical care. Almost all children, approximately two-thirds of parents and a quarter of older adults tested positive for at least one pathogen, often in the absence of symptoms. Viral interference was evident for the combination of rhinovirus and respiratory syncytial virus. Attending childcare facilities and having siblings associated with increased pathogen counts in children. On average, children showed increased levels of mucosal cytokines compared to parents and especially proinflammatory molecules associated with the presence of symptoms. These findings may guide further research into transmission patterns of respiratory pathogens and assist in determining the most appropriate strategies for the prediction and prevention of disease.
Collapse
Affiliation(s)
- Puck B van Kasteren
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - Anne T Gelderloos
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - Mioara Alina Nicolaie
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - Gerco den Hartog
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - Marloes Vissers
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - Willem Luytjes
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - Nynke Y Rots
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - Josine van Beek
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| |
Collapse
|
9
|
Zou S, Jie H, Han X, Wang J. The role of neutrophil extracellular traps in sepsis and sepsis-related acute lung injury. Int Immunopharmacol 2023; 124:110436. [PMID: 37688916 DOI: 10.1016/j.intimp.2023.110436] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 09/11/2023]
Abstract
Neutrophils release neutrophil extracellular traps (NETs) to trap pathogenic microorganisms. NETs are involved in the inflammatory response and bacterial killing and clearance. However, their excessive activation can lead to an inflammatory storm in the body, which may damage tissues and cause organ dysfunction. Organ dysfunction is the main pathophysiological cause of sepsis and also a cause of the high mortality rate in sepsis. Acute lung injury caused by sepsis accounts for the highest proportion of organ damage in sepsis. NET formation can lead to the development of sepsis because by promoting the release of interleukin-1 beta, interleukin-8, and tumor necrosis factor-alpha, thereby accelerating acute lung injury. In this review, we describe the critical role of NETs in sepsis-associated acute lung injury and review the current knowledge and novel therapeutic approaches.
Collapse
Affiliation(s)
- Shujing Zou
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - Hongyu Jie
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - Xinai Han
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - Jinghong Wang
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Yang X, Zhao J, Sima Y, Zhao Y, Zhang J, Wang X, Zhang L. The association between allergic rhinitis and the risk of coronavirus disease 2019 (COVID-19): A national survey in China. Allergy 2023; 78:2783-2786. [PMID: 37476953 DOI: 10.1111/all.15823] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/14/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Affiliation(s)
- Xiaozhe Yang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinming Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Yutong Sima
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiangdong Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Durnell LA, Hippee CE, Cattaneo R, Bartlett JA, Singh BK, Sinn PL. Interferon-independent processes constrain measles virus cell-to-cell spread in primary human airway epithelial cells. Microbiol Spectr 2023; 11:e0136123. [PMID: 37724882 PMCID: PMC10580916 DOI: 10.1128/spectrum.01361-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/27/2023] [Indexed: 09/21/2023] Open
Abstract
Amplification of measles virus (MeV) in human airway epithelia may contribute to its extremely high contagious nature. We use well-differentiated primary cultures of human airway epithelial cells (HAE) to model ex vivo how MeV spreads in human airways. In HAE, MeV spreads cell-to-cell for 3-5 days, but then, infectious center growth is arrested. What stops MeV spread in HAE is not understood, but interferon (IFN) is known to slow MeV spread in other in vitro and in vivo models. Here, we assessed the role of type I and type III IFN in arresting MeV spread in HAE. The addition of IFN-β or IFN-λ1 to the medium of infected HAE slowed MeV infectious center growth, but when IFN receptor signaling was blocked, infectious center size was not affected. In contrast, blocking type-I IFN receptor signaling enhanced respiratory syncytial virus spread. HAE were also infected with MeV mutants defective for the V protein. The V protein has been demonstrated to interact with both MDA5 and STAT2 to inhibit activation of innate immunity; however, innate immune reactions were unexpectedly muted against the V-defective MeV in HAE. Minimal innate immunity activation was confirmed by deep sequencing, quantitative RT-PCR, and single-cell RNA-seq analyses of the transcription of IFN and IFN-stimulated genes. We conclude that in HAE, IFN-signaling can contribute to slowing infectious center growth; however, IFN-independent processes are most important for limiting cell-to-cell spread. IMPORTANCE Fundamental biological questions remain about the highly contagious measles virus (MeV). MeV amplifies within airway epithelial cells before spreading to the next host. This final step likely contributes to the ability of MeV to spread host-to-host. Over the course of 3-5 days post-infection of airway epithelial cells, MeV spreads directly cell-to-cell and forms infectious centers. Infectious center formation is unique to MeV. In this study, we show that interferon (IFN) signaling does not explain why MeV cell-to-cell spread is ultimately impeded within the cell layer. The ability of MeV to spread cell-to-cell in airway cells without appreciable IFN induction may contribute to its highly contagious nature. This study contributes to the understanding of a significant global health concern by demonstrating that infectious center formation occurs independent of the simplest explanation for limiting viral transmission within a host.
Collapse
Affiliation(s)
- Lorellin A. Durnell
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Camilla E. Hippee
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jennifer A. Bartlett
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Brajesh K. Singh
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Patrick L. Sinn
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
- Stead Family Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
12
|
Park S, Newton J, Hidjir T, Young EWK. Bidirectional airflow in lung airway-on-a-chip with matrix-derived membrane elicits epithelial glycocalyx formation. LAB ON A CHIP 2023; 23:3671-3682. [PMID: 37462986 DOI: 10.1039/d3lc00259d] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Organ-on-a-chip systems are rapidly advancing as a viable alternative to existing experimental models in respiratory research. To date, however, epithelial cell cultures within lung airway-on-a-chip devices have yet to demonstrate the presence of an epithelial glycocalyx, a thin layer of proteoglycans, glycoproteins, and glycolipids known to play an important role in regulating epithelial function. Here, we demonstrate that an airway-on-a-chip device that incorporates bidirectional flow mimicking breathing cycles in combination with an ultra-thin matrix-derived membrane (UMM) layer can generate a glycocalyx layer comprised of heparan sulfate. Results with this device and airflow system showed dramatic differences of airway epithelial cell viability and expression of tight junctions, cilia, and mucus over a wide range of flow rates when cultured under oscillatory flow. More importantly, for the first time in a microfluidic organ-on-a-chip setting, we achieved the visualization of an airflow-induced epithelial glycocalyx layer. Our experiments highlight the importance of physiological mimicry in developing in vitro models, as bidirectional airflow showed more representative mucociliary differentiation compared to continuous unidirectional airflow. Thus, the lung airway-on-a-chip platform demonstrated in this study holds great potential as a lung epithelial barrier model for studying the mechanisms of various respiratory diseases and for testing the efficacy of therapeutic candidates in the presence of bidirectional airflow and the glycocalyx.
Collapse
Affiliation(s)
- Siwan Park
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada.
| | - Jeremy Newton
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Tesnime Hidjir
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Edmond W K Young
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada.
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| |
Collapse
|
13
|
Guo TJF, Singhera GK, Leung JM, Dorscheid DR. Airway Epithelial-Derived Immune Mediators in COVID-19. Viruses 2023; 15:1655. [PMID: 37631998 PMCID: PMC10458661 DOI: 10.3390/v15081655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
The airway epithelium, which lines the conducting airways, is central to the defense of the lungs against inhaled particulate matter and pathogens such as SARS-CoV-2, the virus that causes COVID-19. Recognition of pathogens results in the activation of an innate and intermediate immune response which involves the release of cytokines and chemokines by the airway epithelium. This response can inhibit further viral invasion and influence adaptive immunity. However, severe COVID-19 is characterized by a hyper-inflammatory response which can give rise to clinical presentations including lung injury and lead to acute respiratory distress syndrome, viral pneumonia, coagulopathy, and multi-system organ failure. In response to SARS-CoV-2 infection, the airway epithelium can mount a maladaptive immune response which can delay viral clearance, perpetuate excessive inflammation, and contribute to the pathogenesis of severe COVID-19. In this article, we will review the barrier and immune functions of the airway epithelium, how SARS-CoV-2 can interact with the epithelium, and epithelial-derived cytokines and chemokines and their roles in COVID-19 and as biomarkers. Finally, we will discuss these immune mediators and their potential as therapeutic targets in COVID-19.
Collapse
Affiliation(s)
- Tony J. F. Guo
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
| | - Gurpreet K. Singhera
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- Department of Medicine, University of British Columbia, 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada
| | - Janice M. Leung
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- Department of Medicine, University of British Columbia, 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada
| | - Delbert R. Dorscheid
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- Department of Medicine, University of British Columbia, 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
14
|
Petrone V, Fanelli M, Giudice M, Toschi N, Conti A, Maracchioni C, Iannetta M, Resta C, Cipriani C, Miele MT, Amati F, Andreoni M, Sarmati L, Rogliani P, Novelli G, Garaci E, Rasi G, Sinibaldi-Vallebona P, Minutolo A, Matteucci C, Balestrieri E, Grelli S. Expression profile of HERVs and inflammatory mediators detected in nasal mucosa as a predictive biomarker of COVID-19 severity. Front Microbiol 2023; 14:1155624. [PMID: 37283924 PMCID: PMC10239953 DOI: 10.3389/fmicb.2023.1155624] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Our research group and others demonstrated the implication of the human endogenous retroviruses (HERVs) in SARS-CoV-2 infection and their association with disease progression, suggesting HERVs as contributing factors in COVID-19 immunopathology. To identify early predictive biomarkers of the COVID-19 severity, we analyzed the expression of HERVs and inflammatory mediators in SARS-CoV-2-positive and -negative nasopharyngeal/oropharyngeal swabs with respect to biochemical parameters and clinical outcome. Methods Residuals of swab samples (20 SARS-CoV-2-negative and 43 SARS-CoV-2-positive) were collected during the first wave of the pandemic and expression levels of HERVs and inflammatory mediators were analyzed by qRT-Real time PCR. Results The results obtained show that infection with SARS-CoV-2 resulted in a general increase in the expression of HERVs and mediators of the immune response. In particular, SARS-CoV-2 infection is associated with increased expression of HERV-K and HERV-W, IL-1β, IL-6, IL-17, TNF-α, MCP-1, INF-γ, TLR-3, and TLR-7, while lower levels of IL-10, IFN-α, IFN-β, and TLR-4 were found in individuals who underwent hospitalization. Moreover, higher expression of HERV-W, IL-1β, IL-6, IFN-α, and IFN-β reflected the respiratory outcome of patients during hospitalization. Interestingly, a machine learning model was able to classify hospitalized vs not hospitalized patients with good accuracy based on the expression levels of HERV-K, HERV-W, IL-6, TNF-a, TLR-3, TLR-7, and the N gene of SARS-CoV-2. These latest biomarkers also correlated with parameters of coagulation and inflammation. Discussion Overall, the present results suggest HERVs as contributing elements in COVID-19 and early genomic biomarkers to predict COVID-19 severity and disease outcome.
