1
|
Production and characterization of lentivirus vector-based SARS-CoV-2 pseudoviruses with dual reporters: Evaluation of anti-SARS-CoV-2 viral effect of Korean Red Ginseng. J Ginseng Res 2023; 47:123-132. [PMID: 35855181 PMCID: PMC9283196 DOI: 10.1016/j.jgr.2022.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 01/09/2023] Open
Abstract
Background Pseudotyped virus systems that incorporate viral proteins have been widely employed for the rapid determination of the effectiveness and neutralizing activity of drug and vaccine candidates in biosafety level 2 facilities. We report an efficient method for producing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus with dual luciferase and fluorescent protein reporters. Moreover, using the established method, we also aimed to investigate whether Korean Red Ginseng (KRG), a valuable Korean herbal medicine, can attenuate infectivity of the pseudotyped virus. Methods A pseudovirus of SARS-CoV-2 (SARS-2pv) was constructed and efficiently produced using lentivirus vector systems available in the public domain by the introduction of critical mutations in the cytoplasmic tail of the spike protein. KRG extract was dose-dependently treated to Calu-3 cells during SARS2-pv treatment to evaluate the protective activity against SARS-CoV-2. Results The use of Calu-3 cells or the expression of angiotensin-converting enzyme 2 (ACE2) in HEK293T cells enabled SARS-2pv infection of host cells. Coexpression of transmembrane protease serine subtype 2 (TMPRSS2), which is the activator of spike protein, with ACE2 dramatically elevated luciferase activity, confirming the importance of the TMPRSS2-mediated pathway during SARS-CoV-2 entry. Our pseudovirus assay also revealed that KRG elicited resistance to SARS-CoV-2 infection in lung cells, suggesting its beneficial health effect. Conclusion The method demonstrated the production of SARS-2pv for the analysis of vaccine or drug candidates. When KRG was assessed by the method, it protected host cells from coronavirus infection. Further studies will be followed for demonstrating this potential benefit.
Collapse
|
2
|
Assays Based on Pseudotyped Viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:29-44. [PMID: 36920690 DOI: 10.1007/978-981-99-0113-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Pseudotyped viruses are more and more widely used in virus research and the evaluation of antiviral products because of their high safety, simple operation, high accessibility, ease in achieving standardization, and high throughput. The development of measures based on pseudotyped virus is closely related to the characteristics of viruses, and it is also necessary to follow the principles of assay development. Only in the process of method development, where the key parameters that affect the results are systematically optimized and the preliminary established method is fully validated, can the accuracy, reliability, and repeatability of the test results be ensured. Only the method established on this basis can be transferred to different laboratories and make the results of different laboratories comparable. This paper summarizes the specific aspects and general principles in the development of assays based on pseudotyped virus, which is of reference value for the development of similar methods.
Collapse
|
3
|
Application of Pseudotyped Viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:45-60. [PMID: 36920691 DOI: 10.1007/978-981-99-0113-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Highly pathogenic emerging and reemerging viruses have serious public health and socioeconomic implications. Although conventional live virus research methods can more reliably investigate disease pathogenicity and evaluate antiviral products, they usually depend on high-level biosafety laboratories and skilled researchers; these requirements hinder in vitro assessments of efficacy, as well as efforts to test vaccines and antibody drugs. In contrast, pseudotyped viruses (i.e., single-round infectious viruses that mimic the membrane structures of various live viruses) are widely used in studies of highly pathogenic viruses because they can be handled in biosafety level 2 facilities. This chapter provides a concise overview of various aspects of pseudotyped virus technologies, including (1) exploration of the mechanisms of viral infection; (2) evaluation of the efficacies of vaccines and monoclonal antibodies based on pseudovirion-based neutralization assay; (3) assessment of antiviral agents (i.e., antibody-based drugs and inhibitors); (4) establishment of animal models of pseudotyped virus infection in vivo; (5) investigation of the evolution, infectivity, and antigenicity of viral variants and viral glycosylation; and (6) prediction of antibody-dependent cell-mediated cytotoxic activity.
Collapse
|
4
|
da Cruz Freire JE, Júnior JEM, Pinheiro DP, da Cruz Paiva Lima GE, do Amaral CL, Veras VR, Madeira MP, Freire EBL, Ozório RG, Fernandes VO, Montenegro APDR, Montenegro RC, Colares JKB, Júnior RMM. Evaluation of the anti-diabetic drug sitagliptin as a novel attenuate to SARS-CoV-2 evidence-based in silico: molecular docking and molecular dynamics. 3 Biotech 2022; 12:344. [PMCID: PMC9640538 DOI: 10.1007/s13205-022-03406-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022] Open
Abstract
The current outbreak of COVID-19 cases worldwide has been responsible for a significant number of deaths, especially in hospitalized patients suffering from comorbidities, such as obesity, diabetes, hypertension. The disease not only has prompted an interest in the pathophysiology, but also it has propelled a massive race to find new anti-SARS-CoV-2 drugs. In this scenario, known drugs commonly used to treat other diseases have been suggested as alternative or complementary therapeutics. Herein we propose the use of sitagliptin, an inhibitor of dipeptidyl peptidase-4 (DPP4) used to treat type-II diabetes, as an agent to block and inhibit the activity of two proteases, 3CLpro and PLpro, related to the processing of SARS-CoV-2 structural proteins. Inhibition of these proteases may possibly reduce the viral load and infection on the host by hampering the synthesis of new viruses, thus promoting a better outcome. In silico assays consisting in the modeling of the ligand sitagliptin and evaluation of its capacity to interact with 3CLpro and PLpro through the prediction of the ligand bioactivity, molecular docking, overlapping of crystal structures, and molecular dynamic simulations were conducted. The experiments indicate that sitagliptin can interact and bind to both targets. However, this interaction seems to be stronger and more stable to 3CLpro (ΔG = −7.8 kcal mol−1), when compared to PLpro (ΔG = −7.5 kcal mol−1). This study suggests that sitagliptin may be suitable to treat COVID-19 patients, beyond its common use as an anti-diabetic medication. In vivo studies may further support this hypothesis.
Collapse
|
5
|
Xiang Q, Li L, Wu J, Tian M, Fu Y. Application of pseudovirus system in the development of vaccine, antiviral-drugs, and neutralizing antibodies. Microbiol Res 2022; 258:126993. [PMID: 35240544 PMCID: PMC8848573 DOI: 10.1016/j.micres.2022.126993] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 12/16/2022]
Abstract
Pseudoviruses are viral particles coated with a heterologous envelope protein, which mediates the entry of pseudoviruses as efficiently as that of the live viruses possessing high pathogenicity and infectivity. Due to the deletion of the envelope protein gene and the absence of pathogenic genes, pseudoviruses have no autonomous replication ability and can infect host cells for only a single cycle. In addition, pseudoviruses have the desired characteristics of high safety, strong operability, and can be easily used to perform rapid throughput detection. Therefore, pseudoviruses are widely employed in the mechanistic investigation of viral infection, the screening and evaluation of monoclonal antibodies and antiviral drugs, and the detection of neutralizing antibody titers in serum after vaccination. In this review, we will discuss the construction of pseudoviruses based on different packaging systems, their current applications especially in the research of SARS-CoV-2, limitations, and further directions.
Collapse
Affiliation(s)
- Qi Xiang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Linhao Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jie Wu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Miao Tian
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
6
|
Singh S, Kumar A, Sharma H. In-vitro and In-vivo Experimental Models for MERS-CoV, SARSCoV, and SARS-CoV-2 Viral Infection: A Compendious Review. Recent Pat Biotechnol 2022; 16:82-101. [PMID: 35068398 DOI: 10.2174/1872208316666220124101611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
SARS-CoV-2 belongs to the Coronaviridae family of coronaviruses. This novel virus has predominantly affected a vast world population and was declared a pandemic outbreak. The clinical and scientific communities strive to develop and validate potential treatments and therapeutic measures. The comparative study of existing synthetic drugs, evaluation of safety aspects, and the devel opment of novel vaccines can be efficiently achieved by using suitable animal models of primary infection and validating translational findings in human cell lines and tissues. The current paper explores varied animal and cell/tissue models employed and recapitulate various critical issues of ailment manifestation in humans to develop and evaluate novel therapeutic countermeasures and even include some novel patent developed in this regard.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research, GLA University, 17 km Stone, NH-2, Mathura-Delhi Road, Mathura, Chaumuhan, Uttar Pradesh-281406, India
| | - Aman Kumar
- Institute of Pharmaceutical Research, GLA University, 17 km Stone, NH-2, Mathura-Delhi Road, Mathura, Chaumuhan, Uttar Pradesh-281406, India
| | - Himanshu Sharma
- Department of Computer Engineering and Applications, GLA University, 17 km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh-281406, India
| |
Collapse
|
7
|
Zhuang Z, Liu D, Sun J, Li F, Zhao J. Immune responses to human respiratory coronaviruses infection in mouse models. Curr Opin Virol 2021; 52:102-111. [PMID: 34906757 PMCID: PMC8665230 DOI: 10.1016/j.coviro.2021.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022]
Abstract
Human respiratory coronaviruses (HCoVs), including the recently emerged SARS-CoV-2, the causative agent of the coronavirus disease 2019 (COVID-19) pandemic, potentially cause severe lung infections and multiple organ damages, emphasizing the urgent need for antiviral therapeutics and vaccines against HCoVs. Small animal models, especially mice, are ideal tools for deciphering the pathogenesis of HCoV infections as well as virus-induced immune responses, which is critical for antiviral drug development and vaccine design. In this review, we focus on the antiviral innate immune response, antibody response and T cell response in HCoV infected mouse models, and discuss the potential implications for understanding the anti-HCoV immunity and fighting the COVID-19 pandemic.
