1
|
Camp OG, Moussa DN, Hsu R, Awonuga AO, Abu-Soud HM. The interplay between oxidative stress, zinc, and metabolic dysfunction in polycystic ovarian syndrome. Mol Cell Biochem 2024:10.1007/s11010-024-05113-x. [PMID: 39266804 DOI: 10.1007/s11010-024-05113-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024]
Abstract
Polycystic ovarian syndrome (PCOS) is a functional endocrine disorder characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovarian morphology that has been associated with chronic disease and comorbidities including adverse metabolic and cardiac disorders. This review aims to evaluate the role of oxidative stress and zinc in the metabolic dysfunction observed in PCOS, with a focus on insulin resistance. Recent studies indicate that oxidative stress markers are elevated in PCOS and correlate with hyperandrogenemia, obesity, and insulin resistance. Zinc, an essential trace element, is crucial for metabolic processes, particularly in the pancreas for beta-cell function and glucagon secretion. Insufficient zinc levels have been linked to diabetes, obesity, and lipid metabolism disorders. This review aims to highlight the interplay between oxidative stress, zinc, and metabolic dysfunction in PCOS, suggesting that zinc supplementation could mitigate some metabolic and endocrine manifestations of PCOS.
Collapse
Affiliation(s)
- Olivia G Camp
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Daniel N Moussa
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Richard Hsu
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Awoniyi O Awonuga
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Husam M Abu-Soud
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
2
|
Martinez-Morata I, Schilling K, Glabonjat RA, Domingo-Relloso A, Mayer M, McGraw K, Fernandez MG, Sanchez T, Nigra AE, Kaufman J, Vaidya D, Jones MR, Bancks MP, Barr R, Shimbo D, Post WS, Valeri L, Shea S, Navas-Acien A. Association of Urinary Metals With Cardiovascular Disease Incidence and All-Cause Mortality in the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 2024; 150:758-769. [PMID: 39087344 PMCID: PMC11371385 DOI: 10.1161/circulationaha.124.069414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Exposure to metals has been associated with cardiovascular disease (CVD) end points and mortality, yet prospective evidence is limited beyond arsenic, cadmium, and lead. In this study, we assessed the prospective association of urinary metals with incident CVD and all-cause mortality in a racially diverse population of US adults from MESA (the Multi-Ethnic Study of Atherosclerosis). METHODS We included 6599 participants (mean [SD] age, 62.1 [10.2] years; 53% female) with urinary metals available at baseline (2000 to 2001) and followed through December 2019. We used Cox proportional hazards models to estimate the adjusted hazard ratio and 95% CI of CVD and all-cause mortality by baseline urinary levels of cadmium, tungsten, and uranium (nonessential metals), and cobalt, copper, and zinc (essential metals). The joint association of the 6 metals as a mixture and the corresponding 10-year survival probability was calculated using Cox Elastic-Net. RESULTS During follow-up, 1162 participants developed CVD, and 1844 participants died. In models adjusted by behavioral and clinical indicators, the hazard ratios (95% CI) for incident CVD and all-cause mortality comparing the highest with the lowest quartile were, respectively: 1.25 (1.03, 1.53) and 1.68 (1.43, 1.96) for cadmium; 1.20 (1.01, 1.42) and 1.16 (1.01, 1.33) for tungsten; 1.32 (1.08, 1.62) and 1.32 (1.12, 1.56) for uranium; 1.24 (1.03, 1.48) and 1.37 (1.19, 1.58) for cobalt; 1.42 (1.18, 1.70) and 1.50 (1.29, 1.74) for copper; and 1.21 (1.01, 1.45) and 1.38 (1.20, 1.59) for zinc. A positive linear dose-response was identified for cadmium and copper with both end points. The adjusted hazard ratios (95% CI) for an interquartile range (IQR) increase in the mixture of these 6 urinary metals and the corresponding 10-year survival probability difference (95% CI) were 1.29 (1.11, 1.56) and -1.1% (-2.0, -0.05) for incident CVD and 1.66 (1.47, 1.91) and -2.0% (-2.6, -1.5) for all-cause mortality. CONCLUSIONS This epidemiological study in US adults indicates that urinary metal levels are associated with increased CVD risk and mortality. These findings can inform the development of novel preventive strategies to improve cardiovascular health.
Collapse
Affiliation(s)
- Irene Martinez-Morata
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY
| | - Kathrin Schilling
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY
| | - Ronald A. Glabonjat
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY
| | - Arce Domingo-Relloso
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY
| | - Melanie Mayer
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY
| | - Katlyn McGraw
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY
| | - Marta Galvez Fernandez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY
| | - Tiffany Sanchez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY
| | - Anne E. Nigra
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY
| | - Joel Kaufman
- Department of Epidemiology, University of Washington, Seattle, WA
| | | | - Miranda R. Jones
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Michael P. Bancks
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC
| | - R.Graham Barr
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Daichi Shimbo
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Wendy S. Post
- Department of Medicine, Johns Hopkins University, Baltimore, MD
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Linda Valeri
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY
| | - Steven Shea
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY
| |
Collapse
|
3
|
Ahmad R, Shaju R, Atfi A, Razzaque MS. Zinc and Diabetes: A Connection between Micronutrient and Metabolism. Cells 2024; 13:1359. [PMID: 39195249 DOI: 10.3390/cells13161359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Diabetes mellitus is a global health problem and a major contributor to mortality and morbidity. The management of this condition typically involves using oral antidiabetic medication, insulin, and appropriate dietary modifications, with a focus on macronutrient intake. However, several human studies have indicated that a deficiency in micronutrients, such as zinc, can be associated with insulin resistance as well as greater glucose intolerance. Zinc serves as a chemical messenger, acts as a cofactor to increase enzyme activity, and is involved in insulin formation, release, and storage. These diverse functions make zinc an important trace element for the regulation of blood glucose levels. Adequate zinc levels have also been shown to reduce the risk of developing diabetic complications. This review article explains the role of zinc in glucose metabolism and the effects of its inadequacy on the development, progression, and complications of diabetes mellitus. Furthermore, it describes the impact of zinc supplementation on preventing diabetes mellitus. The available information suggests that zinc has beneficial effects on the management of diabetic patients. Although additional large-scale randomized clinical trials are needed to establish zinc's clinical utility further, efforts should be made to increase awareness of its potential benefits on human health and disease.
Collapse
Affiliation(s)
- Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka 1230, Bangladesh
| | - Ronald Shaju
- Department of Medical Education, School of Medicine, University of Texas Rio Grande Valley (UTRGV), Edinburg, TX 78541, USA
| | - Azeddine Atfi
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mohammed S Razzaque
- Department of Medical Education, School of Medicine, University of Texas Rio Grande Valley (UTRGV), Edinburg, TX 78541, USA
| |
Collapse
|
4
|
Nazari M, Nikbaf-Shandiz M, Pashayee-Khamene F, Bagheri R, Goudarzi K, Hosseinnia NV, Dolatshahi S, Omran HS, Amirani N, Ashtary-Larky D, Asbaghi O, Ghanavati M. Zinc Supplementation in Individuals with Prediabetes and type 2 Diabetes: a GRADE-Assessed Systematic Review and Dose-Response Meta-analysis. Biol Trace Elem Res 2024; 202:2966-2990. [PMID: 37870684 DOI: 10.1007/s12011-023-03895-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/28/2023] [Indexed: 10/24/2023]
Abstract
Zinc supplementation has therapeutic effects on cardiovascular disease (CVD) risk factors, including dyslipidemia, hyperglycemia, and inflammation as the main contributors to CVD pathogenesis. Since CVD is a major cause of mortality among people with type 2 diabetes mellitus (T2DM), this study aimed to overview the potential effects of zinc supplementation on CVD risk factors in T2DM patients. To determine appropriate randomized clinical trials (RCTs) investigating the effects of zinc supplementation on CVD risk factors, electronic sources including PubMed, Web of Science, and Scopus were systematically searched until January 2023. The heterogeneity of trials was checked using the I2 statistic. According to the heterogeneity tests, random-effects models were estimated, and pooled data were defined as the weighted mean difference (WMD) with a 95% confidence interval (CI). Of the 4004 initial records, 23 studies that met inclusion criteria were analyzed in this meta-analysis. The pooled findings indicated the significant lowering effects of zinc supplementation on triglycerides (TG), total cholesterol (TC), fasting blood glucose (FBG), hemoglobin A1C (HbA1C), and C-reactive protein (CRP), while high-density cholesterol (HDL) concentrations showed an elevation after zinc supplementation. In addition to statistical significance, the effect of zinc supplementation on most of the variables was clinically significant; however, the quality of evidence in the included studies is regarded as low or very low for most variables. Our study demonstrated that zinc supplementation has beneficial effects on glycemic control markers, lipid profile, and CRP levels as a classic marker of inflammation in T2DM. Due to the high degree of heterogeneity between studies and the low rate of quality in them, further well-designed studies are necessitated to strengthen our findings.
Collapse
Affiliation(s)
- Matin Nazari
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| | - Kian Goudarzi
- Faculty of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Navid Vahid Hosseinnia
- Sport Management Department, Human Science Faculty, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sina Dolatshahi
- Faculty of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hossein Salehi Omran
- Faculty of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Niusha Amirani
- Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Matin Ghanavati
- National Nutrition and Food Technology Research Institute (Faculty of Nutrition Sciences and Food Technology), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Rech L, Zahradka P, Taylor CG. Marginal Zinc Deficiency Promotes Pancreatic Islet Enlargement While Zinc Supplementation Improves the Pancreatic Insulin Response in Zucker Diabetic Fatty Rats. Nutrients 2024; 16:1819. [PMID: 38931174 PMCID: PMC11206688 DOI: 10.3390/nu16121819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Zinc deficiency has been associated with the worsening of diabetes while zinc supplementation has been proposed to ameliorate diabetes. This study examined the effects of marginal zinc deficiency (MZD) and zinc supplementation (ZS) on obesity, glycemic control, pancreatic islets, hepatic steatosis and renal function of Zucker diabetic fatty (ZDF) rats. Male ZDF rats were fed an MZD, zinc control (ZC) or ZS diet (4, 30 and 300 mg Zn/kg diet, respectively), and lean Zucker rats were fed a ZC diet for 8 weeks. MZD and ZS did not alter body weight or whole-body composition in ZDF rats. MZD ZDF rats had reduced zinc concentrations in the femur and pancreas, a greater number of enlarged pancreatic islets and a diminished response to an oral glucose load based on a 1.8-fold greater incremental area-under-the-curve (AUC) for glucose compared to ZC ZDF. ZS ZDF rats had elevated serum, femur and pancreatic zinc concentrations, unchanged pancreatic parameters and a 50% reduction in the AUC for insulin compared to ZC ZDF rats, suggesting greater insulin sensitivity. Dietary zinc intake did not alter hepatic steatosis, creatinine clearance, or levels of proteins that contribute to insulin signaling, inflammation or zinc transport in epididymal fat. Potential adverse effects of ZS were suggested by reduced hepatic copper concentrations and elevated serum urea compared to ZC ZDF rats. In summary, ZS improved the pancreatic insulin response but not the glucose handling. In contrast, reduced zinc status in ZDF rats led to impaired glucose tolerance and a compensatory increase in the number and size of pancreatic islets which could lead to β-cell exhaustion.
Collapse
Affiliation(s)
- Leslie Rech
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada (P.Z.)
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Peter Zahradka
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada (P.Z.)
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Carla G. Taylor
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada (P.Z.)
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
6
|
Schilling K, Chen H, Glabonjat RA, Debernardi S, Blyuss O, Navas-Acien A, Halliday AN, Crnogorac-Jurcevic T. Analysis of urinary potassium isotopes and association with pancreatic health: healthy, diabetic and cancerous states. Front Endocrinol (Lausanne) 2024; 15:1332895. [PMID: 38694937 PMCID: PMC11062322 DOI: 10.3389/fendo.2024.1332895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/01/2024] [Indexed: 05/04/2024] Open
Abstract
Background More than 700 million people worldwide suffer from diseases of the pancreas, such as diabetes, pancreatitis and pancreatic cancer. Often dysregulation of potassium (K+) channels, co-transporters and pumps can promote development and progression of many types of these diseases. The role of K+ transport system in pancreatic cell homeostasis and disease development remains largely unexplored. Potassium isotope analysis (δ41K), however, might have the potential to detect minute changes in metabolic processes relevant for pancreatic diseases. Methods We assessed urinary K isotope composition in a case-control study by measuring K concentrations and δ41K in spot urines collected from patients diagnosed with pancreatic cancer (n=18), other pancreas-related diseases (n=14) and compared those data to healthy controls (n=16). Results Our results show that urinary K+ levels for patients with diseased pancreas (benign and pancreatic cancer) are significantly lower than the healthy controls. For δ41K, the values tend to be higher for individuals with pancreatic cancer (mean δ41K = -0.58 ± 0.33‰) than for healthy individuals (mean δ41K = -0.78 ± 0.19‰) but the difference is not significant (p=0.08). For diabetics, urinary K+ levels are significantly lower (p=0.03) and δ41K is significantly higher (p=0.009) than for the healthy controls. These results suggest that urinary K+ levels and K isotopes can help identify K disturbances related to diabetes, an associated factors of all-cause mortality for diabetics. Conclusion Although the K isotope results should be considered exploratory and hypothesis-generating and future studies should focus on larger sample size and δ41K analysis of other K-disrupting diseases (e.g., chronic kidney disease), our data hold great promise for K isotopes as disease marker.
