1
|
Terroba-Navajas P, Spatola M, Chuquisana O, Joubert B, de Vries JM, Dik A, Marmolejo L, Jönsson F, Lauc G, Kovac S, Prüss H, Wiendl H, Titulaer MJ, Honnorat J, Lünemann JD. Humoral signatures of Caspr2-antibody spectrum disorder track with clinical phenotypes and outcomes. MED 2024:S2666-6340(24)00371-4. [PMID: 39393351 DOI: 10.1016/j.medj.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/15/2024] [Accepted: 09/10/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Immunoglobulin (Ig) G4 auto-antibodies (Abs) against contactin-associated protein-like 2 (Caspr2), a transmembrane cell adhesion protein expressed in the central and peripheral nervous system, are found in patients with a broad spectrum of neurological symptoms. While the adoptive transfer of Caspr2-specific IgG induces brain pathology in susceptible rodents, the mechanisms by which Caspr2-Abs mediate neuronal dysfunction and translate into clinical syndromes are incompletely understood. METHODS We use a systems-level approach combined with high-dimensional characterization of Ab-associated immune features to deeply profile humoral biosignatures in patients with Caspr2-Ab-associated neurological syndromes. FINDINGS We identify two signatures strongly associated with two major clinical phenotypes, limbic encephalitis (LE) and predominant peripheral nerve hyperexcitability without LE (non-LE). Caspr2-IgG Fc-driven pro-inflammatory features, characterized by increased binding affinities for activating Fcγ receptors (FcγRs) and C1q, along with a higher prevalence of IgG1-class Abs, in addition to IgG4, are strongly associated with LE. Both the occurrence of Caspr2-specific IgG1 and higher serum levels of interleukin (IL)-6 and IL-15, along with increased concentrations of biomarkers reflecting neuronal damage and glial cell activation, are associated with poorer clinical outcomes at 1-year follow-up. CONCLUSIONS The presence of IgG1 isotypes and Fc-mediated effector functions control the pathogenicity of Caspr2-specific Abs to induce LE. Biologics targeting FcR function might potentially restrain Caspr2-Ab-induced pathology and improve clinical outcomes. FUNDING This study was funded by a German-French joint research program supported by the German Research Foundation (DFG) and the Agence Nationale de la Recherche (ANR) and by the Interdisciplinary Centre for Clinical Research (IZKF) Münster.
Collapse
Affiliation(s)
- Paula Terroba-Navajas
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Marianna Spatola
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Caixa Research Institute, Barcelona, Spain.
| | - Omar Chuquisana
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Bastien Joubert
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Lyon, France; MeLiS - UCBL - CNRS UMR 5284 - INSERM U1314, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France; Service de Neurologie, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Juna M de Vries
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Andre Dik
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Laura Marmolejo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Friederike Jönsson
- CNRS & Institut Pasteur, Université Paris Cité, INSERM UMR1222, Antibodies in Therapy and Pathology, 75015 Paris, France
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, Zagreb, Croatia; Genos, Ltd., Borongajska Cesta 83H, Zagreb, Croatia
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Maarten J Titulaer
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jérôme Honnorat
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Lyon, France; MeLiS - UCBL - CNRS UMR 5284 - INSERM U1314, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Jan D Lünemann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
2
|
Duan M, Xu Y, Li Y, Feng H, Chen Y. Targeting brain-peripheral immune responses for secondary brain injury after ischemic and hemorrhagic stroke. J Neuroinflammation 2024; 21:102. [PMID: 38637850 PMCID: PMC11025216 DOI: 10.1186/s12974-024-03101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
The notion that the central nervous system is an immunologically immune-exempt organ has changed over the past two decades, with increasing evidence of strong links and interactions between the central nervous system and the peripheral immune system, both in the healthy state and after ischemic and hemorrhagic stroke. Although primary injury after stroke is certainly important, the limited therapeutic efficacy, poor neurological prognosis and high mortality have led researchers to realize that secondary injury and damage may also play important roles in influencing long-term neurological prognosis and mortality and that the neuroinflammatory process in secondary injury is one of the most important influences on disease progression. Here, we summarize the interactions of the central nervous system with the peripheral immune system after ischemic and hemorrhagic stroke, in particular, how the central nervous system activates and recruits peripheral immune components, and we review recent advances in corresponding therapeutic approaches and clinical studies, emphasizing the importance of the role of the peripheral immune system in ischemic and hemorrhagic stroke.
Collapse
Affiliation(s)
- Mingxu Duan
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ya Xu
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuanshu Li
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hua Feng
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yujie Chen
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
3
|
Yamaguchi HL, Yamaguchi Y, Peeva E. Pathogenesis of Alopecia Areata and Vitiligo: Commonalities and Differences. Int J Mol Sci 2024; 25:4409. [PMID: 38673994 PMCID: PMC11049978 DOI: 10.3390/ijms25084409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/13/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Both alopecia areata (AA) and vitiligo are distinct, heterogenous, and complex disease entities, characterized by nonscarring scalp terminal hair loss and skin pigment loss, respectively. In AA, inflammatory cell infiltrates are in the deep reticular dermis close to the hair bulb (swarm of bees), whereas in vitiligo the inflammatory infiltrates are in the epidermis and papillary dermis. Immune privilege collapse has been extensively investigated in AA pathogenesis, including the suppression of immunomodulatory factors (e.g., transforming growth factor-β (TGF-β), programmed death-ligand 1 (PDL1), interleukin-10 (IL-10), α-melanocyte-stimulating hormone (α-MSH), and macrophage migration inhibitory factor (MIF)) and enhanced expression of the major histocompatibility complex (MHC) throughout hair follicles. However, immune privilege collapse in vitiligo remains less explored. Both AA and vitiligo are autoimmune diseases that share commonalities in pathogenesis, including the involvement of plasmacytoid dendritic cells (and interferon-α (IFN- α) signaling pathways) and cytotoxic CD8+ T lymphocytes (and activated IFN-γ signaling pathways). Blood chemokine C-X-C motif ligand 9 (CXCL9) and CXCL10 are elevated in both diseases. Common factors that contribute to AA and vitiligo include oxidative stress, autophagy, type 2 cytokines, and the Wnt/β-catenin pathway (e.g., dickkopf 1 (DKK1)). Here, we summarize the commonalities and differences between AA and vitiligo, focusing on their pathogenesis.
Collapse
Affiliation(s)
| | - Yuji Yamaguchi
- Inflammation & Immunology Research Unit, Pfizer, Collegeville, PA 19426, USA
| | - Elena Peeva
- Inflammation & Immunology Research Unit, Pfizer, Cambridge, MA 02139, USA;
| |
Collapse
|
4
|
Körtge A, Breitrück A, Doß S, Hofrichter J, Nelz SC, Krüsemann H, Wasserkort R, Fitzner B, Hecker M, Mitzner S, Zettl UK. The Utility of Miniaturized Adsorbers in Exploring the Cellular and Molecular Effects of Blood Purification: A Pilot Study with a Focus on Immunoadsorption in Multiple Sclerosis. Int J Mol Sci 2024; 25:2590. [PMID: 38473836 DOI: 10.3390/ijms25052590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Immunoadsorption (IA) has proven to be clinically effective in the treatment of steroid-refractory multiple sclerosis (MS) relapses, but its mechanism of action remains unclear. We used miniaturized adsorber devices with a tryptophan-immobilized polyvinyl alcohol (PVA) gel sorbent to mimic the IA treatment of patients with MS in vitro. The plasma was screened before and after adsorption with regard to disease-specific mediators, and the effect of the IA treatment on the migration of neutrophils and the integrity of the endothelial cell barrier was tested in cell-based models. The in vitro IA treatment with miniaturized adsorbers resulted in reduced plasma levels of cytokines and chemokines. We also found a reduced migration of neutrophils towards patient plasma treated with the adsorbers. Furthermore, the IA-treated plasma had a positive effect on the endothelial cell barrier's integrity in the cell culture model. Our findings suggest that IA results in a reduced infiltration of cells into the central nervous system by reducing leukocyte transmigration and preventing blood-brain barrier breakdown. This novel approach of performing in vitro blood purification therapies on actual patient samples with miniaturized adsorbers and testing their effects in cell-based assays that investigate specific hypotheses of the pathophysiology provides a promising platform for elucidating the mechanisms of action of those therapies in various diseases.
Collapse
Affiliation(s)
- Andreas Körtge
- Department of Extracorporeal Therapy Systems, Fraunhofer Institute for Cell Therapy and Immunology IZI, 18057 Rostock, Germany
- Division of Nephrology, Center for Internal Medicine, Rostock University Medical Center, 18057 Rostock, Germany
| | - Anne Breitrück
- Department of Extracorporeal Therapy Systems, Fraunhofer Institute for Cell Therapy and Immunology IZI, 18057 Rostock, Germany
- Division of Nephrology, Center for Internal Medicine, Rostock University Medical Center, 18057 Rostock, Germany
| | - Sandra Doß
- Department of Extracorporeal Therapy Systems, Fraunhofer Institute for Cell Therapy and Immunology IZI, 18057 Rostock, Germany
| | - Jacqueline Hofrichter
- Department of Extracorporeal Therapy Systems, Fraunhofer Institute for Cell Therapy and Immunology IZI, 18057 Rostock, Germany
- Division of Nephrology, Center for Internal Medicine, Rostock University Medical Center, 18057 Rostock, Germany
| | - Sophie-Charlotte Nelz
- Division of Nephrology, Center for Internal Medicine, Rostock University Medical Center, 18057 Rostock, Germany
| | - Horst Krüsemann
- Department of Extracorporeal Therapy Systems, Fraunhofer Institute for Cell Therapy and Immunology IZI, 18057 Rostock, Germany
| | - Reinhold Wasserkort
- Department of Extracorporeal Therapy Systems, Fraunhofer Institute for Cell Therapy and Immunology IZI, 18057 Rostock, Germany
- Division of Nephrology, Center for Internal Medicine, Rostock University Medical Center, 18057 Rostock, Germany
| | - Brit Fitzner
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, 18147 Rostock, Germany
| | - Michael Hecker
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, 18147 Rostock, Germany
| | - Steffen Mitzner
- Department of Extracorporeal Therapy Systems, Fraunhofer Institute for Cell Therapy and Immunology IZI, 18057 Rostock, Germany
- Division of Nephrology, Center for Internal Medicine, Rostock University Medical Center, 18057 Rostock, Germany
| | - Uwe Klaus Zettl
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, 18147 Rostock, Germany
| |
Collapse
|
5
|
Pinto SN, Krenciute G. The Mechanisms of Altered Blood-Brain Barrier Permeability in CD19 CAR T-Cell Recipients. Int J Mol Sci 2024; 25:644. [PMID: 38203814 PMCID: PMC10779697 DOI: 10.3390/ijms25010644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Cluster of differentiation 19 (CD19) chimeric antigen receptor (CAR) T cells are a highly effective immunotherapy for relapsed and refractory B-cell malignancies, but their utility can be limited by the development of immune effector cell-associated neurotoxicity syndrome (ICANS). The recent discovery of CD19 expression on the pericytes in the blood-brain barrier (BBB) suggests an important off-target mechanism for ICANS development. In addition, the release of systemic cytokines stimulated by the engagement of CD19 with the CAR T cells can cause endothelial activation and decreased expression of tight junction molecules, further damaging the integrity of the BBB. Once within the brain microenvironment, cytokines trigger a cytokine-specific cascade of neuroinflammatory responses, which manifest clinically as a spectrum of neurological changes. Brain imaging is frequently negative or nonspecific, and treatment involves close neurologic monitoring, supportive care, interleukin antagonists, and steroids. The goal of this review is to inform readers about the normal development and microstructure of the BBB, its unique susceptibility to CD19 CAR T cells, the role of individual cytokines on specific elements of the brain's microstructural environment, and the clinical and imaging manifestations of ICANS. Our review will link cellular pathophysiology with the clinical and radiological manifestations of a complex clinical entity.
