1
|
Muhuri AK, Alapan Y, Camargo CP, Thomas SN. Microengineered In Vitro Assays for Screening and Sorting Manufactured Therapeutic T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:199-207. [PMID: 38166247 PMCID: PMC10783858 DOI: 10.4049/jimmunol.2300488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/10/2023] [Indexed: 01/04/2024]
Abstract
Adoptively transferred T cells constitute a major class of current and emergent cellular immunotherapies for the treatment of disease, including but not limited to cancer. Although key advancements in molecular recognition, genetic engineering, and manufacturing have dramatically enhanced their translational potential, therapeutic potency remains limited by poor homing and infiltration of transferred cells within target host tissues. In vitro microengineered homing assays with precise control over micromechanical and biological cues can address these shortcomings by enabling interrogation, screening, sorting, and optimization of therapeutic T cells based on their homing capacity. In this article, the working principles, application, and integration of microengineered homing assays for the mechanistic study of biophysical and biomolecular cues relevant to homing of therapeutic T cells are reviewed. The potential for these platforms to enable scalable enrichment and screening of next-generation manufactured T cell therapies for cancer is also discussed.
Collapse
Affiliation(s)
- Abir K. Muhuri
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology
| | - Yunus Alapan
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology
| | - Camila P. Camargo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology
| | - Susan N. Thomas
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University
- Winship Cancer Institute, Emory University
| |
Collapse
|
2
|
Chong CF, Hasnizan NYU, Ahmad Mokhtar AM. Navigating the landscape of Rho GTPase signalling system in autoimmunity: A bibliometric analysis spanning over three decades (1990 to 2023). Cell Signal 2023; 111:110855. [PMID: 37598919 DOI: 10.1016/j.cellsig.2023.110855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
Ras-homologous (Rho) guanosine triphosphatases (GTPases) are considered a central player in regulating various biological processes, extending to immune regulation. Perturbations in Rho GTPase signalling have been implicated in immune-related dysregulation, contributing to the development of autoimmunity. This study presents a scientometric analysis exploring the interlink between the Rho GTPase signalling system and autoimmunity, while also delving into the trends of past studies. A total of 967 relevant publications from 1990 to 2023 were retrieved from the Web of Science Core Collection database after throrough manual filtering of irrelevant articles. The findings show an upward trajectory in publications related to this field since 2006. Over the past three decades, the United States of America (41.68%) emerged as the primary contributor in advancing our understanding of the association between the Rho GTPase signalling system and autoimmunity. Research in autoimmunity has mainly centered around therapeutic interventions, with an emphasis on studying leukocyte (macrophage) and endothelial remodelling. Interestingly, within the domains of multiple sclerosis and rheumatoid arthritis, the current focus has been directed towards comprehending the role of RhoA, Rac1, and Cdc42. Notably, certain subfamilies of Rho (such as RhoB and RhoC), Rac (including Rac2 and RhoG), Cdc42 (specifically RhoJ), and other atypical Rho GTPases (like RhoE and RhoH) consistently demonstrating compelling link with autoimmunity, but still warrants emphasis in the future study. Hence, strategic manipulation of the Rho signalling system holds immense promise as a pivotal approach to addressing the global challenge of autoimmunity.
Collapse
Affiliation(s)
- Chien Fung Chong
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia.
| | - Nik Yasmin Umaira Hasnizan
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia.
| | - Ana Masara Ahmad Mokhtar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia.
| |
Collapse
|
3
|
Thompson SB, Waldman MM, Jacobelli J. Polymerization power: effectors of actin polymerization as regulators of T lymphocyte migration through complex environments. FEBS J 2022; 289:6154-6171. [PMID: 34273243 PMCID: PMC8761786 DOI: 10.1111/febs.16130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/24/2021] [Accepted: 07/16/2021] [Indexed: 11/26/2022]
Abstract
During their life span, T cells are tasked with patrolling the body for potential pathogens. To do so, T cells migrate through numerous distinct anatomical sites and tissue environments with different biophysical characteristics. To migrate through these different environments, T cells use various motility strategies that rely on actin network remodeling to generate shape changes and mechanical forces. In this review, we initially discuss the migratory journey of T cells and then cover the actin polymerization effectors at play in T cells, and finally, we focus on the function of these effectors of actin cytoskeleton remodeling in mediating T-cell migration through diverse tissue environments. Specifically, we will discuss the current state of the field pertaining to our understanding of the roles in T-cell migration played by members of the three main families of actin polymerization machinery: the Arp2/3 complex; formin proteins; and Ena/VASP proteins.
Collapse
Affiliation(s)
- Scott B. Thompson
- Department of Immunology and Microbiology, University of Colorado School of Medicine
| | - Monique M. Waldman
- Department of Immunology and Microbiology, University of Colorado School of Medicine
- Barbara Davis Research Center, University of Colorado School of Medicine
| | - Jordan Jacobelli
- Department of Immunology and Microbiology, University of Colorado School of Medicine
- Barbara Davis Research Center, University of Colorado School of Medicine
| |
Collapse
|
4
|
Cavanagh H, Kempe D, Mazalo JK, Biro M, Endres RG. T cell morphodynamics reveal periodic shape oscillations in three-dimensional migration. J R Soc Interface 2022; 19:20220081. [PMID: 35537475 PMCID: PMC9090490 DOI: 10.1098/rsif.2022.0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
T cells use sophisticated shape dynamics (morphodynamics) to migrate towards and neutralize infected and cancerous cells. However, there is limited quantitative understanding of the migration process in three-dimensional extracellular matrices (ECMs) and across timescales. Here, we leveraged recent advances in lattice light-sheet microscopy to quantitatively explore the three-dimensional morphodynamics of migrating T cells at high spatio-temporal resolution. We first developed a new shape descriptor based on spherical harmonics, incorporating key polarization information of the uropod. We found that the shape space of T cells is low-dimensional. At the behavioural level, run-and-stop migration modes emerge at approximately 150 s, and we mapped the morphodynamic composition of each mode using multiscale wavelet analysis, finding 'stereotyped' motifs. Focusing on the run mode, we found morphodynamics oscillating periodically (every approx. 100 s) that can be broken down into a biphasic process: front-widening with retraction of the uropod, followed by a rearward surface motion and forward extension, where intercalation with the ECM in both of these steps likely facilitates forward motion. Further application of these methods may enable the comparison of T cell migration across different conditions (e.g. differentiation, activation, tissues and drug treatments) and improve the precision of immunotherapeutic development.
Collapse
Affiliation(s)
- Henry Cavanagh
- Imperial College London, Centre for Integrative Systems Biology and Bioinformatics, London SW7 2BU, UK
| | - Daryan Kempe
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Jessica K Mazalo
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Maté Biro
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Robert G Endres
- Imperial College London, Centre for Integrative Systems Biology and Bioinformatics, London SW7 2BU, UK
| |
Collapse
|
5
|
Jacobelli J, Buser AE, Heiden DL, Friedman RS. Autoimmunity in motion: Mechanisms of immune regulation and destruction revealed by in vivo imaging. Immunol Rev 2022; 306:181-199. [PMID: 34825390 PMCID: PMC9135487 DOI: 10.1111/imr.13043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 11/30/2022]
Abstract
Autoimmunity arises when mechanisms of immune tolerance fail. Here we discuss mechanisms of T cell activation and tolerance and the dynamics of the autoimmune response at the site of disease. Live imaging of autoimmunity provides the ability to analyze immune cell dynamics at the single-cell level within the complex intact environment where disease occurs. These analyses have revealed mechanisms of T cell activation and tolerance in the lymph nodes, mechanisms of T cell entry into sites of autoimmune disease, and mechanisms leading to pathogenesis or protection in the autoimmune lesions. The overarching conclusions point to stable versus transient T cell antigen presenting cell interactions dictating the balance between T cell activation and tolerance, and T cell restimulation as a driver of pathogenesis at the site of autoimmunity. Findings from models of multiple sclerosis and type 1 diabetes are highlighted, however, the results have implications for basic mechanisms of T cell regulation during immune responses, tumor immunity, and autoimmunity.
Collapse
Affiliation(s)
- Jordan Jacobelli
- Barbara Davis Center for Diabetes, Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Alan E. Buser
- Barbara Davis Center for Diabetes, Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Dustin L. Heiden
- Barbara Davis Center for Diabetes, Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Rachel S. Friedman
- Barbara Davis Center for Diabetes, Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
6
|
Johnson LA, Jackson DG. Hyaluronan and Its Receptors: Key Mediators of Immune Cell Entry and Trafficking in the Lymphatic System. Cells 2021; 10:cells10082061. [PMID: 34440831 PMCID: PMC8393520 DOI: 10.3390/cells10082061] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 02/07/2023] Open
Abstract
Entry to the afferent lymphatics marks the first committed step for immune cell migration from tissues to draining lymph nodes both for the generation of immune responses and for timely resolution of tissue inflammation. This critical process occurs primarily at specialised discontinuous junctions in initial lymphatic capillaries, directed by chemokines released from lymphatic endothelium and orchestrated by adhesion between lymphatic receptors and their immune cell ligands. Prominent amongst the latter is the large glycosaminoglycan hyaluronan (HA) that can form a bulky glycocalyx on the surface of certain tissue-migrating leucocytes and whose engagement with its key lymphatic receptor LYVE-1 mediates docking and entry of dendritic cells to afferent lymphatics. Here we outline the latest insights into the molecular mechanisms by which the HA glycocalyx together with LYVE-1 and the related leucocyte receptor CD44 co-operate in immune cell entry, and how the process is facilitated by the unusual character of LYVE-1 • HA-binding interactions. In addition, we describe how pro-inflammatory breakdown products of HA may also contribute to lymphatic entry by transducing signals through LYVE-1 for lymphangiogenesis and increased junctional permeability. Lastly, we outline some future perspectives and highlight the LYVE-1 • HA axis as a potential target for immunotherapy.
Collapse
|
7
|
Hou Y, Bock F, Hos D, Cursiefen C. Lymphatic Trafficking in the Eye: Modulation of Lymphatic Trafficking to Promote Corneal Transplant Survival. Cells 2021; 10:1661. [PMID: 34359831 PMCID: PMC8306557 DOI: 10.3390/cells10071661] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
(Lymph)angiogenesis into the cornea prior to and after corneal transplantation is a critical risk factor for allograft rejection. Lymphatic vessels even more than blood vessels seem important in mediating immune responses, as they facilitate allograft sensitization in the draining lymph nodes. Thus, the concept of modulating lymphatic trafficking to promote corneal graft survival seems promising. A variety of approaches has been developed to inhibit progressive lymphangiogenesis in experimental settings. Recently, additionally to pharmacological approaches, clinically available techniques such as UVA-based corneal collagen crosslinking and fine needle diathermy were reported to be effective in regressing lymphatic vessels and to experimentally promote graft survival. Clinical pilot studies also suggest the efficacy of blocking antigen presenting cell trafficking to regional lymph nodes by regressing corneal lymphatic vessels to enhance allograft survival in high-risk eyes. In this article, we will give an overview of current strategies to modulate lymphatic trafficking with a special focus on recently reported strategies, which may be easy to translate into clinical practice. This novel concept of temporary, pretransplant regression of lymphatic vessels at the site of transplantation to promote subsequent corneal transplant survival ("lymphangioregressive preconditioning") may also be applicable to other transplantation sites later.
