1
|
Wu L, Zheng Z, Xun J, Liu L, Wang J, Zhang X, Shao Y, Shen Y, Zhang R, Zhang M, Sun M, Qi T, Wang Z, Xu S, Song W, Tang Y, Zhao B, Song Z, Routy JP, Lu H, Chen J. Anti-PD-L1 antibody ASC22 in combination with a histone deacetylase inhibitor chidamide as a "shock and kill" strategy for ART-free virological control: a phase II single-arm study. Signal Transduct Target Ther 2024; 9:231. [PMID: 39245675 PMCID: PMC11381521 DOI: 10.1038/s41392-024-01943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/07/2024] [Accepted: 08/04/2024] [Indexed: 09/10/2024] Open
Abstract
The combination of ASC22, an anti-PD-L1 antibody potentially enhancing HIV-specific immunity and chidamide, a HIV latency reversal agent, may serve as a strategy for antiretroviral therapy-free virological control for HIV. People living with HIV, having achieved virological suppression, were enrolled to receive ASC22 and chidamide treatment in addition to their antiretroviral therapy. Participants were monitored over 24 weeks to measure changes in viral dynamics and the function of HIV-specific CD8+ T cells (NCT05129189). 15 participants completed the study. At week 8, CA HIV RNA levels showed a significant increase from baseline, and the values returned to baseline after discontinuing ASC22 and chidamide. The total HIV DNA was only transiently increased at week 4 (P = 0.014). In contrast, integrated HIV DNA did not significantly differ from baseline. Increases in the proportions of effector memory CD4+ and CD8+ T cells (TEM) were observed from baseline to week 24 (P = 0.034 and P = 0.002, respectively). The combination treatment did not succeed in enhancing the function of HIV Gag/Pol- specific CD8+ T cells. Nevertheless, at week 8, a negative correlation was identified between the proportions of HIV Gag-specific TEM cells and alterations in integrated DNA in the T cell function improved group (P = 0.042 and P = 0.034, respectively). Nine adverse events were solicited, all of which were graded 1 and resolved spontaneously. The combined treatment of ASC22 and chidamide was demonstrated to be well-tolerated and effective in activating latent HIV reservoirs. Further investigations are warranted in the context of analytic treatment interruption.
Collapse
Affiliation(s)
- Luling Wu
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhihang Zheng
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Jingna Xun
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Liu
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jiangrong Wang
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xinyu Zhang
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yueming Shao
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yinzhong Shen
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Renfang Zhang
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min Zhang
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Meiyan Sun
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tangkai Qi
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhenyan Wang
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuibao Xu
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wei Song
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yang Tang
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Bihe Zhao
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zichen Song
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jean-Pierre Routy
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Hongzhou Lu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
- Department of Infectious Diseases and Nursing Research Institution, National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen, Guangdong, China.
| | - Jun Chen
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Ji M, Hu J, Zhang D, Huang B, Xu S, Jiang N, Chen Y, Wang Y, Wu X, Wu Z. Inhibition of SFTSV replication in humanized mice by a subcutaneously administered anti-PD1 nanobody. EMBO Mol Med 2024; 16:575-595. [PMID: 38366162 PMCID: PMC10940662 DOI: 10.1038/s44321-024-00026-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/18/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a life-threatening disease caused by a novel bunyavirus (SFTSV), mainly transmitted by ticks. With no effective therapies or vaccines available, understanding the disease's mechanisms is crucial. Recent studies found increased expression of programmed cell death-1 (PD-1) on dysfunctional T cells in SFTS patients. However, the role of the PD-1/programmed cell death-ligand 1 (PD-L1) pathway in SFTS progression remains unclear. We investigated PD-1 blockade as a potential therapeutic strategy against SFTSV replication. Our study analyzed clinical samples and performed in vitro experiments, revealing elevated PD-1/PD-L1 expression in various immune cells following SFTSV infection. An anti-PD-1 nanobody, NbP45, effectively inhibited SFTSV infection in peripheral blood mononuclear cells (PBMCs), potentially achieved through the mitigation of apoptosis and the augmentation of T lymphocyte proliferation. Intriguingly, subcutaneous administration of NbP45 showed superior efficacy compared to a licensed anti-PD-1 antibody in an SFTSV-infected humanized mouse model. These findings highlight the involvement of the PD-1/PD-L1 pathway during acute SFTSV infection and suggest its potential as a host target for immunotherapy interventions against SFTSV infection.
Collapse
Affiliation(s)
- Mengmeng Ji
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Jiaqian Hu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Doudou Zhang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Bilian Huang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Shijie Xu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
- Y-Clone Medical Science Co. Ltd., Suzhou, China
| | - Na Jiang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China.
| | - Yujiong Wang
- School of Life Sciences, Ningxia University, Yinchuan, China.
| | - Xilin Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China.
| | - Zhiwei Wu
- School of Life Sciences, Ningxia University, Yinchuan, China.
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China.
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Mu W, Patankar V, Kitchen S, Zhen A. Examining Chronic Inflammation, Immune Metabolism, and T Cell Dysfunction in HIV Infection. Viruses 2024; 16:219. [PMID: 38399994 PMCID: PMC10893210 DOI: 10.3390/v16020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Chronic Human Immunodeficiency Virus (HIV) infection remains a significant challenge to global public health. Despite advances in antiretroviral therapy (ART), which has transformed HIV infection from a fatal disease into a manageable chronic condition, a definitive cure remains elusive. One of the key features of HIV infection is chronic immune activation and inflammation, which are strongly associated with, and predictive of, HIV disease progression, even in patients successfully treated with suppressive ART. Chronic inflammation is characterized by persistent inflammation, immune cell metabolic dysregulation, and cellular exhaustion and dysfunction. This review aims to summarize current knowledge of the interplay between chronic inflammation, immune metabolism, and T cell dysfunction in HIV infection, and also discusses the use of humanized mice models to study HIV immune pathogenesis and develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Wenli Mu
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Vaibhavi Patankar
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Scott Kitchen
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Anjie Zhen
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Bjorgen JC, Dick JK, Cromarty R, Hart GT, Rhein J. NK cell subsets and dysfunction during viral infection: a new avenue for therapeutics? Front Immunol 2023; 14:1267774. [PMID: 37928543 PMCID: PMC10620977 DOI: 10.3389/fimmu.2023.1267774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
In the setting of viral challenge, natural killer (NK) cells play an important role as an early immune responder against infection. During this response, significant changes in the NK cell population occur, particularly in terms of their frequency, location, and subtype prevalence. In this review, changes in the NK cell repertoire associated with several pathogenic viral infections are summarized, with a particular focus placed on changes that contribute to NK cell dysregulation in these settings. This dysregulation, in turn, can contribute to host pathology either by causing NK cells to be hyperresponsive or hyporesponsive. Hyperresponsive NK cells mediate significant host cell death and contribute to generating a hyperinflammatory environment. Hyporesponsive NK cell populations shift toward exhaustion and often fail to limit viral pathogenesis, possibly enabling viral persistence. Several emerging therapeutic approaches aimed at addressing NK cell dysregulation have arisen in the last three decades in the setting of cancer and may prove to hold promise in treating viral diseases. However, the application of such therapeutics to treat viral infections remains critically underexplored. This review briefly explores several therapeutic approaches, including the administration of TGF-β inhibitors, immune checkpoint inhibitors, adoptive NK cell therapies, CAR NK cells, and NK cell engagers among other therapeutics.
Collapse
Affiliation(s)
- Jacob C. Bjorgen
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jenna K. Dick
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Ross Cromarty
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Geoffrey T. Hart
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Joshua Rhein
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
5
|
Xie L, Fang J, Yu J, Zhang W, He Z, Ye L, Wang H. The role of CD4 + T cells in tumor and chronic viral immune responses. MedComm (Beijing) 2023; 4:e390. [PMID: 37829505 PMCID: PMC10565399 DOI: 10.1002/mco2.390] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Immunotherapies are mainly aimed to promote a CD8+ T cell response rather than a CD4+ T cell response as cytotoxic T lymphocytes (CTLs) can directly kill target cells. Recently, CD4+ T cells have received more attention due to their diverse roles in tumors and chronic viral infections. In antitumor and antichronic viral responses, CD4+ T cells relay help signals through dendritic cells to indirectly regulate CD8+ T cell response, interact with B cells or macrophages to indirectly modulate humoral immunity or macrophage polarization, and inhibit tumor blood vessel formation. Additionally, CD4+ T cells can also exhibit direct cytotoxicity toward target cells. However, regulatory T cells exhibit immunosuppression and CD4+ T cells become exhausted, which promote tumor progression and chronic viral persistence. Finally, we also outline immunotherapies based on CD4+ T cells, including adoptive cell transfer, vaccines, and immune checkpoint blockade. Overall, this review summarizes diverse roles of CD4+ T cells in the antitumor or protumor and chronic viral responses, and also highlights the immunotherapies based on CD4+ T cells, giving a better understanding of their roles in tumors and chronic viral infections.