Collapse
Affiliation(s)
- Kathrin Schilling
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
- Lamont‐Doherty Earth Observatory, Columbia University, Palisades, NY, United States
| | - Heng Chen
- Lamont‐Doherty Earth Observatory, Columbia University, Palisades, NY, United States
| | - Ronald A. Glabonjat
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Silvana Debernardi
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Oleg Blyuss
- Wolfson’s Institute for Cancer Prevention, Queen Mary University of London, London, United Kingdom
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Alex N. Halliday
- Lamont‐Doherty Earth Observatory, Columbia University, Palisades, NY, United States
| | - Tatjana Crnogorac-Jurcevic
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
7
|
El-Megharbel SM, Qahl SH, Albogami B, Hamza RZ. Chemical and spectroscopic characterization of (Artemisinin/Querctin/ Zinc) novel mixed ligand complex with assessment of its potent high antiviral activity against SARS-CoV-2 and antioxidant capacity against toxicity induced by acrylamide in male rats. PeerJ 2024; 12:e15638. [PMID: 38188145 PMCID: PMC10768679 DOI: 10.7717/peerj.15638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 11/03/2023] [Indexed: 01/09/2024] Open
Abstract
A novel Artemisinin/Quercetin/Zinc (Art/Q/Zn) mixed ligand complex was synthesized, tested for its antiviral activity against coronavirus (SARS-CoV-2), and investigated for its effect against toxicity and oxidative stress induced by acrylamide (Acy), which develops upon cooking starchy foods at high temperatures. The synthesized complex was chemically characterized by performing elemental analysis, conductance measurements, FT-IR, UV, magnetic measurements, and XRD. The morphological surface of the complex Art/Q/Zn was investigated using scanning and transmission electron microscopy (SEM and TEM) and energy dispersive X-ray analysis (XRD). The in vitro antiviral activity of the complex Art/Q/Zn against SARS-CoV-2 and its in vivo activity against Acy-induced toxicity in hepatic and pulmonary tissues were analyzed. An experimental model was used to evaluate the beneficial effects of the novel Art/Q/Zn novel complex on lung and liver toxicities of Acy. Forty male rats were randomly divided into four groups: control, Acy (500 mg/Kg), Art/Q/Zn (30 mg/kg), and a combination of Acy and Art/Q/Zn. The complex was orally administered for 30 days. Hepatic function and inflammation marker (CRP), tumor necrosis factor, interleukin-6 (IL-6), antioxidant enzyme (CAT, SOD, and GPx), marker of oxidative stress (MDA), and blood pressure levels were investigated. Histological and ultrastructure alterations and caspase-3 variations (immunological marker) were also investigated. FT-IR spectra revealed that Zn (II) is able to chelate through C=O and C-OH (Ring II) which are the carbonyl oxygen atoms of the quercetin ligand and carbonyl oxygen atom C=O of the Art ligand, forming Art/Q/Zn complex with the chemical formula [Zn(Q)(Art)(Cl)(H2O)2]⋅3H2O. The novel complex exhibited a potent anti-SARS-CoV-2 activity even at a low concentration (IC50 = 10.14 µg/ml) and was not cytotoxic to the cellular host (CC50 = 208.5 µg/ml). Art/Q/Zn may inhibit the viral replication and binding to the angiotensin-converting enzyme-2 (ACE2) receptor and the main protease inhibitor (MPro), thereby inhibiting the activity of SARS-CoV-2 and this proved by the molecular dynamics simulation. It alleviated Acy hepatic and pulmonary toxicity by improving all biochemical markers. Therefore, it can be concluded that the novel formula Art/Q/Zn complex is an effective antioxidant agent against the oxidative stress series, and it has high inhibitory effect against SARS-CoV-2.
Collapse
Affiliation(s)
- Samy M. El-Megharbel
- Department of Chemistry, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Safa H. Qahl
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Bander Albogami
- Biology Department, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Reham Z. Hamza
- Biology Department, College of Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|
8
|
Knez M, Stangoulis JCR. Dietary Zn deficiency, the current situation and potential solutions. Nutr Res Rev 2023; 36:199-215. [PMID: 37062532 DOI: 10.1017/s0954422421000342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Zinc (Zn) deficiency is a worldwide problem, and this review presents an overview of the magnitude of Zn deficiency with a particular emphasis on present global challenges, current recommendations for Zn intake, and factors that affect dietary requirements. The challenges of monitoring Zn status are clarified together with the discussion of relevant Zn bioaccessibility and bioavailability issues. Modern lifestyle factors that may exacerbate Zn deficiency and new strategies of reducing its effects are presented. Biofortification, as a potentially useful strategy for improving Zn status in sensitive populations, is discussed. The review proposes potential actions that could deliver promising results both in terms of monitoring dietary and physiological Zn status as well as in alleviating dietary Zn deficiency in affected populations.
Collapse
Affiliation(s)
- Marija Knez
- College of Science and Engineering, Flinders University, GPO Box 2100, AdelaideSA5001, Australia
- Center of Research Excellence in Nutrition and Metabolism, University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, 11000Belgrade, Serbia
| | - James C R Stangoulis
- College of Science and Engineering, Flinders University, GPO Box 2100, AdelaideSA5001, Australia
| |
Collapse
|
9
|
Dziedzic EA, Gąsior JS, Tuzimek A, Czestkowska E, Beck J, Jaczewska B, Zgnilec E, Osiecki A, Kwaśny M, Dąbrowski MJ, Kochman W. Relationship between Copper, Zinc, and Copper-to-Zinc Ratio in Hair and Severity of Coronary Artery Disease according to the SYNTAX Score. BIOLOGY 2023; 12:1407. [PMID: 37998006 PMCID: PMC10669101 DOI: 10.3390/biology12111407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
Coronary artery disease (CAD) continues to be a foremost contributor to global mortality, and the quest for modifiable risk factors could improve prophylactic strategies. Recent studies suggest a significant role of zinc (Zn) and copper (Cu) deficiency in atheromatous plaque formation. Furthermore, hair was previously described as a valuable source of information on elemental burden during the 6-8 week period before sampling. The aim of this study was to investigate the possibility of correlation between the extent of CAD evaluated with the SYNergy Between PCI With TAXUS and the Cardiac Surgery (SYNTAX) score with Cu and Zn content in hair samples, as well as with the Cu/Zn ratio in a cohort of 130 patients. Our findings describe a statistically significant inverse correlation between Cu content and the Cu/Zn ratio in hair samples and the extent of CAD. In contrast, no significant correlation was found between Zn content and the extent of CAD. Considering the scarcity of existing data on the subject, the analysis of hair samples could yield a novel insight into elemental deficiencies and their potential influence on CAD extent.
Collapse
Affiliation(s)
- Ewelina A. Dziedzic
- Cardiovascular Clinic, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Jakub S. Gąsior
- Department of Pediatric Cardiology and General Pediatrics, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Agnieszka Tuzimek
- Cardiovascular Clinic, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Ewa Czestkowska
- Cardiovascular Clinic, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Joanna Beck
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 00-901 Warsaw, Poland
- Medical Faculty, Lazarski University, 02-662 Warsaw, Poland
| | | | | | - Andrzej Osiecki
- Cardiovascular Clinic, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Mirosław Kwaśny
- Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland
| | | | - Wacław Kochman
- Cardiovascular Clinic, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| |
Collapse
|
10
|
McGraw KE, Schilling K, Glabonjat RA, Galvez-Fernandez M, Domingo-Relloso A, Martinez-Morata I, Jones MR, Post WS, Kaufman J, Tellez-Plaza M, Valeri L, Brown ER, Kronmal RA, Barr GR, Shea S, Navas-Acien A, Sanchez TR. Urinary Metal Levels and Coronary Artery Calcification: Longitudinal Evidence in the Multi-Ethnic Study of Atherosclerosis (MESA). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.31.23297878. [PMID: 37961623 PMCID: PMC10635251 DOI: 10.1101/2023.10.31.23297878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Objective Growing evidence indicates that exposure to metals are risk factors for cardiovascular disease (CVD). We hypothesized that higher urinary levels of metals with prior evidence of an association with CVD, including non-essential (cadmium , tungsten, and uranium) and essential (cobalt, copper, and zinc) metals are associated with baseline and rate of change of coronary artery calcium (CAC) progression, a subclinical marker of atherosclerotic CVD. Methods We analyzed data from 6,418 participants in the Multi-Ethnic Study of Atherosclerosis (MESA) with spot urinary metal levels at baseline (2000-2002) and 1-4 repeated measures of spatially weighted coronary calcium score (SWCS) over a ten-year period. SWCS is a unitless measure of CAC highly correlated to the Agatston score but with numerical values assigned to individuals with Agatston score=0. We used linear mixed effect models to assess the association of baseline urinary metal levels with baseline SWCS, annual change in SWCS, and SWCS over ten years of follow-up. Urinary metals (adjusted to μg/g creatinine) and SWCS were log transformed. Models were progressively adjusted for baseline sociodemographic factors, estimated glomerular filtration rate, lifestyle factors, and clinical factors. Results At baseline, the median and interquartile range (25th, 75th) of SWCS was 6.3 (0.7, 58.2). For urinary cadmium, the fully adjusted geometric mean ratio (GMR) (95%Cl) of SWCS comparing the highest to the lowest quartile was 1.51 (1.32, 1.74) at baseline and 1.75 (1.47, 2.07) at ten years of follow-up. For urinary tungsten, uranium, and cobalt the corresponding GMRs at ten years of follow-up were 1.45 (1.23, 1.71), 1.39 (1.17, 1.64), and 1.47 (1.25, 1.74), respectively. For copper and zinc, the association was attenuated with adjustment for clinical risk factors; GMRs at ten years of follow-up before and after adjustment for clinical risk factors were 1.55 (1.30, 1.84) and 1.33 (1.12, 1.58), respectively, for copper and 1.85 (1.56, 2.19) and 1.57 (1.33, 1.85) for zinc. Conclusion Higher levels of cadmium, tungsten, uranium, cobalt, copper, and zinc, as measured in urine, were associated with subclinical CVD at baseline and at follow-up. These findings support the hypothesis that metals are pro-atherogenic factors.
Collapse
Affiliation(s)
- Katlyn E. McGraw
- Columbia University Mailman School of Public Health, Department of Environmental Health Science, 722 W 168th St, New York, NY 10032
| | - Kathrin Schilling
- Columbia University Mailman School of Public Health, Department of Environmental Health Science, 722 W 168th St, New York, NY 10032
| | - Ronald A. Glabonjat
- Columbia University Mailman School of Public Health, Department of Environmental Health Science, 722 W 168th St, New York, NY 10032
| | - Marta Galvez-Fernandez
- Columbia University Mailman School of Public Health, Department of Environmental Health Science, 722 W 168th St, New York, NY 10032
| | - Arce Domingo-Relloso
- Columbia University Mailman School of Public Health, Department of Biostatistics, 722 W 168th St, New York, NY 10032
| | - Irene Martinez-Morata
- Columbia University Mailman School of Public Health, Department of Environmental Health Science, 722 W 168th St, New York, NY 10032
| | - Miranda R. Jones
- Johns Hopkins University School of Medicine, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore MD 21057
- Johns Hopkins University Bloomberg School of Public Health, Department of Epidemiology, 615 N. Wolfe Street. Baltimore MD 212057
| | - Wendy S. Post
- Johns Hopkins University School of Medicine, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore MD 21057
- Johns Hopkins University Bloomberg School of Public Health, Department of Epidemiology, 615 N. Wolfe Street. Baltimore MD 212057
| | - Joel Kaufman
- University of Washington, Department of Medicine
| | - Maria Tellez-Plaza
- National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain, Department of Chronic Diseases Epidemiology
| | - Linda Valeri
- Columbia University Mailman School of Public Health, Department of Biostatistics, 722 W 168th St, New York, NY 10032
| | - Elizabeth R. Brown
- Fred Hutchinson Cancer Center, Vaccine and Infectious Disease Division
- University of Washington, Department of Biostatistics
| | | | - Graham R. Barr
- Columbia University Irving Medical Center, Departments of Medicine and Epidemiology
| | - Steven Shea
- Columbia University Irving Medical Center, Departments of Medicine and Epidemiology
| | - Ana Navas-Acien
- Columbia University Mailman School of Public Health, Department of Environmental Health Science, 722 W 168th St, New York, NY 10032
| | - Tiffany R. Sanchez
- Columbia University Mailman School of Public Health, Department of Environmental Health Science, 722 W 168th St, New York, NY 10032
| |
Collapse
|
11
|
Safarzad M, Jazi MS, Kiaei M, Asadi J. Lower serum zinc level is associated with higher fasting insulin in type 2 diabetes mellitus (T2DM) and relates with disturbed glucagon suppression response in male patients. Prim Care Diabetes 2023; 17:493-498. [PMID: 37391316 DOI: 10.1016/j.pcd.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 07/02/2023]
Abstract
AIMS Zinc ion can play critical role in glycemic control in diabetes mellitus (DM), contributing to both insulin synthesis and secretion. In this study, we aimed to investigate the level of zinc in diabetic patients and its association with glycemic parameters, insulin, and glucagon level. METHODS 112 individuals (59 cases of type 2DM and 53 non-diabetic controls) were included in this study. Biochemical parameters (FBG, 2hpp, HbA1C), and zinc level in the serum were measured using colorimetric assays. Insulin and glucagon were measured by ELISA method. HOMA-IR, HOMA-B, reciprocal HOMA-B, and Quicki indices were calculated using appropriate formula. For further analysis, patients were divided into two groups: high (>135.5 μg/dl) and low (<135.5 μg/dl) zinc. Glucagon suppression was considered yes if 2hpp glucagon < fasting glucagon. RESULTS Our results showed that serum Zn level in type 2 DM patients was lower than control (P value=0.02). Patients with lower Zn had higher fasting insulin (P value=0.006) and higher β-cell activity index (HOMA-B, p value=0.02), however fasting glucagon and parameters of hyperglycemia (FBG, 2hpp, Hba1C) were not different. Moreover, insulin sensitivity and resistance indices (Quicki, HOMA-IR,1/HOMA-IR) showed non-significantly improved status in high Zn group. We found non-significant association between glucagon suppression and Zn level in both genders (N = 39, p value = 0.07), however, it was significant in males (N = 14, p value = 0.02). CONCLUSION Altogether, our results indicated reduced serum Zn in type 2DM can exacerbate hyperinsulinemia and glucagon suppression (only significant in the male), highlighting its importance in type 2DM control.