Collapse
Affiliation(s)
- Soniya N. Pinto
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation & Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| |
Collapse
|
6
|
Nakajima S, Demers G, Machuca-Parra AI, Pour ZD, Bairamian D, Bouyakdan K, Fisette A, Kabahizi A, Robb J, Rodaros D, Laurent C, Ferreira G, Arbour N, Alquier T, Fulton S. Central activation of the fatty acid sensor GPR120 suppresses microglia reactivity and alleviates sickness- and anxiety-like behaviors. J Neuroinflammation 2023; 20:302. [PMID: 38111048 PMCID: PMC10729532 DOI: 10.1186/s12974-023-02978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023] Open
Abstract
G protein-coupled receptor 120 (GPR120, Ffar4) is a sensor for long-chain fatty acids including omega-3 polyunsaturated fatty acids (n-3 PUFAs) known for beneficial effects on inflammation, metabolism, and mood. GPR120 mediates the anti-inflammatory and insulin-sensitizing effects of n-3 PUFAs in peripheral tissues. The aim of this study was to determine the impact of GPR120 stimulation on microglial reactivity, neuroinflammation and sickness- and anxiety-like behaviors by acute proinflammatory insults. We found GPR120 mRNA to be enriched in both murine and human microglia, and in situ hybridization revealed GPR120 expression in microglia of the nucleus accumbens (NAc) in mice. In a manner similar to or exceeding n-3 PUFAs, GPR120 agonism (Compound A, CpdA) strongly attenuated lipopolysaccharide (LPS)-induced proinflammatory marker expression in primary mouse microglia, including tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and inhibited nuclear factor-ĸB translocation to the nucleus. Central administration of CpdA to adult mice blunted LPS-induced hypolocomotion and anxiety-like behavior and reduced TNF-α, IL-1β and IBA-1 (microglia marker) mRNA in the NAc, a brain region modulating anxiety and motivation and implicated in neuroinflammation-induced mood deficits. GPR120 agonist pre-treatment attenuated NAc microglia reactivity and alleviated sickness-like behaviors elicited by central injection TNF-α and IL-1β. These findings suggest that microglial GPR120 contributes to neuroimmune regulation and behavioral changes in response to acute infection and elevated brain cytokines. GPR120 may participate in the protective action of n-3 PUFAs at the neural and behavioral level and offers potential as treatment target for neuroinflammatory conditions.
Collapse
Affiliation(s)
- Shingo Nakajima
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
| | - Geneviève Demers
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Nutrition, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Arturo Israel Machuca-Parra
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
| | - Zahra Dashtehei Pour
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Nutrition, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Diane Bairamian
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Nutrition, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Khalil Bouyakdan
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
| | - Alexandre Fisette
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Research Group in Cellular Signaling, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Anita Kabahizi
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Nutrition, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Josephine Robb
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
| | - Demetra Rodaros
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
| | - Cyril Laurent
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Guillaume Ferreira
- Nutrition and Integrative Neurobiology Unit, UMR 1286, INRA-Université de Bordeaux, Bordeaux, France
| | - Nathalie Arbour
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Thierry Alquier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Stephanie Fulton
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, H3T1J4, Canada.
- Department of Nutrition, Université de Montréal, Montréal, QC, H3T1J4, Canada.
| |
Collapse
|
7
|
Wei L, Xiang Z, Zou Y. The Role of NKG2D and Its Ligands in Autoimmune Diseases: New Targets for Immunotherapy. Int J Mol Sci 2023; 24:17545. [PMID: 38139373 PMCID: PMC10744089 DOI: 10.3390/ijms242417545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Natural killer (NK) cells and CD8+ T cells can clear infected and transformed cells and generate tolerance to themselves, which also prevents autoimmune diseases. Natural killer group 2 member D (NKG2D) is an important activating immune receptor that is expressed on NK cells, CD8+ T cells, γδ T cells, and a very small percentage of CD4+ T cells. In contrast, the NKG2D ligand (NKG2D-L) is generally not expressed on normal cells but is overexpressed under stress. Thus, the inappropriate expression of NKG2D-L leads to the activation of self-reactive effector cells, which can trigger or exacerbate autoimmunity. In this review, we discuss the role of NKG2D and NKG2D-L in systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), type I diabetes (T1DM), inflammatory bowel disease (IBD), and celiac disease (CeD). The data suggest that NKG2D and NKG2D-L play a pathogenic role in some autoimmune diseases. Therefore, the development of strategies to block the interaction of NKG2D and NKG2D-L may have therapeutic effects in some autoimmune diseases.
Collapse
Affiliation(s)
| | | | - Yizhou Zou
- Department of Immunology, School of Basic Medical, Central South University, Changsha 410083, China; (L.W.); (Z.X.)
| |
Collapse
|
8
|
Mora P, Chapouly C. Astrogliosis in multiple sclerosis and neuro-inflammation: what role for the notch pathway? Front Immunol 2023; 14:1254586. [PMID: 37936690 PMCID: PMC10627009 DOI: 10.3389/fimmu.2023.1254586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
Multiple sclerosis is an autoimmune inflammatory disease of the central nervous system leading to neurodegeneration. It affects 2.3 million people worldwide, generally younger than 50. There is no known cure for the disease, and current treatment options - mainly immunotherapies to limit disease progression - are few and associated with serious side effects. In multiple sclerosis, disruption of the blood-brain barrier is an early event in the pathogenesis of lesions, predisposing to edema, excito-toxicity and inflammatory infiltration into the central nervous system. Recently, the vision of the blood brain barrier structure and integrity has changed and include contributions from all components of the neurovascular unit, among which astrocytes. During neuro-inflammation, astrocytes become reactive. They undergo morphological and molecular changes named "astrogliosis" driving the conversion from acute inflammatory injury to a chronic neurodegenerative state. Astrogliosis mechanisms are minimally explored despite their significance in regulating the autoimmune response during multiple sclerosis. Therefore, in this review, we take stock of the state of knowledge regarding astrogliosis in neuro-inflammation and highlight the central role of NOTCH signaling in the process of astrocyte reactivity. Indeed, a very detailed nomenclature published in nature neurosciences in 2021, listing all the reactive astrocyte markers fully identified in the literature, doesn't cover the NOTCH signaling. Hence, we discuss evidence supporting NOTCH1 receptor as a central regulator of astrogliosis in the pathophysiology of neuro-inflammation, notably multiple sclerosis, in human and experimental models.
Collapse
Affiliation(s)
- Pierre Mora
- Université de Bordeaux, Institut national de la santé et de la recherche médicale (INSERM), Biology of Cardiovascular Diseases, Pessac, France
| | | |
Collapse
|
9
|
Weinhofer I, Rommer P, Gleiss A, Ponleitner M, Zierfuss B, Waidhofer-Söllner P, Fourcade S, Grabmeier-Pfistershammer K, Reinert MC, Göpfert J, Heine A, Yska HAF, Casasnovas C, Cantarín V, Bergner CG, Mallack E, Forss-Petter S, Aubourg P, Bley A, Engelen M, Eichler F, Lund TC, Pujol A, Köhler W, Kühl JS, Berger J. Biomarker-based risk prediction for the onset of neuroinflammation in X-linked adrenoleukodystrophy. EBioMedicine 2023; 96:104781. [PMID: 37683329 PMCID: PMC10497986 DOI: 10.1016/j.ebiom.2023.104781] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/21/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND X-linked adrenoleukodystrophy (X-ALD) is highly variable, ranging from slowly progressive adrenomyeloneuropathy to severe brain demyelination and inflammation (cerebral ALD, CALD) affecting males with childhood peak onset. Risk models integrating blood-based biomarkers to indicate CALD onset, enabling timely interventions, are lacking. Therefore, we evaluated the prognostic value of blood biomarkers in addition to current neuroimaging predictors for early detection of CALD. METHODS We measured blood biomarkers in a retrospective, male CALD risk-assessment cohort consisting of 134 X-ALD patients and 66 controls and in a phenotype-blinded validation set (25 X-ALD boys, 4-13 years) using Simoa®and Luminex® technologies. FINDINGS Among 25 biomarkers indicating axonal damage, astrocye/microglia activation, or immune-cell recruitment, neurofilament light chain (NfL) had the highest prognostic value for early indication of childhood/adolescent CALD. A plasma NfL cut-off level of 8.33 pg/mL, determined in the assessment cohort, correctly discriminated CALD with an accuracy of 96% [95% CI: 80-100] in the validation group. Multivariable logistic regression models revealed that combining NfL with GFAP or cytokines/chemokines (IL-15, IL-12p40, CXCL8, CCL11, CCL22, and IL-4) that were significantly elevated in CALD vs healthy controls had no additional benefit for detecting neuroinflammation. Some cytokines/chemokines were elevated only in childhood/adolescent CALD and already upregulated in asymptomatic X-ALD children (IL-15, IL-12p40, and CCL7). In adults, NfL levels distinguished CALD but were lower than in childhood/adolescent CALD patients with similar (MRI) lesion severity. Blood GFAP did not differentiate CALD from non-inflammatory X-ALD. INTERPRETATION Biomarker-based risk prediction with a plasma NfL cut-off value of 8.33 pg/mL, determined by ROC analysis, indicates CALD onset with high sensitivity and specificity in childhood X-ALD patients. A specific pro-inflammatory cytokine/chemokine profile in asymptomatic X-ALD boys may indicate a primed, immanent inflammatory state aligning with peak onset of CALD. Age-related differences in biomarker levels in adult vs childhood CALD patients warrants caution in predicting onset and progression of CALD in adults. Further evaluations are needed to assess clinical utility of the NfL cut-off for risk prognosis of CALD onset. FUNDING Austrian Science Fund, European Leukodystrophy Association.
Collapse
Affiliation(s)
- Isabelle Weinhofer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| | - Paulus Rommer
- Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Andreas Gleiss
- Institute of Clinical Biometrics, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Markus Ponleitner
- Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Bettina Zierfuss
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria; Department of Neuroscience, Centre de Recherche du CHUM, Université de Montréal, Montréal, Canada
| | - Petra Waidhofer-Söllner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Stéphane Fourcade
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain; Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Katharina Grabmeier-Pfistershammer
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Marie-Christine Reinert
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Jens Göpfert
- Applied Biomarkers and Immunoassays Working Group, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Anne Heine
- Applied Biomarkers and Immunoassays Working Group, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Hemmo A F Yska
- Department of Pediatric Neurology, Amsterdam Public Health, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Carlos Casasnovas
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain; Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, Madrid, Spain; Neuromuscular Unit, Neurology Department, Hospital Universitario Bellvitge, Bellvitge Biomedical Research Unit, Barcelona, Spain
| | - Verónica Cantarín
- Infant Jesus Children´s Hospital and Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Caroline G Bergner
- Department of Neurology, Leukodystrophy Clinic, University of Leipzig Medical Center, Leipzig, Germany
| | - Eric Mallack
- Leukodystrophy Center, Division of Child Neurology, Department of Pediatrics, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Patrick Aubourg
- Kremlin-Bicêtre-Hospital, University Paris-Saclay, Paris, France
| | - Annette Bley
- Department of Pediatrics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Marc Engelen
- Department of Pediatric Neurology, Amsterdam Public Health, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Florian Eichler
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Troy C Lund
- Pediatric Blood and Marrow Transplant Program, Global Pediatrics, Division of Pediatric Blood and Marrow Transplantation, MCRB, University of Minnesota, Minneapolis, MN, USA
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain; Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Wolfgang Köhler
- Department of Neurology, Leukodystrophy Clinic, University of Leipzig Medical Center, Leipzig, Germany
| | - Jörn-Sven Kühl
- Department of Pediatric Oncology, Hematology and Hemostaseology, University Hospital Leipzig, Leipzig, Germany
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Tieu R, Zeng Q, Zhao D, Zhang G, Feizi N, Manandhar P, Williams AL, Popp B, Wood-Trageser MA, Demetris AJ, Tso JY, Johnson AJ, Kane LP, Abou-Daya KI, Shlomchik WD, Oberbarnscheidt MH, Lakkis FG. Tissue-resident memory T cell maintenance during antigen persistence requires both cognate antigen and interleukin-15. Sci Immunol 2023; 8:eadd8454. [PMID: 37083450 PMCID: PMC10334460 DOI: 10.1126/sciimmunol.add8454] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 03/29/2023] [Indexed: 04/22/2023]
Abstract
Our understanding of tissue-resident memory T (TRM) cell biology has been largely developed from acute infection models in which antigen is cleared and sterilizing immunity is achieved. Less is known about TRM cells in the context of chronic antigen persistence and inflammation. We investigated factors that underlie TRM maintenance in a kidney transplantation model in which TRM cells drive rejection. In contrast to acute infection, we found that TRM cells declined markedly in the absence of cognate antigen, antigen presentation, or antigen sensing by the T cells. Depletion of graft-infiltrating dendritic cells or interruption of antigen presentation after TRM cells were established was sufficient to disrupt TRM maintenance and reduce allograft pathology. Likewise, removal of IL-15 transpresentation or of the IL-15 receptor on T cells during TRM maintenance led to a decline in TRM cells, and IL-15 receptor blockade prevented chronic rejection. Therefore, antigen and IL-15 presented by dendritic cells play nonredundant key roles in CD8 TRM cell maintenance in settings of antigen persistence and inflammation. These findings provide insights that could lead to improved treatment of chronic transplant rejection and autoimmunity.