Collapse
Affiliation(s)
- Luoyingzi Xie
- Institute of Hepatopancreatobiliary SurgeryChongqing General HospitalChongqingChina
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Jingyi Fang
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Juncheng Yu
- Department of Thoracic SurgeryXinqiao Hospital Third Military Medical University (Army Medical University)ChongqingChina
| | - Weinan Zhang
- Department of Plastic & Cosmetic SurgeryArmy Medical Center of PLAAmy Medical UniversityChongqingChina
| | - Zhiqiang He
- Department of Plastic & Cosmetic SurgeryArmy Medical Center of PLAAmy Medical UniversityChongqingChina
| | - Lilin Ye
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary SurgeryChongqing General HospitalChongqingChina
| |
Collapse
|
6
|
Li S, Hao L, Zhang J, Deng J, Hu X. Focus on T cell exhaustion: new advances in traditional Chinese medicine in infection and cancer. Chin Med 2023; 18:76. [PMID: 37355637 DOI: 10.1186/s13020-023-00785-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023] Open
Abstract
In chronic infections and cancers, T lymphocytes (T cells) are exposed to persistent antigen or inflammatory signals. The condition is often associated with a decline in T-cell function: a state called "exhaustion". T cell exhaustion is a state of T cell dysfunction characterized by increased expression of a series of inhibitory receptors (IRs), decreased effector function, and decreased cytokine secretion, accompanied by transcriptional and epigenetic changes and metabolic defects. The rise of immunotherapy, particularly the use of immune checkpoint inhibitors (ICIs), has dramatically changed the clinical treatment paradigm for patients. However, its low response rate, single target and high immunotoxicity limit its clinical application. The multiple immunomodulatory potential of traditional Chinese medicine (TCM) provides a new direction for improving the treatment of T cell exhaustion. Here, we review recent advances that have provided a clearer molecular understanding of T cell exhaustion, revealing the characteristics and causes of T cell exhaustion in persistent infections and cancers. In addition, this paper summarizes recent advances in improving T cell exhaustion in infectious diseases and cancer with the aim of providing a comprehensive and valuable source of information on TCM as an experimental study and their role in collaboration with ICIs therapy.
Collapse
Affiliation(s)
- Shenghao Li
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-Er-Qiao Road, Chengdu, 610075, Sichuan Province, People's Republic of China
| | - Liyuan Hao
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-Er-Qiao Road, Chengdu, 610075, Sichuan Province, People's Republic of China
| | - Junli Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-Er-Qiao Road, Chengdu, 610075, Sichuan Province, People's Republic of China
| | - Jiali Deng
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-Er-Qiao Road, Chengdu, 610075, Sichuan Province, People's Republic of China
| | - Xiaoyu Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China.
| |
Collapse
|
7
|
Smith DM, Schafer JR, Tullius B, Witkam L, Paust S. Natural killer cells for antiviral therapy. Sci Transl Med 2023; 15:eabl5278. [PMID: 36599006 DOI: 10.1126/scitranslmed.abl5278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Natural killer (NK) cell-based immunotherapy is being explored for treating infectious diseases, including viral infections. Here, we discuss evidence of NK cell responses to different viruses, ongoing clinical efforts to treat such infections with NK cell products, and review platforms to generate NK cell products.
Collapse
Affiliation(s)
- Davey M Smith
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | - Laura Witkam
- Kiadis Pharma, Sanofi, 1105BP Amsterdam, Netherlands
| | - Silke Paust
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
8
|
Bonavida V, Frame M, Nguyen KH, Rajurkar S, Venketaraman V. Mycobacterium tuberculosis: Implications of Ageing on Infection and Maintaining Protection in the Elderly. Vaccines (Basel) 2022; 10:1892. [PMID: 36366400 PMCID: PMC9693366 DOI: 10.3390/vaccines10111892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 09/10/2024] Open
Abstract
Several reports have suggested that ageing negatively affects the human body resulting in the alteration of various parameters important for sufficient immune health. Although, the breakdown of innate and adaptive immunity has been hypothesized to increase an individual's susceptibility to infections including Mycobacteria tuberculosis (M. tb), little research has been done to bridge this gap and understand the pathophysiology underlying how ageing increases the pathogenesis of M. tb infection. Our objective was to study research from a plethora of resources to better understand the pathogenesis of ageing and its link to the human immune system. To achieve this goal, this article explores how ageing decreases the collective T-cell immune response, reduces glutathione (GSH) production, over activates the mammalian target of rapamycin (mTORC1) pathway, inhibits autophagy and mitophagy, and alters various protective genes/transcription factors. Specifically highlighting how each of these pathways cripple an individual's immune system and increases their susceptibility from M. tb infection. Furthermore, research summarized in this article gives rise to an additional mechanism of susceptibility to M. tb infection which includes a potential defect in antigen presenting by dendritic cells rather than the T-cells response. Inflammaging has also been shown to play a role in the ageing of the immune system and can also potentially be a driving factor for increased susceptibility to M. tb infection in the elderly. In addition, this article features possible preventative strategies that could decrease infections like M. tb in this population. These strategies would need to be further explored and range from immunomodulators, like Everolimus to antioxidant supplementation through GSH intake. We have also proposed the need to research these therapies in conjunction with the administration of the BCG vaccine, especially in endemic populations, to better understand the risk contracting M. tb infection as well as ways to prevent infection in the first place.
Collapse
Affiliation(s)
- Victor Bonavida
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Mitchell Frame
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Kevin H. Nguyen
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Shlok Rajurkar
- Division of Biological Sciences, University California Berkeley, Berkeley, CA 94720, USA
| | - Vishwanath Venketaraman
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
9
|
Chen X, Jia L, Zhang X, Zhang T, Zhang Y. One arrow for two targets: potential co-treatment regimens for lymphoma and HIV. Blood Rev 2022; 55:100965. [DOI: 10.1016/j.blre.2022.100965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 12/27/2022]
|
10
|
Timofeeva A, Sedykh S, Nevinsky G. Post-Immune Antibodies in HIV-1 Infection in the Context of Vaccine Development: A Variety of Biological Functions and Catalytic Activities. Vaccines (Basel) 2022; 10:384. [PMID: 35335016 PMCID: PMC8955465 DOI: 10.3390/vaccines10030384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
Unlike many other viruses, HIV-1 is highly variable. The structure of the viral envelope changes as the infection progresses and is one of the biggest obstacles in developing an HIV-1 vaccine. HIV-1 infection can cause the production of various natural autoantibodies, including catalytic antibodies hydrolyzing DNA, myelin basic protein, histones, HIV-integrase, HIV-reverse transcriptase, β-casein, serum albumin, and some other natural substrates. Currently, there are various directions for the development of HIV-1 vaccines: stimulation of the immune response on the mucous membranes; induction of cytotoxic T cells, which lyse infected cells and hold back HIV-infection; immunization with recombinant Env proteins or vectors encoding Env; mRNA-based vaccines and some others. However, despite many attempts to develop an HIV-1 vaccine, none have been successful. Here we review the entire spectrum of antibodies found in HIV-infected patients, including neutralizing antibodies specific to various viral epitopes, as well as antibodies formed against various autoantigens, catalytic antibodies against autoantigens, and some viral proteins. We consider various promising targets for developing a vaccine that will not produce unwanted antibodies in vaccinated patients. In addition, we review common problems in the development of a vaccine against HIV-1.
Collapse
Affiliation(s)
- Anna Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (S.S.); (G.N.)
| | - Sergey Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (S.S.); (G.N.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Georgy Nevinsky
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (S.S.); (G.N.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
11
|
Kleinman AJ, Pandrea I, Apetrei C. So Pathogenic or So What?-A Brief Overview of SIV Pathogenesis with an Emphasis on Cure Research. Viruses 2022; 14:135. [PMID: 35062339 PMCID: PMC8781889 DOI: 10.3390/v14010135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/10/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023] Open
Abstract
HIV infection requires lifelong antiretroviral therapy (ART) to control disease progression. Although ART has greatly extended the life expectancy of persons living with HIV (PWH), PWH nonetheless suffer from an increase in AIDS-related and non-AIDS related comorbidities resulting from HIV pathogenesis. Thus, an HIV cure is imperative to improve the quality of life of PWH. In this review, we discuss the origins of various SIV strains utilized in cure and comorbidity research as well as their respective animal species used. We briefly detail the life cycle of HIV and describe the pathogenesis of HIV/SIV and the integral role of chronic immune activation and inflammation on disease progression and comorbidities, with comparisons between pathogenic infections and nonpathogenic infections that occur in natural hosts of SIVs. We further discuss the various HIV cure strategies being explored with an emphasis on immunological therapies and "shock and kill".
Collapse
Affiliation(s)
- Adam J. Kleinman
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Ivona Pandrea
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| |
Collapse
|
12
|
Barnova M, Bobcakova A, Urdova V, Kosturiak R, Kapustova L, Dobrota D, Jesenak M. Inhibitory immune checkpoint molecules and exhaustion of T cells in COVID-19. Physiol Res 2021; 70:S227-S247. [PMID: 34913354 DOI: 10.33549/physiolres.934757] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
COVID-19 (Coronavirus Disease) is an infectious disease caused by the coronavirus SARS-CoV-2 (Severe acute respiratory syndrome Coronavirus 2), which belongs to the genus Betacoronavirus. It was first identified in patients with severe respiratory disease in December 2019 in Wuhan, China. It mainly affects the respiratory system, and in severe cases causes serious lung infection or pneumonia, which can lead to the death of the patient. Clinical studies show that SARS-CoV-2 infection in critical cases causes acute tissue damage due to a pathological immune response. The immune response to a new coronavirus is complex and involves many processes of specific and non-specific immunity. Analysis of available studies has shown various changes, especially in the area of specific cellular immunity, including lymphopenia, decreased T cells (CD3+, CD4+ and CD8+), changes in the T cell compartment associated with symptom progression, deterioration of the condition and development of lung damage. We provide a detailed review of the analyses of immune checkpoint molecules PD-1, TIM-3, LAG-3 CTLA-4, TIGIT, BTLA, CD223, IDO-1 and VISTA on exhausted T cells in patients with asymptomatic to symptomatic stages of COVID-19 infection. Furthermore, this review may help to better understand the pathological T cell immune response and improve the design of therapeutic strategies for patients with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- M Barnova
- Clinic of Pneumology and Phthisiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic. and Clinic of Pneumology and Phthisiology, Clinic of Paediatrics, Department of Clinical Immunology and Allergology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic.