Collapse
Affiliation(s)
- Vita Petrone
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Marialaura Fanelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Martina Giudice
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Martinos Center for Biomedical Imaging and Harvard Medical School, Boston, MA, United States
| | - Allegra Conti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | - Marco Iannetta
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Resta
- Respiratory Medicine Unit, Policlinic of Tor Vergata, Rome, Italy
| | - Chiara Cipriani
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Amati
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Massimo Andreoni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Loredana Sarmati
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Rogliani
- Respiratory Medicine Unit, Policlinic of Tor Vergata, Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuromed IRCCS Institute, Pozzilli, IS, Italy
- University of Nevada, Department of Pharmacology, Reno, NV, United States
| | | | - Guido Rasi
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Sinibaldi-Vallebona
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- National Research Council, Institute of Translational Pharmacology, Rome, Italy
| | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Sandro Grelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- Virology Unit, Policlinic of Tor Vergata, Rome, Italy
| |
Collapse
|
15
|
T'Jonck W, Bain CC. The role of monocyte-derived macrophages in the lung: it's all about context. Int J Biochem Cell Biol 2023; 159:106421. [PMID: 37127181 DOI: 10.1016/j.biocel.2023.106421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Macrophages are present in every tissue of the body where they play crucial roles in maintaining tissue homeostasis and providing front line defence against pathogens. Arguably, this is most important at mucosal barrier tissues, such as the lung and gut, which are major ports of entry for pathogens. However, a common feature of inflammation, infection or injury is the loss of tissue resident macrophages and accumulation of monocytes from the circulation, which differentiate, to different extents, into macrophages. The exact fate and function of these elicited, monocyte-derived macrophages in infection, injury and inflammation remains contentious. While some studies have documented the indispensable nature of monocytes and their macrophage derivatives in combatting infection and restoration of lung homeostasis following insult, observations from clinical studies and preclinical models of lung infection/injury shows that monocytes and their progeny can become dysregulated in severe pathology, often perpetuating rather than resolving the insult. In this Mini Review, we aim to bring together these somewhat contradictory reports by discussing how the plasticity of monocytes allow them to assume distinct functions in different contexts in the lung, from health to infection, and effective tissue repair to fibrotic disease.
Collapse
Affiliation(s)
- Wouter T'Jonck
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh BioQuarter, EH16 4TJ, U.K; Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter
| | - Calum C Bain
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh BioQuarter, EH16 4TJ, U.K; Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter
| |
Collapse
|
16
|
Subramaniyan B, Gurung S, Bodas M, Moore AR, Larabee JL, Reuter D, Georgescu C, Wren JD, Myers DA, Papin JF, Walters MS. The Isolation and In Vitro Differentiation of Primary Fetal Baboon Tracheal Epithelial Cells for the Study of SARS-CoV-2 Host-Virus Interactions. Viruses 2023; 15:v15040862. [PMID: 37112842 PMCID: PMC10146425 DOI: 10.3390/v15040862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
The mucociliary airway epithelium lines the human airways and is the primary site of host-environmental interactions in the lung. Following virus infection, airway epithelial cells initiate an innate immune response to suppress virus replication. Therefore, defining the virus-host interactions of the mucociliary airway epithelium is critical for understanding the mechanisms that regulate virus infection, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Non-human primates (NHP) are closely related to humans and provide a model to study human disease. However, ethical considerations and high costs can restrict the use of in vivo NHP models. Therefore, there is a need to develop in vitro NHP models of human respiratory virus infection that would allow for rapidly characterizing virus tropism and the suitability of specific NHP species to model human infection. Using the olive baboon (Papio anubis), we have developed methodologies for the isolation, in vitro expansion, cryopreservation, and mucociliary differentiation of primary fetal baboon tracheal epithelial cells (FBTECs). Furthermore, we demonstrate that in vitro differentiated FBTECs are permissive to SARS-CoV-2 infection and produce a potent host innate-immune response. In summary, we have developed an in vitro NHP model that provides a platform for the study of SARS-CoV-2 infection and other human respiratory viruses.
Collapse
Affiliation(s)
- Bharathiraja Subramaniyan
- Department of Medicine, Section of Pulmonary, Critical Care & Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (B.S.); (M.B.); (A.R.M.)
| | - Sunam Gurung
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.G.); (D.A.M.)
| | - Manish Bodas
- Department of Medicine, Section of Pulmonary, Critical Care & Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (B.S.); (M.B.); (A.R.M.)
| | - Andrew R. Moore
- Department of Medicine, Section of Pulmonary, Critical Care & Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (B.S.); (M.B.); (A.R.M.)
| | - Jason L. Larabee
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Darlene Reuter
- Division of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (D.R.); (J.F.P.)
| | - Constantin Georgescu
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (C.G.); (J.D.W.)
| | - Jonathan D. Wren
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (C.G.); (J.D.W.)
| | - Dean A. Myers
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.G.); (D.A.M.)
| | - James F. Papin
- Division of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (D.R.); (J.F.P.)
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Matthew S. Walters
- Department of Medicine, Section of Pulmonary, Critical Care & Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (B.S.); (M.B.); (A.R.M.)
- Correspondence:
| |
Collapse
|
17
|
Liu D, Tang Z, Bajinka O, Dai P, Wu G, Qin L, Tan Y. miR-34b/c-5p/CXCL10 Axis Induced by RSV Infection Mediates a Mechanism of Airway Hyperresponsive Diseases. BIOLOGY 2023; 12:biology12020317. [PMID: 36829591 PMCID: PMC9953223 DOI: 10.3390/biology12020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Background: RSV is closely correlated with post-infection airway hyperresponsive diseases (AHD), but the mechanism remains unclear. Objective: Due to the pivotal role of miRNAs in AHD, we analyzed the differentially expressed miRNAs (DEmiRs) in RSV-infected patients, asthma patients, and COPD patients from public datasets and explored the mechanisms of association between RSV and AHD. Methods: We obtained miRNA and mRNA databases of patients with RSV infection, as well as miRNA databases of asthma and COPD patients from the GEO database. Through integrated analysis, we screened DEmiRs and DEGs. Further analysis was carried out to obtain the hub genes through the analysis of biological pathways and enrichment pathways of DEGs targeted by DEmiRs and the construction of a protein-protein interaction (PPI) network. Results: The five differential molecules (miR-34b/c-5p, Cd14, Cxcl10, and Rhoh) were verified through in vivo experiments that had the same expression trend in the acute and chronic phases of RSV infection. Following infection of BEAS-2B cells with RSV, we confirmed that RSV infection down-regulated miR-34b/c-5p, and up-regulated the expression levels of CXCL10 and CD14. Furthermore, the results of the dual-luciferase reporter assay showed that CXCL10 was the target of hsa-miR-34c-5p. Conclusions: miR-34b/c-5p/CXCL10 axis mediates a mechanism of AHD.
Collapse
Affiliation(s)
- Dan Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410078, China
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Central South University, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Zhongxiang Tang
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410078, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha 410078, China
| | - Ousman Bajinka
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410078, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha 410078, China
| | - Pei Dai
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410078, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha 410078, China
| | - Guojun Wu
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410078, China
| | - Ling Qin
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Central South University, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha 410078, China
- Correspondence: (L.Q.); (Y.T.)
| | - Yurong Tan
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410078, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha 410078, China
- Correspondence: (L.Q.); (Y.T.)
| |
Collapse
|
18
|
Kasumba DM, Huot S, Caron E, Fortin A, Laflamme C, Zamorano Cuervo N, Lamontagne F, Pouliot M, Grandvaux N. DUOX2 regulates secreted factors in virus-infected respiratory epithelial cells that contribute to neutrophil attraction and activation. FASEB J 2023; 37:e22765. [PMID: 36607642 PMCID: PMC10107641 DOI: 10.1096/fj.202201205r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/10/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023]
Abstract
The first line of defense against respiratory viruses relies on the antiviral and proinflammatory cytokine response initiated in infected respiratory epithelial cells. The cytokine response not only restricts virus replication and spreading, but also orchestrates the subsequent immune response. The epithelial Dual Oxidase 2 (DUOX2) has recently emerged as a regulator of the interferon antiviral response. Here, we investigated the role of DUOX2 in the inflammatory cytokine response using a model of A549 cells deficient in DUOX2 generated using Crispr-Cas9 and infected by Sendai virus. We found that the absence of DUOX2 selectively reduced the induction of a restricted panel of 14 cytokines and chemokines secreted in response to Sendai virus by 20 to 89%. The secreted factors produced by epithelial cells upon virus infection promoted the migration, adhesion, and degranulation of primary human neutrophils, in part through the DUOX2-dependent secretion of TNF and chemokines. In contrast, DUOX2 expression did not impact neutrophil viability or NETosis, thereby highlighting a selective impact of DUOX2 in neutrophil functions. Overall, this study unveils previously unrecognized roles of epithelial DUOX2 in the epithelial-immune cells crosstalk during respiratory virus infection.
Collapse
Affiliation(s)
- Dacquin M Kasumba
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Sandrine Huot
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada.,Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec - Université Laval, Québec City, Québec, Canada
| | - Elise Caron
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Audray Fortin
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Cynthia Laflamme
- Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec - Université Laval, Québec City, Québec, Canada
| | - Natalia Zamorano Cuervo
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Felix Lamontagne
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Marc Pouliot
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada.,Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec - Université Laval, Québec City, Québec, Canada
| | - Nathalie Grandvaux
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
19
|
Zhou X, Jiang M, Wang F, Qian Y, Song Q, Sun Y, Zhu R, Wang F, Qu D, Cao L, Ma L, Xu Y, De R, Zhao L. Immune escaping of the novel genotypes of human respiratory syncytial virus based on gene sequence variation. Front Immunol 2023; 13:1084139. [PMID: 36703972 PMCID: PMC9871593 DOI: 10.3389/fimmu.2022.1084139] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Purpose Immune escaping from host herd immunity has been related to changes in viral genomic sequences. The study aimed to understand the diverse immune responses to different subtypes or genotypes of human respiratory syncytial virus (RSV) in pediatric patients. Methods The genomic sequences of different subtypes or RSV genotypes, isolated from Beijing patients, were sequenced and systematically analyzed. Specifically, the antiviral effects of Palivizumab and the cross-reactivity of human sera from RSV-positive patients to different subtypes or genotypes of RSV were determined. Then, the level of 38 cytokines and chemokines in respiratory and serum samples from RSV-positive patients was evaluated. Results The highest nucleotide and amino acid variations and the secondary and tertiary structure diversities among different subtypes or genotypes of RSV were found in G, especially for genotype ON1 with a 72bp-insertion compared to NA1 in subtype A, while more mutations of F protein were found in the NH-2 terminal, including the antigenic site II, the target of Palivizumab, containing one change N276S. Palivizumab inhibited subtype A with higher efficiency than subtype B and had stronger inhibitory effects on the reference strains than on isolated strains. However, RSV-positive sera had stronger inhibitory effects on the strains in the same subtypes or genotypes of RSV. The level of IFN-α2, IL-1α, and IL-1β in respiratory specimens from patients with NA1 was lower than those with ON1, while there were higher TNFα, IFNγ, IL-1α, and IL-1β in the first serum samples from patients with ON1 compared to those with BA9 of subtype B. Conclusions Diverse host immune responses were correlated with differential subtypes and genotypes of RSV in pediatric patients, demonstrating the impact of viral genetics on host immunity.