Collapse
Affiliation(s)
- Roger Tieu
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Qiang Zeng
- Nationwide Children’s Hospital, Columbus, Ohio 43205, USA
| | - Daqiang Zhao
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Gang Zhang
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Neda Feizi
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Priyanka Manandhar
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Amanda L. Williams
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Benjamin Popp
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
- Division of Transplant Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Michelle A. Wood-Trageser
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
- Division of Transplant Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Anthony J. Demetris
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
- Division of Transplant Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - J. Yun Tso
- JN Biosciences, Mountain View, California 94043, USA
| | - Aaron J. Johnson
- Departments of Immunology, Neurology, and Molecular Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Lawrence P. Kane
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Khodor I. Abou-Daya
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Warren D. Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Martin H. Oberbarnscheidt
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Fadi G. Lakkis
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
11
|
Farzam-Kia N, Lemaître F, Carmena Moratalla A, Carpentier Solorio Y, Da Cal S, Jamann H, Klement W, Antel J, Duquette P, Girard JM, Prat A, Larochelle C, Arbour N. Granulocyte-macrophage colony-stimulating factor-stimulated human macrophages demonstrate enhanced functions contributing to T-cell activation. Immunol Cell Biol 2023; 101:65-77. [PMID: 36260372 DOI: 10.1111/imcb.12600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/10/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been implicated in numerous chronic inflammatory diseases, including multiple sclerosis (MS). GM-CSF impacts multiple properties and functions of myeloid cells via species-specific mechanisms. Therefore, we assessed the effect of GM-CSF on different human myeloid cell populations found in MS lesions: monocyte-derived macrophages (MDMs) and microglia. We previously reported a greater number of interleukin (IL)-15+ myeloid cells in the brain of patients with MS than in controls. Therefore, we investigated whether GM-CSF exerts its deleterious effects in MS by increasing IL-15 expression on myeloid cells. We found that GM-CSF increased the proportion of IL-15+ cells and/or IL-15 levels on nonpolarized, M1-polarized and M2-polarized MDMs from healthy donors and patients with MS. GM-CSF also increased IL-15 levels on human adult microglia. When cocultured with GM-CSF-stimulated MDMs, activated autologous CD8+ T lymphocytes secreted and expressed significantly higher levels of effector molecules (e.g. interferon-γ and GM-CSF) compared with cocultures with unstimulated MDMs. However, neutralizing IL-15 did not attenuate enhanced effector molecule expression on CD8+ T lymphocytes triggered by GM-CSF-stimulated MDMs. We showed that GM-CSF stimulation of MDMs increased their expression of CD80 and ICAM-1 and their secretion of IL-6, IL-27 and tumor necrosis factor. These molecules could participate in boosting the effector properties of CD8+ T lymphocytes independently of IL-15. By contrast, GM-CSF did not alter CD80, IL-27, tumor necrosis factor and chemokine (C-X-C motif) ligand 10 expression/secretion by human microglia. Therefore, our results underline the distinct impact of GM-CSF on human myeloid cells abundantly present in MS lesions.
Collapse
Affiliation(s)
- Negar Farzam-Kia
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Florent Lemaître
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Ana Carmena Moratalla
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Yves Carpentier Solorio
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Sandra Da Cal
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Hélène Jamann
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Wendy Klement
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Jack Antel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Pierre Duquette
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Multiple Sclerosis Clinic-CHUM, Montréal, QC, Canada
| | - Jean Marc Girard
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Multiple Sclerosis Clinic-CHUM, Montréal, QC, Canada
| | - Alexandre Prat
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Multiple Sclerosis Clinic-CHUM, Montréal, QC, Canada
| | - Catherine Larochelle
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Multiple Sclerosis Clinic-CHUM, Montréal, QC, Canada
| | - Nathalie Arbour
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| |
Collapse
|
12
|
Mortier E, Maillasson M, Quéméner A. Counteracting Interleukin-15 to Elucidate Its Modes of Action in Physiology and Pathology. J Interferon Cytokine Res 2023; 43:2-22. [PMID: 36651845 DOI: 10.1089/jir.2022.0198] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Interleukin (IL)-15 belongs to the common gamma-dependent cytokine family, along with IL-2, IL-4, IL-7, IL-9, and IL-21. IL-15 is crucial for the homeostasis of Natural Killer (NK) and memory CD8 T cells, and to fight against cancer progression. However, dysregulations of IL-15 expression could occur and participate in the emergence of autoimmune inflammatory diseases as well as hematological malignancies. It is therefore important to understand the different modes of action of IL-15 to decrease its harmful action in pathology without affecting its beneficial effects in the immune system. In this review, we present the different approaches used by researchers to inhibit the action of IL-15, from most broad to the most selective. Indeed, it appears that it is important to selectively target the mode of action of the cytokine rather than the cytokine itself as they are involved in numerous biological processes.
Collapse
Affiliation(s)
- Erwan Mortier
- Nantes Université, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| | - Mike Maillasson
- Nantes Université, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| | - Agnès Quéméner
- Nantes Université, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| |
Collapse
|
13
|
Saavedra J, Nascimento M, Liz MA, Cardoso I. Key brain cell interactions and contributions to the pathogenesis of Alzheimer's disease. Front Cell Dev Biol 2022; 10:1036123. [PMID: 36523504 PMCID: PMC9745159 DOI: 10.3389/fcell.2022.1036123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/14/2022] [Indexed: 06/22/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide, with the two major hallmarks being the deposition of extracellular β-amyloid (Aβ) plaques and of intracellular neurofibrillary tangles (NFTs). Additionally, early pathological events such as cerebrovascular alterations, a compromised blood-brain barrier (BBB) integrity, neuroinflammation and synaptic dysfunction, culminate in neuron loss and cognitive deficits. AD symptoms reflect a loss of neuronal circuit integrity in the brain; however, neurons do not operate in isolation. An exclusively neurocentric approach is insufficient to understand this disease, and the contribution of other brain cells including astrocytes, microglia, and vascular cells must be integrated in the context. The delicate balance of interactions between these cells, required for healthy brain function, is disrupted during disease. To design successful therapies, it is critical to understand the complex brain cellular connections in AD and the temporal sequence of their disturbance. In this review, we discuss the interactions between different brain cells, from physiological conditions to their pathological reactions in AD, and how this basic knowledge can be crucial for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Joana Saavedra
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Mariana Nascimento
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Márcia A. Liz
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Isabel Cardoso
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
14
|
Li Z, Khan S, Liu Y, Wei R, Yong VW, Xue M. Therapeutic strategies for intracerebral hemorrhage. Front Neurol 2022; 13:1032343. [PMID: 36408517 PMCID: PMC9672341 DOI: 10.3389/fneur.2022.1032343] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/17/2022] [Indexed: 09/03/2023] Open
Abstract
Stroke is the second highest cause of death globally, with an increasing incidence in developing countries. Intracerebral hemorrhage (ICH) accounts for 10-15% of all strokes. ICH is associated with poor neurological outcomes and high mortality due to the combination of primary and secondary injury. Fortunately, experimental therapies are available that may improve functional outcomes in patients with ICH. These therapies targeting secondary brain injury have attracted substantial attention in their translational potential. Here, we summarize recent advances in therapeutic strategies and directions for ICH and discuss the barriers and issues that need to be overcome to improve ICH prognosis.
Collapse
Affiliation(s)
- Zhe Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Ruixue Wei
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - V. Wee Yong
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| |
Collapse
|
15
|
Zveik O, Rechtman A, Haham N, Adini I, Canello T, Lavon I, Brill L, Vaknin-Dembinsky A. Sera of Neuromyelitis Optica Patients Increase BID-Mediated Apoptosis in Astrocytes. Int J Mol Sci 2022; 23:ijms23137117. [PMID: 35806122 PMCID: PMC9266359 DOI: 10.3390/ijms23137117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Neuromyelitis optica (NMO) is a rare disease usually presenting with bilateral or unilateral optic neuritis with simultaneous or sequential transverse myelitis. Autoantibodies directed against aquaporin-4 (AQP4-IgG) are found in most patients. They are believed to cross the blood−brain barrier, target astrocytes, activate complement, and eventually lead to astrocyte destruction, demyelination, and axonal damage. However, it is still not clear what the primary pathological event is. We hypothesize that the interaction of AQP4-IgG and astrocytes leads to DNA damage and apoptosis. We studied the effect of sera from seropositive NMO patients and healthy controls (HCs) on astrocytes’ immune gene expression and viability. We found that sera from seropositive NMO patients led to higher expression of apoptosis-related genes, including BH3-interacting domain death agonist (BID), which is the most significant differentiating gene (p < 0.0001), and triggered more apoptosis in astrocytes compared to sera from HCs. Furthermore, NMO sera increased DNA damage and led to a higher expression of immunological genes that interact with BID (TLR4 and NOD-1). Our findings suggest that sera of seropositive NMO patients might cause astrocytic DNA damage and apoptosis. It may be one of the mechanisms implicated in the primary pathological event in NMO and provide new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Omri Zveik
- Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (O.Z.); (A.R.); (N.H.); (T.C.); (I.L.); (L.B.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Ariel Rechtman
- Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (O.Z.); (A.R.); (N.H.); (T.C.); (I.L.); (L.B.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Nitzan Haham
- Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (O.Z.); (A.R.); (N.H.); (T.C.); (I.L.); (L.B.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Irit Adini
- Department of Surgery, Harvard Medical School, Center for Engineering in Medicine & Surgery, Massachusetts General Hospital, 51 Blossom Street, Boston, MA 02114, USA;
| | - Tamar Canello
- Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (O.Z.); (A.R.); (N.H.); (T.C.); (I.L.); (L.B.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
- Leslie and Michael Gaffin Center for Neuro-Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Iris Lavon
- Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (O.Z.); (A.R.); (N.H.); (T.C.); (I.L.); (L.B.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
- Leslie and Michael Gaffin Center for Neuro-Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Livnat Brill
- Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (O.Z.); (A.R.); (N.H.); (T.C.); (I.L.); (L.B.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Adi Vaknin-Dembinsky
- Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (O.Z.); (A.R.); (N.H.); (T.C.); (I.L.); (L.B.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
- Correspondence: ; Tel.: +972-2-677-7741
| |
Collapse
|
16
|
Kunkl M, Amormino C, Tedeschi V, Fiorillo MT, Tuosto L. Astrocytes and Inflammatory T Helper Cells: A Dangerous Liaison in Multiple Sclerosis. Front Immunol 2022; 13:824411. [PMID: 35211120 PMCID: PMC8860818 DOI: 10.3389/fimmu.2022.824411] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/13/2022] [Indexed: 11/15/2022] Open
Abstract
Multiple Sclerosis (MS) is a neurodegenerative autoimmune disorder of the central nervous system (CNS) characterized by the recruitment of self-reactive T lymphocytes, mainly inflammatory T helper (Th) cell subsets. Once recruited within the CNS, inflammatory Th cells produce several inflammatory cytokines and chemokines that activate resident glial cells, thus contributing to the breakdown of blood-brain barrier (BBB), demyelination and axonal loss. Astrocytes are recognized as key players of MS immunopathology, which respond to Th cell-defining cytokines by acquiring a reactive phenotype that amplify neuroinflammation into the CNS and contribute to MS progression. In this review, we summarize current knowledge of the astrocytic changes and behaviour in both MS and experimental autoimmune encephalomyelitis (EAE), and the contribution of pathogenic Th1, Th17 and Th1-like Th17 cell subsets, and CD8+ T cells to the morphological and functional modifications occurring in astrocytes and their pathological outcomes.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Carola Amormino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Valentina Tedeschi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| |
Collapse
|
17
|
Zarobkiewicz MK, Kowalska W, Morawska I, Halczuk P, Rejdak K, Bojarska-Junak A. IL-15 Is Overexpressed in γδ T Cells and Correlates with Disease Severity in Relapsing-Remitting Multiple Sclerosis. J Clin Med 2021; 10:jcm10184174. [PMID: 34575283 PMCID: PMC8467081 DOI: 10.3390/jcm10184174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 12/23/2022] Open
Abstract
Interleukin 15 (IL-15) is known to be involved in the pathogenesis of multiple sclerosis (MS). An animal study revealed a distinct subset of IL-15-producing γδ T cells that correlate with disease severity. The aim of the current study was to test whether such a subset is also present in humans and its importance for the pathogenesis of MS. The peripheral blood from 29 patients with relapsing-remitting MS (including 6 relapses) and 22 controls was stained with monoclonal antibodies and analyzed with flow cytometry. The existence of IL-15+ γδ T cells was confirmed. Moreover, the percentage of IL-15+ γδ T is significantly increased in MS patients and correlates with disease severity. Nevertheless, additional functional studies are needed to fully understand the importance of those cells in multiple sclerosis pathogenesis
Collapse
Affiliation(s)
- Michał K. Zarobkiewicz
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (I.M.)
- Correspondence: (M.K.Z.); (A.B.-J.)
| | - Wioleta Kowalska
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (I.M.)
| | - Izabela Morawska
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (I.M.)
| | - Paweł Halczuk
- Department of Neurology, Medical University of Lublin, 20-090 Lublin, Poland; (P.H.); (K.R.)
- Department of Histology and Embryology with Experimental Cytology Unit, Medical University of Lublin, 20-080 Lublin, Poland
| | - Konrad Rejdak
- Department of Neurology, Medical University of Lublin, 20-090 Lublin, Poland; (P.H.); (K.R.)
| | - Agnieszka Bojarska-Junak
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (I.M.)
