1
|
Rouhi S, Ghasemi H, Alizadeh M, Movahedpour A, Vahedi F, Fattahi M, Aiiashi S, Khatami SH. miRNA-based electrochemical biosensors for ovarian cancer. Clin Chim Acta 2025; 564:119946. [PMID: 39214394 DOI: 10.1016/j.cca.2024.119946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Ovarian cancer, a prevalent and deadly cancer among women, presents a significant challenge for early detection due to its heterogeneous nature. MicroRNAs, short non-coding regulatory RNA fragments, play a role in various cellular processes. Aberrant expression of these microRNAs has been observed in the carcinogenesis-related processes of many cancer types. Numerous studies highlight the critical role of microRNAs in the initiation and progression of ovarian cancer. Given their clinical importance and predictive value, there has been considerable interest in developing simple, prompt, and sensitive miRNA biosensor strategies. Among these, electrochemical sensors have demonstrated advantageous characteristics such as simplicity, sensitivity, low cost, and scalability. These microRNA-based electrochemical biosensors are valuable tools for early detection and point-of-care applications. This article discusses the potential role of microRNAs in ovarian cancer and recent advances in the development of electrochemical biosensors for miRNA detection in ovarian cancer samples.
Collapse
Affiliation(s)
- Saber Rouhi
- Resident of Large Animal Internal Medicine, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Iran
| | | | - Mehdi Alizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Movahedpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farzaneh Vahedi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam
| | - Saleh Aiiashi
- Abadan University of Medical Sciences, Abadan, Iran.
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Ranjbari S, Almahmeed W, Kesharwani P, Sahebkar A. Advancements in biosensor technologies for fibrinogen detection in cardiovascular disorders. Talanta 2024; 280:126687. [PMID: 39126966 DOI: 10.1016/j.talanta.2024.126687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Rapid and accurate identification of cardiovascular diseases (CVDs) are crucial for timely medical interventions and improved patient outcomes. Fibrinogen (Fib) has emerged as a valuable biomarker for CVDs, playing a significant role in their early detection. Elevated levels of Fib are associated with an increased risk of developing CVD, highlighting its importance for more precise diagnosis and effective treatment strategies. In recent years, significant advancements have been made in developing biosensor-based approaches for detecting Fib, offering high sensitivity and specificity. This review aims to explore the impact of Fib on cardiovascular conditions, assess the current advancements, and discuss the future potential of biosensors in Fib research for diagnosing cardiovascular disorders. Furthermore, we evaluate various biosensor techniques, including optical, electrochemical, electronic, and gravimetric methods, in terms of their utility for measuring Fib in clinical samples such as serum, plasma, whole blood, and other body fluids. A comparative analysis of these techniques is conducted based on their performance characteristics. By providing a comprehensive overview of the relationship between Fib and cardiovascular ailments, this review aims to clarify the advancements in biosensor technology for Fib detection. The comparison of different biosensor techniques will aid researchers and clinicians in selecting the most suitable approach for their specific diagnostic needs. Ultimately, integrating biosensors into clinical practice has the potential to revolutionize the detection and management of CVDs, leading to improved patient care and outcomes.
Collapse
Affiliation(s)
- Sara Ranjbari
- Applied Biomedical Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Balaban Hanoglu S, Harmanci D, Evran S, Timur S. Detection strategies of infectious diseases via peptide-based electrochemical biosensors. Bioelectrochemistry 2024; 160:108784. [PMID: 39094447 DOI: 10.1016/j.bioelechem.2024.108784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Infectious diseases have threatened human life for as long as humankind has existed. One of the most crucial aspects of fighting against these infections is diagnosis to prevent disease spread. However, traditional diagnostic methods prove insufficient and time-consuming in the face of a pandemic. Therefore, studies focusing on detecting viruses causing these diseases have increased, with a particular emphasis on developing rapid, accurate, specific, user-friendly, and portable electrochemical biosensor systems. Peptides are used integral components in biosensor fabrication for several reasons, including various and adaptable synthesis protocols, long-term stability, and specificity. Here, we discuss peptide-based electrochemical biosensor systems that have been developed over the last decade for the detection of infectious diseases. In contrast to other reports on peptide-based biosensors, we have emphasized the following points i) the synthesis methods of peptides for biosensor applications, ii) biosensor fabrication approaches of peptide-based electrochemical biosensor systems, iii) the comparison of electrochemical biosensors with other peptide-based biosensor systems and the advantages and limitations of electrochemical biosensors, iv) the pros and cons of peptides compared to other biorecognition molecules in the detection of infectious diseases, v) different perspectives for future studies with the shortcomings of the systems developed in the past decade.
Collapse
Affiliation(s)
- Simge Balaban Hanoglu
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey.
| | - Duygu Harmanci
- Central Research Test and Analysis Laboratory, Application and Research Center, Ege University, Bornova, Izmir 35100, Turkey
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey
| | - Suna Timur
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey; Central Research Test and Analysis Laboratory, Application and Research Center, Ege University, Bornova, Izmir 35100, Turkey.
| |
Collapse
|
4
|
Markandan K, Tiong YW, Sankaran R, Subramanian S, Markandan UD, Chaudhary V, Numan A, Khalid M, Walvekar R. Emergence of infectious diseases and role of advanced nanomaterials in point-of-care diagnostics: a review. Biotechnol Genet Eng Rev 2024; 40:3438-3526. [PMID: 36243900 DOI: 10.1080/02648725.2022.2127070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022]
Abstract
Infectious outbreaks are the foremost global public health concern, challenging the current healthcare system, which claims millions of lives annually. The most crucial way to control an infectious outbreak is by early detection through point-of-care (POC) diagnostics. POC diagnostics are highly advantageous owing to the prompt diagnosis, which is economical, simple and highly efficient with remote access capabilities. In particular, utilization of nanomaterials to architect POC devices has enabled highly integrated and portable (compact) devices with enhanced efficiency. As such, this review will detail the factors influencing the emergence of infectious diseases and methods for fast and accurate detection, thus elucidating the underlying factors of these infections. Furthermore, it comprehensively highlights the importance of different nanomaterials in POCs to detect nucleic acid, whole pathogens, proteins and antibody detection systems. Finally, we summarize findings reported on nanomaterials based on advanced POCs such as lab-on-chip, lab-on-disc-devices, point-of-action and hospital-on-chip. To this end, we discuss the challenges, potential solutions, prospects of integrating internet-of-things, artificial intelligence, 5G communications and data clouding to achieve intelligent POCs.
Collapse
Affiliation(s)
- Kalaimani Markandan
- Temasek Laboratories, Nanyang Technological University, Nanyang Drive, Singapore
- Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia
| | - Yong Wei Tiong
- NUS Environmental Research Institute, National University of Singapore, Engineering Drive, Singapore
| | - Revathy Sankaran
- Graduate School, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Sakthinathan Subramanian
- Department of Materials & Mineral Resources Engineering, National Taipei University of Technology (NTUT), Taipei, Taiwan
| | | | - Vishal Chaudhary
- Research Cell & Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi, India
| | - Arshid Numan
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster School of Engineering and Technology, Sunway University, Selangor, Malaysia
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster School of Engineering and Technology, Sunway University, Selangor, Malaysia
| | - Rashmi Walvekar
- Department of Chemical Engineering, School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| |
Collapse
|
5
|
Gattani A, Mandal S, Agrawal A, Patel P, Jain AK, Singh P, Garg A, Mishra A. CRISPR-based electrochemical biosensors for animal health: Recent advances. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 193:7-18. [PMID: 39237013 DOI: 10.1016/j.pbiomolbio.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024]
Abstract
Animal diseases are a major concern to animal welfare, human health and the global economy. Early detection, prevention and control of these animal diseases are crucial to ensure sustainability of livestock sector, to reduce farm losses and protecting public health. Points of care (POC) devices are small, portable instruments that provide rapid results thus reduce the risk of disease transmission and enable early intervention. CRISPR based diagnostics offer more accurate and efficient solution for monitoring animal health due to their quick response, can detect very low level of pathogenic organism or disease markers and specificity. These diagnostics are particularly useful in the in area with limited resources or access to common diagnostic methods, especially in developing countries. The ability of electrochemical sensors to detect accurately very low analyte concentration makes them suitable for POC diagnostics and field application. CRISPR base electrochemical biosensors show great potential in revolutionizing disease detection and diagnosis including animal health. However, challenges, such as achieving selectivity and sensitivity, need to be addressed to enhance the competitiveness of these biosensors. Currently, most CRISPR based bioassay research focuses on nucleic acid target detection, but researchers exploring to monitor small organic/inorganic non-nucleic acid molecules like toxins and proteins. Emerging diagnostics would be centered on CRISPR-Cas system will offer great potential as an accurate, specific and effective means to identify microorganism, virus, toxins, small molecules, peptides and nucleic acid related to various animal health disorders particularly when integrated into electrochemical biosensing platform.
Collapse
Affiliation(s)
- Anil Gattani
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal Husbandry, NDVSU, Jabalpur, India.
| | - Sanju Mandal
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal Husbandry, NDVSU, Jabalpur, India
| | - Aditya Agrawal
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal Husbandry, Rewa, India
| | - Pragati Patel
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal Husbandry, NDVSU, Jabalpur, India
| | - Anand Kumar Jain
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal Husbandry, NDVSU, Jabalpur, India
| | - Purnima Singh
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal Husbandry, NDVSU, Jabalpur, India
| | - Akshay Garg
- Directorate of Research Services, NDVSU, Jabalpur, India
| | - Aditya Mishra
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal Husbandry, NDVSU, Jabalpur, India
| |
Collapse
|
6
|
Antonelli G, Filippi J, D'Orazio M, Curci G, Casti P, Mencattini A, Martinelli E. Integrating machine learning and biosensors in microfluidic devices: A review. Biosens Bioelectron 2024; 263:116632. [PMID: 39116628 DOI: 10.1016/j.bios.2024.116632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Microfluidic devices are increasingly widespread in the literature, being applied to numerous exciting applications, from chemical research to Point-of-Care devices, passing through drug development and clinical scenarios. Setting up these microenvironments, however, introduces the necessity of locally controlling the variables involved in the phenomena under investigation. For this reason, the literature has deeply explored the possibility of introducing sensing elements to investigate the physical quantities and the biochemical concentration inside microfluidic devices. Biosensors, particularly, are well known for their high accuracy, selectivity, and responsiveness. However, their signals could be challenging to interpret and must be carefully analysed to carry out the correct information. In addition, proper data analysis has been demonstrated even to increase biosensors' mentioned qualities. To this regard, machine learning algorithms are undoubtedly among the most suitable approaches to undertake this job, automatically learning from data and highlighting biosensor signals' characteristics at best. Interestingly, it was also demonstrated to benefit microfluidic devices themselves, in a new paradigm that the literature is starting to name "intelligent microfluidics", ideally closing this benefic interaction among these disciplines. This review aims to demonstrate the advantages of the triad paradigm microfluidics-biosensors-machine learning, which is still little used but has a great perspective. After briefly describing the single entities, the different sections will demonstrate the benefits of the dual interactions, highlighting the applications where the reviewed triad paradigm was employed.