Collapse
Grants
- German Research Foundation (DFG) FOR2240 "(Lymph)angiogenesis and Cellular Immunity in Inflammatory Diseases of the Eye", HO 5556/1-2 (DH), Cu 47/4-2 (CC), Cu 47/6-1 (CC), Cu 47/9-1 (CC), Cu 47/12-1(www.for2240.de); German Research Foundation (DFG) FOR2240 "(Lymph)angiogenesis and Cellular Immunity in Inflammatory Diseases of the Eye", HO 5556/1-2 (DH), Cu 47/4-2 (CC), Cu 47/6-1 (CC), Cu 47/9-1 (CC), Cu 47/12-1(www.for2240.de);
- EU COST BM1302 EU COST BM1302 (DH, CC; www.biocornea.eu);
- EU Horizon 2020 ARREST BLINDNESS (CC; www.arrestblindness.eu); EU Horizon 2020 ARREST BLINDNESS (CC; www.arrestblindness.eu);
- EU COST Aniridia (CC; www.aniridia-net.eu); EU COST Aniridia (CC; www.aniridia-net.eu);
- Center for Molecular Medicine Cologne, University of Cologne (DH, CC; www.cmmc-uni-koeln.de/home/); Center for Molecular Medicine Cologne, University of Cologne (DH, CC; www.cmmc-uni-koeln.de/home/);
- Shanghai Sailing Program Shanghai Sailing Program
Collapse
Affiliation(s)
- Yanhong Hou
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (Y.H.); (F.B.); (D.H.)
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Disease, National Clinical Research Center for Eye Diseases, Shanghai 200080, China
| | - Felix Bock
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (Y.H.); (F.B.); (D.H.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (Y.H.); (F.B.); (D.H.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (Y.H.); (F.B.); (D.H.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
8
|
Johnson LA, Banerji S, Lagerholm BC, Jackson DG. Dendritic cell entry to lymphatic capillaries is orchestrated by CD44 and the hyaluronan glycocalyx. Life Sci Alliance 2021; 4:4/5/e202000908. [PMID: 33687996 PMCID: PMC8008951 DOI: 10.26508/lsa.202000908] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
CD44 anchors the hyaluronan glycocalyx on migrating dendritic cells to permit docking to the endothelial receptor LYVE-1, thus orchestrating lymphatic trafficking through modulating glycocalyx density. DCs play a vital role in immunity by conveying antigens from peripheral tissues to draining lymph nodes, through afferent lymphatic vessels. Critical to the process is initial docking to the lymphatic endothelial receptor LYVE-1 via its ligand hyaluronan on the DC surface. How this relatively weak binding polymer is configured for specific adhesion to LYVE-1, however, is unknown. Here, we show that hyaluronan is anchored and spatially organized into a 400–500 nm dense glycocalyx by the leukocyte receptor CD44. Using gene knockout and by modulating CD44-hyaluronan interactions with monoclonal antibodies in vitro and in a mouse model of oxazolone-induced skin inflammation, we demonstrate that CD44 is required for DC adhesion and transmigration across lymphatic endothelium. In addition, we present evidence that CD44 can dynamically control the density of the hyaluronan glycocalyx, regulating the efficiency of DC trafficking to lymph nodes. Our findings define a previously unrecognized role for CD44 in lymphatic trafficking and highlight the importance of the CD44:HA:LYVE-1 axis in its regulation.
Collapse
Affiliation(s)
- Louise A Johnson
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Suneale Banerji
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - B Christoffer Lagerholm
- Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - David G Jackson
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
de Winde CM, Munday C, Acton SE. Molecular mechanisms of dendritic cell migration in immunity and cancer. Med Microbiol Immunol 2020; 209:515-529. [PMID: 32451606 PMCID: PMC7395046 DOI: 10.1007/s00430-020-00680-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022]
Abstract
Dendritic cells (DCs) are a heterogeneous population of antigen-presenting cells that act to bridge innate and adaptive immunity. DCs are critical in mounting effective immune responses to tissue damage, pathogens and cancer. Immature DCs continuously sample tissues and engulf antigens via endocytic pathways such as phagocytosis or macropinocytosis, which result in DC activation. Activated DCs undergo a maturation process by downregulating endocytosis and upregulating surface proteins controlling migration to lymphoid tissues where DC-mediated antigen presentation initiates adaptive immune responses. To traffic to lymphoid tissues, DCs must adapt their motility mechanisms to migrate within a wide variety of tissue types and cross barriers to enter lymphatics. All steps of DC migration involve cell-cell or cell-substrate interactions. This review discusses DC migration mechanisms in immunity and cancer with a focus on the role of cytoskeletal processes and cell surface proteins, including integrins, lectins and tetraspanins. Understanding the adapting molecular mechanisms controlling DC migration in immunity provides the basis for therapeutic interventions to dampen immune activation in autoimmunity, or to improve anti-tumour immune responses.
Collapse
Affiliation(s)
- Charlotte M de Winde
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Clare Munday
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Sophie E Acton
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
10
|
Stein JV, Ruef N. Regulation of global CD8 + T-cell positioning by the actomyosin cytoskeleton. Immunol Rev 2020; 289:232-249. [PMID: 30977193 DOI: 10.1111/imr.12759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/12/2022]
Abstract
CD8+ T cells have evolved as one of the most motile mammalian cell types, designed to continuously scan peptide-major histocompatibility complexes class I on the surfaces of other cells. Chemoattractants and adhesion molecules direct CD8+ T-cell homing to and migration within secondary lymphoid organs, where these cells colocalize with antigen-presenting dendritic cells in confined tissue volumes. CD8+ T-cell activation induces a switch to infiltration of non-lymphoid tissue (NLT), which differ in their topology and biophysical properties from lymphoid tissue. Here, we provide a short overview on regulation of organism-wide trafficking patterns during naive T-cell recirculation and their switch to non-lymphoid tissue homing during activation. The migratory lifestyle of CD8+ T cells is regulated by their actomyosin cytoskeleton, which translates chemical signals from surface receptors into mechanical work. We explore how properties of the actomyosin cytoskeleton and its regulators affect CD8+ T cell function in lymphoid and non-lymphoid tissue, combining recent findings in the field of cell migration and actin network regulation with tissue anatomy. Finally, we hypothesize that under certain conditions, intrinsic regulation of actomyosin dynamics may render NLT CD8+ T-cell populations less dependent on input from extrinsic signals during tissue scanning.
Collapse
Affiliation(s)
- Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Nora Ruef
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
11
|
Sandor AM, Jacobelli J, Friedman RS. Immune cell trafficking to the islets during type 1 diabetes. Clin Exp Immunol 2019; 198:314-325. [PMID: 31343073 PMCID: PMC6857188 DOI: 10.1111/cei.13353] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2019] [Indexed: 01/01/2023] Open
Abstract
Inhibition of immune cell trafficking to the pancreatic islets during type 1 diabetes (T1D) has therapeutic potential, since targeting of T cell and B cell trafficking has been clinically effective in other autoimmune diseases. Trafficking to the islets is characterized by redundancy in adhesion molecule and chemokine usage, which has not enabled effective targeting to date. Additionally, cognate antigen is not consistently required for T cell entry into the islets throughout the progression of disease. However, myeloid cells are required to enable T cell and B cell entry into the islets, and may serve as a convergence point in the pathways controlling this process. In this review we describe current knowledge of the factors that mediate immune cell trafficking to pancreatic islets during T1D progression.
Collapse
Affiliation(s)
- A. M. Sandor
- Department of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
- Department of Biomedical ResearchNational Jewish HealthDenverCOUSA
| | - J. Jacobelli
- Department of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
- Department of Biomedical ResearchNational Jewish HealthDenverCOUSA
| | - R. S. Friedman
- Department of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
- Department of Biomedical ResearchNational Jewish HealthDenverCOUSA
| |
Collapse
|
12
|
Yan SLS, Hwang IY, Kamenyeva O, Kehrl JH. In Vivo F-Actin Filament Organization during Lymphocyte Transendothelial and Interstitial Migration Revealed by Intravital Microscopy. iScience 2019; 16:283-297. [PMID: 31203185 PMCID: PMC6581778 DOI: 10.1016/j.isci.2019.05.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/03/2019] [Accepted: 05/28/2019] [Indexed: 12/30/2022] Open
Abstract
Actin is essential for many cellular processes including cell motility. Yet the organization of F-actin filaments during lymphocyte transendothelial migration (TEM) and interstitial migration have not been visualized. Here we report a high-resolution confocal intravital imaging technique with LifeAct-GFP bone marrow reconstituted mice, which allowed visualization of lymphocyte F-actin in vivo. We find that naive lymphocytes preferentially cross high endothelial venules (HEVs) using paracellular rather than the transcellular route. During both modes of transmigration F-actin levels rise at the lymphocyte leading edge as the cell engages the TEM site. Once the lymphocytes breach the endothelium, they briefly reside in HEV pockets before crossing into the parenchyma. During interstitial migration dynamic actin-based protrusions rapidly form and collapse to help drive motility. Using a panel of inhibitors, we established roles for actin regulators and myosin II in lymphocyte TEM. This study provides further insights into lymphocyte TEM and interstitial migration in vivo. Established high-resolution imaging technique to visualize HEVs and F-actin in vivo Naive lymphocytes mainly cross HEVs via paracellular route by breaking junctions Rapid re-organization of cellular F-actin during in vivo TEM and migration In vivo F-actin dynamics is important for lymphocyte-endothelium interactions
Collapse
Affiliation(s)
- Serena L S Yan
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11B08, 10 Center Dr. MSC 1876, Bethesda, MA 20892, USA.
| | - Il-Young Hwang
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11B08, 10 Center Dr. MSC 1876, Bethesda, MA 20892, USA
| | - Olena Kamenyeva
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11B08, 10 Center Dr. MSC 1876, Bethesda, MA 20892, USA
| | - John H Kehrl
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11B08, 10 Center Dr. MSC 1876, Bethesda, MA 20892, USA.
| |
Collapse
|
13
|
Sandor AM, Lindsay RS, Dyjack N, Whitesell JC, Rios C, Bradley BJ, Haskins K, Serreze DV, Geurts AM, Chen YG, Seibold MA, Jacobelli J, Friedman RS. CD11c + Cells Are Gatekeepers for Lymphocyte Trafficking to Infiltrated Islets During Type 1 Diabetes. Front Immunol 2019; 10:99. [PMID: 30766536 PMCID: PMC6365440 DOI: 10.3389/fimmu.2019.00099] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/14/2019] [Indexed: 01/06/2023] Open
Abstract
Type 1 diabetes (T1D) is a T cell mediated autoimmune disease that affects more than 19 million people with incidence increasing rapidly worldwide. For T cells to effectively drive T1D, they must first traffic to the islets and extravasate through the islet vasculature. Understanding the cues that lead to T cell entry into inflamed islets is important because diagnosed T1D patients already have established immune infiltration of their islets. Here we show that CD11c+ cells are a key mediator of T cell trafficking to infiltrated islets in non-obese diabetic (NOD) mice. Using intravital 2-photon islet imaging we show that T cell extravasation into the islets is an extended process, with T cells arresting in the islet vasculature in close proximity to perivascular CD11c+ cells. Antigen is not required for T cell trafficking to infiltrated islets, but T cell chemokine receptor signaling is necessary. Using RNAseq, we show that islet CD11c+ cells express over 20 different chemokines that bind chemokine receptors expressed on islet T cells. One highly expressed chemokine-receptor pair is CXCL16-CXCR6. However, NOD. CXCR6-/- mice progressed normally to T1D and CXCR6 deficient T cells trafficked normally to the islets. Even with CXCR3 and CXCR6 dual deficiency, T cells trafficked to infiltrated islets. These data reinforce that chemokine receptor signaling is highly redundant for T cell trafficking to inflamed islets. Importantly, depletion of CD11c+ cells strongly inhibited T cell trafficking to infiltrated islets of NOD mice. We suggest that targeted depletion of CD11c+ cells associated with the islet vasculature may yield a therapeutic target to inhibit T cell trafficking to inflamed islets to prevent progression of T1D.
