1
|
Fu T, Hu W, Chang L, Duan J. Perioperative use of enteral nutrition with ω-3 polyunsaturated fatty acid in patients with gastric cancer: a meta-analysis. Front Oncol 2024; 14:1488229. [PMID: 39469648 PMCID: PMC11513252 DOI: 10.3389/fonc.2024.1488229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
Objectives To systematically evaluate the efficacy and safety of enteral nutrition with ω-3 polyunsaturated fatty acid preparations or standard enteral nutrition preparations used in patients with gastric cancer during perioperative period, and to provide reference for clinical rational drug use. Methods Pubmed, EMbase, The Cochrane Library, CNKI and Wanfang Medical databases were searched by computer to collect relevant literature. The search period was from the establishment of the database to August 1, 2024. Meta-analysis was performed using Revman5.4 software after two researchers independently screened literature, extracted data, and evaluated the risk of bias in included studies. Results A total of 20 randomized controlled studies were included. The Meta results showed that there was no statistical difference in mortality between the enteral nutrition with ω-3 polyunsaturated fatty acid group and the control group (RR = 0.46, P = 0.17). However, the IEN group demonstrated superior advantages in reducing infection complications (RR = 0.81, P = 0.05) and wound infection (RR = 0.61, P = 0.04) among gastric cancer patients, as well as improving immune-related indicators (including IgG, IgA, IgM, CD4, and CD4/CD8), inflammation-related markers (including CRP, IL-1β, and IL-6), and nutritional indicators (including Total protein, Albumin, and Transferrin). Conclusion enteral nutrition with ω-3 polyunsaturated fatty acid preparation has advantages in the efficacy and safety of perioperative nutritional therapy in patients with gastric cancer, and can be used as a clinical choice. Due to the limited number and quality of included studies, the above conclusions need to be verified by more high-quality studies.
Collapse
Affiliation(s)
- Tingting Fu
- Clinical Trial Center Office, Beijing GoBroad Hospital, Beijing, China
| | - Wenjun Hu
- Department of Pharmacy, Fengtai District Maternal and Child Health Care Hospital, Beijing, China
| | - Lu Chang
- Clinical Trial Center Office, Beijing GoBroad Hospital, Beijing, China
| | - Jingli Duan
- Clinical Trial Center Office, Beijing GoBroad Hospital, Beijing, China
| |
Collapse
|
2
|
Albardan L, Platat C, Kalupahana NS. Role of Omega-3 Fatty Acids in Improving Metabolic Dysfunctions in Polycystic Ovary Syndrome. Nutrients 2024; 16:2961. [PMID: 39275277 PMCID: PMC11397015 DOI: 10.3390/nu16172961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder that impacts women of reproductive age. In addition to reproductive and psychological complications, women with PCOS are also at a higher risk of developing metabolic diseases such as obesity, type 2 diabetes and cardiovascular disease. While weight reduction can help manage these complications in overweight or obese women, many weight loss interventions have been ineffective due to weight stigma and its psychological impact on women with PCOS. Therefore, exploring alternative dietary strategies which do not focus on weight loss per se is of importance. In this regard, omega-3 polyunsaturated fatty acids of marine origin (n-3 PUFAs), which are known for their hypotriglyceridemic, cardioprotective and anti-inflammatory effects, have emerged as a potential therapy for prevention and reversal of metabolic complications in PCOS. Several clinical trials showed that n-3 PUFAs can improve components of metabolic syndrome in women with PCOS. In this review, we first summarize the available clinical evidence for different dietary patterns in improving PCOS complications. Next, we summarize the clinical evidence for n-3 PUFAs for alleviating metabolic complications in PCOS. Finally, we explore the mechanisms by which n-3 PUFAs improve the metabolic disorders in PCOS in depth.
Collapse
Affiliation(s)
| | | | - Nishan Sudheera Kalupahana
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
3
|
Gonzalez-Gutierrez L, Motiño O, Barriuso D, de la Puente-Aldea J, Alvarez-Frutos L, Kroemer G, Palacios-Ramirez R, Senovilla L. Obesity-Associated Colorectal Cancer. Int J Mol Sci 2024; 25:8836. [PMID: 39201522 PMCID: PMC11354800 DOI: 10.3390/ijms25168836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Colorectal cancer (CRC) affects approximately 2 million people worldwide. Obesity is the major risk factor for CRC. In addition, obesity contributes to a chronic inflammatory stage that enhances tumor progression through the secretion of proinflammatory cytokines. In addition to an increased inflammatory response, obesity-associated cancer presents accrued molecular factors related to cancer characteristics, such as genome instability, sustained cell proliferation, telomere dysfunctions, angiogenesis, and microbial alteration, among others. Despite the evidence accumulated over the last few years, the treatments for obesity-associated CRC do not differ from the CRC treatments in normal-weight individuals. In this review, we summarize the current knowledge on obesity-associated cancer, including its epidemiology, risk factors, molecular factors, and current treatments. Finally, we enumerate possible new therapeutic targets that may improve the conditions of obese CRC patients. Obesity is key for the development of CRC, and treatments resulting in the reversal of obesity should be considered as a strategy for improving antineoplastic CRC therapies.
Collapse
Affiliation(s)
- Lucia Gonzalez-Gutierrez
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Omar Motiño
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Daniel Barriuso
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Juan de la Puente-Aldea
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Lucia Alvarez-Frutos
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France;
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - Roberto Palacios-Ramirez
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Laura Senovilla
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France;
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
| |
Collapse
|
4
|
Song X, Tian Z, Jiang K, He K, Huang Y, Hu C, He X, Jin L, Tao Y. Associations between Plant-Based Dietary Patterns and Sensory Impairments among Chinese Older Adults: Based on the Chinese Longitudinal Healthy Longevity Survey. Gerontology 2024; 70:1042-1054. [PMID: 39097967 PMCID: PMC11493375 DOI: 10.1159/000540611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/21/2024] [Indexed: 08/06/2024] Open
Abstract
INTRODUCTION The aim of this study was to investigate the relationship between the plant-based dietary index and vision impairment (VI), hearing impairment (HI), and dual sensory impairment (DSI) among Chinese aged 65 and older. METHODS Based on the 2018 data from the Chinese Longitudinal Healthy Longevity Survey (CLHLS), a cross-sectional study was conducted on 14,859 samples. The assessment of dietary quality utilized the plant-based diet index (PDI), healthy plant-based diet index (hPDI), and unhealthy plant-based diet index (uPDI). Logistic regression analysis was used to examine the associations between PDIs and sensory impairments. Additionally, restricted cubic spline analysis was utilized to investigate the nonlinear association between PDIs and sensory impairments. RESULTS Participants in the highest quintile of PDI exhibited reduced prevalence of VI (OR 0.78, 95% CI: 0.67-0.90, ptrend <0.001), HI (OR 0.83, 95% CI: 0.70-0.99, ptrend <0.001), and DSI (OR 0.62, 95% CI: 0.51-0.77, ptrend <0.001) relative to those in the lowest quintile. Moreover, individuals who ranked in the highest quintile for hPDI exhibited a 25% reduced risk of VI disease. Conversely, those in the highest quintile of uPDI were associated with increased prevalence of VI (OR 1.37, 95% CI: 1.17-1.61, ptrend <0.001), HI (OR 1.36, 95% CI: 1.12-1.65, ptrend <0.001), and DSI (OR 1.56, 95% CI: 1.25-1.95, ptrend <0.001). The relationship between PDIs increasing by every 10 units and sensory impairments showed similar patterns. Notably, hPDI demonstrated a nonlinear relationship with HI (pfor nonlinearity = 0.001), while the others exhibited linear associations. CONCLUSION The increase in PDI and hPDI correlates with a reduced prevalence of one or more sensory impairments. Conversely, an increase in uPDI is associated with an elevated prevalence of multiple sensory impairments. Our study findings emphasize the significance of plant-based food quality, advocating for adherence to a plant-based dietary pattern while reducing the intake of less healthy plant foods and animal-based products.
Collapse
Affiliation(s)
- Xingxu Song
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Zhong Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Kexin Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Kai He
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Yuhan Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Chengxiang Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Xue He
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Lina Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Yuchun Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
5
|
Elkanawati RY, Sumiwi SA, Levita J. Impact of Lipids on Insulin Resistance: Insights from Human and Animal Studies. Drug Des Devel Ther 2024; 18:3337-3360. [PMID: 39100221 PMCID: PMC11298177 DOI: 10.2147/dddt.s468147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024] Open
Abstract
Insulin resistance (IR) is a complex pathological condition central to metabolic diseases such as type 2 diabetes mellitus (T2DM), cardiovascular disease, non-alcoholic fatty liver disease, and polycystic ovary syndrome (PCOS). This review evaluates the impact of lipids on insulin resistance (IR) by analyzing findings from human and animal studies. The articles were searched on the PubMed database using two keywords: (1) "Role of Lipids AND Insulin Resistance AND Humans" and (2) "Role of Lipids AND Insulin Resistance AND Animal Models". Studies in humans revealed that elevated levels of free fatty acids (FFAs) and triglycerides (TGs) are closely associated with reduced insulin sensitivity, and interventions like metformin and omega-3 fatty acids show potential benefits. In animal models, high-fat diets disrupt insulin signaling and increase inflammation, with lipid mediators such as diacylglycerol (DAG) and ceramides playing significant roles. DAG activates protein kinase C, which eventually impairs insulin signaling, while ceramides inhibit Akt/PKB, further contributing to IR. Understanding these mechanisms is crucial for developing effective prevention and treatment strategies for IR-related diseases.
Collapse
Affiliation(s)
- Rani Yulifah Elkanawati
- Master Program in Pharmacy, Faculty of Pharmacy, Padjadjaran University, Jawa Barat, West Java, 45363, Indonesia
| | - Sri Adi Sumiwi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, 45363, Indonesia
| | - Jutti Levita
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, 45363, Indonesia
| |
Collapse
|
6
|
Wang Y, Balvers MGJ, Esser D, Schutte S, Vincken JP, Afman LA, Witkamp RF, Meijerink J. Nutrient composition of different energy-restricted diets determines plasma endocannabinoid profiles and adipose tissue DAGL-α expression; a 12-week randomized controlled trial in subjects with abdominal obesity. J Nutr Biochem 2024; 128:109605. [PMID: 38401691 DOI: 10.1016/j.jnutbio.2024.109605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
The endocannabinoid system (ECS) is dysregulated during obesity and metabolic disorders. Weight loss favours the re-establishment of ECS homeostatic conditions, but also the fatty acid composition of the diet can modulate endocannabinoid profiles. However, the combined impact of nutrient quality and energy restriction on the ECS remains unclear. In this 12 weeks randomized controlled trial, men and women (40-70 years) with obesity (BMI: 31.3 ± 3.5 kg/ m2) followed either a low nutrient quality 25% energy-restricted (ER) diet (n=39) high in saturated fats and fructose, or a high nutrient quality ER diet (n=34) amongst others enriched in n-3 polyunsaturated fatty acids (PUFAs) or kept their habitual diet (controls). Profiles of plasma- and adipose N-acylethanolamines and mono-acyl glycerol esters were quantified using LC-MS/MS. Gene expression of ECS-related enzymes and receptors was determined in adipose tissue. Measurements were performed under fasting conditions before and after 12 weeks. Our results showed that plasma level of the DHA-derived compound docosahexaenoylethanolamide (DHEA) was decreased in the low nutrient quality ER diet (P<0.001) compared with the high nutrient quality ER diet, whereas anandamide (AEA) and arachidonoylglycerol (2-AG) levels were unaltered. However, adipose tissue gene expression of the 2-AG synthesizing enzyme diacylglycerol lipase alpha (DAGL-α) was increased following the low nutrient quality ER diet (P<.009) and differed upon intervention with both other diets. Concluding, nutrient quality of the diet affects N-acylethanolamine profiles and gene expression of ECS-related enzymes and receptors even under conditions of high energy restriction in abdominally obese humans. ClinicalTrials.gov NCT02194504.
Collapse
Affiliation(s)
- Ya Wang
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands; The Laboratory of Food Chemistry, Wageningen University, Wageningen, The Netherlands
| | - Michiel G J Balvers
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Diederik Esser
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Sophie Schutte
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Jean-Paul Vincken
- The Laboratory of Food Chemistry, Wageningen University, Wageningen, The Netherlands
| | - Lydia A Afman
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Renger F Witkamp
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Jocelijn Meijerink
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
7
|
Aruwa CE, Sabiu S. Adipose tissue inflammation linked to obesity: A review of current understanding, therapies and relevance of phyto-therapeutics. Heliyon 2024; 10:e23114. [PMID: 38163110 PMCID: PMC10755291 DOI: 10.1016/j.heliyon.2023.e23114] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Obesity is a current global challenge affecting all ages and is characterized by the up-regulated secretion of bioactive factors/pathways which result in adipose tissue inflammation (ATI). Current obesity therapies are mainly focused on lifestyle (diet/nutrition) changes. This is because many chemosynthetic anti-obesogenic medications cause adverse effects like diarrhoea, dyspepsia, and faecal incontinence, among others. As such, it is necessary to appraise the efficacies and mechanisms of action of safer, natural alternatives like plant-sourced compounds, extracts [extractable phenol (EP) and macromolecular antioxidant (MA) extracts], and anti-inflammatory peptides, among others, with a view to providing a unique approach to obesity care. These natural alternatives may constitute potent therapies for ATI linked to obesity. The potential of MA compounds (analysed for the first time in this review) and extracts in ATI and obesity management is elucidated upon, while also highlighting research gaps and future prospects. Furthermore, immune cells, signalling pathways, genes, and adipocyte cytokines play key roles in ATI responses and are targeted in certain therapies. As a result, this review gives an in-depth appraisal of ATI linked to obesity, its causes, mechanisms, and effects of past, present, and future therapies for reversal and alleviation of ATI. Achieving a significant decrease in morbidity and mortality rates attributed to ATI linked to obesity and related comorbidities is possible as research improves our understanding over time.