Collapse
Affiliation(s)
- Mahdieh Safarzad
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Marie Saghaeian Jazi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Mohammadreza Kiaei
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Jahanbakhsh Asadi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
12
|
Yang HY, Hung KC, Chuang MH, Chang R, Chen RY, Wang FW, Wu JY, Chen JY. Effect of zinc supplementation on blood sugar control in the overweight and obese population: A systematic review and meta-analysis of randomized controlled trials. Obes Res Clin Pract 2023; 17:308-317. [PMID: 37385909 DOI: 10.1016/j.orcp.2023.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/31/2023] [Accepted: 06/11/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Although overweight and obese people have a higher risk of type 2 diabetes incidence than normal-weight individuals, the efficacy of zinc supplementation in blood sugar control in overweight and obese people remained unknown. This meta-analysis attempted to address this issue. METHODS Databases including PubMed, Embase, and the Cochrane Library were searched from inception until May 2022 to identify randomized controlled trials (RCTs) investigating the effects of zinc supplementation among participants who were overweight or obese without language restriction. It is a random-effect meta-analysis that analyzed the impact of zinc supplementation on fasting glucose (FG) (i.e., primary outcome) and other variables including fasting insulin (FI), homeostasis model assessment-insulin resistance index (HOMA-IR), glycated hemoglobin (HbA1c), high-sensitivity C-reactive protein (hs-CRP), and 2-hour postprandial glucose (2 h- PG). RESULTS Analysis of 12 eligible RCTs involving 651 overweight/obese participants demonstrated that zinc supplementation significantly improves FG (weighted mean difference [WMD]: -8.57 mg/dL; 95% confidence interval [CI]: -14.04 to -3.09 mg/dL, p = 0.002), HOMA-IR (WMD: -0.54; 95% CI: -0.78 to -0.30, p < 0.001), HbA1c (WMD: -0.25%; 95% CI: -0.43% to -0.07%, p = 0.006), and 2 h-PG (WMD: -18.42 mg/dL; 95% CI: -25.04 to -11.79 mg/dL, p < 0.001) compared to those in the control group. After conducting subgroup analyses, we found that the primary outcome, FG, showed more significant results in the subgroups with Asia, Zinc supplementation alone, higher dose (≥30 mg) and patients with diabetes. CONCLUSION Our meta-analysis indicated that zinc supplementation benefits blood sugar control in overweight and obese populations, with an especially significant reduction in FG.
Collapse
Affiliation(s)
- Hao-Yu Yang
- Department of Family Medicine, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan.
| | - Kuo-Chuan Hung
- Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan.
| | - Min-Hsiang Chuang
- Department of Internal Medicine, Chi Mei Medical Center, Tainan City, Taiwan.
| | - Renin Chang
- Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan.
| | - Ru-Yih Chen
- Department of Family Medicine, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan.
| | - Fu-Wei Wang
- Department of Family Medicine, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan.
| | - Jheng-Yan Wu
- Department of Nutrition, Chi Mei Medical Center, Tainan City, Taiwan.
| | - Jui-Yi Chen
- Department of Health and Nutrition, Chia Nan University of Pharmacy & Science, Tainan City, Taiwan; Division of Nephrology, Department of Internal Medicine, Chi Mei Medical Center, Tainan City, Taiwan.
| |
Collapse
|
13
|
Lubna S, Ahmad R. Clinical and biochemical understanding of Zinc interaction during liver diseases: A paradigm shift. J Trace Elem Med Biol 2023; 77:127130. [PMID: 36641955 DOI: 10.1016/j.jtemb.2023.127130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/01/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Zinc (Zn) is an essential and the second most abundant trace element after Iron. It can apply antioxidant, anti-inflammatory, and anti-apoptotic activity. It is assumed to be indispensable for cell division, cellular differentiation and cell signalling. Zinc is essential for proper liver function which is also the site of its metabolism. Depleted Zn concentrations have been observed in both acute and chronic hepatic diseases. It is reported that Zn deficiency or abnormal Zn metabolism during majority of liver diseases is attributed to deficient dietary intake of Zn, augmented disposal of Zn in the urine, activation of certain Zn transporters, and expression of hepatic metallothionein. Undoubtedly, Zn is involved in generating many diseases but how and whether it plays role from acute to fulminant stage of all chronic liver diseases remains to be cleared. Here, we will discuss the role of Zn in development of different diseases specifically the involvement of Zn to understand the aetiology and intricate mechanism of dynamic liver diseases.
Collapse
Affiliation(s)
- Shiba Lubna
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202001, India
| | - Riaz Ahmad
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202001, India.
| |
Collapse
|
14
|
Hafez LM, Aboudeya HM, Matar NA, El-Sebeay AS, Nomair AM, El-Hamshary SA, Nomeir HM, Ibrahim FAR. Ameliorative effects of zinc supplementation on cognitive function and hippocampal leptin signaling pathway in obese male and female rats. Sci Rep 2023; 13:5072. [PMID: 36977735 PMCID: PMC10050324 DOI: 10.1038/s41598-023-31781-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Obesity has been associated with cognitive impairments, increasing the probability of developing dementia. Recently, zinc (Zn) supplementation has attracted an increasing attention as a therapeutic agent for cognitive disorders. Here, we investigated the potential effects of low and high doses of Zn supplementation on cognitive biomarkers and leptin signaling pathway in the hippocampus of high fat diet (HFD)-fed rats. We also explored the impact of sex difference on the response to treatment. Our results revealed a significant increase in body weight, glucose, triglycerides (TG), total cholesterol (TC), total lipids and leptin levels in obese rats as compared to controls. HFD feeding also reduced brain-derived neurotrophic factor (BDNF) levels and increased acetylcholinesterase (AChE) activity in the hippocampus of both sexes. The low and high doses of Zn supplementation improved glucose, TG, leptin, BDNF levels and AChE activity in both male and female obese rats compared to untreated ones. Additionally, downregulated expression of leptin receptor (LepR) gene and increased levels of activated signal transducer and activator of transcription 3 (p-STAT3) that observed in hippocampal tissues of obese rats were successfully normalized by both doses of Zn. In this study, the male rats were more vulnerable to HFD-induced weight gain, most of the metabolic alterations and cognition deficits than females, whereas the female obese rats were more responsive to Zn treatment. In conclusion, we suggest that Zn treatment may be effective in ameliorating obesity-related metabolic dysfunction, central leptin resistance and cognitive deficits. In addition, our findings provide evidence that males and females might differ in their response to Zn treatment.
Collapse
Affiliation(s)
- Lamia M Hafez
- Human Nutrition Department, Regional Center for Food and Feed-Agricultural Research Center, Alexandria, Egypt
| | | | - Noura A Matar
- Department of Histochemistry and Cell Biology Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ashraf S El-Sebeay
- Human Nutrition Department, Regional Center for Food and Feed-Agricultural Research Center, Alexandria, Egypt
| | - Azhar Mohamed Nomair
- Department of Chemical Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | | - Hanan Mohamed Nomeir
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Fawziya A R Ibrahim
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, 165, Horreya Avenue, Hadara, Alexandria, Egypt.
| |
Collapse
|
15
|
Rose Lukesh N, Middleton DD, Bachelder EM, Ainslie KM. Particle-Based therapies for antigen specific treatment of type 1 diabetes. Int J Pharm 2023; 631:122500. [PMID: 36529362 PMCID: PMC9841461 DOI: 10.1016/j.ijpharm.2022.122500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022]
Abstract
Type 1 diabetes mellitus (T1D) is the leading metabolic disorder in children worldwide. Over time, incidence rates have continued to rise with 20 million individuals affected globally by the autoimmune disease. The current standard of care is costly and time-consuming requiring daily injections of exogenous insulin. T1D is mediated by autoimmune effector responses targeting autoantigens expressed on pancreatic islet β-cells. One approach to treat T1D is to skew the immune system away from an effector response by taking an antigen-specific approach to heighten a regulatory response through a therapeutic vaccine. An antigen-specific approach has been shown with soluble agents, but the effects have been limited. Micro or nanoparticles have been used to deliver a variety of therapeutic agents including peptides and immunomodulatory therapies to immune cells. Particle-based systems can be used to deliver cargo into the cell and microparticles can passively target phagocytic cells. Further, surface modification and controlled release of encapsulated cargo can enhance delivery over soluble agents. The induction of antigen-specific immune tolerance is imperative for the treatment of autoimmune diseases such as T1D. This review highlights studies that utilize particle-based platforms for the treatment of T1D.
Collapse
Affiliation(s)
- Nicole Rose Lukesh
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Denzel D Middleton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
16
|
Kim YK, Walters JA, Moss ND, Wells KL, Sheridan R, Miranda JG, Benninger RKP, Pyle LL, O'Brien RM, Sussel L, Davidson HW. Zinc transporter 8 haploinsufficiency protects against beta cell dysfunction in type 1 diabetes by increasing mitochondrial respiration. Mol Metab 2022; 66:101632. [PMID: 36347424 PMCID: PMC9672421 DOI: 10.1016/j.molmet.2022.101632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/17/2022] [Accepted: 11/03/2022] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Zinc transporter 8 (ZnT8) is a major humoral target in human type 1 diabetes (T1D). Polymorphic variants of Slc30A8, which encodes ZnT8, are also associated with protection from type 2 diabetes (T2D). The current study examined whether ZnT8 might play a role beyond simply being a target of autoimmunity in the pathophysiology of T1D. METHODS The phenotypes of NOD mice with complete or partial global loss of ZnT8 were determined using a combination of disease incidence, histological, transcriptomic, and metabolic analyses. RESULTS Unexpectedly, while complete loss of ZnT8 accelerated spontaneous T1D, heterozygosity was partially protective. In vivo and in vitro studies of ZnT8 deficient NOD.SCID mice suggested that the accelerated disease was due to more rampant autoimmunity. Conversely, beta cells in heterozygous animals uniquely displayed increased mitochondrial fitness under mild proinflammatory conditions. CONCLUSIONS In pancreatic beta cells and immune cell populations, Zn2+ plays a key role as a regulator of redox signaling and as an independent secondary messenger. Importantly, Zn2+ also plays a major role in maintaining mitochondrial homeostasis. Our results suggest that regulating mitochondrial fitness by altering intra-islet zinc homeostasis may provide a novel mechanism to modulate T1D pathophysiology.