Collapse
Affiliation(s)
- Zhen Zhuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Donglan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Fang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China; Guangzhou Laboratory, Bio-Island, Guangzhou, Guangdong 510320, China.
| |
Collapse
|
8
|
Wang K, Wu JJ, Xin-Zhang, Zeng QX, Zhang N, Huang WJ, Tang S, Wang YX, Kong WJ, Wang YC, Li YH, Song DQ. Discovery and evolution of 12N-substituted aloperine derivatives as anti-SARS-CoV-2 agents through targeting late entry stage. Bioorg Chem 2021; 115:105196. [PMID: 34333425 PMCID: PMC8318836 DOI: 10.1016/j.bioorg.2021.105196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/17/2022]
Abstract
So far, there is still no specific drug against COVID-19. Taking compound 1 with anti-EBOV activity as the lead, fifty-four 12N-substituted aloperine derivatives were synthesized and evaluated for the anti-SARS-CoV-2 activities using pseudotyped virus model. Among them, 8a exhibited the most potential effects against both pseudotyped and authentic SARS-CoV-2, as well as SARS-CoV and MERS-CoV, indicating a broad-spectrum anti-coronavirus profile. The mechanism study disclosed that 8a might block a late stage of viral entry, mainly via inhibiting host cathepsin B activity rather than directly targeting cathepsin B protein. Also, 8a could significantly reduce the release of multiple inflammatory cytokines in a time- and dose-dependent manner, such as IL-6, IL-1β, IL-8 and MCP-1, the major contributors to cytokine storm. Therefore, 8a is a promising agent with the advantages of broad-spectrum anti-coronavirus and anti-cytokine effects, thus worthy of further investigation.
Collapse
Affiliation(s)
- Kun Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jia-Jing Wu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing 102629, China
| | - Xin-Zhang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qing-Xuan Zeng
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Na Zhang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wei-Jin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing 102629, China
| | - Sheng Tang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yan-Xiang Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wei-Jia Kong
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - You-Chun Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing 102629, China
| | - Ying-Hong Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; State Key Laboratory of Bioactive Substance & Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Dan-Qing Song
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
9
|
Shou S, Liu M, Yang Y, Kang N, Song Y, Tan D, Liu N, Wang F, Liu J, Xie Y. Animal Models for COVID-19: Hamsters, Mouse, Ferret, Mink, Tree Shrew, and Non-human Primates. Front Microbiol 2021; 12:626553. [PMID: 34531831 PMCID: PMC8438334 DOI: 10.3389/fmicb.2021.626553] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus causing acute respiratory tract infection in humans. The virus has the characteristics of rapid transmission, long incubation period and strong pathogenicity, and has spread all over the world. Therefore, it is of great significance to select appropriate animal models for antiviral drug development and therapeutic effect evaluation. Here, we review and compare the current animal models of SARS-CoV-2.
Collapse
Affiliation(s)
- Shuyu Shou
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Menghui Liu
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yang Yang
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ning Kang
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yingying Song
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Dan Tan
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Nannan Liu
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Feifei Wang
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jing Liu
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Children’s Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Kalkeri R, Cai Z, Lin S, Farmer J, Kuzmichev YV, Koide F. SARS-CoV-2 Spike Pseudoviruses: A Useful Tool to Study Virus Entry and Address Emerging Neutralization Escape Phenotypes. Microorganisms 2021; 9:1744. [PMID: 34442823 PMCID: PMC8398529 DOI: 10.3390/microorganisms9081744] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
SARS-CoV-2 genetic variants are emerging around the globe. Unfortunately, several SARS-CoV-2 variants, especially variants of concern (VOCs), are less susceptible to neutralization by the convalescent and post-vaccination sera, raising concerns of increased disease transmissibility and severity. Recent data suggests that SARS-CoV-2 neutralizing antibody levels are a reliable correlate of vaccine-mediated protection. However, currently used BSL3-based virus micro-neutralization (MN) assays are more laborious, time-consuming, and expensive, underscoring the need for BSL2-based, cost-effective neutralization assays against SARS-CoV-2 variants. In light of this unmet need, we have developed a BSL-2 pseudovirus-based neutralization assay (PBNA) in cells expressing the human angiotensin-converting enzyme-2 (hACE2) receptor for SARS-CoV-2. The assay is reproducible (R2 = 0.96), demonstrates a good dynamic range and high sensitivity. Our data suggest that the biological Anti-SARS-CoV-2 research reagents such as NIBSC 20/130 show lower neutralization against B.1.351 SA (South Africa) and B.1.1.7 UK (United Kingdom) VOC, whereas a commercially available monoclonal antibody MM43 retains activity against both these variants. SARS-CoV-2 spike PBNAs for VOCs would be useful tools to measure the neutralization ability of candidate vaccines in both preclinical models and clinical trials and would further help develop effective prophylactic countermeasures against emerging neutralization escape phenotypes.
Collapse
Affiliation(s)
- Raj Kalkeri
- Department of Infectious Disease Research, Drug Development Division, Southern Research, 431 Aviation Way, Frederick, MD 21701, USA; (Z.C.); (S.L.); (Y.V.K.)
| | - Zhaohui Cai
- Department of Infectious Disease Research, Drug Development Division, Southern Research, 431 Aviation Way, Frederick, MD 21701, USA; (Z.C.); (S.L.); (Y.V.K.)
| | - Shuling Lin
- Department of Infectious Disease Research, Drug Development Division, Southern Research, 431 Aviation Way, Frederick, MD 21701, USA; (Z.C.); (S.L.); (Y.V.K.)
| | - John Farmer
- Department of Infectious Disease Research, Drug Development Division, Southern Research, 2000 Ninth Avenue South, Birmingham, AL 35205, USA;
| | - Yury V. Kuzmichev
- Department of Infectious Disease Research, Drug Development Division, Southern Research, 431 Aviation Way, Frederick, MD 21701, USA; (Z.C.); (S.L.); (Y.V.K.)
| | - Fusataka Koide
- Department of Infectious Disease Research, Drug Development Division, Southern Research, 431 Aviation Way, Frederick, MD 21701, USA; (Z.C.); (S.L.); (Y.V.K.)
| |
Collapse
|
11
|
Middle East Respiratory Syndrome Coronavirus Gene 5 Modulates Pathogenesis in Mice. J Virol 2021; 95:JVI.01172-20. [PMID: 33144319 DOI: 10.1128/jvi.01172-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) causes a highly lethal pneumonia that emerged in 2012. There is limited information on MERS-CoV pathogenesis, as data from patients are scarce and the generation of animal models reproducing MERS clinical manifestations has been challenging. Human dipeptidyl peptidase 4 knock-in (hDPP4-KI) mice and a mouse-adapted MERS-CoV strain (MERSMA-6-1-2) were recently described. hDPP4-KI mice infected with MERSMA-6-1-2 show pathological signs of respiratory disease, high viral titers in the lung, and death. In this work, a mouse-adapted MERS-CoV infectious cDNA was engineered by introducing nonsynonymous mutations contained in the MERSMA-6-1-2 genome into a MERS-CoV infectious cDNA, leading to a recombinant mouse-adapted virus (rMERS-MA) that was virulent in hDDP4-KI mice. MERS-CoV adaptation to cell culture or mouse lungs led to mutations and deletions in genus-specific gene 5 that prevented full-length protein expression. In contrast, analysis of 476 MERS-CoV field isolates showed that gene 5 is highly stable in vivo in both humans and camels. To study the role of protein 5, two additional viruses were engineered expressing a full-length gene 5 (rMERS-MA-5FL) or containing a complete gene 5 deletion (rMERS-MA-Δ5). rMERS-MA-5FL virus was unstable, as deletions appeared during passage in different tissue culture cells, highlighting MERS-CoV instability. The virulence of rMERS-MA-Δ5 was analyzed in a sublethal hDPP4-KI mouse model. Unexpectedly, all mice died after infection with rMERS-MA-Δ5, in contrast to those infected with the parental virus, which contains a 17-nucleotide (nt) deletion and a stop codon in protein 5 at position 108. Expression of interferon and proinflammatory cytokines was delayed and dysregulated in the lungs of rMERS-MA-Δ5-infected mice. Overall, these data indicated that the rMERS-MA-Δ5 virus was more virulent than the parental one and suggest that the residual gene 5 sequence present in the mouse-adapted parental virus had a function in ameliorating severe MERS-CoV pathogenesis.IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic virus causing human infections with high mortality rate (∼35%). Animal models together with reverse-genetics systems are essential to understand MERS-CoV pathogenesis. We developed a reverse-genetics system for a mouse-adapted MERS-CoV that reproduces the virus behavior observed in humans. This system is highly useful to investigate the role of specific viral genes in pathogenesis. In addition, we described a virus lacking gene 5 expression that is more virulent than the parental one. The data provide novel functions in IFN modulation for gene 5 in the context of viral infection and will help to develop novel antiviral strategies.