Collapse
Affiliation(s)
- Christiana Eleojo Aruwa
- Department of Biotechnology and Food Science, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| |
Collapse
|
8
|
Liang Y, Wu F, Wu D, Zhu X, Gao X, Hu X, Xu F, Ma T, Zhao H, Cao W. Fu Loose Tea Administration Ameliorates Obesity in High-Fat Diet-Fed C57BL/6J Mice: A Comparison with Fu Brick Tea and Orlistat. Foods 2024; 13:206. [PMID: 38254507 PMCID: PMC10815023 DOI: 10.3390/foods13020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Fu tea is receiving increasing attention for its specific aroma, flavor, and dramatic functional benefits. Herein, we explored the effects and underlying mechanisms of Fu loose tea (FLT), Fu brick tea (FBT), and diet pills (orlistat) on a high-fat diet (HFD)-induced obesity. The results indicated that FLT and FBT administration effectively inhibited weight gain, glucose metabolic dysregulation, fat accumulation in organs, hepatic and kidney injury, and oxidative stress induced by HFD. Additionally, FLT and FBT treatments improved the lipid profiles and reduced the production of proinflammatory cytokines by regulating the expression levels of lipid metabolism- and inflammation-related genes. Furthermore, FLT and FBT ameliorated the gut microbiota dysbiosis in HFD-mice in a dose-dependent relationship by increasing the abundance of family Verrucomicrobiaceae and genus Akkermansia and Turicibacter and simultaneously reducing the abundance of family Erysipelotrichaceae and genus Bifidobacterium; in contrast, orlistat did not exert a regulatory effect on gut microbiota similar to FLT and FBT to improve HFD-induced obesity. KEGG analysis of gut microbiota annotation revealed that "metabolism" was the most enriched category. This study further provides a theoretical basis for FLT and FBT to be potential supplements to alleviate diet-induced obesity.
Collapse
Affiliation(s)
- Yan Liang
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (Y.L.); (F.W.); (F.X.); (T.M.); (H.Z.)
- Key Laboratory of Fu Tea Processing and Utilization, Ministry of Agriculture and Rural Affairs, Xianyang 712044, China; (X.Z.); (X.H.)
| | - Fanhua Wu
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (Y.L.); (F.W.); (F.X.); (T.M.); (H.Z.)
| | - Daying Wu
- Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/National Key Laboratory of Wheat Breeding, Ministry of Science and Technology/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley, Ministry of Agriculture/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China; (D.W.); (X.G.)
| | - Xiaofang Zhu
- Key Laboratory of Fu Tea Processing and Utilization, Ministry of Agriculture and Rural Affairs, Xianyang 712044, China; (X.Z.); (X.H.)
- Xianyang Jingwei Fu Tea Co., Ltd., Xianyang 712044, China
| | - Xin Gao
- Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/National Key Laboratory of Wheat Breeding, Ministry of Science and Technology/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley, Ministry of Agriculture/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China; (D.W.); (X.G.)
| | - Xin Hu
- Key Laboratory of Fu Tea Processing and Utilization, Ministry of Agriculture and Rural Affairs, Xianyang 712044, China; (X.Z.); (X.H.)
- Xianyang Jingwei Fu Tea Co., Ltd., Xianyang 712044, China
| | - Fangrui Xu
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (Y.L.); (F.W.); (F.X.); (T.M.); (H.Z.)
| | - Tianchen Ma
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (Y.L.); (F.W.); (F.X.); (T.M.); (H.Z.)
| | - Haoan Zhao
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (Y.L.); (F.W.); (F.X.); (T.M.); (H.Z.)
| | - Wei Cao
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (Y.L.); (F.W.); (F.X.); (T.M.); (H.Z.)
| |
Collapse
|
9
|
Khodashahi R, Beiraghdar F, Ferns GA, Ashrafzadeh K, Aliakbarian M, Arjmand MH. The Role of Local Angiotensin II/Angiotensin Type 1-receptor Mechanisms in Adipose Tissue Dysfunction to Promote Pancreatic Cancer. Curr Cancer Drug Targets 2024; 24:1187-1194. [PMID: 38347780 DOI: 10.2174/0115680096281059240103154836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/28/2023] [Accepted: 12/14/2023] [Indexed: 09/25/2024]
Abstract
Obesity and adipose tissue dysfunction are important risk factors for pancreatic cancer. Pancreatic cancer is one of the most lethal cancers globally. The renin-angiotensin system (RAS) is expressed in many tissues, including adipose tissue. Dysregulation of angiotensin II and angiotensin II receptors in adipose tissue through the activation of different signaling pathways leads to adipose tissue dysfunction, including insulin resistance, adipose tissue inflammation, adipocytokines secretion, and metabolic alterations. The pathogenesis of pancreatic cancer remains uncertain. However, there is evidence that dysregulation of local angiotensin II in adipose tissue that occurs in association with obesity is, in part, responsible for the initiation and progression of pancreatic cancer. Due to the role of local angiotensin II in the dysfunction of adipose tissue, angiotensin receptor blockers may be considered a new therapeutic strategy in the amelioration of the complications related to adipose tissue dysfunction and prevention of pancreatic cancer. This review aims to consider the biological roles of local angiotensin II and angiotensin II receptors in adipose tissue dysfunction to promote pancreatic cancer progression with a focus on adipose tissue inflammation and metabolic reprogramming.
Collapse
Affiliation(s)
- Rozita Khodashahi
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Beiraghdar
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Gorgon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, UK
| | - Kiayash Ashrafzadeh
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Aliakbarian
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad-Hassan Arjmand
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Perla S, Kumar A. Epigenetic and transcriptional regulation of the human angiotensinogen gene by high salt. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568343. [PMID: 38045346 PMCID: PMC10690268 DOI: 10.1101/2023.11.22.568343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Hypertension is caused by a combination of genetic and environmental factors. Angiotensinogen (AGT) is a component of RAAS, that regulates blood pressure. The human angiotensinogen (hAGT) gene has -6A/-6G polymorphism and -6A variant is associated with human hypertension. In this study, we have investigated the epigenetic regulation of the hAGT. To understand transcriptional regulation of the hAGT, we have made transgenic animals containing -6A. We show that HS affects DNA methylation and modulates transcriptional regulation of this gene in liver and kidney. High salt (HS) increases hAGT gene expression in -6A TG mice. We have observed that the number of CpG sites in the hAGT promoter is decreased after HS treatment. In the liver, seven CpG sites are methylated whereas after HS treatment, only three CpG sites remain methylated. In the kidney, five CpG sites are methylated, whereas after HS treatment, only three CpG sites remain methylated. These results suggest that HS promotes DNA demethylation and increasing AGT gene expression. RT-PCR and immunoblot analysis show that hAGT gene expression is increased by HS. Chip assay has shown that transcription factors bind strongly after HS treatment. RNA-Seq identified differentially expressed genes, novel target genes associated with hypertension, top canonical pathways, upstream regulators. One of the plausible mechanisms for HS induced up-regulation of the hAGT gene is through IL-6/JAK/STAT3/AGT axis.
Collapse
|
11
|
Min R, Xu Y, Peng B. The clinical value of glycosylated hemoglobin level in newly diagnosed ketosis-prone type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1244008. [PMID: 38027130 PMCID: PMC10667908 DOI: 10.3389/fendo.2023.1244008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Objective To evaluate the clinical value of glycosylated hemoglobin (HbA1c) in newly diagnosed ketosis-prone type 2 diabetes (KPD). Methods A total of 330 patients with newly diagnosed type 2 diabetes (T2DM) hospitalized in our department with an average age of 48.72 ± 13.07 years old were selected and divided into T2DM group (193 cases) and KPD group (137 cases) according to whether they were combined with ketosis. According to the quartile level of HbA1c, they were divided into group A (HbA1c < 8.90%, 84 cases), group B (8.90%≤HbA1c < 10.70%, 86 cases), group C (10.70%≤HbA1c ≤ 12.40%, 85 cases) and group D (HbA1c > 12.40%, 75 cases). The general clinical features, laboratory indicators and islet function of each group were compared. Spearman correlation analysis was used to explore the correlation between HbA1c and β- Hydroxybutyric acid (β- HB) and islet function. ROC curve was used to analyze the sensitivity and specificity of HbA1c in diagnosing KPD, and the optimal tangent point was obtained. Results HbA1c, β-HB, FFA, RBG, insulin dosage, GSP, OGTT (0, 0.5, 1, 2, 3h) in KPD group were significantly higher than those in T2DM group (P< 0.001). HDL-C, IRT (0, 0.5, 1, 2, 3h), HOMA-β, HOMA-IR, HOMA-IS, ΔC30/ΔG30, AUC insulin were significantly lower than those in T2DM group (P< 0.001). With the increase of HbA1c level, the incidence of ketosis, β-HB, FFA and insulin dosage increased, while IRT (0, 0.5, 1, 2, 3h), ΔC30/ΔG30, AUC insulin, HOMA-β and HOMA-IS decreased accordingly (P< 0.001). In all newly diagnosed T2DM patients, Spearman correlation analysis showed that HbA1c was positively correlated with β-HB (r=0.539, P < 0.001), and was negatively correlated with HOMA-β (r=-0.564, P < 0.001), HOMA-IS (r=-0.517, P < 0.01, P < 0.001), HOMA-IR (r=-0.177, P < 0.001), ΔC30/ΔG30 (r=-0.427, P < 0.01) and AUC insulin (r=-0.581, P < 0.001). In ROC curve analysis, the optimal threshold for the diagnosis of KPD was 10.15%, Youden index was 0.616, area under the curve (AUC) was 0.882, sensitivity = 92.70%, specificity = 70.50%. Conclusion In newly diagnosed T2DM patients, if HbA1c > 10.15%, it is more likely to develop KPD. Monitoring HbA1c level is conducive to timely detection of high-risk individuals with KPD and taking appropriate measures to prevent the occurrence and development of the disease.
Collapse
Affiliation(s)
- Rui Min
- Department of Geriatrics, Wuhan Fourth Hospital, Wuhan, Hubei, China
| | - Yancheng Xu
- Department of Endocrinology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Bocheng Peng
- Department of Pain, Wuhan Fourth Hospital, Wuhan, Hubei, China
| |
Collapse
|
12
|
Borja-Magno AI, Furuzawa-Carballeda J, Guevara-Cruz M, Arias C, Granados J, Bourges H, Tovar AR, Sears B, Noriega LG, Gómez FE. Supplementation with EPA and DHA omega-3 fatty acids improves peripheral immune cell mitochondrial dysfunction and inflammation in subjects with obesity. J Nutr Biochem 2023; 120:109415. [PMID: 37437746 DOI: 10.1016/j.jnutbio.2023.109415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Omega-3 fatty acids (w-3 FA) have anti-inflammatory effects and improve mitochondrial function. Nonetheless, little is known about their effect on mitochondrial bioenergetics of peripheral blood mononuclear cells (PBMCs) in individuals with obesity. Thus, this study aimed to determine the mitochondrial bioenergetics status and cell subset composition of PBMCs during obesity, before and after 1 month supplementation with w-3 FA. We performed a case-control study with twelve women with normal BMI (lean group) and 19 with grade 2 obesity (obese group), followed by a before-after prospective study where twelve subjects with obesity received a 1 month intervention with 5.25 g of w-3 FA (3.5 g eicosapentaenoic (EPA) and 1.75 g docosahexaenoic (DHA) acids), and obtained PBMCs from all participants. Mitochondrial bioenergetic markers, including basal and ATP-production associated respiration, proton leak, and nonmitochondrial respiration, were higher in PBMCs from the obese group vs. the lean group. The bioenergetic health index (BHI), a marker of mitochondrial function, was lower in the obese vs. the lean group. In addition, Th1, Th2, Th17, CD4+ Tregs, CD8+ Tregs, and Bregs, M1 monocytes and pDCreg cells were higher in PBMCs from the obese group vs. the lean group. The w-3 FA intervention improved mitochondrial function, mainly by decreasing nonmitochondrial respiration and increasing the reserve respiratory capacity and BHI. The intervention also reduced circulating pro-inflammatory and anti-inflammatory lymphocyte and monocytes subsets in individuals with obesity. The mitochondrial dysfunction of PBMCs and the higher proportion of peripheral pro-inflammatory and anti-inflammatory immune cells in subjects with obesity, improved with 1 month supplementation with EPA and DHA.
