1
|
Gómez-García I, Fernández-Quintela A, González M, Gómez-Zorita S, Muguerza B, Trepiana J, Portillo MP. Usefulness of Opuntia spp. on the Management of Obesity and Its Metabolic Co-Morbidities. Nutrients 2024; 16:1282. [PMID: 38732528 PMCID: PMC11085070 DOI: 10.3390/nu16091282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The plants of the Opuntia genus mainly grow in arid and semi-arid climates. Although the highest variety of wild species is found in Mexico, Opuntia spp. is widely distributed throughout the world. Extracts of these cacti have been described as important sources of bioactive substances that can have beneficial properties for the prevention and treatment of certain metabolic disorders. The objective of this review is to summarise the presently available knowledge regarding Opuntia ficus-indica (nopal or prickly pear), and some other species (O. streptacantha and O. robusta) on obesity and several metabolic complications. Current data show that Opuntia ficus-indica products used in preclinical studies have a significant capacity to prevent, at least partially, obesity and certain derived co-morbidities. On this subject, the potential beneficial effects of Opuntia are related to a reduction in oxidative stress and inflammation markers. Nevertheless, clinical studies have evidenced that the effects are highly contingent upon the experimental design. Moreover, the bioactive compound composition of nopal extracts has not been reported. As a result, there is a lack of information to elucidate the mechanisms of action responsible for the observed effects. Accordingly, further studies are needed to demonstrate whether Opuntia products can represent an effective tool to prevent and/or manage body weight and some metabolic disorders.
Collapse
Affiliation(s)
- Iker Gómez-García
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria-Gasteiz, Spain; (I.G.-G.); (A.F.-Q.); (S.G.-Z.); (M.P.P.)
| | - Alfredo Fernández-Quintela
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria-Gasteiz, Spain; (I.G.-G.); (A.F.-Q.); (S.G.-Z.); (M.P.P.)
- Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 28029 Madrid, Spain
| | - Marcela González
- Nutrition and Food Science Department, Faculty of Biochemistry and Biological Sciences, National University of Litoral and National Scientific and Technical Research Council (CONICET), Santa Fe 3000, Argentina;
| | - Saioa Gómez-Zorita
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria-Gasteiz, Spain; (I.G.-G.); (A.F.-Q.); (S.G.-Z.); (M.P.P.)
- Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 28029 Madrid, Spain
| | - Begoña Muguerza
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnología, Universitat Rovira i Virgili, 43007 Tarragona, Spain;
| | - Jenifer Trepiana
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria-Gasteiz, Spain; (I.G.-G.); (A.F.-Q.); (S.G.-Z.); (M.P.P.)
- Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 28029 Madrid, Spain
| | - María P. Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria-Gasteiz, Spain; (I.G.-G.); (A.F.-Q.); (S.G.-Z.); (M.P.P.)
- Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Meza-Rios A, López-Villalobos EF, Anguiano-Sevilla LA, Ruiz-Quezada SL, Velazquez-Juarez G, López-Roa RI, Marin-Molina AL, Zepeda-Morales ASM. Effects of Foods of Mesoamerican Origin in Adipose Tissue and Liver-Related Metabolism. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1907. [PMID: 38003956 PMCID: PMC10672752 DOI: 10.3390/medicina59111907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023]
Abstract
Adipose tissue and liver metabolism play a key role in maintaining body homeostasis; therefore, their impairment conduces a pathological state. Nowadays, occidental lifestyle is a common etiological issue among a variety of chronic diseases, while diet is a unique strategy to prevent obesity and liver metabolism impairment and is a powerful player in the treatment of metabolic-related diseases. Mesoamerican foods are rich in bioactive molecules that enhance and improve adipose tissue and liver performance and represent a prophylactic and therapeutic alternative for disorders related to the loss of homeostasis in the metabolism of these two important tissues.
Collapse
Affiliation(s)
- Alejandra Meza-Rios
- Laboratorio de Análisis Clínicos y Bacteriológicos (Vinculación), Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Boulevard Marcelino García Barragán, No. 1421, Guadalajara 44430, Mexico; (A.M.-R.); (E.F.L.-V.); (A.L.M.-M.)
| | - Erika Fabiola López-Villalobos
- Laboratorio de Análisis Clínicos y Bacteriológicos (Vinculación), Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Boulevard Marcelino García Barragán, No. 1421, Guadalajara 44430, Mexico; (A.M.-R.); (E.F.L.-V.); (A.L.M.-M.)
| | - Luis Alberto Anguiano-Sevilla
- Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Blvd. M. García Barragán, No. 1421, Guadalajara 44430, Mexico; (L.A.A.-S.); (S.L.R.-Q.)
| | - Sandra Luz Ruiz-Quezada
- Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Blvd. M. García Barragán, No. 1421, Guadalajara 44430, Mexico; (L.A.A.-S.); (S.L.R.-Q.)
| | - Gilberto Velazquez-Juarez
- Laboratorio de Análisis Fisicoquímicos Externos, Departamento de Química, CUCEI, Universidad de Guadalajara, Blvd. M. García Barragán, No. 1421, Guadalajara 44430, Mexico;
| | - Rocío Ivette López-Roa
- Laboratorio de Investigación y Desarrollo Farmacéutico, Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Blvd. M. García Barragán, No. 1421, Guadalajara 44430, Mexico;
| | - Ana Laura Marin-Molina
- Laboratorio de Análisis Clínicos y Bacteriológicos (Vinculación), Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Boulevard Marcelino García Barragán, No. 1421, Guadalajara 44430, Mexico; (A.M.-R.); (E.F.L.-V.); (A.L.M.-M.)
| | - Adelaida Sara Minia Zepeda-Morales
- Laboratorio de Análisis Clínicos y Bacteriológicos (Vinculación), Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Boulevard Marcelino García Barragán, No. 1421, Guadalajara 44430, Mexico; (A.M.-R.); (E.F.L.-V.); (A.L.M.-M.)
| |
Collapse
|
3
|
El-Eshmawy MM. Impact of obesity on liver function tests: is nonalcoholic fatty liver disease the only player? A review article. Porto Biomed J 2023; 8:e228. [PMID: 37846300 PMCID: PMC10575409 DOI: 10.1097/j.pbj.0000000000000228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 10/18/2023] Open
Abstract
Objectives Obesity and nonalcoholic fatty liver disease (NAFLD) are common worldwide health problems with a strong relationship in between. NAFLD is currently the most common cause of abnormal liver function tests (LFT) because of obesity pandemic. The question is NAFLD the only player of abnormal LFT in obesity? Methodology This article reviews the most important topics regarding the derangements of LFT in obesity through a PubMed search strategy for all English-language literature. Results The reported abnormal LFT in obesity were increased serum levels of transaminases (alanine aminotransaminase, aspartate aminotransaminase), gamma glutamyl transferase, and alkaline phosphatase and decreased serum levels of bilirubin and albumin. Besides novel potential hepatic markers of NAFLD/NASH such as triglycerides/high-density lipoprotein cholesterol ratio, sex hormone-binding globulin, fibroblast growth factor 21, and markers of hepatocyte apoptosis i.e. cytokeratin 18 and microribonucleic acids (miRNAs). Beyond NAFLD, there are other underlying players for the abnormal LFT in obesity such as oxidative stress, inflammation, and insulin resistance. Conclusion Derangements of LFT in obesity are attributed to NAFLD but also to obesity itself and its related oxidative stress, insulin resistance, and chronic inflammatory state. Abnormal LFT predict more than just liver disease.
Collapse
Affiliation(s)
- Mervat M. El-Eshmawy
- Department of Internal Medicine, Mansoura Specialized Medical Hospital, Faculty of Medicine, Mansoura University, Egypt
| |
Collapse
|
4
|
Besné-Eseverri I, Trepiana J, Gómez-Zorita S, Antunes-Ricardo M, Cano MP, Portillo MP. Beneficial Effects of Opuntia spp. on Liver Health. Antioxidants (Basel) 2023; 12:1174. [PMID: 37371904 DOI: 10.3390/antiox12061174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
The genus Opuntia spp. includes plants capable of growing in arid, temperate and tropical climates. The vast majority of wild species grow in Mexico, but O. ficus-indica (prickly pear or nopal) is cultivated around the world and it is one of the most studied. This review shows the currently available knowledge concerning the action of O. ficus-indica and other Opuntia species (Opuntia vulgaris, Opuntia robusta, Opuntia streptacantha, Opuntia microdasys, Opuntia dillenii and Opuntia dejecta) on liver health. The available data demonstrate the positive effects of extracts, vinegar, juices or seed oil of the Opuntia genus on the alterations induced in the liver by inadequate feeding patterns or the administration of chemicals. In this regard, the potential beneficial effects of nopal are related to the attenuation of triglyceride accumulation, oxidative stress and/or inflammation. Nevertheless, there is no information concerning the bioactive compound's characterisation in most of these studies; consequently, it is not possible to link the therapeutic effects of these plants to the presence of specific compounds in the nopal extracts. Therefore, further research is needed to confirm if the positive effects observed in animal models are also found in humans, in order to determine whether Opuntia can represent an effective tool to prevent and/or manage hepatic alterations.