Collapse
|
12
|
Vallianou NG, Evangelopoulos A, Kounatidis D, Stratigou T, Christodoulatos GS, Karampela I, Dalamaga M. Diabetes Mellitus and SARS-CoV-2 Infection: Pathophysiologic Mechanisms and Implications in Management. Curr Diabetes Rev 2021; 17:e123120189797. [PMID: 33388022 DOI: 10.2174/1573399817666210101110253] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Currently, diabetes mellitus (DM), as well as coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are major public health issues worldwide. BACKGROUND It has been suggested that patients with DM are more vulnerable to SARS-CoV-2 infection and suffer from more severe forms of the disease. METHODS A literature search was performed using PubMed, Scopus, and Google search engines. RESULTS Angiotensin-converting enzyme-2 (ACE2) is the major receptor of SARS-CoV-2 in the human host. The differential expression of ACE2 in the lungs of patients with DM makes them more susceptible to COVID-19. Additionally, acute or chronic hyperglycemia renders individuals in an immune-suppressive state, with impaired innate and adaptive immunity function, also contributing to the severity of COVID-19 infection among patients with DM. Other factors contributing to a more severe course of COVID-19 include the coexistence of obesity in T2DM, the endothelial inflammation induced by the SARS-CoV-2 infection, which aggravates the endothelial dysfunction observed in both T1DM and T2DM, and the hypercoagulability presented in COVID-19 infection that increases the thrombotic tendency in DM. CONCLUSION This review summarizes the pathophysiologic mechanisms underlying the coexistence of both pandemics as well as the current recommendations and future perspectives regarding the optimal treatment of inpatients and outpatients with DM in the era of SARS-CoV-2 infection. Notably, the currently recommended drugs for the treatment of severe COVID-19, dexamethasone and remdesivir, may cause hyperglycemia, an adverse effect that physicians should bear in mind when caring for patients with DM and COVID-19.
Collapse
Affiliation(s)
- Natalia G Vallianou
- Department of Endocrinology, 'Evangelismos' General Hospital of Athens, 45-47 Ypsilantou street, 10676 Athens, Greece
| | | | - Dimitris Kounatidis
- Department of Endocrinology, 'Evangelismos' General Hospital of Athens, 45-47 Ypsilantou street, 10676 Athens, Greece
| | - Theodora Stratigou
- Department of Endocrinology, 'Evangelismos' General Hospital of Athens, 45-47 Ypsilantou street, 10676 Athens, Greece
| | - Gerasimos Socrates Christodoulatos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 MikrasAsias street, 11527 Athens, Greece; 4Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini Street, Haidari, 12462 Athens, Greece
| | - Irene Karampela
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 MikrasAsias street, 11527 Athens, Greece; 4Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini Street, Haidari, 12462 Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 MikrasAsias street, 11527 Athens, Greece; 4Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini Street, Haidari, 12462 Athens, Greece
| |
Collapse
|
13
|
Wicik Z, Eyileten C, Jakubik D, Simões SN, Martins DC, Pavão R, Siller-Matula JM, Postula M. ACE2 Interaction Networks in COVID-19: A Physiological Framework for Prediction of Outcome in Patients with Cardiovascular Risk Factors. J Clin Med 2020; 9:E3743. [PMID: 33233425 PMCID: PMC7700637 DOI: 10.3390/jcm9113743] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (coronavirus disease 2019; COVID-19) is associated with adverse outcomes in patients with cardiovascular disease (CVD). The aim of the study was to characterize the interaction between SARS-CoV-2 and Angiotensin-Converting Enzyme 2 (ACE2) functional networks with a focus on CVD. METHODS Using the network medicine approach and publicly available datasets, we investigated ACE2 tissue expression and described ACE2 interaction networks that could be affected by SARS-CoV-2 infection in the heart, lungs and nervous system. We compared them with changes in ACE-2 networks following SARS-CoV-2 infection by analyzing public data of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). This analysis was performed using the Network by Relative Importance (NERI) algorithm, which integrates protein-protein interaction with co-expression networks. We also performed miRNA-target predictions to identify which miRNAs regulate ACE2-related networks and could play a role in the COVID19 outcome. Finally, we performed enrichment analysis for identifying the main COVID-19 risk groups. RESULTS We found similar ACE2 expression confidence levels in respiratory and cardiovascular systems, supporting that heart tissue is a potential target of SARS-CoV-2. Analysis of ACE2 interaction networks in infected hiPSC-CMs identified multiple hub genes with corrupted signaling which can be responsible for cardiovascular symptoms. The most affected genes were EGFR (Epidermal Growth Factor Receptor), FN1 (Fibronectin 1), TP53, HSP90AA1, and APP (Amyloid Beta Precursor Protein), while the most affected interactions were associated with MAST2 and CALM1 (Calmodulin 1). Enrichment analysis revealed multiple diseases associated with the interaction networks of ACE2, especially cancerous diseases, obesity, hypertensive disease, Alzheimer's disease, non-insulin-dependent diabetes mellitus, and congestive heart failure. Among affected ACE2-network components connected with the SARS-Cov-2 interactome, we identified AGT (Angiotensinogen), CAT (Catalase), DPP4 (Dipeptidyl Peptidase 4), CCL2 (C-C Motif Chemokine Ligand 2), TFRC (Transferrin Receptor) and CAV1 (Caveolin-1), associated with cardiovascular risk factors. We described for the first time miRNAs which were common regulators of ACE2 networks and virus-related proteins in all analyzed datasets. The top miRNAs regulating ACE2 networks were miR-27a-3p, miR-26b-5p, miR-10b-5p, miR-302c-5p, hsa-miR-587, hsa-miR-1305, hsa-miR-200b-3p, hsa-miR-124-3p, and hsa-miR-16-5p. CONCLUSION Our study provides a complete mechanistic framework for investigating the ACE2 network which was validated by expression data. This framework predicted risk groups, including the established ones, thus providing reliable novel information regarding the complexity of signaling pathways affected by SARS-CoV-2. It also identified miRNAs that could be used in personalized diagnosis in COVID-19.
Collapse
Affiliation(s)
- Zofia Wicik
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo Andre 09606-045, Brazil; (Z.W.); (D.C.M.J.); (R.P.)
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, 02-091 Warsaw, Poland; (C.E.); (D.J.); (M.P.)
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, 02-091 Warsaw, Poland; (C.E.); (D.J.); (M.P.)
| | - Daniel Jakubik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, 02-091 Warsaw, Poland; (C.E.); (D.J.); (M.P.)
| | - Sérgio N. Simões
- Federal Institute of Education, Science and Technology of Espírito Santo, Serra, Espírito Santo 29056-264, Brazil;
| | - David C. Martins
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo Andre 09606-045, Brazil; (Z.W.); (D.C.M.J.); (R.P.)
| | - Rodrigo Pavão
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo Andre 09606-045, Brazil; (Z.W.); (D.C.M.J.); (R.P.)
| | - Jolanta M. Siller-Matula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, 02-091 Warsaw, Poland; (C.E.); (D.J.); (M.P.)
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna,1090 Vienna, Austria
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, 02-091 Warsaw, Poland; (C.E.); (D.J.); (M.P.)
| |
Collapse
|
14
|
Hasan SS, Kow CS, Bain A, Kavanagh S, Merchant HA, Hadi MA. Pharmacotherapeutic considerations for the management of diabetes mellitus among hospitalized COVID-19 patients. Expert Opin Pharmacother 2020; 22:229-240. [PMID: 33054481 DOI: 10.1080/14656566.2020.1837114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Diabetes mellitus is one of the most prevalent comorbidities identified in patients with coronavirus disease 2019 (COVID-19). This article aims to discuss the pharmacotherapeutic considerations for the management of diabetes in hospitalized patients with COVID-19. AREAS COVERED We discussed various aspects of pharmacotherapeutic management in hospitalized patients with COVID-19: (i) susceptibility and severity of COVID-19 among individuals with diabetes, (ii) glycemic goals for hospitalized patients with COVID-19 and concurrent diabetes, (iii) pharmacological treatment considerations for hospitalized patients with COVID-19 and concurrent diabetes. EXPERT OPINION The glycemic goals in patients with COVID-19 and concurrent type 1 (T1DM) or type 2 diabetes (T2DM) are to avoid disruption of stable metabolic state, maintain optimal glycemic control, and prevent adverse glycemic events. Patients with T1DM require insulin therapy at all times to prevent ketosis. The management strategies for patients with T2DM include temporary discontinuation of certain oral antidiabetic agents and consideration for insulin therapy. Patients with T2DM who are relatively stable and able to eat regularly may continue with oral antidiabetic agents if glycemic control is satisfactory. Hyperglycemia may develop in patients with systemic corticosteroid treatment and should be managed upon accordingly.