| | | | | | | | | | | | | |
Collapse
|
13
|
Li Q, Huang Z, Peng Y, Wang X, Jiang G, Wang T, Mou K, Feng W. RanBP3 Regulates Proliferation, Apoptosis and Chemosensitivity of Chronic Myeloid Leukemia Cells via Mediating SMAD2/3 and ERK1/2 Nuclear Transport. Front Oncol 2021; 11:698410. [PMID: 34504783 PMCID: PMC8421687 DOI: 10.3389/fonc.2021.698410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
Abnormal subcellular localization of proteins is an important cause of tumorigenesis and drug resistance. Chromosome region maintenance 1 (CRM1), the nuclear export regulator of most proteins, has been confirmed to be over-expressed in various malignancies and is regarded as an efficient target. But the potential role of the CRM1 cofactor RanBP3 (Ran Binding Protein 3) is left unrevealed in chronic myeloid leukemia (CML). Here, we first detected the level of RanBP3 in CML and found an elevated RanBP3 expression in CML compared with control. Then we used shRNA lentivirus to down-regulated RanBP3 in imatinib sensitive K562 cells and resistant K562/G01 cells and found RanBP3 silencing inhibited cell proliferation by up-regulating p21, induced caspase3-related cell apoptosis, and enhanced the drug sensitivity of IM in vitro. Notably, we observed that RanBP3 silencing restored imatinib sensitivity of K562 cells in NOD/SCID mice. Mechanistically, the nuclear aggregation of SMAD2/3 revealed that tumor suppressor axis (TGF-β)-SMAD2/3-p21 was the anti-proliferation program related to RanBP3 knockdown, and the decrease of cytoplasmic ERK1/2 caused by RanBP3 interference leaded to the down-regulation of anti-apoptosis protein p(Ser112)-BAD, which was the mechanism of increased cell apoptosis and enhanced chemosensitivity to imatinib in CML. In summary, this study revealed the expression and potential role of RanBP3 in CML, suggesting that targeting RanBP3 alone or combined with TKIs could improve the clinical response of CML.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Department of Clinical Hematology, Chongqing Medical University, Chongqing, China
| | - Zhenglan Huang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Department of Clinical Hematology, Chongqing Medical University, Chongqing, China
| | - Yuhang Peng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Department of Clinical Hematology, Chongqing Medical University, Chongqing, China
| | - Xin Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guoyun Jiang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Department of Clinical Hematology, Chongqing Medical University, Chongqing, China
| | - Teng Wang
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ke Mou
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Department of Clinical Hematology, Chongqing Medical University, Chongqing, China
| | - Wenli Feng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Department of Clinical Hematology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Liu Y, Wu C, Chen N, Li Y, Fan C, Zhao S, Bai T, Zhao Z, Chen J, Su S, Zhang Z, Zhou Y, Zhu Z. PD-1 Blockade Restores the Proliferation of Peripheral Blood Lymphocyte and Inhibits Lymphocyte Apoptosis in a BALB/c Mouse Model of CP BVDV Acute Infection. Front Immunol 2021; 12:727254. [PMID: 34552590 PMCID: PMC8450576 DOI: 10.3389/fimmu.2021.727254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/19/2021] [Indexed: 01/08/2023] Open
Abstract
Acute infection of bovine viral diarrhea virus (BVDV) is associated with immune dysfunction and can cause peripheral blood lymphopenia and lymphocyte apoptosis. Our previous study has confirmed that programmed death-1 (PD-1) blockade inhibits peripheral blood lymphocytes (PBL) apoptosis and restores proliferation and anti-viral immune functions of lymphocytes after BVDV infection in vitro. However, the situation in vivo remains to be further studied and confirmed. Therefore, in this study, we established a BALB/c mouse model of acute BVDV infection with cytopathic (CP) BVDV (strain NADL) and non-cytopathic (NCP) BVDV (strain NY-1). Then, we examined the mRNA and protein levels of PD-1 and programmed death-ligand 1 (PD-L1) in peripheral blood mononuclear cells (PBMC) from BVDV-infected mice and analyzed the effects of PD-1 blockade on the proportions of CD3+, CD4+, and CD8+ T cell subsets, the apoptosis and proliferation of PBL, and the production of IL-2 and IFN-γ. We found that leukopenia, lymphocytopenia, and thrombocytopenia were developed in both CP and NCP BVDV-infected mice at day 7 of post-infection. The mRNA and protein expression of PD-1 and PD-L1 were significantly upregulated in CP and NCP BVDV-infected mice. Moreover, PD-1/PD-L1 upregulation was accompanied by leukopenia and lymphopenia. Additionally, PD-1 blockade inhibited PBL apoptosis and virus replication, restored the proportions of CD3+, CD4+, and CD8+ T cell subsets, and increased IFN-γ production and p-ERK expression in BVDV-infected mice. However, blocking PD-1 did not significantly affect PBL proliferation and IL-2 production in NCP BVDV-infected mice. Our findings further confirmed the immunomodulatory role of PD-1 in peripheral blood lymphocytopenia in vivo and provided a scientific basis for exploring the molecular mechanism of immune dysfunction caused by acute BVDV infection.
Collapse
Affiliation(s)
- Yu Liu
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
- Heilongjiang Provincial Engineering Research Center for Prevention and Control of Cattle Diseases, HeiLongJiang BaYi Agricultural University, Daqing, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Chenhua Wu
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Nannan Chen
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Yang Li
- Heilongjiang Provincial Engineering Research Center for Prevention and Control of Cattle Diseases, HeiLongJiang BaYi Agricultural University, Daqing, China
- College of Engineering, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Chunling Fan
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Shangqi Zhao
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Tongtong Bai
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Zhibo Zhao
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Jinwei Chen
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Siyu Su
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Zecai Zhang
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
- Heilongjiang Provincial Engineering Research Center for Prevention and Control of Cattle Diseases, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Yulong Zhou
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
- Heilongjiang Provincial Engineering Research Center for Prevention and Control of Cattle Diseases, HeiLongJiang BaYi Agricultural University, Daqing, China
| | - Zhanbo Zhu
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, China
- Heilongjiang Provincial Engineering Research Center for Prevention and Control of Cattle Diseases, HeiLongJiang BaYi Agricultural University, Daqing, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, HeiLongJiang BaYi Agricultural University, Daqing, China
- Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, HeiLongJiang BaYi Agricultural University, Daqing, China
| |
Collapse
|
15
|
Ganesh GV, Mohanram RK. Metabolic reprogramming and immune regulation in viral diseases. Rev Med Virol 2021; 32:e2268. [PMID: 34176174 DOI: 10.1002/rmv.2268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022]
Abstract
The recent outbreak and transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide and the ensuing coronavirus disease 2019 (COVID-19) pandemic has left us scrambling for ways to contain the disease and develop vaccines that are safe and effective. Equally important, understanding the impact of the virus on the host system in convalescent patients, healthy otherwise or with co-morbidities, is expected to aid in developing effective strategies in the management of patients afflicted with the disease. Viruses possess the uncanny ability to redirect host metabolism to serve their needs and also limit host immune response to ensure their survival. An ever-increasingly powerful approach uses metabolomics to uncover diverse molecular signatures that influence a wide array of host signalling networks in different viral infections. This would also help integrate experimental findings from individual studies to yield robust evidence. In addition, unravelling the molecular mechanisms harnessed by both viruses and tumours in their host metabolism will help broaden the repertoire of therapeutic tools available to combat viral disease.
Collapse
Affiliation(s)
- Goutham V Ganesh
- Life Science Division, SRM Research Institute and Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, India
| | - Ramkumar K Mohanram
- Life Science Division, SRM Research Institute and Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
16
|
Jalili-Nik M, Soltani A, Mashkani B, Rafatpanah H, Hashemy SI. PD-1 and PD-L1 inhibitors foster the progression of adult T-cell Leukemia/Lymphoma. Int Immunopharmacol 2021; 98:107870. [PMID: 34153661 DOI: 10.1016/j.intimp.2021.107870] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022]
Abstract
Immunotherapy through immune checkpoints blockade and its subsequent clinical application has revolutionized the treatment of a spectrum of solid tumors. Blockade of Programmed cell death protein-1 and its ligand has shown promising results in clinical studies. The clinical trials that enrolled patients with different hematopoietic malignancies including non-Hodgkin lymphoma, Hodgkin lymphoma, and acute myeloid leukemia (AML) showed that anti-PD-1 agents could have potential therapeutic effects in the patients. Adult T-cell leukemia/lymphoma (ATLL) is a non-Hodgkin T-cell Lymphoma that is developed in a minority of HTLV-1-infected individuals after a long latency period. The inhibition of PD-1 as a treatment option is currently being investigated in ATLL patients. In this review, we present a summary of the biology of the PD-1/PD-L1 pathway, the evidence in the literature to support anti-PD-1/PDL-1 application in the treatment of different lymphoid, myeloid, and virus-related hematological malignancies, and controversies related to PD-1/PD-L1 blocking in the management of ATLL patients.
Collapse
Affiliation(s)
- Mohammad Jalili-Nik
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Soltani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Baratali Mashkani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Isaac Hashemy
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Terahara K, Iwabuchi R, Tsunetsugu-Yokota Y. Perspectives on Non-BLT Humanized Mouse Models for Studying HIV Pathogenesis and Therapy. Viruses 2021; 13:v13050776. [PMID: 33924786 PMCID: PMC8145733 DOI: 10.3390/v13050776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
A variety of humanized mice, which are reconstituted only with human hematopoietic stem cells (HSC) or with fetal thymus and HSCs, have been developed and widely utilized as in vivo animal models of HIV-1 infection. The models represent some aspects of HIV-mediated pathogenesis in humans and are useful for the evaluation of therapeutic regimens. However, there are several limitations in these models, including their incomplete immune responses and poor distribution of human cells to the secondary lymphoid tissues. These limitations are common in many humanized mouse models and are critical issues that need to be addressed. As distinct defects exist in each model, we need to be cautious about the experimental design and interpretation of the outcomes obtained using humanized mice. Considering this point, we mainly characterize the current conventional humanized mouse reconstituted only with HSCs and describe past achievements in this area, as well as the potential contributions of the humanized mouse models for the study of HIV pathogenesis and therapy. We also discuss the use of various technologies to solve the current problems. Humanized mice will contribute not only to the pre-clinical evaluation of anti-HIV regimens, but also to a deeper understanding of basic aspects of HIV biology.
Collapse
Affiliation(s)
- Kazutaka Terahara
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.T.); (R.I.)
| | - Ryutaro Iwabuchi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.T.); (R.I.)