Collapse
Affiliation(s)
- Irene Besné-Eseverri
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Centre, 01006 Vitoria, Spain
| | - Jenifer Trepiana
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Centre, 01006 Vitoria, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria, Spain
- BIOARABA Institute of Health, 01006 Vitoria-Gasteiz, Spain
| | - Saioa Gómez-Zorita
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Centre, 01006 Vitoria, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria, Spain
- BIOARABA Institute of Health, 01006 Vitoria-Gasteiz, Spain
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
| | - M Pilar Cano
- Laboratory of Phytochemistry and Plant Food Functionality, Biotechnology and Food Microbiology Department, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - María P Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Centre, 01006 Vitoria, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria, Spain
- BIOARABA Institute of Health, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
5
|
Delgadillo-Puga C, Sánchez-Castillo DR, Cariño-Cervantes YY, Torre-Villalvazo I, Tovar-Palacio C, Vásquez-Reyes S, Furuzawa-Carballeda J, Acevedo-Carabantes JA, Camacho-Corona MDR, Guzmán-Mar JL, Cisneros-Zevallos L, Tovar AR, Rebollar-Vega R, Hernández-Montes G, Ulloa-Aguirre A, Palacios-Gonzalez B, Noriega LG. Vachellia farnesiana Pods or a Polyphenolic Extract Derived from Them Exert Immunomodulatory, Metabolic, Renoprotective, and Prebiotic Effects in Mice Fed a High-Fat Diet. Int J Mol Sci 2023; 24:ijms24097984. [PMID: 37175691 PMCID: PMC10178983 DOI: 10.3390/ijms24097984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/09/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Obesity causes systemic inflammation, hepatic and renal damage, as well as gut microbiota dysbiosis. Alternative vegetable sources rich in polyphenols are known to prevent or delay the progression of metabolic abnormalities during obesity. Vachellia farnesiana (VF) is a potent source of polyphenols with antioxidant and anti-inflammatory activities with potential anti-obesity effects. We performed an in vivo preventive or an interventional experimental study in mice and in vitro experiments with different cell types. In the preventive study, male C57BL/6 mice were fed with a Control diet, a high-fat diet, or a high-fat diet containing either 0.1% methyl gallate, 10% powdered VFP, or 0.5%, 1%, or 2% of a polyphenolic extract (PE) derived from VFP (Vachellia farnesiana pods) for 14 weeks. In the intervention study, two groups of mice were fed for 14 weeks with a high-fat diet and then one switched to a high-fat diet with 10% powdered VFP for ten additional weeks. In the in vitro studies, we evaluated the effect of a VFPE (Vachellia farnesiana polyphenolic extract) on glucose-stimulated insulin secretion in INS-1E cells or of naringenin or methyl gallate on mitochondrial activity in primary hepatocytes and C2C12 myotubes. VFP or a VFPE increased whole-body energy expenditure and mitochondrial activity in skeletal muscle; prevented insulin resistance, hepatic steatosis, and kidney damage; exerted immunomodulatory effects; and reshaped fecal gut microbiota composition in mice fed a high-fat diet. VFPE decreased insulin secretion in INS-1E cells, and its isolated compounds naringenin and methyl gallate increased mitochondrial activity in primary hepatocytes and C2C12 myotubes. In conclusion VFP or a VFPE prevented systemic inflammation, insulin resistance, and hepatic and renal damage in mice fed a high-fat diet associated with increased energy expenditure, improved mitochondrial function, and reduction in insulin secretion.
Collapse
Affiliation(s)
- Claudia Delgadillo-Puga
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico
| | | | - Yonatan Y Cariño-Cervantes
- Departamento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico
| | - Ivan Torre-Villalvazo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico
| | - Claudia Tovar-Palacio
- Dirección de Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico
| | - Sarai Vásquez-Reyes
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico
| | - Janette Furuzawa-Carballeda
- Departamento de Cirugía Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico
| | - Joshua Ayork Acevedo-Carabantes
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico
| | - María Del Rayo Camacho-Corona
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), Av. Universidad s/n, Ciudad Universitaria, San Nicolás de Los Garza 66455, Mexico
| | - Jorge Luis Guzmán-Mar
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), Av. Universidad s/n, Ciudad Universitaria, San Nicolás de Los Garza 66455, Mexico
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico
| | - Rosa Rebollar-Vega
- Red de Apoyo a la Investigación, Universidad Nacional de Autónoma de México, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Georgina Hernández-Montes
- Red de Apoyo a la Investigación, Universidad Nacional de Autónoma de México, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional de Autónoma de México, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Berenice Palacios-Gonzalez
- Unidad de Vinculación Científica Facultad de Medicina, Instituto Nacional de Medicina Genómica 14, (INMEGEN), Mexico City 16080, Mexico
| | - Lilia G Noriega
- Dirección de Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico
| |
Collapse
|
6
|
Rosas-Campos R, Meza-Rios A, Rodriguez-Sanabria JS, la Rosa-Bibiano RD, Corona-Cervantes K, García-Mena J, Santos A, Sandoval-Rodriguez A, Armendariz-Borunda J. Dietary supplementation with Mexican foods, Opuntia ficus indica, Theobroma cacao, and Acheta domesticus: Improving obesogenic and microbiota features in obese mice. Front Nutr 2022; 9:987222. [PMID: 36532548 PMCID: PMC9755723 DOI: 10.3389/fnut.2022.987222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2023] Open
Abstract
INTRODUCTION An obesogenic diet, a diet high in saturated fats and sugars, is a risk factor for the development of multiple obesity-related diseases. In this study, our aim was to evaluate the effect of supplementation with a mixture of Mexican functional foods (MexMix), Opuntia ficus indica (nopal), Theobroma cacao, and Acheta domesticus (edible crickets), compared with a high-fat and fructose/sucrose diet on an obesogenic mice model. METHODS For this study, 18 male C57BL/6J mice were used, which were divided into three groups: (1) control group: normal diet (ND), (2) HF/FS group: high-fat diet along with 4.2% fructose/sucrose and water (ad libitum access), and (3) therapeutic group (MexMix): HF/FS diet up to week 8, followed by HF/FS diet supplemented with 10% nopal, 10% cocoa, and 10% cricket for 8 weeks. RESULTS MexMix mice showed significantly reduced body weight, liver weight, visceral fat, and epididymal fat compared with HF/FS mice. Levels of triglycerides, cholesterol, LDL cholesterol, insulin, glucose, GIP, leptin, PAI-1, and resistin were also significantly reduced. For identifying the gut microbiota in the model, 16S rRNA gene sequencing analysis was performed, and the results showed that MexMix supplementation increased the abundance of Lachnospira, Eubacterium coprostanoligenes, and Blautia, bacteria involved in multiple beneficial metabolic effects. It is noteworthy that the mice supplemented with MexMix showed improvements in cognitive parameters, as evaluated by the novel object recognition test. CONCLUSION Hence, supplementation with MexMix food might represent a potential strategy for the treatment of obesity and other diseases associated with excessive intake of fats and sugars.
Collapse
Affiliation(s)
- Rebeca Rosas-Campos
- Department of Molecular Biology and Genomics, Health Sciences University Center, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, Guadalajara, Mexico
| | - Alejandra Meza-Rios
- Department of Molecular Biology and Genomics, Health Sciences University Center, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, Guadalajara, Mexico
| | - J. Samael Rodriguez-Sanabria
- Department of Molecular Biology and Genomics, Health Sciences University Center, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, Guadalajara, Mexico
| | - Ricardo De la Rosa-Bibiano
- Department of Molecular Biology and Genomics, Health Sciences University Center, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, Guadalajara, Mexico
| | | | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Cinvestav, Ciudad de México, Mexico
| | | | - Ana Sandoval-Rodriguez
- Department of Molecular Biology and Genomics, Health Sciences University Center, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, Guadalajara, Mexico
| | - Juan Armendariz-Borunda
- Department of Molecular Biology and Genomics, Health Sciences University Center, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, Guadalajara, Mexico
- Tecnológico de Monterrey, EMCS, Guadalajara, Mexico
| |
Collapse
|
7
|
Hernández-Becerra E, de los Angeles Aguilera-Barreiro M, Contreras-Padilla M, Pérez-Torrero E, Rodriguez-Garcia ME. Nopal cladodes (Opuntia Ficus Indica): Nutritional properties and functional potential. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
8
|
Looking inside Mexican Traditional Food as Sources of Synbiotics for Developing Novel Functional Products. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8030123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Currently, emerging alimentary alternatives are growing, leading to the consumption of natural products including bio, fermented, and traditional foods. The studies over functional properties of food matrices and their derived compounds have resulted in the development of new functional alimentary items. However, most of the population still has limited access to, and information about, suitable foods. Analyzing traditional fermented products, we found fermented food matrices containing beneficial bacteria, with the possibility of exerting effects on different substrates enhancing the bioavailability of short-chain fatty acids (SFCAs), antioxidants, among other food-derived products. Maize (Zea mays L.), agave varieties, nopal (Opuntia ficus-indica), and beans (Phaseolus vulgaris L.) were key foods for the agricultural and nutritional development of Mesoamerica. We believe that the traditional Mexican diet has relevant ingredients with these functionalities and their association will allow us to develop functional food suitable for each population and their current needs. In this review, the functional properties of maize, agave, nopal, and frijol are detailed, and the functional food innovation and development opportunities for these food matrices are analyzed, which may be an important precedent for future basic and applied research.
Collapse
|
9
|
Indicaxanthin from Opuntia ficus-indica Fruit Ameliorates Glucose Dysmetabolism and Counteracts Insulin Resistance in High-Fat-Diet-Fed Mice. Antioxidants (Basel) 2021; 11:antiox11010080. [PMID: 35052584 PMCID: PMC8773302 DOI: 10.3390/antiox11010080] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022] Open
Abstract
Obesity-related dysmetabolic conditions are amongst the most common causes of death globally. Indicaxanthin, a bioavailable betalain pigment from Opuntia ficus-indica fruit, has been demonstrated to modulate redox-dependent signalling pathways, exerting significant anti-oxidative and anti-inflammatory effects in vitro and in vivo. In light of the strict interconnections between inflammation, oxidative stress and insulin resistance (IR), a nutritionally relevant dose of indicaxanthin has been evaluated in a high-fat diet (HFD) model of obesity-related IR. To this end, biochemical and histological analysis, oxidative stress and inflammation evaluations in liver and adipose tissue were carried out. Our results showed that indicaxanthin treatment significantly reduced body weight, daily food intake and visceral fat mass. Moreover, indicaxanthin administration induced remarkable, beneficial effects on HFD-induced glucose dysmetabolism, reducing fasting glycaemia and insulinaemia, improving glucose and insulin tolerance and restoring the HOMA index to physiological values. These effects were associated with a reduction in hepatic and adipose tissue oxidative stress and inflammation. A decrease in RONS, malondialdehyde and NO levels, in TNF-α, CCL-2 and F4-80 gene expression, in p65, p-JNK, COX-2 and i-NOS protein levels, in crown-like structures and hepatic inflammatory foci was, indeed, observed. The current findings encourage further clinical studies to confirm the effectiveness of indicaxanthin to prevent and treat obesity-related dysmetabolic conditions.