Collapse
Affiliation(s)
| | - Chia Siang Kow
- School of Postgraduate Studies, International Medical University , Kuala Lumpur, Malaysia
| | - Amie Bain
- Department of Pharmacy, University of Huddersfield , Huddersfield, UK.,Department of Pharmacy, Sheffield Teaching Hospitals NHS Foundation Trust , Sheffield, UK
| | - Sallianne Kavanagh
- Department of Pharmacy, University of Huddersfield , Huddersfield, UK.,Department of Pharmacy, Sheffield Teaching Hospitals NHS Foundation Trust , Sheffield, UK
| | - Hamid A Merchant
- Department of Pharmacy, University of Huddersfield , Huddersfield, UK
| | | |
Collapse
|
15
|
Chen YC, Chen TH, Sun CC, Chen JY, Chang SS, Yeung L, Tsai YW. Dipeptidyl peptidase-4 inhibitors and the risks of autoimmune diseases in type 2 diabetes mellitus patients in Taiwan: a nationwide population-based cohort study. Acta Diabetol 2020; 57:1181-1192. [PMID: 32318876 PMCID: PMC7173685 DOI: 10.1007/s00592-020-01533-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
AIMS Dipeptidyl peptidase-4, a transmembrane glycoprotein expressed in various cell types, serves as a co-stimulator molecule to influence immune response. This study aimed to investigate associations between DPP-4 inhibitors and risk of autoimmune disorders in patients with type 2 diabetes mellitus in Taiwan. METHODS This retrospective cohort study used the nationwide data from the diabetes subsection of Taiwan National Health Insurance Research Database between January 1, 2009, and December 31, 2013. Cox proportional hazards models were developed to compare the risk of autoimmune disorders and the subgroup analyses between the DPP-4i and DPP-4i-naïve groups. RESULTS A total of 774,198 type 2 diabetic patients were identified. The adjusted HR of the incidence for composite autoimmune disorders in DPP-4i group was 0.56 (95% CI 0.53-0.60; P < 0.001). The subgroup analysis demonstrated that the younger patients (aged 20-40 years: HR 0.47, 95% CI 0.35-0.61; aged 41-60 years: HR 0.50, 95% CI 0.46-0.55; aged 61-80 years: HR 0.63, 95% CI 0.58-0.68, P = 0.0004) and the lesser duration of diabetes diagnosed (0-5 years: HR 0.48, 95% CI 0.44-0.52; 6-10 years: HR 0.48, 95% CI 0.43-0.53; ≧ 10 years: HR 0.86, 95% CI 0.78-0.96, P < 0.0001), the more significant the inverse association of DPP-4 inhibitors with the incidence of composite autoimmune diseases. CONCLUSIONS DPP-4 inhibitors are associated with lower risk of autoimmune disorders in type 2 diabetes mellitus patients in Taiwan, especially for the younger patients and the lesser duration of diabetes diagnosed. The significant difference was found between the four types of DPP-4 inhibitors and the risk of autoimmune diseases. This study provides clinicians with useful information regarding the use of DPP-4 inhibitors for treating diabetic patients.
Collapse
Affiliation(s)
- Yi-Chuan Chen
- Department of Family Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tien-Hsing Chen
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Chin Sun
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jau-Yuan Chen
- Department of Family Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shy-Shin Chang
- Department of Family Medicine, Taipei Medical University Hospital, Taipei City, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ling Yeung
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yi-Wen Tsai
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Family Medicine, Chang Gung Memorial Hospital, Keelung Branch, No. 222, Maijin Road, Keelung, Taiwan.
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
16
|
Treatment of Multi-Drug Resistant Gram-Negative Bacterial Pathogenic Infections. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.3.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The multidrug-resistant Gram-negative bacteria (MDR-GNB) infections in severely infected patients present numerous difficulties in terms of treatment failure where antibiotics cannot arrest such drug resistant bacteria. Based on the patient’s medical history and updated microbiological epidemiology data, an effective empirical treatment remains critical for optimal results to safeguard human health. The aim of this manuscript is to review management of MDR-Gram negative pathogenic bacterial infections. Quick diagnosis and narrow antimicrobial spectrum require rapid and timely diagnosis and effective laboratories in accordance with antimicrobial stewardship (AS) principles. Worldwide, there is an increased emergence of Carbapenem-resistant Enterobacteriaceae (CRE), Pseudomonas aeruginosa, and Acinetobacter baumannii. Recently, novel therapeutic options, such as meropenem/vaborbactam, ceftazidime/avibactam, ceftolozane/tazobactam, eravacycline and plazomicin became accessible to effectively counteract severe infections. Optimally using these delays the emergence of resistance to novel therapeutic agents. Further study is required, however, due to uncertainties in pharmacokinetic/pharmacodynamics optimization of dosages and therapeutic duration in severely ill patients. The novel agents should be verified for (i) action on carbapenem resistant Acinetobacter baumannii; (ii) action on CRE of β-lactam/β-lactamase inhibitors dependence on type of carbapenemase; (iii) emergence of resistance to novel antibacterials and dismiss selective pressure promoting development of resistance. Alternative treatments should be approached alike phage therapy or antibacterial peptides. The choice of empirical therapy is complicated by antibiotic resistance and can be combated by accurate antibiotic and their combinations usage, which is critical to patient survival. Noteworthy are local epidemiology, effective teamwork and antibiotic stewardship to guarantee that medications are utilized properly to counter the resistance.
Collapse
|
17
|
Abstract
First identified in 2012, Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel virus that can cause acute respiratory distress syndrome (ARDS), multiorgan failure, and death, with a case fatality rate of ~35%. An animal model that supports MERS-CoV infection and causes severe lung disease is useful to study pathogenesis and evaluate therapies and vaccines. The murine dipeptidyl peptidase 4 (Dpp4) protein is not a functional receptor for MERS-CoV; thus, mice are resistant to MERS-CoV infection. We generated human DPP4 knock-in (hDPP4 KI) mice by replacing exons 10-12 at the mouse Dpp4 locus with exons 10-12 from the human DPP4 gene. The resultant human DPP4 KI mice are permissive to MERS-CoV (HCoV-EMC/2012 strain) infection but develop no disease. To generate a mouse model with associated morbidity and mortality from respiratory disease, we serially passaged HCoV-EMC/2012 strain in the lungs of young hDPP4 KI mice. After 30 in vivo passages, an adapted virus clone was isolated and designated MERSMA6.1.2. This virus clone produced significantly higher titers than the parental clone in the lungs of hDPP4 KI mice and caused diffuse lung injury and a fatal respiratory infection. In this chapter, we will describe in detail the procedures used to mouse adapt MERS-CoV by serial passage of the virus in lungs. We also describe the methods used to isolate virus clones and characterize virus infection.
Collapse
Affiliation(s)
- Kun Li
- Department of Pediatrics, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
| | - Paul B McCray
- Department of Pediatrics, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA. .,Department of Microbiology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
18
|
COVID-19 and the World with Co-Morbidities of Heart Disease, Hypertension and Diabetes. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.3.01] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Newly emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) pandemic has now spread across the globe in past few months while affecting 26 million people and leading to more than 0.85 million deaths as on 2nd September, 2020. Severity of SARS-CoV-2 infection increases in COVID-19 patients due to pre-existing health co-morbidities. This mini-review has focused on the three significant co-morbidities viz., heart disease, hypertension, and diabetes, which are posing high health concerns and increased mortality during this ongoing pandemic. The observed co-morbidities have been found to be associated with the increasing risk factors for SARS-CoV-2 infection and COVID-19 critical illness as well as to be associated positively with the worsening of the health condition of COVID-19 suffering individuals resulting in the high risk for mortality. SARS-CoV-2 enters host cell via angiotensin-converting enzyme 2 receptors. Regulation of crucial cardiovascular functions and metabolisms like blood pressure and sugar levels are being carried out by ACE2. This might be one of the reasons that contribute to the higher mortality in COVID-19 patients having co-morbidities. Clinical investigations have identified higher levels of creatinine, cardiac troponin I, alanine aminotransferase, NT-proBNP, creatine kinase, D-dimer, aspartate aminotransferase and lactate dehydrogenase in patients who have succumbed to death from COVID-19 as compared to recovered individuals. More investigations are required to identify the modes behind increased mortality in COVID-19 patients having co-morbidities of heart disease, hypertension, and diabetes. This will enable us to design and develop suitable therapeutic strategies for reducing the mortality. More attention and critical care need to be paid to such high risk patients suffering from co-morbidities during COVID-19 pandemic.