Collapse
Affiliation(s)
- Angélica I Borja-Magno
- Department of Nutritional Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Ciudad de México, Mexico
| | - Janette Furuzawa-Carballeda
- Department of Experimental Surgery, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Ciudad de México, Mexico
| | - Martha Guevara-Cruz
- Department of Nutritional Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Ciudad de México, Mexico
| | - Clorinda Arias
- Department of Genomics Medicine and Environmental Toxicology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacan, Ciudad de México, Mexico
| | - Julio Granados
- Department of Transplants, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Ciudad de México, Mexico
| | - Hector Bourges
- Divission of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Ciudad de México, Mexico
| | - Armando R Tovar
- Department of Nutritional Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Ciudad de México, Mexico
| | - Barry Sears
- Inflammation Research Foundation, Peabody, Massachusetts, USA
| | - Lilia G Noriega
- Department of Nutritional Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Ciudad de México, Mexico.
| | - Francisco Enrique Gómez
- Department of Nutritional Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Ciudad de México, Mexico.
| |
Collapse
|
13
|
Boniecka I, Czerwonogrodzka-Senczyna A, Jeznach-Steinhagen A, Paśnik K, Szostak-Węgierek D, Zeair S. Nutritional Status, Selected Nutrients Intake, and Metabolic Disorders in Bariatric Surgery Patients. Nutrients 2023; 15:nu15112479. [PMID: 37299442 DOI: 10.3390/nu15112479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Bariatric surgery is the most effective treatment for obesity and its complications. However, failure to adhere to dietary recommendations can result in both unsatisfactory weight loss and metabolic disorders. The aim of this study was to evaluate the effects of bariatric surgery on the anthropometric parameters and selected nutrient intake. A total of 12 months postoperatively, percent excess weight loss (%EWL) was significantly higher after laparoscopic Roux-en-Y gastric bypass (LRYGB) than laparoscopic sleeve gastrectomy (LSG) and laparoscopic adjustable gastric banding (LAGB) (93.78% vs. 56.13% and 55.65%, p < 0.001). The same was true for waist-to-hip ratio (WHR) (p = 0.017) and waist-to-height ratio (WHtR) changes (p = 0.022). There was a significant decrease in total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels after RYGB. A significant decrease (p < 0.05) in daily intake was found for energy (4278.4 kcal vs. 1355.17 kcal), sucrose (122.23 g vs. 38.22 g), dietary fiber (30.90 g vs. 14.20 g), eicosapentaenoic fatty acid and docosahexaenoic acid (EPA+DHA) (142.46 mg vs. 52.90 mg) and % energy from fats (42.43% vs. 35.17%), saturated fatty acids (SAFAs) (19.96% vs. 14.11%) and alpha-linolenic fatty acid (ALA) (0.87% vs. 0.69%). Energy intake and energy % from fats positively correlated with body weight (BW), waist circumference (WC), WHR, and WHtR, and negatively with %EWL. The percentage of unsaturated fatty acids positively correlated with WC and WHR. Energy intake correlated positively with serum triglycerides (TGs) and energy % from fats and carbohydrates. Despite significant weight loss, the patient's diet deviated from recommendations and may have contributed to metabolic disorders.
Collapse
Affiliation(s)
- Iwona Boniecka
- Department of Clinical Dietetics, Faculty of Health Sciences, Medical University of Warsaw, 01-445 Warsaw, Poland
| | | | - Anna Jeznach-Steinhagen
- Department of Clinical Dietetics, Faculty of Health Sciences, Medical University of Warsaw, 01-445 Warsaw, Poland
| | - Krzysztof Paśnik
- Department of General, Gastroenterological and Oncological Surgery, Collegium Medicum Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Dorota Szostak-Węgierek
- Department of Clinical Dietetics, Faculty of Health Sciences, Medical University of Warsaw, 01-445 Warsaw, Poland
| | - Samir Zeair
- Department of General, Vascular and Transplantation Surgery, Marie Curie Hospital, 71-455 Szczecin, Poland
| |
Collapse
|
14
|
Wu H, Gu Y, Meng G, Wu H, Zhang S, Wang X, Zhang J, Huang T, Niu K. Quality of plant-based diet and the risk of dementia and depression among middle-aged and older population. Age Ageing 2023; 52:7181249. [PMID: 37247402 DOI: 10.1093/ageing/afad070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND several previous studies have shown the importance of the plant-based diets. However, not all plant-based foods are necessarily beneficial for dementia or depression. This study aimed to prospectively investigate the association between an overall plant-based diet and the incidence of dementia or depression. METHODS we included 180,532 participants from the UK Biobank cohort study, free of a history of cardiovascular disease, cancer, dementia and depression at baseline. We calculated an overall plant-based diet index (PDI), a healthful plant-based diet index (hPDI) and an unhealthful plant-based diet index (uPDI) based on 17 major food groups from Oxford WebQ. Dementia and depression were evaluated using hospital inpatient records in UK Biobank. Cox proportional hazards regression models were used to estimate the association between PDIs and the incidence of dementia or depression. RESULTS during the follow-up, 1,428 dementia cases and 6,781 depression cases were documented. After adjusting for several potential confounders and comparing the highest with the lowest quintile of three plant-based diet indices, the multivariable hazard ratios (95% confidence intervals (CIs)) for dementia were 1.03 (0.87, 1.23) for PDI, 0.82 (0.68, 0.98) for hPDI and 1.29 (1.08, 1.53) for uPDI. The hazard ratios (95% CI) for depression were 1.06 (0.98, 1.14) for PDI, 0.92 (0.85, 0.99) for hPDI and 1.15 (1.07, 1.24) for uPDI. CONCLUSION a plant-based diet rich in healthier plant foods was associated with a lower risk of dementia and depression, whereas a plant-based diet that emphasises less-healthy plant foods was associated with a higher risk of dementia and depression.
Collapse
Affiliation(s)
- Hanzhang Wu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- School of Public Health of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yeqing Gu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ge Meng
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Hongmei Wu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- School of Public Health of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shunming Zhang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- School of Public Health of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuena Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- School of Public Health of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Juanjuan Zhang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- School of Public Health of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Kaijun Niu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- School of Public Health of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| |
Collapse
|
15
|
Bakker N, Hickey M, Shams R, Rivera CF, Vlahos J, Cense HA, Demirkiran A, Ramkhelawon B, Houdijk AP. Oral ω-3 PUFA supplementation modulates inflammation in adipose tissue depots in morbidly obese women: A randomized trial. Nutrition 2023; 111:112055. [PMID: 37182400 DOI: 10.1016/j.nut.2023.112055] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/16/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023]
Abstract
OBJECTIVES Obesity is characterized by local and systemic low-grade inflammatory responses. Adipose tissue macrophages (ATM) play decisive roles in inflammation, insulin signaling, and various metabolic dysfunctions. Diets enriched with ω-3 polyunsaturated fatty acids (PUFAs) have been shown to improve health and mitigate pathologic conditions. However, the effects of ω-3 PUFA on adipose tissue inflammation, ATM number, and phenotype are poorly defined in human obesity. The aim of this study was to examine differences in expression of metabolic-inflammatory markers in omental, mesenteric, and subcutaneous fat depots of obese women supplemented with ω-3 PUFAs for 4 wk compared with a low-calorie diet before bariatric surgery. METHODS In a randomized controlled trial, inflammatory markers in the abdominal adipose tissue and the systemic response in obese women were studied. Patients were treated with a 2-wk low-calorie diet (LCD) or a 4-wk ω-3 PUFA-enriched diet (920 mg eicosapentaenoic acid, 760 mg docosahexaenoic acid daily) before laparoscopic bypass surgery. Omental, mesenteric, and subcutaneous adipose tissue biopsies were collected during surgery and analyzed for quantity and phenotype of ATMs, and profiled for adipokines, cytokines, and signal transduction molecules. RESULTS The chronic inflammatory state characterized by ATM markers was mostly improved by ω-3 PUFAs in visceral adipose tissue. We observed a decreased expression of CD45, CCL2, and CD68, indicating a lower inflammatory state. In patients with type 2 diabetes, ω-3 PUFAs lowered the expression of Netrin-1. CONCLUSIONS Compared with an LCD, a diet enriched with ω-3 PUFAs influences the inflammatory state in different adipose tissue depots, by affecting markers of adipose tissue inflammation, macrophage phenotype, and retention. However, this was not reflected in clinical parameters such as insulin resistance and inflammatory cytokines. Subcutaneous adipose tissue and visceral adipose tissue have different responses to an LCD or a ω-3 PUFA-enriched diet. The presence of diabetes modifies the expression of inflammatory markers.
Collapse
Affiliation(s)
- Nathalie Bakker
- Northwest Clinics, Department of Surgery, Alkmaar, The Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Surgery, Amsterdam, The Netherlands; Red Cross Hospital, Department of Surgery, Beverwijk, The Netherlands
| | - Meave Hickey
- Division of Vascular and Endovascular Surgery, Department of Surgery and Cell Biology, New York University Langone Medical Center, New York, New York, United States
| | - Rebecca Shams
- Division of Vascular and Endovascular Surgery, Department of Surgery and Cell Biology, New York University Langone Medical Center, New York, New York, United States
| | - Cristobal F Rivera
- Division of Vascular and Endovascular Surgery, Department of Surgery and Cell Biology, New York University Langone Medical Center, New York, New York, United States
| | - John Vlahos
- Division of Vascular and Endovascular Surgery, Department of Surgery and Cell Biology, New York University Langone Medical Center, New York, New York, United States
| | - Huib A Cense
- Red Cross Hospital, Department of Surgery, Beverwijk, The Netherlands
| | - Ahmet Demirkiran
- Red Cross Hospital, Department of Surgery, Beverwijk, The Netherlands
| | - Bhama Ramkhelawon
- Division of Vascular and Endovascular Surgery, Department of Surgery and Cell Biology, New York University Langone Medical Center, New York, New York, United States
| | - Alexander Pj Houdijk
- Northwest Clinics, Department of Surgery, Alkmaar, The Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Surgery, Amsterdam, The Netherlands; Red Cross Hospital, Department of Surgery, Beverwijk, The Netherlands.
| |
Collapse
|
16
|
Yavari M, Ramalingam L, Harris BN, Kahathuduwa CN, Chavira A, Biltz C, Mounce L, Maldonado KA, Scoggin S, Zu Y, Kalupahana NS, Yosofvand M, Moussa H, Moustaid-Moussa N. Eicosapentaenoic Acid Protects against Metabolic Impairments in the APPswe/PS1dE9 Alzheimer's Disease Mouse Model. J Nutr 2023; 153:1038-1051. [PMID: 36781072 PMCID: PMC10273166 DOI: 10.1016/j.tjnut.2023.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by amyloid-β (Aβ) plaques. Systemic inflammation and obesity may exacerbate AD pathogenesis. We previously reported anti-inflammatory and anti-obesity effects of EPA in mice. OBJECTIVES We aimed to determine whether EPA reduces obesity-associated metabolic dysfunctions and Aβ accumulation in AD amyloidogenic mice. METHODS Two-mo-old APPswe/PS1dE9 transgenic (TG) mice and non-TG littermates were randomly assigned to low fat (LF; 10% kcal fat), high fat (HF; 45% kcal fat), or EPA (36 g/kg)-supplemented HF diets. Body composition, glucose tolerance, and energy expenditure were measured, and serum and brain metabolic markers were tested 38 wk postintervention. Outcomes were statistically analyzed via 3-factor ANOVA, modeling genotype, sex, and diet interactions. RESULTS HF-fed males gained more weight than females (Δ = 61 mg; P < 0.001). Compared with LF, HF increased body weights of wild-type (WT) males (Δ = 31 mg; P < 0.001). EPA reduced HF-induced weight gain in WT males (Δ = 24 mg; P = 0.054) but not in females. HF mice showed decreased glucose clearance and respiratory energy compared with LF-fed groups (Δ = -1.31 g/dL; P < 0.001), with no significant effects of EPA. However, EPA conferred metabolic improvements by decreasing serum leptin and insulin (Δ = -2.51 g/mL and Δ = -0.694 ng/mL, respectively compared with HF, P ≤ 0.05) and increasing adiponectin (Δ = 21.6 ng/mL; P < 0.001). As we expected, TG mice expressed higher serum and brain Aβ than WT mice (Δ = 0.131 ng/mL; P < 0.001 and Δ = 0.56%; P < 0.01, respectively), and EPA reduced serum Aβ1-40 in TG males compared with HF (Δ = 0.053 ng/mL; P ≤ 0.05). CONCLUSIONS To our knowledge, this is the first report that EPA reduces serum Aβ1-40 in obese AD male mice, warranting further investigations into tissue-specific mechanisms of EPA in AD.