Collapse
Affiliation(s)
- Xiaohe Zhou
- Laboratory of Virology, Capital Institute of Pediatrics, Beijing, China,Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China
| | - Mingli Jiang
- Laboratory of Virology, Capital Institute of Pediatrics, Beijing, China,Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China
| | - Fengjie Wang
- Laboratory of Virology, Capital Institute of Pediatrics, Beijing, China,Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China
| | - Yuan Qian
- Laboratory of Virology, Capital Institute of Pediatrics, Beijing, China,Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China
| | - Qinwei Song
- Clinical Laboratory, Affiliated Children’s Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Yu Sun
- Laboratory of Virology, Capital Institute of Pediatrics, Beijing, China,Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China
| | - Runan Zhu
- Laboratory of Virology, Capital Institute of Pediatrics, Beijing, China,Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China
| | - Fang Wang
- Laboratory of Virology, Capital Institute of Pediatrics, Beijing, China,Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China
| | - Dong Qu
- Intensive Care Unit, Affiliated Children’s Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Ling Cao
- Department of Respiratory, Affiliated Children’s Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Lijuan Ma
- Clinical Laboratory, Affiliated Children’s Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Yanpeng Xu
- Laboratory of Virology, Capital Institute of Pediatrics, Beijing, China,Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China
| | - Ri De
- Laboratory of Virology, Capital Institute of Pediatrics, Beijing, China,Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China,*Correspondence: Linqing Zhao, ; Ri De,
| | - Linqing Zhao
- Laboratory of Virology, Capital Institute of Pediatrics, Beijing, China,Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China,*Correspondence: Linqing Zhao, ; Ri De,
| |
Collapse
|
20
|
Meng Y, Lin S, Niu K, Ma Z, Lin H, Fan H. Vimentin affects inflammation and neutrophil recruitment in airway epithelium during Streptococcus suis serotype 2 infection. Vet Res 2023; 54:7. [PMID: 36717839 PMCID: PMC9885403 DOI: 10.1186/s13567-023-01135-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/19/2022] [Indexed: 01/31/2023] Open
Abstract
Streptococcus suis serotype 2 (SS2) frequently colonizes the swine upper respiratory tract and can cause Streptococcal disease in swine with clinical manifestations of pneumonia, meningitis, and septicemia. Previously, we have shown that vimentin, a kind of intermediate filament protein, is involved in the penetration of SS2 through the tracheal epithelial barrier. The initiation of invasive disease is closely related to SS2-induced excessive local inflammation; however, the role of vimentin in airway epithelial inflammation remains unclear. Here, we show that vimentin deficient mice exhibit attenuated lung injury, diminished production of proinflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and the IL-8 homolog, keratinocyte-derived chemokine (KC), and substantially reduced neutrophils in the lungs following intranasal infection with SS2. We also found that swine tracheal epithelial cells (STEC) without vimentin show decreased transcription of IL-6, TNF-α, and IL-8. SS2 infection caused reassembly of vimentin in STEC, and pharmacological disruption of vimentin filaments prevented the transcription of those proinflammatory cytokines. Furthermore, deficiency of vimentin failed to increase the transcription of nucleotide oligomerization domain protein 2 (NOD2), which is known to interact with vimentin, and the phosphorylation of NF-κB protein p65. This study provides insights into how vimentin promotes excessive airway inflammation, thereby exacerbating airway injury and SS2-induced systemic infection.
Collapse
Affiliation(s)
- Yu Meng
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shaojie Lin
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kai Niu
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ma
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huixing Lin
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongjie Fan
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China ,grid.268415.cJiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
21
|
Taveras J, Garcia-Maurino C, Moore-Clingenpeel M, Xu Z, Mertz S, Ye F, Chen P, Cohen SH, Cohen D, Peeples ME, Ramilo O, Mejias A. Type III Interferons, Viral Loads, Age, and Disease Severity in Young Children With Respiratory Syncytial Virus Infection. J Infect Dis 2022; 227:61-70. [PMID: 36200173 PMCID: PMC10205614 DOI: 10.1093/infdis/jiac404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The interplay among respiratory syncytial virus (RSV) loads, mucosal interferons (IFN), and disease severity in RSV-infected children is poorly understood. METHODS Children <2 years of age with mild (outpatients) or severe (inpatients) RSV infection and healthy controls were enrolled, and nasopharyngeal samples obtained for RSV loads and innate cytokines quantification. Patients were stratified by age (0-6 and >6-24 months) and multivariable analyses performed to identify predictors of disease severity. RESULTS In 2015-2019 we enrolled 219 RSV-infected children (78 outpatients; 141 inpatients) and 34 healthy controls. Type I, II, and III IFN concentrations were higher in children aged >6 versus 0-6 months and, like CXCL10, they were higher in outpatients than inpatients and correlated with RSV loads (P < .05). Higher IL6 concentrations increased the odds of hospitalization (odds ratio [OR], 2.30; 95% confidence interval [CI], 1.07-5.36) only in children >6 months, while higher IFN-λ2/3 concentrations had the opposite effect irrespective of age (OR, 0.38; 95% CI, .15-.86). Likewise, higher CXCL10 concentrations decreased the odds of hospitalization (OR, 0.21; 95% CI, .08-.48), oxygen administration (OR, 0.42; 95% CI, .21-.80),PICU admission (OR, 0.39; 95% CI, .20-.73), and prolonged hospitalization (OR, 0.57; 95% CI, .32-.98) irrespective of age. CONCLUSIONS Children with milder RSV infection and those aged >6 months had higher concentrations of mucosal IFNs, suggesting that maturation of mucosal IFN responses are associated with protection against severe RSV disease.
Collapse
Affiliation(s)
- Jeanette Taveras
- Department of Pediatrics, Division of Infectious Diseases, Nationwide Children's Hospital and The Ohio State College of Medicine, Columbus, Ohio, USA
| | - Cristina Garcia-Maurino
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State College of Medicine, Columbus, Ohio, USA
| | - Melissa Moore-Clingenpeel
- Biostatistics Core, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Zhaohui Xu
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State College of Medicine, Columbus, Ohio, USA
| | - Sara Mertz
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State College of Medicine, Columbus, Ohio, USA
| | - Fang Ye
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State College of Medicine, Columbus, Ohio, USA
| | - Phyl Chen
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State College of Medicine, Columbus, Ohio, USA
| | - Shira H Cohen
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State College of Medicine, Columbus, Ohio, USA
| | - Daniel Cohen
- Department of Pediatrics, Division of Emergency Medicine at Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Mark E Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State College of Medicine, Columbus, Ohio, USA
| | - Octavio Ramilo
- Department of Pediatrics, Division of Infectious Diseases, Nationwide Children's Hospital and The Ohio State College of Medicine, Columbus, Ohio, USA
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State College of Medicine, Columbus, Ohio, USA
| | - Asuncion Mejias
- Department of Pediatrics, Division of Infectious Diseases, Nationwide Children's Hospital and The Ohio State College of Medicine, Columbus, Ohio, USA
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
22
|
Yang W, Chen L, Guo J, Shi F, Yang Q, Xie L, Lu D, Li Y, Luo J, Wang L, Qiu L, Chen T, Li Y, Zhang R, Chen L, Xu W, Liu H. Multiomics Analysis of a DNAH5-Mutated PCD Organoid Model Revealed the Key Role of the TGF-β/BMP and Notch Pathways in Epithelial Differentiation and the Immune Response in DNAH5-Mutated Patients. Cells 2022; 11:cells11244013. [PMID: 36552777 PMCID: PMC9776854 DOI: 10.3390/cells11244013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Dynein axonemal heavy chain 5 (DNAH5) is the most mutated gene in primary ciliary dyskinesia (PCD), leading to abnormal cilia ultrastructure and function. Few studies have revealed the genetic characteristics and pathogenetic mechanisms of PCD caused by DNAH5 mutation. Here, we established a child PCD airway organoid directly from the bronchoscopic biopsy of a patient with the DNAH5 mutation. The motile cilia in the organoid were observed and could be stably maintained for an extended time. We further found abnormal ciliary function and a decreased immune response caused by the DNAH5 mutation through single-cell RNA sequencing (scRNA-Seq) and proteomic analyses. Additionally, the directed induction of the ciliated cells, regulated by TGF-β/BMP and the Notch pathway, also increased the expression of inflammatory cytokines. Taken together, these results demonstrated that the combination of multiomics analysis and organoid modelling could reveal the close connection between the immune response and the DNAH5 gene.