Collapse
|
19
|
Koliaki C, Tentolouris A, Eleftheriadou I, Melidonis A, Dimitriadis G, Tentolouris N. Clinical Management of Diabetes Mellitus in the Era of COVID-19: Practical Issues, Peculiarities and Concerns. J Clin Med 2020; 9:E2288. [PMID: 32708504 PMCID: PMC7408673 DOI: 10.3390/jcm9072288] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
The management of patients with diabetes mellitus (DM) in the era of the COVID-19 pandemic can be challenging. Even if they are not infected, they are at risk of dysregulated glycemic control due to the restrictive measures which compromise and disrupt healthcare delivery. In the case of infection, people with DM have an increased risk of developing severe complications. The major principles of optimal care for mild outpatient cases include a patient-tailored therapeutic approach, regular glucose monitoring and adherence to medical recommendations regarding lifestyle measures and drug treatment. For critically ill hospitalized patients, tight monitoring of glucose, fluids, electrolytes, pH and blood ketones is of paramount importance to optimize outcomes. All patients with DM do not have an equally increased risk for severity and mortality due to COVID-19. Certain clinical and biological characteristics determine high-risk phenotypes within the DM population and such prognostic markers need to be characterized in future studies. Further research is needed to examine which subgroups of DM patients are expected to benefit the most from specific antiviral, immunomodulatory and other treatment strategies in the context of patient-tailored precision medicine, which emerges as an urgent priority in the era of COVID-19.
Collapse
Affiliation(s)
- Chrysi Koliaki
- First Department of Propaedeutic Internal Medicine and Diabetes Center, Medical School, National Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece
| | - Anastasios Tentolouris
- First Department of Propaedeutic Internal Medicine and Diabetes Center, Medical School, National Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece
| | - Ioanna Eleftheriadou
- First Department of Propaedeutic Internal Medicine and Diabetes Center, Medical School, National Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece
| | - Andreas Melidonis
- Hellenic Diabetes Association, 11528 Athens, Greece
- Cardiometabolic Department, Metropolitan Hospital, 18547 Neo Faliro, Greece
| | - George Dimitriadis
- Hellenic Diabetes Association, 11528 Athens, Greece
- Second Department of Internal Medicine and Research Institute, Medical School, National and Kapodistrian University of Athens, Attikon University General Hospital, 12462 Chaidari, Greece
| | - Nikolaos Tentolouris
- First Department of Propaedeutic Internal Medicine and Diabetes Center, Medical School, National Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece
| |
Collapse
|
20
|
Huang SW, Tai CH, Hsu YM, Cheng D, Hung SJ, Chai KM, Wang YF, Wang JR. Assessing the application of a pseudovirus system for emerging SARS-CoV-2 and re-emerging avian influenza virus H5 subtypes in vaccine development. Biomed J 2020; 43:375-387. [PMID: 32611537 PMCID: PMC7274974 DOI: 10.1016/j.bj.2020.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/18/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Background Highly pathogenic emerging and re-emerging viruses continuously threaten lives worldwide. In order to provide prophylactic prevention from the emerging and re-emerging viruses, vaccine is suggested as the most efficient way to prevent individuals from the threat of viral infection. Nonetheless, the highly pathogenic viruses need to be handled in a high level of biosafety containment, which hinders vaccine development. To shorten the timeframe of vaccine development, the pseudovirus system has been widely applied to examine vaccine efficacy or immunogenicity in the emerging and re-emerging viruses. Methods We developed pseudovirus systems for emerging SARS coronavirus 2 (SARS-CoV-2) and re-emerging avian influenza virus H5 subtypes which can be handled in the biosafety level 2 facility. Through the generated pseudovirus of SARS-CoV-2 and avian influenza virus H5 subtypes, we successfully established a neutralization assay to quantify the neutralizing activity of antisera against the viruses. Results The result of re-emerging avian influenza virus H5Nx pseudoviruses provided valuable information for antigenic evolution and immunogenicity analysis in vaccine candidate selection. Together, our study assessed the potency of pseudovirus systems in vaccine efficacy, antigenic analysis, and immunogenicity in the vaccine development of emerging and re-emerging viruses. Conclusion Instead of handling live highly pathogenic viruses in a high biosafety level facility, using pseudovirus systems would speed up the process of vaccine development to provide community protection against emerging and re-emerging viral diseases with high pathogenicity.
Collapse
Affiliation(s)
- Sheng-Wen Huang
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan, Taiwan
| | - Ching-Hui Tai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Yin-Mei Hsu
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Dayna Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Su-Jhen Hung
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan, Taiwan
| | - Kit Man Chai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Ya-Fang Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Jen-Ren Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
21
|
LoPresti M, Beck DB, Duggal P, Cummings DAT, Solomon BD. The Role of Host Genetic Factors in Coronavirus Susceptibility: Review of Animal and Systematic Review of Human Literature. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.05.30.20117788. [PMID: 32511629 PMCID: PMC7276057 DOI: 10.1101/2020.05.30.20117788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BACKGROUND The recent SARS-CoV-2 pandemic raises many scientific and clinical questions. One set of questions involves host genetic factors that may affect disease susceptibility and pathogenesis. New work is emerging related to SARS-CoV-2; previous work has been conducted on other coronaviruses that affect different species. OBJECTIVES We aimed to review the literature on host genetic factors related to coronaviruses, with a systematic focus on human studies. METHODS We conducted a PubMed-based search and analysis for articles relevant to host genetic factors in coronavirus. We categorized articles, summarized themes related to animal studies, and extracted data from human studies for analyses. RESULTS We identified 1,187 articles of potential relevance. Forty-five studies were related to human host genetic factors related to coronavirus, of which 35 involved analysis of specific genes or loci; aside from one meta-analysis on respiratory infections, all were candidate-driven studies, typically investigating small number of research subjects and loci. Multiple significant loci were identified, including 16 related to susceptibility to coronavirus (of which 7 identified protective alleles), and 16 related to outcomes or clinical variables (of which 3 identified protective alleles). The types of cases and controls used varied considerably; four studies used traditional replication/validation cohorts. Of the other studies, 28 involved both human and non-human host genetic factors related to coronavirus, 174 involved study of non-human (animal) host genetic factors related to coronavirus, 584 involved study of non-genetic host factors related to coronavirus, including involving immunopathogenesis, 16 involved study of other pathogens (not coronavirus), 321 involved other studies of coronavirus, and 18 studies were assigned to the other categories and removed. KEY FINDINGS We have outlined key genes and loci from animal and human host genetic studies that may bear investigation in the nascent host genetic factor studies of COVID-19. Previous human studies to date have been limited by issues that may be less impactful on current endeavors, including relatively low numbers of eligible participants and limited availability of advanced genomic methods.
Collapse
|
22
|
Singh A, Singh RS, Sarma P, Batra G, Joshi R, Kaur H, Sharma AR, Prakash A, Medhi B. A Comprehensive Review of Animal Models for Coronaviruses: SARS-CoV-2, SARS-CoV, and MERS-CoV. Virol Sin 2020; 35:290-304. [PMID: 32607866 PMCID: PMC7324485 DOI: 10.1007/s12250-020-00252-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
The recent outbreak of coronavirus disease (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has already affected a large population of the world. SARS-CoV-2 belongs to the same family of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). COVID-19 has a complex pathology involving severe acute respiratory infection, hyper-immune response, and coagulopathy. At present, there is no therapeutic drug or vaccine approved for the disease. There is an urgent need for an ideal animal model that can reflect clinical symptoms and underlying etiopathogenesis similar to COVID-19 patients which can be further used for evaluation of underlying mechanisms, potential vaccines, and therapeutic strategies. The current review provides a paramount insight into the available animal models of SARS-CoV-2, SARS-CoV, and MERS-CoV for the management of the diseases.