Collapse
|
10
|
Ordaz G, Juárez A, López M, Martínez HE, Pérez RE, Ortiz R. Opuntia ficus-indica as a supplement for gilts in late gestation and lactation: effects on biochemical parameters and voluntary feed intake. JOURNAL OF APPLIED ANIMAL RESEARCH 2021. [DOI: 10.1080/09712119.2021.1995391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Gerardo Ordaz
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Querétaro, Mexico
| | - Aureliano Juárez
- Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo, Michoacán, Mexico
| | - Manuel López
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Michoacán, Mexico
| | - Héctor Eduardo Martínez
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Michoacán, Mexico
| | - Rosa Elena Pérez
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Michoacán, Mexico
| | - Ruy Ortiz
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Michoacán, Mexico
| |
Collapse
|
11
|
Abd-Elhakim YM, Al-Sagheer AA. Opuntia spp. Benefits in Chronic Diseases. OPUNTIA SPP.: CHEMISTRY, BIOACTIVITY AND INDUSTRIAL APPLICATIONS 2021:423-455. [DOI: 10.1007/978-3-030-78444-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
12
|
Influence of Feeding Quinoa ( Chenopodium quinoa) Seeds and Prickly Pear Fruit ( Opuntia ficus indica) Peel on the Immune Response and Resistance to Aeromonas sobria Infection in Nile Tilapia ( Oreochromis niloticus). Animals (Basel) 2020; 10:ani10122266. [PMID: 33271917 PMCID: PMC7760620 DOI: 10.3390/ani10122266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 01/09/2023] Open
Abstract
Simple Summary The inclusion of dietary supplements as feed additives in fish feed promotes the growth, immunity, and health of the fish, thereby accomplishing extraordinary outcomes in the net gain of the farm. Therefore, the present study was conducted to evaluate the influence of using quinoa seeds (QU) and prickly pear fruit peel (PP) as dietary supplements for fish, at the dose levels of 10% and 20% of the diet, on the immune response and disease resistance against pathogens, providing a novel perspective in aquaculture. Our findings indicated that the inclusion of PP and QU into the diets of Nile tilapia (Oreochromis niloticus) as feed supplements improved the survival rate, as well as the hematological, digestive, antioxidant, and immunological parameters. Moreover, an improvement in the strength of Nile tilapia immune response against Aeromonas sobria (A. sobria) infection was observed, evidenced by the improvement in the survival rate of infected fish. This was accomplished through the protection of the hepatic tissue and modulation of the expression of immune-encoding genes, including the downregulation of the gene encoding TGF-β and upregulation of the IFN-γ-encoding gene. Moreover, histological restoration of the morphological structures of intestine, liver, and spleen tissues was observed, particularly at the supplementation level of 20%. Abstract In recent times, nutraceuticals have been used extensively to identify promising feed additives for the improvement of the aquaculture industry through the enhancement of growth and survival rates, potentiation of the immune responses, and fortification of the resistance against infectious bacterial diseases. In this study, Nile tilapia (Oreochromis niloticus) were fed with diets supplemented with quinoa seeds (QU) or prickly pear fruit peel (PP) at the dose levels of 10% or 20% of the diet. After 45 days of the feeding trial, the fish were exposed to Aeromonas sobria (A. sobria) challenge. The pre-challenge indices indicated that both supplements mediated a significant improvement in most of the estimated parameters, including survival rate, antioxidant status, hematological and immunological indices, and hepatoprotective potential. These effects were recorded in the groups fed with high doses of the supplements (20%). The least changes were observed in the QU10-supplemented fish. In the spleen tissue, the TGF-β gene was upregulated in the PP10-, PP20- and QU20-supplemented groups, while the expression of the IFN-γ gene remained unaffected in all the supplemented groups, except for the PP20-supplemented group, which showed an upregulation. After the challenge with A. sobria, the relative survival percentage was improved by the supplementation of PP and QU, particularly in the PP20-supplemented group, possibly via the promotion of immunological responses, hepatoprotective potency, and modulation of the studied genes. Moreover, the morphological structure of the tissues showed marked recovery. The findings suggest that Nile tilapia fed with different levels of PP peel and QU seeds, particularly at the level of 20%, enhanced the immune response in fish and improved their resistance against A. sobria infection.
Collapse
|
13
|
VandenAkker NE, Vendrame S, Tsakiroglou P, McGilvrey M, Klimis-Zacas D. Whole Red Raspberry ( Rubus idaeus)-Enriched Diet Is Hepatoprotective in the Obese Zucker Rat, a Model of the Metabolic Syndrome. J Med Food 2020; 24:817-824. [PMID: 33227217 DOI: 10.1089/jmf.2020.0130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease is a major risk factor of the metabolic syndrome (MetS). The effect of whole red raspberry (WRR) consumption on lipid metabolism was investigated in the obese Zucker rat (OZR), a model for the MetS. Male OZRs (n = 16) and their lean littermates (lean Zucker rat) (n = 16) at 8 weeks of age were placed on a control or an 8% WRR-enriched diet for 8 weeks. Plasma triglycerides (TGs), total cholesterol, high-density lipoprotein cholesterol (HDL-C), and non-HDL-C levels, and hepatic concentration of TG were measured. The expression of nine genes related to lipid metabolism was evaluated, both in liver and adipose tissue. A WRR-enriched diet reduced plasma cholesterol and HDL-C and increased plasma TG, while it decreased hepatic TG accumulation in the OZR. The OZR assigned to a WRR exhibited upregulation of microsomal triglyceride transfer protein (Mttp) and downregulation of fatty acid synthase (Fas) expression in the liver. Results showed a decrease in accumulation of liver TG and gene expression modulation of enzymes and transcription factors associated with lipid metabolism, suggesting a possible hepatoprotective role of a WRR-enriched diet.
Collapse
Affiliation(s)
| | - Stefano Vendrame
- School of Food and Agriculture, University of Maine, Orono, Maine, USA
| | | | - Marissa McGilvrey
- School of Food and Agriculture, University of Maine, Orono, Maine, USA
| | | |
Collapse
|
14
|
Giglio RV, Carruba G, Cicero AF, Banach M, Patti AM, Nikolic D, Cocciadiferro L, Zarcone M, Montalto G, Stoian AP, Banerjee Y, Rizvi AA, Toth PP, Rizzo M. Pasta Supplemented with Opuntia ficus-indica Extract Improves Metabolic Parameters and Reduces Atherogenic Small Dense Low-Density Lipoproteins in Patients with Risk Factors for the Metabolic Syndrome: A Four-Week Intervention Study. Metabolites 2020; 10:metabo10110428. [PMID: 33114614 PMCID: PMC7694062 DOI: 10.3390/metabo10110428] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/24/2022] Open
Abstract
Food supplementation with Opuntia ficus-indica (OFI) has been associated with a significant reduction in total cholesterol, body fat, hyperglycemia and blood pressure. Since OFI may also have antioxidant and anti-atherogenic properties, we hypothesized that its supplementation might reduce atherogenic lipoproteins, including small, dense low-density lipoproteins (sdLDL). Forty-nine patients (13 men and 36 women, mean age: 56 ± 5 years) with one or two criteria for the metabolic syndrome weekly consumed 500 g of pasta supplemented with 3% OFI extract (30% of insoluble polysaccharides with high antioxidant power) for 1 month. The full LDL subclass profile was assessed by gel electrophoresis (Lipoprint, Quantimetrix, Redondo Beach, CA, USA). After 1 month of pasta supplementation, waist circumference (p = 0.0297), plasma glucose (p < 0.0001), triglycerides (p = 0.0137), plasma creatinine (p = 0.0244), urea and aspartate transaminase (p < 0.0001 for each) significantly decreased. A percentage increase in larger, less atherogenic LDL-1 (p = 0.0002), with a concomitant reduction in smaller, denser LDL-2 (p < 0.0001) and LDL-3 (p = 0.0004), were found. LDL-4 and-5 decreased, although not significantly. This is the first intervention study suggesting that pasta enriched with an OFI extract may have beneficial effects on some metabolic parameters and the LDL particle sizes, reducing atherogenic sdLDL. Future studies will help to establish if these findings impact cardiovascular outcomes.
Collapse
Affiliation(s)
- Rosaria Vincenza Giglio
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (R.V.G.); (A.M.P.); (G.M.); (M.R.)
| | - Giuseppe Carruba
- Division of Research and Internationalization, ARNAS-Civico Di Cristina e Benfratelli, 90127 Palermo, Italy; (G.C.); (L.C.); (M.Z.)
| | - Arrigo F.G. Cicero
- Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy;
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, 90-419 Lodz, Poland;
- Polish Mother’s Memorial Hospital Research Institute (PMMHRI) in Lodz, 93-338 Lodz, Poland
| | - Angelo Maria Patti
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (R.V.G.); (A.M.P.); (G.M.); (M.R.)
| | - Dragana Nikolic
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (R.V.G.); (A.M.P.); (G.M.); (M.R.)
- Correspondence: ; Tel.: +39-091-655-4703
| | - Letizia Cocciadiferro
- Division of Research and Internationalization, ARNAS-Civico Di Cristina e Benfratelli, 90127 Palermo, Italy; (G.C.); (L.C.); (M.Z.)
| | - Maurizio Zarcone
- Division of Research and Internationalization, ARNAS-Civico Di Cristina e Benfratelli, 90127 Palermo, Italy; (G.C.); (L.C.); (M.Z.)
| | - Giuseppe Montalto
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (R.V.G.); (A.M.P.); (G.M.); (M.R.)
| | - Anca Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Yajnavalka Banerjee
- Department of Biochemistry, Mohammed Bin Rashid University of Medicine and Health Sciences, 505055 Dubai, UAE;
| | - Ali A. Rizvi
- Division of Endocrinology, Diabetes and Metabolism, University of South Carolina School of Medicine, Columbia, SC 29203, USA;
- Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Peter P. Toth
- CGH Medical Center, Sterling, IL 61081, USA;
- School of Medicine, University of Illinois, Peoria, IL 60612, USA
- School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Manfredi Rizzo
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (R.V.G.); (A.M.P.); (G.M.); (M.R.)
- Division of Endocrinology, Diabetes and Metabolism, University of South Carolina School of Medicine, Columbia, SC 29203, USA;
| |
Collapse
|
15
|
Li CL, Zhou WJ, Ji G, Zhang L. Natural products that target macrophages in treating non-alcoholic steatohepatitis. World J Gastroenterol 2020; 26:2155-2165. [PMID: 32476782 PMCID: PMC7235205 DOI: 10.3748/wjg.v26.i18.2155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/26/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is the progressive subtype of non-alcoholic fatty liver disease and potentiates risks for both hepatic and metabolic diseases. Although the pathophysiology of NASH is not completely understood, recent studies have revealed that macrophage activation is a major contributing factor for the disease progression. Macrophages integrate the immune response and metabolic process and have become promising targets for NASH therapy. Natural products are potential candidates for NASH treatment and have multifactorial underlying mechanisms. Macrophage involvement in the development of steatosis and inflammation in NASH has been widely investigated. In this review, we assess the evidence for natural products or their active ingredients in the modulation of macrophage activation, recruitment, and polarization, as well as the metabolic status of macrophages. Our work may highlight the possible natural products that target macrophages as potential treatment options for NASH.