Collapse
Affiliation(s)
- Mahsa Yavari
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Breanna N Harris
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX, USA; Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Chanaka Nadeeshan Kahathuduwa
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX, USA; Department of Laboratory Science and Primary Care, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Angela Chavira
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Caroline Biltz
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Logan Mounce
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | | | - Shane Scoggin
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Yujiao Zu
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX, USA
| | - Nishan Sudheera Kalupahana
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX, USA; Department of Physiology, University of Peradeniya, Sri Lanka
| | - Mohammad Yosofvand
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Hanna Moussa
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
17
|
Jurado-Fasoli L, Osuna-Prieto FJ, Yang W, Kohler I, Di X, Rensen PCN, Castillo MJ, Martinez-Tellez B, Amaro-Gahete FJ. High omega-6/omega-3 fatty acid and oxylipin ratio in plasma is linked to an adverse cardiometabolic profile in middle-aged adults. J Nutr Biochem 2023; 117:109331. [PMID: 36967095 DOI: 10.1016/j.jnutbio.2023.109331] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/09/2022] [Accepted: 03/18/2023] [Indexed: 04/16/2023]
Abstract
Omega-6 and omega-3 oxylipins may be surrogate markers of systemic inflammation, which is one of the triggers for the development of cardiometabolic disorders. In the current study, we investigated the relationship between plasma levels of omega-6 and omega-3 oxylipins with body composition and cardiometabolic risk factors in middle-aged adults. Seventy-two 72 middle-aged adults (39 women; 53.6±5.1 years old; 26.7±3.8 kg/m2) were included in this cross-sectional study. Plasma levels of omega-6 and omega-3 fatty acids and oxylipins were determined using targeted lipidomic. Body composition, dietary intake, and cardiometabolic risk factors were assessed with standard methods. The plasma levels of the omega-6 fatty acids and derived oxylipins, the hydroxyeicosatetraenoic acids (HETEs; arachidonic acid (AA)-derived oxylipins) and dihydroxy-eicosatrienoic acids (DiHETrEs; AA-derived oxylipins), were positively associated with glucose metabolism parameters (i.e., insulin levels and homeostatic model assessment of insulin resistance index (HOMA); all r≥0.21, P<.05). In contrast, plasma levels of omega-3 fatty acids and derived oxylipins, specifically hydroxyeicosapentaenoic acids (HEPEs; eicosapentaenoic acid-derived oxylipins), as well as series-3 prostaglandins, were negatively associated with plasma glucose metabolism parameters (i.e., insulin levels, HOMA; all r≤0.20, P<.05). The plasma levels of omega-6 fatty acids and derived oxylipins, HETEs and DiHETrEs were also positively correlated with liver function parameters (i.e., glutamic pyruvic transaminase, gamma-glutamyl transferase (GGT), and fatty liver index; all r≥0.22 and P<.05). In addition, individuals with higher omega-6/omega-3 fatty acid and oxylipin ratio showed higher levels of HOMA, total cholesterol, low-density lipoprotein-cholesterol, triglycerides, and GGT (on average +36%), as well as lower levels of high-density lipoprotein cholesterol (-13%) (all P<.05). In conclusion, the omega-6/omega-3 fatty acid and oxylipin ratio, as well as specific omega-6 and omega-3 oxylipins plasma levels, reflect an adverse cardiometabolic profile in terms of higher insulin resistance and impaired liver function in middle-aged adults.
Collapse
Affiliation(s)
- Lucas Jurado-Fasoli
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Department of Physical Education and Sports, Faculty of Sport Sciences, PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain.
| | - Francisco J Osuna-Prieto
- Department of Physical Education and Sports, Faculty of Sport Sciences, PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain; Department of Analytical Chemistry, University of Granada, Granada, Spain
| | - Wei Yang
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - Isabelle Kohler
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Center for Analytical Sciences Amsterdam, Amsterdam, the Netherlands
| | - Xinyu Di
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Manuel J Castillo
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Borja Martinez-Tellez
- Department of Physical Education and Sports, Faculty of Sport Sciences, PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain; Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands; Department of Education, Faculty of Education Sciences and SPORT Research Group (CTS-1024), CERNEP Research Center, University of Almería, Almería, Spain
| | - Francisco J Amaro-Gahete
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Department of Physical Education and Sports, Faculty of Sport Sciences, PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| |
Collapse
|
18
|
Reyes-Barrera J, Medina-Urrutia AX, Osorio-Alonso H, Jorge-Galarza E, Olvera-Mayorga G, Sánchez-Ortiz NA, Arellano-Buendía AS, Márquez-García JE, Santibáñez-Escobar F, Pérez-Rodríguez E, Torres-Tamayo M, Granados-Portillo O, Torre-Villalvazo I, Juárez-Rojas JG. Self-reported dietary omega-3 polyunsaturated fatty acids are associated with adipose tissue markers and glucose metabolism in apparently healthy subjects. Ann Hum Biol 2022; 49:291-298. [PMID: 36350847 DOI: 10.1080/03014460.2022.2144945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Plasminogen activator inhibitor 1 (PAI-1) and resistin are associated with dysfunctional adipose tissue (AT)-related metabolic complications. The role of dietary eicosapentaenoic (EPA) and docosahexaenoic (DHA) fatty acids in this relationship is unknown. AIM To investigate the association of EPA and DHA with PAI-1 and resistin, as well as the role of this association on the glucose metabolism of apparently healthy subjects. SUBJECTS AND METHODS Thirty-six healthy individuals were included. Validated food frequency questionnaires were used to analyse dietary habits. Inflammatory and glucose metabolism markers were quantified. Subcutaneous AT samples were obtained, and adipocyte number, area, and macrophage content were assessed. RESULTS In 36 subjects aged 56 ± 8 years and with a body mass index of 26 ± 4 kg/m2, logEPA, and logDHA showed significant association with logresistin and a marginal association with PAI-1. Adipocyte number, area, and lognumber of macrophages per adipocyte significantly correlated with PAI-1 but not with logresistin. Although logEPA and logDHA were independently associated with loginsulin, loginsulin resistance, and C-Peptide, the addition of logresistin, but not of PAI-1, into the multivariable model, abolished the associations. CONCLUSIONS EPA and DHA could modulate glucose metabolism across AT functional states. Our data indicate that this association is independent of other metabolic risk factors.
Collapse
Affiliation(s)
- Juan Reyes-Barrera
- Department of Endocrinology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico.,Biological and Health Sciences Ph.D. Program, Metropolitan Autonomous University, Mexico City, Mexico
| | - Aida X Medina-Urrutia
- Department of Endocrinology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Horacio Osorio-Alonso
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Esteban Jorge-Galarza
- Department of Endocrinology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Gabriela Olvera-Mayorga
- Nutrition and Health Research Center, Instituto Nacional de Salud Pública, Cuernavaca City, Mexico
| | - Néstor A Sánchez-Ortiz
- Nutrition and Health Research Center, Instituto Nacional de Salud Pública, Cuernavaca City, Mexico
| | - Abraham S Arellano-Buendía
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - José E Márquez-García
- Biomedical Research Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Felipe Santibáñez-Escobar
- Department of Cardiothoracic Surgery, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Elizabeth Pérez-Rodríguez
- Department of Nutrition Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Margarita Torres-Tamayo
- Department of Endocrinology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Omar Granados-Portillo
- Department of Nutrition Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Ivan Torre-Villalvazo
- Department of Nutrition Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Juan G Juárez-Rojas
- Department of Endocrinology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| |
Collapse
|
19
|
Mirzababaei A, Taheri A, Rasaei N, Mehranfar S, Jamili S, Clark CCT, Mirzaei K. The relationship between dietary phytochemical index and resting metabolic rate mediated by inflammatory factors in overweight and obese women: a cross-sectional study. BMC Womens Health 2022; 22:313. [PMID: 35879706 PMCID: PMC9317090 DOI: 10.1186/s12905-022-01894-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Unhealthy dietary patterns are the most important modifiable risk factors for obesity and overweight. This study aimed to examine the relationship between Dietary Phytochemical Index (DPI) and resting metabolic rate (RMR), mediated by inflammatory factors, in overweight and obese women.
Methods
A total of 404 women, aged 18–48 years, were included in the cross-sectional study. DPI was calculated using the 147-item food frequency questionnaire (FFQ). Anthropometric measurements, RMR, and blood biomarkers were assessed using standard protocols.
Results
There was marginally significant association between adherence to DPI and RMR status in the crude model (OR = 1.41, 95% CI 0.94–2.11, P = 0.09). After adjusting for potential confounders, a significant association was seen between the DPI and increase RMR.per.kg (OR = 2.77, 95% CI 0.98–7.82, P = 0.05). Our results indicated that plasminogen activator inhibitor-1 (PAI-1), transforming growth factor (TGF-β), and monocyte chemoattractant protein-1 (MCP-1) had a mediatory effect on the association between RMR and DPI (P > 0.05). Indeed, it was shown that, PAI-1, TGF-β, and MCP-1 destroyed the significance of this association and could be considered as mediating markers. However, no mediating effect was observed for high-sensitivity C reactive protein (hs-CRP).
Conclusions
Adherence to DPI can improve the RMR by reducing levels of inflammatory markers, and may be considered as a treatment for obesity. However, more long-term studies are recommended.
Collapse
|
20
|
Lim JM, Yoo YJ, Lee SH, Jang TH, Seralathan KK, Lee EY, Tae HJ, Yim EJ, Jeong DY, Oh BT. Anti-inflammatory, anti-lipogenesis, and anti-obesity benefits of fermented Aronia vinegar evaluated in 3T3-L1 cells and high-fat diet induced C57BL/6 mice. FOOD BIOTECHNOL 2022. [DOI: 10.1080/08905436.2022.2124263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Jeong-Muk Lim
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, South Korea
| | - Yeo-Jin Yoo
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, Korea
| | - Seong-Hyeon Lee
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, South Korea
| | - Tae-Hu Jang
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, South Korea
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, South Korea
| | - Eui-Yong Lee
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, Korea
| | - Hyun-Jin Tae
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, Korea
| | - Eun-Jung Yim
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, South Korea
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry (MIFI), Sunchang, South Korea
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, South Korea
| |
Collapse
|
21
|
Ansari P, Choudhury ST, Seidel V, Rahman AB, Aziz MA, Richi AE, Rahman A, Jafrin UH, Hannan JMA, Abdel-Wahab YHA. Therapeutic Potential of Quercetin in the Management of Type-2 Diabetes Mellitus. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081146. [PMID: 36013325 PMCID: PMC9409999 DOI: 10.3390/life12081146] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 12/16/2022]
Abstract
Diabetes Mellitus (DM) is a metabolic disorder that is spreading alarmingly around the globe. Type-2 DM (T2DM) is characterized by low-grade inflammation and insulin resistance and is closely linked to obesity. T2DM is mainly controlled by lifestyle/dietary changes and oral antidiabetic drugs but requires insulin in severe cases. Many of the drugs that are currently used to treat DM are costly and present adverse side effects. Several cellular, animal, and clinical studies have provided compelling evidence that flavonoids have therapeutic potential in the management of diabetes and its complications. Quercetin is a flavonoid, present in various natural sources, which has demonstrated in vitro and in vivo antidiabetic properties. It improves oral glucose tolerance, as well as pancreatic β-cell function to secrete insulin. It inhibits the α-glucosidase and DPP-IV enzymes, which prolong the half-life of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Quercetin also suppresses the release of pro-inflammatory markers such as IL-1β, IL-4, IL-6, and TNF-α. Further studies are warranted to elucidate the mode(s) of action of quercetin at the molecular level. This review demonstrates the therapeutic potential of quercetin in the management of T2DM.