Collapse
Affiliation(s)
- Gianni Antonelli
- Department of Electronic Engineering & Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Via del Politecnico, 1, 00133, Rome, Italy
| | - Joanna Filippi
- Department of Electronic Engineering & Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Via del Politecnico, 1, 00133, Rome, Italy
| | - Michele D'Orazio
- Department of Electronic Engineering & Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Via del Politecnico, 1, 00133, Rome, Italy
| | - Giorgia Curci
- Department of Electronic Engineering & Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Via del Politecnico, 1, 00133, Rome, Italy
| | - Paola Casti
- Department of Electronic Engineering & Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Via del Politecnico, 1, 00133, Rome, Italy
| | - Arianna Mencattini
- Department of Electronic Engineering & Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Via del Politecnico, 1, 00133, Rome, Italy
| | - Eugenio Martinelli
- Department of Electronic Engineering & Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Via del Politecnico, 1, 00133, Rome, Italy.
| |
Collapse
|
7
|
Cheng J, Cao H, Zhang S, Shao J, Yan W, Peng C, Yue F, Zhou Z. Enhanced Electric Field Minimizing Quasi-Fermi Level Splitting Deficit for High-Performance Tin-Lead Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2410298. [PMID: 39394826 DOI: 10.1002/adma.202410298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/18/2024] [Indexed: 10/14/2024]
Abstract
The quasi-Fermi level splitting (QFLS) deficit caused by the non-radiative recombination at the interface of perovskite/electron transport layer (ETL) can lead to severe open-circuit voltage (VOC) loss and thus decreases the efficiency of perovskite solar cells (PSCs), however, has received limited attention in inverted tin-lead PSCs. Herein, the strategy of constructing an extra-electric field is presented by introducing ferroelectric polymer dipoles (FPD)-β-poly(1,1-difluoroethylene)-to suppress the QFLS deficit. The directional polarization of FPD can enhance the built-in electric field (BEF) and thus promote the charge transfer at the perovskite/ETL interface, which effectively suppresses non-radiative recombination. Furthermore, the incorporation of FPD facilitates high-quality crystallization of perovskite and reduces the surface energetic disorder. Therefore, the QFLS deficit in the perovskite/ETL half-stacked device is reduced from 62 to 27 meV after incorporating FPD, and the optimized device achieves an efficiency of 23.44% with a high VOC of 0.88 V. Additionally, the addition of FPD increases the activation energy for ion migration, which can reduce the effect of ion migration on the long-term stability of the device. Consequently, the FPD-incorporated device retains 88% of the initial efficiency after 1100 h of continuous illumination at the maximum power point (MPP).
Collapse
Affiliation(s)
- Jiahui Cheng
- Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Huijie Cao
- Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shuming Zhang
- Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jie Shao
- Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Wenjian Yan
- Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Cheng Peng
- Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Fang Yue
- Qingdao University of Science and Technology, Qingdao, 266042, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Zhongmin Zhou
- Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
8
|
Karim Z, Khan MJ, Hussain A, Ahmed F, Khan ZH. Multilayer patch functionalized microfibrillated cellulosic paper sensor for sweat glucose monitoring. Sci Rep 2024; 14:23434. [PMID: 39379675 PMCID: PMC11461850 DOI: 10.1038/s41598-024-74899-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
Electrochemical analysis of glucose monitoring without painful blood collection provides a new noninvasive route for monitoring glucose levels. Thus, in this study, biobased cellulosic papers (methylated and phosphorylated one) based glucose monitoring sensor is developed. To achieve high hydrophilicity, microfibrillated cellulose (MFC) were functionalized using hexokinase mediated phosphorylation (-OH to -[Formula: see text]). The instinctive increased surface charge density from 36.2 ± 3.4 to 118.4 ± 1.2 µmol/g and decrease contact angle (45°-22°) confirms the increased hydrophilicity of paper. Furthermore, functionalized phos-MFC paper increase the capillary flow of sweat, required low quantity (1 µl) of sweat for accurate analysis of glucose level. Additionally, chemically induced methyl groups (-CH3) make the sensor more barrier to other chemicals. In addition, a multilayer patch design combined with sensor miniaturization was used to lead to an increase in the efficiency of the sweat collection and sensing processes. Besides, this paper sensor integrated with artificial transdermal drug delivery unit (agarose gel as skin) for monitoring glucose levels in sweat. The patch monitoring system increase the accuracy of sensing with fluctuation in sweat vol. (1-4 µl), temperature (20-70 °C), and pH (4.0-7.0). In addition, temperature dependency artificial transdermal delivery (within agarose gel) of drug metformin agrees the measurement accuracy of sensor, called "switch system" without any error. As a result, the reported MFC paper based multi-patch disposable sensing system provides a novel closed-loop solution for the noninvasive sweat-based management of diabetes mellitus.
Collapse
Affiliation(s)
- Zoheb Karim
- MoRe Research Örnsköldsvik AB, SE-891 22, Örnsköldsvik, Sweden.
| | - Mohd Jahir Khan
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Afzal Hussain
- Department of Pharmacognosy, College of Phamacy, King Saud University, PO Box 2457, 11451, Riyadh, Saudi Arabia
| | - Faheem Ahmed
- Department of Applied Sciences and Humanities, Faculty of Engineering and Technology, Jamia Milia Islamia, New Delhi, 110025, India
| | - Zishan Husain Khan
- Department of Applied Sciences and Humanities, Faculty of Engineering and Technology, Jamia Milia Islamia, New Delhi, 110025, India
| |
Collapse
|
9
|
Lee SY, Ciou DS, Lee HY, Chen JY, Wei YC, Shieh MD. Portable Electrochemical System and Platform with Point-of-Care Determination of Urine Albumin-to-Creatinine Ratio to Evaluate Chronic Kidney Disease and Cardiorenal Syndrome. BIOSENSORS 2024; 14:463. [PMID: 39451676 PMCID: PMC11506532 DOI: 10.3390/bios14100463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
The urine albumin (Alb)-to-creatinine (Crn) ratio (UACR) is a sensitive and early indicator of chronic kidney disease (CKD) and cardiorenal syndrome. This study developed a portable and wireless electrochemical-sensing platform for the sensitive and accurate determination of UACR. The developed platform consists of a carbon nanotube (CNT)-2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)(ABTS)-based modified UACR sensor, a miniaturised potentiostat, a cup holder embedded with a magnetic stirrer and a smartphone app. The UACR sensing electrode is composed of two screen-printed carbon working electrodes, one screen-printed carbon counter electrode and a screen-printed AgCl reference electrode. The miniaturised potentiostat, which is controlled by the developed app, performs cyclic voltammetry and amperometry to detect Alb and Crn, respectively. Clinical trials of the proposed system by using spot urine samples from 30 diabetic patients indicate that it can accurately classify all three CKD risk statuses within 30 min. The high accuracy of our proposed sensing system exhibits satisfactory agreement with the commercial biochemical analyser TBA-25FR (Y = 0.999X, R2 = 0.995). The proposed UACR sensing system offers a convenient, reliable and affordable solution for personal mobile health monitoring and point-of-care urinalysis.
Collapse
Affiliation(s)
- Shuenn-Yuh Lee
- Department of Electrical Engineering, National Cheng Kung University, Tainan 701401, Taiwan; (D.-S.C.); (H.-Y.L.)
| | - Ding-Siang Ciou
- Department of Electrical Engineering, National Cheng Kung University, Tainan 701401, Taiwan; (D.-S.C.); (H.-Y.L.)
| | - Hao-Yun Lee
- Department of Electrical Engineering, National Cheng Kung University, Tainan 701401, Taiwan; (D.-S.C.); (H.-Y.L.)
| | - Ju-Yi Chen
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Yi-Chieh Wei
- Department of Industrial Design, National Cheng Kung University, Tainan 701401, Taiwan; (Y.-C.W.); (M.-D.S.)
| | - Meng-Dar Shieh
- Department of Industrial Design, National Cheng Kung University, Tainan 701401, Taiwan; (Y.-C.W.); (M.-D.S.)
| |
Collapse
|
10
|
Abouhagger A, Celiešiūtė-Germanienė R, Bakute N, Stirke A, Melo WCMA. Electrochemical biosensors on microfluidic chips as promising tools to study microbial biofilms: a review. Front Cell Infect Microbiol 2024; 14:1419570. [PMID: 39386171 PMCID: PMC11462992 DOI: 10.3389/fcimb.2024.1419570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
Microbial biofilms play a pivotal role in microbial infections and antibiotic resistance due to their unique properties, driving the urgent need for advanced methodologies to study their behavior comprehensively across varied environmental contexts. While electrochemical biosensors have demonstrated success in understanding the dynamics of biofilms, scientists are now synergistically merging these biosensors with microfluidic technology. This combined approach offers heightened precision, sensitivity, and real-time monitoring capabilities, promising a more comprehensive understanding of biofilm behavior and its implications. Our review delves into recent advancements in electrochemical biosensors on microfluidic chips, specifically tailored for investigating biofilm dynamics, virulence, and properties. Through a critical examination of these advantages, properties and applications of these devices, the review highlights the transformative potential of this technology in advancing our understanding of microbial biofilms in different settings.
Collapse
Affiliation(s)
| | | | | | | | - Wanessa C. M. A. Melo
- Department of Functional Materials and Electronics, State Research Institute Centre for Physical Sciences and Technology (FTMC), Vilnius, Lithuania
| |
Collapse
|
11
|
He R, Chen L, Chu P, Gao P, Wang J. Recent advances in nonenzymatic electrochemical biosensors for sports biomarkers: focusing on antibodies, aptamers and molecularly imprinted polymers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6079-6097. [PMID: 39212159 DOI: 10.1039/d4ay01002g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Nonenzymatic electrochemical biosensors, renowned for their high sensitivity, multi-target analysis capabilities, and miniaturized integration, align well with the requirements of non-invasive, multi-index integrated, continuous monitoring, and user-friendly wearable biosensors in sports science. In the past three years, novel strategies targeting specific responses to sports biomarkers have opened new avenues for applications in sports science. However, these advancements also pose challenges in achieving adequate sensitivity and specificity for online analysis of complex sweat bio-samples. Our article focuses on three key nonenzymatic electrochemical biosensing strategies: antigen-antibody reactions, nucleic acid aptamer recognition, and molecular imprinting capture. We delve into strategies to enhance specificity and sensitivity in the application of biosensors in sports science, including shortening signal transduction paths through built-in signal probes, increasing reaction sites through increased surface area and the introduction of nanostructures, multi-target analyses, and microfluidic techniques.
Collapse
Affiliation(s)
- Rui He
- Physical Education Department, Wuhan University, No. 299 Bayi Road, Wuchang District, Wuhan City, Hubei province, People's Republic of China
| | - Long Chen
- School of Physical Education and Equestrian, Wuhan Business University, No. 816 Dongfeng Avenue, Wuhan Economic and Technological Development Zone, Hubei Province, People's Republic of China
| | - Pengfei Chu
- School of Sports Science and Physical Education, China University of Geosciences, Wuhan 430074, People's Republic of China.
| | - Pengcheng Gao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China.
| | - Junjie Wang
- School of Sports Science and Physical Education, China University of Geosciences, Wuhan 430074, People's Republic of China.
| |
Collapse
|
12
|
Yang H, Yan S, Yang T. Electrospun Nanofiber-Based Biosensors for Foodborne Bacteria Detection. Molecules 2024; 29:4415. [PMID: 39339410 PMCID: PMC11434534 DOI: 10.3390/molecules29184415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Food contamination has emerged as a significant global health concern, posing substantial challenges to the food industry. Bacteria are the primary cause of foodborne diseases. Consequently, it is crucial to develop accurate and efficient sensing platforms to detect foodborne bacteria in food products. Among various detection methods, biosensors have emerged as a promising solution due to their portability, affordability, simplicity, selectivity, sensitivity, and rapidity. Electrospun nanofibers have gained increasing popularity in enhancing biosensor performance. These nanofibers possess a distinctive three-dimensional structure, providing a large surface area and ease of preparation. This review provides an overview of the electrospinning technique, nanofibers and nanofiber-based biosensors. It also explores their mechanisms and applications in the detection of foodborne bacteria such as Salmonella, Listeria monocytogenes (L. monocytogenes), Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Pseudomonas putida (P. putida).