Collapse
Affiliation(s)
- Adam M Sandor
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - Robin S Lindsay
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - Nathan Dyjack
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States
| | - Jennifer C Whitesell
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - Cydney Rios
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States
| | - Brenda J Bradley
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kathryn Haskins
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yi-Guang Chen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Max A Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States.,Department of Pediatrics, National Jewish Health, Denver, CO, United States.,Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jordan Jacobelli
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - Rachel S Friedman
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| |
Collapse
|
14
|
Megrelis L, El Ghoul E, Moalli F, Versapuech M, Cassim S, Ruef N, Stein JV, Mangeney M, Delon J. Fam65b Phosphorylation Relieves Tonic RhoA Inhibition During T Cell Migration. Front Immunol 2018; 9:2001. [PMID: 30254631 PMCID: PMC6141708 DOI: 10.3389/fimmu.2018.02001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/14/2018] [Indexed: 11/13/2022] Open
Abstract
We previously identified Fam65b as an atypical inhibitor of the small G protein RhoA. Using a conditional model of a Fam65b-deficient mouse, we first show that Fam65b restricts spontaneous RhoA activation in resting T lymphocytes and regulates intranodal T cell migration in vivo. We next aimed at understanding, at the molecular level, how the brake that Fam65b exerts on RhoA can be relieved upon signaling to allow RhoA activation. Here, we show that chemokine stimulation phosphorylates Fam65b in T lymphocytes. This post-translational modification decreases the affinity of Fam65b for RhoA and favors Fam65b shuttling from the plasma membrane to the cytosol. Functionally, we show that the degree of Fam65b phosphorylation controls some cytoskeletal alterations downstream active RhoA such as actin polymerization, as well as T cell migration in vitro. Altogether, our results show that Fam65b expression and phosphorylation can finely tune the amount of active RhoA in order to favor optimal T lymphocyte motility.
Collapse
Affiliation(s)
- Laura Megrelis
- Infection, Immunity, Inflammation, Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Elyas El Ghoul
- Infection, Immunity, Inflammation, Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Federica Moalli
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Margaux Versapuech
- Infection, Immunity, Inflammation, Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Shamir Cassim
- Infection, Immunity, Inflammation, Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nora Ruef
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Jens V Stein
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Marianne Mangeney
- Infection, Immunity, Inflammation, Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jérôme Delon
- Infection, Immunity, Inflammation, Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
15
|
Moalli F, Ficht X, Germann P, Vladymyrov M, Stolp B, de Vries I, Lyck R, Balmer J, Fiocchi A, Kreutzfeldt M, Merkler D, Iannacone M, Ariga A, Stoffel MH, Sharpe J, Bähler M, Sixt M, Diz-Muñoz A, Stein JV. The Rho regulator Myosin IXb enables nonlymphoid tissue seeding of protective CD8 + T cells. J Exp Med 2018; 215:1869-1890. [PMID: 29875261 PMCID: PMC6028505 DOI: 10.1084/jem.20170896] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 12/28/2017] [Accepted: 05/11/2018] [Indexed: 12/27/2022] Open
Abstract
Moalli et al. combine in vitro CD8+ T cell motility analysis with intravital imaging of mouse tissues to identify the actomyosin regulator Myo9b as a central player for nonlymphoid tissue infiltration during adaptive immune responses by facilitating crossing of tissue barriers. T cells are actively scanning pMHC-presenting cells in lymphoid organs and nonlymphoid tissues (NLTs) with divergent topologies and confinement. How the T cell actomyosin cytoskeleton facilitates this task in distinct environments is incompletely understood. Here, we show that lack of Myosin IXb (Myo9b), a negative regulator of the small GTPase Rho, led to increased Rho-GTP levels and cell surface stiffness in primary T cells. Nonetheless, intravital imaging revealed robust motility of Myo9b−/− CD8+ T cells in lymphoid tissue and similar expansion and differentiation during immune responses. In contrast, accumulation of Myo9b−/− CD8+ T cells in NLTs was strongly impaired. Specifically, Myo9b was required for T cell crossing of basement membranes, such as those which are present between dermis and epidermis. As consequence, Myo9b−/− CD8+ T cells showed impaired control of skin infections. In sum, we show that Myo9b is critical for the CD8+ T cell adaptation from lymphoid to NLT surveillance and the establishment of protective tissue–resident T cell populations.
Collapse
Affiliation(s)
- Federica Moalli
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Xenia Ficht
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Philipp Germann
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,European Molecular Biology Laboratory, Barcelona, Spain
| | - Mykhailo Vladymyrov
- Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), University of Bern, Bern, Switzerland
| | - Bettina Stolp
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Ingrid de Vries
- Institute for Science and Technology Austria, Klosterneuburg, Austria
| | - Ruth Lyck
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Jasmin Balmer
- Department of Clinical Research and Veterinary Public Health, University of Bern, Bern, Switzerland
| | - Amleto Fiocchi
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospitals of Geneva, Geneva, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospitals of Geneva, Geneva, Switzerland
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases and Experimental Imaging Center, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Akitaka Ariga
- Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), University of Bern, Bern, Switzerland
| | - Michael H Stoffel
- Department of Clinical Research and Veterinary Public Health, University of Bern, Bern, Switzerland
| | - James Sharpe
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,European Molecular Biology Laboratory, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Martin Bähler
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Michael Sixt
- Institute for Science and Technology Austria, Klosterneuburg, Austria
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jens V Stein
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| |
Collapse
|
16
|
Ramani V, Teshima T, Tamura K, Chung JS, Kobayashi M, Cruz PD, Ariizumi K. Melanoma-Derived Soluble DC-HIL/GPNMB Promotes Metastasis by Excluding T-Lymphocytes from the Pre-Metastatic Niches. J Invest Dermatol 2018; 138:2443-2451. [PMID: 29857071 DOI: 10.1016/j.jid.2018.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/01/2018] [Accepted: 05/10/2018] [Indexed: 01/09/2023]
Abstract
Soluble factors from the primary tumor induce recruitment of bone marrow-derived progenitors to form tumor-supportive microenvironments or pre-metastatic niches in distal organs before metastasis. How tumor-secreted factors condition the sites for tumor progression remains ambiguous. B16 melanoma produces the secreted form of T cell-inhibitory DC-HIL (sDC-HIL) that travels to distal organs and potentiates the metastatic capacity of tumor cells. We studied the molecular mechanisms and found that sDC-HIL binds to select endothelial cells that co-localize with the sites where bone marrow-derived progenitors and tumor cells migrate. sDC-HIL-bound endothelial cells exist at a similar frequency in mice with or without tumors, and they are strongly associated with survival of intravenously injected tumor cells in the lung. sDC-HIL binding conferred T-cell suppressor function on the ECs and awakened the angiogenic property by inducing vascular endothelial growth factor expression, resulting in enhanced transendothelial migration of bone marrow-derived progenitors and tumor cells, but not for T cells. This selectivity is achieved by the T-cell binding of sDC-HIL, which prevents formation of the leading edges required for chemotaxis. Finally, inducing tumor expression of sDC-HIL significantly reduced tumor-infiltrated T cells. Therefore, the highly metastatic attribute of B16 melanoma can be explained by the endothelial gatekeeper function of sDC-HIL that limits lymphocyte transmigration to pre-metastatic niches.
Collapse
Affiliation(s)
- Vijay Ramani
- Department of Dermatology, the University of Texas Southwestern Medical Center, and Dermatology Section (Medical Service), Dallas Veterans Affairs Medical Center, Dallas, Texas, USA
| | - Takahiro Teshima
- Department of Dermatology, the University of Texas Southwestern Medical Center, and Dermatology Section (Medical Service), Dallas Veterans Affairs Medical Center, Dallas, Texas, USA
| | - Kyoichi Tamura
- Department of Dermatology, the University of Texas Southwestern Medical Center, and Dermatology Section (Medical Service), Dallas Veterans Affairs Medical Center, Dallas, Texas, USA
| | - Jin-Sung Chung
- Department of Dermatology, the University of Texas Southwestern Medical Center, and Dermatology Section (Medical Service), Dallas Veterans Affairs Medical Center, Dallas, Texas, USA
| | - Masato Kobayashi
- Department of Dermatology, the University of Texas Southwestern Medical Center, and Dermatology Section (Medical Service), Dallas Veterans Affairs Medical Center, Dallas, Texas, USA
| | - Ponciano D Cruz
- Department of Dermatology, the University of Texas Southwestern Medical Center, and Dermatology Section (Medical Service), Dallas Veterans Affairs Medical Center, Dallas, Texas, USA
| | - Kiyoshi Ariizumi
- Department of Dermatology, the University of Texas Southwestern Medical Center, and Dermatology Section (Medical Service), Dallas Veterans Affairs Medical Center, Dallas, Texas, USA.
| |
Collapse
|
17
|
Moreau HD, Piel M, Voituriez R, Lennon-Duménil AM. Integrating Physical and Molecular Insights on Immune Cell Migration. Trends Immunol 2018; 39:632-643. [PMID: 29779848 DOI: 10.1016/j.it.2018.04.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 01/09/2023]
Abstract
The function of most immune cells depends on their ability to migrate through complex microenvironments, either randomly to patrol for the presence of antigens or directionally to reach their next site of action. The actin cytoskeleton and its partners are key conductors of immune cell migration as they control the intrinsic migratory properties of leukocytes as well as their capacity to respond to cues present in their environment. In this review we focus on the latest discoveries regarding the role of the actomyosin cytoskeleton in optimizing immune cell migration in complex environments, with a special focus on recent insights provided by physical modeling.
Collapse
Affiliation(s)
- Hélène D Moreau
- INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043, Paris, France.
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France; Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Raphaël Voituriez
- Laboratoire Jean Perrin, UM 8237 CNRS/UPMC, 4 place Jussieu, 75005 Paris, France
| | | |
Collapse
|
18
|
Anselme K, Wakhloo NT, Rougerie P, Pieuchot L. Role of the Nucleus as a Sensor of Cell Environment Topography. Adv Healthc Mater 2018; 7:e1701154. [PMID: 29283219 DOI: 10.1002/adhm.201701154] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/06/2017] [Indexed: 12/25/2022]
Abstract
The proper integration of biophysical cues from the cell vicinity is crucial for cells to maintain homeostasis, cooperate with other cells within the tissues, and properly fulfill their biological function. It is therefore crucial to fully understand how cells integrate these extracellular signals for tissue engineering and regenerative medicine. Topography has emerged as a prominent component of the cellular microenvironment that has pleiotropic effects on cell behavior. This progress report focuses on the recent advances in the understanding of the topography sensing mechanism with a special emphasis on the role of the nucleus. Here, recent techniques developed for monitoring the nuclear mechanics are reviewed and the impact of various topographies and their consequences on nuclear organization, gene regulation, and stem cell fate is summarized. The role of the cell nucleus as a sensor of cell-scale topography is further discussed.