Collapse
Affiliation(s)
- Prawej Ansari
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK;
- Correspondence: ; Tel.: +880-132-387-9720
| | - Samara T. Choudhury
- Department of Public Health, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh;
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| | - Akib Bin Rahman
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - Md. Abdul Aziz
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - Anika E. Richi
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - Ayesha Rahman
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - Umme H. Jafrin
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - J. M. A. Hannan
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
- Department of Public Health, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh;
| | | |
Collapse
|
22
|
Grigorova N, Ivanova Z, Bjørndal B, Berge RK, Vachkova E, Milanova A, Penchev G, Georgiev IP. Diet restriction alone improves glucose tolerance and insulin sensitivity than its coadministration with krill or fish oil in a rabbit model of castration‐induced obesity. J Anim Physiol Anim Nutr (Berl) 2022; 106:1396-1407. [DOI: 10.1111/jpn.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/27/2022] [Accepted: 05/17/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Natalia Grigorova
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine Trakia University Stara Zagora Bulgaria
| | - Zhenya Ivanova
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine Trakia University Stara Zagora Bulgaria
| | - Bodil Bjørndal
- Department of Clinical Science University of Bergen Bergen Norway
- Department of Sports, Food, and Natural Sciences Western Norway University of Applied Sciences Bergen Norway
| | - Rolf Kristian Berge
- Department of Clinical Science University of Bergen Bergen Norway
- Department of Heart Disease Haukeland University Hospital Bergen Norway
| | - Ekaterina Vachkova
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine Trakia University Stara Zagora Bulgaria
| | - Aneliya Milanova
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine Trakia University Stara Zagora Bulgaria
| | - Georgi Penchev
- Department of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine Trakia University Stara Zagora Bulgaria
| | - Ivan Penchev Georgiev
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine Trakia University Stara Zagora Bulgaria
| |
Collapse
|
23
|
Small Extracellular Vesicles from Inflamed Adipose Derived Stromal Cells Enhance the NF-κB-Dependent Inflammatory/Catabolic Environment of Osteoarthritis. Stem Cells Int 2022; 2022:9376338. [PMID: 35898656 PMCID: PMC9314187 DOI: 10.1155/2022/9376338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/08/2022] [Accepted: 05/25/2022] [Indexed: 11/27/2022] Open
Abstract
The last decade has seen exponentially growing efforts to exploit the effects of adipose derived stromal cells (ADSC) in the treatment of a wide range of chronic degenerative diseases, including osteoarthritis (OA), the most prevalent joint disorder. In the perspective of developing a cell-free advanced therapy medicinal product, a focus has been recently addressed to the ADSC secretome that lends itself to an allogeneic use and can be further dissected for the selective purification of small extracellular vesicles (sEVs). sEVs can act as “biological drug carriers” to transfer information that mirror the pathophysiology of the providing cells. This is important in the clinical perspective where many OA patients are also affected by the metabolic syndrome (MetS). ADSC from MetS OA patients are dysfunctional and “inflammatory” primed within the adipose tissue. To mimic this condition, we exposed ADSC to IL-1β, and then we investigated the effects of the isolated sEVs on chondrocytes and synoviocytes, either cultured separately or in co-culture, to tease out the effects of these “IL-1β primed sEVs” on gene and protein expression of major inflammatory and catabolic OA markers. In comparison with sEVs isolated from unstimulated ADSC, the IL-1β primed sEVs were able to propagate NF-κB activation in bystander joint cells. The effects were more prominent on synoviocytes, possibly because of a higher expression of binding molecules such as CD44. These findings call upon a careful characterization of the “inflammatory fingerprint” of ADSC to avoid the transfer of an unwanted message as well as the development of in vitro “preconditioning” strategies able to rescue the antiinflammatory/anticatabolic potential of ADSC-derived sEVs.
Collapse
|
24
|
Wang TF, Liou YS, Chang HH, Yang SH, Li CC, Wang JH, Sun DS. Correlation of Body Mass Index and Proinflammatory Cytokine Levels with Hematopoietic Stem Cell Mobilization. J Clin Med 2022; 11:4169. [PMID: 35887932 PMCID: PMC9317243 DOI: 10.3390/jcm11144169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022] Open
Abstract
This study investigated the correlation of body mass index (BMI) and proinflammatory cytokine levels with hematopoietic stem cell (HSC) mobilization triggered by granulocyte colony-stimulating factor (G-CSF). Stem cell donors (n = 309) were recruited between August 2015 and January 2018 and grouped into four groups according to their BMI: underweight (BMI < 18.5 kg/m2, n = 10), normal (18.5 kg/m2 ≦ BMI < 25 kg/m2, n = 156), overweight (25 kg/m2 ≦ BMI < 30 kg/m2, n = 102), and obese (BMI ≧ 30 kg/m2, n = 41). The participants were then administered with five doses of G-CSF and categorized as good mobilizers (CD34 ≧ 180/μL, n = 15, 4.85%) and poor mobilizers (CD34 ≦ 25/μL, n = 14, 4.53%) according to the number of CD34+ cells in their peripheral blood after G-CSF administration. The correlation between BMI and HSC mobilization was then analyzed, and the levels of proinflammatory cytokines in the plasma from good and poor mobilizers were examined by ProcartaPlex Immunoassay. Results showed that BMI was highly correlated with G-CSF-triggered HSC mobilization (R2 = 0.056, p < 0.0001). Compared with poor mobilizers, good mobilizers exhibited higher BMI (p < 0.001) and proinflammatory cytokine [interferon gamma (IFN-γ) (p < 0.05), interleukin-22 (IL-22) (p < 0.05), and tumor necrosis factor alpha (TNF-α) levels (p < 0.05)]. This study indicated that BMI and proinflammatory cytokine levels are positively correlated with G-CSF-triggered HSC mobilization.
Collapse
Grants
- MOST105-2633-B-320-001 The Ministry of Science and Technology, Taiwan
- MOST106-2633-B-320-001 The Ministry of Science and Technology, Taiwan
- MOST108-2311-B-320-001 The Ministry of Science and Technology, Taiwan
- TCMMP104-06 Buddhist Tzu Chi Medical Foundation
- TCMMP108-04 Buddhist Tzu Chi Medical Foundation
- TCMMP111-01 Buddhist Tzu Chi Medical Foundation
- TCRD106-42 Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- TCRD108-55 Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- TCRD110-61 Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- TCRD111-082 Buddhist Tzu Chi General Hospital, Hualien, Taiwan
Collapse
Affiliation(s)
- Tso-Fu Wang
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan; (T.-F.W.); (C.-C.L.)
- Department of Medicine, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
- Buddhist Tzu Chi Stem Cells Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
| | - Yu-Shan Liou
- Department of Molecular Biology and Human Genetics, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (Y.-S.L.); (H.-H.C.)
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (Y.-S.L.); (H.-H.C.)
| | - Shang-Hsien Yang
- Department of Medicine, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
- Buddhist Tzu Chi Stem Cells Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
| | - Chi-Cheng Li
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan; (T.-F.W.); (C.-C.L.)
- Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
| | - Jen-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan;
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (Y.-S.L.); (H.-H.C.)
| |
Collapse
|
25
|
Abstract
The results of epidemiological studies involving n-3 PUFA and polycystic ovary syndrome (PCOS) are scarce. This matched case-control study assessed the associations between n-3 PUFA and PCOS prevalence in 325 pairs of PCOS cases and healthy controls. Dietary information was assessed using a 102-item FFQ. Fatty acids in serum phospholipids were measured with a GC method. We found that n-3 PUFA in serum phospholipids were inversely associated with PCOS prevalence, including total, long-chain and individual PUFA (e.g. docosapentaenoic acid (DPA), EPA and DHA). Compared with the lowest tertile (T1), the adjusted OR and their 95% CI for the highest tertile (T3) were 0·63 (0·40, 0·93) for total n-3 PUFA, 0·60 (0·38, 0·92) for long-chain n-3 PUFA, 0·68 (0·45, 1·01) for DHA, 0·70 (0·45, 1·05) for EPA and 0·72 (0·45, 1·08) for DPA. For dietary intake of n-3 PUFA, significant inverse associations were found only for long-chain n-3 PUFA (Ptrend = 0·001), EPA (Ptrend = 0·047) and DHA (Ptrend = 0·030). Both dietary and serum n-3 PUFA, mainly EPA and DPA, were negatively correlated with PCOS-related parameters, such as BMI, fasting insulin, total testosterone and high-sensitivity C-reactive protein, but positively correlated with follicle-stimulating hormone and sex hormone-binding globulin. These results indicated inverse associations between n-3 PUFA, especially long-chain n-3 PUFA, and PCOS prevalence. Higher intakes of n-3 PUFA might be considered a protective factor for PCOS among Chinese females.
Collapse
|
26
|
Xiao Y, Zhang Q, Liao X, Elbelt U, Weylandt KH. The effects of omega-3 fatty acids in type 2 diabetes: A systematic review and meta-analysis. Prostaglandins Leukot Essent Fatty Acids 2022; 182:102456. [PMID: 35717726 DOI: 10.1016/j.plefa.2022.102456] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND The effect of omega-3 polyunsaturated fatty acids (n-3 PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on cardiovascular risk modification in type 2 diabetes and related complications remain unclear. We aim to assess the published effects of n-3 PUFA interventions on lipid risk factors in type 2 diabetes. METHODS We searched the literature on Pubmed, Embase, CENTRAL, and Web of Science databases in order to perform a pooled analysis of randomized clinical trials (RCTs) assessing n-3 PUFA interventions in type 2 diabetes. The primary outcomes analyzed were the effect of n -3 PUFAs on metabolic biomarkers in type 2 diabetes. RESULTS 46 RCTs involving 4991 patients with type 2 diabetes were identified for further analysis. Analysis of results showed that n-3 PUFAs interventions significantly improved total cholesterol (TC, WMD = -0.22; 95% CI: -0.32∼ -0.11), triglyceride (TG,WMD = -0.36; 95% CI: -0.48∼-0.25), high-density lipoprotein cholesterol (HDL-C,WMD = 0.05; 95% CI: 0.02∼ 0.08), hemoglobin A1c (HbA1c, WMD = -0.19; 95% CI: -0.31∼-0.06) and C-reactive protein (CRP,WMD = -0.40; 95% CI: -0.74∼-0.07) levels compared to controls (p < 0.05). There was no significant effect on renal function, fasting blood sugar (FBS), insulin resistance (HOMA-IR), low-density lipoprotein cholesterol (LDL-C), adiponectin and leptin (p > 0.05). CONCLUSIONS The results of this systematic review suggest that n-3 PUFAs can improve cardiovascular risk factors in type 2 diabetes.
Collapse
Affiliation(s)
- Yanan Xiao
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, Brandenburg Medical School, University Hospital Ruppin-Brandenburg, Neuruppin 16816, Germany; Medical Department, Division of Psychosomatic Medicine, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 12203, Germany
| | - Qifang Zhang
- Department of Gastroenterology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin 541002, China
| | - Xueling Liao
- Department of Nephrology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China; Department of Nephrology, Affiliated Hospital of Guilin Medical College, Guilin 541001, China
| | - Ulf Elbelt
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, Brandenburg Medical School, University Hospital Ruppin-Brandenburg, Neuruppin 16816, Germany; Medical Department, Division of Psychosomatic Medicine, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 12203, Germany
| | - Karsten H Weylandt
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, Brandenburg Medical School, University Hospital Ruppin-Brandenburg, Neuruppin 16816, Germany; Faculty of Health Sciences, joint Faculty of the Brandenburg University of Technology, Brandenburg Medical School and University of Potsdam, Potsdam 14467, Germany.
| |
Collapse
|
27
|
Aiassa V, Del Rosario Ferreira M, Villafañe N, Eugenia D'Alessandro M. α-Linolenic acid rich-chia seed modulates visceral adipose tissue collagen deposition, lipolytic enzymes expression, insulin signaling and GLUT-4 levels in a diet-induced adiposity rodent model. Food Res Int 2022; 156:111164. [PMID: 35651030 DOI: 10.1016/j.foodres.2022.111164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 11/19/2022]
Abstract
Given obesity and its associated metabolic disorders have reached epidemic proportions, the study of therapeutic strategies targeting white adipose tissue (WAT) are of main research interest. We previously shown that α-linolenic acid-rich chia seed was able to ameliorate a wide range of metabolic disorders including body fat accretion in sucrose-rich diet (SRD)-fed rats, an experimental model of visceral adiposity and insulin resistance. However, the mechanisms involved are not fully clarified. The aim of this study was to evaluate the effect of chia seed administration upon WAT remodeling and key enzymes that controls lipolysis, insulin signaling (tAKT, pAKT), and GLUT-4 levels in different visceral fat pad depots (epididymal -eWAT- and retroperitoneal -rWAT- adipose tissues) of SRD-fed rats. Results showed that chia seed reduces adipocytes hypertrophy, the increased lipid content and collagen deposition in both WAT. These changes were accompanied by a significant reduction of HSL and ATGL protein levels in eWAT and HSL protein levels in rWAT. Moreover, chia seed restored the altered expression pattern of the pAKT observed in SRD-fed rats, and modulated GLUT-4 levels. Chia seed could be a dietary intervention of great relevance with potential beneficial effects in the management of body fat excess and WAT function.
Collapse
Affiliation(s)
- Victoria Aiassa
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición. Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina
| | - María Del Rosario Ferreira
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición. Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Noelia Villafañe
- Departamento de Morfología. Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina
| | - María Eugenia D'Alessandro
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición. Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
28
|
Use of polyunsaturated fatty acids in prevention and treatment of gastrointestinal diseases, obesity and cancer. HERBA POLONICA 2022. [DOI: 10.2478/hepo-2022-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Summary
Fatty acids are important structural and functional elements of human body. We can distinguish several types: among others polyunsaturated fatty acids, which include omega-3 fatty acids (ω-3PUFA) and omega-6 fatty acids(ω-6PUFA). The first group has pleiotropic health-promoting effects, while the second group, ω-6PUFA, negatively affects the homeostasis of the human body and contributes to the development of numerous diseases. Both the amount and the relative ratio of these acids in the diet is an important factor affecting health and quality of life.
Laboratory and clinical studies indicate that ω-3PUFA have a positive effect on the therapy of illnesses such as obesity and inflammatory bowel disease (IBD). ω-3 PUFA supplementation also appears to have a helpful effect in the adjuvant treatment of colorectal cancer and recovery.