Collapse
Affiliation(s)
- Yong Kyung Kim
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jay A Walters
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nicole D Moss
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristen L Wells
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; RNA Biology Initiative, Biochemistry and Molecular Genetics Department, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ryan Sheridan
- RNA Biology Initiative, Biochemistry and Molecular Genetics Department, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jose G Miranda
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard K P Benninger
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Laura L Pyle
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; Director Child Health Research Biostatistics Core, Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard M O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Howard W Davidson
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Immunology and Microbiology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
17
|
Zinc in Human Health and Infectious Diseases. Biomolecules 2022; 12:biom12121748. [PMID: 36551176 PMCID: PMC9775844 DOI: 10.3390/biom12121748] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
During the last few decades, the micronutrient zinc has proven to be an important metal ion for a well-functioning immune system, and thus also for a suitable immune defense. Nowadays, it is known that the main cause of zinc deficiency is malnutrition. In particular, vulnerable populations, such as the elderly in Western countries and children in developing countries, are often affected. However, sufficient zinc intake and homeostasis is essential for a healthy life, as it is known that zinc deficiency is associated with a multitude of immune disorders such as metabolic and chronic diseases, as well as infectious diseases such as respiratory infections, malaria, HIV, or tuberculosis. Moreover, the modulation of the proinflammatory immune response and oxidative stress is well described. The anti-inflammatory and antioxidant properties of zinc have been known for a long time, but are not comprehensively researched and understood yet. Therefore, this review highlights the current molecular mechanisms underlying the development of a pro-/ and anti-inflammatory immune response as a result of zinc deficiency and zinc supplementation. Additionally, we emphasize the potential of zinc as a preventive and therapeutic agent, alone or in combination with other strategies, that could ameliorate infectious diseases.
Collapse
|
18
|
Antioxidant, Anti-Cancer Activity and Phytochemicals Profiling of Kigelia pinnata Fruits. SEPARATIONS 2022. [DOI: 10.3390/separations9110379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Over the past few years, research studies on the therapeutic benefits of medicinal plants with potent antioxidant activity and few side effects have grown significantly. This has sparked interest in determining whether naturally occurring antioxidants could take the place of synthetic antioxidants, which are currently being constricted because of their toxic and carcinogenic properties. The identification and quantification of phytochemicals in the methanolic extract of Kigelia pinnata fruits was measured using gas chromatography–mass spectrometry (GC-MS) and ultra-high-performance liquid chromatography–mass spectrometry (UPLC-MS/MS) techniques. Additionally, the methanolic extract of fruits was used to determine antioxidant activity. Free radical-scavenging (DPPH) and ferric ion-reducing antioxidant power were measured using spectrophotometry, and total antioxidant capacity (TAC) was compared with two common antioxidants, vitamin C and α-tocopherol. Moreover, mature fruits have high DDPH, ferric ion-reducing antioxidant power and total antioxidant capacity. Furthermore, mature fruits have high levels of total phenolic, flavonoid, and tannin content; these compounds are thought to be the sources of the antioxidant activity. The major constituents of the methanolic extracts from the mature fruits of K. pinnata were found to be larixinic acid, 3,5-Dihydroxy-6-methyl-2,3-dihydro-4H-pyran-4-one (DMDP), and 5-Hydrxoymethylfurfural. We performed the elemental analysis of the whole fruit. Huh-7 (liver cancer), PANC-1 (pancreatic cancer), Colo-205 (colorectal cancer), HT-29 (colorectal cancer), SNU-16 (gastric carcinoma), SW620 (colorectal adenocarcinoma) and HCT116 (colon carcinoma) were tested in vitro for anticancer activity. Both methanolic and ethyl acetate extracts of mature fruits had a positive effect on all cancer cell lines as compared to the doxorubicin drug. In addition, the methanolic extracts of mature fruits showed more potent cytotoxic effects than the ethyl acetate extracts. Moreover, the most pronounced cytotoxic effects of the methanolic extract were detected in SW620 (colorectal adenocarcinoma), with an IC50 value of 6.79 μg/mL, SNU-16 (gastric carcinoma), with and IC50 value of 8.69 μg/ ml, and in PANC-1 (pancreatic cancer) with an IC50 value of 10.34 μg/mL. Moreover, the results show that the water, ethyl acetate and methanolic extracts of mature fruits have antioxidant capacity, ferric ion-reducing antioxidant power, DPPH scavenging activity and also anticancer activity. Therefore, the present study suggests that the phytochemical profiles of mature fruits of K. pinnata may be used as potential natural antioxidants and anti-cancer cell lines.
Collapse
|
19
|
Anton IC, Mititelu-Tartau L, Popa EG, Poroch M, Poroch V, Pelin AM, Pavel LL, Drochioi IC, Botnariu GE. Zinc Chloride Enhances the Antioxidant Status, Improving the Functional and Structural Organic Disturbances in Streptozotocin-Induced Diabetes in Rats. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1620. [PMID: 36363577 PMCID: PMC9695737 DOI: 10.3390/medicina58111620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 12/01/2023]
Abstract
Background and Objectives: Diabetes mellitus (DM) is a complex disease affecting the whole metabolic balance of the body and resulting in multiple organ complications: cardiovascular, neuronal, renal, etc. Our study focuses on investigating the effect of zinc chloride (Zn) on certain blood parameters suggestive for assessing the metabolic disturbances, the liver and kidney function, the oxidative stress and the immune defense capacity in experimental-induced DM with streptozotocin (STZ) and cholesterol in rats. Materials and Methods: The animals were assigned to three groups, as follows: Group 1 (Control): buffer citrate solution 0.1 mL/100 g body; Group 2 (STZ): 20 mg/kg body STZ and fat diet (10 g cholesterol/100 g diet); Group 3 (STZ+Zn): 20 mg/kg body STZ + 5 mg/kg body Zn chloride and the same fat diet. DM was induced by administering STZ in a single take daily, for three consecutive days, Zn and citrate buffer were administered orally for a month. The protocol was approved by the Ethics Committee of the University 'Grigore T Popa' Iasi, in agreement with the International Regulations about the handling of laboratory animals. Results: The use of STZ in rats fed with cholesterol was correlated with important weight gain, hyperglycemia, the intensification of the transaminases activity and the increase in serum alkaline phosphatase, cholesterol, triglyceride, urea, creatinine and in malondialdehyde. Conclusions: The treatment with Zn resulted in weight loss and a decrease in blood sugar in diabetic rats. Supplementation with Zn notably reduced oxidative stress, preserved the pancreatic architecture and restored the liver and kidney function and structure in STZ-induced DM in rats.
Collapse
Affiliation(s)
- Irina Claudia Anton
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, Universitatii St. 16, 700115 Iasi, Romania
| | - Liliana Mititelu-Tartau
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, Universitatii St. 16, 700115 Iasi, Romania
| | - Eliza Gratiela Popa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, ‘Grigore T. Popa’ University of Medicine and Pharmacy, Universitatii St. 16, 700115 Iasi, Romania
| | - Mihaela Poroch
- Department of Family Medicine, Preventive Medicine and Interdisciplinarity, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, Universitatii St. 16, 700115 Iasi, Romania
| | - Vladimir Poroch
- 2nd Department of Internal Medicine, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, Universitatii St. 16, 700115 Iasi, Romania
| | - Ana-Maria Pelin
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, ‘Dunărea de Jos’ University, 800010 Galați, Romania
| | - Liliana Lacramioara Pavel
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, ‘Dunărea de Jos’ University, 800010 Galați, Romania
| | - Ilie Cristian Drochioi
- Surgical Department, Faculty of Dental Medicine, University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Gina Eosefina Botnariu
- Department of Diabetes, Nutrition and Metabolic Disease, ‘Grigore T. Popa’ University of Medicine and Pharmacy, Universitatii St. 16, 700115 Iasi, Romania
| |
Collapse
|
20
|
Guo Y, Zhao W, Li N, Dai S, Wu H, Wu Z, Zeng S. Integration analysis of metabolome and transcriptome reveals the effect of exogenous supplementation with mixtures of vitamins ADE, zinc, and selenium on follicular growth and granulosa cells molecular metabolism in donkeys ( Equus asinus). Front Vet Sci 2022; 9:993426. [PMID: 36387403 PMCID: PMC9650297 DOI: 10.3389/fvets.2022.993426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/06/2022] [Indexed: 09/22/2024] Open
Abstract
Vitamins and microelements play essential roles in mammalian ovarian physiology, including follicle development, ovulation, and synthesis and secretion of hormones and growth factors. However, it is nevertheless elusive to what extent exogenous supplementation with mixtures of vitamins ADE, zinc (Zn), and selenium (Se) affects follicular growth and granulosa cells (GCs) molecular function. We herein investigated their effect on follicular growth and GCs physiological function. We showed that follicular growth and ovulation time was accelerated and shortened with the increases of vitamins ADE, Zn, and Se doses by continually monitoring and recording (one estrus cycle of about 21 days) with an ultrasound scanner. Integrated omics analysis showed that there was a sophisticated network relationship, correlation expression, and enrichment pathways of the genes and metabolites highly related to organic acids and their derivatives and lipid-like molecules. Quantitative real-time PCR (qPCR) results showed that vitamin D receptor (VDR), transient receptor potential cation channel subfamily m member 6 (TRPM6), transient receptor potential cation channel subfamily v member 6 (TRPV6), solute carrier family 5 member 1 (SLC5A1), arachidonate 5-lipoxygenase (ALOX5), steroidogenic acute regulatory protein (STAR), prostaglandin-endoperoxide synthase 2 (PTGS2), and insulin like growth factor 1 (IGF-1) had a strong correlation between the transcriptome data. Combined multi-omics analysis revealed that the protein digestion and absorption, ABC transporters, biosynthesis of amino acids, aminoacyl-tRNA biosynthesis, mineral absorption, alanine, aspartate and glutamate metabolism, glycine, serine and threonine metabolism, arginine biosynthesis, and ovarian steroidogenesis were significantly enriched. We focused on the gene-metabolite interactions in ovarian steroidogenesis, founding that insulin receptor (INSR), phospholipase a2 group IVA (PLA2G4A), adenylate cyclase 6 (ADCY6), cytochrome p450 family 1 subfamily b member 1 (CYP1B1), protein kinase camp-activated catalytic subunit beta (PRKACB), cytochrome p450 family 17 subfamily a member 1 (CYP17A1), and phospholipase a2 group IVF (PLA2G4F) were negatively correlated with β-estradiol (E2), progesterone (P4), and testosterone (T) (P < 0.05). while ALOX5 was a positive correlation with E2, P4, and T (P < 0.05); cytochrome p450 family 19 subfamily a member 1 (CYP19A1) was a negative correlation with cholesterol (P < 0.01). In mineral absorption, our findings further demonstrated that there was a positive correlation between solute carrier family 26 member 6 (SLC26A6), SLC5A1, and solute carrier family 6 member 19 (SLC6A19) with Glycine and L-methionine. Solute carrier family 40 member 1 (SLC40A1) was a negative correlation with Glycine and L-methionine (P < 0.01). TRPV6 and ATPase Na+/K+ transporting subunit alpha 1 (ATP1A1) were positively associated with Glycine (P < 0.05); while ATPase Na+/K+ transporting subunit beta 3 (ATP1B3) and cytochrome b reductase 1 (CYBRD1) were negatively related to L-methionine (P < 0.05). These outcomes suggested that the vitamins ADE, Zn, and Se of mixtures play an important role in the synthesis and secretion of steroid hormones and mineral absorption metabolism pathway through effects on the expression of the key genes and metabolites in GCs. Meanwhile, these also are required for physiological function and metabolism of GCs. Collectively, our outcomes shed new light on the underlying mechanisms of their effect on follicular growth and GCs molecular physiological function, helping explore valuable biomarkers.
Collapse
Affiliation(s)
- Yajun Guo
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Weisen Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Nan Li
- Department of Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shizhen Dai
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shenming Zeng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Hu B, Lin ZY, Cai Y, Sun YX, Yang SQ, Guo JL, Zhang S, Sun DL. A cross-sectional study on the effect of dietary zinc intake on the relationship between serum vitamin D3 and HOMA-IR. Front Nutr 2022; 9:945811. [PMID: 36352900 PMCID: PMC9638013 DOI: 10.3389/fnut.2022.945811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction Serum vitamin D3 concentration is associated with the risk of insulin resistance. Zinc has also been reported to be associated with a lower risk of insulin resistance. In addition, zinc is an essential cofactor in the activation of vitamin D3. However, the effect of dietary zinc intake on the relationship between vitamin D3 and insulin resistance risk has not been fully studied. Therefore, we designed this cross-sectional study to assess the impact of changes in zinc intake on the relationship between vitamin D3 and insulin resistance risk. Study design and methods This study analyzed data from the national Health and Nutrition Examination Survey (NHANES) from 2005 to 2018, involving 9,545 participants. Participants were stratified by zinc intake category (low zinc intake <9.58 mg/ day; High zinc intake: ≥9.58 mg/ day). Results In this cross-sectional study, serum vitamin D3 levels were independently associated with the risk of insulin resistance in both the low and high Zinc intakes (β: −0.26, 95%Cl: −0.56~0.04 vs. β: −0.56, 95%Cl: −1.01~-0.11). In addition, this association was influenced by different dietary zinc intakes (interaction P < 0.05). Conclusions Our results suggest that zinc intake may influence the association between serum vitamin D3 and the risk of insulin resistance. Further randomized controlled trials are needed to provide more evidence of this finding.