Collapse
Affiliation(s)
- Wenhao Yang
- Department of Paediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610000, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610000, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Sichuan Birth Defects Clinical Research Centre, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Lina Chen
- Department of Paediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610000, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610000, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Sichuan Birth Defects Clinical Research Centre, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Juncen Guo
- Department of Obstetrics/Gynaecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynaecologic, and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Fang Shi
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610000, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610000, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Sichuan Birth Defects Clinical Research Centre, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Qingxin Yang
- Sichuan Birth Defects Clinical Research Centre, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Liang Xie
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610000, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610000, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Sichuan Birth Defects Clinical Research Centre, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Danli Lu
- Department of Paediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610000, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610000, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Sichuan Birth Defects Clinical Research Centre, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Yingna Li
- Sichuan Birth Defects Clinical Research Centre, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Jiaxin Luo
- Department of Paediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610000, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610000, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Sichuan Birth Defects Clinical Research Centre, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Li Wang
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Li Qiu
- Department of Paediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610000, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610000, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Sichuan Birth Defects Clinical Research Centre, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Ting Chen
- Department of Paediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610000, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610000, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Sichuan Birth Defects Clinical Research Centre, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Yan Li
- Department of Paediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610000, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610000, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Sichuan Birth Defects Clinical Research Centre, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Rui Zhang
- Department of Paediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610000, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610000, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Sichuan Birth Defects Clinical Research Centre, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Lu Chen
- Sichuan Birth Defects Clinical Research Centre, West China Second University Hospital, Sichuan University, Chengdu 610000, China
| | - Wenming Xu
- Department of Obstetrics/Gynaecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynaecologic, and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Correspondence: (W.X.); (H.L.)
| | - Hanmin Liu
- Department of Paediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610000, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610000, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Sichuan Birth Defects Clinical Research Centre, West China Second University Hospital, Sichuan University, Chengdu 610000, China
- Correspondence: (W.X.); (H.L.)
| |
Collapse
|
23
|
Cortegano I, Rodríguez M, Hernángómez S, Arrabal A, Garcia-Vao C, Rodríguez J, Fernández S, Díaz J, de la Rosa B, Solís B, Arribas C, Garrido F, Zaballos A, Roa S, López V, Gaspar ML, de Andrés B. Age-dependent nasal immune responses in non-hospitalized bronchiolitis children. Front Immunol 2022; 13:1011607. [PMID: 36561744 PMCID: PMC9763932 DOI: 10.3389/fimmu.2022.1011607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Bronchiolitis in children is associated with significant rates of morbidity and mortality. Many studies have been performed using samples from hospitalized bronchiolitis patients, but little is known about the immunological responses from infants suffering from mild/moderate bronchiolitis that do not require hospitalization. We have studied a collection of nasal lavage fluid (NLF) samples from outpatient bronchiolitis children as a novel strategy to unravel local humoral and cellular responses, which are not fully characterized. The children were age-stratified in three groups, two of them (GI under 2-months, GII between 2-4 months) presenting a first episode of bronchiolitis, and GIII (between 4 months and 2 years) with recurrent respiratory infections. Here we show that elevated levels of pro-inflammatory cytokines (IL1β, IL6, TNFα, IL18, IL23), regulatory cytokines (IL10, IL17A) and IFNγ were found in the three bronchiolitis cohorts. However, little or no change was observed for IL33 and MCP1, at difference to previous results from bronchiolitis hospitalized patients. Furthermore, our results show a tendency to IL1β, IL6, IL18 and TNFα increased levels in children with mild pattern of symptom severity and in those in which non RSV respiratory virus were detected compared to RSV+ samples. By contrast, no such differences were found based on gender distribution. Bronchiolitis NLFs contained more IgM, IgG1, IgG3 IgG4 and IgA than NLF from their age-matched healthy controls. NLF from bronchiolitis children predominantly contained neutrophils, and also low frequency of monocytes and few CD4+ and CD8+ T cells. NLF from infants older than 4-months contained more intermediate monocytes and B cell subsets, including naïve and memory cells. BCR repertoire analysis of NLF samples showed a biased VH1 usage in IgM repertoires, with low levels of somatic hypermutation. Strikingly, algorithmic studies of the mutation profiles, denoted antigenic selection on IgA-NLF repertoires. Our results support the use of NLF samples to analyze immune responses and may have therapeutic implications.
Collapse
Affiliation(s)
- Isabel Cortegano
- Immunobiology Department, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Mercedes Rodríguez
- Immunobiology Department, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | - Alejandro Arrabal
- Immunobiology Department, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | - Javier Rodríguez
- Pediatrics Department, Atención Primaria Galapagar, Madrid, Spain
| | - Sandra Fernández
- Pediatrics Department, Atención Primaria Galapagar, Madrid, Spain
| | - Juncal Díaz
- Pediatrics Department, Atención Primaria Galapagar, Madrid, Spain
| | | | - Beatriz Solís
- Pediatrics Department, Hospital Puerta de Hierro, Madrid, Spain
| | - Cristina Arribas
- Pediatrics Department, Clínica Universitaria de Navarra, Madrid, Spain
| | - Felipe Garrido
- Pediatrics Department, Clínica Universitaria de Navarra, Madrid, Spain
| | - Angel Zaballos
- Genomics Central Core, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Sergio Roa
- Biochemistry and Genetics Department, Universidad de Navarra, Pamplona, Spain
| | - Victoria López
- Chronic Disease Programme Unidad de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Maria-Luisa Gaspar
- Immunobiology Department, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Belén de Andrés
- Immunobiology Department, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
24
|
Li W, Li T, Zhao C, Song T, Mi Y, Chuangfeng Z, Hou Y, Jia Z. XiaoEr LianHuaQinqGan alleviates viral pneumonia in mice infected by influenza A and respiratory syncytial viruses. PHARMACEUTICAL BIOLOGY 2022; 60:2355-2366. [PMID: 36444944 PMCID: PMC9809968 DOI: 10.1080/13880209.2022.2147961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/10/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Xiaoer lianhuaqinqgan (XELH), developed based on Lianhua Qingwen (LHQW) prescription, contains 13 traditional Chinese medicines. It has completed the investigational new drug application to treat respiratory viral infections in children in China. OBJECTIVE This study demonstrates the pharmacological effects of XELH against viral pneumonia. MATERIALS AND METHODS The antiviral and anti-inflammatory effects of XELH were investigated in vitro using H3N2-infected A549 and LPS-stimulated RAW264.7 cells and in vivo using BALB/c mice models of influenza A virus (H3N2) and respiratory syncytial virus (RSV)-infection. Mice were divided into 7 groups (n = 20): Control, Model, LHQW (0.5 g/kg), XELH-low (2 g/kg), XELH-medium (4 g/kg), XELH-high (8 g/kg), and positive drug (20 mg/kg oseltamivir or 60 mg/kg ribavirin) groups. The anti-inflammatory effects of XELH were tested in a rat model of LPS-induced fever and a mouse model of xylene-induced ear edoema. RESULTS In vitro, XELH inhibited the pro-inflammatory cytokines and replication of H1N1, H3N2, H1N1, FluB, H9N2, H6N2, H7N3, RSV, and HCoV-229E viruses, with (IC50 47.4, 114, 79, 250, 99.2, 170, 79, 62.5, and 93 μg/mL, respectively). In vivo, XELH reduced weight loss and lung index, inhibited viral replication and macrophage M1 polarization, ameliorated lung damage, decreased inflammatory cell infiltration and pro-inflammatory cytokines expression in lung tissues, and increased the CD4+/CD8+ ratio. XELH inhibited LPS-induced fever in rats and xylene-induced ear edoema in mice. CONCLUSION XELH efficacy partially depends on integrated immunoregulatory effects. XELH is a promising therapeutic option against childhood respiratory viral infections.
Collapse
Affiliation(s)
- Wenyan Li
- Hebei Yiling Hospital, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, Hebei, China
| | - Tongtong Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Chi Zhao
- Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tao Song
- Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, Hebei, China
| | - Yao Mi
- Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, Hebei, China
| | - Zhang Chuangfeng
- Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, Hebei, China
| | - Yunlong Hou
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, Hebei, China
- Shijiazhuang Compound Traditional Chinese Medicine Technology Innovation Center, Shijiazhuang, Hebei, China
| | - Zhenhua Jia
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Shijiazhuang Compound Traditional Chinese Medicine Technology Innovation Center, Shijiazhuang, Hebei, China
- Hebei Yiling Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
25
|
Córdova-Dávalos LE, Hernández-Mercado A, Barrón-García CB, Rojas-Martínez A, Jiménez M, Salinas E, Cervantes-García D. Impact of genetic polymorphisms related to innate immune response on respiratory syncytial virus infection in children. Virus Genes 2022; 58:501-514. [PMID: 36085536 PMCID: PMC9462631 DOI: 10.1007/s11262-022-01932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022]
Abstract
Respiratory syncytial virus (RSV) causes lower respiratory tract infections and bronchiolitis, mainly affecting children under 2 years of age and immunocompromised patients. Currently, there are no available vaccines or efficient pharmacological treatments against RSV. In recent years, tremendous efforts have been directed to understand the pathological mechanisms of the disease and generate a vaccine against RSV. Although RSV is highly infectious, not all the patients who get infected develop bronchiolitis and severe disease. Through various sequencing studies, single nucleotide polymorphisms (SNPs) have been discovered in diverse receptors, cytokines, and transcriptional regulators with crucial role in the activation of the innate immune response, which is implicated in the susceptibility to develop or protect from severe forms of the infection. In this review, we highlighted how variations in the key genes affect the development of innate immune response against RSV. This data would provide crucial information about the mechanisms of viral infection, and in the future, could help in generation of new strategies for vaccine development or generation of the pharmacological treatments.
Collapse
Affiliation(s)
- Laura Elena Córdova-Dávalos
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México
| | - Alicia Hernández-Mercado
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México
| | - Claudia Berenice Barrón-García
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México
| | - Augusto Rojas-Martínez
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Morones Prieto 3000 Pte, Los Doctores, 64710, Monterrey, Nuevo León, México
| | - Mariela Jiménez
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México
| | - Eva Salinas
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México.
| | - Daniel Cervantes-García
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, 20100, Aguascalientes, México. .,Consejo Nacional de Ciencia y Tecnología, 03940, Ciudad de México, México.
| |
Collapse
|
26
|
Heydarian M, Schulz C, Stoeger T, Hilgendorff A. Association of immune cell recruitment and BPD development. Mol Cell Pediatr 2022; 9:16. [PMID: 35917002 PMCID: PMC9346035 DOI: 10.1186/s40348-022-00148-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/15/2022] [Indexed: 11/10/2022] Open
Abstract
In the neonatal lung, exposure to both prenatal and early postnatal risk factors converge into the development of injury and ultimately chronic disease, also known as bronchopulmonary dysplasia (BPD). The focus of many studies has been the characteristic inflammatory responses provoked by these exposures. Here, we review the relationship between immaturity and prenatal conditions, as well as postnatal exposure to mechanical ventilation and oxygen toxicity, with the imbalance of pro- and anti-inflammatory regulatory networks. In these conditions, cytokine release, protease activity, and sustained presence of innate immune cells in the lung result in pathologic processes contributing to lung injury. We highlight the recruitment and function of myeloid innate immune cells, in particular, neutrophils and monocyte/macrophages in the BPD lung in human patients and animal models. We also discuss dissimilarities between the infant and adult immune system as a basis for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Motaharehsadat Heydarian
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Christian Schulz
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.,Department of Medicine I, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Tobias Stoeger
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Anne Hilgendorff
- Institute for Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), Munich, Germany. .,Center for Comprehensive Developmental Care (CDeCLMU) at the interdisciplinary Social Pediatric Center, (iSPZ), University Hospital Ludwig-Maximilian University, Munich, Germany.