- Correspondence: (M.K.Z.); (A.B.-J.)
| |
Collapse
|
18
|
Asby D, Boche D, Allan S, Love S, Miners JS. Systemic infection exacerbates cerebrovascular dysfunction in Alzheimer's disease. Brain 2021; 144:1869-1883. [PMID: 33723589 PMCID: PMC8320299 DOI: 10.1093/brain/awab094] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 02/01/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
We studied the effects of systemic infection on brain cytokine level and cerebral vascular function in Alzheimer's disease and vascular dementia, in superior temporal cortex (Brodmann area 22) from Alzheimer's disease patients (n = 75), vascular dementia patients (n = 22) and age-matched control subjects (n = 46), stratified according to the presence or absence of terminal systemic infection. Brain cytokine levels were measured using Mesoscale Discovery Multiplex Assays and markers of cerebrovascular function were assessed by ELISA. Multiple brain cytokines were elevated in Alzheimer's disease and vascular dementia: IL-15 and IL-17A were maximally elevated in end-stage Alzheimer's disease (Braak tangle stage V-VI) whereas IL-2, IL-5, IL12p40 and IL-16 were highest in intermediate Braak tangle stage III-IV disease. Several cytokines (IL-1β, IL-6, TNF-α, IL-8 and IL-15) were further raised in Alzheimer's disease with systemic infection. Cerebral hypoperfusion-indicated by decreased MAG:PLP1 and increased vascular endothelial growth factor-A (VEGF)-and blood-brain barrier leakiness, indicated by raised levels of fibrinogen, were exacerbated in Alzheimer's disease and vascular dementia patients, and also in non-dementia controls, with systemic infection. Amyloid-β42 level did not vary with infection or in association with brain cytokine levels. In controls, cortical perfusion declined with increasing IFN-γ, IL-2, IL-4, IL-6, IL-10, IL-12p70, IL-13 and tumour necrosis factor-α (TNF-α) but these relationships were lost with progression of Alzheimer's disease, and with infection (even in Braak stage 0-II brains). Cortical platelet-derived growth factor receptor-β (PDGFRβ), a pericyte marker, was reduced, and endothelin-1 (EDN1) level was increased in Alzheimer's disease; these were related to amyloid-β level and disease progression and only modestly affected by systemic infection. Our findings indicate that systemic infection alters brain cytokine levels and exacerbates cerebral hypoperfusion and blood-brain barrier leakiness associated with Alzheimer's disease and vascular dementia, independently of the level of insoluble amyloid-β, and highlight systemic infection as an important contributor to dementia, requiring early identification and treatment in the elderly population.
Collapse
Affiliation(s)
- Daniel Asby
- Dementia Research Group, Bristol Medical School, University of Bristol, Bristol BS2 8DZ, UK
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton S017 1BJ, UK
| | - Stuart Allan
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, AV Hill Building, Manchester, M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group and University of Manchester, Manchester, M13 9PT, UK
| | - Seth Love
- Dementia Research Group, Bristol Medical School, University of Bristol, Bristol BS2 8DZ, UK
| | - J Scott Miners
- Dementia Research Group, Bristol Medical School, University of Bristol, Bristol BS2 8DZ, UK
| |
Collapse
|
19
|
Smith JA, Nicaise AM, Ionescu RB, Hamel R, Peruzzotti-Jametti L, Pluchino S. Stem Cell Therapies for Progressive Multiple Sclerosis. Front Cell Dev Biol 2021; 9:696434. [PMID: 34307372 PMCID: PMC8299560 DOI: 10.3389/fcell.2021.696434] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system characterized by demyelination and axonal degeneration. MS patients typically present with a relapsing-remitting (RR) disease course, manifesting as sporadic attacks of neurological symptoms including ataxia, fatigue, and sensory impairment. While there are several effective disease-modifying therapies able to address the inflammatory relapses associated with RRMS, most patients will inevitably advance to a progressive disease course marked by a gradual and irreversible accrual of disabilities. Therapeutic intervention in progressive MS (PMS) suffers from a lack of well-characterized biological targets and, hence, a dearth of successful drugs. The few medications approved for the treatment of PMS are typically limited in their efficacy to active forms of the disease, have little impact on slowing degeneration, and fail to promote repair. In looking to address these unmet needs, the multifactorial therapeutic benefits of stem cell therapies are particularly compelling. Ostensibly providing neurotrophic support, immunomodulation and cell replacement, stem cell transplantation holds substantial promise in combatting the complex pathology of chronic neuroinflammation. Herein, we explore the current state of preclinical and clinical evidence supporting the use of stem cells in treating PMS and we discuss prospective hurdles impeding their translation into revolutionary regenerative medicines.
Collapse
Affiliation(s)
- Jayden A. Smith
- Cambridge Innovation Technologies Consulting (CITC) Limited, Cambridge, United Kingdom
| | - Alexandra M. Nicaise
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Rosana-Bristena Ionescu
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Regan Hamel
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Stefano Pluchino
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
20
|
Collier JL, Weiss SA, Pauken KE, Sen DR, Sharpe AH. Not-so-opposite ends of the spectrum: CD8 + T cell dysfunction across chronic infection, cancer and autoimmunity. Nat Immunol 2021; 22:809-819. [PMID: 34140679 PMCID: PMC9197228 DOI: 10.1038/s41590-021-00949-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/29/2021] [Indexed: 02/05/2023]
Abstract
CD8+ T cells are critical mediators of cytotoxic effector function in infection, cancer and autoimmunity. In cancer and chronic viral infection, CD8+ T cells undergo a progressive loss of cytokine production and cytotoxicity, a state termed T cell exhaustion. In autoimmunity, autoreactive CD8+ T cells retain the capacity to effectively mediate the destruction of host tissues. Although the clinical outcome differs in each context, CD8+ T cells are chronically exposed to antigen in all three. These chronically stimulated CD8+ T cells share some common phenotypic features, as well as transcriptional and epigenetic programming, across disease contexts. A better understanding of these CD8+ T cell states may reveal novel strategies to augment clearance of chronic viral infection and cancer and to mitigate self-reactivity leading to tissue damage in autoimmunity.
Collapse
Affiliation(s)
- Jenna L Collier
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital
| | - Sarah A Weiss
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA.,Broad Institute of MIT and Harvard, Cambridge MA
| | - Kristen E Pauken
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital
| | - Debattama R Sen
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital.,Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital.,Broad Institute of MIT and Harvard, Cambridge MA
| |
Collapse
|
21
|
Astrocytes in Multiple Sclerosis-Essential Constituents with Diverse Multifaceted Functions. Int J Mol Sci 2021; 22:ijms22115904. [PMID: 34072790 PMCID: PMC8198285 DOI: 10.3390/ijms22115904] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/19/2022] Open
Abstract
In multiple sclerosis (MS), astrocytes respond to the inflammatory stimulation with an early robust process of morphological, transcriptional, biochemical, and functional remodeling. Recent studies utilizing novel technologies in samples from MS patients, and in an animal model of MS, experimental autoimmune encephalomyelitis (EAE), exposed the detrimental and the beneficial, in part contradictory, functions of this heterogeneous cell population. In this review, we summarize the various roles of astrocytes in recruiting immune cells to lesion sites, engendering the inflammatory loop, and inflicting tissue damage. The roles of astrocytes in suppressing excessive inflammation and promoting neuroprotection and repair processes is also discussed. The pivotal roles played by astrocytes make them an attractive therapeutic target. Improved understanding of astrocyte function and diversity, and the mechanisms by which they are regulated may lead to the development of novel approaches to selectively block astrocytic detrimental responses and/or enhance their protective properties.
Collapse
|
22
|
Lemaître F, Carmena Moratalla A, Farzam-Kia N, Carpentier Solorio Y, Tastet O, Cleret-Buhot A, Guimond JV, Haddad E, Arbour N. Capturing T Lymphocytes' Dynamic Interactions With Human Neural Cells Using Time-Lapse Microscopy. Front Immunol 2021; 12:668483. [PMID: 33968073 PMCID: PMC8100528 DOI: 10.3389/fimmu.2021.668483] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022] Open
Abstract
To fully perform their functions, T lymphocytes migrate within organs’ parenchyma and interact with local cells. Infiltration of T lymphocytes within the central nervous system (CNS) is associated with numerous neurodegenerative disorders. Nevertheless, how these immune cells communicate and respond to neural cells remains unresolved. To investigate the behavior of T lymphocytes that reach the CNS, we have established an in vitro co-culture model and analyzed the spatiotemporal interactions between human activated CD8+ T lymphocytes and primary human astrocytes and neurons using time-lapse microscopy. By combining multiple variables extracted from individual CD8+ T cell tracking, we show that CD8+ T lymphocytes adopt a more motile and exploratory behavior upon interacting with astrocytes than with neurons. Pretreatment of astrocytes or neurons with IL-1β to mimic in vivo inflammation significantly increases CD8+ T lymphocyte motility. Using visual interpretation and analysis of numerical variables extracted from CD8+ T cell tracking, we identified four distinct CD8+ T lymphocyte behaviors: scanning, dancing, poking and round. IL-1β-pretreatment significantly increases the proportion of scanning CD8+ T lymphocytes, which are characterized by active exploration, and reduces the proportion of round CD8+ T lymphocytes, which are less active. Blocking MHC class I on astrocytes significantly diminishes the proportion of poking CD8+ T lymphocytes, which exhibit synapse-like interactions. Lastly, our co-culture time-lapse model is easily adaptable and sufficiently sensitive and powerful to characterize and quantify spatiotemporal interactions between human T lymphocytes and primary human cells in different conditions while preserving viability of fragile cells such as neurons and astrocytes.
Collapse
Affiliation(s)
- Florent Lemaître
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Ana Carmena Moratalla
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Negar Farzam-Kia
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Yves Carpentier Solorio
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Olivier Tastet
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Aurélie Cleret-Buhot
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Jean Victor Guimond
- Centre Local de Services Communautaires des Faubourgs, Centre Intégré Universitaire en Santé et Services Sociaux du Centre-Sud-de-l'Ile-de-Montréal, Montréal, QC, Canada
| | - Elie Haddad
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Nathalie Arbour
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
23
|
Flores-Aguilar L, Iulita MF, Kovecses O, Torres MD, Levi SM, Zhang Y, Askenazi M, Wisniewski T, Busciglio J, Cuello AC. Evolution of neuroinflammation across the lifespan of individuals with Down syndrome. Brain 2021; 143:3653-3671. [PMID: 33206953 DOI: 10.1093/brain/awaa326] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/18/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
Epidemiological and experimental studies suggest that a disease-aggravating neuroinflammatory process is present at preclinical stages of Alzheimer's disease. Given that individuals with Down syndrome are at increased genetic risk of Alzheimer's disease and therefore develop the spectrum of Alzheimer's neuropathology in a uniform manner, they constitute an important population to study the evolution of neuroinflammation across the Alzheimer's continuum. Therefore, in this cross-sectional study, we characterized the brain inflammatory profile across the lifespan of individuals with Down syndrome. Microglial morphology and inflammatory cytokine expression were analysed by immunohistochemistry and electrochemiluminescent-based immunoassays in the frontal cortex from foetuses to adults with Down syndrome and control subjects (16 gestational weeks to 64 years), totalling 127 cases. Cytokine expression in mixed foetal primary cultures and hippocampus of adults with Down syndrome, as well as the effects of sex on cytokine expression were also analysed. A higher microglial soma size-to-process length ratio was observed in the frontal cortex of children and young adults with Down syndrome before the development of full-blown Alzheimer's pathology. Moreover, young adults with Down syndrome also displayed increased numbers of rod-like microglia. Increased levels of interleukin-8 and interleukin-10 were observed in children with Down syndrome (1-10 years; Down syndrome n = 5, controls n = 10) and higher levels of interleukin-1β, interleukin-1α, interleukin-6, interleukin-8, interleukin-10, interleukin-15, eotaxin-3, interferon gamma-induced protein 10, macrophage-derived chemokine, and macrophage inflammatory protein-beta, were found in young adults with Down syndrome compared to euploid cases (13-25 years, Down syndrome n = 6, controls n = 24). Increased cytokine expression was also found in the conditioned media of mixed cortical primary cultures from second trimester foetuses with Down syndrome (Down syndrome n = 7, controls n = 7). Older adults with Down syndrome (39-68 years, Down syndrome n = 22, controls n = 16) displayed reduced levels of interleukin-10, interleukin-12p40, interferon-gamma and tumour necrosis factor-alpha. Microglia displayed larger somas and shorter processes. Moreover, an increase in dystrophic microglia and rod-like microglia aligning to neurons harbouring tau pathology were also observed. Sex stratification analyses revealed that females with Down syndrome had increased interleukin-6 and interleukin-8 levels compared to males with Down syndrome. Finally, multivariate projection methods identified specific cytokine patterns among individuals with Down syndrome. Our findings indicate the presence of an early and evolving neuroinflammatory phenotype across the lifespan in Down syndrome, a knowledge that is relevant for the discovery of stage-specific targets and for the design of possible anti-inflammatory trials against Alzheimer's disease in this population.