Collapse
Affiliation(s)
- Biao Hu
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Zheng-yang Lin
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Yuan Cai
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Yue-xin Sun
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Shu-qi Yang
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Jiang-long Guo
- Department of Medical Imaging, The Second Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Shi Zhang
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Shi Zhang
| | - Dong-lin Sun
- Guangzhou Medical University, Guangzhou, China
- Dong-lin Sun
| |
Collapse
|
22
|
Gadoa Z, Moustafa AH, El Rayes SM, Arisha AA, Mansour MF. Zinc Oxide Nanoparticles and Synthesized Pyrazolopyrimidine Alleviate Diabetic Effects in Rats Induced by Type II Diabetes. ACS OMEGA 2022; 7:36865-36872. [PMID: 36278044 PMCID: PMC9583298 DOI: 10.1021/acsomega.2c05638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 05/28/2023]
Abstract
Diabetes mellitus (DM) is a category of metabolic illness characterized by high blood sugar levels and insufficient pancreatic insulin production or activity within the body. The most common type of diabetes is type II diabetes, which is a metabolic condition characterized by insulin resistance and pancreatic islet β-cell failure, resulting in hyperglycemia. The goal of this study was to examine the anti-diabetic implications of zinc oxide nanoparticles (ZnO NPs) and/or pyrazolopyrimidine in type II diabetic rats. Rats with a weight of 150 ± 20 g were used. Animals were divided into five groups as follows: group 1: control, group 2: type II diabetic rats, group 3: diabetic rats received ZnO NPs (10 mg/kg/orally/day), group 4: diabetic rats received pyrazolopyrimidine (5 mg/kg/orally/day), and group 5: diabetic rats received ZnO NPs (10 mg/kg/orally/day) + pyrazolopyrimidine (5 mg/kg/orally/day), respectively, for 30 days. The results indicated that serum glucose, total cholesterol (TC), triacylglycerol (TG), low-density lipoprotein-cholesterol (LDL-c), very low-density lipoprotein-cholesterol (VLDL-c), malondialdehyde, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha PGC-1α mRNA expressions were increased in the diabetic group versus the control group, while serum insulin, high-density lipoprotein-cholesterol (HDL-c), superoxide dismutase (SOD), and carnitine palmitoyltransferase 1A (CPT1A) mRNA expression levels were decreased. These parameters were reserved in the treated groups (ZnO NPs, pyrazolopyrimidine, and ZnO NPs + pyrazolopyrimidine). This study proved that ZnO NPs and pyrazolopyrimidine had an ameliorative effect on blood glucose levels, antioxidant status, lipid profile, liver function enzymes, and mRNA expression of hepatic genes.
Collapse
Affiliation(s)
- Zahraa
Alaaeldein Gadoa
- Department
of Chemistry, Faculty of Science, Suez Canal
University in Ismailia, Ismailia 41522, Egypt
| | | | - Samir Mohamed El Rayes
- Department
of Chemistry, Faculty of Science, Suez Canal
University in Ismailia, Ismailia 41522, Egypt
| | - Ahmed A. Arisha
- Department
of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City 11829, Cairo, Egypt
- Department
of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed Fouad Mansour
- Department
of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
23
|
Firth G, Yu Z, Bartnicka JJ, Parker D, Kim J, Sunassee K, Greenwood HE, Al-Salamee F, Jauregui-Osoro M, Di Pietro A, Guzman J, Blower PJ. Imaging zinc trafficking in vivo by positron emission tomography with zinc-62. Metallomics 2022; 14:mfac076. [PMID: 36201445 PMCID: PMC9578021 DOI: 10.1093/mtomcs/mfac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022]
Abstract
Non-invasive imaging techniques to dynamically map whole-body trafficking of essential metals in vivo in health and diseases are needed. Despite 62Zn having appropriate physical properties for positron emission tomography (PET) imaging (half-life, 9.3 h; positron emission, 8.2%), its complex decay via 62Cu (half-life, 10 min; positron emission, 97%) has limited its use. We aimed to develop a method to extract 62Zn from a 62Zn/62Cu generator, and to investigate its use for in vivo imaging of zinc trafficking despite its complex decay. 62Zn prepared by proton irradiation of natural copper foil was used to construct a conventional 62Zn/62Cu generator. 62Zn was eluted using trisodium citrate and used for biological experiments, compared with 64Cu in similar buffer. PET/CT imaging and ex vivo tissue radioactivity measurements were performed following intravenous injection in healthy mice. [62Zn]Zn-citrate was readily eluted from the generator with citrate buffer. PET imaging with the eluate demonstrated biodistribution similar to previous observations with the shorter-lived 63Zn (half-life 38.5 min), with significant differences compared to [64Cu]Cu-citrate, notably in pancreas (>10-fold higher at 1 h post-injection). Between 4 and 24 h, 62Zn retention in liver, pancreas, and kidney declined over time, while brain uptake increased. Like 64Cu, 62Zn showed hepatobiliary excretion from liver to intestines, unaffected by fasting. Although it offers limited reliability of scanning before 1 h post-injection, 62Zn-PET allows investigation of zinc trafficking in vivo for >24 h and hence provides a useful new tool to investigate diseases where zinc homeostasis is disrupted in preclinical models and humans.
Collapse
Affiliation(s)
- George Firth
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Zilin Yu
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Joanna J Bartnicka
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - David Parker
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jana Kim
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Kavitha Sunassee
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Hannah E Greenwood
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Fahad Al-Salamee
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Maite Jauregui-Osoro
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Alberto Di Pietro
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Joanna Guzman
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Philip J Blower
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas’ Hospital, London, SE1 7EH, UK
| |
Collapse
|
24
|
Alesi S, Ee C, Moran LJ, Rao V, Mousa A. Nutritional Supplements and Complementary Therapies in Polycystic Ovary Syndrome. Adv Nutr 2022; 13:1243-1266. [PMID: 34970669 PMCID: PMC9340985 DOI: 10.1093/advances/nmab141] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/25/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) affects 1 in 5 women of reproductive age, and is characterized by menstrual irregularities, clinical or biochemical hyperandrogenism, and the presence of polycystic ovary morphology. One of the recommended treatment strategies in the international evidence-based guidelines is lifestyle modification, which includes diet and exercise, with the aim of improving a range of health outcomes. The incurable nature of PCOS reinforces the importance of developing novel and innovative symptomatic relief strategies, which are currently the only available approaches for improving quality of life for these women. Women with PCOS tend to be nutrient deficient in many common vitamins and minerals, thought to be associated with the psychological (depression, anxiety, etc.) and physiological (insulin resistance, diabetes, infertility, etc.) sequelae of the condition. Nutrient supplementation and the integration of complementary medicine as adjuncts to traditional lifestyle-based therapies in PCOS could therefore provide additional benefits to these women. In this review, we synthesize the evidence regarding nutrient supplementation and complementary therapies in PCOS, predominantly from randomized controlled trials, systematic reviews, and meta-analyses, to provide an overview of the state of knowledge in this field. The evidence to date suggests that specific vitamins (B-12, inositols, folate, vitamins D, E, and K), vitamin-like nutrients (bioflavonoids and α-lipoic acid), minerals (calcium, zinc, selenium, and chromium picolinate), and other formulations (melatonin, ω-3 fatty acids, probiotics, and cinnamon), as well as some complementary approaches such as acupuncture and yoga may be beneficial in PCOS. However, there remain areas of uncertainty and key limitations in the literature that must be overcome before these therapies can be integrated into routine clinical practice.
Collapse
Affiliation(s)
- Simon Alesi
- Monash Centre for Health Research and Implementation (MCHRI), Monash University, Clayton, Victoria, Australia
| | - Carolyn Ee
- The National Institute of Complementary Medicine, Health Research Institute, Western Sydney University, Penrith, New South Wales, Australia
| | - Lisa J Moran
- Monash Centre for Health Research and Implementation (MCHRI), Monash University, Clayton, Victoria, Australia
| | - Vibhuti Rao
- The National Institute of Complementary Medicine, Health Research Institute, Western Sydney University, Penrith, New South Wales, Australia
| | - Aya Mousa
- Monash Centre for Health Research and Implementation (MCHRI), Monash University, Clayton, Victoria, Australia
| |
Collapse
|
25
|
López-Solís L, Companys E, Puy J, Blindauer CA, Galceran J. Direct determination of free Zn concentration in samples of biological interest. Anal Chim Acta 2022; 1229:340195. [DOI: 10.1016/j.aca.2022.340195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/25/2022] [Accepted: 07/19/2022] [Indexed: 11/01/2022]
|
26
|
Dziedzic EA, Gąsior JS, Tuzimek A, Paleczny J, Kwaśny M, Dąbrowski M, Jankowski P. No Association of Hair Zinc Concentration with Coronary Artery Disease Severity and No Relation with Acute Coronary Syndromes. Biomolecules 2022; 12:biom12070862. [PMID: 35883417 PMCID: PMC9313242 DOI: 10.3390/biom12070862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Although zinc (Zn) was reported to have antioxidant, anti-inflammatory and protective properties in CVDs, its association with coronary artery disease (CAD) is still unclear. As methods commonly used to assess Zn levels in blood and urine do not show the full picture of the microelement supply, in this study, the nutritional status of Zn in patients with angiographically confirmed CAD was assessed using inductively coupled plasma optical emission spectrometry. We found no association between Zn and the severity of CAD evaluated with the Coronary Artery Surgery Study Score (p = 0.67). There were no statistically significant differences in Zn levels between patients with acute coronary syndrome and those with stable CAD (p = 0.937). A statically significant negative correlation was observed between Zn content and serum triglyceride concentration (p < 0.05). Patients with type 2 diabetes mellitus were found to have a significantly lower hair Zn content compared to non-diabetic individuals (p < 0.01). The role of Zn in the pathogenesis of CAD and its complications need further well-designed research as the moderation and supplementation of Zn dietary intake could be a simple intervention to reduce the CVDs risk.
Collapse
Affiliation(s)
- Ewelina A. Dziedzic
- Medical Faculty, Lazarski University in Warsaw, 02-662 Warsaw, Poland
- Department of Internal Medicine and Geriatric Cardiology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland; (A.T.); (P.J.)
- Correspondence: ; Tel.: +48-792-207-779
| | - Jakub S. Gąsior
- Department of Pediatric Cardiology and General Pediatrics, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Agnieszka Tuzimek
- Department of Internal Medicine and Geriatric Cardiology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland; (A.T.); (P.J.)
| | - Justyna Paleczny
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Mirosław Kwaśny
- Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland;
| | - Marek Dąbrowski
- Department of Cardiology, Bielanski Hospital, 01-809 Warsaw, Poland;
| | - Piotr Jankowski
- Department of Internal Medicine and Geriatric Cardiology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland; (A.T.); (P.J.)
- Department of Epidemiology and Health Promotion, School of Public Health, Center of Postgraduate Medical Education, 01-826 Warszawa, Poland
| |
Collapse
|
27
|
A New Benzoxazole-Based Fluorescent Macrocyclic Chemosensor for Optical Detection of Zn2+ and Cd2+. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050188] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Benzoxazole-containing ligands find many applications both in medicinal chemistry, catalysis and fluorescence chemosensing. Benzoxazole-containing macrocycles could be therefore a good strategy to achieve stable and selective fluorescent complexes with suitable metal ions. In this work, the synthesis, binding, and photochemical properties of a new fluorescent ligand (L) are reported. L is a cyclophane macrocycle containing the 1,3-bis(benzo[d]oxazol-2-yl)phenyl (BBzB) fluorophore and an aliphatic tetra-amine chain to form the macrocyclic skeleton. Methods: Spectrophotometric and spectrofluorimetric measurements, 1H NMR analysis, and DFT calculations were performed. Results: L behaves as a PET-mediated chemosensor, being emissive at 390 nm at acidic pH and non-emissive at basic pH. The chemosensor is able to detect Zn2+ and Cd2+ in an aqueous medium (acetonitrile–water, 4:1 v/v) at neutral pH through a CHEF effect upon metal ion coordination. Paramagnetic metal ions (Cu2+) and heavy atoms (Pb2+, Hg2+) resulted in a quenching of fluorescence or very low emission. Conclusions: The new cyclophane macrocycle L was revealed to be a selective PET-regulated chemosensor for Zn2+ and Cd2+ in an aqueous medium, being able to bind up to two and one metal cations, respectively. The molecule showed a shifted emission towards the visible region compared to similar systems, suggesting a co-planar conformation of the aromatic fragment upon metal coordination. All these data are supported by both experimental measurements and theoretical calculations.
Collapse
|
28
|
An efficient PET-based probe for detection and discrimination of Zn2+ and Cd2+ in near-aqueous media and live-cell imaging. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113816] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
29
|
Abstract
SignificanceZinc deficiency in the human population, a major public health concern, can also be a consequence of nutritional deficiency in protein uptake. The discovery that tryptophan metabolites 3-hydroxykynurenine and xanthurenic acid are major zinc-binding ligands in insect cells establishes the kynurenine pathway as a regulator of systemic zinc homeostasis. Many biological processes influenced by zinc and the kynurenine pathway, including the regulation of innate and acquired immune responses to viral infections, have not been studied in light of the direct molecular links revealed in this study.