| |
Collapse
|
27
|
Lungova V, Wendt K, Thibeault SL. Exposure to e-cigarette vapor extract induces vocal fold epithelial injury and triggers intense mucosal remodeling. Dis Model Mech 2022; 15:dmm049476. [PMID: 35770504 PMCID: PMC9438930 DOI: 10.1242/dmm.049476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022] Open
Abstract
Vaping has been reported to cause acute epiglottitis, a life-threatening airway obstruction induced by direct epithelial injury and subsequent inflammatory reaction. Here, we show that we were able to recapitulate this phenomenon in vitro. Exposure of human engineered vocal fold (VF) mucosae to 0.5% and 5% electronic cigarette (e-cigarette) vapor extract (ECVE) for 1 week induced cellular damage of luminal cells, disrupting homeostasis and innate immune responses. Epithelial erosion was likely caused by accumulation of solvents and lipid particles in the cytosol and intercellular spaces, which altered lipid metabolism and plasma membrane properties. Next, we investigated how the mucosal cells responded to the epithelial damage. We withdrew the ECVE from the experimental system and allowed VF mucosae to regenerate for 1, 3 and 7 days, which triggered intense epithelial remodeling. The epithelial changes included expansion of P63 (TP63)-positive basal cells and cytokeratin 14 (KRT14) and laminin subunit α-5 (LAMA5) deposition, which might lead to local basal cell hyperplasia, hyperkeratinization and basement membrane thickening. In summary, vaping presents a threat to VF mucosal health and airway protection, thereby raising further concerns over the safety of e-cigarette use. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Vlasta Lungova
- Department of Surgery, University of Wisconsin-Madison, 5105 WIMR Madison, WI 53705, USA
| | - Kristy Wendt
- Department of Surgery, University of Wisconsin-Madison, 5105 WIMR Madison, WI 53705, USA
| | - Susan L. Thibeault
- Department of Surgery, University of Wisconsin-Madison, 5103 WIMR, Madison, WI 53705, USA
| |
Collapse
|
28
|
Rodrigues P, Costa RS, Henriques R. Enrichment analysis on regulatory subspaces: A novel direction for the superior description of cellular responses to SARS-CoV-2. Comput Biol Med 2022; 146:105443. [PMID: 35533463 PMCID: PMC9040465 DOI: 10.1016/j.compbiomed.2022.105443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/13/2022] [Accepted: 03/20/2022] [Indexed: 12/16/2022]
Abstract
STATEMENT Enrichment analysis of cell transcriptional responses to SARS-CoV-2 infection from biclustering solutions yields broader coverage and superior enrichment of GO terms and KEGG pathways against alternative state-of-the-art machine learning solutions, thus aiding knowledge extraction. MOTIVATION AND METHODS The comprehensive understanding of the impacts of SARS-CoV-2 virus on infected cells is still incomplete. This work aims at comparing the role of state-of-the-art machine learning approaches in the study of cell regulatory processes affected and induced by the SARS-CoV-2 virus using transcriptomic data from both infectable cell lines available in public databases and in vivo samples. In particular, we assess the relevance of clustering, biclustering and predictive modeling methods for functional enrichment. Statistical principles to handle scarcity of observations, high data dimensionality, and complex gene interactions are further discussed. In particular, and without loos of generalization ability, the proposed methods are applied to study the differential regulatory response of lung cell lines to SARS-CoV-2 (α-variant) against RSV, IAV (H1N1), and HPIV3 viruses. RESULTS Gathered results show that, although clustering and predictive algorithms aid classic stances to functional enrichment analysis, more recent pattern-based biclustering algorithms significantly improve the number and quality of enriched GO terms and KEGG pathways with controlled false positive risks. Additionally, a comparative analysis of these results is performed to identify potential pathophysiological characteristics of COVID-19. These are further compared to those identified by other authors for the same virus as well as related ones such as SARS-CoV-1. The findings are particularly relevant given the lack of other works utilizing more complex machine learning algorithms within this context.
Collapse
Affiliation(s)
- Pedro Rodrigues
- IDMEC, Instituto Superior Tecnico, Universidade de Lisboa, Lisbon, Portugal; INESC-ID and Instituto Superior Tecnico, Universidade de Lisboa, Lisbon, Portugal
| | - Rafael S Costa
- IDMEC, Instituto Superior Tecnico, Universidade de Lisboa, Lisbon, Portugal; LAQV-REQUIMTE, DQ, NOVA School of Science and Technology, Caparica, Portugal
| | - Rui Henriques
- INESC-ID and Instituto Superior Tecnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
29
|
Rossi GA, Ballarini S, Salvati P, Sacco O, Colin AA. Alarmins and innate lymphoid cells 2 activation: A common pathogenetic link connecting respiratory syncytial virus bronchiolitis and later wheezing/asthma? Pediatr Allergy Immunol 2022; 33:e13803. [PMID: 35754131 DOI: 10.1111/pai.13803] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/21/2022]
Abstract
Severe respiratory syncytial virus (RSV) infection in infancy is associated with increased risk of recurrent wheezing in childhood. Both acute and long-term alterations in airway functions are thought to be related to inefficient antiviral immune response. The airway epithelium, the first target of RSV, normally acts as an immunological barrier able to elicit an effective immune reaction but may also be programmed to directly promote a Th2 response, independently from Th2 lymphocyte involvement. Recognition of RSV transcripts and viral replication intermediates by bronchial epithelial cells brings about release of TSLP, IL-33, HMGB1, and IL-25, dubbed "alarmins." These epithelial cell-derived proteins are particularly effective in stimulating innate lymphoid cells 2 (ILC2) to release IL-4, IL-5, and IL-13. ILC2, reflect the innate counterparts of Th2 cells and, when activate, are potent promoters of airway inflammation and hyperresponsiveness in RSV bronchiolitis and childhood wheezing/asthma. Long-term epithelial progenitors or persistent epigenetic modifications of the airway epithelium following RSV infection may play a pathogenetic role in the short- and long-term increased susceptibility to obstructive lung diseases in response to RSV in the young. Additionally, ILC2 function may be further regulated by RSV-induced changes in gut microbiota community composition that can be associated with disease severity in infants. A better understanding of the alarmin-ILC interactions in childhood might provide insights into the mechanisms characterizing these immune-mediated diseases and indicate new targets for prevention and therapeutic interventions.
Collapse
Affiliation(s)
- Giovanni A Rossi
- Department of Pediatrics, Pediatric Pulmonology and Respiratory Endoscopy Unit, G. Gaslini institute and University Hospital, Genoa, Italy
| | - Stefania Ballarini
- Department of Medicine and Surgery, Section of Immunometabolism, Immunogenetics and Translational Immunology, University of Perugia, Perugia, Italy
| | - Pietro Salvati
- Department of Pediatrics, Pediatric Pulmonology and Respiratory Endoscopy Unit, G. Gaslini institute and University Hospital, Genoa, Italy
| | - Oliviero Sacco
- Department of Pediatrics, Pediatric Pulmonology and Respiratory Endoscopy Unit, G. Gaslini institute and University Hospital, Genoa, Italy
| | - Andrew A Colin
- Division of Pediatric Pulmonology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
30
|
Kroes MM, Miranda-Bedate A, Jacobi RHJ, van Woudenbergh E, den Hartog G, van Putten JPM, de Wit J, Pinelli E. Bordetella pertussis-infected innate immune cells drive the anti-pertussis response of human airway epithelium. Sci Rep 2022; 12:3622. [PMID: 35256671 PMCID: PMC8901624 DOI: 10.1038/s41598-022-07603-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Pertussis is a severe respiratory tract infection caused by Bordetella pertussis. This bacterium infects the ciliated epithelium of the human airways. We investigated the epithelial cell response to B. pertussis infection in primary human airway epithelium (HAE) differentiated at air-liquid interface. Infection of the HAE cells mimicked several hallmarks of B. pertussis infection such as reduced epithelial barrier integrity and abrogation of mucociliary transport. Our data suggests mild immunological activation of HAE by B. pertussis indicated by secretion of IL-6 and CXCL8 and the enrichment of genes involved in bacterial recognition and innate immune processes. We identified IL-1β and IFNγ, present in conditioned media derived from B. pertussis-infected macrophage and NK cells, as essential immunological factors for inducing robust chemokine secretion by HAE in response to B. pertussis. In transwell migration assays, the chemokine-containing supernatants derived from this HAE induced monocyte migration. Our data suggests that the airway epithelium on its own has a limited immunological response to B. pertussis and that for a broad immune response communication with local innate immune cells is necessary. This highlights the importance of intercellular communication in the defense against B. pertussis infection and may assist in the rational design of improved pertussis vaccines.
Collapse
Affiliation(s)
- M M Kroes
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - A Miranda-Bedate
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - R H J Jacobi
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - E van Woudenbergh
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.,Section Paediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - G den Hartog
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - J P M van Putten
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - J de Wit
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - E Pinelli
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| |
Collapse
|
31
|
Bich TCT, Quoc QL, Choi Y, Yang EM, Trinh HKT, Shin YS, Park HS. Serum Amyloid A1: A Biomarker for Neutrophilic Airway Inflammation in Adult Asthmatic Patients. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:40-58. [PMID: 34983106 PMCID: PMC8724823 DOI: 10.4168/aair.2022.14.1.40] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022]
Abstract
Purpose We evaluated the role of serum amyloid A1 (SAA1) in the pathogenesis of airway inflammation according to the phenotype of asthma. Methods One hundred twenty-two asthmatic patients and 60 healthy control subjects (HCs) were enrolled to measure SAA1 levels. The production of SAA1 from airway epithelial cells (AECs) and its effects on macrophages and neutrophils were investigated in vitro and in vivo. Results The SAA1 levels were significantly higher in sera of asthmatic patients than in those of HCs (P = 0.014); among asthmatics, patients with neutrophilic asthma (NA) showed significantly higher SAA1 levels than those with non-NA (P < 0.001). In vitro, polyinosinic:polycytidylic acid (Poly I-C) treatment markedly enhanced the production of SAA1 from AECs, which was further augmented by neutrophils; SAA1 could induce the production of interleukin (IL)-6, IL-8, and S100 calcium-binding protein A9 from AECs. Additionally, SAA1 activated neutrophils and macrophages isolated from peripheral blood of asthmatics, releasing neutrophil extracellular traps (NETs) and secreting proinflammatory cytokines presenting M1 phenotype, respectively. In ovalbumin-induced asthma mice, Poly I-C treatment significantly increased SAA1 levels as well as IL-17A/interferon-gamma/IL-33 levels in bronchoalveolar lavage fluid (BALF), leading to airway hyperresponsiveness and inflammation. The highest levels of SAA1 and neutrophilia were noted in the BALF and sera of the NA mouse model, followed by the mixed granulocytic asthma (MA) model. Especially, SAA1 induced IL-17/retinoic acid receptor-related orphan receptor γt expression from activated CD4+ T lymphocytes in asthmatic mice. Conclusions The results show that SAA1 could induce neutrophilic airway inflammation by activating neutrophils along with NET formation, M1 macrophages, and Th2/Th17 predominant cells, contributing to the phenotype of NA or MA.