Collapse
Affiliation(s)
- Haoming Yang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Song Yan
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Tianxi Yang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
13
|
Baber AS, Suganthan B, Ramasamy RP. Current advances in Hepatitis C diagnostics. J Biol Eng 2024; 18:48. [PMID: 39252065 PMCID: PMC11385151 DOI: 10.1186/s13036-024-00443-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024] Open
Abstract
Nearly 60 million people worldwide are infected with Hepatitis C Virus (HCV), a bloodborne pathogen which leads to liver cirrhosis and increases the risk of hepatocellular carcinoma. Those with limited access to healthcare resources, such as injection drug users and people in low- and middle-income countries, carry the highest burden. The current diagnostic algorithm for HCV is slow and costly, leading to a significant barrier in diagnosis and treatment for those most at risk from HCV. There remains no available vaccine for HCV, and infection is often asymptomatic until significant cirrhosis has occurred, which makes screening incredibly important to prevent liver damage and transmission. Recent investigation has sought to address these issues through improvements in various aspects of the diagnostic procedure, using methods such as isothermal amplification techniques for viral RNA amplification, the use of viral protein as an analyte, and the incorporation of streamlined, self-contained testing systems to reduce administrative skill requirements. This review provides a comprehensive overview of current commercial standards and novel improvements in HCV diagnostics, as well as a framework for future integration of these improvements to develop a one-step diagnostic that meets the needs of those most affected.
Collapse
Affiliation(s)
- Anna S Baber
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Baviththira Suganthan
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Ramaraja P Ramasamy
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
14
|
Sa’adon SA, Jasni NH, Hamzah HH, Othman N. Electrochemical biosensors for the detection of protozoan parasite: a scoping review. Pathog Glob Health 2024; 118:459-470. [PMID: 39030702 PMCID: PMC11441015 DOI: 10.1080/20477724.2024.2381402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
The development of rapid, accurate, and efficient detection methods for protozoan parasites can substantially control the outbreak of protozoan parasites infection, which poses a threat to global public health. Idealistically, electrochemical biosensors would be able to overcome the limitations of current detection methods due to their simplified detection procedure, on-site quantitative analysis, rapid detection time, high sensitivity, and portability. The objective of this scoping review is to evaluate the current state of electrochemical biosensors for detecting protozoan parasites. This review followed the most recent Preferred Reporting Items for Systematic Review and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) recommendations. Using electrochemical biosensor and protozoan parasite keywords, a literature search was conducted in PubMed, Scopus, Web of Science, and ScienceDirect on journals published between January 2014 and January 2022. Of the 52 studies, 19 were evaluated for eligibility, and 11 met the review's inclusion criteria to evaluate the effectiveness and limitations of the developed electrochemical biosensor platforms for detecting protozoan parasite including information about the samples, biomarkers, bioreceptors, detection system platform, nanomaterials used in fabrication, and limit of detection (LoD). Most electrochemical biosensors were fabricated using conventional electrodes rather than screen-printed electrodes (SPE). The range of the linear calibration curves for the developed electrochemical biosensors was between 200 ng/ml and 0.77 pM. The encouraging detection performance of the electrochemical biosensors demonstrate their potential as a superior alternative to existing detection techniques. On the other hand, more study is needed to determine the sensitivity and specificity of the electrochemical sensing platform for protozoan parasite detection.
Collapse
Affiliation(s)
- Syahrul Amin Sa’adon
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Nur Hana Jasni
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Hairul Hisham Hamzah
- School of Health and Life Sciences, Teesside University, Middlesbrough, Tees Valley, UK
| | - Nurulhasanah Othman
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| |
Collapse
|
15
|
Bindu A, Bhadra S, Nayak S, Khan R, Prabhu AA, Sevda S. Bioelectrochemical biosensors for water quality assessment and wastewater monitoring. Open Life Sci 2024; 19:20220933. [PMID: 39220594 PMCID: PMC11365470 DOI: 10.1515/biol-2022-0933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
Bioelectrochemical biosensors offer a promising approach for real-time monitoring of industrial bioprocesses. Many bioelectrochemical biosensors do not require additional labelling reagents for target molecules. This simplifies the monitoring process, reduces costs, and minimizes potential contamination risks. Advancements in materials science and microfabrication technologies are paving the way for smaller, more portable bioelectrochemical biosensors. This opens doors for integration into existing bioprocessing equipment and facilitates on-site, real-time monitoring capabilities. Biosensors can be designed to detect specific heavy metals such as lead, mercury, or chromium in wastewater. Early detection allows for the implementation of appropriate removal techniques before they reach the environment. Despite these challenges, bioelectrochemical biosensors offer a significant leap forward in wastewater monitoring. As research continues to improve their robustness, selectivity, and cost-effectiveness, they have the potential to become a cornerstone of efficient and sustainable wastewater treatment practices.
Collapse
Affiliation(s)
- Anagha Bindu
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| | - Sudipa Bhadra
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| | - Soubhagya Nayak
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| | - Rizwan Khan
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| | - Ashish A. Prabhu
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| | - Surajbhan Sevda
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| |
Collapse
|
16
|
Memon R, Niazi JH, Qureshi A. Biosensors for detection of airborne pathogenic fungal spores: a review. NANOSCALE 2024; 16:15419-15445. [PMID: 39078286 DOI: 10.1039/d4nr01175a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The excessive presence of airborne fungal spores presents major concerns with potential adverse impacts on public health and food safety. These spores are recognized as pathogens and allergens prevalent in both outdoor and indoor environments, particularly in public spaces such as hospitals, schools, offices and hotels. Indoor environments pose a heightened risk of pulmonary diseases due to continuous exposure to airborne fungal spore particles through constant inhalation, especially in those individuals with weakened immunity and immunocompromised conditions. Detection methods for airborne fungal spores are often expensive, time-consuming, and lack sensitivity, making them unsuitable for indoor/outdoor monitoring. However, the emergence of micro-nano biosensor systems offers promising solutions with miniaturized designs, nanomaterial integration, and microfluidic systems. This review provides a comprehensive overview of recent advancements in bio-nano-sensor system technology for detecting airborne fungal spores, while also discussing future trends in biosensor device development aimed at achieving rapid and selective identification of pathogenic airborne fungi.
Collapse
Affiliation(s)
- Roomia Memon
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Orta Mah. Tuzla 34956, Istanbul, Turkey.
| | - Javed H Niazi
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Orta Mah. Tuzla 34956, Istanbul, Turkey.
| | - Anjum Qureshi
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Orta Mah. Tuzla 34956, Istanbul, Turkey.
| |
Collapse
|
17
|
Adalian D, Madero X, Chen S, Jilani M, Smith RD, Li S, Ahlbrecht C, Cardenas J, Agarwal A, Emami A, Plettenburg O, Petillo PA, Scherer A. Patterned thin film enzyme electrodes via spincoating and glutaraldehyde vapor crosslinking: towards scalable fabrication of integrated sensor-on-CMOS devices. LAB ON A CHIP 2024; 24:4172-4181. [PMID: 39099534 DOI: 10.1039/d4lc00206g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Effective continuous glucose monitoring solutions require consistent sensor performance over the lifetime of the device, a manageable variance between devices, and the capability of high volume, low cost production. Here we present a novel and microfabrication-compatible method of depositing and stabilizing enzyme layers on top of planar electrodes that can aid in the mass production of sensors while also improving their consistency. This work is focused on the fragile biorecognition layer as that has been a critical difficulty in the development of microfabricated sensors. We test this approach with glucose oxidase (GOx) and evaluate the sensor performance with amperometric measurements of in vitro glucose concentrations. Spincoating was used to deposit a uniform enzyme layer across a wafer, which was subsequently immobilized via glutaraldehyde vapor crosslinking and patterned via liftoff. This yielded an approximately 300 nm thick sensing layer which was applied to arrays of microfabricated platinum electrodes built on blank wafers. Taking advantage of their planar array format, measurements were then performed in high-throughput parallel instrumentation. Due to their thin structure, the coated electrodes exhibited subsecond stabilization times after the bias potential was applied. The deposited enzyme layers were measured to provide a sensitivity of 2.3 ± 0.2 μA mM-1 mm-2 with suitable saturation behavior and minimal performance shift observed over extended use. The same methodology was then demonstrated directly on top of wireless CMOS potentiostats to build a monolithic sensor with similar measured performance. This work demonstrates the effectiveness of the combination of spincoating and vapor stabilization processes for wafer scale enzymatic sensor functionalization and the potential for scalable fabrication of monolithic sensor-on-CMOS devices.
Collapse
Affiliation(s)
- Dvin Adalian
- California Institute of Technology, Pasadena, CA 91125, USA.
| | - Xiomi Madero
- California Institute of Technology, Pasadena, CA 91125, USA.
| | - Samson Chen
- California Institute of Technology, Pasadena, CA 91125, USA.
| | - Musab Jilani
- California Institute of Technology, Pasadena, CA 91125, USA.
| | - Richard D Smith
- California Institute of Technology, Pasadena, CA 91125, USA.
| | - Songtai Li
- California Institute of Technology, Pasadena, CA 91125, USA.
| | - Christin Ahlbrecht
- Institute for Medicinal Chemistry, Molecular Targets and Therapeutics Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Juan Cardenas
- California Institute of Technology, Pasadena, CA 91125, USA.
| | - Abhinav Agarwal
- California Institute of Technology, Pasadena, CA 91125, USA.
| | - Azita Emami
- California Institute of Technology, Pasadena, CA 91125, USA.
| | - Oliver Plettenburg
- Institute for Medicinal Chemistry, Molecular Targets and Therapeutics Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Peter A Petillo
- Design-Zyme LLC, 4950 Research Park Way, Lawrence, Kansas 66047, USA
| | - Axel Scherer
- California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
18
|
Tan H, Wang Z, Fu R, Zhang X, Su Z. Nanomaterials revolutionize biosensing: 0D-3D designs for ultrasensitive detection of microorganisms and viruses. J Mater Chem B 2024; 12:7760-7786. [PMID: 39036967 DOI: 10.1039/d4tb01077a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Various diseases caused by harmful microorganisms and viruses have caused serious harm and huge economic losses to society. Thus, rapid detection of harmful microorganisms and viruses is necessary for disease prevention and treatment. Nanomaterials have unique properties that other materials do not possess, such as a small size effect and quantum size effect. Introducing nanomaterials into biosensors improves the performance of biosensors for faster and more accurate detection of microorganisms and viruses. This review aims to introduce the different kinds of biosensors and the latest advances in the application of nanomaterials in biosensors. In particular, this review focuses on describing the physicochemical properties of zero-, one-, two-, and three-dimensional nanostructures as well as nanoenzymes. Finally, this review discusses the applications of nanobiosensors in the detection of microorganisms and viruses and the future directions of nanobiosensors.