Collapse
Affiliation(s)
- Karine Anselme
- University of Haute‐AlsaceUniversity of Strasbourg CNRS UMR7361, IS2M 68057 Mulhouse France
| | - Nayana Tusamda Wakhloo
- University of Haute‐AlsaceUniversity of Strasbourg CNRS UMR7361, IS2M 68057 Mulhouse France
| | - Pablo Rougerie
- Institute of Biomedical SciencesFederal University of Rio de Janeiro Rio de Janeiro RJ 21941‐902 Brazil
| | - Laurent Pieuchot
- University of Haute‐AlsaceUniversity of Strasbourg CNRS UMR7361, IS2M 68057 Mulhouse France
| |
Collapse
|
19
|
Mrass P, Oruganti SR, Fricke GM, Tafoya J, Byrum JR, Yang L, Hamilton SL, Miller MJ, Moses ME, Cannon JL. ROCK regulates the intermittent mode of interstitial T cell migration in inflamed lungs. Nat Commun 2017; 8:1010. [PMID: 29044117 PMCID: PMC5647329 DOI: 10.1038/s41467-017-01032-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/14/2017] [Indexed: 12/27/2022] Open
Abstract
Effector T cell migration through tissues can enable control of infection or mediate inflammatory damage. Nevertheless, the molecular mechanisms that regulate migration of effector T cells within the interstitial space of inflamed lungs are incompletely understood. Here, we show T cell migration in a mouse model of acute lung injury with two-photon imaging of intact lung tissue. Computational analysis indicates that T cells migrate with an intermittent mode, switching between confined and almost straight migration, guided by lung-associated vasculature. Rho-associated protein kinase (ROCK) is required for both high-speed migration and straight motion. By contrast, inhibition of Gαi signaling with pertussis toxin affects speed but not the intermittent migration of lung-infiltrating T cells. Computational modeling shows that an intermittent migration pattern balances both search area and the duration of contacts between T cells and target cells. These data identify that ROCK-dependent intermittent T cell migration regulates tissue-sampling during acute lung injury. ROCK is associated with T cell movement in lymph nodes. Here the authors use an LPS lung damage model and two-photon imaging to show that CD8+ T cells in lung tissue engage in ROCK-dependent fast linear migration alternating with bursts of slower confined migration that together optimize contact with target cells.
Collapse
Affiliation(s)
- Paulus Mrass
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, MSC 08 4660, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Sreenivasa Rao Oruganti
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, MSC 08 4660, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - G Matthew Fricke
- Department of Computer Science, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Justyna Tafoya
- Department of Computer Science, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, 87131, USA.,Department of Mathematics, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Janie R Byrum
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, MSC 08 4660, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Lihua Yang
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Samantha L Hamilton
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Mark J Miller
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Melanie E Moses
- Department of Computer Science, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, 87131, USA.,Department of Biology, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, 87131, USA.,External Faculty, Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, USA
| | - Judy L Cannon
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, MSC 08 4660, 1 University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
20
|
Zaid A, Hor JL, Christo SN, Groom JR, Heath WR, Mackay LK, Mueller SN. Chemokine Receptor–Dependent Control of Skin Tissue–Resident Memory T Cell Formation. THE JOURNAL OF IMMUNOLOGY 2017; 199:2451-2459. [DOI: 10.4049/jimmunol.1700571] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/03/2017] [Indexed: 02/06/2023]
|
21
|
Dynamic intravital imaging of cell-cell interactions in the lymph node. J Allergy Clin Immunol 2017; 139:12-20. [PMID: 28065277 DOI: 10.1016/j.jaci.2016.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 12/24/2022]
Abstract
In the last decade, the application of 2-photon intravital microscopy as a tool to study cell interactions in different areas of the immune system has offered an unprecedented opportunity to understand the complexity of cell behavior in relation to immune functions. In this review we describe the latest advances in the field of live imaging in the lymph nodes, grouping the different cell populations in 2 compartments according to their motility: the sessile compartment, which is formed by resident cells of stromal origin, macrophages, and resident dendritic cells, and the motile compartment, which is mainly formed by T and B lymphocytes. Here we review how the use of in vivo imaging has contributed to our understanding of the role of these cells in the initiation of the immune response in the draining lymph nodes.
Collapse
|
22
|
Abstract
Effective immune responses require the precise regulation of dynamic interactions between hematopoietic and non-hematopoietic cells. The Rho subfamily of GTPases, which includes RhoA, is rapidly activated downstream of a diverse array of biochemical and biomechanical signals, and is emerging as an important mediator of this cross-talk. Key downstream effectors of RhoA are the Rho kinases, or ROCKs. The ROCKs are two serine-threonine kinases that can act as global coordinators of a tissue’s response to stress and injury because of their ability to regulate a wide range of biological processes. Although the RhoA-ROCK pathway has been extensively investigated in the non-hematopoietic compartment, its role in the immune system is just now becoming appreciated. In this commentary, we provide a brief overview of recent findings that highlight the contribution of this pathway to lymphocyte development and activation, and the impact that dysregulation in the activation of RhoA and/or the ROCKs may exert on a growing list of autoimmune and lymphoproliferative disorders.
Collapse
Affiliation(s)
- Edd Ricker
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, 10021, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, 10065, USA
| | - Luvana Chowdhury
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, 10021, USA
| | - Woelsung Yi
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, 10021, USA; David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, 10021, USA
| | - Alessandra B Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, 10021, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, 10065, USA; David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, 10021, USA; Department of Medicine, Weill Cornell Medical College, New York, New York, 10021, USA
| |
Collapse
|
23
|
Köchl R, Thelen F, Vanes L, Brazao TF, Fountain K, Xie J, Huang CL, Lyck R, Stein JV, Tybulewicz VLJ. WNK1 kinase balances T cell adhesion versus migration in vivo. Nat Immunol 2016; 17:1075-83. [PMID: 27400149 PMCID: PMC4994873 DOI: 10.1038/ni.3495] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/25/2016] [Indexed: 12/15/2022]
Abstract
Adhesion and migration of T cells are controlled by chemokines and by adhesion molecules, especially integrins, and have critical roles in the normal physiological function of T lymphocytes. Using an RNA-mediated interference screen, we identified the WNK1 kinase as a regulator of both integrin-mediated adhesion and T cell migration. We found that WNK1 is a negative regulator of integrin-mediated adhesion, whereas it acts as a positive regulator of migration via the kinases OXSR1 and STK39 and the ion co-transporter SLC12A2. WNK1-deficient T cells home less efficiently to lymphoid organs and migrate more slowly through them. Our results reveal that a pathway previously known only to regulate salt homeostasis in the kidney functions to balance T cell adhesion and migration.
Collapse
Affiliation(s)
| | - Flavian Thelen
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | | | | | | - Jian Xie
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chou-Long Huang
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ruth Lyck
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Jens V. Stein
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | |
Collapse
|
24
|
Novkovic M, Onder L, Cupovic J, Abe J, Bomze D, Cremasco V, Scandella E, Stein JV, Bocharov G, Turley SJ, Ludewig B. Topological Small-World Organization of the Fibroblastic Reticular Cell Network Determines Lymph Node Functionality. PLoS Biol 2016; 14:e1002515. [PMID: 27415420 PMCID: PMC4945005 DOI: 10.1371/journal.pbio.1002515] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/21/2016] [Indexed: 11/18/2022] Open
Abstract
Fibroblastic reticular cells (FRCs) form the cellular scaffold of lymph nodes (LNs) and establish distinct microenvironmental niches to provide key molecules that drive innate and adaptive immune responses and control immune regulatory processes. Here, we have used a graph theory-based systems biology approach to determine topological properties and robustness of the LN FRC network in mice. We found that the FRC network exhibits an imprinted small-world topology that is fully regenerated within 4 wk after complete FRC ablation. Moreover, in silico perturbation analysis and in vivo validation revealed that LNs can tolerate a loss of approximately 50% of their FRCs without substantial impairment of immune cell recruitment, intranodal T cell migration, and dendritic cell-mediated activation of antiviral CD8+ T cells. Overall, our study reveals the high topological robustness of the FRC network and the critical role of the network integrity for the activation of adaptive immune responses.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Communication/immunology
- Cell Count
- Cell Movement/genetics
- Cell Movement/immunology
- Chemokine CCL19/genetics
- Chemokine CCL19/immunology
- Chemokine CCL19/metabolism
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Fibroblasts/cytology
- Fibroblasts/immunology
- Fibroblasts/metabolism
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Confocal
- Models, Immunological
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Mario Novkovic
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Lucas Onder
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Jovana Cupovic
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Jun Abe
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - David Bomze
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Viviana Cremasco
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Elke Scandella
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Jens V. Stein
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Gennady Bocharov
- Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia
| | - Shannon J. Turley
- Department of Cancer Immunology, Genentech, South San Francisco, California, United States of America
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- * E-mail:
| |
Collapse
|
25
|
Katakai T, Kinashi T. Microenvironmental Control of High-Speed Interstitial T Cell Migration in the Lymph Node. Front Immunol 2016; 7:194. [PMID: 27242799 PMCID: PMC4865483 DOI: 10.3389/fimmu.2016.00194] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/02/2016] [Indexed: 12/30/2022] Open
Abstract
T cells are highly concentrated in the lymph node (LN) paracortex, which serves an important role in triggering adoptive immune responses. Live imaging using two-photon laser scanning microscopy revealed vigorous and non-directional T cell migration within this area at average velocity of more than 10 μm/min. Active interstitial T cell movement is considered to be crucial for scanning large numbers of dendritic cells (DCs) to find rare cognate antigens. However, the mechanism by which T cells achieve such high-speed movement in a densely packed, dynamic tissue environment is not fully understood. Several new findings suggest that fibroblastic reticular cells (FRCs) and DCs control T cell movement in a multilateral manner. Chemokines and lysophosphatidic acid produced by FRCs cooperatively promote the migration, while DCs facilitate LFA-1-dependent motility via expression of ICAM-1. Furthermore, the highly dense and confined microenvironment likely plays a key role in anchorage-independent motility. We propose that T cells dynamically switch between two motility modes; anchorage-dependent and -independent manners. Unique tissue microenvironment and characteristic migration modality of T cells cooperatively generate high-speed interstitial movement in the LN.