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo 162-8480, Japan
| | - Yasuko Tsunetsugu-Yokota
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.T.); (R.I.)
- Department of Medical Technology, School of Human Sciences, Tokyo University of Technology, Tokyo 144-8535, Japan
- Correspondence: or ; Tel.: +81-3-6424-2223
| |
Collapse
|
18
|
Nguyen LNT, Nguyen LN, Zhao J, Schank M, Dang X, Cao D, Khanal S, Chand Thakuri BK, Lu Z, Zhang J, Li Z, Morrison ZD, Wu XY, El Gazzar M, Ning S, Wang L, Moorman JP, Yao ZQ. Long Non-coding RNA GAS5 Regulates T Cell Functions via miR21-Mediated Signaling in People Living With HIV. Front Immunol 2021; 12:601298. [PMID: 33776993 PMCID: PMC7994762 DOI: 10.3389/fimmu.2021.601298] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/18/2021] [Indexed: 12/17/2022] Open
Abstract
T cells are critical for the control of viral infections and T cell responses are regulated by a dynamic network of non-coding RNAs, including microRNAs (miR) and long non-coding RNAs (lncRNA). Here we show that an activation-induced decline of lncRNA growth arrest-specific transcript 5 (GAS5) activates DNA damage response (DDR), and regulates cellular functions and apoptosis in CD4 T cells derived from people living with HIV (PLHIV) via upregulation of miR-21. Notably, GAS5-miR21-mediated DDR and T cell dysfunction are observed in PLHIV on antiretroviral therapy (ART), who often exhibit immune activation due to low-grade inflammation despite robust virologic control. We found that GAS5 negatively regulates miR-21 expression, which in turn controls critical signaling pathways involved in DNA damage and cellular response. The sustained stimulation of T cells decreased GAS5, increased miR-21 and, as a result, caused dysfunction and apoptosis in CD4 T cells. Importantly, this inflammation-driven T cell over-activation and aberrant apoptosis in ART-controlled PLHIV and healthy subjects (HS) could be reversed by antagonizing the GAS5-miR-21 axis. Also, mutation of the miR-21 binding site on exon 4 of GAS5 gene to generate a GAS5 mutant abolished its ability to regulate miR-21 expression as well as T cell activation and apoptosis markers compared to the wild-type GAS5 transcript. Our data suggest that GAS5 regulates TCR-mediated activation and apoptosis in CD4 T cells during HIV infection through miR-21-mediated signaling. However, GAS5 effects on T cell exhaustion during HIV infection may be mediated by a mechanism beyond the GAS5-miR-21-mediated signaling. These results indicate that targeting the GAS5-miR-21 axis may improve activity and longevity of CD4 T cells in ART-treated PLHIV. This approach may also be useful for targeting other infectious or inflammatory diseases associated with T cell over-activation, exhaustion, and premature immune aging.
Collapse
Affiliation(s)
- Lam Ngoc Thao Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Lam Nhat Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Madison Schank
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Xindi Dang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Dechao Cao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Sushant Khanal
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Bal Krishna Chand Thakuri
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Zeyuan Lu
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Jinyu Zhang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Zhengke Li
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Zheng D. Morrison
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Xiao Y. Wu
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Mohamed El Gazzar
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Shunbin Ning
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Ling Wang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Jonathan P. Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
- Hepatitis C Virus/Hepatitis B Virus/Human Immunodeficiency Virus (HCV/HBV/HIV) Program, Department of Veterans Affairs, James H. Quillen VA Medical Center, Johnson City, TN, United States
| | - Zhi Q. Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
- Hepatitis C Virus/Hepatitis B Virus/Human Immunodeficiency Virus (HCV/HBV/HIV) Program, Department of Veterans Affairs, James H. Quillen VA Medical Center, Johnson City, TN, United States
| |
Collapse
|
19
|
Nandi D, Pathak S, Verma T, Singh M, Chattopadhyay A, Thakur S, Raghavan A, Gokhroo A, Vijayamahantesh. T cell costimulation, checkpoint inhibitors and anti-tumor therapy. J Biosci 2021. [PMID: 32345776 DOI: 10.1007/s12038-020-0020-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hallmarks of the adaptive immune response are specificity and memory. The cellular response is mediated by T cells which express cell surface T cell receptors (TCRs) that recognize peptide antigens in complex with major histocompatibility complex (MHC) molecules on antigen presenting cells (APCs). However, binding of cognate TCRs with MHC-peptide complexes alone (signal 1) does not trigger optimal T cell activation. In addition to signal 1, the binding of positive and negative costimulatory receptors to their ligands modulates T cell activation. This complex signaling network prevents aberrant activation of T cells. CD28 is the main positive costimulatory receptor on naı¨ve T cells; upon activation, CTLA4 is induced but reduces T cell activation. Further studies led to the identification of additional negative costimulatory receptors known as checkpoints, e.g. PD1. This review chronicles the basic studies in T cell costimulation that led to the discovery of checkpoint inhibitors, i.e. antibodies to negative costimulatory receptors (e.g. CTLA4 and PD1) which reduce tumor growth. This discovery has been recognized with the award of the 2018 Nobel prize in Physiology/Medicine. This review highlights the structural and functional roles of costimulatory receptors, the mechanisms by which checkpoint inhibitors work, the challenges encountered and future prospects.
Collapse
Affiliation(s)
- Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560 012, India
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Horn C, Augustin M, Ercanoglu MS, Heger E, Knops E, Bondet V, Duffy D, Chon SH, Nierhoff D, Oette M, Schäfer H, Vivaldi C, Held K, Anderson J, Geldmacher C, Suárez I, Rybniker J, Klein F, Fätkenheuer G, Müller-Trutwin M, Lehmann C. HIV DNA reservoir and elevated PD-1 expression of CD4 T-cell subsets particularly persist in the terminal ileum of HIV-positive patients despite cART. HIV Med 2021; 22:397-408. [PMID: 33421299 DOI: 10.1111/hiv.13031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 08/23/2020] [Accepted: 11/04/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Despite its importance as an HIV anatomic sanctuary, little is known about the characteristics of the HIV reservoir in the terminal ileum (TI). In blood, the immune checkpoint inhibitor programmed-death-1 (PD-1) has been linked to the HIV reservoir and T-cell immune dysfunction. We thus evaluated PD-1 expression and cell-associated HIV DNA in memory CD4 T-cell subsets from TI, peripheral blood (PB) and rectum (RE) of untreated and treated HIV-positive patients to identify associations between PD-1 and HIV reservoir in other sites. METHODS Using mononuclear cells from PB, TI and RE of untreated HIV-positive (N = 6), treated (n = 18) HIV-positive and uninfected individuals (n = 16), we identified and sorted distinct memory CD4 T-cell subsets by flow cytometry, quantified their cell-associated HIV DNA using quantitative PCR and assessed PD-1 expression levels using geometric mean fluorescence intensity. Combined HIV-1 RNA in situ hybridization and immunohistochemistry was performed on ileal biopsy sections. RESULTS Combined antiretroviral therapy (cART)-treated patients with undetectable HIV RNA and significantly lower levels of HIV DNA in PB showed particularly high PD-1 expression in PB and TI, and high HIV DNA levels in TI, irrespective of clinical characteristics. By contrast, in treatment-naïve patients HIV DNA levels in memory CD4 T-cell subsets were high in PB and TI. CONCLUSION Elevated PD-1 expression on memory CD4 T-cells in PB and TI despite treatment points to continuous immune dysfunction and underlines the importance of evaluating immunotherapy in reversing HIV latency and T-cell reconstitution. As HIV DNA particularly persists in TI despite cART, investigating samples from TI is crucial in understanding HIV immunopathogenesis.
Collapse
Affiliation(s)
- C Horn
- Division of Infectious Diseases, Department I of Internal Medicine, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Cologne, Germany
| | - M Augustin
- Division of Infectious Diseases, Department I of Internal Medicine, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Cologne, Germany
| | - M S Ercanoglu
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - E Heger
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - E Knops
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - V Bondet
- Immunobiology of Dendritic Cells Unit, Inserm U1223, Institut Pasteur, Paris Cedex 15, France
| | - D Duffy
- Immunobiology of Dendritic Cells Unit, Inserm U1223, Institut Pasteur, Paris Cedex 15, France
| | - S-H Chon
- Department of General, Visceral Surgery and Cancer Surgery, University Hospital Cologne, Cologne, Germany
| | - D Nierhoff
- Clinic for Gastroenterology and Hepatology, University Hospital of Cologne, Cologne, Germany
| | - M Oette
- Clinic for Coloproctology, PanKlinik, Cologne, Germany
| | - H Schäfer
- Clinic for Coloproctology, PanKlinik, Cologne, Germany
| | - C Vivaldi
- Clinic for Coloproctology, PanKlinik, Cologne, Germany
| | - K Held
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Munich, Germany
| | - J Anderson
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
| | - C Geldmacher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Munich, Germany
| | - I Suárez
- Division of Infectious Diseases, Department I of Internal Medicine, University of Cologne, Cologne, Germany
| | - J Rybniker
- Division of Infectious Diseases, Department I of Internal Medicine, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Cologne, Germany
| | - F Klein
- German Center for Infection Research (DZIF), Cologne, Germany.,Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - G Fätkenheuer
- Division of Infectious Diseases, Department I of Internal Medicine, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Cologne, Germany
| | - M Müller-Trutwin
- Unité HIV, Inflammation & Persistence, Institut Pasteur, Paris Cedex 15, France
| | - C Lehmann
- Division of Infectious Diseases, Department I of Internal Medicine, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Cologne, Germany
| |
Collapse
|
21
|
Mu W, Carrillo MA, Kitchen SG. Engineering CAR T Cells to Target the HIV Reservoir. Front Cell Infect Microbiol 2020; 10:410. [PMID: 32903563 PMCID: PMC7438537 DOI: 10.3389/fcimb.2020.00410] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022] Open
Abstract
The HIV reservoir remains to be a difficult barrier to overcome in order to achieve a therapeutic cure for HIV. Several strategies have been developed to purge the reservoir, including the “kick and kill” approach, which is based on the notion that reactivating the latent reservoir will allow subsequent elimination by the host anti-HIV immune cells. However, clinical trials testing certain classes of latency reactivating agents (LRAs) have so far revealed the minimal impact on reducing the viral reservoir. A robust immune response to reactivated HIV expressing cells is critical for this strategy to work. A current focus to enhance anti-HIV immunity is through the use of chimeric antigen receptors (CARs). Currently, HIV-specific CARs are being applied to peripheral T cells, NK cells, and stem cells to boost recognition and killing of HIV infected cells. In this review, we summarize current developments in engineering HIV directed CAR-expressing cells to facilitate HIV elimination. We also summarize current LRAs that enhance the “kick” strategy and how new generation and combinations of LRAs with HIV specific CAR T cell therapies could provide an optimal strategy to target the viral reservoir and achieve HIV clearance from the body.