Collapse
Affiliation(s)
- Haokun Tan
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - ZhiChao Wang
- Precision Forestry Key Laboratory of Beijing, Beijing Forestry University, 100083 Beijing, China.
| | - Rao Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Xiaoyuan Zhang
- Precision Forestry Key Laboratory of Beijing, Beijing Forestry University, 100083 Beijing, China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| |
Collapse
|
19
|
George H, Sun Y, Wu J, Yan Y, Wang R, Pesavento RP, Mathew MT. Intelligent salivary biosensors for periodontitis: in vitro simulation of oral oxidative stress conditions. Med Biol Eng Comput 2024; 62:2409-2434. [PMID: 38609577 DOI: 10.1007/s11517-024-03077-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/16/2024] [Indexed: 04/14/2024]
Abstract
ASTRACT One of the most common oral diseases affecting millions of people worldwide is periodontitis. Usually, proteins in body fluids are used as biomarkers of diseases. This study focused on hydrogen peroxide, lipopolysaccharide (LPS), and lactic acid as salivary non-protein biomarkers for oxidative stress conditions of periodontitis. Electrochemical analysis of artificial saliva was done using Gamry with increasing hydrogen peroxide, bLPS, and lactic acid concentrations. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were conducted. From EIS data, change in capacitance and CV plot area were calculated for each test condition. Hydrogen peroxide groups had a decrease in CV area and an increase in percentage change in capacitance, lipopolysaccharide groups had a decrease in CV area and a decrease in percentage change in capacitance, and lactic acid groups had an increase of CV area and an increase in percentage change in capacitance with increasing concentrations. These data showed a unique combination of electrochemical properties for the three biomarkers. Scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) employed to observe the change in the electrode surface and elemental composition data present on the sensor surface also showed a unique trend of elemental weight percentages. Machine learning models using hydrogen peroxide, LPS, and lactic acid electrochemical data were applied for the prediction of risk levels of periodontitis. The detection of hydrogen peroxide, LPS, and lactic acid by electrochemical biosensors indicates the potential to use these molecules as electrochemical biomarkers and use the data for ML-driven prediction tool for the periodontitis risk levels.
Collapse
Affiliation(s)
- Haritha George
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Yani Sun
- Department of Material Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Junyi Wu
- Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA
| | - Yan Yan
- Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA
| | - Rong Wang
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL, USA
| | - Russell P Pesavento
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Mathew T Mathew
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Material Science, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
20
|
Kim KW, Kim D, Kim BC, Hwang ET. Development of cross-linked glucose oxidase integrated Cu-nanoflower electrode for reusable and stable glucose sensing. Int J Biol Macromol 2024; 275:133605. [PMID: 38971285 DOI: 10.1016/j.ijbiomac.2024.133605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/10/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
The demand for glucose-sensing devices has increased along with the increasing diabetic population. Here, we aimed to construct a system with a glucose oxidase (GOx)-integrated Cu-nanoflower (Cu-NF) as the underlying electrode. This novel system was successfully developed by creating a cross-linked GOx within a Cu-NF matrix, forming a c-GOx@Cu-NF-coated film on a carbon screen-printed electrode (CSPE). A comparison of the stabilities of the cross-linking methods demonstrated enhanced durability, with an activity level of >88 % maintained after approximately 35 days of storage in room temperature buffer. Regarding the ability of the c-GOx@Cu-NF modified CSPE to detect glucose via electrochemical methods, the redox potential gap (ΔE) and peak current increased in the presence of GOx. In comparison to that of glucose, the sensitivity of c-GOx@Cu-NF was approximately 8 times greater than that of GOx@Cu-NF, with a detection limit of 0.649 μM and a linear range of 5-500 μM. It sustained an average relative activity of 80 % over 20 days. After 10 cycles of repeated use, the activity remained above 75 %. In terms of evaluating the electrode's specificity for glucose, the detection rate for individual similar substances was approximately 1 %. The introduction of a crosslinking strategy to Cu-NF, leading to enhanced mechanical stability and conductivity, improved the detection capability. Furthermore, this approach led to increased long-term storage stability and reusability, allowing for specific glucose detection. To our knowledge, this report represents the first demonstration of a c-GOx@Cu-NF system for integrating electrochemical biosensing devices into digital healthcare pathways, offering enhanced sensing accuracy and mechanical stability.
Collapse
Affiliation(s)
- Keon Woo Kim
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea
| | - Dain Kim
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea
| | - Byoung Chan Kim
- Center for Sustainable Environment Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Ee Taek Hwang
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
21
|
Eivazzadeh-Keihan R, Saadatidizaji Z, Mahdavi M, Maleki A, Irani M, Zare I. Recent advances in gold nanoparticles-based biosensors for tuberculosis determination. Talanta 2024; 275:126099. [PMID: 38640517 DOI: 10.1016/j.talanta.2024.126099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/16/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
Tuberculosis (TB) is one of the major killer diseases affecting lung parenchymal tissues. Mycobacterium tuberculosis (Mtb) is the bacterium that causes it. It most commonly affects the lungs, although it can affect any part of the body, including the stomach, glands, bones, and nervous system. Although anti-mycobacterial drugs are available, it remains a major threat to public health due to the rise of drug-resistant strains, and early and accurate diagnosis is very important. Currently, research science and medical communities are focusing on the use of cost-effective biosensors to manage human biological processes and assess accurate health diagnostics. Due to their high sensitivity in chemical and biological assays, nanomaterials have been considered in the field of biosensors for better diagnosis, and among them, gold nanoparticles (AuNPs) can play an important role in accelerating the diagnosis of TB. Superior biocompatibility, conductivity, catalytic properties, high surface-to-volume ratio, and high density enable their widespread use in the fabrication of biosensors. This review evaluates the diagnostic accuracy of AuNP-based biosensors for the detection of Mtb. According to different transducers of biosensors, their structure, performance, advantages and limitations are summarized and compared. Moreover, the upcoming challenges in their analytical performance have been highlighted and the strategies to overcome those challenges have been briefly discussed.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Zahra Saadatidizaji
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Mohammad Irani
- Department of Pharmaceutics, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd., Shiraz, 7178795844, Iran.
| |
Collapse
|
22
|
Zambry NS, Awang MS, Hamzah HH, Mohamad AN, Khalid MF, Khim BK, Bustami Y, Jamaluddin NF, Ibrahim F, Aziah I, Abd Manaf A. A portable label-free electrochemical DNA biosensor for rapid detection of Salmonella Typhi. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5254-5262. [PMID: 39011785 DOI: 10.1039/d4ay00888j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
A highly accurate, rapid, portable, and robust platform for detecting Salmonella enterica serovar Typhi (S. Typhi) is crucial for early-stage diagnosis of typhoid to avert and control the outbreaks of this pathogen, which threaten global public health. This study presents a proof-of-concept for our developed label-free electrochemical DNA biosensor system for S. Typhi detection, which employs a printed circuit board gold electrode (PCBGE), integrated with a portable potentiostat reader. Initially, the functionalized DNA biosensor and target detection were characterized using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) methods using a benchtop potentiostat. Interestingly, the newly developed DNA biosensor can identify target single-stranded DNA concentrations ranging from 10 nM to 20 μM, achieving a detection limit of 7.6 nM within a brief 5 minute timeframe. Under optimal detection conditions, the DNA biosensor exhibits remarkable selectivity, capable of distinguishing a single mismatch base pair from the target single-stranded DNA sequence. We then evaluated the feasibility of the developed DNA biosensor system as a diagnostic tool by detecting S. Typhi in 50 clinical samples using a portable potentiostat reader based on the DPV technique. Remarkably, the developed biosensor can distinctly distinguish between positive and negative samples, indicating that the miniaturised DNA biosensor system is practical for detecting S. Typhi in real biological samples. The developed DNA biosensor device in this work proves to be a promising point-of-care (POC) device for Salmonella detection due to its swift detection time, uncomplicated design, and streamlined workflow detection system.
Collapse
Affiliation(s)
- Nor Syafirah Zambry
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Mohd Syafiq Awang
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Level 1, Block C, No. 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Pulau Pinang, Malaysia
| | - Hairul Hisham Hamzah
- School of Health & Life Sciences, Teesside University, Middlesbrough, Tees Valley, TS1 3BX, UK
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Ahmad Najib Mohamad
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Muhammad Fazli Khalid
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Beh Khi Khim
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Level 1, Block C, No. 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Pulau Pinang, Malaysia
| | - Yazmin Bustami
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Nurul Fauzani Jamaluddin
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Fatimah Ibrahim
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ismail Aziah
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Level 1, Block C, No. 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Pulau Pinang, Malaysia
| |
Collapse
|
23
|
Khan MQ, Khan J, Alvi MAH, Nawaz H, Fahad M, Umar M. Nanomaterial-based sensors for microbe detection: a review. DISCOVER NANO 2024; 19:120. [PMID: 39080121 PMCID: PMC11289191 DOI: 10.1186/s11671-024-04065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Airborne microorganisms pose a significant health threat, causing various illnesses. Traditional detection methods are often slow and complex. This review highlights the potential of nanomaterial-based biosensors, particularly colorimetric sensors, for rapid and on-site detection of airborne microbes. Colorimetric sensors offer real-time visual detection without complex instrumentation. We explore the integration of these sensors with Lab-on-a-Chip technology using PDMS microfluidics. This review also proposes a novel PDMS-based colorimetric biosensor for real-time detection of airborne microbes. The sensor utilizes a color change phenomenon easily observable with the naked eye, simplifying analysis and potentially enabling point-of-care applications.
Collapse
Affiliation(s)
- Muhammad Qamar Khan
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad, 37610, Punjab, Pakistan.
| | - Jahangir Khan
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad, 37610, Punjab, Pakistan
| | - Muhammad Abbas Haider Alvi
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad, 37610, Punjab, Pakistan
| | - Hifza Nawaz
- Department of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Muhammad Fahad
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad, 37610, Punjab, Pakistan
| | - Muhammad Umar
- Department of Materials, The University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
24
|
Zuliska S, Maksum IP, Einaga Y, Kadja GTM, Irkham I. Advances in electrochemical biosensors employing carbon-based electrodes for detection of biomarkers in diabetes mellitus. ADMET AND DMPK 2024; 12:487-527. [PMID: 39091901 PMCID: PMC11289508 DOI: 10.5599/admet.2361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/07/2024] [Indexed: 08/04/2024] Open
Abstract
Background and purpose The increase in diabetes cases has become a major concern in the healthcare sector, necessitating the development of efficient and minimal diagnostic methods. This study aims to provide a comprehensive examination of electrochemical biosensors for detecting diabetes mellitus biomarkers, with a special focus on the utilization of carbon-based electrodes. Review approach A detailed analysis of electrochemical biosensors incorporating various carbon electrodes, including screen-printed carbon electrodes, glassy carbon electrodes, and carbon paste electrodes, is presented. The advantages of carbon-based electrodes in biosensor design are highlighted. The review covers the detection of several key diabetes biomarkers, such as glucose, glycated hemoglobin (HbA1c), glycated human serum albumin (GHSA), insulin, and novel biomarkers. Key results Recent developments in electrochemical biosensor technology over the last decade are summarized, emphasizing their potential in clinical applications, particularly in point-of-care settings. The utilization of carbon-based electrodes in biosensors is shown to offer significant advantages, including enhanced sensitivity, selectivity, and cost-effectiveness. Conclusion This review underscores the importance of carbon-based electrodes in the design of electrochemical biosensors and raises awareness for the detection of novel biomarkers for more specific and personalized diabetes mellitus cases. The advancements in this field highlight the potential of these biosensors in future clinical applications, especially in point-of-care diagnostics.