Collapse
Affiliation(s)
- Ashutosh Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rahul Soloman Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Phulen Sarma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Gitika Batra
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rupa Joshi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Hardeep Kaur
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Amit Raj Sharma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
23
|
Younes N, Al-Sadeq DW, AL-Jighefee H, Younes S, Al-Jamal O, Daas HI, Yassine HM, Nasrallah GK. Challenges in Laboratory Diagnosis of the Novel Coronavirus SARS-CoV-2. Viruses 2020; 12:E582. [PMID: 32466458 PMCID: PMC7354519 DOI: 10.3390/v12060582] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
The recent outbreak of the Coronavirus disease 2019 (COVID-19) has quickly spread worldwide since its discovery in Wuhan city, China in December 2019. A comprehensive strategy, including surveillance, diagnostics, research, clinical treatment, and development of vaccines, is urgently needed to win the battle against COVID-19. The past three unprecedented outbreaks of emerging human coronavirus infections at the beginning of the 21st century have highlighted the importance of readily available, accurate, and rapid diagnostic technologies to contain emerging and re-emerging pandemics. Real-time reverse transcriptase-polymerase chain reaction (rRT-PCR) based assays performed on respiratory specimens remain the gold standard for COVID-19 diagnostics. However, point-of-care technologies and serologic immunoassays are rapidly emerging with high sensitivity and specificity as well. Even though excellent techniques are available for the diagnosis of symptomatic patients with COVID-19 in well-equipped laboratories; critical gaps still remain in screening asymptomatic people who are in the incubation phase of the virus, as well as in the accurate determination of live viral shedding during convalescence to inform decisions for ending isolation. This review article aims to discuss the currently available laboratory methods and surveillance technologies available for the detection of COVID-19, their performance characteristics and highlight the gaps in current diagnostic capacity, and finally, propose potential solutions. We also summarize the specifications of the majority of the available commercial kits (PCR, EIA, and POC) for laboratory diagnosis of COVID-19.
Collapse
Affiliation(s)
- Nadin Younes
- Biomedical Research Center, Qatar University, P.O. Box 2713 Doha, Qatar; (N.Y.); (D.W.A.-S.); (H.A.-J.); (O.A.-J.); (H.M.Y.)
| | - Duaa W. Al-Sadeq
- Biomedical Research Center, Qatar University, P.O. Box 2713 Doha, Qatar; (N.Y.); (D.W.A.-S.); (H.A.-J.); (O.A.-J.); (H.M.Y.)
- College of Medicine, Member of QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
| | - Hadeel AL-Jighefee
- Biomedical Research Center, Qatar University, P.O. Box 2713 Doha, Qatar; (N.Y.); (D.W.A.-S.); (H.A.-J.); (O.A.-J.); (H.M.Y.)
| | - Salma Younes
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713 Doha, Qatar;
| | - Ola Al-Jamal
- Biomedical Research Center, Qatar University, P.O. Box 2713 Doha, Qatar; (N.Y.); (D.W.A.-S.); (H.A.-J.); (O.A.-J.); (H.M.Y.)
| | - Hanin I. Daas
- College of Dental Medicine, Member of QU Health, Qatar University, P.O. Box 2713 Doha, Qatar;
| | - Hadi. M. Yassine
- Biomedical Research Center, Qatar University, P.O. Box 2713 Doha, Qatar; (N.Y.); (D.W.A.-S.); (H.A.-J.); (O.A.-J.); (H.M.Y.)
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713 Doha, Qatar;
| | - Gheyath K. Nasrallah
- Biomedical Research Center, Qatar University, P.O. Box 2713 Doha, Qatar; (N.Y.); (D.W.A.-S.); (H.A.-J.); (O.A.-J.); (H.M.Y.)
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713 Doha, Qatar;
| |
Collapse
|
24
|
Barchetta I, Cavallo MG, Baroni MG. COVID-19 and diabetes: Is this association driven by the DPP4 receptor? Potential clinical and therapeutic implications. Diabetes Res Clin Pract 2020; 163:108165. [PMID: 32333966 PMCID: PMC7177127 DOI: 10.1016/j.diabres.2020.108165] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | | | - Marco Giorgio Baroni
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA), University of L'Aquila, Italy; IRCCS Neuromed, Pozzilli (Is), Italy.
| |
Collapse
|
25
|
Selection of viral variants during persistent infection of insectivorous bat cells with Middle East respiratory syndrome coronavirus. Sci Rep 2020; 10:7257. [PMID: 32350357 PMCID: PMC7190632 DOI: 10.1038/s41598-020-64264-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses that cause severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) are speculated to have originated in bats. The mechanisms by which these viruses are maintained in individuals or populations of reservoir bats remain an enigma. Mathematical models have predicted long-term persistent infection with low levels of periodic shedding as a likely route for virus maintenance and spillover from bats. In this study, we tested the hypothesis that bat cells and MERS coronavirus (CoV) can co-exist in vitro. To test our hypothesis, we established a long-term coronavirus infection model of bat cells that are persistently infected with MERS-CoV. We infected cells from Eptesicus fuscus with MERS-CoV and maintained them in culture for at least 126 days. We characterized the persistently infected cells by detecting virus particles, protein and transcripts. Basal levels of type I interferon in the long-term infected bat cells were higher, relative to uninfected cells, and disrupting the interferon response in persistently infected bat cells increased virus replication. By sequencing the whole genome of MERS-CoV from persistently infected bat cells, we identified that bat cells repeatedly selected for viral variants that contained mutations in the viral open reading frame 5 (ORF5) protein. Furthermore, bat cells that were persistently infected with ΔORF5 MERS-CoV were resistant to superinfection by wildtype virus, likely due to reduced levels of the virus receptor, dipeptidyl peptidase 4 (DPP4) and higher basal levels of interferon in these cells. In summary, our study provides evidence for a model of coronavirus persistence in bats, along with the establishment of a unique persistently infected cell culture model to study MERS-CoV-bat interactions.
Collapse
|
26
|
Park MS, Kim JI, Bae JY, Park MS. Animal models for the risk assessment of viral pandemic potential. Lab Anim Res 2020; 36:11. [PMID: 32337177 PMCID: PMC7175453 DOI: 10.1186/s42826-020-00040-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
Pandemics affect human lives severely and globally. Experience predicts that there will be a pandemic for sure although the time is unknown. When a viral epidemic breaks out, assessing its pandemic risk is an important part of the process that characterizes genomic property, viral pathogenicity, transmission in animal model, and so forth. In this review, we intend to figure out how a pandemic may occur by looking into the past influenza pandemic events. We discuss interpretations of the experimental evidences resulted from animal model studies and extend implications of viral pandemic potentials and ingredients to emerging viral epidemics. Focusing on the pandemic potential of viral infectious diseases, we suggest what should be assessed to prevent global catastrophes from influenza virus, Middle East respiratory syndrome coronavirus, dengue and Zika viruses.
Collapse
Affiliation(s)
- Mee Sook Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea 02841
| | - Jin Il Kim
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea 02841
| | - Joon-Yong Bae
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea 02841
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea 02841
| |
Collapse
|
27
|
Zolfaghari Emameh R, Nosrati H, Taheri RA. Combination of Biodata Mining and Computational Modelling in Identification and Characterization of ORF1ab Polyprotein of SARS-CoV-2 Isolated from Oronasopharynx of an Iranian Patient. Biol Proced Online 2020; 22:8. [PMID: 32336957 PMCID: PMC7171442 DOI: 10.1186/s12575-020-00121-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/08/2020] [Indexed: 12/22/2022] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) is an emerging zoonotic viral infection, which was started in Wuhan, China, in December 2019 and transmitted to other countries worldwide as a pandemic outbreak. Iran is one of the top ranked countries in the tables of COVID-19-infected and -mortality cases that make the Iranian patients as the potential targets for diversity of studies including epidemiology, biomedical, biodata, and viral proteins computational modelling studies. Results In this study, we applied bioinformatic biodata mining methods to detect CDS and protein sequences of ORF1ab polyprotein of SARS-CoV-2 isolated from oronasopharynx of an Iranian patient. Then through the computational modelling and antigenicity prediction approaches, the identified polyprotein sequence was analyzed. The results revealed that the identified ORF1ab polyprotein belongs to a part of nonstructural protein 1 (nsp1) with the high antigenicity residues in a glycine-proline or hydrophobic amino acid rich domain. Conclusions The results revealed that nsp1 as a virulence factor and crucial agent in spreading of the COVID-19 among the society can be a potential target for the future epidemiology, drug, and vaccine studies.
Collapse
Affiliation(s)
- Reza Zolfaghari Emameh
- 1Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran
| | - Hassan Nosrati
- 2Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ramezan Ali Taheri
- 3Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Iacobellis G. COVID-19 and diabetes: Can DPP4 inhibition play a role? Diabetes Res Clin Pract 2020; 162:108125. [PMID: 32224164 PMCID: PMC7271223 DOI: 10.1016/j.diabres.2020.108125] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Gianluca Iacobellis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami, FL, USA.
| |
Collapse
|
29
|
Nie J, Li Q, Wu J, Zhao C, Hao H, Liu H, Zhang L, Nie L, Qin H, Wang M, Lu Q, Li X, Sun Q, Liu J, Fan C, Huang W, Xu M, Wang Y. Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2. Emerg Microbes Infect 2020; 9:680-686. [PMID: 32207377 PMCID: PMC7144318 DOI: 10.1080/22221751.2020.1743767] [Citation(s) in RCA: 546] [Impact Index Per Article: 109.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pseudoviruses are useful virological tools because of their safety and versatility, especially for emerging and re-emerging viruses. Due to its high pathogenicity and infectivity and the lack of effective vaccines and therapeutics, live SARS-CoV-2 has to be handled under biosafety level 3 conditions, which has hindered the development of vaccines and therapeutics. Based on a VSV pseudovirus production system, a pseudovirus-based neutralization assay has been developed for evaluating neutralizing antibodies against SARS-CoV-2 in biosafety level 2 facilities. The key parameters for this assay were optimized, including cell types, cell numbers, virus inoculum. When tested against the SARS-CoV-2 pseudovirus, SARS-CoV-2 convalescent patient sera showed high neutralizing potency, which underscore its potential as therapeutics. The limit of detection for this assay was determined as 22.1 and 43.2 for human and mouse serum samples respectively using a panel of 120 negative samples. The cutoff values were set as 30 and 50 for human and mouse serum samples, respectively. This assay showed relatively low coefficient of variations with 15.9% and 16.2% for the intra- and inter-assay analyses respectively. Taken together, we established a robust pseudovirus-based neutralization assay for SARS-CoV-2 and are glad to share pseudoviruses and related protocols with the developers of vaccines or therapeutics to fight against this lethal virus.