Collapse
Affiliation(s)
- Tomoya Katakai
- Department of Immunology, Graduate School of Medical and Dental Sciences, Niigata University , Niigata , Japan
| | - Tatsuo Kinashi
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University , Hirakata , Japan
| |
Collapse
|
26
|
Takeda A, Kobayashi D, Aoi K, Sasaki N, Sugiura Y, Igarashi H, Tohya K, Inoue A, Hata E, Akahoshi N, Hayasaka H, Kikuta J, Scandella E, Ludewig B, Ishii S, Aoki J, Suematsu M, Ishii M, Takeda K, Jalkanen S, Miyasaka M, Umemoto E. Fibroblastic reticular cell-derived lysophosphatidic acid regulates confined intranodal T-cell motility. eLife 2016; 5:e10561. [PMID: 26830463 PMCID: PMC4755752 DOI: 10.7554/elife.10561] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/26/2015] [Indexed: 12/14/2022] Open
Abstract
Lymph nodes (LNs) are highly confined environments with a cell-dense three-dimensional meshwork, in which lymphocyte migration is regulated by intracellular contractile proteins. However, the molecular cues directing intranodal cell migration remain poorly characterized. Here we demonstrate that lysophosphatidic acid (LPA) produced by LN fibroblastic reticular cells (FRCs) acts locally to LPA2 to induce T-cell motility. In vivo, either specific ablation of LPA-producing ectoenzyme autotaxin in FRCs or LPA2 deficiency in T cells markedly decreased intranodal T cell motility, and FRC-derived LPA critically affected the LPA2-dependent T-cell motility. In vitro, LPA activated the small GTPase RhoA in T cells and limited T-cell adhesion to the underlying substrate via LPA2. The LPA-LPA2 axis also enhanced T-cell migration through narrow pores in a three-dimensional environment, in a ROCK-myosin II-dependent manner. These results strongly suggest that FRC-derived LPA serves as a cell-extrinsic factor that optimizes T-cell movement through the densely packed LN reticular network. DOI:http://dx.doi.org/10.7554/eLife.10561.001 Small organs called lymph nodes are found throughout the body and help to filter out harmful particles and cells. Lymph nodes are packed with different types of immune cells, such as the T-cells that play a number of roles in detecting and destroying bacteria, viruses and other disease-causing microbes. Within the lymph node, T-cells crawl along a meshwork made up of cells called fibroblastic reticular cells. The T-cells appear to move in random patterns, but the signals that drive this movement remain ill-defined. Now, Takeda et al. reveal that a lipid called lysophosphatidic acid (LPA), which is produced by the fibroblastic reticular cells, is responsible for regulating how T-cells move around inside the lymph nodes. T-cells are able to detect LPA via certain receptor proteins on their surface. Takeda et al. engineered mice that were either unable to produce a particular LPA receptor on their T-cells, or that produced less LPA than normal. The T-cells of these mice moved around less than T-cells in normal mice. Further experiments revealed that LPA signaling also affects the signaling pathway that alters how well the T-cells stick to nearby surfaces. This suggests that LPA helps to optimize T-cell movement to allow the cells to navigate the small spaces found between the fibroblastic reticular cells. In the future, targeting the processes involved in LPA signaling could help to develop new treatments for disorders of the immune system. DOI:http://dx.doi.org/10.7554/eLife.10561.002
Collapse
Affiliation(s)
- Akira Takeda
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Daichi Kobayashi
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Keita Aoi
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Department of Immunology and Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naoko Sasaki
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan.,JST Precursory Research for Embryonic Science and Technology project, Saitama, Japan
| | - Hidemitsu Igarashi
- Department of Immunology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Kazuo Tohya
- Department of Anatomy, Kansai University of Health Sciences, Awaji, Japan
| | - Asuka Inoue
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Erina Hata
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Noriyuki Akahoshi
- Department of Immunology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Haruko Hayasaka
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Junichi Kikuta
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Department of Immunology and Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Elke Scandella
- Institute of Immunobiology, Kantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Satoshi Ishii
- Department of Immunology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan.,Core Research for Evolutional Science and Technology project, Saitama, Japan
| | - Masaru Ishii
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Department of Immunology and Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kiyoshi Takeda
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sirpa Jalkanen
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Masayuki Miyasaka
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Eiji Umemoto
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
27
|
Wigton EJ, Thompson SB, Long RA, Jacobelli J. Myosin-IIA regulates leukemia engraftment and brain infiltration in a mouse model of acute lymphoblastic leukemia. J Leukoc Biol 2016; 100:143-53. [PMID: 26792819 DOI: 10.1189/jlb.1a0815-342r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/04/2016] [Indexed: 01/07/2023] Open
Abstract
Leukemia dissemination (the spread of leukemia cells from the bone marrow) and relapse are associated with poor prognosis. Often, relapse occurs in peripheral organs, such as the CNS, which acts as a sanctuary site for leukemia cells to escape anti-cancer treatments. Similar to normal leukocyte migration, leukemia dissemination entails migration of cells from the blood circulation into tissues by extravasation. To extravasate, leukemia cells cross through vascular endothelial walls via a process called transendothelial migration, which requires cytoskeletal remodeling. However, the specific molecular players in leukemia extravasation are not fully known. We examined the role of myosin-IIA a cytoskeletal class II myosin motor protein, in leukemia progression and dissemination into the CNS by use of a mouse model of Bcr-Abl-driven B cell acute lymphoblastic leukemia. Small hairpin RNA-mediated depletion of myosin-IIA did not affect apoptosis or the growth rate of B cell acute lymphoblastic leukemia cells. However, in an in vivo leukemia transfer model, myosin-IIA depletion slowed leukemia progression and prolonged survival, in part, by reducing the ability of B cell acute lymphoblastic leukemia cells to engraft efficiently. Finally, myosin-IIA inhibition, either by small hairpin RNA depletion or chemical inhibition by blebbistatin, drastically reduced CNS infiltration of leukemia cells. The effects on leukemia cell entry into tissues were mostly a result of the requirement for myosin-IIA to enable leukemia cells to complete the transendothelial migration process during extravasation. Overall, our data implicate myosin-IIA as a key mediator of leukemia cell migration, making it a promising target to inhibit leukemia dissemination in vivo and potentially reduce leukemia relapses.
Collapse
Affiliation(s)
- Eric J Wigton
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, USA; and
| | - Scott B Thompson
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, USA; and Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, Colorado, USA
| | - Robert A Long
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, USA; and
| | - Jordan Jacobelli
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, USA; and Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, Colorado, USA
| |
Collapse
|
28
|
Affiliation(s)
- Alessandra B. Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021; , ,
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065;
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021
- Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10021
| | - Edd Ricker
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021; , ,
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065;
| | - Chien-Huan Weng
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021; , ,
- Graduate Program in Biochemistry Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065;
| | - Cristina Rozo
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021; , ,
| | - Woelsung Yi
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021; , ,
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021
| |
Collapse
|
29
|
Dupré L, Houmadi R, Tang C, Rey-Barroso J. T Lymphocyte Migration: An Action Movie Starring the Actin and Associated Actors. Front Immunol 2015; 6:586. [PMID: 26635800 PMCID: PMC4649030 DOI: 10.3389/fimmu.2015.00586] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/02/2015] [Indexed: 12/14/2022] Open
Abstract
The actin cytoskeleton is composed of a dynamic filament meshwork that builds the architecture of the cell to sustain its fundamental properties. This physical structure is characterized by a continuous remodeling, which allows cells to accomplish complex motility steps such as directed migration, crossing of biological barriers, and interaction with other cells. T lymphocytes excel in these motility steps to ensure their immune surveillance duties. In particular, actin cytoskeleton remodeling is a key to facilitate the journey of T lymphocytes through distinct tissue environments and to tune their stop and go behavior during the scanning of antigen-presenting cells. The molecular mechanisms controlling actin cytoskeleton remodeling during T lymphocyte motility have been only partially unraveled, since the function of many actin regulators has not yet been assessed in these cells. Our review aims to integrate the current knowledge into a comprehensive picture of how the actin cytoskeleton drives T lymphocyte migration. We will present the molecular actors that control actin cytoskeleton remodeling, as well as their role in the different T lymphocyte motile steps. We will also highlight which challenges remain to be addressed experimentally and which approaches appear promising to tackle them.
Collapse
Affiliation(s)
- Loïc Dupré
- INSERM, UMR 1043, Centre de Physiopathologie de Toulouse Purpan , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; CNRS, UMR 5282 , Toulouse , France
| | - Raïssa Houmadi
- INSERM, UMR 1043, Centre de Physiopathologie de Toulouse Purpan , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; CNRS, UMR 5282 , Toulouse , France
| | - Catherine Tang
- INSERM, UMR 1043, Centre de Physiopathologie de Toulouse Purpan , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; CNRS, UMR 5282 , Toulouse , France ; Master BIOTIN, Université Montpellier I , Montpellier , France
| | - Javier Rey-Barroso
- INSERM, UMR 1043, Centre de Physiopathologie de Toulouse Purpan , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; CNRS, UMR 5282 , Toulouse , France
| |
Collapse
|
30
|
Stein JV. T Cell Motility as Modulator of Interactions with Dendritic Cells. Front Immunol 2015; 6:559. [PMID: 26579132 PMCID: PMC4629691 DOI: 10.3389/fimmu.2015.00559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/19/2015] [Indexed: 01/13/2023] Open
Abstract
It is well established that the balance of costimulatory and inhibitory signals during interactions with dendritic cells (DCs) determines T cell transition from a naïve to an activated or tolerant/anergic status. Although many of these molecular interactions are well reproduced in reductionist in vitro assays, the highly dynamic motility of naïve T cells in lymphoid tissue acts as an additional lever to fine-tune their activation threshold. T cell detachment from DCs providing suboptimal stimulation allows them to search for DCs with higher levels of stimulatory signals, while storing a transient memory of short encounters. In turn, adhesion of weakly reactive T cells to DCs presenting peptides presented on major histocompatibility complex with low affinity is prevented by lipid mediators. Finally, controlled recruitment of CD8(+) T cells to cognate DC-CD4(+) T cell clusters shapes memory T cell formation and the quality of the immune response. Dynamic physiological lymphocyte motility therefore constitutes a mechanism to mitigate low avidity T cell activation and to improve the search for "optimal" DCs, while contributing to peripheral tolerance induction in the absence of inflammation.
Collapse
Affiliation(s)
- Jens V Stein
- Theodor Kocher Institute, University of Bern , Bern , Switzerland
| |
Collapse
|
31
|
Ager A, May MJ. Understanding high endothelial venules: Lessons for cancer immunology. Oncoimmunology 2015; 4:e1008791. [PMID: 26155419 PMCID: PMC4485764 DOI: 10.1080/2162402x.2015.1008791] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/09/2015] [Accepted: 01/10/2015] [Indexed: 01/06/2023] Open
Abstract
High endothelial venules (HEVs) are blood vessels especially adapted for lymphocyte trafficking which are normally found in secondary lymphoid organs such as lymph nodes (LN) and Peyer's patches. It has long been known that HEVs develop in non-lymphoid organs during chronic inflammation driven by autoimmunity, infection or allografts. More recently, HEVs have been observed in solid, vascularized tumors and their presence correlated with reduced tumor size and improved patient outcome. It is proposed that newly formed HEV promote antitumor immunity by recruiting naive lymphocytes into the tumor, thus allowing the local generation of cancerous tissue-destroying lymphocytes. Understanding how HEVs develop and function are therefore important to unravel their role in human cancers. In LN, HEVs develop during embryonic and early post-natal life and are actively maintained by the LN microenvironment. Systemic blockade of lymphotoxin-β receptor leads to HEV de-differentiation, but the LN components that induce HEV differentiation have remained elusive. Recent elegant studies using gene-targeted mice have demonstrated clearly that triggering the lymphotoxin-β receptor in endothelial cells (EC) induces the differentiation of HEV and that CD11c+ dendritic cells play a crucial role in this process. It will be important to determine whether lymphotoxin-β receptor-dependent signaling in EC drives the development of HEV during tumorigenesis and which cells have HEV-inducer properties. This may reveal therapeutic approaches to promote HEV neogenesis and determine the impact of newly formed HEV on tumor immunity.
Collapse
Key Words
- EC, endothelial cells
- FRC, fibroblast reticular cells
- HEC, high endothelial cells
- HEV, high endothelial venules
- LN, lymph nodes
- LPA, lysophosphatidic acid
- LT, lymphotoxin
- LT-βR, lymphotoxin-β receptor
- MAdCAM, mucosal cell adhesion molecule
- PNAd, peripheral node addressin
- SIP, sphingosine-1-phosphate
- T cell homing
- TLO, tertiary lymphoid organ
- VE-cadherin, vascular endothelial cadherin
- VEGF, vascular endothelial growth factor
- dendritic cells
- high endothelial venules
- lymphotoxin-β receptor
- tumor immunotherapy
Collapse
Affiliation(s)
- Ann Ager
- Infection and Immunity; School of Medicine; Cardiff University ; Cardiff, UK
| | - Michael J May
- School of Veterinary Medicine; University of Pennsylvania ; Philadelphia, PA, USA
| |
Collapse
|
32
|
Tozluoglu M, Mao Y, Bates PA, Sahai E. Cost-benefit analysis of the mechanisms that enable migrating cells to sustain motility upon changes in matrix environments. J R Soc Interface 2015; 12:20141355. [PMID: 25878128 PMCID: PMC4424668 DOI: 10.1098/rsif.2014.1355] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/19/2015] [Indexed: 12/30/2022] Open
Abstract
Cells can move through extracellular environments with varying geometries and adhesive properties. Adaptation to these differences is achieved by switching between different modes of motility, including lamellipod-driven and blebbing motility. Further, cells can modulate their level of adhesion to the extracellular matrix (ECM) depending on both the level of force applied to the adhesions and cell intrinsic biochemical properties. We have constructed a computational model of cell motility to investigate how motile cells transition between extracellular environments with varying surface continuity, confinement and adhesion. Changes in migration strategy are an emergent property of cells as the ECM geometry and adhesion changes. The transition into confined environments with discontinuous ECM fibres is sufficient to induce shifts from lamellipod-based to blebbing motility, while changes in confinement alone within a continuous geometry are not. The geometry of the ECM facilitates plasticity, by inducing shifts where the cell has high marginal gain from a mode change, and conserving persistency where the cell can continue movement regardless of the motility mode. This regulation of cell motility is independent of global changes in cytoskeletal properties, but requires locally higher linkage between the actin network and the plasma membrane at the cell rear, and changes in internal cell pressure. In addition to matrix geometry, we consider how cells might transition between ECM of different adhesiveness. We find that this requires positive feedback between the forces cells apply on the adhesion points, and the strength of the cell-ECM adhesions on those sites. This positive feedback leads to the emergence of a small number of highly adhesive cores, similar to focal adhesions. While the range of ECM adhesion levels the cell can invade is expanded with this feedback mechanism; the velocities are lowered for conditions where the positive feedback is not vital. Thus, plasticity of cell motility sacrifices the benefits of specialization, for robustness.