Collapse
Affiliation(s)
| | - M Florencia Iulita
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.,Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Alzheimer-Down Unit, Fundación Catalana Síndrome de Down, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Olivia Kovecses
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Maria D Torres
- Department of Neurobiology and Behavior, UCI-MIND Institute, and Center for the Neurobiology of Learning and Memory, University of California, Irvine, USA
| | - Sarah M Levi
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Yian Zhang
- Division of Biostatistics, New York University, Grossman School of Medicine, New York, USA
| | | | - Thomas Wisniewski
- Departments of Neurology, Pathology, and Psychiatry, Center for Cognitive Neurology, New York University, Grossman School of Medicine, New York, USA
| | - Jorge Busciglio
- Department of Neurobiology and Behavior, UCI-MIND Institute, and Center for the Neurobiology of Learning and Memory, University of California, Irvine, USA
| | - A Claudio Cuello
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Canada.,Visiting Professor, Department of Pharmacology, Oxford University, Oxford, UK
| |
Collapse
|
24
|
Plaza-Rojas L, Guevara-Patiño JA. The Role of the NKG2D in Vitiligo. Front Immunol 2021; 12:624131. [PMID: 33717132 PMCID: PMC7952755 DOI: 10.3389/fimmu.2021.624131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Vitiligo is an acquired multifactorial disease that affects melanocytes and results in skin depigmentation. In this review, we examine the role of cells stress and self-reactive T cells responses. Given the canonical and non-canonical functions of NKG2D, such as authenticating stressed target and enhance TCR signaling, we examine how melanocyte stress leads to the expression of ligands that are recognized by the activating receptor NKG2D, and how its signaling results in the turning of T cells against self (melanocyte suicide by proxy). We also discuss how this initiation phase is followed by T cell perpetuation, as NKG2D signaling results in self-sustained long-lasting T cells, with improved cytolytic properties.
Collapse
Affiliation(s)
- Lourdes Plaza-Rojas
- Department of Cancer Biology, Loyola University Chicago, Chicago, IL, United States
| | | |
Collapse
|
25
|
Laurent C, Deblois G, Clénet ML, Carmena Moratalla A, Farzam-Kia N, Girard M, Duquette P, Prat A, Larochelle C, Arbour N. Interleukin-15 enhances proinflammatory T-cell responses in patients with MS and EAE. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 8:8/1/e931. [PMID: 33323466 PMCID: PMC7745728 DOI: 10.1212/nxi.0000000000000931] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/26/2020] [Indexed: 01/25/2023]
Abstract
Objective We posit that interleukin-15 (IL-15) is a relevant contributor to MS pathobiology as this cytokine is elevated in the CNS and periphery of patients with MS. We aim to investigate (1) the impact of IL-15 on T lymphocytes from patients with MS and (2) the in vivo role of IL-15 using the experimental autoimmune encephalomyelitis (EAE) mouse model. Methods We compared the impact of IL-15 on T lymphocytes obtained from untreated patients with MS (relapsing-remitting, secondary progressive, and primary progressive) to cells from age/sex-matched healthy controls (HCs) using multiparametric flow cytometry and in vitro assays. We tested the effects of peripheral IL-15 administration after EAE disease onset in C57BL/6 mice. Results IL-15 triggered STAT5 signaling in an elevated proportion of T cells from patients with MS compared with HCs. This cytokine also enhanced the production of key proinflammatory cytokines (interferon γ, granulocyte-macrophage colony-stimulating factor [GM-CSF], IL-17, and tumor necrosis factor) by T cells from both MS and controls, but these effects were more robust for the production of IL-17 and GM-CSF in T-cell subsets from patients with MS. At the peak of EAE disease, the proportion of CD4+ and CD8+ T cells expressing CD122+, the key signaling IL-15 receptor chain, was enriched in the CNS compared with the spleen. Finally, peripheral administration of IL-15 into EAE mice after disease onset significantly aggravated clinical scores and increased the number of inflammatory CNS-infiltrating T cells long term after stopping IL-15 administration. Conclusions Our results underscore that IL-15 contributes to the amplification of T-cell inflammatory properties after disease onset in both MS and EAE.
Collapse
Affiliation(s)
- Cyril Laurent
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Gabrielle Deblois
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Marie-Laure Clénet
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Ana Carmena Moratalla
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Negar Farzam-Kia
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Marc Girard
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Pierre Duquette
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Alexandre Prat
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Catherine Larochelle
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada
| | - Nathalie Arbour
- From the Department of Neurosciences (C. Laurent, G.D., M.-L.C., A.C.M., N.F.-k., M.G., P.D., A.P., C. Larochelle, N.A.), Université de Montréal and CRCHUM; and MS-CHUM Clinic (M.G., P.D., A.P., C. Larochelle), Québec, Canada.
| |
Collapse
|
26
|
das Neves SP, Sousa JC, Sousa N, Cerqueira JJ, Marques F. Altered astrocytic function in experimental neuroinflammation and multiple sclerosis. Glia 2020; 69:1341-1368. [PMID: 33247866 DOI: 10.1002/glia.23940] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) that affects about 2.5 million people worldwide. In MS, the patients' immune system starts to attack the myelin sheath, leading to demyelination, neurodegeneration, and, ultimately, loss of vital neurological functions such as walking. There is currently no cure for MS and the available treatments only slow the initial phases of the disease. The later-disease mechanisms are poorly understood and do not directly correlate with the activity of immune system cells, the main target of the available treatments. Instead, evidence suggests that disease progression and disability are better correlated with the maintenance of a persistent low-grade inflammation inside the CNS, driven by local glial cells, like astrocytes and microglia. Depending on the context, astrocytes can (a) exacerbate inflammation or (b) promote immunosuppression and tissue repair. In this review, we will address the present knowledge that exists regarding the role of astrocytes in MS and experimental animal models of the disease.
Collapse
Affiliation(s)
- Sofia Pereira das Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - João Carlos Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center, Braga, Portugal
| | - João José Cerqueira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center, Braga, Portugal
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
27
|
Kaddatz H, Joost S, Nedelcu J, Chrzanowski U, Schmitz C, Gingele S, Gudi V, Stangel M, Zhan J, Santrau E, Greiner T, Frenz J, Müller-Hilke B, Müller M, Amor S, van der Valk P, Kipp M. Cuprizone-induced demyelination triggers a CD8-pronounced T cell recruitment. Glia 2020; 69:925-942. [PMID: 33245604 DOI: 10.1002/glia.23937] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 01/25/2023]
Abstract
The loss of myelinating oligodendrocytes is a key characteristic of many neurological diseases, including Multiple Sclerosis (MS). In progressive MS, where effective treatment options are limited, peripheral immune cells can be found at the site of demyelination and are suggested to play a functional role during disease progression. In this study, we hypothesize that metabolic oligodendrocyte injury, caused by feeding the copper chelator cuprizone, is a potent trigger for peripheral immune cell recruitment into the central nervous system (CNS). We used immunohistochemistry and flow cytometry to evaluate the composition, density, and activation status of infiltrating T lymphocytes in cuprizone-intoxicated mice and post-mortem progressive MS tissues. Our results demonstrate a predominance of CD8+ T cells along with high proliferation rates and cytotoxic granule expression, indicating an antigenic and pro-inflammatory milieu in the CNS of cuprizone-intoxicated mice. Numbers of recruited T cells and the composition of lymphocytic infiltrates in cuprizone-intoxicated mice were found to be comparable to those found in progressive MS lesions. Finally, amelioration of the cuprizone-induced pathology by treating mice with laquinimod significantly reduces the number of recruited T cells. Overall, this study provides strong evidence that toxic demyelination is a sufficient trigger for T cells to infiltrate the demyelinated CNS. Further investigation of the mode of action and functional consequence of T cell recruitment might offer promising new therapeutic approaches for progressive MS.
Collapse
Affiliation(s)
- Hannes Kaddatz
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Sarah Joost
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Julia Nedelcu
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany.,Institute of Anatomy II, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Uta Chrzanowski
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany.,Institute of Anatomy II, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Christoph Schmitz
- Institute of Anatomy II, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Stefan Gingele
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Viktoria Gudi
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Martin Stangel
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Jiangshan Zhan
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Emily Santrau
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Theresa Greiner
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Julia Frenz
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Brigitte Müller-Hilke
- Core Facility for Cell Sorting and Analysing, Rostock University Medical Center, Rostock, Germany
| | - Michael Müller
- Core Facility for Cell Sorting and Analysing, Rostock University Medical Center, Rostock, Germany
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, Amsterdam, The Netherlands.,Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
28
|
Allard-Chamard H, Mishra HK, Nandi M, Mayhue M, Menendez A, Ilangumaran S, Ramanathan S. Interleukin-15 in autoimmunity. Cytokine 2020; 136:155258. [PMID: 32919253 DOI: 10.1016/j.cyto.2020.155258] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
Interleukin-15 (IL-15) is a member of the IL-2 family of cytokines, which use receptor complexes containing the common gamma (γc) chain for signaling. IL-15 plays important roles in innate and adaptative immune responses and is implicated in the pathogenesis of several immune diseases. The IL-15 receptor consists of 3 subunits namely, the ligand-binding IL-15Rα chain, the β chain (also used by IL-2) and the γc chain. IL-15 uses a unique signaling pathway whereby IL-15 associates with IL-15Rα during biosynthesis, and this complex is 'trans-presented' to responder cells that expresses the IL-2/15Rβγc receptor complex. IL-15 is subject to post-transcriptional and post-translational regulation, and evidence also suggests that IL-15 cis-signaling can occur under certain conditions. IL-15 has been implicated in the pathology of various autoimmune diseases such as rheumatoid arthritis, autoimmune diabetes, inflammatory bowel disease, coeliac disease and psoriasis. Studies with pre-clinical models have shown the beneficial effects of targeting IL-15 signaling in autoimmunity. Unlike therapies targeting other cytokines, anti-IL-15 therapies have not yet been successful in humans. We discuss the complexities of IL-15 signaling in autoimmunity and explore potential immunotherapeutic approaches to target the IL-15 signaling pathway.
Collapse
Affiliation(s)
- Hugues Allard-Chamard
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche Clinique, Centre Hospitalier d'Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Hemant K Mishra
- Vet & Biomedical Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Madhuparna Nandi
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marian Mayhue
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alfredo Menendez
- Centre de Recherche Clinique, Centre Hospitalier d'Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Subburaj Ilangumaran
- Centre de Recherche Clinique, Centre Hospitalier d'Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sheela Ramanathan
- Centre de Recherche Clinique, Centre Hospitalier d'Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
29
|
da Silva LC, Lima IVDA, da Silva MCM, Corrêa TA, de Souza VP, de Almeida MV, de Oliveira ACP, Ferreira AP. A new lipophilic amino alcohol, chemically similar to compound FTY720, attenuates the pathogenesis of experimental autoimmune encephalomyelitis by PI3K/Akt pathway inhibition. Int Immunopharmacol 2020; 88:106919. [PMID: 32871475 DOI: 10.1016/j.intimp.2020.106919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 01/11/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is one of the main animal models used for the study of Multiple Sclerosis (MS). Long-chain lipophilic amino alcohols with immunoregulatory activities have already been studied in some models of inflammatory diseases, but the action of these compounds in EAE and MS is still unknown. In this study, we investigated whether the lipophilic amino alcohol 4b would act to improve the clinical signs of EAE and reduce the demyelination process and the neuroinflammatory parameters in the spinal cord, as well as the inflammatory process in the inguinal lymph nodes, of C57Bl/6 mice induced with EAE after stimulation with MOG35-55 and pertussis toxin. The 4b treatment (1.0 mg/kg/day) was orally administered, starting on the day of onset of clinical signs of the disease (10th) and ending on the 20th day after immunization. This treatment was able to reduce the cell count on the inguinal lymph nodes, the migration of inflammatory cells into the central nervous system (CNS), as well as the processes of microgliosis, astrogliosis, and the production of chemokines and pro-inflammatory cytokines, thus increasing the IL-10 anti-inflammatory cytokine levels in EAE mice. The inhibition of Akt phosphorylation in the CNS of EAE mice after treatment with 4b indicates that the immunoregulatory action of 4b is related to the PI3K/Akt signaling pathway. Our results indicate the immunoregulatory efficacy of the new compound 4b in the control of some inflammatory parameters and in the glial proliferation. In addition, 4b was able to reduce the demyelination of neurons and the worsening of clinical signs of EAE as effectively as the compound FTY720, the first oral drug approved by the FDA for the treatment of MS.