Collapse
Affiliation(s)
- Chun-Lin Li
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Wen-Jun Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
16
|
Héliès-Toussaint C, Fouché E, Naud N, Blas-Y-Estrada F, Del Socorro Santos-Diaz M, Nègre-Salvayre A, Barba de la Rosa AP, Guéraud F. Opuntia cladode powders inhibit adipogenesis in 3 T3-F442A adipocytes and a high-fat-diet rat model by modifying metabolic parameters and favouring faecal fat excretion. BMC Complement Med Ther 2020; 20:33. [PMID: 32024512 PMCID: PMC7076822 DOI: 10.1186/s12906-020-2824-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/20/2020] [Indexed: 12/21/2022] Open
Abstract
Background Obesity is a major public health concern worldwide. A sedentary life and a nutritional transition to processed foods and high-calorie diets are contributing factors to obesity. The demand for nutraceutical foods, such as herbal weight-loss products, which offer the potential to counteract obesity, has consequently increased. We hypothesised that Opuntia cladodes consumption could assist weight management in an obesity prevention context. Methods This study was designed to explore the anti-adipogenic effects of lyophilised Opuntia cladode powders (OCP) in an in vitro cellular model for adipocyte differentiation and an in vivo high-fat-diet (HFD)-induced obesity rat model. Two OCP were tested, one from wild species O. streptacantha and the second from the most known species O. ficus-indica. Results Pre-adipocytes 3 T3-F442A were treated by OCP during the differentiation process by insulin. OCP treatment impaired the differentiation in adipocytes, as supported by the decreased triglyceride content and a low glucose uptake, which remained comparable to that observed in undifferentiated controls, suggesting that an anti-adipogenic effect was exerted by OCP. Sprague–Dawley rats were fed with a normal or HFD, supplemented or not with OCP for 8 weeks. OCP treatment slightly reduced body weight gain, liver and abdominal fat weights, improved some obesity-related metabolic parameters and increased triglyceride excretion in the faeces. Taken together, these results showed that OCP might contribute to reduce adipogenesis and fat storage in a HFD context, notably by promoting the faecal excretion of fats. Conclusions Opuntia cladodes may be used as a dietary supplement or potential therapeutic agent in diet-based therapies for weight management to prevent obesity. Graphical abstract ![]()
Collapse
Affiliation(s)
- Cécile Héliès-Toussaint
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Edwin Fouché
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Nathalie Naud
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Florence Blas-Y-Estrada
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Maria Del Socorro Santos-Diaz
- Centro de Investigación y Estudios de Posgrado (CienciasQuímicas), UniversidadAutónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Anne Nègre-Salvayre
- Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico
| | | | - Françoise Guéraud
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
17
|
Angulo-Bejarano PI, Gómez-García MDR, Valverde ME, Paredes-López O. Nopal (Opuntia spp.) and its Effects on Metabolic Syndrome: New Insights for the Use of a Millenary Plant. Curr Pharm Des 2019; 25:3457-3477. [DOI: 10.2174/1381612825666191010171819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/01/2019] [Indexed: 01/16/2023]
Abstract
Background:Nopal (Opuntia spp.) is by excellence the most utilized cactus in human and animal nutrition. It is also a very noble plant; its main physicochemical, nutritional and nutraceutical characteristics allow the use of nopal in diverse food applications. Special focus has been given over the past decades in the use of Opuntia for the treatment of metabolic syndrome (MetS), which is predominantly related to Diabetes Mellitus. In this sense, the prevalence of MetS is increasing at a worldwide level. This in turn has led to a notorious demand for natural and nutraceutical food sources.Methods:The objective of this work was to summarize the main contributions in the field of Opuntia spp. research highlighting the potential use of nopal fruits or cladodes in MetS treatment, providing the reader with historical and novel information in this field. Nevertheless, the present work is not a meta-analysis. We included mainly information from recognized scientific databases, such as PubMed, Scopus, Web of Science and Google Scholar. No homeopathic based studies were included since they lack scientific validation. To the best of our knowledge, this is the first review that fairly categorizes the majority of the information in this field into subsections, which can be of interest for the reader, such as the effect of nopal against cardiovascular disease, type 2 diabetes mellitus, and obesity among others.Conclusion:Nopal constitutes one of the most studied members of the Cactaceae family; its potential effects on human health have been described since ancient times, mostly through traditional medicine. The present work highlights the importance of this plant in the treatment of MetS related maladies and points out the importance of elucidating new compounds and their validation for the interactions of nutraceutical compounds which could be related to MetS.
Collapse
Affiliation(s)
- Paola Isabel Angulo-Bejarano
- Centre of Bioengineering, School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, Queretaro, Qro, Mexico
| | | | - Maria Elena Valverde
- Centro de Investigacion y de Estudios Avanzados-IPN, Campus Irapuato, Guanajuato, Mexico
| | - Octavio Paredes-López
- Centro de Investigacion y de Estudios Avanzados-IPN, Campus Irapuato, Guanajuato, Mexico
| |
Collapse
|
18
|
Tsafantakis N, Katsanou ES, Kyriakopoulou K, Psarou EC, Raptaki I, Skaltsounis AL, Audebert M, Machera KA, Fokialakis N. Comparative UHPLC-HRMS Profiling, Toxicological Assessment, and Protection Against H 2O 2-Induced Genotoxicity of Different Parts of Opuntia ficus indica. J Med Food 2019; 22:1280-1293. [PMID: 31584314 DOI: 10.1089/jmf.2019.0032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Opuntia ficus indica has been an important dietary source and a traditionally used medicinal plant. Given the promising health-promoting properties of this plant, a comparative toxicological assessment and antioxidant bioevaluation of extracts from different parts of the plant were carried out in relation to their chemical profile. Toxicity was examined at multiple endpoints using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), Comet and the γH2AX In-Cell Western Assay, while hyphenated ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) analysis was carried out to identify main constituents. None of the extracts showed any cytotoxic and genotoxic effect on cell lines used, apart from the flower extract in HepG2 cells at the highest concentration tested (2.5 mg/mL). Both fruit flesh and seed extracts demonstrated a prominent protective effect against H2O2-induced genotoxicity in almost all concentrations tested, while extracts originated from flowers and cladodes were effective only at the low non-cytotoxic (0.312 and 0.625 mg/mL) and high (1.25 and 2.5 mg/mL) concentrations, respectively. In total, 2 phenolic acids, 12 flavonoids, along with 3 feruloyl derivatives and the plant pigment indicaxanthin, were tentatively identified by UHPLC-HRMS analysis. Phenolic acids (compounds 1 and 2) were mainly distributed in cladodes (64.6%), while flavonoids (3-14) in the flowers (81.8%). Overall, the highest amount of total flavonoids (22.76 ± 0.015 mg of quercetin equivalent [QE]/g) and total phenolics (62.80 ± 0.009 mg gallic acid equivalents [GAE]/g) was found in the flower extract. Flavonoid glycosides have not been detected in the seeds and the flesh, while the fruit seed extract contained mainly feruloyl derivatives. Our data provide convincing evidences for the lack of cytotoxic and genotoxic effects of O. ficus indica aqueous extracts and, in parallel, support the potential for further exploitation of this plant in the food supplement or functional food sector.
Collapse
Affiliation(s)
- Nikolaos Tsafantakis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Efrosini S Katsanou
- Laboratory of Pesticides Toxicology, Department of Pesticides Control & Phytopharmacy, Benaki Phytopathological Institute, Athens, Greece
| | - Katerina Kyriakopoulou
- Laboratory of Pesticides Toxicology, Department of Pesticides Control & Phytopharmacy, Benaki Phytopathological Institute, Athens, Greece
| | - Eirini-Christina Psarou
- Laboratory of Pesticides Toxicology, Department of Pesticides Control & Phytopharmacy, Benaki Phytopathological Institute, Athens, Greece
| | - Iliana Raptaki
- Laboratory of Pesticides Toxicology, Department of Pesticides Control & Phytopharmacy, Benaki Phytopathological Institute, Athens, Greece
| | - Alexios L Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Marc Audebert
- UMR1331 Toxalim, Research Centre in Food Toxicology, INRA, Toulouse, France
| | - Kyriaki A Machera
- Laboratory of Pesticides Toxicology, Department of Pesticides Control & Phytopharmacy, Benaki Phytopathological Institute, Athens, Greece
| | - Nikolas Fokialakis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
19
|
Aragona M, Lauriano ER, Pergolizzi S, Faggio C. Opuntia ficus-indica (L.) Miller as a source of bioactivity compounds for health and nutrition. Nat Prod Res 2017; 32:2037-2049. [DOI: 10.1080/14786419.2017.1365073] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- M. Aragona
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - E. R. Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - S. Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - C. Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
20
|
Kim JW, Kim TB, Kim HW, Park SW, Kim HP, Sung SH. Hepatoprotective Flavonoids in Opuntia ficus-indica Fruits by Reducing Oxidative Stress in Primary Rat Hepatocytes. Pharmacogn Mag 2017; 13:472-476. [PMID: 28839374 PMCID: PMC5551367 DOI: 10.4103/pm.pm_232_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/11/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Liver disorder was associated with alcohol consumption caused by hepatic cellular damages. Opuntia ficus-indica fruit extracts (OFIEs), which contain betalain pigments and polyphenols including flavonoids, have been introduced as reducing hangover symptoms and liver protective activity. OBJECTIVE To evaluate hepatoprotective activity of OFIEs and isolated compounds by high-speed countercurrent chromatography (HSCCC). MATERIALS AND METHODS The extract of O. ficus-indica fruits was fractionated into methylene chloride and n-butanol. The n-butanol fraction was isolated by HSCCC separation (methylene chloride-methanol-n-butanol-water, 5:4:3:5, v/v/v/v). The hepatoprotective activity of OFIEs and isolated compounds was evaluated on rat primary hepatocytes against ethanol-induced toxicity. Antioxidative parameters such as glutathione reductase and glutathione peroxidase (GSH-Px) enzymes and the GSH content were measured. RESULTS Two flavonoids, quercetin 3-O-methyl ester (1) and (+)-taxifolin, and two flavonoid glycosides, isorhamnetin 3-O-β-d-glucoside (3) and narcissin (4), were isolated from the n-butanol fraction by HSCCC separation. Among them, compound 2 significantly protected rat primary hepatocytes against ethanol exposure by preserving antioxidative properties of GR and GSH-Px. CONCLUSIONS OFIEs and (+)-taxifolin were suggested to reduce hepatic damage by alcoholic oxidative stress. SUMMARY Hepatoprotective Flavonoids were isolated from Opuntia ficus-indica by high -speed countercurrent chromatography (HSCCC).