Collapse
Affiliation(s)
- Wenli Mu
- Division of Hematology and Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mayra A Carrillo
- Division of Hematology and Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Scott G Kitchen
- Division of Hematology and Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
22
|
Seddiki N, Picard F, Dupaty L, Lévy Y, Godot V. The Potential of Immune Modulation in Therapeutic HIV-1 Vaccination. Vaccines (Basel) 2020; 8:vaccines8030419. [PMID: 32726934 PMCID: PMC7565497 DOI: 10.3390/vaccines8030419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
We discuss here some of the key immunological elements that are at the crossroads and need to be combined to develop a potent therapeutic HIV-1 vaccine. Therapeutic vaccines have been commonly used to enhance and/or recall pre-existing HIV-1-specific cell-mediated immune responses aiming to suppress virus replication. The current success of immune checkpoint blockers in cancer therapy renders them very attractive to use in HIV-1 infected individuals with the objective to preserve the function of HIV-1-specific T cells from exhaustion and presumably target the persistent cellular reservoir. The major latest advances in our understanding of the mechanisms responsible for virus reactivation during therapy-suppressed individuals provide the scientific basis for future combinatorial therapeutic vaccine development.
Collapse
Affiliation(s)
- Nabila Seddiki
- Inserm, U955, Equipe 16, 94000 Créteil, France; (F.P.); (L.D.); (Y.L.); (V.G.)
- Faculté de médecine, Université Paris Est, 94000 Créteil, France
- Vaccine Research Institute (VRI), 94000 Créteil, France
- INSERM U955 Equipe 16, Université Paris-Est Créteil, Vaccine Research Institute (VRI), 51, Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
- Correspondence: ; Tel.: +33-01-4981-3902; Fax: +33-01-4981-3709
| | - Florence Picard
- Inserm, U955, Equipe 16, 94000 Créteil, France; (F.P.); (L.D.); (Y.L.); (V.G.)
- Vaccine Research Institute (VRI), 94000 Créteil, France
| | - Léa Dupaty
- Inserm, U955, Equipe 16, 94000 Créteil, France; (F.P.); (L.D.); (Y.L.); (V.G.)
- Vaccine Research Institute (VRI), 94000 Créteil, France
| | - Yves Lévy
- Inserm, U955, Equipe 16, 94000 Créteil, France; (F.P.); (L.D.); (Y.L.); (V.G.)
- Faculté de médecine, Université Paris Est, 94000 Créteil, France
- Vaccine Research Institute (VRI), 94000 Créteil, France
- AP-HP Hôpital H. Mondor—A. Chenevier, Service d’Immunologie clinique et maladies infectieuses, 94010 Créteil, France
| | - Véronique Godot
- Inserm, U955, Equipe 16, 94000 Créteil, France; (F.P.); (L.D.); (Y.L.); (V.G.)
- Faculté de médecine, Université Paris Est, 94000 Créteil, France
- Vaccine Research Institute (VRI), 94000 Créteil, France
| |
Collapse
|
23
|
McHugh D, Myburgh R, Caduff N, Spohn M, Kok YL, Keller CW, Murer A, Chatterjee B, Rühl J, Engelmann C, Chijioke O, Quast I, Shilaih M, Strouvelle VP, Neumann K, Menter T, Dirnhofer S, Lam JK, Hui KF, Bredl S, Schlaepfer E, Sorce S, Zbinden A, Capaul R, Lünemann JD, Aguzzi A, Chiang AK, Kempf W, Trkola A, Metzner KJ, Manz MG, Grundhoff A, Speck RF, Münz C. EBV renders B cells susceptible to HIV-1 in humanized mice. Life Sci Alliance 2020; 3:3/8/e202000640. [PMID: 32576602 PMCID: PMC7335381 DOI: 10.26508/lsa.202000640] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022] Open
Abstract
HIV and EBV are human pathogens that cause a considerable burden to worldwide health. In combination, these viruses are linked to AIDS-associated lymphomas. We found that EBV, which transforms B cells, renders them susceptible to HIV-1 infection in a CXCR4 and CD4-dependent manner in vitro and that CXCR4-tropic HIV-1 integrates into the genome of these B cells with the same molecular profile as in autologous CD4+ T cells. In addition, we established a humanized mouse model to investigate the in vivo interactions of EBV and HIV-1 upon coinfection. The respective mice that reconstitute human immune system components upon transplantation with CD34+ human hematopoietic progenitor cells could recapitulate aspects of EBV and HIV immunobiology observed in dual-infected patients. Upon coinfection of humanized mice, EBV/HIV dual-infected B cells could be detected, but were susceptible to CD8+ T-cell-mediated immune control.
Collapse
Affiliation(s)
- Donal McHugh
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Renier Myburgh
- Department of Medical Oncology and Hematology, University and University Hospital of Zürich, Zürich, Switzerland
| | - Nicole Caduff
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Michael Spohn
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Yik Lim Kok
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zürich, Zürich, Switzerland.,Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Christian W Keller
- Neuroinflammation, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Anita Murer
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Bithi Chatterjee
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Julia Rühl
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Christine Engelmann
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Obinna Chijioke
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.,Institute of Pathology and Medical Genetics, University Hospital of Basel, Basel, Switzerland
| | - Isaak Quast
- Neuroinflammation, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Mohaned Shilaih
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zürich, Zürich, Switzerland
| | - Victoria P Strouvelle
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zürich, Zürich, Switzerland.,Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Kathrin Neumann
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zürich, Zürich, Switzerland
| | - Thomas Menter
- Institute of Pathology and Medical Genetics, University Hospital of Basel, Basel, Switzerland
| | - Stephan Dirnhofer
- Institute of Pathology and Medical Genetics, University Hospital of Basel, Basel, Switzerland
| | - Janice Kp Lam
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kwai F Hui
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
| | - Simon Bredl
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zürich, Zürich, Switzerland
| | - Erika Schlaepfer
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zürich, Zürich, Switzerland
| | - Silvia Sorce
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Andrea Zbinden
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Riccarda Capaul
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Jan D Lünemann
- Neuroinflammation, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Alan Ks Chiang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
| | - Werner Kempf
- Kempf und Pfaltz Histologische Diagnostik AG, Zürich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Karin J Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zürich, Zürich, Switzerland.,Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University and University Hospital of Zürich, Zürich, Switzerland
| | - Adam Grundhoff
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Roberto F Speck
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zürich, Zürich, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
24
|
Jubel JM, Barbati ZR, Burger C, Wirtz DC, Schildberg FA. The Role of PD-1 in Acute and Chronic Infection. Front Immunol 2020; 11:487. [PMID: 32265932 PMCID: PMC7105608 DOI: 10.3389/fimmu.2020.00487] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/03/2020] [Indexed: 12/26/2022] Open
Abstract
PD-1 as an immune checkpoint molecule down-regulates T cell activity during immune responses in order to prevent autoimmune tissue damage. In chronic infections or tumors, lasting antigen-exposure leads to permanent PD-1 expression that can limit immune-mediated clearance of pathogens or degenerated cells. Blocking PD-1 can enhance T cell function; in cancer treatment PD-1 blockade is already used as a successful therapy. However, the role of PD-1 expression and blocking in the context of acute and chronic infections is less defined. Building on its success in cancer therapy leads to the hypothesis that blocking PD-1 in infectious diseases is also beneficial in acute or chronic infections. This review will focus on the role of PD-1 expression in acute and chronic infections with virus, bacteria, and parasites, with a particular focus on recent studies regarding PD-1 blockade in infectious diseases.
Collapse
Affiliation(s)
- Jil M Jubel
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | | | - Christof Burger
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Dieter C Wirtz
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Frank A Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
25
|
Prévost J, Edgar CR, Richard J, Trothen SM, Jacob RA, Mumby MJ, Pickering S, Dubé M, Kaufmann DE, Kirchhoff F, Neil SJD, Finzi A, Dikeakos JD. HIV-1 Vpu Downregulates Tim-3 from the Surface of Infected CD4 + T Cells. J Virol 2020; 94:e01999-19. [PMID: 31941771 PMCID: PMC7081912 DOI: 10.1128/jvi.01999-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/12/2020] [Indexed: 01/26/2023] Open
Abstract
Along with other immune checkpoints, T cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) is expressed on exhausted CD4+ and CD8+ T cells and is upregulated on the surface of these cells upon infection by human immunodeficiency virus type 1 (HIV-1). Recent reports have suggested an antiviral role for Tim-3. However, the molecular determinants of HIV-1 which modulate cell surface Tim-3 levels have yet to be determined. Here, we demonstrate that HIV-1 Vpu downregulates Tim-3 from the surface of infected primary CD4+ T cells, thus attenuating HIV-1-induced upregulation of Tim-3. We also provide evidence that the transmembrane domain of Vpu is required for Tim-3 downregulation. Using immunofluorescence microscopy, we determined that Vpu is in close proximity to Tim-3 and alters its subcellular localization by directing it to Rab 5-positive (Rab 5+) vesicles and targeting it for sequestration within the trans- Golgi network (TGN). Intriguingly, Tim-3 knockdown and Tim-3 blockade increased HIV-1 replication in primary CD4+ T cells, thereby suggesting that Tim-3 expression might represent a natural immune mechanism limiting viral spread.IMPORTANCE HIV infection modulates the surface expression of Tim-3, but the molecular determinants remain poorly understood. Here, we show that HIV-1 Vpu downregulates Tim-3 from the surface of infected primary CD4+ T cells through its transmembrane domain and alters its subcellular localization. Tim-3 blockade increases HIV-1 replication, suggesting a potential negative role of this protein in viral spread that is counteracted by Vpu.