Collapse
|
30
|
Li Y, Li L, Yang W, Yu Z. <sup>1</sup>Effects of zinc deficiency in male mice on glucose metabolism of male offspring. Chem Pharm Bull (Tokyo) 2022; 70:369-374. [DOI: 10.1248/cpb.c21-00959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yang Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University
| | - LingLing Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University
| | - Wenjie Yang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University
| | - Zengli Yu
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University
| |
Collapse
|
31
|
Abstract
The functions, purposes, and roles of metallothioneins have been the subject of speculations since the discovery of the protein over 60 years ago. This article guides through the history of investigations and resolves multiple contentions by providing new interpretations of the structure-stability-function relationship. It challenges the dogma that the biologically relevant structure of the mammalian proteins is only the one determined by X-ray diffraction and NMR spectroscopy. The terms metallothionein and thionein are ambiguous and insufficient to understand biological function. The proteins need to be seen in their biological context, which limits and defines the chemistry possible. They exist in multiple forms with different degrees of metalation and types of metal ions. The homoleptic thiolate coordination of mammalian metallothioneins is important for their molecular mechanism. It endows the proteins with redox activity and a specific pH dependence of their metal affinities. The proteins, therefore, also exist in different redox states of the sulfur donor ligands. Their coordination dynamics allows a vast conformational landscape for interactions with other proteins and ligands. Many fundamental signal transduction pathways regulate the expression of the dozen of human metallothionein genes. Recent advances in understanding the control of cellular zinc and copper homeostasis are the foundation for suggesting that mammalian metallothioneins provide a highly dynamic, regulated, and uniquely biological metal buffer to control the availability, fluctuations, and signaling transients of the most competitive Zn(II) and Cu(I) ions in cellular space and time.
Collapse
Affiliation(s)
- Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław 50-383, Poland
| | - Wolfgang Maret
- Departments of Biochemistry and Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, U.K
| |
Collapse
|
32
|
Tavakoli-Rouzbehani OM, Faghfouri AH, Anbari M, Papi S, Shojaei FS, Ghaffari M, Alizadeh M. The effects of Cuminum cyminum on glycemic parameters: A systematic review and meta-analysis of controlled clinical trials. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114510. [PMID: 34371114 DOI: 10.1016/j.jep.2021.114510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 07/23/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cuminum Cyminum (CC) is a traditional herbal medicine using as an antiseptic, anti-carcinogenic, anti-mutagenic, anti-cancer, anti-hypertensive, anti-inflammatory, and antioxidant. Recently hypoglycemic characteristics of CC have been indicated. AIM OF THE STUDY We intended to conduct a meta-analysis on the effect of CC supplementation on glycemic parameters in patients with different chronic diseases. MATERIALS AND METHODS PubMed, Embase, Web of Science, and Scopus were searched until May 2021. Random effect model was conducted to perform the meta-analysis. Source of heterogeneity was explored using the meta-regression and subgroup analyses. The Cochrane Collaboration's tool was used to assess the quality of studies. The GRADE approach was used to assess the quality of evidence. RESULTS Findings of eight studies showed that CC supplementation reduced FBS (SMD = -1.4 mg/dl; 95 % CI: -2.29, -0.51; P = 0.002), HbA1c (SMD = -1.71 %; 95 % CI: -3.24, -0.18; P = 0.028), and HOMA-β (SMD = 0.46; 95 % CI: -0.62, 1.55; P = 0.404) significantly. Also, CC increased QUICKI level (SMD = 0.89; 95 % CI: 0.37, 1.4; P = 0.001. However, no significant effect of CC was observed on insulin (SMD = -0.70 μIU/dl; 95 % CI: -1.84, 0.45; P = 0.234) and HOMA-IR (SMD = 0.46; 95 % CI: -0.62, 1.55; P = 0.404). CONCLUSION CC had an improving effect on FBS, HbA1C, HOMA-B, and QUICKI. The effect of CC on amending HOMA-IR was significant after sensitivity analysis. However, the insulin level was not changed significantly.
Collapse
Affiliation(s)
| | - Amir Hossein Faghfouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Community Nutrition, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Anbari
- Department of Clinical Nutrition, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahab Papi
- Department of Public Health, Faculty of Health, Social Determinants of Health Research Center, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Farid Salimi Shojaei
- Department of Medical Sciences, Marand Branch, Islamic Azad University, Marand, Iran
| | - Mehdi Ghaffari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Department of Clinical Nutrition, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
33
|
Grădinaru D, Margină D, Ungurianu A, Nițulescu G, Pena CM, Ionescu-Tîrgoviște C, Dănciulescu Miulescu R. Zinc status, insulin resistance and glycoxidative stress in elderly subjects with type 2 diabetes mellitus. Exp Ther Med 2021; 22:1393. [PMID: 34650641 DOI: 10.3892/etm.2021.10829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/06/2021] [Indexed: 11/06/2022] Open
Abstract
Zinc deficiencies have been reported in numerous pathologies, such as diabetes mellitus, but also in the physiological process of ageing. Similarly, the end products of glycoxidation processes, advanced glycation end products (AGEs), are damaging compounds, a myriad of reports linking them to the development and progression of several age-associated chronic diseases. The aim of the present study was to analyze the relationships between zinc status, glycoxidative stress and insulin resistance (IR) in elderly subjects with type 2 diabetes mellitus (T2DM). A group of 52 non-smoking subjects (9 men and 43 women, aged 65-83 years) were enrolled in this cross-sectional study: 27 patients with T2DM, and 25 apparently healthy control subjects. Serum zinc (Zn) levels were assessed using a commercial kit based on an end-point colorimetric method, and serum AGEs were evaluated with a fluorimetric analytic procedure. The calculated glucose-to-zinc ratio (Gly/Zn), insulin-to-zinc ratio (Ins/Zn) and insulin-zinc resistance index (HOMA-IR/Zn) were further used to study the associations between serum Zn levels, secretory function of β-pancreatic cells and AGEs. T2DM patients presented significantly higher serum insulin and Zn levels, as compared to the controls. We found a significant inverse correlation between Zn and AGEs, and a strong positive correlation between AGEs and the Gly/Zn ratio, suggesting that both Zn and AGEs are biomarkers that could reflect the persistence of hyperglycemia. We identified new surrogate biomarkers useful for the assessment of glycemic control with great potential for the development of preventive and therapeutic strategies for elderly diabetics, based on the evaluation of serum Zn levels.
Collapse
Affiliation(s)
- Daniela Grădinaru
- Department of Biochemistry, Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Denisa Margină
- Department of Biochemistry, Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Georgiana Nițulescu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Cătălina Monica Pena
- Biology of Aging Department, 'Ana Aslan' National Institute of Gerontology and Geriatrics, 011241 Bucharest, Romania
| | - Constantin Ionescu-Tîrgoviște
- Clinical Department, 'Nicolae Paulescu' Institute of Diabetes, Metabolic and Nutrition Diseases, 020475 Bucharest, Romania
| | - Rucsandra Dănciulescu Miulescu
- Clinical Department, 'Nicolae Paulescu' Institute of Diabetes, Metabolic and Nutrition Diseases, 020475 Bucharest, Romania
| |
Collapse
|
34
|
Sadegzadeh-Sadat M, Anassori E, Khalilvandi-Behroozyar H, Asri-Rezaei S. The effects of Zinc-Methionine on glucose metabolism and insulin resistance during late pregnancy in ewes. Domest Anim Endocrinol 2021; 77:106647. [PMID: 34311283 DOI: 10.1016/j.domaniend.2021.106647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
This study investigated the effects of dietary supplements of Zinc-Methionine (Zn-Met) on the zinc concentration of the blood and indices such as insulin resistance and glucose tolerance in late-pregnancy ewes to provide a practical solution to prevent metabolic diseases associated with energy status. In this research, 18 Makouei pregnant ewes were selected and randomized into 3 experimental groups: Group 1: Basal diet containing 10.3 mg Zn/kgDM and no zinc supplementation = CTR (Control); Group 2: Basal diet supplemented with low-dose zinc equivalent to the pregnancy requirements (30 mg Zn/kgDM) = LZN; Group 3: Basal diet supplemented with high-dose zinc (300 mg Zn/kgDM) = HZN. Blood samples for insulin resistance and glucose tolerance indices were collected according to standard methods. The results of this study indicated that supplementation of high-dose Zn-Met decreased (P < 0.05) blood glucose and tended (P < 0.1) to reduce the beta-hydroxybutyrate (BHB) concentrations. After intravenous injection of glucose and insulin, none of the glucose tolerance and insulin resistance indices were significant among groups (P > 0.05). However, the intravenous glucose tolerance test (IGTT) showed that the area under the curve (AUC) of serum glucose in the HZN group was numerically lower than that of the LZN and CTR groups. Furthermore, the numerically higher clearance rate (CR) of glucose and more negative glucose AUC following intravenous administration of insulin in Zinc-supplemented groups suggested that the ewes had greater insulin response than control group. The results showed a decrease in blood glucose concentration due to higher zinc intake after insulin injection and supported the evidence for improving insulin sensitivity. In addition, our results showed that ewes receiving zinc supplementation experienced a more favorable state of BHB or NEFA values. In conclusion, Zn-Met supplementation was found to have promising effects in improving energy metabolism in late pregnant ewes. However, further studies are needed to understand the mechanisms involved in regulating lipolysis and energy metabolism.
Collapse
Affiliation(s)
- M Sadegzadeh-Sadat
- Graduate Student of Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - E Anassori
- Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | | | - S Asri-Rezaei
- Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
35
|
Jackson TW, Ryherd GL, Scheibly CM, Sasser AL, Guillette TC, Belcher SM. Gestational Cd Exposure in the CD-1 Mouse Induces Sex-Specific Hepatic Insulin Insensitivity, Obesity, and Metabolic Syndrome in Adult Female Offspring. Toxicol Sci 2021; 178:264-280. [PMID: 33259630 DOI: 10.1093/toxsci/kfaa154] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
There is compelling evidence that developmental exposure to toxic metals increases risk for obesity and obesity-related morbidity including cardiovascular disease and type 2 diabetes. To explore the hypothesis that developmental Cd exposure increases risk of obesity later in life, male, and female CD-1 mice were maternally exposed to 500 ppb CdCl2 in drinking water during a human gestational equivalent period (gestational day 0-postnatal day 10 [GD0-PND10]). Hallmark indicators of metabolic disruption, hepatic steatosis, and metabolic syndrome were evaluated prior to birth through adulthood. Maternal blood Cd levels were similar to those observed in human pregnancy cohorts, and Cd was undetected in adult offspring. There were no observed impacts of exposure on dams or pregnancy-related outcomes. Results of glucose and insulin tolerance testing revealed that Cd exposure impaired offspring glucose homeostasis on PND42. Exposure-related increases in circulating triglycerides and hepatic steatosis were apparent only in females. By PND120, Cd-exposed females were 30% heavier with 700% more perigonadal fat than unexposed control females. There was no evidence of dyslipidemia, steatosis, increased weight gain, nor increased adiposity in Cd-exposed male offspring. Hepatic transcriptome analysis on PND1, PND21, and PND42 revealed evidence for female-specific increases in oxidative stress and mitochondrial dysfunction with significant early disruption of retinoic acid signaling and altered insulin receptor signaling consistent with hepatic insulin sensitivity in adult females. The observed steatosis and metabolic syndrome-like phenotypes resulting from exposure to 500 ppb CdCl2 during the pre- and perinatal period of development equivalent to human gestation indicate that Cd acts developmentally as a sex-specific delayed obesogen.
Collapse
Affiliation(s)
- Thomas W Jackson
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
| | - Garret L Ryherd
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
| | - Chris M Scheibly
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
| | - Aubrey L Sasser
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
| | - T C Guillette
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
| | - Scott M Belcher
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
36
|
Knez M, Glibetic M. Zinc as a Biomarker of Cardiovascular Health. Front Nutr 2021; 8:686078. [PMID: 34395491 PMCID: PMC8360846 DOI: 10.3389/fnut.2021.686078] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022] Open
Abstract
The importance of zinc (Zn) for cardiovascular health continuously gains recognition. As shown earlier, compromised Zn homeostasis and prolonged inflammation are common features in various cardiovascular diseases (CVDs). Similarly, Zn biochemistry alters several vascular processes, and Zn status is an important feature of cardiovascular health. Zn deficiency contributes to the development of CVDs; thus, Zn manipulations, including Zn supplementation, are beneficial for preventing and treating numerous cardiovascular (CV) disorders. Finally, additional long-term, well-designed studies, performed in various population groups, should be pursued to further clarify significant relationships between Zn and CVDs.