Collapse
Affiliation(s)
- Jianhui Nie
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Qianqian Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China.,Graduate School of Peking Union Medical College, Beijing, People's Republic of China
| | - Jiajing Wu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China.,Wuhan Institute of Biological Products, Wuhan, People's Republic of China
| | - Chenyan Zhao
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Huan Hao
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Huan Liu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Li Zhang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Lingling Nie
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Haiyang Qin
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Meng Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Qiong Lu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Xiaoyu Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Qiyu Sun
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Junkai Liu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Changfa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Miao Xu
- Institute for Biological Product Control, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China.,Graduate School of Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
30
|
Hao X, Lv Q, Li F, Xu Y, Gao H. The characteristics of hDPP4 transgenic mice subjected to aerosol MERS coronavirus infection via an animal nose-only exposure device. Animal Model Exp Med 2019; 2:269-281. [PMID: 31942559 PMCID: PMC6930991 DOI: 10.1002/ame2.12088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/12/2019] [Accepted: 10/06/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Middle East respiratory syndrome coronavirus (MERS-CoV), which is not fully understood in regard to certain transmission routes and pathogenesis and lacks specific therapeutics and vaccines, poses a global threat to public health. METHODS To simulate the clinical aerosol transmission route, hDPP4 transgenic mice were infected with MERS-CoV by an animal nose-only exposure device and compared with instillation-inoculated mice. The challenged mice were observed for 14 consecutive days and necropsied on days 3, 5, 7, and 9 to analyze viral load, histopathology, viral antigen distribution, and cytokines in tissues. RESULTS MERS-CoV aerosol-infected mice with an incubation period of 5-7 days showed weight loss on days 7-11, obvious lung lesions on day 7, high viral loads in the lungs on days 3-9 and in the brain on days 7-9, and 60% survival. MERS-CoV instillation-inoculated mice exhibited clinical signs on day 1, obvious lung lesions on days 3-5, continuous weight loss, 0% survival by day 5, and high viral loads in the lungs and brain on days 3-5. Viral antigen and high levels of proinflammatory cytokines and chemokines were detected in the aerosol and instillation groups. Disease, lung lesion, and viral replication progressions were slower in the MERS-CoV aerosol-infected mice than in the MERS-CoV instillation-inoculated mice. CONCLUSION hDPP4 transgenic mice were successfully infected with MERS-CoV aerosols via an animal nose-only exposure device, and aerosol- and instillation-infected mice simulated the clinical symptoms of moderate diffuse interstitial pneumonia. However, the transgenic mice exposed to aerosol MERS-CoV developed disease and lung pathology progressions that more closely resembled those observed in humans.
Collapse
Affiliation(s)
- Xin‐yan Hao
- Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) & Comparative Medicine CentrePeking Union Medical College (PUMC)Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC)Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectionsBeijingChina
| | - Qi Lv
- Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) & Comparative Medicine CentrePeking Union Medical College (PUMC)Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC)Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectionsBeijingChina
| | - Feng‐di Li
- Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) & Comparative Medicine CentrePeking Union Medical College (PUMC)Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC)Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectionsBeijingChina
| | - Yan‐feng Xu
- Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) & Comparative Medicine CentrePeking Union Medical College (PUMC)Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC)Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectionsBeijingChina
| | - Hong Gao
- Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) & Comparative Medicine CentrePeking Union Medical College (PUMC)Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC)Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectionsBeijingChina
| |
Collapse
|
31
|
Niu J, Shen L, Huang B, Ye F, Zhao L, Wang H, Deng Y, Tan W. Non-invasive bioluminescence imaging of HCoV-OC43 infection and therapy in the central nervous system of live mice. Antiviral Res 2019; 173:104646. [PMID: 31705922 PMCID: PMC7114176 DOI: 10.1016/j.antiviral.2019.104646] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 11/27/2022]
Abstract
Human coronaviruses (HCoVs) are important pathogens that cause upper respiratory tract infections and have neuroinvasive abilities; however, little is known about the dynamic infection process of CoVs in vivo, and there are currently no specific antiviral drugs to prevent or treat HCoV infection. Here, we verified the replication ability and pathogenicity of a reporter HCoV-OC43 strain expressing Renilla luciferase (Rluc; rOC43-ns2DelRluc) in mice with different genetic backgrounds (C57BL/6 and BALB/c). Additionally, we monitored the spatial and temporal progression of HCoV-OC43 through the central nervous system (CNS) of live BALB/c mice after intranasal or intracerebral inoculation with rOC43-ns2DelRluc. We found that rOC43-ns2DelRluc was fatal to suckling mice after intranasal inoculation, and that viral titers and Rluc expression were detected in the brains and spinal cords of mice infected with rOC43-ns2DelRluc. Moreover, viral replication was initially observed in the brain by non-invasive bioluminescence imaging before the infection spread to the spinal cord of BALB/c mice, consistent with its tropism in the CNS. Furthermore, the Rluc readout correlated with the HCoV replication ability and protein expression, which allowed quantification of antiviral activity in live mice. Additionally, we validated that chloroquine strongly inhibited rOC43-ns2DelRluc replication in vivo. These results provide new insights into the temporal and spatial dissemination of HCoV-OC43 in the CNS, and our methods provide an extremely sensitive platform for evaluating the efficacy of antiviral therapies to treat neuroinvasive HCoVs in live mice. We verified the pathogenicity of a reporter HCoV-OC43 strain expressing Renilla luciferase (rOC43-ns2DelRluc) in mice. HCoV-OC43 spatio-temporal progression in CNS of mice was monitored by non-invasive bioluminescence imaging (BLI). Chloroquine was validated strongly inhibited rOC43-ns2DelRluc replication in in live mice. rOC43-ns2DelRluc-based BLI was reported as a promising platform for non-invasively screening antiviral compounds in vivo.
Collapse
Affiliation(s)
- Junwei Niu
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Liang Shen
- Department of Clinical Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China; Key Laboratory of Molecular Medicine, Medical College, Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Baoying Huang
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Fei Ye
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Li Zhao
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Huijuan Wang
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Yao Deng
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Wenjie Tan
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China; Center for Biosafety Mega-Science, Chinese Academy of Sciences, China.
| |
Collapse
|
32
|
Generation of a Nebulizable CDR-Modified MERS-CoV Neutralizing Human Antibody. Int J Mol Sci 2019; 20:ijms20205073. [PMID: 31614869 PMCID: PMC6829326 DOI: 10.3390/ijms20205073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/26/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) induces severe aggravating respiratory failure in infected patients, frequently resulting in mechanical ventilation. As limited therapeutic antibody is accumulated in lung tissue following systemic administration, inhalation is newly recognized as an alternative, possibly better, route of therapeutic antibody for pulmonary diseases. The nebulization process, however, generates diverse physiological stresses, and thus, the therapeutic antibody must be resistant to these stresses, remain stable, and form minimal aggregates. We first isolated a MERS-CoV neutralizing antibody that is reactive to the receptor-binding domain (RBD) of spike (S) glycoprotein. To increase stability, we introduced mutations into the complementarity-determining regions (CDRs) of the antibody. In the HCDRs (excluding HCDR3) in this clone, two hydrophobic residues were replaced with Glu, two residues were replaced with Asp, and four residues were replaced with positively charged amino acids. In LCDRs, only two Leu residues were replaced with Val. These modifications successfully generated a clone with significantly greater stability and equivalent reactivity and neutralizing activity following nebulization compared to the original clone. In summary, we generated a MERS-CoV neutralizing human antibody that is reactive to recombinant MERS-CoV S RBD protein for delivery via a pulmonary route by introducing stabilizing mutations into five CDRs.