Collapse
Affiliation(s)
- Serly Zuliska
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Bandung 40173, Indonesia
| | - Iman Permana Maksum
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Bandung 40173, Indonesia
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Grandprix Thomreys Marth Kadja
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
- Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - Irkham Irkham
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Bandung 40173, Indonesia
| |
Collapse
|
25
|
Lopez Carrasco I, Cuniberti G, Opitz J, Beshchasna N. Evaluation of Transducer Elements Based on Different Material Configurations for Aptamer-Based Electrochemical Biosensors. BIOSENSORS 2024; 14:341. [PMID: 39056617 PMCID: PMC11274616 DOI: 10.3390/bios14070341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
The selection of an appropriate transducer is a key element in biosensor development. Currently, a wide variety of substrates and working electrode materials utilizing different fabrication techniques are used in the field of biosensors. In the frame of this study, the following three specific material configurations with gold-finish layers were investigated regarding their efficacy to be used as electrochemical (EC) biosensors: (I) a silicone-based sensor substrate with a layer configuration of 50 nm SiO/50 nm SiN/100 nm Au/30-50 nm WTi/140 nm SiO/bulk Si); (II) polyethylene naphthalate (PEN) with a gold inkjet-printed layer; and (III) polyethylene terephthalate (PET) with a screen-printed gold layer. Electrodes were characterized using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) to evaluate their performance as electrochemical transducers in an aptamer-based biosensor for the detection of cardiac troponin I using the redox molecule hexacyanoferrade/hexacyaniferrade (K3[Fe (CN)6]/K4[Fe (CN)6]. Baseline signals were obtained from clean electrodes after a specific cleaning procedure and after functionalization with the thiolate cardiac troponin I aptamers "Tro4" and "Tro6". With the goal of improving the PEN-based and PET-based performance, sintered PEN-based samples and PET-based samples with a carbon or silver layer under the gold were studied. The effect of a high number of immobilized aptamers will be tested in further work using the PEN-based sample. In this study, the charge-transfer resistance (Rct), anodic peak height (Ipa), cathodic peak height (Ipc) and peak separation (∆E) were determined. The PEN-based electrodes demonstrated better biosensor properties such as lower initial Rct values, a greater change in Rct after the immobilization of the Tro4 aptamer on its surface, higher Ipc and Ipa values and lower ∆E, which correlated with a higher number of immobilized aptamers compared with the other two types of samples functionalized using the same procedure.
Collapse
Affiliation(s)
- Ivan Lopez Carrasco
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche-Strasse 2, 01109 Dresden, Germany; (I.L.C.); (J.O.)
| | - Gianaurelio Cuniberti
- Faculty of Mechanical Science and Engineering, Institute of Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062 Dresden, Germany;
| | - Jörg Opitz
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche-Strasse 2, 01109 Dresden, Germany; (I.L.C.); (J.O.)
| | - Natalia Beshchasna
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche-Strasse 2, 01109 Dresden, Germany; (I.L.C.); (J.O.)
| |
Collapse
|
26
|
Lis-Cieplak A, Trześniowska K, Stolarczyk K, Stolarczyk EU. Pyrrolizidine Alkaloids as Hazardous Toxins in Natural Products: Current Analytical Methods and Latest Legal Regulations. Molecules 2024; 29:3269. [PMID: 39064851 PMCID: PMC11279032 DOI: 10.3390/molecules29143269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Pyrrolizidine alkaloids (PAs) are toxic compounds that occur naturally in certain plants, however, there are many secondary pathways causing PA contamination of other plants, including medicinal herbs and plant-based food products, which pose a risk of human intoxication. It is proven that chronic exposure to PAs causes serious adverse health consequences resulting from their cytotoxicity and genotoxicity. This review briefly presents PA occurrence, structures, chemistry, and toxicity, as well as a set of analytical methods. Recently developed sensitive electrochemical and chromatographic methods for the determination of PAs in honey, teas, herbs, and spices were summarized. The main strategies for improving the analytical efficiency of PA determination are related to the use of mass spectrometric (MS) detection; therefore, this review focuses on advances in MS-based methods. Raising awareness of the potential health risks associated with the presence of PAs in food and herbal medicines requires ongoing research in this area, including the development of sensitive methods for PA determination and rigorous legal regulations of PA intake from herbal products. The maximum levels of PAs in certain products are regulated by the European Commission; however, the precise knowledge about which products contain trace but significant amounts of these alkaloids is still insufficient.
Collapse
Affiliation(s)
- Agnieszka Lis-Cieplak
- Spectrometric Methods Department, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (A.L.-C.); (K.T.)
| | - Katarzyna Trześniowska
- Spectrometric Methods Department, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (A.L.-C.); (K.T.)
| | | | - Elżbieta U. Stolarczyk
- Spectrometric Methods Department, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (A.L.-C.); (K.T.)
| |
Collapse
|
27
|
Singh R, Ryu J, Hyoung Lee W, Kang JH, Park S, Kim K. Wastewater-borne viruses and bacteria, surveillance and biosensors at the interface of academia and field deployment. Crit Rev Biotechnol 2024:1-21. [PMID: 38973015 DOI: 10.1080/07388551.2024.2354709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/28/2024] [Indexed: 07/09/2024]
Abstract
Wastewater is a complex, but an ideal, matrix for disease monitoring and surveillance as it represents the entire load of enteric pathogens from a local catchment area. It captures both clinical and community disease burdens. Global interest in wastewater surveillance has been growing rapidly for infectious diseases monitoring and for providing an early warning of potential outbreaks. Although molecular detection methods show high sensitivity and specificity in pathogen monitoring from wastewater, they are strongly limited by challenges, including expensive laboratory settings and prolonged sample processing and analysis. Alternatively, biosensors exhibit a wide range of practical utility in real-time monitoring of biological and chemical markers. However, field deployment of biosensors is primarily challenged by prolonged sample processing and pathogen concentration steps due to complex wastewater matrices. This review summarizes the role of wastewater surveillance and provides an overview of infectious viral and bacterial pathogens with cutting-edge technologies for their detection. It emphasizes the practical utility of biosensors in pathogen monitoring and the major bottlenecks for wastewater surveillance of pathogens, and overcoming approaches to field deployment of biosensors for real-time pathogen detection. Furthermore, the promising potential of novel machine learning algorithms to resolve uncertainties in wastewater data is discussed.
Collapse
Affiliation(s)
- Rajendra Singh
- Department of Biological and Environmental Science, Dongguk University, Goyang, Gyeonggi-do, South Korea
| | - Jaewon Ryu
- Department of Biological and Environmental Science, Dongguk University, Goyang, Gyeonggi-do, South Korea
| | - Woo Hyoung Lee
- Department of Civil, Environmental, and Construction Engineering, University of Central FL, Orlando, FL, USA
| | - Joo-Hyon Kang
- Department of Civil and Environmental Engineering, Dongguk University-Seoul, Seoul, South Korea
| | - Sanghwa Park
- Bacteria Research Team, Freshwater Bacteria Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju-si, South Korea
| | - Keugtae Kim
- Department of Biological and Environmental Science, Dongguk University, Goyang, Gyeonggi-do, South Korea
| |
Collapse
|
28
|
Khosropour H, Keramat M, Tasca F, Laiwattanapaisal W. A comprehensive review of the application of Zr-based metal-organic frameworks for electrochemical sensors and biosensors. Mikrochim Acta 2024; 191:449. [PMID: 38967877 DOI: 10.1007/s00604-024-06515-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
A family of inorganic-organic hybrid crystalline materials made up of organic ligands and metal cations or clusters is known as metal-organic frameworks (MOFs). Because of their unique stability, intriguing characteristics, and structural diversity, zirconium-based MOFs (Zr-MOFs) are regarded as one of the most interesting families of MOF materials for real-world applications. Zr-MOFs that have the ligands, metal nodes, and guest molecules enclosed show distinct electrochemical reactions. They can successfully and sensitively identify a wide range of substances, which is important for both environmental preservation and human health. The rational design and synthesis of Zr-MOF electrochemical sensors and biosensors, as well as their applications in the detection of drugs, biomarkers, pesticides, food additives, hydrogen peroxide, and other materials, are the main topics of this comprehensive review. We also touch on the current issues and potential future paths for Zr-MOF electrochemical sensor research.
Collapse
Affiliation(s)
- Hossein Khosropour
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Centre of Excellence for Biosensors and Bioengineering (CEBB), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Mansoureh Keramat
- Centre of Excellence for Biosensors and Bioengineering (CEBB), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Federico Tasca
- Faculty of Chemistry and Biology, Department of Materials Chemistry, University of Santiago of Chile, Av. Libertador Bernardo ÓHiggins 3363, Estacion Central, 8320000, Santiago, Chile
| | - Wanida Laiwattanapaisal
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Centre of Excellence for Biosensors and Bioengineering (CEBB), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
29
|
Annamalai M, Balu M, Alwarappan S, Lakshmanan R. A Theoretical Approach to Understand the Nonlinear Processes in Enzymatic Electrochemical Biosensors. J Phys Chem B 2024; 128:6308-6316. [PMID: 38888751 DOI: 10.1021/acs.jpcb.4c02673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The enzymatic biosensors' response can be monitored based on the results of nonlinear differential equations. The nonlinear reaction-diffusion equations proposed for this enzyme-based electrochemical biosensor include a nonlinear term associated with Michaelis-Menten kinetics. Herein, the system of nonlinear reaction-diffusion equations is solved using a modified homotopy perturbation method. For all values of the rate constants, the approximate analytical expressions for the concentration profiles, current, sensitivity, and gradient of biosensor have been determined. Performance factors of an enzymatic electrochemical biosensor, such as response time, sensitivity, accuracy, and resistance, are discussed. The analytical results and numerically simulated outcomes using Matlab software have been compared.
Collapse
Affiliation(s)
- Marimuthu Annamalai
- Department of Mathematics, AMET Deemed to be University, Kanathur, Chennai, Tamilnadu 603112, India
| | - Manimegalai Balu
- Department of Mathematics, Sri Meenakshi Government Arts College for Women (A), Madurai, Tamilnadu 625002, India
| | - Subbiah Alwarappan
- CSIR-Central Electrochemical Research Institute, Karaikudi, Tamilnadu 630003, India
| | - Rajendran Lakshmanan
- Department of Mathematics, AMET Deemed to be University, Kanathur, Chennai, Tamilnadu 603112, India
| |
Collapse
|
30
|
Selivanovitch E, Ostwalt A, Chao Z, Daniel S. Emerging Designs and Applications for Biomembrane Biosensors. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:339-366. [PMID: 39018354 DOI: 10.1146/annurev-anchem-061622-042618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Nature has inspired the development of biomimetic membrane sensors in which the functionalities of biological molecules, such as proteins and lipids, are harnessed for sensing applications. This review provides an overview of the recent developments for biomembrane sensors compatible with either bulk or planar sensing applications, namely using lipid vesicles or supported lipid bilayers, respectively. We first describe the individual components required for these sensing platforms and the design principles that are considered when constructing them, and we segue into recent applications being implemented across multiple fields. Our goal for this review is to illustrate the versatility of nature's biomembrane toolbox and simultaneously highlight how biosensor platforms can be enhanced by harnessing it.
Collapse
Affiliation(s)
- Ekaterina Selivanovitch
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Alexis Ostwalt
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Zhongmou Chao
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Susan Daniel
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
31
|
Mladenović M, Jarić S, Mundžić M, Pavlović A, Bobrinetskiy I, Knežević NŽ. Biosensors for Cancer Biomarkers Based on Mesoporous Silica Nanoparticles. BIOSENSORS 2024; 14:326. [PMID: 39056602 PMCID: PMC11274377 DOI: 10.3390/bios14070326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Mesoporous silica nanoparticles (MSNs) exhibit highly beneficial characteristics for devising efficient biosensors for different analytes. Their unique properties, such as capabilities for stable covalent binding to recognition groups (e.g., antibodies or aptamers) and sensing surfaces, open a plethora of opportunities for biosensor construction. In addition, their structured porosity offers capabilities for entrapping signaling molecules (dyes or electroactive species), which could be released efficiently in response to a desired analyte for effective optical or electrochemical detection. This work offers an overview of recent research studies (in the last five years) that contain MSNs in their optical and electrochemical sensing platforms for the detection of cancer biomarkers, classified by cancer type. In addition, this study provides an overview of cancer biomarkers, as well as electrochemical and optical detection methods in general.