Collapse
Affiliation(s)
- Jung Wha Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Seoul, Republic of Korea
| | - Tae Bum Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Seoul, Republic of Korea
| | - Hyun Woo Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Seoul, Republic of Korea
| | - Sang Wook Park
- Department of Agriculture, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hong Pyo Kim
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon, Republic of Korea
| | - Sang Hyun Sung
- Department of Pharmacy, College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Sánchez-Tapia M, Aguilar-López M, Pérez-Cruz C, Pichardo-Ontiveros E, Wang M, Donovan SM, Tovar AR, Torres N. Nopal (Opuntia ficus indica) protects from metabolic endotoxemia by modifying gut microbiota in obese rats fed high fat/sucrose diet. Sci Rep 2017; 7:4716. [PMID: 28680065 PMCID: PMC5498631 DOI: 10.1038/s41598-017-05096-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/26/2017] [Indexed: 01/22/2023] Open
Abstract
Current efforts are directed to reducing the gut dysbiosis and inflammation produced by obesity. The purpose of this study was to investigate whether consuming nopal, a vegetable rich in dietary fibre, vitamin C, and polyphenols can reduce the metabolic consequences of obesity by modifying the gut microbiota and preventing metabolic endotoxemia in rats fed a high fat and sucrose diet. With this aim, rats were fed a high fat diet with 5% sucrose in the drinking water (HFS) for 7 months and then were fed for 1 month with HFS + 5% nopal (HFS + N). The composition of gut microbiota was assessed by sequencing the 16S rRNA gene. Nopal modified gut microbiota and increased intestinal occludin-1 in the HFS + N group. This was associated with a decrease in metabolic endotoxemia, glucose insulinotropic peptide, glucose intolerance, lipogenesis, and metabolic inflexibility. These changes were accompanied by reduced hepatic steatosis and oxidative stress in adipose tissue and brain, and improved cognitive function, associated with an increase in B. fragilis. This study supports the use of nopal as a functional food and prebiotic for its ability to modify gut microbiota and to reduce metabolic endotoxemia and other obesity-related biochemical abnormalities.
Collapse
Affiliation(s)
- Mónica Sánchez-Tapia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No 15, Ciudad de Mexico, 14080, Mexico City, Mexico
| | - Miriam Aguilar-López
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No 15, Ciudad de Mexico, 14080, Mexico City, Mexico
| | - Claudia Pérez-Cruz
- Departamento de Farmacología, Laboratorio de Neuroplasticidad y Neurodegeneración, CINVESTAV, Ciudad de Mexico, 07360, Mexico City, Mexico
| | - Edgar Pichardo-Ontiveros
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No 15, Ciudad de Mexico, 14080, Mexico City, Mexico
| | - Mei Wang
- Department of Food Science and Human Nutrition, University of Illinois, Illinois, IL, 61801, USA
| | - Sharon M Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Illinois, IL, 61801, USA
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No 15, Ciudad de Mexico, 14080, Mexico City, Mexico
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No 15, Ciudad de Mexico, 14080, Mexico City, Mexico.
| |
Collapse
|
22
|
del Socorro Santos Díaz M, Barba de la Rosa AP, Héliès-Toussaint C, Guéraud F, Nègre-Salvayre A. Opuntia spp.: Characterization and Benefits in Chronic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8634249. [PMID: 28491239 PMCID: PMC5401751 DOI: 10.1155/2017/8634249] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/14/2017] [Indexed: 12/31/2022]
Abstract
Opuntia species have been used for centuries as food resources and in traditional folk medicine for their nutritional properties and their benefit in chronic diseases, particularly diabetes, obesity, cardiovascular diseases, and cancer. These plants are largely distributed in America, Africa, and the Mediterranean basin. Opuntia spp. have great economic potential because they grow in arid and desert areas, and O. ficus-indica, the domesticated O. species, is used as a nutritional and pharmaceutical agent in various dietary and value-added products. Though differences in the phytochemical composition exist between wild and domesticated (O. ficus-indica) Opuntia spp., all Opuntia vegetatives (pear, roots, cladodes, seeds, and juice) exhibit beneficial properties mainly resulting from their high content in antioxidants (flavonoids, ascorbate), pigments (carotenoids, betalains), and phenolic acids. Other phytochemical components (biopeptides, soluble fibers) have been characterized and contribute to the medicinal properties of Opuntia spp. The biological properties of Opuntia spp. have been investigated on cellular and animal models and in clinical trials in humans, allowing characterization and clarification of the protective effect of Opuntia-enriched diets in chronic diseases. This review is an update on the phytochemical composition and biological properties of Opuntia spp. and their potential interest in medicine.
Collapse
Affiliation(s)
| | | | - Cécile Héliès-Toussaint
- Toxalim (Research Center in Food Toxicology), INRA, ENVT, INP-Purpan, UPS, Toulouse, France
- University of Toulouse, Toulouse, France
| | - Françoise Guéraud
- Toxalim (Research Center in Food Toxicology), INRA, ENVT, INP-Purpan, UPS, Toulouse, France
- University of Toulouse, Toulouse, France
| | | |
Collapse
|
23
|
Silva DO, Seifert M, Nora FR, Bobrowski VL, Freitag RA, Kucera HR, Nora L, Gaikwad NW. Acute Toxicity and Cytotoxicity of Pereskia aculeata, a Highly Nutritious Cactaceae Plant. J Med Food 2017; 20:403-409. [PMID: 28355092 DOI: 10.1089/jmf.2016.0133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pereskia aculeata is a Cactaceae plant with valuable nutritional properties, including terrific amounts of protein, minerals, vitamins, and fiber. However, P. aculeata is reported to contain antinutrients and alkaloids in its leaves. In addition, in a study on growth and development, Wistar rats fed with P. aculeata and casein as protein source grew less than the control group (fed with casein only). Therefore, in this study, we evaluated, for the first time, the oral acute toxicity of P. aculeata in rats and also the cytotoxicity behavior of the plant on lettuce seeds. The acute toxicity research was carried out using dried P. aculeata ethanolic extract, in three different doses, administered by gavage to 24 female Wistar rats. The rats were then examined for signs of toxicity, food intake, body weight, and fecal excretion fluctuations, as well as histopathological alterations, using eight different body tissues. The acute toxicity study did not show any difference among the groups in either clinical evaluation or histopathological analyses. For the cytotoxicity study, dried P. aculeata ethanolic extract was applied on lettuce seeds in five different concentrations. These seeds were evaluated for germination, root and shoot length, and mitotic index. The results show that P. aculeata extract affects lettuce root and shoot growth, but not germination or mitotic index. In conclusion, the acute toxicity on rats and the cytogenotoxicity on lettuce of P. aculeata are neglectable, validating the potential of this plant to be used as a functional food.
Collapse
Affiliation(s)
- Debora O Silva
- 1 Department of Food Science and Technology, Federal University of Pelotas, Rio Grande do Sul, Brazil
| | - Mauricio Seifert
- 1 Department of Food Science and Technology, Federal University of Pelotas, Rio Grande do Sul, Brazil
| | - Fabiana R Nora
- 1 Department of Food Science and Technology, Federal University of Pelotas, Rio Grande do Sul, Brazil
| | - Vera L Bobrowski
- 2 Department of Zoology and Genetics, Federal University of Pelotas, Rio Grande do Sul, Brazil
| | - Rogerio A Freitag
- 3 Science Center of Chemistry, Pharmacology and Food, Federal University of Pelotas, Rio Grande do Sul, Brazil
| | - Heidi R Kucera
- 4 Departments of Nutrition and Environmental Toxicology, University of California Davis , Davis, California, USA
| | - Leonardo Nora
- 1 Department of Food Science and Technology, Federal University of Pelotas, Rio Grande do Sul, Brazil
| | - Nilesh W Gaikwad
- 4 Departments of Nutrition and Environmental Toxicology, University of California Davis , Davis, California, USA
| |
Collapse
|
24
|
Moran-Ramos S, He X, Chin EL, Tovar AR, Torres N, Slupsky CM, Raybould HE. Nopal feeding reduces adiposity, intestinal inflammation and shifts the cecal microbiota and metabolism in high-fat fed rats. PLoS One 2017; 12:e0171672. [PMID: 28196086 PMCID: PMC5308786 DOI: 10.1371/journal.pone.0171672] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 01/24/2017] [Indexed: 02/06/2023] Open
Abstract
Nopal is a cactus plant widely consumed in Mexico that has been used in traditional medicine to aid in the treatment of type-2 diabetes. We previously showed that chronic consumption of dehydrated nopal ameliorated hepatic steatosis in obese (fa/fa) rats; however, description of the effects on other tissues is sparse. The aim of the present study was to investigate the effects of nopal cladode consumption on intestinal physiology, microbial community structure, adipose tissue, and serum biochemistry in diet-induced obese rats. Rats were fed either a normal fat (NF) diet or a HF diet containing 4% of dietary fiber from either nopal or cellulose for 6 weeks. Consumption of nopal counteracted HF-induced adiposity and adipocyte hypertrophy, and induced profound changes in intestinal physiology. Nopal consumption reduced biomarkers of intestinal inflammation (mRNA expression of IL-6) and oxidative stress (ROS), modfied gut microbiota composition, increasing microbial diversity and cecal fermentation (SCFA), and altered the serum metabolome. Interestingly, metabolomic analysis of dehydrated nopal revealed a high choline content, which appeared to generate high levels of serum betaine, that correlated negatively with hepatic triglyceride (TAG) levels. A parallel decrease in some of the taxa associated with the production of trimethylamine, suggest an increase in choline absorption and bioavailability with transformation to betaine. The latter may partially explain the previously observed effect of nopal on the development of hepatic steatosis. In conclusion, this study provides new evidence on the effects of nopal consumption on normal and HF-diet induced changes in the intestine, the liver and systemic metabolism.