Collapse
Affiliation(s)
- Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Cassandra R Edgar
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Steven M Trothen
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Rajesh Abraham Jacob
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Mitchell J Mumby
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Suzanne Pickering
- Department of Infectious Disease, King's College London School of Life Sciences and Medicine, Guy's Hospital, London, United Kingdom
| | - Mathieu Dubé
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Stuart J D Neil
- Department of Infectious Disease, King's College London School of Life Sciences and Medicine, Guy's Hospital, London, United Kingdom
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
26
|
Bobardt M, Kuo J, Chatterji U, Wiedemann N, Vuagniaux G, Gallay P. The inhibitor of apoptosis proteins antagonist Debio 1143 promotes the PD-1 blockade-mediated HIV load reduction in blood and tissues of humanized mice. PLoS One 2020; 15:e0227715. [PMID: 31978106 PMCID: PMC6980394 DOI: 10.1371/journal.pone.0227715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/26/2019] [Indexed: 12/12/2022] Open
Abstract
The immune checkpoint programmed cell death protein 1 (PD-1) plays a major role in T cell exhaustion in cancer and chronic HIV infection. The inhibitor of apoptosis protein antagonist Debio 1143 (D1143) enhances tumor cell death and synergizes with anti-PD-1 agents to promote tumor immunity and displayed HIV latency reversal activity in vitro. We asked in this study whether D1143 would stimulate the potency of an anti-human PD-1 monoclonal antibody (mAb) to reduce HIV loads in humanized mice. Anti-PD-1 mAb treatment decreased PD-1+ CD8+ cell population by 32.3% after interruption of four weeks treatment, and D1143 co-treatment further reduced it from 32.3 to 73%. Anti-PD-1 mAb administration reduced HIV load in blood by 94%, and addition of D1143 further enhanced this reduction from 94 to 97%. D1143 also more profoundly promoted with the anti-PD-1-mediated reduction of HIV loads in all tissues analyzed including spleen (71 to 96.4%), lymph nodes (64.3 to 80%), liver (64.2 to 94.4), lung (64.3 to 80.1%) and thymic organoid (78.2 to 98.2%), achieving a >5 log reduction of HIV loads in CD4+ cells isolated from tissues 2 weeks after drug treatment interruption. Ex vivo anti-CD3/CD28 stimulation increased the ability to activate exhausted CD8+ T cells in infected mice having received in vivo anti-PD-1 treatment by 7.9-fold (5 to 39.6%), and an additional increase by 1.7-fold upon D1143 co-treatment (39.6 to 67.3%). These findings demonstrate for the first time that an inhibitor of apoptosis protein antagonist enhances in a statistically manner the effects of an immune check point inhibitor on antiviral immunity and on HIV load reduction in tissues of humanized mice, suggesting that the combination of two distinct classes of immunomodulatory agents constitutes a promising anti-HIV immunotherapeutic approach.
Collapse
Affiliation(s)
- Michael Bobardt
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Joseph Kuo
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Udayan Chatterji
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | | | | | - Philippe Gallay
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
27
|
Macatangay BJC, Gandhi RT, Jones RB, Mcmahon DK, Lalama CM, Bosch RJ, Cyktor JC, Thomas AS, Borowski L, Riddler SA, Hogg E, Stevenson E, Eron JJ, Mellors JW, Rinaldo CR. T cells with high PD-1 expression are associated with lower HIV-specific immune responses despite long-term antiretroviral therapy. AIDS 2020; 34:15-24. [PMID: 31634201 PMCID: PMC7313719 DOI: 10.1097/qad.0000000000002406] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE We evaluated frequencies of T cells with high PD-1 expression (PD-1) before and after long-term effective antiretroviral therapy (ART), and determined if frequencies on-ART correlated positively with measures of HIV persistence and negatively with HIV-specific responses. METHODS We enrolled individuals who started ART during chronic infection and had durable suppression of viremia for at least 4 years (N = 99). We assessed PD-1 T-cell frequencies at timepoints pre-ART and on-ART using flow cytometry, and evaluated how frequencies on-ART are associated with measures of HIV persistence, HIV-specific immune responses, and immune activation levels. RESULTS Pre-ART, PD-1 CD4 T cells correlated positively with viremia and negatively with CD4 T-cell count. At year 1 on-ART, %PD-1 CD4 T cells decreased but then remained stable at 4 and 6-15 years on-ART, whereas %PD-1 CD8 T cells on-ART remained similar to pre-ART. PD-1 CD4 T cells correlated positively with HIV DNA pre-ART and on-ART, and with CD4 T-cell activation on-ART. PD-1 CD4 T cells negatively correlated with HIV Gag-specific and Env-specific T-cell responses but not with CMV-specific or EBV-specific responses. PD-1 CD8 T cells trended towards a negative correlation with responses to Gag and Env, but not to CMV and EBV. CONCLUSION PD-1 T cells persist in blood despite prolonged suppression on ART, correlate with HIV DNA levels, and are associated with lower HIV-specific T-cell responses but not CMV-specific or EBV-specific responses, suggesting that these cells are HIV-specific. The findings support evaluating PD-1 blockade strategies for their effect on HIV persistence and HIV-specific immunity.
Collapse
Affiliation(s)
- Bernard J C Macatangay
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts Division of Infectious Diseases, Weill Cornell Medicine, New York, New York Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania Social & Scientific Systems, Inc., Silver Spring, Maryland Department of Medicine, University of North Carolina, Chapel Hill, North Carolina Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Swainson LA, Ahn H, Pajanirassa P, Khetarpal V, Deleage C, Estes JD, Hunt PW, Munoz-Sanjuan I, McCune JM. Kynurenine 3-Monooxygenase Inhibition during Acute Simian Immunodeficiency Virus Infection Lowers PD-1 Expression and Improves Post-Combination Antiretroviral Therapy CD4 + T Cell Counts and Body Weight. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:899-910. [PMID: 31285277 PMCID: PMC6684450 DOI: 10.4049/jimmunol.1801649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/17/2019] [Indexed: 01/31/2023]
Abstract
The kynurenine pathway (KP) is a key regulator of many important physiological processes and plays a harmful role in cancer, many neurologic conditions, and chronic viral infections. In HIV infection, KP activity is consistently associated with reduced CD4 T cell counts and elevated levels of T cell activation and viral load; it also independently predicts mortality and morbidity from non-AIDS events. Kynurenine 3-monooxygenase (KMO) is a therapeutically important target in the KP. Using the nonhuman primate model of SIV infection in rhesus macaques, we investigated whether KMO inhibition could slow the course of disease progression. We used a KMO inhibitor, CHDI-340246, to perturb the KP during early acute infection and followed the animals for 1 y to assess clinical outcomes and immune phenotype and function during pre-combination antiretroviral therapy acute infection and combination antiretroviral therapy-treated chronic infection. Inhibition of KMO in acute SIV infection disrupted the KP and prevented SIV-induced increases in downstream metabolites, improving clinical outcome as measured by both increased CD4+ T cell counts and body weight. KMO inhibition increased naive T cell frequency and lowered PD-1 expression in naive and memory T cell subsets. Importantly, early PD-1 expression during acute SIV infection predicted clinical outcomes of body weight and CD4+ T cell counts. Our data indicate that KMO inhibition in early acute SIV infection provides clinical benefit and suggest a rationale for testing KMO inhibition as an adjunctive treatment in SIV/HIV infection to slow the progression of the disease and improve immune reconstitution.
Collapse
Affiliation(s)
- Louise A Swainson
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94110;
| | - Haelee Ahn
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94110
| | - Priya Pajanirassa
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94110
| | | | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701
| | - Peter W Hunt
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94110
| | | | - Joseph M McCune
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94110
| |
Collapse
|
29
|
Abdel-Hakeem MS. Viruses Teaching Immunology: Role of LCMV Model and Human Viral Infections in Immunological Discoveries. Viruses 2019; 11:E106. [PMID: 30691215 PMCID: PMC6410308 DOI: 10.3390/v11020106] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 12/16/2022] Open
Abstract
Virology has played an essential role in deciphering many immunological phenomena, thus shaping our current understanding of the immune system. Animal models of viral infection and human viral infections were both important tools for immunological discoveries. This review discusses two immunological breakthroughs originally identified with the help of the lymphocytic choriomeningitis virus (LCMV) model; immunological restriction by major histocompatibility complex and immunotherapy using checkpoint blockade. In addition, we discuss related discoveries such as development of tetramers, viral escape mutation, and the phenomenon of T-cell exhaustion.