Collapse
Affiliation(s)
- Marija Knez
- Centre of Research Excellence in Nutrition and Metabolism, National Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
37
|
Banaszak M, Górna I, Przysławski J. Zinc and the Innovative Zinc-α2-Glycoprotein Adipokine Play an Important Role in Lipid Metabolism: A Critical Review. Nutrients 2021; 13:nu13062023. [PMID: 34208404 PMCID: PMC8231141 DOI: 10.3390/nu13062023] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022] Open
Abstract
Numerous studies indicate that zinc and the new zinc-related adipokine, zinc-α2-glycoprotein (ZAG), are involved in lipid metabolism. Excess body fat lowers blood concentrations of Zn and ZAG, leading not only to the development of obesity but also to other components of the metabolic syndrome. Zinc homeostasis disorders in the body negatively affect the lipid profile and cytokine secretion. Zinc appears to be a very important ZAG homeostasis regulator. The physiological effects of ZAG are related to lipid metabolism, but studies show that ZAG also affects glucose metabolism and is linked to insulin resistance. ZAG has a zinc binding site in its structure, which may indicate that ZAG mediates the effect of zinc on lipid metabolism. The review aimed to verify the available studies on the effects of zinc and ZAG on lipid metabolism. A literature review within the scope of this research area was conducted using articles available in PubMed (including MEDLINE), Web of Science and Cochrane Library databases. An analysis of available studies has shown that zinc improves hepatic lipid metabolism and has an impact on the lipid profile. Numerous studies have found that zinc supplementation in overweight individuals significantly reduced blood levels of total cholesterol, LDL (Low-density lipoprotein)cholesterol and triglycerides, potentially reducing cardiovascular morbidity and mortality. Some results also indicate that it increases HDL-C (High-density lipoprotein) cholesterol levels. ZAG has been shown to play a significant role in reducing obesity and improving insulin sensitivity, both in experimental animal model studies and in human studies. Furthermore, ZAG at physiologically relevant concentrations increases the release of adiponectin from human adipocytes. In addition, ZAG has been shown to inhibit in vitro leptin production. Further studies are needed to provide more data on the role of zinc and zinc-α2-glycoprotein.
Collapse
Affiliation(s)
- Michalina Banaszak
- Faculty of Medical Sciences, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
| | - Ilona Górna
- Department of Bromatology, Poznan University of Medical Sciences, 60-354 Poznan, Poland;
- Correspondence: ; Tel.: +48-61-854-7204
| | - Juliusz Przysławski
- Department of Bromatology, Poznan University of Medical Sciences, 60-354 Poznan, Poland;
| |
Collapse
|
38
|
Abstract
Since the discovery of manifest Zn deficiency in 1961, the increasing number of studies demonstrated the association between altered Zn status and multiple diseases. In this chapter, we provide a review of the most recent advances on the role of Zn in health and disease (2010-20), with a special focus on the role of Zn in neurodegenerative and neurodevelopmental disorders, diabetes and obesity, male and female reproduction, as well as COVID-19. In parallel with the revealed tight association between ASD risk and severity and Zn status, the particular mechanisms linking Zn2+ and ASD pathogenesis like modulation of synaptic plasticity through ProSAP/Shank scaffold, neurotransmitter metabolism, and gut microbiota, have been elucidated. The increasing body of data indicate the potential involvement of Zn2+ metabolism in neurodegeneration. Systemic Zn levels in Alzheimer's and Parkinson's disease were found to be reduced, whereas its sequestration in brain may result in modulation of amyloid β and α-synuclein processing with subsequent toxic effects. Zn2+ was shown to possess adipotropic effects through the role of zinc transporters, zinc finger proteins, and Zn-α2-glycoprotein in adipose tissue physiology, underlying its particular role in pathogenesis of obesity and diabetes mellitus type 2. Recent findings also contribute to further understanding of the role of Zn2+ in spermatogenesis and sperm functioning, as well as oocyte development and fertilization. Finally, Zn2+ was shown to be the potential adjuvant therapy in management of novel coronavirus infection (COVID-19), underlining the perspectives of zinc in management of old and new threats.
Collapse
Affiliation(s)
- Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia.
| |
Collapse
|
39
|
Al-Muzafar HM, Al-Hariri MT. Elements alteration in scalp hair of young obese Saudi females. ARAB JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1080/25765299.2021.1911070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Hessah Mohammed Al-Muzafar
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Mohammed Taha Al-Hariri
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| |
Collapse
|
40
|
Luo R, Zhang Y, Jia Y, Zhang Y, Li Z, Zhao J, Liu T, Zhang W. Molecular basis and homeostatic regulation of Zinc taste. Protein Cell 2021; 13:462-469. [PMID: 33891304 PMCID: PMC9095774 DOI: 10.1007/s13238-021-00845-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 12/03/2022] Open
Affiliation(s)
- Rui Luo
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Yuxiang Zhang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Yinjun Jia
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Yan Zhang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Zongyang Li
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Jieqing Zhao
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Ting Liu
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Wei Zhang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| |
Collapse
|
41
|
Du S, Lv Y, Li N, Huang X, Liu X, Li H, Wang C, Jia YF. Biological investigations on therapeutic effect of chitosan encapsulated nano resveratrol against gestational diabetes mellitus rats induced by streptozotocin. Drug Deliv 2021; 27:953-963. [PMID: 32611265 PMCID: PMC8216480 DOI: 10.1080/10717544.2020.1775722] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The chitosan encapsulation with bioactive compounds (resveratrol) is a significant method that can be used to raise the stability and effectiveness of substances in gestational diabetes management. In this study, the resveratrol–zinc oxide complex is encapsulated with chitosan (CS–ZnO–RS). The synthesized CS–ZnO–RS could be used to deliver the resveratrol with minimized side effects and also improved bioavailability. CS–ZnO–RS were characterized by various techniques such as particle size analyzer, DSC, FT-IR, TEM, SEM, and AFM. The electron microscopic and particle analyzer confirmed that the synthesized CS–ZnO–RS were monodispersed, spherical and its average size was 38 nm. The drug-releasing profile showed that 95% of RS is released from CS–ZnO–RS within 24 h. In vitro studies confirmed that α-glucosidase and α-amylase inhibitory activities were closely related to the concentration of CS–ZnO–RS. The highest inhibition of α-glucosidase (77.32%) and α-amylase (78.4%) was observed at 500 μg/mL. Furthermore, the treatment of CS–ZnO–RS significantly decreased the blood glucose levels in gestational diabetes mellitus induced rats and maintained the lipid content toward the normal rats. In addition, the CS–ZnO–RS reduced the level of inflammation factors (IL-6 and MCP-1) and endoplasmic reticulum stress (GRP78, p-IRE1α, p-eIF2α, and p-PERK).
Collapse
Affiliation(s)
- Shengye Du
- Department of Obstetrics, Jinan City People's Hospital, Jinan, PR China
| | - Yan Lv
- Gynecological Reproductive Clinic, Jinan City People's Hospital, Jinan, PR China
| | - Na Li
- Department of Gynecology and Traditional Chinese Medicine, Jinan City People's Hospital, Jinan, PR China
| | - Xianxia Huang
- Department of Obstetrics, Jinan City People's Hospital, Jinan, PR China
| | - Xuemei Liu
- Department of Obstetrics, Jinan City People's Hospital, Jinan, PR China
| | - Hui Li
- Department of Obstetrics, Jinan City People's Hospital, Jinan, PR China
| | - Chao Wang
- Department of Obstetrics, Jinan City People's Hospital, Jinan, PR China
| | - Yi-Fang Jia
- Center of Prenatal Diagnosis, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, PR China
| |
Collapse
|
42
|
Refat MS, Hamza RZ, Adam AMA, Saad HA, Gobouri AA, Al-Harbi FS, Al-Salmi FA, Altalhi T, El-Megharbel SM. Quercetin/Zinc complex and stem cells: A new drug therapy to ameliorate glycometabolic control and pulmonary dysfunction in diabetes mellitus: Structural characterization and genetic studies. PLoS One 2021; 16:e0246265. [PMID: 33661932 PMCID: PMC7932096 DOI: 10.1371/journal.pone.0246265] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Medicinal uses and applications of metals and their complexes are of increasing clinical and commercial importance. The ligation behavior of quercetin (Q), which is a flavonoid, and its Zn (II) (Q/Zn) complex were studied and characterized based on elemental analysis, molar conductance, Fourier-transform infrared (FTIR) spectra, electronic spectra, proton nuclear magnetic resonance (1H-NMR), thermogravimetric analysis, and transmission electron microscopy (TEM). FTIR spectral data revealed that Q acts as a bidentate ligand (chelating ligand) through carbonyl C(4) = O oxygen and phenolic C(3)-OH oxygen in conjugation with Zn. Electronic, FTIR, and 1H-NMR spectral data revealed that the Q/Zn complex has a distorted octahedral geometry, with the following chemical formula: [Zn(Q)(NO3)(H2O)2].5H2O. Diabetes was induced by streptozotocin (STZ) injection. A total of 70 male albino rats were divided into seven groups: control, diabetic untreated group and diabetic groups treated with either MSCs and/or Q and/or Q/Zn or their combination. Serum insulin, glucose, C-peptide, glycosylated hemoglobin, lipid profile, and enzymatic and non-enzymatic antioxidant levels were determined. Pancreatic and lung histology and TEM for pancreatic tissues in addition to gene expression of both SOD and CAT in pulmonary tissues were evaluated. MSCs in combination with Q/Zn therapy exhibited potent protective effects against STZ induced hyperglycemia and suppressed oxidative stress, genotoxicity, glycometabolic disturbances, and structural alterations. Engrafted MSCs were found inside pancreatic tissue at the end of the experiment. In conclusion, Q/Zn with MSC therapy produced a synergistic effect against oxidative stress and genotoxicity and can be considered potential ameliorative therapy against diabetes with pulmonary dysfunction, which may benefit against COVID-19.
Collapse
Affiliation(s)
- Moamen S. Refat
- Department of Chemistry, College of Sciences, Taif University, Taif, Saudi Arabia
- Department of Chemistry, Faculty of Science, Port Said University, Port Said, Egypt
| | - Reham Z. Hamza
- Biology Department, Faculty of Science, Taif University, Taif, Saudi Arabia
- Zoology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Abdel Majid A. Adam
- Department of Chemistry, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Hosam A. Saad
- Department of Chemistry, College of Sciences, Taif University, Taif, Saudi Arabia
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Adil A. Gobouri
- Department of Chemistry, College of Sciences, Taif University, Taif, Saudi Arabia
| | | | | | - Tariq Altalhi
- Department of Chemistry, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Samy M. El-Megharbel
- Department of Chemistry, College of Sciences, Taif University, Taif, Saudi Arabia
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
43
|
Emerging Roles of Metallothioneins in Beta Cell Pathophysiology: Beyond and Above Metal Homeostasis and Antioxidant Response. BIOLOGY 2021; 10:biology10030176. [PMID: 33652748 PMCID: PMC7996892 DOI: 10.3390/biology10030176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Defective insulin secretion by pancreatic beta cells is key for the development of type 2 diabetes but the precise mechanisms involved are poorly understood. Metallothioneins are metal binding proteins whose precise biological roles have not been fully characterized. Available evidence indicated that Metallothioneins are protective cellular effectors involved in heavy metal detoxification, metal ion homeostasis and antioxidant defense. This concept has however been challenged by emerging evidence in different medical research fields revealing novel negative roles of Metallothioneins, including in the context of diabetes. In this review, we gather and analyze the available knowledge regarding the complex roles of Metallothioneins in pancreatic beta cell biology and insulin secretion. We comprehensively analyze the evidence showing positive effects of Metallothioneins on beta cell function and survival as well as the emerging evidence revealing negative effects and discuss the possible underlying mechanisms. We expose in parallel findings from other medical research fields and underscore unsettled questions. Then, we propose some future research directions to improve knowledge in the field. Abstract Metallothioneins (MTs) are low molecular weight, cysteine-rich, metal-binding proteins whose precise biological roles have not been fully characterized. Existing evidence implicated MTs in heavy metal detoxification, metal ion homeostasis and antioxidant defense. MTs were thus categorized as protective effectors that contribute to cellular homeostasis and survival. This view has, however, been challenged by emerging evidence in different medical fields revealing novel pathophysiological roles of MTs, including inflammatory bowel disease, neurodegenerative disorders, carcinogenesis and diabetes. In the present focused review, we discuss the evidence for the role of MTs in pancreatic beta-cell biology and insulin secretion. We highlight the pattern of specific isoforms of MT gene expression in rodents and human beta-cells. We then discuss the mechanisms involved in the regulation of MTs in islets under physiological and pathological conditions, particularly type 2 diabetes, and analyze the evidence revealing adaptive and negative roles of MTs in beta-cells and the potential mechanisms involved. Finally, we underscore the unsettled questions in the field and propose some future research directions.