Collapse
|
33
|
Leist SR, Cockrell AS. Genetically Engineering a Susceptible Mouse Model for MERS-CoV-Induced Acute Respiratory Distress Syndrome. Methods Mol Biol 2019; 2099:137-159. [PMID: 31883094 PMCID: PMC7123801 DOI: 10.1007/978-1-0716-0211-9_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since 2012, monthly cases of Middle East respiratory syndrome coronavirus (MERS-CoV) continue to cause severe respiratory disease that is fatal in ~35% of diagnosed individuals. The ongoing threat to global public health and the need for novel therapeutic countermeasures have driven the development of animal models that can reproducibly replicate the pathology associated with MERS-CoV in human infections. The inability of MERS-CoV to replicate in the respiratory tracts of mice, hamsters, and ferrets stymied initial attempts to generate small animal models. Identification of human dipeptidyl peptidase IV (hDPP4) as the receptor for MERS-CoV infection opened the door for genetic engineering of mice. Precise molecular engineering of mouse DPP4 (mDPP4) with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology maintained inherent expression profiles, and limited MERS-CoV susceptibility to tissues that naturally express mDPP4, notably the lower respiratory tract wherein MERS-CoV elicits severe pulmonary pathology. Here, we describe the generation of the 288-330+/+ MERS-CoV mouse model in which mice were made susceptible to MERS-CoV by modifying two amino acids on mDPP4 (A288 and T330), and the use of adaptive evolution to generate novel MERS-CoV isolates that cause fatal respiratory disease. The 288-330+/+ mice are currently being used to evaluate novel drug, antibody, and vaccine therapeutic countermeasures for MERS-CoV. The chapter starts with a historical perspective on the emergence of MERS-CoV and animal models evaluated for MERS-CoV pathogenesis, and then outlines the development of the 288-330+/+ mouse model, assays for assessing a MERS-CoV pulmonary infection in a mouse model, and describes some of the challenges associated with using genetically engineered mice.
Collapse
Affiliation(s)
- Sarah R Leist
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
34
|
Yong CY, Ong HK, Yeap SK, Ho KL, Tan WS. Recent Advances in the Vaccine Development Against Middle East Respiratory Syndrome-Coronavirus. Front Microbiol 2019; 10:1781. [PMID: 31428074 PMCID: PMC6688523 DOI: 10.3389/fmicb.2019.01781] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022] Open
Abstract
Middle East respiratory syndrome (MERS) is a deadly viral respiratory disease caused by MERS-coronavirus (MERS-CoV) infection. To date, there is no specific treatment proven effective against this viral disease. In addition, no vaccine has been licensed to prevent MERS-CoV infection thus far. Therefore, our current review focuses on the most recent studies in search of an effective MERS vaccine. Overall, vaccine candidates against MERS-CoV are mainly based upon the viral spike (S) protein, due to its vital role in the viral infectivity, although several studies focused on other viral proteins such as the nucleocapsid (N) protein, envelope (E) protein, and non-structural protein 16 (NSP16) have also been reported. In general, the potential vaccine candidates can be classified into six types: viral vector-based vaccine, DNA vaccine, subunit vaccine, nanoparticle-based vaccine, inactivated-whole virus vaccine and live-attenuated vaccine, which are discussed in detail. Besides, the immune responses and potential antibody dependent enhancement of MERS-CoV infection are extensively reviewed. In addition, animal models used to study MERS-CoV and evaluate the vaccine candidates are discussed intensively.
Collapse
Affiliation(s)
- Chean Yeah Yong
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hui Kian Ong
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Swee Keong Yeap
- China ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Malaysia
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
35
|
MERS Coronavirus: An Emerging Zoonotic Virus. Viruses 2019; 11:v11070663. [PMID: 31331035 PMCID: PMC6669680 DOI: 10.3390/v11070663] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022] Open
|
36
|
Zhou H, Chen Y, Zhang S, Niu P, Qin K, Jia W, Huang B, Zhang S, Lan J, Zhang L, Tan W, Wang X. Structural definition of a neutralization epitope on the N-terminal domain of MERS-CoV spike glycoprotein. Nat Commun 2019; 10:3068. [PMID: 31296843 PMCID: PMC6624210 DOI: 10.1038/s41467-019-10897-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/05/2019] [Indexed: 02/05/2023] Open
Abstract
Most neutralizing antibodies against Middle East respiratory syndrome coronavirus (MERS-CoV) target the receptor-binding domain (RBD) of the spike glycoprotein and block its binding to the cellular receptor dipeptidyl peptidase 4 (DPP4). The epitopes and mechanisms of mAbs targeting non-RBD regions have not been well characterized yet. Here we report the monoclonal antibody 7D10 that binds to the N-terminal domain (NTD) of the spike glycoprotein and inhibits the cell entry of MERS-CoV with high potency. Structure determination and mutagenesis experiments reveal the epitope and critical residues on the NTD for 7D10 binding and neutralization. Further experiments indicate that the neutralization by 7D10 is not solely dependent on the inhibition of DPP4 binding, but also acts after viral cell attachment, inhibiting the pre-fusion to post-fusion conformational change of the spike. These properties give 7D10 a wide neutralization breadth and help explain its synergistic effects with several RBD-targeting antibodies. Antibodies that target the N-terminal domain (NTD) of the MERS-CoV spike remain poorly characterized. Here, Zhou et al. report the structural and functional analysis of the NTD-targeting mAb 7D10 and show that it synergizes with antibodies targeting the receptor-binding domain against different MERS-CoV strains.
Collapse
Affiliation(s)
- Haixia Zhou
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Yingzhu Chen
- Key Laboratory of Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, China CDC, 102206, Beijing, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Clinical Laboratory, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Shuyuan Zhang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Peihua Niu
- Key Laboratory of Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, China CDC, 102206, Beijing, China
| | - Kun Qin
- Key Laboratory of Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, China CDC, 102206, Beijing, China
| | - Wenxu Jia
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Baoying Huang
- Key Laboratory of Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, China CDC, 102206, Beijing, China
| | - Senyan Zhang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Jun Lan
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Linqi Zhang
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Wenjie Tan
- Key Laboratory of Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, China CDC, 102206, Beijing, China.
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, 100084, Beijing, China. .,Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, 610065, Chengdu, China.
| |
Collapse
|
37
|
Acute Respiratory Infection in Human Dipeptidyl Peptidase 4-Transgenic Mice Infected with Middle East Respiratory Syndrome Coronavirus. J Virol 2019; 93:JVI.01818-18. [PMID: 30626685 PMCID: PMC6401458 DOI: 10.1128/jvi.01818-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/28/2018] [Indexed: 12/21/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) infections are endemic in the Middle East and a threat to public health worldwide. Rodents are not susceptible to the virus because they do not express functional receptors; therefore, we generated a new animal model of MERS-CoV infection based on transgenic mice expressing human DPP4 (hDPP4). The pattern of hDPP4 expression in this model was similar to that in human tissues (except lymphoid tissue). In addition, MERS-CoV was limited to the respiratory tract. Here, we focused on host factors involved in immunopathology in MERS-CoV infection and clarified differences in antiviral immune responses between young and adult transgenic mice. This new small-animal model could contribute to more in-depth study of the pathology of MERS-CoV infection and aid development of suitable treatments. Middle East respiratory syndrome coronavirus (MERS-CoV) infection can manifest as a mild illness, acute respiratory distress, organ failure, or death. Several animal models have been established to study disease pathogenesis and to develop vaccines and therapeutic agents. Here, we developed transgenic (Tg) mice on a C57BL/6 background; these mice expressed human CD26/dipeptidyl peptidase 4 (hDPP4), a functional receptor for MERS-CoV, under the control of an endogenous hDPP4 promoter. We then characterized this mouse model of MERS-CoV. The expression profile of hDPP4 in these mice was almost equivalent to that in human tissues, including kidney and lung; however, hDPP4 was overexpressed in murine CD3-positive cells within peripheral blood and lymphoid tissues. Intranasal inoculation of young and adult Tg mice with MERS-CoV led to infection of the lower respiratory tract and pathological evidence of acute multifocal interstitial pneumonia within 7 days, with only transient loss of body weight. However, the immunopathology in young and adult Tg mice was different. On day 5 or 7 postinoculation, lungs of adult Tg mice contained higher levels of proinflammatory cytokines and chemokines associated with migration of macrophages. These results suggest that the immunopathology of MERS-CoV infection in the Tg mouse is age dependent. The mouse model described here will increase our understanding of disease pathogenesis and host mediators that protect against MERS-CoV infection. IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) infections are endemic in the Middle East and a threat to public health worldwide. Rodents are not susceptible to the virus because they do not express functional receptors; therefore, we generated a new animal model of MERS-CoV infection based on transgenic mice expressing human DPP4 (hDPP4). The pattern of hDPP4 expression in this model was similar to that in human tissues (except lymphoid tissue). In addition, MERS-CoV was limited to the respiratory tract. Here, we focused on host factors involved in immunopathology in MERS-CoV infection and clarified differences in antiviral immune responses between young and adult transgenic mice. This new small-animal model could contribute to more in-depth study of the pathology of MERS-CoV infection and aid development of suitable treatments.
Collapse
|