Collapse
Affiliation(s)
- Mohamed S Abdel-Hakeem
- Penn Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt.
| |
Collapse
|
30
|
Abstract
Exhausted CD8 T (Tex) cells are a distinct cell lineage that arise during chronic infections and cancers in animal models and humans. Tex cells are characterized by progressive loss of effector functions, high and sustained inhibitory receptor expression, metabolic dysregulation, poor memory recall and homeostatic self-renewal, and distinct transcriptional and epigenetic programs. The ability to reinvigorate Tex cells through inhibitory receptor blockade, such as αPD-1, highlights the therapeutic potential of targeting this population. Emerging insights into the mechanisms of exhaustion are informing immunotherapies for cancer and chronic infections. However, like other immune cells, Tex cells are heterogeneous and include progenitor and terminal subsets with unique characteristics and responses to checkpoint blockade. Here, we review our current understanding of Tex cell biology, including the developmental paths, transcriptional and epigenetic features, and cell intrinsic and extrinsic factors contributing to exhaustion and how this knowledge may inform therapeutic targeting of Tex cells in chronic infections, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Laura M McLane
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mohamed S Abdel-Hakeem
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
31
|
Liu J, Pan W, Yang D. The Era of Immune Checkpoint Therapy: From Cancer to Viral Infection-A Mini Comment on the 2018 Medicine Nobel Prize. Virol Sin 2018; 33:467-471. [PMID: 30570713 DOI: 10.1007/s12250-018-0077-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/11/2018] [Indexed: 01/05/2023] Open
Affiliation(s)
- Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Wen Pan
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
32
|
Yasuma-Mitobe K, Matsuoka M. The Roles of Coinhibitory Receptors in Pathogenesis of Human Retroviral Infections. Front Immunol 2018; 9:2755. [PMID: 30538707 PMCID: PMC6277675 DOI: 10.3389/fimmu.2018.02755] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022] Open
Abstract
Costimulatory and coinhibitory receptors play a key role in regulating immune responses to infection and cancer. Coinhibitory receptors include programmed cell death 1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), and T cell immunoglobulin and ITIM domain (TIGIT), which suppress immune responses. Coinhibitory receptors are highly expressed on exhausted virus-specific T cells, indicating that viruses evade host immune responses through enhanced expression of these molecules. Human retroviruses, human immunodeficiency virus (HIV) and human T-cell leukemia virus type 1 (HTLV-1), infect T cells, macrophages and dendritic cells. Therefore, one needs to consider the effects of coinhibitory receptors on both uninfected effector T cells and infected target cells. Coinhibitory receptors are implicated not only in the suppression of immune responses to viruses by inhibition of effector T cells, but also in the persistence of infected cells in vivo. Here we review recent studies on coinhibitory receptors and their roles in retroviral infections such as HIV and HTLV-1.
Collapse
Affiliation(s)
- Keiko Yasuma-Mitobe
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Disease, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
33
|
Humanized Mouse Models for the Study of Infection and Pathogenesis of Human Viruses. Viruses 2018; 10:v10110643. [PMID: 30453598 PMCID: PMC6266013 DOI: 10.3390/v10110643] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
The evolution of infectious pathogens in humans proved to be a global health problem. Technological advancements over the last 50 years have allowed better means of identifying novel therapeutics to either prevent or combat these infectious diseases. The development of humanized mouse models offers a preclinical in vivo platform for further characterization of human viral infections and human immune responses triggered by these virus particles. Multiple strains of immunocompromised mice reconstituted with a human immune system and/or human hepatocytes are susceptible to infectious pathogens as evidenced by establishment of full viral life cycles in hope of investigating viral–host interactions observed in patients and discovering potential immunotherapies. This review highlights recent progress in utilizing humanized mice to decipher human specific immune responses against viral tropism.
Collapse
|
34
|
Saeidi A, Zandi K, Cheok YY, Saeidi H, Wong WF, Lee CYQ, Cheong HC, Yong YK, Larsson M, Shankar EM. T-Cell Exhaustion in Chronic Infections: Reversing the State of Exhaustion and Reinvigorating Optimal Protective Immune Responses. Front Immunol 2018; 9:2569. [PMID: 30473697 PMCID: PMC6237934 DOI: 10.3389/fimmu.2018.02569] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/18/2018] [Indexed: 12/31/2022] Open
Abstract
T-cell exhaustion is a phenomenon of dysfunction or physical elimination of antigen-specific T cells reported in human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV) infections as well as cancer. Exhaustion appears to be often restricted to CD8+ T cells responses in the literature, although CD4+ T cells have also been reported to be functionally exhausted in certain chronic infections. Although our understanding of the molecular mechanisms associated with the transcriptional regulation of T-cell exhaustion is advancing, it is imperative to also explore the central mechanisms that control the altered expression patterns. Targeting metabolic dysfunctions with mitochondrion-targeted antioxidants are also expected to improve the antiviral functions of exhausted virus-specific CD8+ T cells. In addition, it is crucial to consider the contributions of mitochondrial biogenesis on T-cell exhaustion and how mitochondrial metabolism of T cells could be targeted whilst treating chronic viral infections. Here, we review the current understanding of cardinal features of T-cell exhaustion in chronic infections, and have attempted to focus on recent discoveries, potential strategies to reverse exhaustion and reinvigorate optimal protective immune responses in the host.
Collapse
Affiliation(s)
- Alireza Saeidi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Center of Excellence for Research in AIDS, University of Malaya, Kuala Lumpur, Malaysia
| | - Keivan Zandi
- Department of Pediatrics School of Medicine Emory University, Atlanta, GA, United States
| | - Yi Ying Cheok
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hamidreza Saeidi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Putra Malaysia, Selangor, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chalystha Yie Qin Lee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yean Kong Yong
- Center of Excellence for Research in AIDS, University of Malaya, Kuala Lumpur, Malaysia.,Laboratory Center, Xiamen University Malaysia, Sepang, Malaysia
| | - Marie Larsson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Esaki Muthu Shankar
- Division of Infection Biology and Medical Microbiology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| |
Collapse
|
35
|
Liu Y, Liu S, He B, Wang T, Zhao S, Wu C, Yue S, Zhang S, He M, Wang L, Huang W, Shi T, Zhu Z. PD-1 blockade inhibits lymphocyte apoptosis and restores proliferation and anti-viral immune functions of lymphocyte after CP and NCP BVDV infection in vitro. Vet Microbiol 2018; 226:74-80. [PMID: 30389046 DOI: 10.1016/j.vetmic.2018.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 01/16/2023]
Abstract
Bovine viral diarrhea virus (BVDV) is an important virus that can cause extensive economic losses in both dairy and beef industry worldwide. Acute infection with BVDV results in peripheral blood lymphopenia, apoptosis and immunosuppression. Up-regulated programmed death-1 (PD-1) expression induces functional exhaustion of lymphocytes, inhibition of proliferation and apoptosis of lymphocytes during acute and chronic viral infections, such as HIV and HCV. However, there are no reports showing the role of PD-1 in peripheral blood lymphopenia, apoptosis and immunosuppression after acute BVDV infection. Accordingly, we measured the mRNA and protein expression of PD-1 and programmed death-ligand 1 (PD-L1) in peripheral blood mononuclear cells (PBMCs) infected with BVDV, and analyzed the effects of PD-1 blockade on immune-associated function and activity in peripheral blood lymphocytes (PBLs). The results showed that both cytopathic (CP) BVDV (strain NADL) and non-cytopathic (NCP) BVDV (strain KD) infection stimulated the mRNA and protein expression of PD-1 and PD-L1 significantly. The upregulation of PD-1/PD-L1 was accompanied by the decreased PBLs proliferation and increased apoptosis. Additionally, PD-1 blockade restored proliferation, inhibited apoptosis, increased IFN-γ production and decreased BVDV load. Remarkably, the PD-1/PD-L1 interaction has a more substantial effect on the immunoregulation of inhibiting proliferation induced by CP BVDV infection. Our findings confirm that PD-1 plays a vital role in peripheral blood lymphopenia and apoptosis caused by acute BVDV infection, and provide new insights into exploring the immunopathological mechanisms of BVDV or other members of the Flaviviridae family, and a potential therapeutic strategy to control BVDV infection.
Collapse
Affiliation(s)
- Yu Liu
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, 163319, China; Laboratory of Veterinary Microbiology, Veterinary Science Research Institute of HeiLongJiang Province, Qiqihar, 161006, China; Heilongjiang Provincial Engineering Technology Research Center for Prevention and Control of Cattle Diseases, Daqing, 163319, China
| | - Shanshan Liu
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, 163319, China
| | - Boning He
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, 163319, China
| | - Tian Wang
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, 163319, China
| | - Shangqi Zhao
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, 163319, China
| | - Chenhua Wu
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, 163319, China
| | - Shan Yue
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, 163319, China
| | - Shixun Zhang
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, 163319, China
| | - Mingrui He
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, 163319, China
| | - Li Wang
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, 163319, China
| | - Wenjing Huang
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, 163319, China
| | - Tongrui Shi
- Laboratory of Veterinary Microbiology, Veterinary Science Research Institute of HeiLongJiang Province, Qiqihar, 161006, China
| | - Zhanbo Zhu
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, 163319, China; Heilongjiang Provincial Engineering Technology Research Center for Prevention and Control of Cattle Diseases, Daqing, 163319, China.
| |
Collapse
|
36
|
Carrillo MA, Zhen A, Kitchen SG. The Use of the Humanized Mouse Model in Gene Therapy and Immunotherapy for HIV and Cancer. Front Immunol 2018; 9:746. [PMID: 29755454 PMCID: PMC5932400 DOI: 10.3389/fimmu.2018.00746] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 03/26/2018] [Indexed: 12/31/2022] Open
Abstract
HIV and cancer remain prevailing sources of morbidity and mortality worldwide. There are current efforts to discover novel therapeutic strategies for the treatment or cure of these diseases. Humanized mouse models provide the investigative tool to study the interaction between HIV or cancer and the human immune system in vivo. These humanized models consist of immunodeficient mice transplanted with human cells, tissues, or hematopoietic stem cells that result in reconstitution with a nearly full human immune system. In this review, we discuss preclinical studies evaluating therapeutic approaches in stem cell-based gene therapy and T cell-based immunotherapies for HIV and cancer using a humanized mouse model and some recent advances in using checkpoint inhibitors to improve antiviral or antitumor responses.