Collapse
Affiliation(s)
- Tra Cao Thi Bich
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Science, Ajou University School of Medicine, Suwon, Korea
| | - Quang Luu Quoc
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Science, Ajou University School of Medicine, Suwon, Korea
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Eun-Mi Yang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | | | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
32
|
Borcherding L, Teksen AS, Grosser B, Schaller T, Hirschbühl K, Claus R, Spring O, Wittmann M, Römmele C, Sipos É, Märkl B. Impaired Dendritic Cell Homing in COVID-19. Front Med (Lausanne) 2021; 8:761372. [PMID: 34805226 PMCID: PMC8601231 DOI: 10.3389/fmed.2021.761372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/15/2021] [Indexed: 12/19/2022] Open
Abstract
The high mortality of COVID-19 is mostly attributed to acute respiratory distress syndrome (ARDS), whose histopathological correlate is diffuse alveolar damage (DAD). Furthermore, severe COVID-19 is often accompanied by a cytokine storm and a disrupted response of the adaptive immune system. Studies aiming to depict this dysregulation have mostly investigated the peripheral cell count as well as the functionality of immune cells. We investigated the impact of SARS-CoV-2 on antigen-presenting cells using multiplexed immunofluorescence. Similar to MERS-CoV and SARS-CoV, SARS-CoV-2 appears to be impairing the maturation of dendritic cells (DCs). DC maturation involves a switch in surface antigen expression, which enables the cells' homing to lymph nodes and the subsequent activation of T-cells. As quantitative descriptions of the local inflammatory infiltrate are still scarce, we compared the cell population of professional antigen-presenting cells (APC) in the lungs of COVID-19 autopsy cases in different stages of DAD. We found an increased count of myeloid dendritic cells (mDCs) in later stages. Interestingly, mDCs also showed no significant upregulation of maturation markers in DAD-specimens with high viral load. Accumulation of immature mDCs, which are unable to home to lymph nodes, ultimately results in an inadequate T-cell response.
Collapse
Affiliation(s)
- Lukas Borcherding
- General Pathology and Molecular Diagnostics, Medical Faculty, University of Augsburg, Augsburg, Germany
| | | | - Bianca Grosser
- General Pathology and Molecular Diagnostics, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Tina Schaller
- General Pathology and Molecular Diagnostics, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Klaus Hirschbühl
- Hematology and Oncology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Rainer Claus
- Hematology and Oncology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Oliver Spring
- Anesthesiology and Operative Intensive Care Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Michael Wittmann
- Hematology and Oncology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Christoph Römmele
- Internal Medicine III-Gastroenterology, University Hospital of Augsburg, Augsburg, Germany
| | - Éva Sipos
- General Pathology and Molecular Diagnostics, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Bruno Märkl
- General Pathology and Molecular Diagnostics, Medical Faculty, University of Augsburg, Augsburg, Germany
| |
Collapse
|
33
|
Duan W, Cen Y, Lin C, Ouyang H, Du K, Kumar A, Wang B, Avolio J, Grasemann H, Moraes TJ. Inflammatory epithelial cytokines after in vitro respiratory syncytial viral infection are associated with reduced lung function. ERJ Open Res 2021; 7:00365-2021. [PMID: 34527729 PMCID: PMC8435810 DOI: 10.1183/23120541.00365-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 11/27/2022] Open
Abstract
Respiratory syncytial virus (RSV) infections in early life predispose children with cystic fibrosis (CF) to more severe lung function decline in later life. The mechanisms explaining the associations between RSV and progression of CF lung disease are not clear. In this study, a human bronchial epithelial cell line and primary human nasal epithelial cells (PNECs) from individuals with CF and healthy control donors were infected with RSV. Real-time PCR, plaque assay, cytokine detection, immunofluorescence and Western blot analyses were performed. RSV is replicated to a higher degree in CF epithelial cells as compared to control cells; however, no defects in innate immune pathways were identified in CF cells. Rather, primary p.Phe508del cystic fibrosis transmembrane conductance regulator PNECs produced more cytokines after RSV infection than control cells. Moreover, interleukin-8 and tumour necrosis factor-α production post RSV negatively correlated with lung function (% predicted forced expiratory volume in 1 s) in the individuals who donated the cells. These data suggest that CF epithelium has a dysfunctional response to RSV allowing for enhanced viral replication and an exaggerated inflammatory response that ultimately may predispose to greater airway inflammation and reduced lung function. This work demonstrates an association between epithelial inflammatory cytokines after in vitro viral infection and lung function in cystic fibrosis, and reinforces the importance of studying innate immune epithelial cell function in cystic fibrosishttps://bit.ly/3gDNwwo
Collapse
Affiliation(s)
- Wenming Duan
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Yuchen Cen
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada.,Dept of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Cindy Lin
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Hong Ouyang
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Kai Du
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Anushree Kumar
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Borui Wang
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Julie Avolio
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Hartmut Grasemann
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada.,Division of Respiratory Medicine, Dept of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Theo J Moraes
- Program in Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada.,Dept of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Respiratory Medicine, Dept of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
34
|
Vaghari-Tabari M, Mohammadzadeh I, Qujeq D, Majidinia M, Alemi F, Younesi S, Mahmoodpoor A, Maleki M, Yousefi B, Asemi Z. Vitamin D in respiratory viral infections: a key immune modulator? Crit Rev Food Sci Nutr 2021; 63:2231-2246. [PMID: 34470511 DOI: 10.1080/10408398.2021.1972407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Respiratory viral infections are common respiratory diseases. Influenza viruses, RSV and SARS-COV2 have the potential to cause severe respiratory infections. Numerous studies have shown that unregulated immune response to these viruses can cause excessive inflammation and tissue damage. Therefore, regulating the antiviral immune response in the respiratory tract is of importance. In this regard, recent years studies have emphasized the importance of vitamin D in respiratory viral infections. Although, the most well-known role of vitamin D is to regulate the metabolism of phosphorus and calcium, it has been shown that this vitamin has other important functions. One of these functions is immune regulation. Vitamin D can regulate the antiviral immune response in the respiratory tract in order to provide an effective defense against respiratory viral infections and prevention from excessive inflammatory response and tissue damage. In addition, this vitamin has preventive effects against respiratory viral infections. Some studies during the COVID-19 pandemic have shown that vitamin D deficiency may be associated with a higher risk of mortality and sever disease in patients with COVID-19. Since, more attention has recently been focused on vitamin D. In this article, after a brief overview of the antiviral immune response in the respiratory system, we will review the role of vitamin D in regulating the antiviral immune response comprehensively. Then we will discuss the importance of this vitamin in influenza, RSV, and COVID-19.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Iraj Mohammadzadeh
- Non-Communicable Pediatric Diseases Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Durdi Qujeq
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Forough Alemi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Younesi
- Schoole of Health and Biomedical Sciences, RMIT University, Melborne, VIC, Australia
| | - Ata Mahmoodpoor
- Department of Anesthesiology and Intensive Care, School of Medicine, Tabriz University of Medical Science and Health Services, Tabriz, Iran
| | - Masomeh Maleki
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
35
|
The role of syncytia during viral infections. J Theor Biol 2021; 525:110749. [PMID: 33964289 DOI: 10.1016/j.jtbi.2021.110749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/25/2021] [Accepted: 04/29/2021] [Indexed: 12/16/2022]
Abstract
Respiratory syncytial virus (RSV) is a common, contagious infection of the lungs and the respiratory tract. RSV is characterized by syncytia, which are multinuclear cells created by cells that have fused together. We use a mathematical model to study how different assumptions about the viral production and lifespan of syncytia change the resulting infection time course. We find that the effect of syncytia on viral titer is only apparent when the basic reproduction number for infection via syncytia formation is similar to the reproduction number for cell free viral transmission. When syncytia fusion rate is high, we find the presence of syncytia can lead to slowly growing infections if viral production is suppressed in syncytia. Our model provides insight into how the presence of syncytia can affect the time course of a viral infection.
Collapse
|
36
|
Cellular and functional heterogeneity of the airway epithelium. Mucosal Immunol 2021; 14:978-990. [PMID: 33608655 PMCID: PMC7893625 DOI: 10.1038/s41385-020-00370-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/15/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
The airway epithelium protects us from environmental insults, which we encounter with every breath. Not only does it passively filter large particles, it also senses potential danger and alerts other cells, including immune and nervous cells. Together, these tissues orchestrate the most appropriate response, balancing the need to eliminate the danger with the risk of damage to the host. Each cell subset within the airway epithelium plays its part, and when impaired, may contribute to the development of respiratory disease. Here we highlight recent advances regarding the cellular and functional heterogeneity along the airway epithelium and discuss how we can use this knowledge to design more effective, targeted therapeutics.
Collapse
|
37
|
Efstathiou C, Abidi SH, Harker J, Stevenson NJ. Revisiting respiratory syncytial virus's interaction with host immunity, towards novel therapeutics. Cell Mol Life Sci 2020; 77:5045-5058. [PMID: 32556372 PMCID: PMC7298439 DOI: 10.1007/s00018-020-03557-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/24/2022]
Abstract
Every year there are > 33 million cases of Respiratory Syncytial Virus (RSV)-related respiratory infection in children under the age of five, making RSV the leading cause of lower respiratory tract infection (LRTI) in infants. RSV is a global infection, but 99% of related mortality is in low/middle-income countries. Unbelievably, 62 years after its identification, there remains no effective treatment nor vaccine for this deadly virus, leaving infants, elderly and immunocompromised patients at high risk. The success of all pathogens depends on their ability to evade and modulate the host immune response. RSV has a complex and intricate relationship with our immune systems, but a clearer understanding of these interactions is essential in the development of effective medicines. Therefore, in a bid to update and focus our research community's understanding of RSV's interaction with immune defences, this review aims to discuss how our current knowledgebase could be used to combat this global viral threat.