Collapse
Affiliation(s)
- Melda Tozluoglu
- MRC/UCL Laboratory for Molecular Cell Biology, University College London, London, UK Biomolecular Modelling Laboratory, London Research Institute, Cancer Research UK, London, UK Tumour Cell Biology Laboratory, London Research Institute, Cancer Research UK, London, UK
| | - Yanlan Mao
- MRC/UCL Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Paul A Bates
- Biomolecular Modelling Laboratory, London Research Institute, Cancer Research UK, London, UK
| | - Erik Sahai
- Tumour Cell Biology Laboratory, London Research Institute, Cancer Research UK, London, UK
| |
Collapse
|
33
|
The motorized RhoGAP myosin IXb (Myo9b) in leukocytes regulates experimental autoimmune encephalomyelitis induction and recovery. J Neuroimmunol 2015; 282:25-32. [PMID: 25903725 DOI: 10.1016/j.jneuroim.2015.03.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 12/30/2022]
Abstract
Myo9b regulates leukocyte migration by controlling RhoA signaling. Here we assessed its role in active experimental autoimmune encephalomyelitis (EAE). Myo9b(-/-) mice show a delay in the onset of EAE symptoms. The delay in disease onset was accompanied by reduced numbers of Th1 and Th17 cells in the CNS. Myo9b(-/-) mice showed no recovery from disease symptoms and exhibited elevated numbers of both Th17 cells and CD11b+ macrophages. Bone marrow chimeric mice demonstrated that the absence of a leukocyte source of Myo9b was responsible for the delayed leukocyte infiltration into the CNS, delayed EAE onset and lack of recovery.
Collapse
|
34
|
Krummel MF, Friedman RS, Jacobelli J. Modes and mechanisms of T cell motility: roles for confinement and Myosin-IIA. Curr Opin Cell Biol 2014; 30:9-16. [PMID: 24905977 PMCID: PMC4178009 DOI: 10.1016/j.ceb.2014.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 04/10/2014] [Accepted: 05/02/2014] [Indexed: 12/23/2022]
Abstract
T cells are charged with surveying tissues for evidence of their cognate foreign antigens. Subsequently, they must navigate to effector sites, which they enter through the process of trans-endothelial migration (TEM). During interstitial migration, T cells migrate according to one of two modes that are distinguished by the strength and sequence of adhesions and the requirement for Myosin-IIA. In contrast during TEM, T cells require Myosin-IIA for the final process of pushing their nucleus through the endothelium. A generalized model emerges with dual roles for Myosin-IIA: This motor protein acts like a tensioning or expansion spring, transmitting force across the cell cortex to sites of surface contact and also optimizing the frictional coupling with substrata by modulating the surface area of the contact. The phosphorylation and deactivation of this motor following TCR engagement can allow T cells to rapidly alter the degree to which they adhere to surfaces and to switch to a mode of interaction with surfaces that is more conducive to forming a synapse with an antigen-presenting cell.
Collapse
Affiliation(s)
- Matthew F Krummel
- Department of Pathology, UCSF, 513 Parnassus Avenue, Box 0511, San Francisco, CA 94143, USA.
| | - Rachel S Friedman
- Department of Immunology, National Jewish Health, 1400 Jackson Street, K501, Denver, CO 80206, USA
| | - Jordan Jacobelli
- Department of Immunology, National Jewish Health, 1400 Jackson Street, K501, Denver, CO 80206, USA
| |
Collapse
|
35
|
Xu X, Jaeger ER, Wang X, Lagler-Ferrez E, Batalov S, Mathis NL, Wiltshire T, Walker JR, Cooke MP, Sauer K, Huang YH. Mst1 directs Myosin IIa partitioning of low and higher affinity integrins during T cell migration. PLoS One 2014; 9:e105561. [PMID: 25133611 PMCID: PMC4136924 DOI: 10.1371/journal.pone.0105561] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/22/2014] [Indexed: 11/19/2022] Open
Abstract
Chemokines promote T cell migration by transmitting signals that induce T cell polarization and integrin activation and adhesion. Mst1 kinase is a key signal mediator required for both of these processes; however, its molecular mechanism remains unclear. Here, we present a mouse model in which Mst1 function is disrupted by a hypomorphic mutation. Microscopic analysis of Mst1-deficient CD4 T cells revealed a necessary role for Mst1 in controlling the localization and activity of Myosin IIa, a molecular motor that moves along actin filaments. Using affinity specific LFA-1 antibodies, we identified a requirement for Myosin IIa-dependent contraction in the precise spatial distribution of low and higher affinity LFA-1 on the membrane of migrating T cells. Mst1 deficiency or Myosin inhibition resulted in multipolar cells, difficulties in uropod detachment and mis-localization of low affinity LFA-1. Thus, Mst1 regulates Myosin IIa dynamics to organize high and low affinity LFA-1 to the anterior and posterior membrane during T cell migration.
Collapse
Affiliation(s)
- Xiaolu Xu
- Department of Pathology and Immunology, Washington University, St. Louis, Missouri, United States of America
| | - Emily R. Jaeger
- Department of Pathology and Immunology, Washington University, St. Louis, Missouri, United States of America
| | - Xinxin Wang
- Department of Pathology and Immunology, Washington University, St. Louis, Missouri, United States of America
| | - Erica Lagler-Ferrez
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Serge Batalov
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Nancy L. Mathis
- Department of Pathology and Immunology, Washington University, St. Louis, Missouri, United States of America
| | - Tim Wiltshire
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - John R. Walker
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Michael P. Cooke
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Karsten Sauer
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail: (KS); (YHH)
| | - Yina H. Huang
- Department of Pathology and Immunology, Washington University, St. Louis, Missouri, United States of America
- Departments of Pathology and Microbiology & Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- * E-mail: (KS); (YHH)
| |
Collapse
|
36
|
Munoz MA, Biro M, Weninger W. T cell migration in intact lymph nodes in vivo. Curr Opin Cell Biol 2014; 30:17-24. [PMID: 24907445 DOI: 10.1016/j.ceb.2014.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 04/04/2014] [Accepted: 05/02/2014] [Indexed: 01/09/2023]
Abstract
In the lymph node, T cells migrate rapidly and with striking versatility in a continuous scan for antigen presenting dendritic cells. The scanning process is greatly facilitated by the lymph node structure and composition. In vivo imaging has been instrumental in deciphering the spatiotemporal dynamics of intranodal T cell migration in both health and disease. Here we review recent developments in uncovering the migration modes employed by T cells in the lymph node, the underlying molecular mechanisms, and the scanning strategies utilised by T cells to ensure a timely response to antigenic stimuli.
Collapse
Affiliation(s)
- Marcia A Munoz
- Centenary Institute of Cancer Medicine and Cell Biology, Immune Imaging Program, Locked Bag 6, Newtown, NSW 2042, Australia
| | - Maté Biro
- Centenary Institute of Cancer Medicine and Cell Biology, Immune Imaging Program, Locked Bag 6, Newtown, NSW 2042, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Wolfgang Weninger
- Centenary Institute of Cancer Medicine and Cell Biology, Immune Imaging Program, Locked Bag 6, Newtown, NSW 2042, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia.
| |
Collapse
|
37
|
Imeri F, Fallegger D, Zivkovic A, Schwalm S, Enzmann G, Blankenbach K, Meyer zu Heringdorf D, Homann T, Kleuser B, Pfeilschifter J, Engelhardt B, Stark H, Huwiler A. Novel oxazolo-oxazole derivatives of FTY720 reduce endothelial cell permeability, immune cell chemotaxis and symptoms of experimental autoimmune encephalomyelitis in mice. Neuropharmacology 2014; 85:314-27. [PMID: 24863045 DOI: 10.1016/j.neuropharm.2014.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 04/15/2014] [Accepted: 05/13/2014] [Indexed: 12/29/2022]
Abstract
The immunomodulatory FTY720 (fingolimod) is presently approved for the treatment of relapsing-remitting multiple sclerosis. It is a prodrug that acts by modulating sphingosine 1-phosphate (S1P) receptor signaling. In this study, we have developed and characterized two novel oxazolo-oxazole derivatives of FTY720, ST-968 and the oxy analog ST-1071, which require no preceding activating phosphorylation, and proved to be active in intact cells and triggered S1P1 and S1P3, but not S1P2, receptor internalization as a result of receptor activation. Functionally, ST-968 and ST-1071 acted similar to FTY720 to abrogate S1P-triggered chemotaxis of mouse splenocytes, mouse T cells and human U937 cells, and reduced TNFa- and LPS-stimulated endothelial cell permeability. The compounds also reduced TNFα-induced ICAM-1 and VCAM-1 mRNA expression, but restored TNFα-mediated downregulation of PECAM-1 mRNA expression. In an in vivo setting, the application of ST-968 or ST-1071 to mice resulted in a reduction of blood lymphocytes and significantly reduced the clinical symptoms of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice comparable to FTY720 either by prophylactic or therapeutic treatment. In parallel to the reduced clinical symptoms, infiltration of immune cells in the brain was strongly reduced, and in isolated tissues of brain and spinal cord, the mRNA and protein expressions of ICAM-1 and VCAM-1, as well as of matrix metalloproteinase-9 were reduced by all compounds, whereas PECAM-1 and tissue inhibitor of metalloproteinase TIMP-1 were upregulated. In summary, the data suggest that these novel butterfly derivatives of FTY720 could have considerable implication for future therapies of multiple sclerosis and other autoimmune diseases.