Collapse
Affiliation(s)
- Luan Cristian da Silva
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil.
| | - Isabel Vieira de Assis Lima
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | | | - Taís Arthur Corrêa
- Department of Exact and Earth Sciences, State University of Minas Gerais, Frutal 38200-000, Brazil
| | - Viviane Passos de Souza
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | | | | | - Ana Paula Ferreira
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| |
Collapse
|
30
|
Ren H, Han R, Chen X, Liu X, Wan J, Wang L, Yang X, Wang J. Potential therapeutic targets for intracerebral hemorrhage-associated inflammation: An update. J Cereb Blood Flow Metab 2020; 40:1752-1768. [PMID: 32423330 PMCID: PMC7446569 DOI: 10.1177/0271678x20923551] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke with high mortality and disability but no specific or effective treatment. In the last two decades, much has been learned about the pathologic mechanisms of ICH. It is now known that after ICH onset, immune and inflammatory responses contribute to blood-brain barrier disruption, edema development, and cell death processes, jointly resulting in secondary brain injury. However, the translation of potential therapies from preclinical to clinical success has been disappointing. With the development of new laboratory technology, recent progress has been made in the understanding of ICH pathomechanisms, and promising therapeutic targets have been identified. This review provides an update of recent progress on ICH and describes the prospects for further preclinical studies in this field. Our goal is to discuss new therapeutic targets and directions for the treatment of ICH and promote the effective transformation from preclinical to clinical trials.
Collapse
Affiliation(s)
- Honglei Ren
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ranran Han
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xuemei Chen
- Department of Human Anatomy, Basic Medical College of Zhengzhou University, Zhengzhou, China
| | - Xi Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jieru Wan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Limin Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiuli Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jian Wang
- Department of Human Anatomy, Basic Medical College of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
31
|
Plastini MJ, Desu HL, Brambilla R. Dynamic Responses of Microglia in Animal Models of Multiple Sclerosis. Front Cell Neurosci 2020; 14:269. [PMID: 32973458 PMCID: PMC7468479 DOI: 10.3389/fncel.2020.00269] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022] Open
Abstract
Microglia play an essential role in maintaining central nervous system (CNS) homeostasis, as well as responding to injury and disease. Most neurological disorders feature microglial activation, a process whereby microglia undergo profound morphological and transcriptional changes aimed at containing CNS damage and promoting repair, but often resulting in overt inflammation that sustains and propagates the neurodegenerative process. This is especially evident in multiple sclerosis (MS), were microglial activation and microglia-driven neuroinflammation are considered key events in the onset, progression, and resolution of the disease. Our understanding of microglial functions in MS has widened exponentially in the last decade by way of new tools and markers to discriminate microglia from other myeloid populations. Consequently, the complex functional and phenotypical diversity of microglia can now be appreciated. This, in combination with a variety of animal models that mimic specific features and processes of MS, has contributed to filling the gap of knowledge in the cascade of events underlying MS pathophysiology. The purpose of this review is to present the most up to date knowledge of the dynamic responses of microglia in the commonly used animal models of MS, specifically the immune-mediated experimental autoimmune encephalomyelitis (EAE) model, and the chemically-induced cuprizone and lysolecithin models. Elucidating the spectrum of microglial functions in these models, from detrimental to protective, is essential to identify emerging targets for therapy and guide drug discovery efforts.
Collapse
Affiliation(s)
- Melanie J Plastini
- The Miami Project To Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States.,The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Haritha L Desu
- The Miami Project To Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States.,The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Roberta Brambilla
- The Miami Project To Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States.,The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, United States.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,BRIDGE-Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
32
|
Liddelow SA, Marsh SE, Stevens B. Microglia and Astrocytes in Disease: Dynamic Duo or Partners in Crime? Trends Immunol 2020; 41:820-835. [PMID: 32819809 DOI: 10.1016/j.it.2020.07.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 02/08/2023]
Abstract
Microglia-astrocyte interactions represent a delicate balance affecting neural cell functions in health and disease. Tightly controlled to maintain homeostasis during physiological conditions, rapid and prolonged departures during disease, infection, and following trauma drive multiple outcomes: both beneficial and detrimental. Recent sequencing studies at the bulk and single-cell level in humans and rodents provide new insight into microglia-astrocyte communication in homeostasis and disease. However, the complex changing ways these two cell types functionally interact has been a barrier to understanding disease initiation, progression, and disease mechanisms. Single cell sequencing is providing new insights; however, many questions remain. Here, we discuss how to bridge transcriptional states to specific functions so we can develop therapies to mediate negative effects of altered microglia-astrocyte interactions.
Collapse
Affiliation(s)
- Shane A Liddelow
- Neuroscience Institute, NYU School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, USA; Department of Ophthalmology, NYU School of Medicine, New York, NY, USA.
| | - Samuel E Marsh
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Beth Stevens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA., USA.
| |
Collapse
|
33
|
Antel JP, Becher B, Ludwin SK, Prat A, Quintana FJ. Glial Cells as Regulators of Neuroimmune Interactions in the Central Nervous System. THE JOURNAL OF IMMUNOLOGY 2020; 204:251-255. [PMID: 31907266 DOI: 10.4049/jimmunol.1900908] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada;
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Samuel K Ludwin
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Alexandre Prat
- Neuroimmunology Research Laboratory, Center for Excellence in Neuromics, Department of Neuroscience, Université de Montréal, Montreal, Quebec H2X 3E4, Canada
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and.,Broad Institute of MIT and Harvard, Cambridge, MA 02142
| |
Collapse
|
34
|
Uddin MS, Kabir MT, Mamun AA, Barreto GE, Rashid M, Perveen A, Ashraf GM. Pharmacological approaches to mitigate neuroinflammation in Alzheimer's disease. Int Immunopharmacol 2020; 84:106479. [PMID: 32353686 DOI: 10.1016/j.intimp.2020.106479] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/13/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases characterized by the formation of extracellular amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles (NFTs). Growing evidence suggested that there is an association between neuronal dysfunction and neuroinflammation (NI) in AD, coordinated by the chronic activation of astrocytes and microglial cells along with the subsequent excessive generation of the proinflammatory molecule. Therefore, a better understanding of the relationship between the nervous and immune systems is important in order to delay or avert the neurodegenerative events of AD. The inflammatory/immune pathways and the mechanisms to control these pathways may provide a novel arena to develop new drugs in order to target NI in AD. In this review, we represent the influence of cellular mediators which are involved in the NI process, with regards to the progression of AD. We also discuss the processes and the current status of multiple anti-inflammatory agents which are used in AD and have gone through or going through clinical trials. Moreover, new prospects for targeting NI in the development of AD drugs have also been highlighted.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | | | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Mamunur Rashid
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
| | - Asma Perveen
- School of Life Sciences, The Glocal University, Saharanpur, Uttar Pradesh 247121, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
35
|
Astrocytes in multiple sclerosis and experimental autoimmune encephalomyelitis: Star-shaped cells illuminating the darkness of CNS autoimmunity. Brain Behav Immun 2019; 80:10-24. [PMID: 31125711 DOI: 10.1016/j.bbi.2019.05.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 12/18/2022] Open
Abstract
Neuropathology in the human autoimmune disease multiple sclerosis (MS) is considered to be mediated by autoreactive leukocytes, such as T cells, B cells, and macrophages. However, the inflammation and tissue damage in MS and its animal model experimental autoimmune encephalomyelitis (EAE) is also critically regulated by astrocytes, the most abundant cell population in the central nervous system (CNS). Under physiological conditions, astrocytes are integral to the development and function of the CNS, whereas in CNS autoimmunity, astrocytes influence the pathogenesis, progression, and recovery of the diseases. In this review, we summarize recent advances in astrocytic functions in the context of MS and EAE, which are categorized into two opposite aspects, one being detrimental and the other beneficial. Inhibition of the detrimental functions and/or enhancement of the beneficial functions of astrocytes might be favorable for the treatment of MS.
Collapse
|
36
|
Priego N, Valiente M. The Potential of Astrocytes as Immune Modulators in Brain Tumors. Front Immunol 2019; 10:1314. [PMID: 31244853 PMCID: PMC6579886 DOI: 10.3389/fimmu.2019.01314] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022] Open
Abstract
The neuro-immune axis has emerged as a key aspect to understand the normal function of the Central Nervous System (CNS) as well as the pathophysiology of many brain disorders. As such, it may represent a promising source for novel therapeutic targets. Glial cells, and in particular the extensively studied microglia, play important roles in brain disorders. Astrocytes, in their reactive state, have been shown to positively and negatively modulate the progression of multiple CNS disorders. These seemingly opposing effects, might stem from their underlying heterogeneity, an aspect that has recently come to light. In this article we will discuss the link between reactive astrocytes and the neuro-immune axis with a perspective on their potential importance in brain tumors. Based on the gained knowledge from studies in other CNS disorders, reactive astrocytes are undoubtfully emerging as a key component of the neuro-immune axis, with ability to modulate both the innate and adaptive branches of the immune system. Lastly, we will discuss how we can exploit our improved understanding of the basic biology of astrocytes to further enhance the efficacy of emerging immune-based therapies in primary brain tumors and brain metastasis.
Collapse
Affiliation(s)
- Neibla Priego
- Brain Metastasis Group, Molecular Oncology Programme, National Cancer Research Center (CNIO), Madrid, Spain
| | - Manuel Valiente
- Brain Metastasis Group, Molecular Oncology Programme, National Cancer Research Center (CNIO), Madrid, Spain
| |
Collapse
|
37
|
The contribution of astrocytes to the neuroinflammatory response in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol 2019; 137:757-783. [PMID: 30847559 DOI: 10.1007/s00401-019-01980-7] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 02/06/2023]
Abstract
Neuroinflammation is the coordinated response of the central nervous system (CNS) to threats to its integrity posed by a variety of conditions, including autoimmunity, pathogens and trauma. Activated astrocytes, in concert with other cellular elements of the CNS and immune system, are important players in the modulation of the neuroinflammatory response. During neurological disease, they produce and respond to cellular signals that often lead to dichotomous processes, which can promote further damage or contribute to repair. This occurs also in multiple sclerosis (MS), where astrocytes are now recognized as key components of its immunopathology. Evidence supporting this role has emerged not only from studies in MS patients, but also from animal models, among which the experimental autoimmune encephalomyelitis (EAE) model has proved especially instrumental. Based on this premise, the purpose of the present review is to summarize the current knowledge of astrocyte behavior in MS and EAE. Following a brief description of the pathological characteristics of the two diseases and the main functional roles of astrocytes in CNS physiology, we will delve into the specific responses of this cell population, analyzing MS and EAE in parallel. We will define the temporal and anatomical profile of astroglial activation, then focus on key processes they participate in. These include: (1) production and response to soluble mediators (e.g., cytokines and chemokines), (2) regulation of oxidative stress, and (3) maintenance of BBB integrity and function. Finally, we will review the state of the art on the available methods to measure astroglial activation in vivo in MS patients, and how this could be exploited to optimize diagnosis, prognosis and treatment decisions. Ultimately, we believe that integrating the knowledge obtained from studies in MS and EAE may help not only better understand the pathophysiology of MS, but also uncover new signals to be targeted for therapeutic intervention.
Collapse
|
38
|
Li R, Bar-Or A. The Multiple Roles of B Cells in Multiple Sclerosis and Their Implications in Multiple Sclerosis Therapies. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a029108. [PMID: 29661809 DOI: 10.1101/cshperspect.a029108] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Increasing evidence has suggested that both antibody-dependent and antibody-independent functions of B cells are involved in multiple sclerosis (MS). The contrasting results of distinct B-cell targeting therapies in MS patients underscores the importance of elucidating these multiple B-cell functions. In this review, we discuss the generation of autoreactive B cells, migration of B cells into the central nervous system (CNS), and how different functions of B cells may contribute to MS disease activity and potentially mitigation in both the periphery and CNS compartments. In addition, we propose several future therapeutic strategies that may better target/shape B-cell responses for long-term treatment of MS.
Collapse
Affiliation(s)
- Rui Li
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Amit Bar-Or
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
39
|
Martin NA, Nawrocki A, Molnar V, Elkjaer ML, Thygesen EK, Palkovits M, Acs P, Sejbaek T, Nielsen HH, Hegedus Z, Sellebjerg F, Molnar T, Barbosa EGV, Alcaraz N, Gallyas F, Svenningsen AF, Baumbach J, Lassmann H, Larsen MR, Illes Z. Orthologous proteins of experimental de- and remyelination are differentially regulated in the CSF proteome of multiple sclerosis subtypes. PLoS One 2018; 13:e0202530. [PMID: 30114292 PMCID: PMC6095600 DOI: 10.1371/journal.pone.0202530] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/03/2018] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE Here, we applied a multi-omics approach (i) to examine molecular pathways related to de- and remyelination in multiple sclerosis (MS) lesions; and (ii) to translate these findings to the CSF proteome in order to identify molecules that are differentially expressed among MS subtypes. METHODS To relate differentially expressed genes in MS lesions to de- and remyelination, we compared transcriptome of MS lesions to transcriptome of cuprizone (CPZ)-induced de- and remyelination. Protein products of the overlapping orthologous genes were measured within the CSF by quantitative proteomics, parallel reaction monitoring (PRM). Differentially regulated proteins were correlated with molecular markers of inflammation by using MesoScale multiplex immunoassay. Expression kinetics of differentially regulated orthologous genes and proteins were examined in the CPZ model. RESULTS In the demyelinated and remyelinated corpus callosum, we detected 1239 differentially expressed genes; 91 orthologues were also differentially expressed in MS lesions. Pathway analysis of these orthologues suggested that the TYROBP (DAP12)-TREM2 pathway, TNF-receptor 1, CYBA and the proteasome subunit PSMB9 were related to de- and remyelination. We designed 129 peptides representing 51 orthologous proteins, measured them by PRM in 97 individual CSF, and compared their levels between relapsing (n = 40) and progressive MS (n = 57). Four proteins were differentially regulated among relapsing and progressive MS: tyrosine protein kinase receptor UFO (UFO), TIMP-1, apolipoprotein C-II (APOC2), and beta-2-microglobulin (B2M). The orthologous genes/proteins in the mouse brain peaked during acute remyelination. UFO, TIMP-1 and B2M levels correlated inversely with inflammation in the CSF (IL-6, MCP-1/CCL2, TARC/CCL17). APOC2 showed positive correlation with IL-2, IL-16 and eotaxin-3/CCL26. CONCLUSIONS Pathology-based multi-omics identified four CSF markers that were differentially expressed in MS subtypes. Upregulated TIMP-1, UFO and B2M orthologues in relapsing MS were associated with reduced inflammation and reflected reparatory processes, in contrast to the upregulated orthologue APOC2 in progressive MS that reflected changes in lipid metabolism associated with increased inflammation.