Collapse
Affiliation(s)
| | | | | | | | | | - Nikola Ž. Knežević
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (M.M.); (S.J.); (M.M.); (A.P.)
| |
Collapse
|
32
|
Singh N, Kaushik A, Ghori I, Rai P, Dong L, Sharma A, Malhotra BD, John R. Electrochemical and Plasmonic Detection of Myocardial Infarction Using Microfluidic Biochip Incorporated with Mesoporous Nanoscaffolds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32794-32811. [PMID: 38860871 DOI: 10.1021/acsami.4c01398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
This paper reports a microfluidic device for the electrochemical and plasmonic detection of cardiac myoglobin (cMb) and cardiac troponin I (cTnI) with noticeable limits of detection (LoD) as low as a few picograms per milliliter (pg/mL) ranges, achieved in a short detection time. The device features two working electrodes, each with a mesoporous Ni3V2O8 nanoscaffold grafted with reduced graphene oxide (rGO) that improves the interaction of diffusing analyte molecules with the sensing surface by providing a high surface area and reaction kinetics. Electrochemical studies reveal sensitivities as high as 9.68 μA ng/mL and a LoD of 2.0 pg/mL for cTnI, and 8.98 μA ng/mL and 4.7 pg/mL for cMb. Additionally, the surface plasmon resonance (SPR) studies demonstrate a low-level LoD of 8.8 pg/mL for cMb and 7.3 pg/mL for cTnI. The dual-modality sensor enables dynamic tracking of kinetic antigen-antibody interactions during sensing, self-verification through providing signals of two modes, and reduced false readout. This study demonstrates the complementary nature of the electrochemical and SPR modes in biosensing, with the electrochemical mode being highly sensitive and the SPR mode providing superior tracking of molecular recognition behaviors. The presented sensor represents a significant innovation in cardiovascular disease management and can be applied to monitor other clinically important biomolecules.
Collapse
Affiliation(s)
- Nawab Singh
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502284, India
| | - Ajeet Kaushik
- Department of Environmental Engineering, Florida Polytechnic University, Lakeland, Florida 33805, United States
| | - Inayathullah Ghori
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502284, India
| | - Prabhakar Rai
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Liang Dong
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
- Microelectronics Research Center, Iowa State University, Ames, Iowa 50011, United States
| | - Ashutosh Sharma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Bansi D Malhotra
- Environment & Biomedical Metrology Section, CSIR-National Physical Laboratory, New Delhi 110012, India
| | - Renu John
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502284, India
| |
Collapse
|
33
|
Andoh V, Ocansey DKW, Naveed H, Wang N, Chen L, Chen K, Mao F. The Advancing Role of Nanocomposites in Cancer Diagnosis and Treatment. Int J Nanomedicine 2024; 19:6099-6126. [PMID: 38911500 PMCID: PMC11194004 DOI: 10.2147/ijn.s471360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024] Open
Abstract
The relentless pursuit of effective cancer diagnosis and treatment strategies has led to the rapidly expanding field of nanotechnology, with a specific focus on nanocomposites. Nanocomposites, a combination of nanomaterials with diverse properties, have emerged as versatile tools in oncology, offering multifunctional platforms for targeted delivery, imaging, and therapeutic interventions. Nanocomposites exhibit great potential for early detection and accurate imaging in cancer diagnosis. Integrating various imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), and fluorescence imaging, into nanocomposites enables the development of contrast agents with enhanced sensitivity and specificity. Moreover, functionalizing nanocomposites with targeting ligands ensures selective accumulation in tumor tissues, facilitating precise imaging and diagnostic accuracy. On the therapeutic front, nanocomposites have revolutionized cancer treatment by overcoming traditional challenges associated with drug delivery. The controlled release of therapeutic agents from nanocomposite carriers enhances drug bioavailability, reduces systemic toxicity, and improves overall treatment efficacy. Additionally, the integration of stimuli-responsive components within nanocomposites enables site-specific drug release triggered by the unique microenvironment of the tumor. Despite the remarkable progress in the field, challenges such as biocompatibility, scalability, and long-term safety profiles remain. This article provides a comprehensive overview of recent developments, challenges, and prospects, emphasizing the transformative potential of nanocomposites in revolutionizing the landscape of cancer diagnostics and therapeutics. In Conclusion, integrating nanocomposites in cancer diagnosis and treatment heralds a new era for precision medicine.
Collapse
Affiliation(s)
- Vivian Andoh
- School of Life Sciences, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Dickson Kofi Wiredu Ocansey
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, People’s Republic of China
- Directorate of University Health Services, University of Cape Coast, Cape Coast, Central Region, CC0959347, Ghana
| | - Hassan Naveed
- School of Life Sciences, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Naijian Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Liang Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Fei Mao
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, People’s Republic of China
| |
Collapse
|
34
|
Zhang L, Yang Q, Zhu Z. The Application of Multi-Parameter Multi-Modal Technology Integrating Biological Sensors and Artificial Intelligence in the Rapid Detection of Food Contaminants. Foods 2024; 13:1936. [PMID: 38928877 PMCID: PMC11203047 DOI: 10.3390/foods13121936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Against the backdrop of continuous socio-economic development, there is a growing concern among people about food quality and safety. Individuals are increasingly realizing the critical importance of healthy eating for bodily health; hence the continuous rise in demand for detecting food pollution. Simultaneously, the rapid expansion of global food trade has made people's pursuit of high-quality food more urgent. However, traditional methods of food analysis have certain limitations, mainly manifested in the high degree of reliance on personal subjective judgment for assessing food quality. In this context, the emergence of artificial intelligence and biosensors has provided new possibilities for the evaluation of food quality. This paper proposes a comprehensive approach that involves aggregating data relevant to food quality indices and developing corresponding evaluation models to highlight the effectiveness and comprehensiveness of artificial intelligence and biosensors in food quality evaluation. The potential prospects and challenges of this method in the field of food safety are comprehensively discussed, aiming to provide valuable references for future research and practice.
Collapse
Affiliation(s)
- Longlong Zhang
- Key Laboratory of Intelligent Manufacturing Technology (Shantou University), Ministry of Education, Shantou 515063, China
- College of Electronic Engineering, Southwest University, Chongqing 400715, China
| | - Qiuping Yang
- College of Electronic Engineering, Southwest University, Chongqing 400715, China
- Hubei Key Laboratory of Food Nutrition and Safety, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiyuan Zhu
- College of Electronic Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
35
|
Liu J, Dong Z, Huan K, He Z, Zhang Q, Deng D, Luo L. Application of the Electrospinning Technique in Electrochemical Biosensors: An Overview. Molecules 2024; 29:2769. [PMID: 38930834 PMCID: PMC11206051 DOI: 10.3390/molecules29122769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Electrospinning is a cost-effective and flexible technology for producing nanofibers with large specific surface areas, functionalized surfaces, and stable structures. In recent years, electrospun nanofibers have attracted more and more attention in electrochemical biosensors due to their excellent morphological and structural properties. This review outlines the principle of electrospinning technology. The strategies of producing nanofibers with different diameters, morphologies, and structures are discussed to understand the regulation rules of nanofiber morphology and structure. The application of electrospun nanofibers in electrochemical biosensors is reviewed in detail. In addition, we look towards the future prospects of electrospinning technology and the challenge of scale production.
Collapse
Affiliation(s)
- Jie Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China;
| | - Zhong Dong
- College of Sciences, Shanghai University, Shanghai 200444, China; (Z.D.); (K.H.)
| | - Ke Huan
- College of Sciences, Shanghai University, Shanghai 200444, China; (Z.D.); (K.H.)
| | - Zhangchu He
- College of Sciences, Shanghai University, Shanghai 200444, China; (Z.D.); (K.H.)
| | - Qixian Zhang
- School of Materials Science and Engineering, Shanghai University, Shanghai 200436, China
- Shaoxing Institute of Technology, Shanghai University, Shaoxing 312000, China
| | - Dongmei Deng
- College of Sciences, Shanghai University, Shanghai 200444, China; (Z.D.); (K.H.)
| | - Liqiang Luo
- College of Sciences, Shanghai University, Shanghai 200444, China; (Z.D.); (K.H.)
| |
Collapse
|
36
|
Pavón C, Ongaro A, Filipucci I, Ramakrishna SN, Mattarei A, Isa L, Klok HA, Lorandi F, Benetti EM. The Structural Dispersity of Oligoethylene Glycol-Containing Polymer Brushes Determines Their Interfacial Properties. J Am Chem Soc 2024. [PMID: 38859572 DOI: 10.1021/jacs.4c05565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Ought to their bioinert properties and facile synthesis, poly[(oligoethylene glycol)methacrylate]s (POEGMAs) have been raised as attractive alternatives to poly(ethylene glycols) (PEGs) in an array of (bio)material applications, especially when they are applied as polymer brush coatings. However, commercially available OEG-methacrylate (macro)monomers feature a broad distribution of OEG lengths, thus generating structurally polydisperse POEGMAs when polymerized through reversible deactivation radical polymerization. Here, we demonstrate that the interfacial physicochemical properties of POEGMA brushes are significantly affected by their structural dispersity, i.e., the degree of heterogeneity in the length of side OEG segments. POEGMA brushes synthesized from discrete (macro)monomers obtained through chromatographic purification of commercial mixtures show increased hydration and reduced adhesion when compared to their structurally polydisperse analogues. The observed alteration of interfacial properties is directly linked to the presence of monodisperse OEG side chains, which hamper intramolecular and intermolecular hydrophobic interactions while simultaneously promoting the association of water molecules. These phenomena provide structurally homogeneous POEGMA brushes with a more lubricious and protein repellent character with respect to their heterogeneous counterparts. More generally, in contrast to what has been assumed until now, the properties of POEGMA brushes cannot be anticipated while ruling out the effect of dispersity by (macro)monomer feeds. Simultaneously, side chain dispersity of POEGMAs emerges as a critical parameter for determining the interfacial characteristics of brushes.
Collapse
Affiliation(s)
- Carlos Pavón
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Alberto Ongaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Irene Filipucci
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymeres, École Polytechnique Fédérale de Lausanne (EPFL), Rte Cantonale, CH-1015 Lausanne, Switzerland
| | - Shivaprakash N Ramakrishna
- Laboratory for Soft Materials and Interfaces, ETH Zürich, Vladmir-Prelog-Weg 1-5, 8093 Zürich, Switzerland
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, ETH Zürich, Vladmir-Prelog-Weg 1-5, 8093 Zürich, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymeres, École Polytechnique Fédérale de Lausanne (EPFL), Rte Cantonale, CH-1015 Lausanne, Switzerland
| | - Francesca Lorandi
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Edmondo M Benetti
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
37
|
Dubourg G, Pavlović Z, Bajac B, Kukkar M, Finčur N, Novaković Z, Radović M. Advancement of metal oxide nanomaterials on agri-food fronts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172048. [PMID: 38580125 DOI: 10.1016/j.scitotenv.2024.172048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/03/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
The application of metal oxide nanomaterials (MOx NMs) in the agrifood industry offers innovative solutions that can facilitate a paradigm shift in a sector that is currently facing challenges in meeting the growing requirements for food production, while safeguarding the environment from the impacts of current agriculture practices. This review comprehensively illustrates recent advancements and applications of MOx for sustainable practices in the food and agricultural industries and environmental preservation. Relevant published data point out that MOx NMs can be tailored for specific properties, enabling advanced design concepts with improved features for various applications in the agrifood industry. Applications include nano-agrochemical formulation, control of food quality through nanosensors, and smart food packaging. Furthermore, recent research suggests MOx's vital role in addressing environmental challenges by removing toxic elements from contaminated soil and water. This mitigates the environmental effects of widespread agrichemical use and creates a more favorable environment for plant growth. The review also discusses potential barriers, particularly regarding MOx toxicity and risk evaluation. Fundamental concerns about possible adverse effects on human health and the environment must be addressed to establish an appropriate regulatory framework for nano metal oxide-based food and agricultural products.