Collapse
Affiliation(s)
- Faik Imeri
- Institute of Pharmacology, University of Bern, Friedbühlstrasse 49, CH-3010 Bern, Switzerland
| | - Daniel Fallegger
- Institute of Pharmacology, University of Bern, Friedbühlstrasse 49, CH-3010 Bern, Switzerland
| | - Aleksandra Zivkovic
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Stephanie Schwalm
- Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Gaby Enzmann
- Theodor-Kocher Institute, University of Bern, Freiestrasse 1, CH-3012 Bern, Switzerland
| | - Kira Blankenbach
- Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Dagmar Meyer zu Heringdorf
- Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Thomas Homann
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert Allee 114-116, D-14558 Nuthetal, Germany
| | - Burkhard Kleuser
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert Allee 114-116, D-14558 Nuthetal, Germany
| | - Josef Pfeilschifter
- Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Britta Engelhardt
- Theodor-Kocher Institute, University of Bern, Freiestrasse 1, CH-3012 Bern, Switzerland
| | - Holger Stark
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Andrea Huwiler
- Institute of Pharmacology, University of Bern, Friedbühlstrasse 49, CH-3010 Bern, Switzerland; Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| |
Collapse
|
38
|
Russo E, Nitschké M, Halin C. Dendritic cell interactions with lymphatic endothelium. Lymphat Res Biol 2014; 11:172-82. [PMID: 24044757 DOI: 10.1089/lrb.2013.0008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Afferent lymphatic vessels fulfill essential immune functions by transporting leukocytes and lymph-borne antigen to draining lymph nodes (dLNs). An important cell type migrating through lymphatic vessels are dendritic cells (DCs). DCs reside in peripheral tissues like the skin, where they take up antigen and transport it via the lymphatic vascular network to dLNs for subsequent presentation to T cells. As such, DCs play a key role in the induction of adaptive immune responses during infection and vaccination, but also for the maintenance of tolerance. Although the migratory pattern of DCs has been known for long time, interactions between DCs and lymphatic vessels are only now starting to be unraveled at the cellular level. In particular, new tools for visualizing lymphatic vessels in combination with time-lapse microscopy have recently generated valuable insights into the process of DC migration to dLNs. In this review we summarize and discuss current approaches for visualizing DCs and lymphatic vessels in tissues for imaging applications. Furthermore, we review the current state of knowledge about DC migration towards, into and within lymphatic vessels, particularly focusing on the cellular interactions that take place between DCs and the lymphatic endothelium.
Collapse
Affiliation(s)
- Erica Russo
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology , ETH Zurich, Switzerland
| | | | | |
Collapse
|
39
|
Lämmermann T, Germain RN. The multiple faces of leukocyte interstitial migration. Semin Immunopathol 2014; 36:227-51. [PMID: 24573488 DOI: 10.1007/s00281-014-0418-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 01/26/2014] [Indexed: 12/22/2022]
Abstract
Spatiotemporal control of leukocyte dynamics within tissues is critical for successful innate and adaptive immune responses. Homeostatic trafficking and coordinated infiltration into and within sites of inflammation and infection rely on signaling in response to extracellular cues that in turn controls a variety of intracellular protein networks regulating leukocyte motility, migration, chemotaxis, positioning, and cell-cell interaction. In contrast to mesenchymal cells, leukocytes migrate in an amoeboid fashion by rapid cycles of actin polymerization and actomyosin contraction, and their migration in tissues is generally referred to as low adhesive and nonproteolytic. The interplay of actin network expansion, contraction, and adhesion shapes the exact mode of amoeboid migration, and in this review, we explore how leukocyte subsets potentially harness the same basic biomechanical mechanisms in a cell-type-specific manner. Most of our detailed understanding of these processes derives from in vitro migration studies in three-dimensional gels and confined spaces that mimic geometrical aspects of physiological tissues. We summarize these in vitro results and then critically compare them to data from intravital imaging of leukocyte interstitial migration in mouse tissues. We outline the technical challenges of obtaining conclusive mechanistic results from intravital studies, discuss leukocyte migration strategies in vivo, and present examples of mode switching during physiological interstitial migration. These findings are also placed in the context of leukocyte migration defects in primary immunodeficiencies. This overview of both in vitro and in vivo studies highlights recent progress in understanding the molecular and biophysical mechanisms that shape robust leukocyte migration responses in physiologically complex and heterogeneous environments.
Collapse
Affiliation(s)
- Tim Lämmermann
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA,
| | | |
Collapse
|
40
|
Ambriz-Peña X, García-Zepeda EA, Meza I, Soldevila G. Jak3 enables chemokine-dependent actin cytoskeleton reorganization by regulating cofilin and Rac/Rhoa GTPases activation. PLoS One 2014; 9:e88014. [PMID: 24498424 PMCID: PMC3912156 DOI: 10.1371/journal.pone.0088014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/03/2014] [Indexed: 01/02/2023] Open
Abstract
We have previously shown that Jak3 is involved in the signaling pathways of CCR7, CCR9 and CXCR4 in murine T lymphocytes and that Jak3−/− lymphocytes display an intrinsic defect in homing to peripheral lymph nodes. However, the molecular mechanism underlying the defective migration observed in Jak3−/− lymphocytes remains elusive. Here, it is demonstrated for the first time, that Jak3 is required for the actin cytoskeleton reorganization in T lymphocytes responding to chemokines. It was found that Jak3 regulates actin polymerization by controlling cofilin inactivation in response to CCL21 and CXCL12. Interestingly, cofilin inactivation was not precluded in PTX- treated cells despite their impaired actin polymerization. Additionally, Jak3 was required for small GTPases Rac1 and RhoA activation, which are indispensable for acquisition of the migratory cell phenotype and the generation of a functional leading edge and uropod, respectively. This defect correlates with data obtained by time-lapse video-microscopy showing an incompetent uropod formation and impaired motility in Jak3-pharmacologically inhibited T lymphocytes. Our data support a new model in which Jak3 and heterotrimeric G proteins can use independent, but complementary, signaling pathways to regulate actin cytoskeleton dynamics during cell migration in response to chemokines.
Collapse
Affiliation(s)
- Xochitl Ambriz-Peña
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, Distrito Federal, México
| | - Eduardo Alberto García-Zepeda
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, Distrito Federal, México
| | - Isaura Meza
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV IPN), Departamento de Biomedicina Molecular, México, Distrito Federal, México
| | - Gloria Soldevila
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, Distrito Federal, México
- * E-mail:
| |
Collapse
|
41
|
Niggli V. Insights into the mechanism for dictating polarity in migrating T-cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 312:201-70. [PMID: 25262243 DOI: 10.1016/b978-0-12-800178-3.00007-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review is focused on mechanisms of chemokine-induced polarization of T-lymphocytes. Polarization involves, starting from spherical cells, formation of a morphologically and functionally different rear (uropod) and front (leading edge). This polarization is required for efficient random and directed T-cell migration. The addressed topics concern the specific location of cell organelles and of receptors, signaling molecules, and cytoskeletal proteins in chemokine-stimulated polarized T-cells. In chemokine-stimulated, polarized T-cells, specific proteins, signaling molecules and organelles show enrichment either in the rear, the midzone, or the front; different from the random location in spherical resting cells. Possible mechanisms involved in this asymmetric location will be discussed. A major topic is also the functional role of proteins and cell organelles in T-cell polarization and migration. Specifically, the roles of adhesion and chemokine receptors, cytoskeletal proteins, signaling molecules, scaffolding proteins, and membrane microdomains in these processes will be discussed. The polarity which is established during contact formation of T-cells with antigen-presenting cells is not discussed in detail.
Collapse
Affiliation(s)
- Verena Niggli
- Institute of Pathology, University of Bern, Bern, Switzerland.
| |
Collapse
|
42
|
Baumann T, Affentranger S, Niggli V. Analysis of close associations of uropod-associated proteins in human T-cells using the proximity ligation assay. PeerJ 2013; 1:e186. [PMID: 24167781 PMCID: PMC3807586 DOI: 10.7717/peerj.186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/02/2013] [Indexed: 01/09/2023] Open
Abstract
We have shown previously that the raft-associated proteins flotillin-1 and -2 are rapidly recruited to the uropods of chemoattractant-stimulated human neutrophils and T-cells and are involved in cell polarization. Other proteins such as the adhesion receptor PSGL-1, the actin-membrane linker proteins ezrin/radixin/moesin (ERM) and the signaling enzyme phosphatidylinositol-4-phosphate 5-kinase type Iγ90 (PIPKIγ90) also accumulate in the T-cell uropod. Using the in situ proximity ligation assay (PLA) we now have investigated putative close associations of these proteins in human freshly isolated T-cells before and after chemokine addition. The PLA allows in situ subcellular localization of close proximity of endogenous proteins at single-molecule resolution in fixed cells. It allows detection also of weaker and transient complexes that would not be revealed with co-immunoprecipitation approaches. We previously provided evidence for heterodimer formation of tagged flotillin-1 and -2 in T-cells before and after chemokine addition using fluorescence resonance energy transfer (FRET). We now confirm these findings using PLA for the endogenous flotillins in fixed human T-cells. Moreover, in agreement with the literature, our PLA findings confirm a close association of endogenous PSGL-1 and ERM proteins both in resting and chemokine-activated human T-cells. In addition, we provide novel evidence using the PLA for close associations of endogenous activated ERM proteins with PIPKIγ90 and of endogenous flotillins with PSGL-1 in human T-cells, before and after chemokine addition. Our findings suggest that preformed clusters of these proteins coalesce in the uropod upon cell stimulation.
Collapse
Affiliation(s)
- Tommy Baumann
- Institute of Pathology, University of Bern , Bern , Switzerland
| | | | | |
Collapse
|
43
|
Jacobelli J, Estin Matthews M, Chen S, Krummel MF. Activated T cell trans-endothelial migration relies on myosin-IIA contractility for squeezing the cell nucleus through endothelial cell barriers. PLoS One 2013; 8:e75151. [PMID: 24069389 PMCID: PMC3777879 DOI: 10.1371/journal.pone.0075151] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 08/11/2013] [Indexed: 01/09/2023] Open
Abstract
Following activation, T cells are released from lymph nodes to traffic via the blood to effector sites. The re-entry of these activated T cells into tissues represents a critical step for them to carry out local effector functions. Here we have assessed defects in effector T cells that are acutely depleted in Myosin-IIA (MyoIIA) and show a T cell intrinsic requirement for this motor to facilitate the diapedesis step of extravasation. We show that MyoIIA accumulates at the rear of T cells undergoing trans-endothelial migration. T cells can extend protrusions and project a substantial portion of their cytoplasm through the endothelial wall in the absence of MyoIIA. However, this motor protein plays a crucial role in allowing T cells to complete the movement of their relatively rigid nucleus through the endothelial junctions. In vivo, this defect manifests as poor entry into lymph nodes, tumors and into the spinal cord, during tissue-specific autoimmunity, but not the spleen. This suggests that therapeutic targeting of this molecule may allow for differential attenuation of tissue-specific inflammatory responses.
Collapse
Affiliation(s)
- Jordan Jacobelli
- Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, Denver, Colorado, United States of America
- * E-mail: (JJ); (MFK)
| | - Miriam Estin Matthews
- Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, Denver, Colorado, United States of America
| | - Stephanie Chen
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Matthew F. Krummel
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (JJ); (MFK)
| |
Collapse
|
44
|
Mathis L, Wernimont S, Affentranger S, Huttenlocher A, Niggli V. Determinants of phosphatidylinositol-4-phosphate 5-kinase type Iγ90 uropod location in T-lymphocytes and its role in uropod formation. PeerJ 2013; 1:e131. [PMID: 24010013 PMCID: PMC3757496 DOI: 10.7717/peerj.131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 07/25/2013] [Indexed: 12/27/2022] Open
Abstract
We have previously identified phosphatidylinositol-4-phosphate 5-kinase type I (PIPKI)γ90 as a T cell uropod component. However, the molecular determinants and functional consequences of its localization remain unknown. In this report, we seek to better understand the mechanisms involved in PIPKIγ90 uropod targeting and the role that PIPKIγ90 plays in T cell uropod formation. During T cell activation, PIPKIγ90 cocaps with the membrane microdomain-associated proteins flotillin-1 and -2 and accumulates in the uropod. We report that the C-terminal 26 amino acid extension of PIPKIγ90 is required for its localization to the uropod. We further use T cells from PIPKIγ90(-/-) mice and human T cells expressing a kinase-dead PIPKIγ90 mutant to examine the role of PIPKIγ90 in a T cell uropod formation. We find that PIPKIγ90 deficient T cells have elongated uropods on ICAM-1. Moreover, in human T cells overexpression of PIPKIγ87, a naturally occurring isoform lacking the last 26 amino acids, suppresses uropod formation and impairs capping of uropod proteins such as flotillins. Transfection of human T cells with a dominant-negative mutant of flotillin-2 in turn attenuates capping of PIPKIγ90. Our data contribute to the understanding of the molecular mechanisms that regulate T cell uropod formation.