Collapse
Affiliation(s)
- Sofia Moran-Ramos
- Departamento de Fisiologia de la Nutricion, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico D.F
- Conacyt, Unidad de Genomica de Poblaciones, Instituto Nacional de Medicina Genomica, Mexico D.F
| | - Xuan He
- Department of Food Science and Technology, One Shields Avenue, University of California, Davis, Davis, California, United States of America
- Department of Nutrition, One Shields Avenue, University of California, Davis, Davis, California, United States of America
| | - Elizabeth L. Chin
- Department of Food Science and Technology, One Shields Avenue, University of California, Davis, Davis, California, United States of America
| | - Armando R. Tovar
- Departamento de Fisiologia de la Nutricion, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico D.F
| | - Nimbe Torres
- Departamento de Fisiologia de la Nutricion, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico D.F
| | - Carolyn M. Slupsky
- Department of Food Science and Technology, One Shields Avenue, University of California, Davis, Davis, California, United States of America
- Department of Nutrition, One Shields Avenue, University of California, Davis, Davis, California, United States of America
| | - Helen E. Raybould
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine One Shields Avenue, University of California, Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Miller GD, Beavers DP, Hamm D, Mihalko SL, Messier SP. Nutrient Intake During Diet-Induced Weight Loss and Exercise Interventions in a Randomized Trial in Older Overweight and Obese Adults. J Nutr Health Aging 2017; 21:1216-1224. [PMID: 29188882 DOI: 10.1007/s12603-017-0892-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Dietary restriction in obese older adults undergoing weight loss may exacerbate nutrient deficiencies common in this group; the nutritional health of older adults is a factor in their quality of life, disability, and mortality. This study examined the effect of an 18-month weight loss program based in social cognitive theory incorporating partial meal replacements, on nutrient intake in older overweight and obese adults. DESIGN The following analysis is from the Intensive Diet and Exercise for Arthritis (IDEA) trial, a single-blind, randomized controlled trial. Individuals were randomized into one of three 18-month interventions: exercise (E); intensive diet-induced weight loss (D); or intensive diet-induced weight loss plus exercise (D+E). SETTING The study setting was at a university research facility. PARTICIPANTS Overweight and obese older adults (n=388; BMI=33.7±3.8 kg/m2; 65.8±6.1 years) were recruited. INTERVENTIONS The D and D+E interventions (group mean goal of ≥10% loss by 18-months) utilized partial meal replacements (2 meal replacement shakes/day for 6-months). Exercise training for E and D+E was 3 days/week, 60 minutes/day. MEASUREMENTS Three day food records were collected at baseline, 6-months, and 18-months and analyzed for total energy and macro- and micronutrient intake. Comparisons of dietary intake among treatment groups were performed at 6 and 18 months using mixed linear models. RESULTS Weight loss at 18-months was 11.3±8.3% (D), 10.3±6.8% (D+E), and 1.2±4.2% (E). Meal replacements were used by more than 60% (6-months) and 50% (18-months) of D and D+E participants, compared to ≤15% for E. Both D and D+E consumed less energy and fat, and more carbohydrates and selected micronutrients than E during follow-up. More than 50% of all participants consumed less than the recommended intake of particular vitamins and minerals. CONCLUSIONS The diet intervention improved intakes of several nutrients. However, inadequate intake of several vitamins and minerals of concern for older adults suggests they need further guidance to assure adequate intake.
Collapse
Affiliation(s)
- G D Miller
- Gary D. Miller, PhD, Box 7868 Reynolda Station, Department Health and Exercise Science, Wake Forest University, Winston-Salem, NC 27109-7868, ; 336-758-1901; 336-758-4680 (fax)
| | | | | | | | | |
Collapse
|
26
|
Açai (Euterpe oleracea Mart.) Upregulates Paraoxonase 1 Gene Expression and Activity with Concomitant Reduction of Hepatic Steatosis in High-Fat Diet-Fed Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8379105. [PMID: 27642496 PMCID: PMC5014968 DOI: 10.1155/2016/8379105] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/15/2016] [Accepted: 07/11/2016] [Indexed: 12/20/2022]
Abstract
Açai (Euterpe oleracea Mart.), a fruit from the Amazon region, has emerged as a promising source of polyphenols. Açai consumption has been increasing owing to ascribed health benefits and antioxidant properties; however, its effects on hepatic injury are limited. In this study, we evaluated the antioxidant effect of filtered açai pulp on the expression of paraoxonase (PON) isoforms and PON1 activity in rats with nonalcoholic fatty liver disease (NAFLD). The rats were fed a standard AIN-93M (control) diet or a high-fat (HF) diet containing 25% soy oil and 1% cholesterol with or without açai pulp (2 g/day) for 6 weeks. Our results show that açai pulp prevented low-density lipoprotein (LDL) oxidation, increased serum and hepatic PON1 activity, and upregulated the expression of PON1 and ApoA-I in the liver. In HF diet-fed rats, treatment with açai pulp attenuated liver damage, reducing fat infiltration and triglyceride (TG) content. In rats receiving açai, increased serum PON1 activity was correlated with a reduction in hepatic steatosis and hepatic injury. These findings suggest the use of açai as a potential therapy for liver injuries, supporting the idea that dietary antioxidants are a promising approach to enhance the defensive systems against oxidative stress.
Collapse
|
27
|
Avila-Nava A, Noriega LG, Tovar AR, Granados O, Perez-Cruz C, Pedraza-Chaverri J, Torres N. Food combination based on a pre-hispanic Mexican diet decreases metabolic and cognitive abnormalities and gut microbiota dysbiosis caused by a sucrose-enriched high-fat diet in rats. Mol Nutr Food Res 2016; 61. [DOI: 10.1002/mnfr.201501023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 06/10/2016] [Accepted: 06/15/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Azalia Avila-Nava
- Departamento de Fisiología de la Nutrición; Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán; Mexico
| | - Lilia G. Noriega
- Departamento de Fisiología de la Nutrición; Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán; Mexico
| | - Armando R. Tovar
- Departamento de Fisiología de la Nutrición; Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán; Mexico
| | - Omar Granados
- Departamento de Fisiología de la Nutrición; Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán; Mexico
| | | | - José Pedraza-Chaverri
- Departamento de Biología; Facultad de Química; Universidad Nacional Autónoma de México; Mexico
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición; Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán; Mexico
| |
Collapse
|
28
|
Opuntia ficus-indica seed attenuates hepatic steatosis and promotes M2 macrophage polarization in high-fat diet–fed mice. Nutr Res 2016; 36:369-379. [DOI: 10.1016/j.nutres.2015.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/01/2015] [Accepted: 12/09/2015] [Indexed: 02/07/2023]
|
29
|
Garcés-Rimón M, González C, Uranga JA, López-Miranda V, López-Fandiño R, Miguel M. Pepsin Egg White Hydrolysate Ameliorates Obesity-Related Oxidative Stress, Inflammation and Steatosis in Zucker Fatty Rats. PLoS One 2016; 11:e0151193. [PMID: 26985993 PMCID: PMC4795625 DOI: 10.1371/journal.pone.0151193] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/24/2016] [Indexed: 12/31/2022] Open
Abstract
The aim of this work was to evaluate the effect of the administration of egg white hydrolysates on obesity-related disorders, with a focus on lipid metabolism, inflammation and oxidative stress, in Zucker fatty rats. Obese Zucker rats received water, pepsin egg white hydrolysate (750 mg/kg/day) or Rhizopus aminopeptidase egg white hydrolysate (750 mg/kg/day) for 12 weeks. Lean Zucker rats received water. Body weight, solid and liquid intakes were weekly measured. At the end of the study, urine, faeces, different organs and blood samples were collected. The consumption of egg white hydrolysed with pepsin significantly decreased the epididymal adipose tissue, improved hepatic steatosis, and lowered plasmatic concentration of free fatty acids in the obese animals. It also decreased plasma levels of tumor necrosis factor-alpha and reduced oxidative stress. Pepsin egg white hydrolysate could be used as a tool to improve obesity-related complications.
Collapse
Affiliation(s)
- M. Garcés-Rimón
- Instituto de Investigación en Ciencias de Alimentación (CIAL, CSIC-UAM), Madrid, Spain
- * E-mail:
| | - C. González
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - J. A. Uranga
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - V. López-Miranda
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - R. López-Fandiño
- Instituto de Investigación en Ciencias de Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| | - M. Miguel
- Instituto de Investigación en Ciencias de Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| |
Collapse
|
30
|
Rodríguez-Rodríguez C, Torres N, Gutiérrez-Uribe JA, Noriega LG, Torre-Villalvazo I, Leal-Díaz AM, Antunes-Ricardo M, Márquez-Mota C, Ordaz G, Chavez-Santoscoy RA, Serna-Saldivar SO, Tovar AR. The effect of isorhamnetin glycosides extracted from Opuntia ficus-indica in a mouse model of diet induced obesity. Food Funct 2016; 6:805-15. [PMID: 25588195 DOI: 10.1039/c4fo01092b] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A diet rich in polyphenols can ameliorate some metabolic alterations associated with obesity and type 2 diabetes. Opuntia ficus-indica (OFI) is a plant rich in isorhamnetin glycosides and is highly consumed in Mexico. The purpose of this research was to determine the metabolic effect of an OFI extract on a mouse model of diet-induced obesity and in isolated pancreatic islets. OFI extract was added to a high fat (HF) diet at a low (0.3%) or high (0.6%) dose and administered to C57BL/6 mice for 12 weeks. Mice fed the HF diet supplemented with the OFI extract gained less body weight and exhibited significantly lower circulating total cholesterol, LDL cholesterol and HDL cholesterol compared to those fed the HF diet alone. The HF-OFI diet fed mice presented lower glucose and insulin concentration than the HF diet fed mice. However, the HF-OFI diet fed mice tended to have higher insulin concentration than control mice. The OFI extract stimulated insulin secretion in vitro, associated with increased glucose transporter 2 (GLUT2) and peroxisome proliferator-activated receptor gamma (PPARγ) mRNA content. Furthermore, the OFI extract improved glucose tolerance, and additionally increased energy expenditure. These metabolic improvements were associated with reduced adipocyte size, increased hepatic IRS1 tyr-608 and S6 K thr-389 phosphorylation. OFI isorhamnetin glycosides also diminished the hepatic lipid content associated with reduced mRNA expression of the endoplasmic reticulum stress markers and lipogenic enzymes and increased mRNA expression of genes related to fatty acid oxidation. Overall, the OFI extract prevented the development of metabolic abnormalities associated with diet-induced obesity.