Collapse
|
29
|
PET/MRI-evaluated brown adipose tissue activity may be related to dietary MUFA and omega-6 fatty acids intake. Sci Rep 2022; 12:4112. [PMID: 35260768 PMCID: PMC8904502 DOI: 10.1038/s41598-022-08125-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/03/2022] [Indexed: 12/17/2022] Open
Abstract
An investigation of new ways to activate brown adipose tissue (BAT) is highly valuable, as it is a possible tool for obesity prevention and treatment. The aim of our study was to evaluate the relationships between dietary intake and BAT activity. The study group comprised 28 healthy non-smoking males aged 21–42 years. All volunteers underwent a physical examination and 75-g OGTT and completed 3-day food intake diaries to evaluate macronutrients and fatty acid intake. Body composition measurements were assessed using DXA scanning. An FDG-18 PET/MR was performed to visualize BAT activity. Brown adipose tissue was detected in 18 subjects (67% normal-weight individuals and 33% overweight/obese). The presence of BAT corresponded with a lower visceral adipose tissue (VAT) content (p = 0.04, after adjustment for age, daily kcal intake, and DXA Lean mass). We noted significantly lower omega-6 fatty acids (p = 0.03) and MUFA (p = 0.02) intake in subjects with detected BAT activity after adjustment for age, daily average kcal intake, and DXA Lean mass, whereas omega-3 fatty acids intake was comparable between the two groups. BAT presence was positively associated with the concentration of serum IL-6 (p = 0.01) during cold exposure. Our results show that BAT activity may be related to daily omega-6 fatty acids intake.
Collapse
|
30
|
A mouse model of gestational diabetes shows dysregulated lipid metabolism post-weaning, after return to euglycaemia. Nutr Diabetes 2022; 12:8. [PMID: 35169132 PMCID: PMC8847647 DOI: 10.1038/s41387-022-00185-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/12/2022] [Accepted: 01/26/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Gestational diabetes is associated with increased risk of type 2 diabetes mellitus and cardiovascular disease for the mother in the decade after delivery. However, the molecular mechanisms that drive these effects are unknown. Recent studies in humans have shown that lipid metabolism is dysregulated before diagnosis of and during gestational diabetes and we have shown previously that lipid metabolism is also altered in obese female mice before, during and after pregnancy. These observations led us to the hypothesis that this persistent dysregulation reflects an altered control of lipid distribution throughout the organism. METHODS We tested this in post-weaning (PW) dams using our established mouse model of obese GDM (high fat, high sugar, obesogenic diet) and an updated purpose-built computational tool for plotting the distribution of lipid variables throughout the maternal system (Lipid Traffic Analysis v2.3). RESULTS This network analysis showed that unlike hyperglycaemia, lipid distribution and traffic do not return to normal after pregnancy in obese mouse dams. A greater range of phosphatidylcholines was found throughout the lean compared to obese post-weaning dams. A range of triglycerides that were found in the hearts of lean post-weaning dams were only found in the livers of obese post-weaning dams and the abundance of odd-chain FA-containing lipids differed locally in the two groups. We have therefore shown that the control of lipid distribution changed for several metabolic pathways, with evidence for changes to the regulation of phospholipid biosynthesis and FA distribution, in a number of tissues. CONCLUSIONS We conclude that the control of lipid metabolism is altered following an obese pregnancy. These results support the hypothesis that obese dams that developed GDM maintain dysregulated lipid metabolism after pregnancy even when glycaemia returned to normal, and that these alterations could contribute to the increased risk of later type 2 diabetes and cardiovascular disease.
Collapse
|
31
|
Shimizu T, Saito T, Aoki-Saito H, Okada S, Ikeda H, Nakakura T, Fukuda H, Arai S, Fujiwara K, Nakajima Y, Horiguchi K, Yamada S, Ishida E, Hisada T, Shuto S, Yamada M. Resolvin E3 ameliorates high-fat diet-induced insulin resistance via the phosphatidylinositol-3-kinase/Akt signaling pathway in adipocytes. FASEB J 2022; 36:e22188. [PMID: 35129868 DOI: 10.1096/fj.202100053r] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 12/30/2021] [Accepted: 01/18/2022] [Indexed: 12/19/2022]
Abstract
Obesity-associated type 2 diabetes mellitus is associated with the development of insulin resistance. Among several metabolites, resolvins that are metabolites of eicosapentaenoic acid have been shown to exert insulin-sensitizing effects; however, the role of resolvin E3 (RvE3) in glucose metabolism has not been studied. In this study, the effect of RvE3 on glucose metabolism in mice with high-fat diet-induced obesity and 3T3L1 adipocytes was studied. C57BL/6 mice fed a high-fat diet were administered RvE3, for which insulin tolerance, oral glucose tolerance tests, and the homeostasis model assessment of insulin resistance, were performed. RvE3 treatment significantly improved insulin sensitivity and glucose tolerance and regulated protein kinase B (Akt) phosphorylation in the adipose tissue. Moreover, RvE3 treatment enhanced the insulin-stimulated glucose transporter 4 (Glut4) translocation, glucose uptake, phosphatidylinositol-3-kinase (PI3K) activity, and Akt phosphorylation in 3T3L1 adipocytes, whereas a PI3K inhibitor inhibited the enhanced insulin-stimulated glucose uptake induced by RvE3. These findings indicate that RvE3 likely improves insulin sensitivity, resulting in the upregulation of glucose uptake in adipocytes by activating the PI3K/Akt signaling pathways. Collectively, the findings of this study show that RvE3 may play a role in glucose homeostasis and could be used as a potential therapeutic target for developing treatments for obesity-associated diabetes.
Collapse
Affiliation(s)
- Tomohiko Shimizu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tsugumichi Saito
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan.,Center for Medical Education, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Haruka Aoki-Saito
- Department of Respiratory Medicine and Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shuichi Okada
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hiroyuki Ikeda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | | | - Hayato Fukuda
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Syota Arai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Kouichi Fujiwara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Yasuyo Nakajima
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kazuhiro Horiguchi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sayaka Yamada
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Emi Ishida
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takeshi Hisada
- Gunma University Graduate School of Health Sciences, Maebashi, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Masanobu Yamada
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
32
|
Liao J, Xiong Q, Yin Y, Ling Z, Chen S. The Effects of Fish Oil on Cardiovascular Diseases: Systematical Evaluation and Recent Advance. Front Cardiovasc Med 2022; 8:802306. [PMID: 35071366 PMCID: PMC8767101 DOI: 10.3389/fcvm.2021.802306] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022] Open
Abstract
Fish oil is rich in unsaturated fatty acids, i.e., eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), both of which are widely distributed in the body such as heart and brain. In vivo and in vitro experiments showed that unsaturated fatty acids may have effects of anti-inflammation, anti-oxidation, protecting vascular endothelial cells, thrombosis inhibition, modifying autonomic nerve function, improving left ventricular remodeling, and regulating blood lipid. Given the relevance to public health, there has been increasing interest in the research of potential cardioprotective effects of fish oil. Accumulated evidence showed that fish oil supplementation may reduce the risk of cardiovascular events, and, in specific, it may have potential benefits in improving the prognosis of patients with hypertension, coronary heart disease, cardiac arrhythmias, or heart failure; however, some studies yielded inconsistent results. In this article, we performed an updated systematical review in order to provide a contemporary understanding with regard to the effects of fish oil on cardiovascular diseases.
Collapse
Affiliation(s)
- Jia Liao
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University (CQMU), Chongqing, China
| | - Qingsong Xiong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University (CQMU), Chongqing, China
| | - Yuehui Yin
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University (CQMU), Chongqing, China
| | - Zhiyu Ling
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University (CQMU), Chongqing, China
| | - Shaojie Chen
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University (CQMU), Chongqing, China.,Cardioangiologisches Centrum Bethanien (CCB)/Kardiologie, Medizinische Klinik III, Agaplesion Markus Krankenhaus, Akademisches Lehrkrankenhaus der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
33
|
Thibaut R, Laubert M, Ejlalmanesh T, Alzaid F. [Elongase 2 and polyunsaturated fatty acids: Key players in inflammation and type 2 diabetes]. Med Sci (Paris) 2021; 37:987-992. [PMID: 34851274 DOI: 10.1051/medsci/2021146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ronan Thibaut
- Centre de recherche des Cordeliers, Inserm U1138, IMMEDIAB (Immunity and Metabolism of Diabetes Laboratory), Sorbonne Université, Université de Paris, 15 rue de l'École de Médecine, 75006 Paris, France
| | - Mathilde Laubert
- Centre de recherche des Cordeliers, Inserm U1138, IMMEDIAB (Immunity and Metabolism of Diabetes Laboratory), Sorbonne Université, Université de Paris, 15 rue de l'École de Médecine, 75006 Paris, France
| | - Tina Ejlalmanesh
- Centre de recherche des Cordeliers, Inserm U1138, IMMEDIAB (Immunity and Metabolism of Diabetes Laboratory), Sorbonne Université, Université de Paris, 15 rue de l'École de Médecine, 75006 Paris, France
| | - Fawaz Alzaid
- Centre de recherche des Cordeliers, Inserm U1138, IMMEDIAB (Immunity and Metabolism of Diabetes Laboratory), Sorbonne Université, Université de Paris, 15 rue de l'École de Médecine, 75006 Paris, France
| |
Collapse
|
34
|
Impact of combined consumption of fish oil and probiotics on the serum metabolome in pregnant women with overweight or obesity. EBioMedicine 2021; 73:103655. [PMID: 34740110 PMCID: PMC8577343 DOI: 10.1016/j.ebiom.2021.103655] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND If a pregnant woman is overweight, this can evoke metabolic alterations that may have health consequences for both mother and child. METHODS Pregnant women with overweight/obesity (n = 358) received fish oil+placebo, probiotics+placebo, fish oil+probiotics or placebo+placebo from early pregnancy onwards. The serum metabolome was analysed from fasting samples with a targeted NMR-approach in early and late pregnancy. GDM was diagnosed by OGTT. FINDINGS The intervention changed the metabolic profile of the women, but the effect was influenced by their GDM status. In women without GDM, the changes in nine lipids (FDR<0.05) in the fish oil+placebo-group differed when compared to the placebo+placebo-group. The combination of fish oil and probiotics induced changes in more metabolites, 46 of the lipid metabolites differed in women without GDM when compared to placebo+placebo-group; these included reduced increases in the concentrations and lipid constituents of VLDL-particles and less pronounced alterations in the ratios of various lipids in several lipoproteins. In women with GDM, no differences were detected in the changes of any metabolites due to any of the interventions when compared to the placebo+placebo-group (FDR<0.05). INTERPRETATION Fish oil and particularly the combination of fish oil and probiotics modified serum lipids in pregnant women with overweight or obesity, while no such effects were seen with probiotics alone. The effects were most evident in the lipid contents of VLDL and LDL only in women without GDM. FUNDING State Research Funding for university-level health research in the Turku University Hospital Expert Responsibility Area, Academy of Finland, the Diabetes Research Foundation, the Juho Vainio Foundation, Janssen Research & Development, LLC.
Collapse
|
35
|
Heath RJ, Wood TR. Why Have the Benefits of DHA Not Been Borne Out in the Treatment and Prevention of Alzheimer's Disease? A Narrative Review Focused on DHA Metabolism and Adipose Tissue. Int J Mol Sci 2021; 22:11826. [PMID: 34769257 PMCID: PMC8584218 DOI: 10.3390/ijms222111826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 02/04/2023] Open
Abstract
Docosahexaenoic acid (DHA), an omega-3 fatty acid rich in seafood, is linked to Alzheimer's Disease via strong epidemiological and pre-clinical evidence, yet fish oil or other DHA supplementation has not consistently shown benefit to the prevention or treatment of Alzheimer's Disease. Furthermore, autopsy studies of Alzheimer's Disease brain show variable DHA status, demonstrating that the relationship between DHA and neurodegeneration is complex and not fully understood. Recently, it has been suggested that the forms of DHA in the diet and plasma have specific metabolic fates that may affect brain uptake; however, the effect of DHA form on brain uptake is less pronounced in studies of longer duration. One major confounder of studies relating dietary DHA and Alzheimer's Disease may be that adipose tissue acts as a long-term depot of DHA for the brain, but this is poorly understood in the context of neurodegeneration. Future work is required to develop biomarkers of brain DHA and better understand DHA-based therapies in the setting of altered brain DHA uptake to help determine whether brain DHA should remain an important target in the prevention of Alzheimer's Disease.