Collapse
Affiliation(s)
- C Efstathiou
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - S H Abidi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - J Harker
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, South Kensington, London, UK
| | - N J Stevenson
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
38
|
Gamage AM, Tan KS, Chan WOY, Liu J, Tan CW, Ong YK, Thong M, Andiappan AK, Anderson DE, Wang DY, Wang LF. Infection of human Nasal Epithelial Cells with SARS-CoV-2 and a 382-nt deletion isolate lacking ORF8 reveals similar viral kinetics and host transcriptional profiles. PLoS Pathog 2020; 16:e1009130. [PMID: 33284849 PMCID: PMC7746279 DOI: 10.1371/journal.ppat.1009130] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/17/2020] [Accepted: 11/09/2020] [Indexed: 01/08/2023] Open
Abstract
The novel coronavirus SARS-CoV-2 is the causative agent of Coronavirus Disease 2019 (COVID-19), a global healthcare and economic catastrophe. Understanding of the host immune response to SARS-CoV-2 is still in its infancy. A 382-nt deletion strain lacking ORF8 (Δ382 herein) was isolated in Singapore in March 2020. Infection with Δ382 was associated with less severe disease in patients, compared to infection with wild-type SARS-CoV-2. Here, we established Nasal Epithelial cells (NECs) differentiated from healthy nasal-tissue derived stem cells as a suitable model for the ex-vivo study of SARS-CoV-2 mediated pathogenesis. Infection of NECs with either SARS-CoV-2 or Δ382 resulted in virus particles released exclusively from the apical side, with similar replication kinetics. Screening of a panel of 49 cytokines for basolateral secretion from infected NECs identified CXCL10 as the only cytokine significantly induced upon infection, at comparable levels in both wild-type and Δ382 infected cells. Transcriptome analysis revealed the temporal up-regulation of distinct gene subsets during infection, with anti-viral signaling pathways only detected at late time-points (72 hours post-infection, hpi). This immune response to SARS-CoV-2 was significantly attenuated when compared to infection with an influenza strain, H3N2, which elicited an inflammatory response within 8 hpi, and a greater magnitude of anti-viral gene up-regulation at late time-points. Remarkably, Δ382 induced a host transcriptional response nearly identical to that of wild-type SARS-CoV-2 at every post-infection time-point examined. In accordance with previous results, Δ382 infected cells showed an absence of transcripts mapping to ORF8, and conserved expression of other SARS-CoV-2 genes. Our findings shed light on the airway epithelial response to SARS-CoV-2 infection, and demonstrate a non-essential role for ORF8 in modulating host gene expression and cytokine production from infected cells.
Collapse
Affiliation(s)
- Akshamal M. Gamage
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Kai Sen Tan
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Wharton O. Y. Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Jing Liu
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Yew Kwang Ong
- Department of Otolaryngology, Head & Neck Surgery, National University Health System, National University Hospital, Singapore
| | - Mark Thong
- Department of Otolaryngology, Head & Neck Surgery, National University Health System, National University Hospital, Singapore
| | | | | | - De Yun Wang
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Singhealth Duke-NUS Global Health Institute, Singapore
| |
Collapse
|
39
|
Ahmad T, Chaudhuri R, Joshi MC, Almatroudi A, Rahmani AH, Ali SM. COVID-19: The Emerging Immunopathological Determinants for Recovery or Death. Front Microbiol 2020; 11:588409. [PMID: 33335518 PMCID: PMC7736111 DOI: 10.3389/fmicb.2020.588409] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023] Open
Abstract
Hyperactivation of the host immune system during infection by SARS-CoV-2 is the leading cause of death in COVID-19 patients. It is also evident that patients who develop mild/moderate symptoms and successfully recover display functional and well-regulated immune response. Whereas a delayed initial interferon response is associated with severe disease outcome and can be the tipping point towards immunopathological deterioration, often preceding death in COVID-19 patients. Further, adaptive immune response during COVID-19 is heterogeneous and poorly understood. At the same time, some studies suggest activated T and B cell response in severe and critically ill patients and the presence of SARS-CoV2-specific antibodies. Thus, understanding this problem and the underlying molecular pathways implicated in host immune function/dysfunction is imperative to devise effective therapeutic interventions. In this comprehensive review, we discuss the emerging immunopathological determinants and the mechanism of virus evasion by the host cell immune system. Using the knowledge gained from previous respiratory viruses and the emerging clinical and molecular findings on SARS-CoV-2, we have tried to provide a holistic understanding of the host innate and adaptive immune response that may determine disease outcome. Considering the critical role of the adaptive immune system during the viral clearance, we have presented the molecular insights of the plausible mechanisms involved in impaired T cell function/dysfunction during various stages of COVID-19.
Collapse
Affiliation(s)
- Tanveer Ahmad
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Rituparna Chaudhuri
- Department of Molecular and Cellular Neuroscience, Neurovirology Section, National Brain Research Centre (NBRC), Haryana, India
| | - Mohan C. Joshi
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah, Saudi Arabia
| | - Syed Mansoor Ali
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
40
|
Shao X, Guha S, Lu W, Campagno KE, Beckel JM, Mills JA, Yang W, Mitchell CH. Polarized Cytokine Release Triggered by P2X7 Receptor from Retinal Pigmented Epithelial Cells Dependent on Calcium Influx. Cells 2020; 9:cells9122537. [PMID: 33255431 PMCID: PMC7760537 DOI: 10.3390/cells9122537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
Cytokine release from non-inflammatory cells is a key step in innate immunity, and agonists triggering cytokine release are central in coordinating responses. P2X7 receptor (P2X7R) stimulation by extracellular ATP is best known to active the NLRP3 inflammasome and release IL-1β, but stimulation also leads to release of other cytokines. As cytokine signaling by retinal pigmented epithelial (RPE) cells is implicated in retinal neurodegeneration, the role of P2X7R in release of cytokine IL-6 from RPE cells was investigated. P2X7R stimulation triggered IL-6 release from primary mouse RPE, human iPS-RPE and human ARPE-19 cells. IL-6 release was polarized, with predominant rise across apical membranes. IL-6 release was inhibited by P2X7R antagonists A438079, A839977, and AZ10606120, but not the NRTI lamivudine (3TC), P2X1R antagonist NF279, or P2Y1R antagonist MRS2179. P2X7R-mediated IL-6 release required extracellular Ca2+ and was blocked by Ca2+ chelator BAPTA. IL-6 release and Ca2+ elevation occurred rapidly, consistent with vesicular IL-6 staining in unstimulated cells. P2X7R stimulation did not trigger IL-1β release in these unprimed cells. P2X7R-mediated IL-6 release was enhanced in RPE cells from the ABCA4−/− mouse model of retinal degeneration. In summary, P2X7R stimulation triggers rapid Ca2+-dependent IL-6 release across the apical membrane of RPE cells.
Collapse
Affiliation(s)
- Xiaolei Shao
- Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen 518060, China;
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.G.); (J.M.B.)
| | - Sonia Guha
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.G.); (J.M.B.)
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Wennan Lu
- Department of Basic and Translational Science, University of Pennsylvania, Philadelphia, PA 19104, USA; (W.L.); (K.E.C.)
| | - Keith E. Campagno
- Department of Basic and Translational Science, University of Pennsylvania, Philadelphia, PA 19104, USA; (W.L.); (K.E.C.)
| | - Jonathan M. Beckel
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.G.); (J.M.B.)
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jason A. Mills
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Kirby Center for Molecular Ophthalmology and Center for Advanced Retinal and Ocular Therapeutics (CAROT), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenli Yang
- Department of Medicine and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Claire H. Mitchell
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.G.); (J.M.B.)
- Department of Basic and Translational Science, University of Pennsylvania, Philadelphia, PA 19104, USA; (W.L.); (K.E.C.)
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: ; Tel.: +1-215-573-2176
| |
Collapse
|
41
|
Kuek LE, Lee RJ. First contact: the role of respiratory cilia in host-pathogen interactions in the airways. Am J Physiol Lung Cell Mol Physiol 2020; 319:L603-L619. [PMID: 32783615 PMCID: PMC7516383 DOI: 10.1152/ajplung.00283.2020] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory cilia are the driving force of the mucociliary escalator, working in conjunction with secreted airway mucus to clear inhaled debris and pathogens from the conducting airways. Respiratory cilia are also one of the first contact points between host and inhaled pathogens. Impaired ciliary function is a common pathological feature in patients with chronic airway diseases, increasing susceptibility to respiratory infections. Common respiratory pathogens, including viruses, bacteria, and fungi, have been shown to target cilia and/or ciliated airway epithelial cells, resulting in a disruption of mucociliary clearance that may facilitate host infection. Despite being an integral component of airway innate immunity, the role of respiratory cilia and their clinical significance during airway infections are still poorly understood. This review examines the expression, structure, and function of respiratory cilia during pathogenic infection of the airways. This review also discusses specific known points of interaction of bacteria, fungi, and viruses with respiratory cilia function. The emerging biological functions of motile cilia relating to intracellular signaling and their potential immunoregulatory roles during infection will also be discussed.
Collapse
Affiliation(s)
- Li Eon Kuek
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Robert J Lee
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
42
|
Sierra B, Pérez AB, Aguirre E, Bracho C, Valdés O, Jimenez N, Baldoquin W, Gonzalez G, Ortega LM, Montalvo MC, Resik S, Alvarez D, Guzmán MG. Association of Early Nasopharyngeal Immune Markers With COVID-19 Clinical Outcome: Predictive Value of CCL2/MCP-1. Open Forum Infect Dis 2020; 7:ofaa407. [PMID: 33123608 PMCID: PMC7499702 DOI: 10.1093/ofid/ofaa407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022] Open
Abstract
Early recognition of severe forms of coronavirus disease 2019 (COVID-19) is essential for an opportune and effective intervention, reducing life-risking complications. An altered inflammatory immune response seems to be associated with COVID-19's pathogenesis and progression to severity. Here we demonstrate the utility of early nasopharyngeal swab samples for detection of the early expression of immune markers and the potential value of CCL2/MCP-1 in predicting disease outcome.