Collapse
Affiliation(s)
- Nellie A. Martin
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Arkadiusz Nawrocki
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Viktor Molnar
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Maria L. Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Eva K. Thygesen
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Miklos Palkovits
- Laboratory of Neuromorphology and Human Brain Tissue Bank/Microdissection Laboratory, Semmelweis University, Budapest, Hungary
| | - Peter Acs
- Department of Neurology, University of Pecs, Pecs, Hungary
| | - Tobias Sejbaek
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Helle H. Nielsen
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Zoltan Hegedus
- Laboratory of Bioinformatics, Biological Research Centre, Szeged, Hungary
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Tihamer Molnar
- Department of Anaesthesiology and Intensive Therapy, University of Pecs, Pecs, Hungary
| | - Eudes G. V. Barbosa
- Computational Biology Group, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Nicolas Alcaraz
- Computational Biology Group, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
- Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Asa F. Svenningsen
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jan Baumbach
- Computational Biology Group, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Martin R. Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Neurology, University of Pecs, Pecs, Hungary
- Department of Clinical Research, BRIDGE, University of Southern Denmark, Odense, Denmark
- * E-mail:
| |
Collapse
|
40
|
Janelidze S, Mattsson N, Stomrud E, Lindberg O, Palmqvist S, Zetterberg H, Blennow K, Hansson O. CSF biomarkers of neuroinflammation and cerebrovascular dysfunction in early Alzheimer disease. Neurology 2018; 91:e867-e877. [PMID: 30054439 PMCID: PMC6133624 DOI: 10.1212/wnl.0000000000006082] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/29/2018] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To measure CSF levels of biomarkers reflecting microglia and astrocytes activation, neuroinflammation, and cerebrovascular changes and study their associations with the core biomarkers of Alzheimer disease (AD) pathology (β-amyloid [Aβ] and tau), structural imaging correlates, and clinical disease progression over time. METHODS The study included cognitively unimpaired elderly (n = 508), patients with mild cognitive impairment (MCI, n = 256), and patients with AD dementia (n = 57) from the longitudinal Swedish BioFINDER cohort. CSF samples were analyzed for YKL-40, interleukin (IL)-6, IL-7, IL-8, IL-15, IP-10, monocyte chemoattractant protein 1, intercellular adhesion molecule 1 (ICAM-1), vascular adhesion molecule 1 (VCAM-1), placental growth factor, and fms-related tyrosine kinase 1 (Flt-1). MRI data were available from 677 study participants. Longitudinal clinical assessments were conducted in control individuals and patients with MCI (mean follow-up 3 years, range 1-6 years). RESULTS CSF levels of YKL-40, ICAM-1, VCAM-1, IL-15, and Flt-1 were increased during the preclinical, prodromal, and dementia stages of AD. High levels of these biomarkers were associated with increased CSF levels of total tau, with the associations, especially for YKL-40, being stronger in Aβ-positive individuals. The results were similar for associations between phosphorylated tau and YKL-40, ICAM-1, and VCAM-1. High levels of the biomarkers were also associated with cortical thinning (primarily in the precuneus and superior parietal regions) and with subsequent cognitive deterioration in patients without dementia as measured with Mini-Mental State Examination (YKL-40) and Clinical Dementia Rating Sum of Boxes (YKL-40, ICAM-1, VCAM-1 and IL-15). Finally, higher levels of CSF YKL-40, ICAM-1, and Flt-1 increased risk of development of AD dementia in patients without dementia. CONCLUSIONS Neuroinflammation and cerebrovascular dysfunction are early events occurring already at presymptomatic stages of AD and contribute to disease progression.
Collapse
Affiliation(s)
- Shorena Janelidze
- From the Clinical Memory Research Unit (S.J., N.M., E.S., O.L., S.P., O.H.), Department of Clinical Sciences, Lund University; Department of Neurology (N.M., S.P.) and Memory Clinic (E.S., O.H.), Skåne University Hospital; Institute of Neuroscience and Physiology (H.Z., K.B.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Sweden; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London
| | - Niklas Mattsson
- From the Clinical Memory Research Unit (S.J., N.M., E.S., O.L., S.P., O.H.), Department of Clinical Sciences, Lund University; Department of Neurology (N.M., S.P.) and Memory Clinic (E.S., O.H.), Skåne University Hospital; Institute of Neuroscience and Physiology (H.Z., K.B.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Sweden; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London
| | - Erik Stomrud
- From the Clinical Memory Research Unit (S.J., N.M., E.S., O.L., S.P., O.H.), Department of Clinical Sciences, Lund University; Department of Neurology (N.M., S.P.) and Memory Clinic (E.S., O.H.), Skåne University Hospital; Institute of Neuroscience and Physiology (H.Z., K.B.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Sweden; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London
| | - Olof Lindberg
- From the Clinical Memory Research Unit (S.J., N.M., E.S., O.L., S.P., O.H.), Department of Clinical Sciences, Lund University; Department of Neurology (N.M., S.P.) and Memory Clinic (E.S., O.H.), Skåne University Hospital; Institute of Neuroscience and Physiology (H.Z., K.B.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Sweden; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London
| | - Sebastian Palmqvist
- From the Clinical Memory Research Unit (S.J., N.M., E.S., O.L., S.P., O.H.), Department of Clinical Sciences, Lund University; Department of Neurology (N.M., S.P.) and Memory Clinic (E.S., O.H.), Skåne University Hospital; Institute of Neuroscience and Physiology (H.Z., K.B.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Sweden; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London
| | - Henrik Zetterberg
- From the Clinical Memory Research Unit (S.J., N.M., E.S., O.L., S.P., O.H.), Department of Clinical Sciences, Lund University; Department of Neurology (N.M., S.P.) and Memory Clinic (E.S., O.H.), Skåne University Hospital; Institute of Neuroscience and Physiology (H.Z., K.B.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Sweden; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London
| | - Kaj Blennow
- From the Clinical Memory Research Unit (S.J., N.M., E.S., O.L., S.P., O.H.), Department of Clinical Sciences, Lund University; Department of Neurology (N.M., S.P.) and Memory Clinic (E.S., O.H.), Skåne University Hospital; Institute of Neuroscience and Physiology (H.Z., K.B.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Sweden; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London
| | - Oskar Hansson
- From the Clinical Memory Research Unit (S.J., N.M., E.S., O.L., S.P., O.H.), Department of Clinical Sciences, Lund University; Department of Neurology (N.M., S.P.) and Memory Clinic (E.S., O.H.), Skåne University Hospital; Institute of Neuroscience and Physiology (H.Z., K.B.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Sweden; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology; and UK Dementia Research Institute at UCL (H.Z.), London.
| |
Collapse
|
41
|
Babic M, Romagnani C. The Role of Natural Killer Group 2, Member D in Chronic Inflammation and Autoimmunity. Front Immunol 2018; 9:1219. [PMID: 29910814 PMCID: PMC5992374 DOI: 10.3389/fimmu.2018.01219] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/15/2018] [Indexed: 01/06/2023] Open
Abstract
Current medicine and medical science puts great effort into elucidating the basis of chronicity and finding appropriate treatments for inflammatory diseases; however, the mechanisms driving aberrant immune responses are mostly unknown and deserve further study. Of particular interest is the identification of checkpoints that regulate the function and differentiation of pro-inflammatory cells during pathogenesis, along with means of their modulation for therapeutic purposes. Natural killer group 2, member D (NKG2D) is a potent activator of the immune system, known as a sensor for “induced-self” ligands, i.e., cellular danger signals that, in the context of chronic inflammation and autoimmunity, can be presented by cells being exposed to an inflammatory cytokine milieu, endoplasmic reticulum stress, or cell death. Engagement by such ligands can be translated by NKG2D into activation or co-stimulation of NK cells and different subsets of T cells, respectively, thus contributing to the regulation of the inflammatory response. In this review, we discuss the current knowledge on the contribution of the NKG2D–NKG2DL signaling axis during intestinal inflammation, type 1 diabetes, multiple sclerosis, and rheumatoid arthritis, where the role of NKG2D has been associated either by aberrant expression of the receptor and its ligands and/or by functional data in corresponding mouse models.
Collapse
Affiliation(s)
- Marina Babic
- Innate Immunity, German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany.,Medical Department I, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Chiara Romagnani
- Innate Immunity, German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany.,Medical Department I, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
42
|
Li Z, Han J, Ren H, Ma CG, Shi FD, Liu Q, Li M. Astrocytic Interleukin-15 Reduces Pathology of Neuromyelitis Optica in Mice. Front Immunol 2018; 9:523. [PMID: 29616032 PMCID: PMC5867910 DOI: 10.3389/fimmu.2018.00523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/28/2018] [Indexed: 12/05/2022] Open
Abstract
Astrocyte loss induced by neuromyelitis optica (NMO)-IgG and complement-dependent cytotoxicity (CDC) is the hallmark of NMO pathology. The survival of astrocytes is thought to reflect astrocyte exposure to environmental factors in the CNS and the response of astrocytes to these factors. However, still unclear are how astrocytes respond to NMO-IgG and CDC, and what CNS environmental factors may impact the survival of astrocytes. In a murine model of NMO induced by intracerebral injection of NMO-IgG and human complement, we found dramatic upregulation of IL-15 in astrocytes. To study the role of astrocytic IL-15 in NMO, we generated a transgenic mouse line with targeted expression of IL-15 in astrocytes (IL-15tg), in which the expression of IL-15 is controlled by a glial fibrillary acidic protein promoter. We showed that astrocyte-targeted expression of IL-15 attenuates astrocyte injury and the loss of aquaporin-4 in the brain. Reduced blood–brain barrier leakage and immune cell infiltration are also found in the lesion of IL-15tg mice subjected to NMO induction. IL-15tg astrocytes are less susceptible to NMO-IgG-mediated CDC than their wild-type counterparts. The enhanced resistance of IL-15tg astrocytes to cytotoxicity and cell death involves NF-κB signaling pathway. Our findings suggest that IL-15 reduces astrocyte loss and NMO pathology.
Collapse
Affiliation(s)
- Zhiguo Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Center for Neuroinflammation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinrui Han
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Honglei Ren
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Cun-Gen Ma
- Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Center for Neuroinflammation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Minshu Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Center for Neuroinflammation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
43
|
Fakhoury M. Microglia and Astrocytes in Alzheimer's Disease: Implications for Therapy. Curr Neuropharmacol 2018; 16:508-518. [PMID: 28730967 PMCID: PMC5997862 DOI: 10.2174/1570159x15666170720095240] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 06/21/2017] [Accepted: 07/19/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by the progressive loss of neurons, which typically leads to severe impairments in cognitive functions including memory and learning. Key pathological features of this disease include the deposition of highly insoluble amyloid β peptides and the formation of neurofibrillary tangles (NFTs) in the brain. Mounting evidence also implicates sustained glial-mediated inflammation as a major contributor of the neurodegenerative processes and cognitive deficits observed in AD. METHODS This paper provides an overview of findings from both human and animal studies investigating the role of microglia and astrocytes in AD, and discusses potential avenues for therapeutic intervention. RESULTS Glial-mediated inflammation is a 'double-edged sword', performing both detrimental and beneficial functions in AD. Despite tremendous effort in elucidating the molecular and cellular mechanisms underlying AD pathology, to date, there is no treatment that could prevent or cure this disease. Current treatments are only useful in slowing down the progression of AD and helping patients manage some of their behavioral and cognitive symptoms. CONCLUSION A better understanding of the role of microglia and astrocytes in the regulation of AD pathology is needed as this could pave the way for new therapeutic strategies.