Collapse
|
44
|
Pounot K, Grime GW, Longo A, Zamponi M, Noferini D, Cristiglio V, Seydel T, Garman EF, Weik M, Foderà V, Schirò G. Zinc determines dynamical properties and aggregation kinetics of human insulin. Biophys J 2021; 120:886-898. [PMID: 33545104 DOI: 10.1016/j.bpj.2020.11.2280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/08/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022] Open
Abstract
Protein aggregation is a widespread process leading to deleterious consequences in the organism, with amyloid aggregates being important not only in biology but also for drug design and biomaterial production. Insulin is a protein largely used in diabetes treatment, and its amyloid aggregation is at the basis of the so-called insulin-derived amyloidosis. Here, we uncover the major role of zinc in both insulin dynamics and aggregation kinetics at low pH, in which the formation of different amyloid superstructures (fibrils and spherulites) can be thermally induced. Amyloid aggregation is accompanied by zinc release and the suppression of water-sustained insulin dynamics, as shown by particle-induced x-ray emission and x-ray absorption spectroscopy and by neutron spectroscopy, respectively. Our study shows that zinc binding stabilizes the native form of insulin by facilitating hydration of this hydrophobic protein and suggests that introducing new binding sites for zinc can improve insulin stability and tune its aggregation propensity.
Collapse
Affiliation(s)
- Kevin Pounot
- Applied Physics, University of Tübingen, Tübingen, Baden-Würtemberg, Germany.
| | | | - Alessandro Longo
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, Palermo, Italy
| | - Michaela Zamponi
- Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH Outstation at MLZ, Garching, Germany
| | - Daria Noferini
- Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH Outstation at MLZ, Garching, Germany
| | | | - Tilo Seydel
- Science Division, Institut Max von Laue-Paul Langevin, Grenoble, France
| | | | - Martin Weik
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000 Grenoble, France
| | - Vito Foderà
- Pharmacy, University of Copenhagen, Copenhagen, Denmark.
| | - Giorgio Schirò
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38000 Grenoble, France.
| |
Collapse
|
45
|
Pompano LM, Boy E. Effects of Dose and Duration of Zinc Interventions on Risk Factors for Type 2 Diabetes and Cardiovascular Disease: A Systematic Review and Meta-Analysis. Adv Nutr 2021; 12:141-160. [PMID: 32722790 PMCID: PMC7850144 DOI: 10.1093/advances/nmaa087] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/15/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022] Open
Abstract
No meta-analysis has examined the effect of dose and duration of zinc interventions on their impact on risk factors for type 2 diabetes (T2D) or cardiovascular disease (CVD). This study aimed first to compare the effects of zinc interventions dichotomized as low versus high dose (<25 mg/d and ≥25 mg/d, respectively) and short versus long duration (<12 wk and ≥12 wk, respectively) on risk factors for T2D and CVD. Second, it discusses the results from the low-dose and long-duration meta-analyses as a foundation for understanding what impact a zinc-biofortification intervention could have on these risk factors. The PubMed and Cochrane Review databases were searched through January 2020 for full-text, human studies providing zinc supplements (alone) at doses ≤75 mg/d and a placebo. Data on study and sample characteristics and several T2D and CVD risk factors were extracted. There were 1042 and 974 participants receiving zinc and placebo, respectively, from 27 studies. Low-dose zinc supplementation (<25 mg/d) significantly benefited fasting blood glucose, insulin resistance, triglycerides, total cholesterol, and LDL cholesterol. High-dose zinc supplementation (≥25 mg/d) benefited glycated hemoglobin and insulin resistance. Short-duration interventions (<12 wk) benefited fasting blood glucose, insulin resistance, and triglycerides, while long-duration studies (≥12 wk) benefited fasting blood glucose, triglycerides, and total and LDL cholesterol. Effect sizes for low-dose and long-duration interventions were of equal or greater magnitude to those from high-dose or short-duration interventions. Low-dose and long-duration zinc supplementation each improved more risk factors for T2D and CVD than high-dose and short-duration interventions, respectively. It is currently unknown whether low doses of zinc delivered over long durations via a biofortified crop would similarly impact these risk factors. However, this review suggests that low-dose, long-duration zinc intake from supplements, and potentially biofortification, can benefit risk factors for T2D and CVD.
Collapse
Affiliation(s)
- Laura M Pompano
- HarvestPlus, International Food Policy Research Institute, Washington, DC, USA
| | - Erick Boy
- HarvestPlus, International Food Policy Research Institute, Washington, DC, USA
| |
Collapse
|
46
|
Thapa B, Suh EH, Parrott D, Khalighinejad P, Sharma G, Chirayil S, Sherry AD. Imaging β-Cell Function Using a Zinc-Responsive MRI Contrast Agent May Identify First Responder Islets. Front Endocrinol (Lausanne) 2021; 12:809867. [PMID: 35173681 PMCID: PMC8842654 DOI: 10.3389/fendo.2021.809867] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/16/2021] [Indexed: 01/05/2023] Open
Abstract
An imaging method for detecting β-cell function in real-time in the rodent pancreas could provide new insights into the biological mechanisms involving loss of β-cell function during development of type 2 diabetes and for testing of new drugs designed to modulate insulin secretion. In this study, we used a zinc-responsive MRI contrast agent and an optimized 2D MRI method to show that glucose stimulated insulin and zinc secretion can be detected as functionally active "hot spots" in the tail of the rat pancreas. A comparison of functional images with histological markers show that insulin and zinc secretion does not occur uniformly among all pancreatic islets but rather that some islets respond rapidly to an increase in glucose while others remain silent. Zinc and insulin secretion was shown to be altered in streptozotocin and exenatide treated rats thereby verifying that this simple MRI technique is responsive to changes in β-cell function.
Collapse
Affiliation(s)
- Bibek Thapa
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Eul Hyun Suh
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Daniel Parrott
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Pooyan Khalighinejad
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Gaurav Sharma
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sara Chirayil
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - A. Dean Sherry
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, United States
- *Correspondence: A. Dean Sherry, ;
| |
Collapse
|
47
|
Pancreatic Islets Accumulate Cadmium in a Rodent Model of Cadmium-Induced Hyperglycemia. Int J Mol Sci 2020; 22:ijms22010360. [PMID: 33396420 PMCID: PMC7796358 DOI: 10.3390/ijms22010360] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Cadmium (Cd) is an anthropogenic as well as a naturally occurring toxicant associated with prediabetes and T2DM in humans and experimental models of Cd exposure. However, relatively few studies have examined the mechanism(s) of Cd-induced hyperglycemia. The purpose of this study was to examine the role of pancreatic islets in Cd-induced hyperglycemia. Male Sprague–Dawley rats were given daily subcutaneous doses of Cd at 0.6 mg/kg over 12 weeks. There was a resulting time-dependent increase in fasting blood glucose and altered insulin release in vitro. Islets isolated from control (saline-treated) and Cd-treated animals were incubated in low (0.5 mg/mL) or high (3 mg/mL) glucose conditions. Islets from 12 week Cd-treated animals had significantly less glucose-stimulated insulin release compared to islets from saline-treated control animals. The actual Cd content of isolated islets was 5 fold higher than the whole pancreas (endocrine + exocrine) and roughly 70% of that present in the renal cortex. Interestingly, islets isolated from Cd-treated animals and incubated in high glucose conditions contained significantly less Cd and zinc than those incubated in low glucose. These results show that within whole pancreatic tissue, Cd selectively accumulates in pancreatic islets and causes altered islet function that likely contributes to dysglycemia.
Collapse
|
48
|
Loviscach L, Backes TM, Langfermann DS, Ulrich M, Thiel G. Zn 2+ ions inhibit gene transcription following stimulation of the Ca 2+ channels Ca v1.2 and TRPM3. Metallomics 2020; 12:1735-1747. [PMID: 33030499 DOI: 10.1039/d0mt00180e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Zinc, a trace element, is necessary for the correct structure and function of many proteins. Therefore, Zn2+ has to be taken up by the cells, using specific Zn2+ transporters or Ca2+ channels. In this study, we have focused on two Ca2+ channels, the L-type voltage-gated Cav1.2 channel and the transient receptor potential channel TRPM3. Stimulation of either channel induces an intracellular signaling cascade leading to the activation of the transcription factor AP-1. The influx of Ca2+ ions into the cytoplasm is essential for this activity. We asked whether extracellular Zn2+ ions affect Cav1.2 or TRPM3-induced gene transcription following stimulation of the channels. The results show that extracellular Zn2+ ions reduced the activation of AP-1 by more than 80% following stimulation of either voltage-gated Cav1.2 channels or TRPM3 channels. Experiments performed with cells maintained in Ca2+-free medium revealed that Zn2+ ions cannot replace Ca2+ ions in inducing gene transcription via stimulation of Cav1.2 and TRPM3 channels. Re-addition of Ca2+ ions to the cell culture medium, however, restored the ability of these Ca2+ channels to induce a signaling cascade leading to the activation of AP-1. Secretory cells, including neurons and pancreatic β-cells, release Zn2+ ions during exocytosis. We propose that the released Zn2+ ions function as a negative feedback loop for stimulus-induced exocytosis by inhibiting Ca2+ channel signaling.
Collapse
Affiliation(s)
- Louisa Loviscach
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany.
| | | | | | | | | |
Collapse
|
49
|
Huang XP, Kenakin TP, Gu S, Shoichet BK, Roth BL. Differential Roles of Extracellular Histidine Residues of GPR68 for Proton-Sensing and Allosteric Modulation by Divalent Metal Ions. Biochemistry 2020; 59:3594-3614. [PMID: 32865988 DOI: 10.1021/acs.biochem.0c00576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
GPR68, an orphan G-protein coupled receptor, senses protons, couples to multiple G-proteins, and is also activated or inhibited by divalent metal ions. It has seven extracellular histidine residues, although it is not clear how these histidine residues play a role in both proton-sensing and metal ion modulation. Here we demonstrate that divalent metal ions are allosteric modulators that can activate or inhibit proton activity in a concentration- and pH-dependent manner. We then show that single histidine mutants have differential and varying degrees of effects on proton-sensing and metal ion modulation. Some histidine residues play dual roles in proton-sensing and metal ion modulation, while others are important in one or the other but not both. Two extracellular disulfide bonds are predicted to constrain histidine residues to be spatially close to each other. Combining histidine mutations leads to reduced proton activity and resistance to metal ion modulation, while breaking the less conserved disulfide bond results in a more severe reduction in proton-sensing over metal modulation. The small-molecule positive allosteric modulators (PAMs) ogerin and lorazepam are not affected by these mutations and remain active at mutants with severely reduced proton activity or are resistant to metal ion modulation. These results suggest GPR68 possesses two independent allosteric modulation systems, one through interaction with divalent metal ions at the extracellular surface and another through small-molecule PAMs in the transmembrane domains. A new GPR68 model is developed to accommodate the findings which could serve as a template for further studies and ligand discovery by virtual ligand docking.
Collapse
Affiliation(s)
| | | | - Shuo Gu
- Department of Pharmaceutical Science, University of California, San Francisco, California 94158, United States
| | - Brian K Shoichet
- Department of Pharmaceutical Science, University of California, San Francisco, California 94158, United States
| | | |
Collapse
|
50
|
Schumann T, König J, Henke C, Willmes DM, Bornstein SR, Jordan J, Fromm MF, Birkenfeld AL. Solute Carrier Transporters as Potential Targets for the Treatment of Metabolic Disease. Pharmacol Rev 2020; 72:343-379. [PMID: 31882442 DOI: 10.1124/pr.118.015735] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The solute carrier (SLC) superfamily comprises more than 400 transport proteins mediating the influx and efflux of substances such as ions, nucleotides, and sugars across biological membranes. Over 80 SLC transporters have been linked to human diseases, including obesity and type 2 diabetes (T2D). This observation highlights the importance of SLCs for human (patho)physiology. Yet, only a small number of SLC proteins are validated drug targets. The most recent drug class approved for the treatment of T2D targets sodium-glucose cotransporter 2, product of the SLC5A2 gene. There is great interest in identifying other SLC transporters as potential targets for the treatment of metabolic diseases. Finding better treatments will prove essential in future years, given the enormous personal and socioeconomic burden posed by more than 500 million patients with T2D by 2040 worldwide. In this review, we summarize the evidence for SLC transporters as target structures in metabolic disease. To this end, we identified SLC13A5/sodium-coupled citrate transporter, and recent proof-of-concept studies confirm its therapeutic potential in T2D and nonalcoholic fatty liver disease. Further SLC transporters were linked in multiple genome-wide association studies to T2D or related metabolic disorders. In addition to presenting better-characterized potential therapeutic targets, we discuss the likely unnoticed link between other SLC transporters and metabolic disease. Recognition of their potential may promote research on these proteins for future medical management of human metabolic diseases such as obesity, fatty liver disease, and T2D. SIGNIFICANCE STATEMENT: Given the fact that the prevalence of human metabolic diseases such as obesity and type 2 diabetes has dramatically risen, pharmacological intervention will be a key future approach to managing their burden and reducing mortality. In this review, we present the evidence for solute carrier (SLC) genes associated with human metabolic diseases and discuss the potential of SLC transporters as therapeutic target structures.
Collapse
Affiliation(s)
- Tina Schumann
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Jörg König
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Christine Henke
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Diana M Willmes
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Stefan R Bornstein
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Jens Jordan
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Martin F Fromm
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Andreas L Birkenfeld
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| |
Collapse
|