Collapse
Affiliation(s)
- Beatriz Sierra
- Cellular Immunology Laboratory, Virology Department, Center for Research, Diagnostic and Reference, Pedro Kourí Institute of Tropical Medicine, Havana, Cuba
- Correspondence: Beatriz Sierra, MD, PhD, Immunology Laboratory, Virology Department, National Center for Research, Diagnostic and Reference, Pedro Kourí Institute of Tropical Medicine, Autopista Novia del Mediodía, km 61/2, Habana, 11400, Cuba ()
| | - Ana B Pérez
- Cellular Immunology Laboratory, Virology Department, Center for Research, Diagnostic and Reference, Pedro Kourí Institute of Tropical Medicine, Havana, Cuba
| | - Eglis Aguirre
- Cellular Immunology Laboratory, Virology Department, Center for Research, Diagnostic and Reference, Pedro Kourí Institute of Tropical Medicine, Havana, Cuba
| | - Claudia Bracho
- Cellular Immunology Laboratory, Virology Department, Center for Research, Diagnostic and Reference, Pedro Kourí Institute of Tropical Medicine, Havana, Cuba
| | - Odalys Valdés
- Respiratory Viruses Laboratory, Virology Department, Center for Research, Diagnostic and Reference, Pedro Kourí Institute of Tropical Medicine, Havana, Cuba
| | - Narciso Jimenez
- Medical Attention Branch, Pedro Kourí Institute of Tropical Medicine, Havana, Cuba
| | - Waldemar Baldoquin
- Epidemiology Department Center for Research, Diagnostic and Reference, Pedro Kourí Institute of Tropical Medicine, Havana, Cuba
| | - Guelsys Gonzalez
- Respiratory Viruses Laboratory, Virology Department, Center for Research, Diagnostic and Reference, Pedro Kourí Institute of Tropical Medicine, Havana, Cuba
| | - Lilia M Ortega
- Intensive Care Unit, Medical Attention Branch, Pedro Kourí Institute of Tropical Medicine, Havana, Cuba
| | - Maria C Montalvo
- Hepatitis Laboratory, Virology Department, Center for Research, Diagnostic and Reference, Pedro Kourí Institute of Tropical Medicine, Havana, Cuba
| | - Sonia Resik
- Enterovirus Laboratory, Virology Department, Center for Research, Diagnostic and Reference, Pedro Kourí Institute of Tropical Medicine, Havana, Cuba
| | - Delmis Alvarez
- Department of Computing, Pedro Kourí Institute of Tropical Medicine, Havana, Cuba
| | - Maria G Guzmán
- Center for Research, Diagnostic and Reference, Pedro Kourí Institute of Tropical Medicine, Havana, Cuba
| |
Collapse
|
43
|
Antibody and Local Cytokine Response to Respiratory Syncytial Virus Infection in Community-Dwelling Older Adults. mSphere 2020; 5:5/5/e00577-20. [PMID: 32878928 PMCID: PMC7471002 DOI: 10.1128/msphere.00577-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Respiratory syncytial virus (RSV) can cause severe morbidity and mortality in certain risk groups, especially infants and older adults. Currently no (prophylactic) treatment is available, except for a partially effective yet highly expensive monoclonal antibody. RSV therefore remains a major public health concern. To allow targeted development of novel vaccines and therapeutics, it is of great importance to understand the immunological mechanisms that underlie (protection from) severe disease in specific risk populations. Since most RSV-related studies focus on infants, there are only very limited data available concerning the response to RSV in the elderly population. Therefore, in this study, RSV-induced antibody responses and local cytokine secretion were assessed in community-dwelling older adults. These data provide novel insights that will benefit ongoing efforts to design safe and effective prevention and treatment strategies for RSV in an understudied risk group. Respiratory syncytial virus (RSV) is increasingly recognized for causing severe morbidity and mortality in older adults, but there are few studies on the RSV-induced immune response in this population. Information on the immunological processes at play during RSV infection in specific risk groups is essential for the rational and targeted design of novel vaccines and therapeutics. Here, we assessed the antibody and local cytokine response to RSV infection in community-dwelling older adults (≥60 years of age). During three winters, serum and nasopharyngeal swab samples were collected from study participants during acute respiratory infection and recovery. RSV IgG enzyme-linked immunosorbent assays (ELISA) and virus neutralization assays were performed on serum samples from RSV-infected individuals (n = 41) and controls (n = 563 and n = 197, respectively). Nasal RSV IgA and cytokine concentrations were determined using multiplex immunoassays in a subset of participants. An in vitro model of differentiated primary bronchial epithelial cells was used to assess RSV-induced cytokine responses over time. A statistically significant increase in serum neutralization titers and IgG concentrations was observed in RSV-infected participants compared to controls. During acute RSV infection, a statistically significant local upregulation of beta interferon (IFN-β), IFN-λ1, IFN-γ, interleukin 1β (IL-1β), tumor necrosis factor alpha (TNF-α), IL-6, IL-10, CXCL8, and CXCL10 was found. IFN-β, IFN-λ1, CXCL8, and CXCL10 were also upregulated in the epithelial model upon RSV infection. In conclusion, this study provides novel insights into the basic immune response to RSV infection in an important and understudied risk population, providing leads for future studies that are essential for the prevention and treatment of severe RSV disease in older adults. IMPORTANCE Respiratory syncytial virus (RSV) can cause severe morbidity and mortality in certain risk groups, especially infants and older adults. Currently no (prophylactic) treatment is available, except for a partially effective yet highly expensive monoclonal antibody. RSV therefore remains a major public health concern. To allow targeted development of novel vaccines and therapeutics, it is of great importance to understand the immunological mechanisms that underlie (protection from) severe disease in specific risk populations. Since most RSV-related studies focus on infants, there are only very limited data available concerning the response to RSV in the elderly population. Therefore, in this study, RSV-induced antibody responses and local cytokine secretion were assessed in community-dwelling older adults. These data provide novel insights that will benefit ongoing efforts to design safe and effective prevention and treatment strategies for RSV in an understudied risk group.
Collapse
|
44
|
Wan R, Jiang J, Hu C, Chen X, Chen C, Zhao B, Hu X, Zheng Z, Li Y. Neutrophil extracellular traps amplify neutrophil recruitment and inflammation in neutrophilic asthma by stimulating the airway epithelial cells to activate the TLR4/ NF-κB pathway and secrete chemokines. Aging (Albany NY) 2020; 12:16820-16836. [PMID: 32756014 PMCID: PMC7521522 DOI: 10.18632/aging.103479] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/27/2020] [Indexed: 01/24/2023]
Abstract
Neutrophilic asthma (NA) is a distinct airway inflammation disease with prominent neutrophil infiltration. The role played by neutrophil extracellular traps (NETs) in NA, however, is quite unclear. This study was based on the hypothesis that NETs are responsible for the second neutrophil wave and therefore contribute significantly to inflammation. The proinflammatory effects of NETs were evaluated in vitro and in vivo. Formation of NETs and neutrophil swarming was seen in a mouse model of NA. Additionally, NETs were found to stimulate airway cells to express CXCL1, CXCL2, and CXCL8 via the TLR4/NF-κB pathway, which recruits neutrophils to the inflammation site. Furthermore, prevention of NET formation decreased the recruitment of lung neutrophils and hence reduce neutrophilic inflammation. Additionally, the structural integrity of NETs had no effect on the recruitment of lung neutrophils and neutrophilic inflammation. In NA mice, NETs could trigger airway and alveolar epithelial cells to express chemokines which recruit more neutrophils via activation of the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Rongjun Wan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Juan Jiang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Chengping Hu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Xi Chen
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Cen Chen
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Bingrong Zhao
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Xinyue Hu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Zhiyuan Zheng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Yuanyuan Li
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
45
|
Andrade CA, Pacheco GA, Gálvez NMS, Soto JA, Bueno SM, Kalergis AM. Innate Immune Components that Regulate the Pathogenesis and Resolution of hRSV and hMPV Infections. Viruses 2020; 12:E637. [PMID: 32545470 PMCID: PMC7354512 DOI: 10.3390/v12060637] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
The human respiratory syncytial virus (hRSV) and human Metapneumovirus (hMPV) are two of the leading etiological agents of acute lower respiratory tract infections, which constitute the main cause of mortality in infants. However, there are currently approved vaccines for neither hRSV nor hMPV. Moreover, despite the similarity between the pathology caused by both viruses, the immune response elicited by the host is different in each case. In this review, we discuss how dendritic cells, alveolar macrophages, neutrophils, eosinophils, natural killer cells, innate lymphoid cells, and the complement system regulate both pathogenesis and the resolution of hRSV and hMPV infections. The roles that these cells play during infections by either of these viruses will help us to better understand the illnesses they cause. We also discuss several controversial findings, relative to some of these innate immune components. To better understand the inflammation in the lungs, the role of the respiratory epithelium in the recruitment of innate immune cells is briefly discussed. Finally, we review the main prophylactic strategies and current vaccine candidates against both hRSV and hMPV.
Collapse
Affiliation(s)
- Catalina A. Andrade
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Gaspar A. Pacheco
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Nicolas M. S. Gálvez
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Jorge A. Soto
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Susan M. Bueno
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Alexis M. Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| |
Collapse
|
46
|
Yu G, Mo S, Gao L, Wen X, Chen S, Long X, Xie X, Deng Y, Ren L, Zang N, Chen S, Liu E. Club cell 10-kDa protein (CC10) inhibits cPLA2/COX2 pathway to alleviate RSV-induced airway inflammation and AHR. Int Immunopharmacol 2020; 83:106327. [DOI: 10.1016/j.intimp.2020.106327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 11/25/2022]
|
47
|
Bhat R, Farrag MA, Almajhdi FN. Double-edged role of natural killer cells during RSV infection. Int Rev Immunol 2020; 39:233-244. [PMID: 32469615 DOI: 10.1080/08830185.2020.1770748] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Natural killer cells play a vital role in the rejection of tumors and pathogen-infected cells. NK cells are indispensable in the early immune response against viral infections by directly targeting infected cells. Furthermore, NK cells influence adaptive immunity by driving virus-specific T-cell responses. Respiratory syncytial virus, a highly contagious virus that causes bronchiolitis, is the main reason for mortality in infants and elderly patients. RSV infection triggers both innate and adaptive immune responses. However, immunity against RSV is ephemeral due to the impaired development of immunological memory. The role of NK cells during RSV infection remains ambiguous. NK cells play a dual role in RSV infection; initially, their role is a protective one as they utilize their intrinsic cytotoxicity, followed by a detrimental one that induces lung injury due to the inhibition of antibody responses and the secretion of pro-inflammatory factors. Noteworthy, IFN-γ released from NK cells play a critical role in promoting a shift to adaptive responses and inhibiting antibody responses in neonates. Indeed, NK cells have a pro-inflammatory and inhibitory role rather than a cytotoxic one that contributes to the severity of the disease. Therapeutic options, including DNA-protein-based vaccines, synthetic peptides, and attenuated strains, are presently under tests. However, there is a need for effective strategies to augment NK cell activity and circumvent the pro-inflammatory activity to benefit the host. In this review, we focused on the role played by NK cells in the immune response and its outcome on the immunopathogenesis of RSV disease.
Collapse
Affiliation(s)
- Rauf Bhat
- Virology Research Group, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A Farrag
- Virology Research Group, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fahad N Almajhdi
- Virology Research Group, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|