Collapse
Affiliation(s)
- Lucia Mathis
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Sarah Wernimont
- Departments of Medical Microbiology and Immunology and Pediatrics, University of Wisconsin, Madison, WI, United States of America
| | | | - Anna Huttenlocher
- Departments of Medical Microbiology and Immunology and Pediatrics, University of Wisconsin, Madison, WI, United States of America
| | - Verena Niggli
- Institute of Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
45
|
Pérez-Rivero G, Cascio G, Soriano SF, Sanz ÁG, de Guinoa JS, Rodríguez-Frade JM, Gomariz RP, Holgado BL, Cabañas C, Carrasco YR, Stein JV, Mellado M. Janus kinases 1 and 2 regulate chemokine-mediated integrin activation and naïve T-cell homing. Eur J Immunol 2013; 43:1745-57. [PMID: 23526587 DOI: 10.1002/eji.201243178] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/08/2013] [Accepted: 03/19/2013] [Indexed: 12/21/2022]
Abstract
Janus kinases (JAKs) are central signaling molecules in cytokine receptor cascades. Although they have also been implicated in chemokine receptor signaling, this function continues to be debated. To address this issue, we established a nucleofection model in primary, nonactivated mouse T lymphocytes to silence JAK expression and to evaluate the ability of these cells to home to lymph nodes. Reduced JAK1 and JAK2 expression impaired naïve T-cell migration in response to gradients of the chemokines CXCL12 and CCL21. In vivo homing of JAK1/JAK2-deficient cells to lymph nodes decreased, whereas intranodal localization and motility were unaffected. JAK1 and JAK2 defects altered CXCL12- and CCL21-triggered ezrin/radixin/moesin (ERM) dephosphorylation and F-actin polymerization, as well as activation of lymphocyte function-associated Ag-1 and very late Ag-4 integrins. As a result, the cells did not adhere firmly to integrin substrates in response to these chemokines. The results demonstrate that JAK1/JAK2 participate in chemokine-induced integrin activation and might be considered a target for modulation of immune cell extravasation and therefore, control of inflammatory reactions.
Collapse
Affiliation(s)
- Gema Pérez-Rivero
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Campus de Cantoblanco, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Chai Q, Onder L, Scandella E, Gil-Cruz C, Perez-Shibayama C, Cupovic J, Danuser R, Sparwasser T, Luther SA, Thiel V, Rülicke T, Stein JV, Hehlgans T, Ludewig B. Maturation of lymph node fibroblastic reticular cells from myofibroblastic precursors is critical for antiviral immunity. Immunity 2013; 38:1013-24. [PMID: 23623380 PMCID: PMC7111182 DOI: 10.1016/j.immuni.2013.03.012] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 03/29/2013] [Indexed: 01/11/2023]
Abstract
The stromal scaffold of the lymph node (LN) paracortex is built by fibroblastic reticular cells (FRCs). Conditional ablation of lymphotoxin-β receptor (LTβR) expression in LN FRCs and their mesenchymal progenitors in developing LNs revealed that LTβR-signaling in these cells was not essential for the formation of LNs. Although T cell zone reticular cells had lost podoplanin expression, they still formed a functional conduit system and showed enhanced expression of myofibroblastic markers. However, essential immune functions of FRCs, including homeostatic chemokine and interleukin-7 expression, were impaired. These changes in T cell zone reticular cell function were associated with increased susceptibility to viral infection. Thus, myofibroblasic FRC precursors are able to generate the basic T cell zone infrastructure, whereas LTβR-dependent maturation of FRCs guarantees full immunocompetence and hence optimal LN function during infection. Novel transgenic mouse model that targets FRCs in adult lymph nodes FRC-specific ablation of the LTβR did not abrogate LN development Myofibroblastic FRC precursors generate the basic infrastructure of the adult LN LTβR-mediated FRC maturation is critical for the maintenance of immunocompentence
Collapse
Affiliation(s)
- Qian Chai
- Institute of Immunobiology, Kantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Martinelli S, Chen EJH, Clarke F, Lyck R, Affentranger S, Burkhardt JK, Niggli V. Ezrin/Radixin/Moesin proteins and flotillins cooperate to promote uropod formation in T cells. Front Immunol 2013; 4:84. [PMID: 23579783 PMCID: PMC3619129 DOI: 10.3389/fimmu.2013.00084] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/24/2013] [Indexed: 01/13/2023] Open
Abstract
T cell uropods are enriched in specific proteins including adhesion receptors such as P-selectin glycoprotein ligand-1 (PSGL-1), lipid raft-associated proteins such as flotillins and ezrin/radixin/moesin (ERM) proteins which associate with cholesterol-rich raft domains and anchor adhesion receptors to the actin cytoskeleton. Using dominant mutants and siRNA technology we have tested the interactions among these proteins and their role in shaping the T cell uropod. Expression of wild type (WT) ezrin-EGFP failed to affect the morphology of human T cells or chemokine-induced uropod recruitment of PSGL-1 and flotillin-1 and -2. In contrast, expression of constitutively active T567D ezrin-EGFP induced a motile, polarized phenotype in some of the transfected T cells, even in the absence of chemokine. These cells featured F-actin-rich ruffles in the front and uropod enrichment of PSGL-1 and flotillins. T567D ezrin-EGFP was itself strongly enriched in the rear of the polarized T cells. Uropod formation induced by T567D ezrin-EGFP was actin-dependent as it was attenuated by inhibition of Rho-kinase or myosin II, and abolished by disruption of actin filaments. While expression of constitutively active ezrin enhanced cell polarity, expression of a dominant-negative deletion mutant of ezrin, 1-310 ezrin-EGFP, markedly reduced uropod formation induced by the chemokine SDF-1, T cell front-tail polarity, and capping of PSGL-1 and flotillins. Transfection of T cells with WT or T567D ezrin did not affect chemokine-mediated chemotaxis whereas 1-310 ezrin significantly impaired spontaneous 2D migration and chemotaxis. siRNA-mediated downregulation of flotillins in murine T cells attenuated moesin capping and uropod formation, indicating that ERM proteins and flotillins cooperate in uropod formation. In summary, our results indicate that activated ERM proteins function together with flotillins to promote efficient chemotaxis of T cells by structuring the uropod of migrating T cells.
Collapse
|
48
|
Chen EJH, Shaffer MH, Williamson EK, Huang Y, Burkhardt JK. Ezrin and moesin are required for efficient T cell adhesion and homing to lymphoid organs. PLoS One 2013; 8:e52368. [PMID: 23468835 PMCID: PMC3585410 DOI: 10.1371/journal.pone.0052368] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/12/2012] [Indexed: 01/13/2023] Open
Abstract
T cell trafficking between the blood and lymphoid organs is a complex, multistep process that requires several highly dynamic and coordinated changes in cyto-architecture. Members of the ezrin, radixin and moesin (ERM) family of actin-binding proteins have been implicated in several aspects of this process, but studies have yielded conflicting results. Using mice with a conditional deletion of ezrin in CD4+ cells and moesin-specific siRNA, we generated T cells lacking ERM proteins, and investigated the effect on specific events required for T cell trafficking. ERM-deficient T cells migrated normally in multiple in vitro and in vivo assays, and could undergo efficient diapedesis in vitro. However, these cells were impaired in their ability to adhere to the β1 integrin ligand fibronectin, and to polarize appropriately in response to fibronectin and VCAM-1 binding. This defect was specific for β1 integrins, as adhesion and polarization in response to ICAM-1 were normal. In vivo, ERM-deficient T cells showed defects in homing to lymphoid organs. Taken together, these results show that ERM proteins are largely dispensable for T cell chemotaxis, but are important for β1 integrin function and homing to lymphoid organs.
Collapse
Affiliation(s)
- Emily J. H. Chen
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Meredith H. Shaffer
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Edward K. Williamson
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yanping Huang
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Janis K. Burkhardt
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
49
|
Onder L, Danuser R, Scandella E, Firner S, Chai Q, Hehlgans T, Stein JV, Ludewig B. Endothelial cell-specific lymphotoxin-β receptor signaling is critical for lymph node and high endothelial venule formation. ACTA ACUST UNITED AC 2013; 210:465-73. [PMID: 23420877 PMCID: PMC3600902 DOI: 10.1084/jem.20121462] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of lymph nodes (LNs) and formation of LN stromal cell microenvironments is dependent on lymphotoxin-β receptor (LTβR) signaling. In particular, the LTβR-dependent crosstalk between mesenchymal lymphoid tissue organizer and hematopoietic lymphoid tissue inducer cells has been regarded as critical for these processes. Here, we assessed whether endothelial cell (EC)-restricted LTβR signaling impacts on LN development and the vascular LN microenvironment. Using EC-specific ablation of LTβR in mice, we found that conditionally LTβR-deficient animals failed to develop a significant proportion of their peripheral LNs. However, remnant LNs showed impaired formation of high endothelial venules (HEVs). Venules had lost their cuboidal shape, showed reduced segment length and branching points, and reduced adhesion molecule and constitutive chemokine expression. Due to the altered EC-lymphocyte interaction, homing of lymphocytes to peripheral LNs was significantly impaired. Thus, this study identifies ECs as an important LTβR-dependent lymphoid tissue organizer cell population and indicates that continuous triggering of the LTβR on LN ECs is critical for lymphocyte homeostasis.
Collapse
Affiliation(s)
- Lucas Onder
- Institute of Immunobiology, Kantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Bai Z, Cai L, Umemoto E, Takeda A, Tohya K, Komai Y, Veeraveedu PT, Hata E, Sugiura Y, Kubo A, Suematsu M, Hayasaka H, Okudaira S, Aoki J, Tanaka T, Albers HMHG, Ovaa H, Miyasaka M. Constitutive lymphocyte transmigration across the basal lamina of high endothelial venules is regulated by the autotaxin/lysophosphatidic acid axis. THE JOURNAL OF IMMUNOLOGY 2013; 190:2036-48. [PMID: 23365076 DOI: 10.4049/jimmunol.1202025] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Lymphocyte extravasation from the high endothelial venules (HEVs) of lymph nodes is crucial for the maintenance of immune homeostasis, but its molecular mechanism remains largely unknown. In this article, we report that lymphocyte transmigration across the basal lamina of the HEVs is regulated, at least in part, by autotaxin (ATX) and its end-product, lysophosphatidic acid (LPA). ATX is an HEV-associated ectoenzyme that produces LPA from lysophosphatidylcholine (LPC), which is abundant in the systemic circulation. In agreement with selective expression of ATX in HEVs, LPA was constitutively and specifically detected on HEVs. In vivo, inhibition of ATX impaired the lymphocyte extravasation from HEVs, inducing lymphocyte accumulation within the endothelial cells (ECs) and sub-EC compartment; this impairment was abrogated by LPA. In vitro, both LPA and LPC induced a marked increase in the motility of HEV ECs; LPC's effect was abrogated by ATX inhibition, whereas LPA's effect was abrogated by ATX/LPA receptor inhibition. In an in vitro transmigration assay, ATX inhibition impaired the release of lymphocytes that had migrated underneath HEV ECs, and these defects were abrogated by LPA. This effect of LPA was dependent on myosin II activity in the HEV ECs. Collectively, these results strongly suggest that HEV-associated ATX generates LPA locally; LPA, in turn, acts on HEV ECs to increase their motility, promoting dynamic lymphocyte-HEV interactions and subsequent lymphocyte transmigration across the basal lamina of HEVs at steady state.
Collapse
Affiliation(s)
- Zhongbin Bai
- Laboratory of Immunodynamics, World Premier International Research Center Initiative-Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|