Collapse
Affiliation(s)
- Rory J. Heath
- Emergency Medicine Department, Derriford Hospital, University Hospitals Plymouth, Plymouth PL6 8DH, UK;
| | - Thomas R. Wood
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center on Human Development and Disability, University of Washington, Seattle, WA 98195, USA
- Institute for Human and Machine Cognition, Pensacola, FL 32502, USA
| |
Collapse
|
36
|
Bandres-Meriz J, Majali-Martinez A, Hoch D, Morante M, Glasner A, van Poppel MNM, Desoye G, Herrera E. Maternal C-Peptide and Insulin Sensitivity, but Not BMI, Associate with Fatty Acids in the First Trimester of Pregnancy. Int J Mol Sci 2021; 22:10422. [PMID: 34638763 PMCID: PMC8508886 DOI: 10.3390/ijms221910422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/19/2021] [Accepted: 09/24/2021] [Indexed: 12/19/2022] Open
Abstract
Maternal obesity in pregnancy is a pro-inflammatory condition exposing the fetus to an adverse environment. Here, we tested associations of maternal obesity (primary exposures: BMI, leptin) and metabolic parameters (secondary exposures: glucose, C-peptide, and insulin sensitivity) with total serum concentrations of fatty acids in the first trimester of human pregnancy. This cross-sectional study included 123 non-smoking women with singleton pregnancy. In maternal serum, cotinine, leptin, and C-peptide (ELISA), glucose (hexokinase-based test) and fatty acids (gas chromatography) were quantified, and the insulin sensitivity index (ISHOMA) was calculated. Concentrations of fatty acid classes and total fatty acids did not differ between BMI or leptin categories. However, n-3 polyunsaturated fatty acids (PUFA) were decreased in the category with the highest C-peptide concentration (n-3 PUFA: CI -35.82--6.28, p < 0.006) and in the lowest ISHOMA category (n-3 PUFA: CI -36.48--5.61, p < 0.008). In a subcohort, in which fetal sex was determined (RT-qPCR of placental tissue), C-peptide was significantly associated with docosahexaenoic acid (DHA) in mothers bearing a female (n = 46), but not male (n = 37) fetus. In conclusion, pregnant women with high fasting C-peptide and low ISHOMA had decreased n-3 PUFA, and DHA was lower with higher C-peptide only in mothers bearing a female fetus.
Collapse
Affiliation(s)
- Julia Bandres-Meriz
- Department of Obstetrics and Gynaecology, Medical University of Graz, 8036 Graz, Austria; (A.M.-M.); (D.H.)
| | - Alejandro Majali-Martinez
- Department of Obstetrics and Gynaecology, Medical University of Graz, 8036 Graz, Austria; (A.M.-M.); (D.H.)
| | - Denise Hoch
- Department of Obstetrics and Gynaecology, Medical University of Graz, 8036 Graz, Austria; (A.M.-M.); (D.H.)
| | - Milagros Morante
- Faculty of Pharmacy, Universidad San Pablo CEU, 28668 Madrid, Spain; (M.M.); (E.H.)
| | | | | | - Gernot Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, 8036 Graz, Austria; (A.M.-M.); (D.H.)
| | - Emilio Herrera
- Faculty of Pharmacy, Universidad San Pablo CEU, 28668 Madrid, Spain; (M.M.); (E.H.)
| |
Collapse
|
37
|
Bi J, Li Q, Yang Z, Cai L, Lv T, Yang X, Yan L, Liu X, Wang Q, Fu X, Xiao R. CXCL2 Impairs Functions of Bone Marrow Mesenchymal Stem Cells and Can Serve as a Serum Marker in High-Fat Diet-Fed Rats. Front Cell Dev Biol 2021; 9:687942. [PMID: 34327200 PMCID: PMC8315099 DOI: 10.3389/fcell.2021.687942] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 12/27/2022] Open
Abstract
In modern society excessive consumption of a high-fat diet (HFD) is a significant risk factor for many diseases such as diabetes, osteoarthritis and certain cancers. Resolving cellular and molecular mechanisms underlying HFD-associated disorders is of great importance to human health. Mesenchymal stem cells (MSCs) are key players in tissue homeostasis and adversely affected by prolonged HFD feeding. Low-grade systemic inflammation induced by HFD is characterized by increased levels of pro-inflammatory cytokines and alters homeostasis in many organs. However, whether, which and how HFD associated inflammatory cytokines impair MSCs remain unclear. Here we demonstrated that HFD induced serum cytokines disturbances, especially a continuous elevation of serum CXCL2 level in rats. Coincidentally, the differentially expressed genes (DEGs) of bone marrow MSCs (BMSCs) which functions were impaired in HFD rats were enriched in cytokine signaling. Further mechanism analysis revealed that CXCL2 treatment in vitro suppresses the adipogenic potential of BMSCs via Rac1 activation, and promoted BMSC migration and senescence by inducing over-production of ELMO1 and reactive oxygen species (ROS) respectively. Moreover, we found that although glycolipid metabolism indicators can be corrected, the CXCL2 elevation and BMSC dysfunctions cannot be fully rescued by diet correction and anti-inflammatory aspirin treatment, indicating the long-lasting deleterious effects of HFD on serum CXCL2 levels and BMSC functions. Altogether, our findings identify CXCL2 as an important regulator in BMSCs functions and may serve as a serum marker to indicate the BMSC dysfunctions induced by HFD. In addition, our findings underscore the intricate link among high-fat intake, chronic inflammation and BMSC dysfunction which may facilitate development of protective strategies for HFD associated diseases.
Collapse
Affiliation(s)
- Jianhai Bi
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiuchen Li
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhigang Yang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Cai
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Lv
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xun Yang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Yan
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xia Liu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Wang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Fu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ran Xiao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
38
|
Glavas MM, Hui Q, Miao I, Yang F, Erener S, Prentice KJ, Wheeler MB, Kieffer TJ. Early overnutrition in male mice negates metabolic benefits of a diet high in monounsaturated and omega-3 fats. Sci Rep 2021; 11:14032. [PMID: 34234216 PMCID: PMC8263808 DOI: 10.1038/s41598-021-93409-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/21/2021] [Indexed: 01/08/2023] Open
Abstract
Overconsumption of saturated fats promotes obesity and type 2 diabetes. Excess weight gain in early life may be particularly detrimental by promoting earlier diabetes onset and potentially by adversely affecting normal development. In the present study we investigated the effects of dietary fat composition on early overnutrition-induced body weight and glucose regulation in Swiss Webster mice, which show susceptibility to high-fat diet-induced diabetes. We compared glucose homeostasis between a high-fat lard-based (HFL) diet, high in saturated fats, and a high-fat olive oil/fish oil-based (HFO) diet, high in monounsaturated and omega-3 fats. We hypothesized that the healthier fat profile of the latter diet would improve early overnutrition-induced glucose dysregulation. However, early overnutrition HFO pups gained more weight and adiposity and had higher diabetes incidence compared to HFL. In contrast, control pups had less weight gain, adiposity, and lower diabetes incidence. Plasma metabolomics revealed reductions in various phosphatidylcholine species in early overnutrition HFO mice as well as with diabetes. These findings suggest that early overnutrition may negate any beneficial effects of a high-fat diet that favours monounsaturated and omega-3 fats over saturated fats. Thus, quantity, quality, and timing of fat intake throughout life should be considered with respect to metabolic health outcomes.
Collapse
Affiliation(s)
- Maria M Glavas
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Queenie Hui
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ian Miao
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Fan Yang
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Suheda Erener
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Kacey J Prentice
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Michael B Wheeler
- Department of Physiology, University of Toronto, Toronto, Canada.,Department of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada. .,Department of Surgery, University of British Columbia, Vancouver, BC, Canada. .,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
39
|
Zhang H, Gao X, Li K, Liu Y, Hettiarachichi DS, Sunderland B, Li D. Sandalwood seed oil ameliorates hepatic insulin resistance by regulating the JNK/NF-κB inflammatory and PI3K/AKT insulin signaling pathways. Food Funct 2021; 12:2312-2322. [PMID: 33617622 DOI: 10.1039/d0fo03051a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sandalwood (santalum spicatum) seed oil (SSO) is rich in ximenynic acid. The aim of the present study was to investigate the effect of SSO on high-fat/high-sucrose diet (HFHSD) induced insulin resistance (IR) in comparison with fish oil (FO), sunflower oil (SO) and linseed oil (LO). Fifty male Sprague-Dawley rats were randomly divided into five dietary groups: standard chow diet (controls), HFHSD plus 7% SSO, HFHSD plus 7% FO, HFHSD plus 7% SO and HFHSD plus 7% LO. After 12 weeks of feeding, the rats were sacrificed, and the serum parameters, hepatic lipids and underlying molecular mechanisms were studied. SSO, FO or LO significantly prevented glucose intolerance, hyperglycaemia, obesity, and hepatic lipid accumulation, and decreased the homeostasis model assessment of IR (HOMA-IR) and the serum levels of pro-inflammatory factors (IL-6, IL-1β and TNF-α) compared with SO. In addition, SSO activated the PI3K/AKT insulin signaling pathway and down-regulated the JNK/NF-κB inflammatory signaling pathway in the liver. In summary, our results proved that SSO exerted an ameliorative effect on IR by regulating the hepatic inflammation related blockage of the insulin signaling pathway in the rats.
Collapse
Affiliation(s)
- Huijun Zhang
- Institute of Nutrition & Health, College of Public Health, Qingdao University, Qingdao, China.
| | - Xiang Gao
- Institute of Nutrition & Health, College of Public Health, Qingdao University, Qingdao, China. and College of Life Sciences, Qingdao University, Qingdao, China
| | - Kelei Li
- Institute of Nutrition & Health, College of Public Health, Qingdao University, Qingdao, China.
| | - Yandi Liu
- School of Pharmacy, Curtin University, Perth, Australia
| | | | | | - Duo Li
- Institute of Nutrition & Health, College of Public Health, Qingdao University, Qingdao, China. and Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
40
|
Baek SJ, Hammock BD, Hwang IK, Li Q, Moustaid-Moussa N, Park Y, Safe S, Suh N, Yi SS, Zeldin DC, Zhong Q, Bradbury JA, Edin ML, Graves JP, Jung HY, Jung YH, Kim MB, Kim W, Lee J, Li H, Moon JS, Yoo ID, Yue Y, Lee JY, Han HJ. Natural Products in the Prevention of Metabolic Diseases: Lessons Learned from the 20th KAST Frontier Scientists Workshop. Nutrients 2021; 13:1881. [PMID: 34072678 PMCID: PMC8227583 DOI: 10.3390/nu13061881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/29/2022] Open
Abstract
The incidence of metabolic and chronic diseases including cancer, obesity, inflammation-related diseases sharply increased in the 21st century. Major underlying causes for these diseases are inflammation and oxidative stress. Accordingly, natural products and their bioactive components are obvious therapeutic agents for these diseases, given their antioxidant and anti-inflammatory properties. Research in this area has been significantly expanded to include chemical identification of these compounds using advanced analytical techniques, determining their mechanism of action, food fortification and supplement development, and enhancing their bioavailability and bioactivity using nanotechnology. These timely topics were discussed at the 20th Frontier Scientists Workshop sponsored by the Korean Academy of Science and Technology, held at the University of Hawaii at Manoa on 23 November 2019. Scientists from South Korea and the U.S. shared their recent research under the overarching theme of Bioactive Compounds, Nanoparticles, and Disease Prevention. This review summarizes presentations at the workshop to provide current knowledge of the role of natural products in the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Seung J. Baek
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Bruce D. Hammock
- Department of Entomology, University of California, Davis, CA 95616, USA;
| | - In-Koo Hwang
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Qingxiao Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA;
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences & Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA;
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (Y.P.); (Y.Y.)
| | - Stephen Safe
- Department of Biochemistry & Biophysics, Texas A & M University, College Station, TX 77843, USA;
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA;
| | - Sun-Shin Yi
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea; (S.-S.Y.); (J.-S.M.); (I.-D.Y.)
| | - Darryl C. Zeldin
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Qixin Zhong
- Department of Food Sciences, University of Tennessee, Knoxville, TN 37996, USA;
| | - Jennifer Alyce Bradbury
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Matthew L. Edin
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Joan P. Graves
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Hyo-Young Jung
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Young-Hyun Jung
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Woosuk Kim
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Jaehak Lee
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Hong Li
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Jong-Seok Moon
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea; (S.-S.Y.); (J.-S.M.); (I.-D.Y.)
| | - Ik-Dong Yoo
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea; (S.-S.Y.); (J.-S.M.); (I.-D.Y.)
| | - Yiren Yue
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (Y.P.); (Y.Y.)
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Ho-Jae Han
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| |
Collapse
|
41
|
Evaluation of Plasma AA/DHA+EPA Ratio in Obese Romanian Children. REV ROMANA MED LAB 2021. [DOI: 10.2478/rrlm-2021-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The aim of the study was to evaluate the plasma profile of arachidonic acid (AA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA), as well to analyze the relationship of Omega 6/Omega 3 ratio with anthropo-metric parameters and insulin resistance markers.
Material and methods: Plasma levels of free fatty acids (FFAs) were measured using a high-throughput LC-MS AB Sciex4600 in 202 children (127 obese and 75 non-obese), age and sex-matched. Lipid and glucose profiles were assessed with current laboratory methods, while insulin resistance and beta-cell function were evaluated using HOMA-IR and HOMA-β respectively.
Results: In obese children, AA and AA/(DHA+EPA) ratio were significantly higher regardless of age and gender. In the lowest quartile of DHA, there was a clear trend for insulin resistance, with plasma insulin level, HOMA-IR, and HOMA-β significantly higher compared to the highest quartile of DHA. After adjustment for age and gender DHA remains a negative predictive factor for insulin resistance. Waist-to-height ratio (WHtR), a marker of visceral obesity was higher in children with a higher AA/(DHA+EPA) ratio.