Collapse
Affiliation(s)
- Georges Dubourg
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia.
| | - Zoran Pavlović
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Branimir Bajac
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Manil Kukkar
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Nina Finčur
- University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Zorica Novaković
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Marko Radović
- University of Novi Sad, Center for Sensor Technologies, Biosense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| |
Collapse
|
38
|
Turk Z, Armani A, Jafari-Gharabaghlou D, Madakbas S, Bonabi E, Zarghami N. A new insight into the early detection of HER2 protein in breast cancer patients with a focus on electrochemical biosensors approaches: A review. Int J Biol Macromol 2024; 272:132710. [PMID: 38825266 DOI: 10.1016/j.ijbiomac.2024.132710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Breast cancer is one of the leading causes of death in women and is a prevalent kind of cancerous growth, representing a substantial risk to women's health. Early detection of breast cancer is essential for effective treatment and improved survival rates. Biomarkers, active substances that signal the existence and advancement of a tumor, play a significant role in the early detection of breast cancer. Hence, accurate identification of biomarkers for tumors is crucial for diagnosing and treating breast cancer. However, the primary diagnostic methods used for the detection of breast cancer require specific equipment, skilled professionals, and specialized analysis, leading to elevated detection expenses. Regarding this obstacle, recent studies emphasize electrochemical biosensors as more advanced and sensitive detection tools compared to traditional methods. Electrochemical biosensors are employed to identify biomarkers that act as unique indicators for the onset, recurrence, and monitoring of therapeutic interventions for breast cancer. This study aims to provide a summary of the electrochemical biosensors that have been employed for the detection of breast cancer at an early stage over the past decade. Initially, the text provides concise information about breast cancer and tumor biomarkers. Subsequently, an in-depth analysis is conducted to systematically review the progress of electrochemical biosensors developed for the stable, specific, and sensitive identification of biomarkers associated with breast cancer. Particular emphasis was given to crucial clinical biomarkers, specifically the human epidermal growth factor receptor-2 (HER2). The analysis then explores the limitations and challenges inherent in the design of effective biosensors for diagnosing and treating breast cancer. Ultimately, we provided an overview of future research directions and concluded by outlining the advantages of electrochemical biosensor approaches.
Collapse
Affiliation(s)
- Zeynep Turk
- Department of Chemistry, Faculty of Science, Marmara University, Istanbul, Türkiye; Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul Aydin University, Istanbul, Türkiye
| | - Arta Armani
- Department of Medical Biology and Genetics, Faculty of Medicine, Istanbul Aydin University, Istanbul, Türkiye
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyfullah Madakbas
- Department of Chemistry, Faculty of Science, Marmara University, Istanbul, Türkiye
| | - Esat Bonabi
- Department of Medical Microbiology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Türkiye
| | - Nosratollah Zarghami
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Türkiye.
| |
Collapse
|
39
|
Pathak A, Verma N, Tripathi S, Mishra A, Poluri KM. Nanosensor based approaches for quantitative detection of heparin. Talanta 2024; 273:125873. [PMID: 38460425 DOI: 10.1016/j.talanta.2024.125873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
Heparin, being a widely employed anticoagulant in numerus clinical complications, requires strict quantification and qualitative screening to ensure the safety of patients from potential threat of thrombocytopenia. However, the intricacy of heparin's chemical structures and low abundance hinders the precise monitoring of its level and quality in clinical settings. Conventional laboratory assays have limitations in sensitivity and specificity, necessitating the development of innovative approaches. In this context, nanosensors emerged as a promising solution due to enhanced sensitivity, selectivity, and ability to detect heparin even at low concentrations. This review delves into a range of sensing approaches including colorimetric, fluorometric, surface-enhanced Raman spectroscopy, and electrochemical techniques using different types of nanomaterials, thus providing insights of its principles, capabilities, and limitations. Moreover, integration of smart-phone with nanosensors for point of care diagnostics has also been explored. Additionally, recent advances in nanopore technologies, artificial intelligence (AI) and machine learning (ML) have been discussed offering specificity against contaminants present in heparin to ensure its quality. By consolidating current knowledge and highlighting the potential of nanosensors, this review aims to contribute to the advancement of efficient, reliable, and economical heparin detection methods providing improved patient care.
Collapse
Affiliation(s)
- Aakanksha Pathak
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Nishchay Verma
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Shweta Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342011, Rajasthan, India
| | - Krishna Mohan Poluri
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
40
|
Liang L, Jiang Z, Luo Z, Liu K, Liu N, Hu Q, Liu Y. Low voltage electric-double-layer transistor nonenzymic erythromycin sensors based on molecularly imprinted polymers. Anal Chim Acta 2024; 1305:342589. [PMID: 38677843 DOI: 10.1016/j.aca.2024.342589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 04/29/2024]
Abstract
Erythromycin (Ery) is a commonly used antibiotic that can be found ubiquitously in water bodies. The increasing apprehension over the adverse effects of antibiotic remnants in aquatic environments necessitates the prompt advancement of erythromycin detection techniques that are both highly sensitive and compact. Here, we propose a non-enzyme Ery sensor that integrates a mesoporous SiO2-based low-voltage oxide electric-double-layer transistor (EDLT) with a molecular imprinting technique, featuring a molecularly imprinted polymers (MIP) functionalized gate electrode. The mesoporous SiO2-based oxide transistor exhibits excellent electrical characteristics, including an operating voltage of small than 1.0 V, an on/off ratio exceeding 106 and a mobility of 14.95 cm2V-1s-1. At an ultra-low operating voltage within 0.5 V, the sensor exhibits a linear response to the concentration range of 1 nM-10 μM of Ery, with a detection limit of 0.22 nM and a sensitivity of 23.3 mV dec-1. Besides, the single-spike dynamic sensing mode effectively reduces the power consumption of the detection. The proposed sensor provides a rapid and convenient approach to detect Ery in aqueous environments, with benefits such as miniaturization, high sensitivity, and simplicity.
Collapse
Affiliation(s)
- Linzi Liang
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Zhengdong Jiang
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Zhiyuan Luo
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Kekang Liu
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Ning Liu
- School of Science, Nanchang Institute of Technology, Nanchang, 330029, PR China
| | - Qichang Hu
- Fujian Key Laboratory of Agricultural Information Sensoring Technology, College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China.
| | - Yanghui Liu
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, PR China.
| |
Collapse
|
41
|
Kuntoji G, Kousar N, Gaddimath S, Koodlur Sannegowda L. Macromolecule-Nanoparticle-Based Hybrid Materials for Biosensor Applications. BIOSENSORS 2024; 14:277. [PMID: 38920581 PMCID: PMC11201996 DOI: 10.3390/bios14060277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 06/27/2024]
Abstract
Biosensors function as sophisticated devices, converting biochemical reactions into electrical signals. Contemporary emphasis on developing biosensor devices with refined sensitivity and selectivity is critical due to their extensive functional capabilities. However, a significant challenge lies in the binding affinity of biosensors to biomolecules, requiring adept conversion and amplification of interactions into various signal modalities like electrical, optical, gravimetric, and electrochemical outputs. Overcoming challenges associated with sensitivity, detection limits, response time, reproducibility, and stability is essential for efficient biosensor creation. The central aspect of the fabrication of any biosensor is focused towards forming an effective interface between the analyte electrode which significantly influences the overall biosensor quality. Polymers and macromolecular systems are favored for their distinct properties and versatile applications. Enhancing the properties and conductivity of these systems can be achieved through incorporating nanoparticles or carbonaceous moieties. Hybrid composite materials, possessing a unique combination of attributes like advanced sensitivity, selectivity, thermal stability, mechanical flexibility, biocompatibility, and tunable electrical properties, emerge as promising candidates for biosensor applications. In addition, this approach enhances the electrochemical response, signal amplification, and stability of fabricated biosensors, contributing to their effectiveness. This review predominantly explores recent advancements in utilizing macrocyclic and macromolecular conjugated systems, such as phthalocyanines, porphyrins, polymers, etc. and their hybrids, with a specific focus on signal amplification in biosensors. It comprehensively covers synthetic strategies, properties, working mechanisms, and the potential of these systems for detecting biomolecules like glucose, hydrogen peroxide, uric acid, ascorbic acid, dopamine, cholesterol, amino acids, and cancer cells. Furthermore, this review delves into the progress made, elucidating the mechanisms responsible for signal amplification. The Conclusion addresses the challenges and future directions of macromolecule-based hybrids in biosensor applications, providing a concise overview of this evolving field. The narrative emphasizes the importance of biosensor technology advancement, illustrating the role of smart design and material enhancement in improving performance across various domains.
Collapse
Affiliation(s)
| | | | | | - Lokesh Koodlur Sannegowda
- Department of Studies in Chemistry, Vijayanagara Sri Krishnadevaraya University, Jnanasagara, Vinayakanagara, Ballari 583105, India; (G.K.); (N.K.); (S.G.)
| |
Collapse
|
42
|
Sankar K, Kuzmanović U, Schaus SE, Galagan JE, Grinstaff MW. Strategy, Design, and Fabrication of Electrochemical Biosensors: A Tutorial. ACS Sens 2024; 9:2254-2274. [PMID: 38636962 DOI: 10.1021/acssensors.4c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Advanced healthcare requires novel technologies capable of real-time sensing to monitor acute and long-term health. The challenge relies on converting a real-time quantitative biological and chemical signal into a desired measurable output. Given the success in detecting glucose and the commercialization of glucometers, electrochemical biosensors continue to be a mainstay of academic and industrial research activities. Despite the wealth of literature on electrochemical biosensors, reports are often specific to a particular application (e.g., pathogens, cancer markers, glucose, etc.), and most fail to convey the underlying strategy and design, and if it is transferable to detection of a different analyte. Here we present a tutorial review for those entering this research area that summarizes the basic electrochemical techniques utilized as well as discusses the designs and optimization strategies employed to improve sensitivity and maximize signal output.
Collapse
|
43
|
Hatami-Fard G, Anastasova-Ivanova S. Advancements in Cerebrospinal Fluid Biosensors: Bridging the Gap from Early Diagnosis to the Detection of Rare Diseases. SENSORS (BASEL, SWITZERLAND) 2024; 24:3294. [PMID: 38894085 PMCID: PMC11174891 DOI: 10.3390/s24113294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Cerebrospinal fluid (CSF) is a body fluid that can be used for the diagnosis of various diseases. However, CSF collection requires an invasive and painful procedure called a lumbar puncture (LP). This procedure is applied to any patient with a known risk of central nervous system (CNS) damage or neurodegenerative disease, regardless of their age range. Hence, this can be a very painful procedure, especially in infants and elderly patients. On the other hand, the detection of disease biomarkers in CSF makes diagnoses as accurate as possible. This review aims to explore novel electrochemical biosensing platforms that have impacted biomedical science. Biosensors have emerged as techniques to accelerate the detection of known biomarkers in body fluids such as CSF. Biosensors can be designed and modified in various ways and shapes according to their ultimate applications to detect and quantify biomarkers of interest. This process can also significantly influence the detection and diagnosis of CSF. Hence, it is important to understand the role of this technology in the rapidly progressing field of biomedical science.