Collapse
Affiliation(s)
- César Rodríguez-Rodríguez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, NL, México
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Is Liver Enzyme Release Really Associated with Cell Necrosis Induced by Oxidant Stress? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:3529149. [PMID: 26798419 PMCID: PMC4699024 DOI: 10.1155/2016/3529149] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 10/11/2015] [Indexed: 12/16/2022]
Abstract
Hepatic diseases are a major concern worldwide. Increased specific plasma enzyme activities are considered diagnostic features for liver diseases, since enzymes are released into the blood compartment following the deterioration of the organ. Release of liver mitochondrial enzymes is considered strong evidence for hepatic necrosis, which is associated with an increased production of ROS, often leading to greater hepatic lipid peroxidation. Lipotoxic mediators and intracellular signals activated Kupffer cells, which provides evidence strongly suggesting the participation of oxidant stress in acute liver damage, inducing the progression of liver injury to chronic liver damage. Elevated transaminase activities are considered as an index marker of hepatotoxicity, linked to oxidant stress. However, a drastic increase of serum activities of liver enzyme markers ought not necessarily to reflect liver cell death. In fact, increased serum levels of cytoplasmic enzymes have readily been observed after partial hepatectomy (PH) in the regenerating liver of rats. In this regard, we are now showing that in vitro modifications of the oxidant status affect differentially the release of liver enzymes, indicating that this release is a strictly controlled event and not directly related to the onset of oxidant stress of the liver.
Collapse
|
32
|
Nakahara T, Mitoma C, Hashimoto-Hachiya A, Takahara M, Tsuji G, Uchi H, Yan X, Hachisuka J, Chiba T, Esaki H, Kido-Nakahara M, Furue M. Antioxidant Opuntia ficus-indica Extract Activates AHR-NRF2 Signaling and Upregulates Filaggrin and Loricrin Expression in Human Keratinocytes. J Med Food 2015; 18:1143-9. [PMID: 26061570 DOI: 10.1089/jmf.2014.3396] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
UNLABELLED Opuntia ficus-indica (OFI) is a cactus species widely used as an anti-inflammatory, antilipidemic, and hypoglycemic agent. It has been shown that OFI extract (OFIE) inhibits oxidative stress in animal models of diabetes and hepatic disease; however, its antioxidant mechanism remains largely unknown. In this study, we demonstrated that OFIE exhibited potent antioxidant activity through the activation of nuclear factor erythroid 2-related factor 2 (NRF2) and the downstream antioxidant enzyme NAD(P)H quinone oxidoreductase 1 (NQO1), which inhibited the generation of reactive oxygen species in keratinocytes challenged with tumor necrosis factor α or benzo[α]pyrene. The antioxidant capacity of OFIE was canceled in NRF2 knockdown keratinocytes. OFIE exerted this NRF2-NQO1 upregulation through activation of the aryl hydrocarbon receptor (AHR). Moreover, the ligation of AHR by OFIE upregulated the expression of epidermal barrier proteins: filaggrin and loricrin. OFIE also prevented TH2 cytokine-mediated downregulation of filaggrin and loricrin expression in an AHR-dependent manner because it was canceled in AHR knockdown keratinocytes. Antioxidant OFIE is a potent activator of AHR-NRF2-NQO1 signaling and may be beneficial in treating barrier-disrupted skin disorders.
Collapse
Affiliation(s)
- Takeshi Nakahara
- 1 Division of Skin Surface Sensing, Kyushu University , Fukuoka, Japan .,2 Department of Dermatology, Kyushu University , Fukuoka, Japan
| | - Chikage Mitoma
- 2 Department of Dermatology, Kyushu University , Fukuoka, Japan .,3 Research and Clinical Center for Yusho and Dioxin, Kyushu University , Fukuoka, Japan
| | | | | | - Gaku Tsuji
- 2 Department of Dermatology, Kyushu University , Fukuoka, Japan
| | - Hiroshi Uchi
- 2 Department of Dermatology, Kyushu University , Fukuoka, Japan .,3 Research and Clinical Center for Yusho and Dioxin, Kyushu University , Fukuoka, Japan
| | | | | | - Takahito Chiba
- 2 Department of Dermatology, Kyushu University , Fukuoka, Japan
| | - Hitokazu Esaki
- 2 Department of Dermatology, Kyushu University , Fukuoka, Japan
| | | | - Masutaka Furue
- 1 Division of Skin Surface Sensing, Kyushu University , Fukuoka, Japan .,2 Department of Dermatology, Kyushu University , Fukuoka, Japan .,3 Research and Clinical Center for Yusho and Dioxin, Kyushu University , Fukuoka, Japan
| |
Collapse
|
33
|
The effect of cactus pear (Opuntia ficus-indica) on body weight and cardiovascular risk factors: A systematic review and meta-analysis of randomized clinical trials. Nutrition 2015; 31:640-6. [DOI: 10.1016/j.nut.2014.11.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/13/2014] [Accepted: 11/21/2014] [Indexed: 11/22/2022]
|
34
|
Abreu ICMED, Guerra JFDC, Pereira RR, Silva M, Lima WGD, Silva ME, Pedrosa ML. Hypercholesterolemic diet induces hepatic steatosis and alterations in mRNA expression of NADPH oxidase in rat livers. ACTA ACUST UNITED AC 2015; 58:251-9. [PMID: 24863087 DOI: 10.1590/0004-2730000002831] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 01/24/2014] [Indexed: 12/18/2022]
Abstract
OBJECTIVE This study aimed to determine whether a hypercholesterolemic diet induces hepatic steatosis, alterations in mRNA expression of NADPH oxidase subunits, and antioxidant defenses. MATERIALS AND METHODS Fischer rats were divided into two groups of eight animals according to the treatment, control (C) and hypercholesterolemic diet (H). Those in group C were fed a standard diet (AIN-93M), and those of the group H were fed a hypercholesterolemic diet (25% soybean oil and 1% cholesterol). RESULTS The hypercholesterolemic diet did not affect body weight, but resulted in the accumulation of lipids in the liver, increased serum activities of aminotransferases and cholesterol levels. Biomarker of lipid peroxidation (TBARS) and mRNA expression of NADPH oxidase subunits p22(phox) and p47(phox) were increased in the liver of animals in group H. Besides, the activity and expression of antioxidant enzymes were altered. CONCLUSION The results show increased mRNA expression of NADPH oxidase subunits and changes in antioxidant enzyme activities in diet-induced hepatic steatosis.
Collapse
Affiliation(s)
| | | | | | - Maísa Silva
- Research Center in Biological Sciences, UFOP, Ouro Preto, MG, Brazil
| | | | | | - Maria Lúcia Pedrosa
- School of Nutrition, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| |
Collapse
|
35
|
Nopal cactus (Opuntia ficus-indica) as a source of bioactive compounds for nutrition, health and disease. Molecules 2014; 19:14879-901. [PMID: 25232708 PMCID: PMC6270776 DOI: 10.3390/molecules190914879] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 01/19/2023] Open
Abstract
Opuntia ficus-indica, commonly referred to as prickly pear or nopal cactus, is a dicotyledonous angiosperm plant. It belongs to the Cactaceae family and is characterized by its remarkable adaptation to arid and semi-arid climates in tropical and subtropical regions of the globe. In the last decade, compelling evidence for the nutritional and health benefit potential of this cactus has been provided by academic scientists and private companies. Notably, its rich composition in polyphenols, vitamins, polyunsaturated fatty acids and amino acids has been highlighted through the use of a large panel of extraction methods. The identified natural cactus compounds and derivatives were shown to be endowed with biologically relevant activities including anti-inflammatory, antioxidant, hypoglycemic, antimicrobial and neuroprotective properties. The present review is aimed at stressing the major classes of cactus components and their medical interest through emphasis on some of their biological effects, particularly those having the most promising expected health benefit and therapeutic impacts.
Collapse
|
36
|
Avila-Nava A, Calderón-Oliver M, Medina-Campos ON, Zou T, Gu L, Torres N, Tovar AR, Pedraza-Chaverri J. Extract of cactus (Opuntia ficus indica) cladodes scavenges reactive oxygen species in vitro and enhances plasma antioxidant capacity in humans. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
37
|
Ko BS, Lee HW, Kim DS, Kang S, Ryuk JA, Park S. Supplementing with Opuntia ficus-indica Mill and Dioscorea nipponica Makino extracts synergistically attenuates menopausal symptoms in estrogen-deficient rats. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:267-276. [PMID: 24875644 DOI: 10.1016/j.jep.2014.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/04/2014] [Accepted: 05/17/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Prickly pear cactus grown in Korea (Opuntia ficus-indica Mill, KC) and Buchema (Dioscorea nipponica Makino, B) have been traditionally used in East Asia and South America to treat various metabolic diseases. The aim of the present study was to determine whether the extracts of KC, B, and KC+B can prevent the impairments of energy, glucose, lipid and bone homeostasis in estrogen-deficient ovariectomized (OVX) rats and to explore their mechanisms. MATERIALS AND METHODS OVX rats were divided into 4 groups and fed high fat diets supplemented with either 3% dextrin (control), 3% KC, 3% B or 1.5% KC+1.5% B. Sham rats were fed 3% dextrin. After 12 weeks of diet consumption, energy, lipid, glucose and bone metabolisms were analyzed and Wnt signaling in the femur and hepatic signaling were determined. RESULTS OVX impaired energy, glucose and lipid metabolism and decreased uterine and bone masses. B and KC+B prevented the decrease in energy expenditure, especially from fat oxidation, in OVX rats, but did not affect food intake. KC+B and B reduced body weight and visceral fat levels, as compared to the OVX-control, by decreasing fat synthesis and inhibiting FAS and SREBP-1c expression. KC+B and B prevented the increases in serum lipid levels and insulin resistance by improving hepatic insulin signaling (pIRS→pAkt→pGSK-3β). KC and KC+B also prevented decreases in bone mineral density (BMD) in the femur and lumbar spine in OVX rats. This was related to decreased expressions of bone turnover markers such as serum osteocalcin, alkaline phosphatase (ALP) and bone-specific ALP levels, and increased serum P levels. KC and KC+B upregulated low-density lipoprotein receptor-related protein 5 and β-catenin in OVX rats, but suppressed the expression of dickkopf-related protein 1. B alone improved energy, lipid and glucose homeostasis, but not bone loss, whereas KC alone enhanced BMD, but not energy, lipid or glucose homeostasis. CONCLUSION KC+B synergistically attenuated impairments of bone, energy, lipid and glucose metabolism by OVX, suggesting potential efficacy of the combination for alleviating menopausal symptoms.