Conclusions: In obese children, the AA is higher in concordance with insulin resistance. Additionally, children with a higher AA/(DHA+EPA) ratio have greater BMI, fat mass, waist circumference, and WHtR, important indicators of central adiposity, and cardio-metabolic disorders. LC/MS is a versatile tool for Omega ratio assessment, especially in children where the sample size is a limiting factor for metabolic and nutrition evaluation.
Collapse
|
42
|
Potential of Nutraceutical Supplementation in the Modulation of White and Brown Fat Tissues in Obesity-Associated Disorders: Role of Inflammatory Signalling. Int J Mol Sci 2021; 22:ijms22073351. [PMID: 33805912 PMCID: PMC8037903 DOI: 10.3390/ijms22073351] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/21/2022] Open
Abstract
The high incidence of obesity is associated with an increasing risk of several chronic diseases such as cardiovascular disease, type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). Sustained obesity is characterized by a chronic and unsolved inflammation of adipose tissue, which leads to a greater expression of proinflammatory adipokines, excessive lipid storage and adipogenesis. The purpose of this review is to clarify how inflammatory mediators act during adipose tissue dysfunction in the development of insulin resistance and all obesity-associated diseases. In particular, we focused our attention on the role of inflammatory signaling in brown adipose tissue (BAT) thermogenic activity and the browning of white adipose tissue (WAT), which represent a relevant component of adipose alterations during obesity. Furthermore, we reported the most recent evidence in the literature on nutraceutical supplementation in the management of the adipose inflammatory state, and in particular on their potential effect on common inflammatory mediators and pathways, responsible for WAT and BAT dysfunction. Although further research is needed to demonstrate that targeting pro-inflammatory mediators improves adipose tissue dysfunction and activates thermogenesis in BAT and WAT browning during obesity, polyphenols supplementation could represent an innovative therapeutic strategy to prevent progression of obesity and obesity-related metabolic diseases.
Collapse
|
43
|
ACE2 and energy metabolism: the connection between COVID-19 and chronic metabolic disorders. Clin Sci (Lond) 2021; 135:535-554. [PMID: 33533405 DOI: 10.1042/cs20200752] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
The renin-angiotensin system (RAS) has currently attracted increasing attention due to its potential function in regulating energy homeostasis, other than the actions on cellular growth, blood pressure, fluid, and electrolyte balance. The existence of RAS is well established in metabolic organs, including pancreas, liver, skeletal muscle, and adipose tissue, where activation of angiotensin-converting enzyme (ACE) - angiotensin II pathway contributes to the impairment of insulin secretion, glucose transport, fat distribution, and adipokines production. However, the activation of angiotensin-converting enzyme 2 (ACE2) - angiotensin (1-7) pathway, a novel branch of the RAS, plays an opposite role in the ACE pathway, which could reverse these consequences by improving local microcirculation, inflammation, stress state, structure remolding, and insulin signaling pathway. In addition, new studies indicate the protective RAS arm possesses extraordinary ability to enhance brown adipose tissue (BAT) activity and induces browning of white adipose tissue, and consequently, it leads to increased energy expenditure in the form of heat instead of ATP synthesis. Interestingly, ACE2 is the receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is threating public health worldwide. The main complications of SARS-CoV-2 infected death patients include many energy metabolism-related chronic diseases, such as diabetes. The specific mechanism leading to this phenomenon is largely unknown. Here, we summarize the latest pharmacological and genetic tools on regulating ACE/ACE2 balance and highlight the beneficial effects of the ACE2 pathway axis hyperactivity on glycolipid metabolism, as well as the thermogenic modulation.
Collapse
|
44
|
Gao X, Du L, Randell E, Zhang H, Li K, Li D. Effect of different phosphatidylcholines on high fat diet-induced insulin resistance in mice. Food Funct 2021; 12:1516-1528. [DOI: 10.1039/d0fo02632h] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, we systematically investigated the effect of different phosphatidylcholines on high fat diet-induced insulin resistance in mice.
Collapse
Affiliation(s)
- Xiang Gao
- College of Life Sciences
- Qingdao University
- Qingdao 266071
- China
- Institute of Nutrition & Health
| | - Lei Du
- Department of Nutrition and Food Hygiene
- School of Public Health
- Cheeloo College of Medicine
- Shandong University
- No. 44 Wenhuaxi Road, Jinan
| | - Edward Randell
- Faculty of Medicine
- Memorial University
- 300 Prince Philip Drive
- St. John’s A1B3V6
- Canada
| | - Huijun Zhang
- Institute of Nutrition & Health
- College of Public Health
- Qingdao University
- No. 308 Ningxia Road
- China
| | - Kelei Li
- Institute of Nutrition & Health
- College of Public Health
- Qingdao University
- No. 308 Ningxia Road
- China
| | - Duo Li
- Institute of Nutrition & Health
- College of Public Health
- Qingdao University
- No. 308 Ningxia Road
- China
| |
Collapse
|
45
|
Yosofvand M, Liyanage S, Kalupahana NS, Scoggin S, Moustaid-Moussa N, Moussa H. AdipoGauge software for analysis of biological microscopic images. Adipocyte 2020; 9:360-373. [PMID: 32654628 PMCID: PMC7469447 DOI: 10.1080/21623945.2020.1787583] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Obesity is a complex disease of global epidemic proportions. Adipose tissue expansion and chronic low-grade inflammation, locally and systemically, are hallmark features of obesity. Obesity is associated with several other chronic diseases, which are also characterized by inflammation. Determination of adipocyte size and macrophage content in adipose tissue is a critical step in assessing changes in this tissue with obesity. Here, we introduce a complete standalone software package, AdipoGauge, to analyse microscopic images derived from haematoxylin and eosin (H&E)-stained and immunofluorescently stained histology sections of adipose tissue. The software package is a user-friendly application that does not require a vast knowledge of computer science or costly commercial tools. AdipoGauge includes analysing tools that are capable of cell counting and colour separation. Furthermore, it can quantify the cell data in images both with and without clear boundaries around the cells. It can also remove objects from the image that are not intended for analysis, such as blood vessels or partial cells at edges of slide sections. The simple and state-of-the-art graphical user interface requires minimal time and learning.
Collapse
Affiliation(s)
- Mohammad Yosofvand
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Sanka Liyanage
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Nishan S. Kalupahana
- Department of Physiology, University of Peradeniya, Peradeniya, Sri Lanka
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Shane Scoggin
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Hanna Moussa
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
46
|
Nutritional modulation of leptin expression and leptin action in obesity and obesity-associated complications. J Nutr Biochem 2020; 89:108561. [PMID: 33249183 DOI: 10.1016/j.jnutbio.2020.108561] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 09/11/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022]
Abstract
In obesity, an elevated accumulation and dysregulation of adipose tissue, due to an imbalance between energy intake and energy expenditure, usually coexists with the loss of responsiveness to leptin in central nervous system, and subsequently with hyperleptinemia. Leptin, a peptide hormone mainly produced by white adipose tissue, regulates energy homeostasis by stimulating energy expenditure and inhibiting food intake. Human obesity is characterized by increased plasma leptin levels, which have been related with different obesity-associated complications, such as chronic inflammatory state (risk factor for diabetes, cardiovascular and autoimmune diseases), as well as infertility and different types of cancer. Besides, leptin is also produced by placenta, and high leptin levels during pregnancy may be related with some pathological conditions such as gestational diabetes. This review focuses on the current insights and emerging concepts on potentially valuable nutrients and food components that may modulate leptin metabolism. Notably, several dietary food components, such as phenols, peptides, and vitamins, are able to decrease inflammation and improve leptin sensitivity by up- or down-regulation of leptin signaling molecules. On the other hand, some food components, such as saturated fatty acids may worsen chronic inflammation increasing the risk for pathological complications. Future research into nutritional mechanisms that restore leptin metabolism and signals of energy homeostasis may inspire new treatment options for obesity-related disorders.
Collapse
|
47
|
Resanović I, Zarić B, Radovanović J, Sudar-Milovanović E, Gluvić Z, Jevremović D, Isenović ER. Hyperbaric Oxygen Therapy and Vascular Complications in Diabetes Mellitus. Angiology 2020; 71:876-885. [PMID: 32638622 DOI: 10.1177/0003319720936925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Vascular complications in patients with diabetes mellitus (DM) are common. Since impaired oxygen balance in plasma plays an important role in the pathogenesis of chronic DM-associated complications, the administration of hyperbaric oxygen therapy (HBOT) has been recommended to influence development of vascular complications. Hyperbaric oxygen therapy involves inhalation of 100% oxygen under elevated pressure from 1.6 to 2.8 absolute atmospheres in hyperbaric chambers. Hyperbaric oxygen therapy increases plasma oxygen solubility, contributing to better oxygen diffusion to distant tissues and preservation of the viability of tissues reversibly damaged by atherosclerosis-induced ischemia, along with microcirculation restoration. Hyperbaric oxygen therapy exerts antiatherogenic, antioxidant, and cardioprotective effects by altering the level and composition of plasma fatty acids and also by promoting signal transduction through membranes, which are impaired by hyperglycemia and hypoxia. In addition, HBOT affects molecules involved in the regulation of nitric oxide synthesis and in that way exerts anti-inflammatory and angiogenic effects in patients with DM. In this review, we explore the recent literature related to the effects of HBOT on DM-related vascular complications.
Collapse
Affiliation(s)
- Ivana Resanović
- Department of Radiobiology and Molecular Genetics, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Božidarka Zarić
- Department of Radiobiology and Molecular Genetics, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena Radovanović
- Department of Radiobiology and Molecular Genetics, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Emina Sudar-Milovanović
- Department of Radiobiology and Molecular Genetics, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran Gluvić
- Department of Endocrinology and Diabetes, Zemun Clinical Hospital, School of Medicine, University of Belgrade, Serbia
| | - Danimir Jevremović
- Faculty of Stomatology in Pancevo, University Business Academy, Novi Sad, Serbia
| | - Esma R Isenović
- Department of Radiobiology and Molecular Genetics, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
48
|
D’Angelo S, Motti ML, Meccariello R. ω-3 and ω-6 Polyunsaturated Fatty Acids, Obesity and Cancer. Nutrients 2020; 12:nu12092751. [PMID: 32927614 PMCID: PMC7551151 DOI: 10.3390/nu12092751] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
Recently, nutraceutical bioactive compounds in foods have been discovered for their potential health benefits regarding the prevention of chronic disorders, such as cancer, and inflammatory, cardiovascular, and metabolic diseases. Dietary omega-3 polyunsaturated fatty acids (ω-3PUFAs), including alpha-linolenic acid, docosapentaenoic acid, and eicosapentaenoic acid, are mostly attractive. They are available for the customers worldwide from commonly used foods and/or as components of commercial food supplements. The anti-inflammatory and hypotriglyceridemic effects of these fatty acids are well known, whereas pro-inflammatory properties have been recognized in their dietary counterparts, the ω-6PUFAs. Both ω-3 and ω-6PUFAs contribute to the production of lipid mediators such as endocannabinoids that are notably involved in control of food intake, energy sensing, and food-related disorders. In this review, we present ω-3 and ω-6PUFAs and their derivatives, endocannabinoids; discuss the anti-obesity effects of ω-3PUFAs; their roles in inflammation and colorectal cancer development; and how their action can be co-preventative and co-therapeutic.
Collapse
|
49
|
White Adipose Tissue as a Site for Islet Transplantation. TRANSPLANTOLOGY 2020. [DOI: 10.3390/transplantology1010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Although islet transplantation is recognized as a useful cellular replacement therapy for severe diabetes, surgeons face difficulties in islet engraftment. The transplant site is a pivotal factor that influences the engraftment. Although the liver is the current representative site for clinical islet transplantation, it is not the best site because of limitations in immunity, inflammation, and hypoxia. White adipose tissue, including omentum, is recognized as a useful candidate site for islet transplantation. Its effectiveness has been evaluated in not only various basic and translational studies using small and large animals but also in some recent clinical trials. In this review, we attempt to shed light on the characteristics and usefulness of white adipose tissue as a transplant site for islets.
Collapse
|
50
|
White Adipose Tissue as a Site for Islet Transplantation. TRANSPLANTOLOGY 2020. [DOI: 10.3390/transplantology1020006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Although islet transplantation is recognized as a useful cellular replacement therapy for severe diabetes, surgeons face difficulties in islet engraftment. The transplant site is a pivotal factor that influences the engraftment. Although the liver is the current representative site for clinical islet transplantation, it is not the best site because of limitations in immunity, inflammation, and hypoxia. White adipose tissue, including omentum, is recognized as a useful candidate site for islet transplantation. Its effectiveness has been evaluated in not only various basic and translational studies using small and large animals but also in some recent clinical trials. In this review, we attempt to shed light on the characteristics and usefulness of white adipose tissue as a transplant site for islets.
Collapse
|