Collapse
Affiliation(s)
- Ghazal Hatami-Fard
- The Hamlyn Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | |
Collapse
|
44
|
Lee S, Liang X, Kim JS, Yokota T, Fukuda K, Someya T. Permeable Bioelectronics toward Biointegrated Systems. Chem Rev 2024; 124:6543-6591. [PMID: 38728658 DOI: 10.1021/acs.chemrev.3c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Bioelectronics integrates electronics with biological organs, sustaining the natural functions of the organs. Organs dynamically interact with the external environment, managing internal equilibrium and responding to external stimuli. These interactions are crucial for maintaining homeostasis. Additionally, biological organs possess a soft and stretchable nature; encountering objects with differing properties can disrupt their function. Therefore, when electronic devices come into contact with biological objects, the permeability of these devices, enabling interactions and substance exchanges with the external environment, and the mechanical compliance are crucial for maintaining the inherent functionality of biological organs. This review discusses recent advancements in soft and permeable bioelectronics, emphasizing materials, structures, and a wide range of applications. The review also addresses current challenges and potential solutions, providing insights into the integration of electronics with biological organs.
Collapse
Affiliation(s)
- Sunghoon Lee
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Xiaoping Liang
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Joo Sung Kim
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomoyuki Yokota
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kenjiro Fukuda
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takao Someya
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
45
|
Keles G, Sifa Ataman E, Taskin SB, Polatoglu İ, Kurbanoglu S. Nanostructured Metal Oxide-Based Electrochemical Biosensors in Medical Diagnosis. BIOSENSORS 2024; 14:238. [PMID: 38785712 PMCID: PMC11117604 DOI: 10.3390/bios14050238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Nanostructured metal oxides (NMOs) provide electrical properties such as high surface-to-volume ratio, reaction activity, and good adsorption strength. Furthermore, they serve as a conductive substrate for the immobilization of biomolecules, exhibiting notable biological activity. Capitalizing on these characteristics, they find utility in the development of various electrochemical biosensing devices, elevating the sensitivity and selectivity of such diagnostic platforms. In this review, different types of NMOs, including zinc oxide (ZnO), titanium dioxide (TiO2), iron (II, III) oxide (Fe3O4), nickel oxide (NiO), and copper oxide (CuO); their synthesis methods; and how they can be integrated into biosensors used for medical diagnosis are examined. It also includes a detailed table for the last 10 years covering the morphologies, analysis techniques, analytes, and analytical performances of electrochemical biosensors developed for medical diagnosis.
Collapse
Affiliation(s)
- Gulsu Keles
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Türkiye;
| | - Elif Sifa Ataman
- Bioengineering Department, Manisa Celal Bayar University, 45140 Manisa, Türkiye; (E.S.A.); (S.B.T.)
| | - Sueda Betul Taskin
- Bioengineering Department, Manisa Celal Bayar University, 45140 Manisa, Türkiye; (E.S.A.); (S.B.T.)
| | - İlker Polatoglu
- Bioengineering Department, Manisa Celal Bayar University, 45140 Manisa, Türkiye; (E.S.A.); (S.B.T.)
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Türkiye;
| |
Collapse
|
46
|
Crapnell RD, Banks CE. Electroanalysis overview: additive manufactured biosensors using fused filament fabrication. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2625-2634. [PMID: 38639065 DOI: 10.1039/d4ay00278d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Additive manufacturing (3D-printing), in particular fused filament fabrication, presents a potential paradigm shift in the way electrochemical based biosensing platforms are produced, giving rise to a new generation of personalized and on-demand biosensors. The use of additive manufactured biosensors is unparalleled giving rise to unique customization, facile miniaturization, ease of use, economical but yet, still providing sensitive and selective approaches towards the target analyte. In this mini review, we focus on the use of fused filament fabrication additive manufacturing technology alongside different biosensing approaches that exclusively use antibodies, enzymes and associated biosensing materials (mediators) providing an up-to-date overview with future considerations to expand the additive manufacturing biosensors field.
Collapse
Affiliation(s)
- Robert D Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| |
Collapse
|
47
|
Spitz S, Schobesberger S, Brandauer K, Ertl P. Sensor-integrated brain-on-a-chip platforms: Improving the predictive validity in neurodegenerative research. Bioeng Transl Med 2024; 9:e10604. [PMID: 38818126 PMCID: PMC11135156 DOI: 10.1002/btm2.10604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 06/01/2024] Open
Abstract
Affecting millions of individuals worldwide, neurodegenerative diseases (NDDs) pose a significant and growing health concern in people over the age of 60 years. Contributing to this trend are the steady increase in the aging population coupled with a persistent lack of disease-altering treatment strategies targeting NDDs. The absence of efficient therapeutics can be attributed to high failure rates in clinical trials and the ineptness of animal models in preceding preclinical studies. To that end, in recent years, significant research effort has been dedicated to the development of human cell-based preclinical disease models characterized by a higher degree of predictive validity. However, a key requirement of any in vitro model constitutes the precise knowledge and replication of the target tissues' (patho-)physiological microenvironment. Herein, microphysiological systems have demonstrated superiority over conventional static 2D/3D in vitro cell culture systems, as they allow for the emulation and continuous monitoring of the onset, progression, and remission of disease-associated phenotypes. This review provides an overview of recent advances in the field of NDD research using organ-on-a-chip platforms. Specific focus is directed toward non-invasive sensing strategies encompassing electrical, electrochemical, and optical sensors. Additionally, promising on- and integrable off-chip sensing strategies targeting key analytes in NDDs will be presented and discussed in detail.
Collapse
Affiliation(s)
- Sarah Spitz
- Faculty of Technical ChemistryVienna University of TechnologyViennaAustria
- Present address:
Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | | | | | - Peter Ertl
- Faculty of Technical ChemistryVienna University of TechnologyViennaAustria
| |
Collapse
|
48
|
Hemmerová E, Homola J. Combining plasmonic and electrochemical biosensing methods. Biosens Bioelectron 2024; 251:116098. [PMID: 38359667 DOI: 10.1016/j.bios.2024.116098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
The idea of combining electrochemical (EC) and plasmonic biosensor methods was introduced almost thirty years ago and the potential of electrochemical-plasmonic (EC-P) biosensors has been highlighted ever since. Despite that, the use of EC-P biosensors in analytics has been rather limited so far and the search for unique applications of the EC-P method continues. In this paper, we review the advances in the field of EC-P biosensors and discuss the features and benefits they can provide. In addition, we identify the main challenges for the development of EC-P biosensors and the limitations that prevent EC-P biosensors from more widespread use. Finally, we review applications of EC-P biosensors for the investigation and quantification of biomolecules, and for the study of biomolecular and cellular processes.
Collapse
Affiliation(s)
- Erika Hemmerová
- Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 1014/57, 182 51, Prague, Czech Republic
| | - Jiří Homola
- Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 1014/57, 182 51, Prague, Czech Republic.
| |
Collapse
|
49
|
Thenuwara G, Javed B, Singh B, Tian F. Biosensor-Enhanced Organ-on-a-Chip Models for Investigating Glioblastoma Tumor Microenvironment Dynamics. SENSORS (BASEL, SWITZERLAND) 2024; 24:2865. [PMID: 38732975 PMCID: PMC11086276 DOI: 10.3390/s24092865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
Glioblastoma, an aggressive primary brain tumor, poses a significant challenge owing to its dynamic and intricate tumor microenvironment. This review investigates the innovative integration of biosensor-enhanced organ-on-a-chip (OOC) models as a novel strategy for an in-depth exploration of glioblastoma tumor microenvironment dynamics. In recent years, the transformative approach of incorporating biosensors into OOC platforms has enabled real-time monitoring and analysis of cellular behaviors within a controlled microenvironment. Conventional in vitro and in vivo models exhibit inherent limitations in accurately replicating the complex nature of glioblastoma progression. This review addresses the existing research gap by pioneering the integration of biosensor-enhanced OOC models, providing a comprehensive platform for investigating glioblastoma tumor microenvironment dynamics. The applications of this combined approach in studying glioblastoma dynamics are critically scrutinized, emphasizing its potential to bridge the gap between simplistic models and the intricate in vivo conditions. Furthermore, the article discusses the implications of biosensor-enhanced OOC models in elucidating the dynamic features of the tumor microenvironment, encompassing cell migration, proliferation, and interactions. By furnishing real-time insights, these models significantly contribute to unraveling the complex biology of glioblastoma, thereby influencing the development of more accurate diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Gayathree Thenuwara
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland; (G.T.); (B.J.)
- Institute of Biochemistry, Molecular Biology, and Biotechnology, University of Colombo, Colombo 00300, Sri Lanka
| | - Bilal Javed
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland; (G.T.); (B.J.)
- Nanolab Research Centre, FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| | - Baljit Singh
- MiCRA Biodiagnostics Technology Gateway, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland;
| | - Furong Tian
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland; (G.T.); (B.J.)
- Nanolab Research Centre, FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| |
Collapse
|
50
|
Al-Amin, Prasad GV, Jang SJ, Oh JW, Kim TH. A MOF-Templated Double-Shelled Co 3O 4/NiCo 2O 4 Nanocomposite for Electrochemical Detection of Alfuzosin. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:757. [PMID: 38727351 PMCID: PMC11085321 DOI: 10.3390/nano14090757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024]
Abstract
We developed a novel electrochemical sensor for the detection of alfuzosin (AFZ), a drug used to treat benign prostatic hyperplasia, using a double-shelled Co3O4/NiCo2O4 nanocomposite-modified electrode. The nanocomposites were synthesized using a template-assisted approach, with zeolitic imidazole framework-67 (ZIF-67) as the sacrificial template, involving the formation of uniform ZIF-67/Ni-Co layered double hydroxide (LDH) hollow structures followed by calcination to achieve the final nanocomposite. The nanocomposite was characterized by various techniques and showed high porosity, large surface area, and good conductivity. The nanocomposite-modified electrode exhibited excellent electrocatalytic activity towards AFZ oxidation, with a wide linear range of 5-180 µM and a low limit of detection of 1.37 µM. The sensor also demonstrated good repeatability, reproducibility, and stability selectivity in the presence of common interfering substances. The sensor was successfully applied to determine the AFZ in pharmaceutical tablets and human serum samples, with satisfactory recoveries. Our results suggest that the double-shelled Co3O4/NiCo2O4 nanocomposite is a promising material for the fabrication of electrochemical sensors for AFZ detection.
Collapse
Affiliation(s)
- Al-Amin
- Department of Chemistry, Soonchunhyang University, Asan 31538, Republic of Korea; (A.-A.); (S.J.J.)
| | | | - Seung Joo Jang
- Department of Chemistry, Soonchunhyang University, Asan 31538, Republic of Korea; (A.-A.); (S.J.J.)
| | - Jeong-Wook Oh
- Department of Chemistry, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea;
| | - Tae Hyun Kim
- Department of Chemistry, Soonchunhyang University, Asan 31538, Republic of Korea; (A.-A.); (S.J.J.)
| |
Collapse
|