Collapse
Affiliation(s)
- Marc Fakhoury
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
44
|
Lee GA, Lai YG, Chen RJ, Liao NS. Interleukin 15 activates Akt to protect astrocytes from oxygen glucose deprivation-induced cell death. Cytokine 2017; 92:68-74. [PMID: 28110119 DOI: 10.1016/j.cyto.2017.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/31/2016] [Accepted: 01/12/2017] [Indexed: 12/11/2022]
Abstract
Astrocytes play a pivotal role in neuronal survival under the condition of post-ischemic brain inflammation, but the relevant astrocyte-derived mediators of ischemic brain injury remain to be defined. IL-15 supports survival of multiple lymphocyte lineages in the peripheral immune system, but the role of IL-15 in inflammatory disease of the central nervous system is not well defined. Recent research has shown an increase of IL-15-expressing astrocytes in the ischemic brain. Since astrocytes promote neuron survival under cerebral ischemia by buffering excess extracellular glutamate and producing growth factors, recovery of astrocyte function could be of benefit for stroke therapy. Here, we report that IL-15 is the pro-survival cytokine that prevents astrocyte death from oxygen glucose deprivation (OGD)-induced damage. Astrocytes up-regulate expression of the IL-15/IL-15Rα complex under OGD, whereas OGD down-regulates the levels of pSTAT5 and pAkt in astrocytes. IL-15 treatment ameliorates the decline of pAkt, decreases the percentage of annexin V+ cells, inhibits the activation of caspase-3, and activates the Akt pathway to promote astrocyte survival in response to OGD. We further identified that activation of Akt, but not PKCα/βI, is essential for astrocyte survival under OGD. Taken together, this study reveals the function of IL-15 in astrocyte survival via Akt phosphorylation in response to OGD-induced damage.
Collapse
Affiliation(s)
- Gilbert Aaron Lee
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan; Department of Health Healing and Health Marketing, Kainan University, Taoyuan, Taiwan
| | - Yein-Gei Lai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ray-Jade Chen
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
| | - Nan-Shih Liao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
45
|
Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proc Natl Acad Sci U S A 2016; 114:E396-E405. [PMID: 27994144 DOI: 10.1073/pnas.1612930114] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Astrocytes are believed to bridge interactions between infiltrating lymphocytes and neurons during brain ischemia, but the mechanisms for this action are poorly understood. Here we found that interleukin-15 (IL-15) is dramatically up-regulated in astrocytes of postmortem brain tissues from patients with ischemic stroke and in a mouse model of transient focal brain ischemia. We generated a glial fibrillary acidic protein (GFAP) promoter-controlled IL-15-expressing transgenic mouse (GFAP-IL-15tg) line and found enlarged brain infarcts, exacerbated neurodeficits after the induction of brain ischemia. In addition, knockdown of IL-15 in astrocytes attenuated ischemic brain injury. Interestingly, the accumulation of CD8+ T and natural killer (NK) cells was augmented in these GFAP-IL-15tg mice after brain ischemia. Of note, depletion of CD8+ T or NK cells attenuated ischemic brain injury in GFAP-IL-15tg mice. Furthermore, knockdown of the IL-15 receptor α or blockade of cell-to-cell contact diminished the activation and effector function of CD8+ T and NK cells in GFAP-IL-15tg mice, suggesting that astrocytic IL-15 is delivered in trans to target cells. Collectively, these findings indicate that astrocytic IL-15 could aggravate postischemic brain damage via propagation of CD8+ T and NK cell-mediated immunity.
Collapse
|
46
|
Ruck T, Bittner S, Afzali AM, Göbel K, Glumm S, Kraft P, Sommer C, Kleinschnitz C, Preuße C, Stenzel W, Wiendl H, Meuth SG. The NKG2D-IL-15 signaling pathway contributes to T-cell mediated pathology in inflammatory myopathies. Oncotarget 2016; 6:43230-43. [PMID: 26646698 PMCID: PMC4791228 DOI: 10.18632/oncotarget.6462] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/14/2015] [Indexed: 12/29/2022] Open
Abstract
NKG2D is an activating receptor on T cells, which has been implicated in the pathogenesis of autoimmune diseases. T cells are critically involved in idiopathic inflammatory myopathies (IIM) and have been proposed as specific therapeutic targets. However, the mechanisms underlying T cell-mediated progressive muscle destruction in IIM remain to be elucidated. We here determined the involvement of the NKG2D – IL-15 signaling pathway. Primary human myoblasts expressed NKG2D ligands, which were further upregulated upon inflammatory stimuli. In parallel, shedding of the soluble NKG2D ligand MICA (sMICA) decreased upon inflammation potentially diminishing inhibition of NKG2D signaling. Membrane-related expression of IL-15 by myoblasts induced differentiation of naïve CD8+ T cells into highly activated, cytotoxic CD8+NKG2Dhigh T cells demonstrating NKG2D-dependent lysis of myoblasts in vitro. CD8+NKG2Dhigh T cell frequencies were increased in the peripheral blood of polymyositis (PM) patients and correlated with serum creatinine kinase concentrations, while serum sMICA levels were not significantly changed. In muscle biopsy specimens from PM patients expression of the NKG2D ligand MICA/B was upregulated, IL-15 was expressed by muscle cells, CD68+ macrophages as well as CD4+ T cells, and CD8+NKG2D+ cells were frequently detected within inflammatory infiltrates arguing for a local signaling circuit in the inflammatory muscle milieu. In conclusion, the NKG2D – IL-15 signaling pathway contributes to progressive muscle destruction in IIM potentially opening new therapeutic avenues.
Collapse
Affiliation(s)
- Tobias Ruck
- Department of Neurology, University of Muenster, Muenster, Germany
| | - Stefan Bittner
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | - Kerstin Göbel
- Department of Neurology, University of Muenster, Muenster, Germany
| | - Sarah Glumm
- Department of Neurology, University of Muenster, Muenster, Germany
| | - Peter Kraft
- Department of Neurology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | | | - Corinna Preuße
- Department of Neuropathology, Charité-Universitätsmedizin, Berlin, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité-Universitätsmedizin, Berlin, Germany
| | - Heinz Wiendl
- Department of Neurology, University of Muenster, Muenster, Germany
| | - Sven G Meuth
- Department of Neurology, University of Muenster, Muenster, Germany
| |
Collapse
|
47
|
An activation-induced IL-15 isoform is a natural antagonist for IL-15 function. Sci Rep 2016; 6:25822. [PMID: 27166125 PMCID: PMC4863161 DOI: 10.1038/srep25822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/22/2016] [Indexed: 01/01/2023] Open
Abstract
Interleukin 15 (IL-15) expression induces the secretion of inflammatory cytokines, inhibits the apoptosis of activated T cells and prolongs the survival of CD8+ memory T cells. Here we identified an IL-15 isoform lacking exon-6, IL-15ΔE6, generated by alternative splicing events of activated immune cells, including macrophages and B cells. In vitro study showed that IL-15ΔE6 could antagonize IL-15-mediated T cell proliferation. The receptor binding assay revealed that IL-15ΔE6 could bind to IL-15Rα and interfere with the binding between IL-15 and IL-15Rα. Over-expression of IL-15ΔE6 in the murine EAE model ameliorated the EAE symptoms of the mice. The clinical scores were significantly lower in the mice expressing IL-15ΔE6 than the control mice and the mice expressing IL-15. The inflammation and demyelination of the EAE mice expressing IL-15ΔE6 were less severe than the control group. Furthermore, flow cytometry analysis demonstrated that IL-15ΔE6 expression reduced the percentages of inflammatory T cells in the spleen and spinal cord, and inhibited the infiltration of macrophages to the CNS. Our results demonstrated that IL-15ΔE6 could be induced during immune activation and function as a negative feedback mechanism to dampen IL-15-mediated inflammatory events.
Collapse
|
48
|
Li R, Rezk A, Healy LM, Muirhead G, Prat A, Gommerman JL, Bar-Or A. Cytokine-Defined B Cell Responses as Therapeutic Targets in Multiple Sclerosis. Front Immunol 2016; 6:626. [PMID: 26779181 PMCID: PMC4705194 DOI: 10.3389/fimmu.2015.00626] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/30/2015] [Indexed: 02/04/2023] Open
Abstract
Important antibody-independent pathogenic roles of B cells are emerging in autoimmune diseases, including multiple sclerosis (MS). The contrasting results of different treatments targeting B cells in patients (in spite of predictions of therapeutic benefits from animal models) call for a better understanding of the multiple roles that distinct human B cell responses likely play in MS. In recent years, both murine and human B cells have been identified with distinct functional properties related to their expression of particular cytokines. These have included regulatory (Breg) B cells (secreting interleukin (IL)-10 or IL-35) and pro-inflammatory B cells (secreting tumor necrosis factor α, LTα, IL-6, and granulocyte macrophage colony-stimulating factor). Better understanding of human cytokine-defined B cell responses is necessary in both health and diseases, such as MS. Investigation of their surface phenotype, distinct functions, and the mechanisms of regulation (both cell intrinsic and cell extrinsic) may help develop effective treatments that are more selective and safe. In this review, we focus on mechanisms by which cytokine-defined B cells contribute to the peripheral immune cascades that are thought to underlie MS relapses, and the impact of B cell-directed therapies on these mechanisms.
Collapse
Affiliation(s)
- Rui Li
- Neuroimmunology Unit, Montreal Neurological Institute and Hospital, McGill University , Montreal, QC , Canada
| | - Ayman Rezk
- Neuroimmunology Unit, Montreal Neurological Institute and Hospital, McGill University , Montreal, QC , Canada
| | - Luke M Healy
- Neuroimmunology Unit, Montreal Neurological Institute and Hospital, McGill University , Montreal, QC , Canada
| | - Gillian Muirhead
- Neuroimmunology Unit, Montreal Neurological Institute and Hospital, McGill University , Montreal, QC , Canada
| | - Alexandre Prat
- Neuroimmunology Unit, Department of Neuroscience, Centre de Recherche du CHUM (CRCHUM), Université de Montreal , Montreal, QC , Canada
| | | | - Amit Bar-Or
- Neuroimmunology Unit, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada; Experimental Therapeutics Program, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
49
|
Borgmann K, Ghorpade A. HIV-1, methamphetamine and astrocytes at neuroinflammatory Crossroads. Front Microbiol 2015; 6:1143. [PMID: 26579077 PMCID: PMC4621459 DOI: 10.3389/fmicb.2015.01143] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/05/2015] [Indexed: 12/30/2022] Open
Abstract
As a popular psychostimulant, methamphetamine (METH) use leads to long-lasting, strong euphoric effects. While METH abuse is common in the general population, between 10 and 15% of human immunodeficiency virus-1 (HIV-1) patients report having abused METH. METH exacerbates the severity and onset of HIV-1-associated neurocognitive disorders (HAND) through direct and indirect mechanisms. Repetitive METH use impedes adherence to antiretroviral drug regimens, increasing the likelihood of HIV-1 disease progression toward AIDS. METH exposure also directly affects both innate and adaptive immunity, altering lymphocyte numbers and activity, cytokine signaling, phagocytic function and infiltration through the blood brain barrier. Further, METH triggers the dopamine reward pathway and leads to impaired neuronal activity and direct toxicity. Concurrently, METH and HIV-1 alter the neuroimmune balance and induce neuroinflammation, which modulates a wide range of brain functions including neuronal signaling and activity, glial activation, viral infection, oxidative stress, and excitotoxicity. Pathologically, reactive gliosis is a hallmark of both HIV-1- and METH-associated neuroinflammation. Significant commonality exists in the neurotoxic mechanisms for both METH and HAND; however, the pathways dysregulated in astroglia during METH exposure are less clear. Thus, this review highlights alterations in astrocyte intracellular signaling pathways, gene expression and function during METH and HIV-1 comorbidity, with special emphasis on HAND-associated neuroinflammation. Importantly, this review carefully evaluates interventions targeting astrocytes in HAND and METH as potential novel therapeutic approaches. This comprehensive overview indicates, without a doubt, that during HIV-1 infection and METH abuse, a complex dialog between all neural cells is orchestrated through astrocyte regulated neuroinflammation.
Collapse
Affiliation(s)
- Kathleen Borgmann
- Department of Cell Biology and Immunology, University of North Texas Health Science Center Fort Worth, TX, USA
| | - Anuja Ghorpade
- Department of Cell Biology and Immunology, University of North Texas Health Science Center Fort Worth, TX, USA
| |
Collapse
|
50
|
Glial influences on BBB functions and molecular players in immune cell trafficking. Biochim Biophys Acta Mol Basis Dis 2015; 1862:472-82. [PMID: 26454208 DOI: 10.1016/j.bbadis.2015.10.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 09/29/2015] [Accepted: 10/05/2015] [Indexed: 02/06/2023]
Abstract
The blood-brain barrier (BBB) constitutes an elaborate structure formed by specialized capillary endothelial cells, which together with pericytes and perivascular glial cells regulates the exchanges between the central nervous system (CNS) and the periphery. Intricate interactions between the different cellular constituents of the BBB are crucial in establishing a functional BBB and maintaining the delicate homeostasis of the CNS microenvironment. In this review, we discuss the role of astrocytes and microglia in inducing and maintaining barrier properties under physiological conditions as well as their involvement during neuroinflammatory pathologies. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.
Collapse
|