Collapse
Affiliation(s)
- Byoung-Seob Ko
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Hye Won Lee
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Da Sol Kim
- Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan, South Korea
| | - Suna Kang
- Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan, South Korea
| | - Jin Ah Ryuk
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Sunmin Park
- Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan, South Korea.
| |
Collapse
|
38
|
The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 2014; 510:84-91. [PMID: 24899308 DOI: 10.1038/nature13478] [Citation(s) in RCA: 822] [Impact Index Per Article: 82.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/14/2014] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease and its downstream sequelae, hepatic insulin resistance and type 2 diabetes, are rapidly growing epidemics, which lead to increased morbidity and mortality rates, and soaring health-care costs. Developing interventions requires a comprehensive understanding of the mechanisms by which excess hepatic lipid develops and causes hepatic insulin resistance and type 2 diabetes. Proposed mechanisms implicate various lipid species, inflammatory signalling and other cellular modifications. Studies in mice and humans have elucidated a key role for hepatic diacylglycerol activation of protein kinase Cε in triggering hepatic insulin resistance. Therapeutic approaches based on this mechanism could alleviate the related epidemics of non-alcoholic fatty liver disease and type 2 diabetes.
Collapse
|
39
|
Alpha-lipoic acid reduces LDL-particle number and PCSK9 concentrations in high-fat fed obese Zucker rats. PLoS One 2014; 9:e90863. [PMID: 24595397 PMCID: PMC3942488 DOI: 10.1371/journal.pone.0090863] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/05/2014] [Indexed: 01/09/2023] Open
Abstract
We characterized the hypolipidemic effects of alpha-lipoic acid (LA, R-form) and examined the associated molecular mechanisms in a high fat fed Zucker rat model. Rats (n = 8) were assigned to a high fat (HF) diet or the HF diet with 0.25% LA (HF-LA) for 30 days and pair fed to remove confounding effects associated with the anorectic properties of LA. Compared with the HF controls, the HF-LA group was protected against diet-induced obesity (102.5±3.1 vs. 121.5±3.6,% change BW) and hypercholesterolemia with a reduction in total-C (−21%), non-HDL-C (−25%), LDL-C (−16%), and total LDL particle number (−46%) and an increase in total HDL particles (∼22%). This cholesterol-lowering response was associated with a reduction in plasma PCSK9 concentration (−70%) and an increase in hepatic LDLr receptor protein abundance (2 fold of HF). Compared with the HF-fed animals, livers of LA-supplemented animals were protected against TG accumulation (−46%), likely through multiple mechanisms including: a suppressed lipogenic response (down-regulation of hepatic acetyl-CoA carboxylase and fatty acid synthase expression); enhanced hepatic fat oxidation (increased carnitine palmitoyltransferase Iα expression); and enhanced VLDL export (increased hepatic diacylglycerol acyltransferase and microsomal triglyceride transfer protein expression and elevated plasma VLDL particle number). Study results also support an enhanced fatty acid uptake (2.8 fold increase in total lipase activity) and oxidation (increased CPT1β protein abundance) in muscle tissue in LA-supplemented animals compared with the HF group. In summary, in the absence of a change in caloric intake, LA was effective in protecting against hypercholesterolemia and hepatic fat accumulation under conditions of strong genetic and dietary predisposition toward obesity and dyslipidemia.
Collapse
|
40
|
Valacchi G, Belmonte G, Miracco C, Eo H, Lim Y. Effect of combined mulberry leaf and fruit extract on liver and skin cholesterol transporters in high fat diet-induced obese mice. Nutr Res Pract 2014; 8:20-6. [PMID: 24611101 PMCID: PMC3944151 DOI: 10.4162/nrp.2014.8.1.20] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/12/2013] [Accepted: 11/14/2013] [Indexed: 12/25/2022] Open
Abstract
Obesity is an epidemic disease characterized by an increased inflammatory state and chronic oxidative stress with high levels of pro-inflammatory cytokines and lipid peroxidation. Moreover, obesity alters cholesterol metabolism with increases in low-density lipoprotein (LDL) cholesterols and triglycerides and decreases in high-density lipoprotein (HDL) cholesterols. It has been shown that mulberry leaf and fruit ameliorated hyperglycemic and hyperlipidemic conditions in obese and diabetic subjects. We hypothesized that supplementation with mulberry leaf combined with mulberry fruit (MLFE) ameliorate cholesterol transfer proteins accompanied by reduction of oxidative stress in the high fat diet induced obesity. Mice were fed control diet (CON) or high fat diet (HF) for 9 weeks. After obesity was induced, the mice were administered either the HF or the HF with combination of equal amount of mulberry leaf and fruit extract (MLFE) at 500mg/kg/day by gavage for 12 weeks. MLFE treatment ameliorated HF induced oxidative stress demonstrated by 4-hydroxynonenal (4-HNE) and modulated the expression of 2 key proteins involved in cholesterol transfer such as scavenger receptor class B type 1 (SR-B1) and ATP-binding cassette transporter A1 (ABCA1) in the HF treated animals. This effect was mainly noted in liver tissue rather than in cutaneous tissue. Collectively, this study demonstrated that MLFE treatment has beneficial effects on the modulation of high fat diet-induced oxidative stress and on the regulation of cholesterol transporters. These results suggest that MLFE might be a beneficial substance for conventional therapies to treat obesity and its complications.
Collapse
Affiliation(s)
- Giuseppe Valacchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy. ; Department of Food and Nutrition, Kyung Hee University, 26, Kyunghee-ro, Dongdaemun-gu, Seoul 130-701, Korea
| | - Giuseppe Belmonte
- Dipartimento di Scienze Mediche, Chirurgiche e Neuroscienze, University of Siena, Siena, Italy
| | - Clelia Miracco
- Dipartimento di Scienze Mediche, Chirurgiche e Neuroscienze, University of Siena, Siena, Italy
| | - Hyeyoon Eo
- Department of Food and Nutrition, Kyung Hee University, 26, Kyunghee-ro, Dongdaemun-gu, Seoul 130-701, Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, 26, Kyunghee-ro, Dongdaemun-gu, Seoul 130-701, Korea
| |
Collapse
|
41
|
Fernández-Iglesias A, Pajuelo D, Quesada H, Díaz S, Bladé C, Arola L, Salvadó MJ, Mulero M. Grape seed proanthocyanidin extract improves the hepatic glutathione metabolism in obese Zucker rats. Mol Nutr Food Res 2013; 58:727-37. [DOI: 10.1002/mnfr.201300455] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Anabel Fernández-Iglesias
- Grup de Nutrigenòmica; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Campus Sescel·lades; Tarragona Spain
| | - David Pajuelo
- Grup de Nutrigenòmica; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Campus Sescel·lades; Tarragona Spain
| | - Helena Quesada
- Grup de Nutrigenòmica; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Campus Sescel·lades; Tarragona Spain
| | - Sabina Díaz
- Grup de Nutrigenòmica; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Campus Sescel·lades; Tarragona Spain
| | - Cinta Bladé
- Grup de Nutrigenòmica; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Campus Sescel·lades; Tarragona Spain
| | - Lluís Arola
- Grup de Nutrigenòmica; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Campus Sescel·lades; Tarragona Spain
| | - Maria Josepa Salvadó
- Grup de Nutrigenòmica; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Campus Sescel·lades; Tarragona Spain
| | - Miquel Mulero
- Grup de Nutrigenòmica; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Campus Sescel·lades; Tarragona Spain
| |
Collapse
|
42
|
Nuñez-López MA, Paredes-López O, Reynoso-Camacho R. Functional and hypoglycemic properties of nopal cladodes (O. ficus-indica) at different maturity stages using in vitro and in vivo tests. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:10981-10986. [PMID: 24164385 DOI: 10.1021/jf403834x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nopal (Opuntia ficus-indica) cladodes are recommended for their therapeutic properties; their maturity stage may affect their biological properties. Cladodes of three maturity stages, from the same crop and location, were dehydrated and evaluated for some of their physicochemical and nutritional characteristics and antidiabetic properties. The flours of small and medium cladodes (SCF and MCF, respectively) had higher contents of dietary fiber, water absorption, swelling, and viscosity compared to those of the large cladode flour (LCF). Streptozotocin-induced diabetic rats, treated with MCF and SCF (doses of 50 mg/kg body weight), showed reduction of postprandial blood glucose on 46.0 and 23.6%, respectively (p < 0.05), in relation to the control; and LCF had no significant effect. In vitro, glucose diffusion tests showed similar ranking by the two former samples, whereas the latter was close to the control. Cladode maturity stages showed different fiber content and produced suspensions with differences in viscosity, which may affect in vitro and in vivo glucose responses.
Collapse
Affiliation(s)
- María A Nuñez-López
- Facultad de Ciencias Químico Biológicas, Programa Regional del Noroeste para el Doctorado en Biotecnología, Universidad Autónoma de Sinaloa , Blvd. de las Américas S/N, Culiacán, Sinaloa 80010, Mexico
| | | | | |
Collapse
|
43
|
Dietary walnut oil modulates liver steatosis in the obese Zucker rat. Eur J Nutr 2013; 53:645-60. [PMID: 23942585 PMCID: PMC3925294 DOI: 10.1007/s00394-013-0573-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 07/31/2013] [Indexed: 02/06/2023]
Abstract
Purpose Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. We aimed to clarify the impact of dietary walnut oil versus animal fat on hepatic steatosis, representing the initial step of multistage pathogenesis of NAFLD, in Zucker obese rats. Methods Zucker lean ad libitum (a.l.), Zucker obese a.l. or Zucker obese pair fed (p.f.) to the lean received isocaloric diets containing 8 % walnut oil (W8), W14 or 14 % lard (L14) (n = 10/group). Body weight, clinical serology, liver weight, lipid content and fatty acid composition and hepatic lipid metabolism-related transcripts were evaluated. Results Compared to lean, Zucker obese a.l. and p.f. showed hepatic triacylglyceride (TAG) accumulation. In Zucker obese p.f., W14 compared to W8 and L14 reduced liver lipids, TAG as well as hepatic omega-6 (n-6)/n-3 ratio and SCD activity index [(C18:0 + C18:1)/C18:0 ratio] paralleled by decreased lipoprotein lipase mRNA in obese p.f. and elevated microsomal triglyceride transfer protein mRNA in lean and obese. Further, W14 elevated the fasting blood TAG and reduced cholesterol levels in obese. Conclusions In our model, consumption of W14 inhibited hepatic lipid accumulation along with modulated hepatic gene expression implicated in hepatic fatty acid influx or lipoprotein assembly. These results provide first indication that dietary lipids from walnut oil are modulators of hepatic steatosis as the initial step of progressive NAFLD pathogenesis.
Collapse
|