Collapse
Affiliation(s)
- Mayra A Carrillo
- Department of Medicine, Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, CA, United States
| | - Anjie Zhen
- Department of Medicine, Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, CA, United States
| | - Scott G Kitchen
- Department of Medicine, Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
37
|
Cheng L, Ma J, Li G, Su L. Humanized Mice Engrafted With Human HSC Only or HSC and Thymus Support Comparable HIV-1 Replication, Immunopathology, and Responses to ART and Immune Therapy. Front Immunol 2018; 9:817. [PMID: 29725337 PMCID: PMC5916969 DOI: 10.3389/fimmu.2018.00817] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/04/2018] [Indexed: 12/28/2022] Open
Abstract
Immunodeficient mice reconstituted with human immune tissues and cells (humanized mice) are relevant and robust models for the study of HIV-1 infection, immunopathogenesis, and therapy. In this study, we performed a comprehensive comparison of human immune reconstitution and HIV-1 infection, immunopathogenesis and therapy between immunodeficient NOD/Rag2-/-/γc-/- (NRG) mice transplanted with human HSCs (NRG-hu HSC) and mice transplanted with HSCs and thymus fragments (NRG-hu Thy/HSC) from the same donors. We found that similar human lymphoid and myeloid lineages were reconstituted in NRG-hu HSC and NRG-hu Thy/HSC mice, with human T cells more predominantly reconstituted in NRG-hu Thy/HSC mice, while NRG-hu HSC mice supported more human B cells and myeloid cells reconstitution. HIV-1 replicated similarly and induced similar T cell depletion, immune activation, and dysfunction in NRG-hu HSC and NRG-hu Thy/HSC mice. Moreover, combined antiretroviral therapy (cART) inhibited HIV-1 replication efficiently with similar persistent HIV-1 reservoirs in both models. Finally, we found that blocking type-I interferon signaling under cART treatment transiently activated HIV-1 reservoirs, enhanced T cell recovery and reduced HIV-1 reservoirs in both HIV-1 infected NRG-hu HSC and NRG-hu Thy/HSC mice. In summary, we report that NRG-hu Thy/HSC and NRG-hu HSC mice support similar HIV-1 infection and similar HIV-1 immunopathology; and HIV-1 replication responds similarly to cART and IFNAR blockade therapies. The NRG-hu HSC mouse model reconstituted with human HSC only is sufficient for the study of HIV-1 infection, pathogenesis, and therapy.
Collapse
Affiliation(s)
- Liang Cheng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jianping Ma
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Guangming Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lishan Su
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
38
|
Humanized mouse models to study pathophysiology and treatment of HIV infection. Curr Opin HIV AIDS 2018; 13:143-151. [DOI: 10.1097/coh.0000000000000440] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Jiao YM, Yang HG, Huang HH, Tu B, Xing SJ, Mao L, Xia W, He R, Zhang JY, Xu RN, Jin L, Shi M, Xu Z, Qin EQ, Wang XC, Wu H, Ye L, Wang FS. Dichotomous Roles of Programmed Cell Death 1 on HIV-Specific CXCR5 + and CXCR5 - CD8 + T Cells during Chronic HIV Infection. Front Immunol 2017; 8:1786. [PMID: 29312314 PMCID: PMC5732951 DOI: 10.3389/fimmu.2017.01786] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 11/29/2017] [Indexed: 12/31/2022] Open
Abstract
Background CXCR5+CD8+ T cells have been demonstrated to play an important role in the control of chronic viral replication; however, the relationship between CXCR5+CD8+ T cells, HIV disease progression, and programmed cell death 1 (PD-1) expression profile on CXCR5+CD8+ T cells during HIV infection remain poorly understood. Methods We enrolled a total of 101 HIV patients, including 62 typical progressors, 26 complete responders (CRs), and 13 immune non-responders (INRs). Flow cytometric analysis, immunohistochemical staining, and relative function (i.e., cytokine secretion and PD-1 blockade) assays were performed to analyze the properties of CXCR5+CD8+ T cells. Results HIV-specific CXCR5+CD8+ T cells in the peripheral blood and distribution of CXCR5+CD8+ T cells in the lymph node (LN) were negatively correlated with disease progression during chronic HIV infection. PD-1 was highly expressed on CXCR5+CD8+ T cells and positively associated with peripheral CD4+ T cell counts. Functionally, IFN-γ and TNF-α production of CXCR5+CD8+ T cells were reduced by PD-1 pathway blockade, but the production of IFN-γ and TNF-α from CXCR5-CD8+ T cells increased in response to TCR stimulation. Interestingly, PD-1 expression was constantly retained on CXCR5+CD8+ T cells while significantly decreased on CXCR5-CD8+ T cells after successful antiretroviral treatment in chronic HIV-infected patients. Conclusion PD-1+CXCR5+CD8+ T cells are functional cytotoxic T cells during chronic HIV infection. PD-1+CXCR5+CD8+ T cells may represent a novel therapeutic strategy for the disease.
Collapse
Affiliation(s)
- Yan-Mei Jiao
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Hong-Ge Yang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Hui-Huang Huang
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Bo Tu
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Shao-Jun Xing
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Lin Mao
- Yunnan Provincial Hospital of Infectious Diseases, Kunming, China
| | - Wei Xia
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Ran He
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Ji-Yuan Zhang
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Ruo-Nan Xu
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Lei Jin
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Ming Shi
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Zhe Xu
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - En-Qiang Qin
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Xi-Cheng Wang
- Yunnan Provincial Hospital of Infectious Diseases, Kunming, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Fu-Sheng Wang
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| |
Collapse
|
40
|
Chan J, Kim PY, Kranz E, Nagaoka Y, Lee Y, Wen J, Elsaesser HJ, Qin M, Brooks DG, Ringpis GE, Chen IS, Kamata M. Purging Exhausted Virus-Specific CD8 T Cell Phenotypes by Somatic Cell Reprogramming. AIDS Res Hum Retroviruses 2017; 33:S59-S69. [PMID: 29140111 DOI: 10.1089/aid.2017.0161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cytotoxic T cells are critical in controlling virus infections. However, continuous antigen stimulation and negative regulatory factors cause CD8 T cells to enter a dysfunctional state (T cell exhaustion), resulting in viral persistence. We hypothesized that the exhausted T cell state could be molecularly rejuvenated using a somatic cell reprogramming technology, which is technically able to convert any types of cells to induced pluripotent stem cells (iPSCs), to regenerate functional T cells capable of purging chronic infection. We generated a new mouse line (B6/129OKSM) in which every somatic cell contains four doxycycline-inducible reprogramming genes (Oct4, Klf4, Sox2, and c-Myc: OKSM), and infected them with lymphocytic choriomeningitis virus (LCMV) clone 13 to establish chronic infection. Exhausted LCMV-specific T cells isolated by flow sorting were successfully reprogrammed ex vivo into iPSCs in the presence of doxycycline. Upon injection into blastocysts and subsequent transfer into foster females, the reprogrammed cells differentiated into functional naive T cells that maintained their original antigen specificity. These results provide proof of concept that somatic cell reprogramming of exhausted T cells into iPSCs can erase imprints of their previous exhausted state and in turn regenerate functional virus-specific T cells.
Collapse
Affiliation(s)
- Joshua Chan
- Division of Hematology and Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Patrick Y. Kim
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Emiko Kranz
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Yoshiko Nagaoka
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - YooJin Lee
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jing Wen
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Heidi J. Elsaesser
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Meng Qin
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - David G. Brooks
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Immunology, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Gene-Errol Ringpis
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Irvin S.Y. Chen
- Division of Hematology and Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
- UCLA AIDS Institute, Los Angeles, California
| | - Masakazu Kamata
- Division of Hematology and Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California
- UCLA AIDS Institute, Los Angeles, California
| |
Collapse
|
41
|
Gay CL, Bosch RJ, Ritz J, Hataye JM, Aga E, Tressler RL, Mason SW, Hwang CK, Grasela DM, Ray N, Cyktor JC, Coffin JM, Acosta EP, Koup RA, Mellors JW, Eron JJ. Clinical Trial of the Anti-PD-L1 Antibody BMS-936559 in HIV-1 Infected Participants on Suppressive Antiretroviral Therapy. J Infect Dis 2017; 215:1725-1733. [PMID: 28431010 DOI: 10.1093/infdis/jix191] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/17/2017] [Indexed: 01/05/2023] Open
Abstract
Background Reversing immune exhaustion with an anti-PD-L1 antibody may improve human immunodeficiency virus type 1 (HIV-1)-specific immunity and increase clearance of HIV-1-expressing cells. Methods We conducted a phase I, randomized, double-blind, placebo-controlled, dose-escalating study of BMS-936559, including HIV-1-infected adults aged >18 to <70 years on suppressive antiretroviral therapy with CD4+ counts >350 cells/μL and detectable plasma HIV-1 RNA by single-copy assay. Data on single infusions of BMS-936559 (0.3 mg/kg) versus placebo are described. The primary outcomes were safety defined as any grade 3 or greater or immune-related adverse event (AE) and the change in HIV-1 Gag-specific CD8+ T cell responses from baseline to day 28 after infusion. Results Eight men enrolled: 6 received 0.3 mg/kg of BMS-936559, and 2 received placebo infusions. There were no BMS-936559-related grade 3 or greater AEs. In 1 participant, asymptomatic hypophysitis (a protocol-defined immune-related AE) was identified 266 days after BMS-936559 infusion; it resolved over time. The mean percentage of HIV-1 Gag-specific CD8+ T cells expressing interferon γ increased from baseline (0.09%) through day 28 (0.20%; P = .14), driven by substantial increases in 2 participants who received BMS-936559. Conclusions In this first evaluation of an immunologic checkpoint inhibitor in healthy HIV-1-infected persons, single low-dose BMS-936559 infusions appeared to enhance HIV-1-specific immunity in a subset of participants. Clinical Trials Registration NCT02028403.
Collapse
Affiliation(s)
- Cynthia L Gay
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Ronald J Bosch
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Justin Ritz
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | | | - Evgenia Aga
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Randall L Tressler
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland.,Columbus Technologies, El Segundo, California
| | | | | | | | | | - Josh C Cyktor
- Department of Medicine, University of Pittsburgh, Pennsylvania
| | - John M Coffin
- Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Edward P Acosta
- Department of Pharmacology and Toxicology, University of Alabama School of Medicine, Birmingham
| | | | - John W Mellors
- Department of Medicine, University of Pittsburgh, Pennsylvania
| | - Joseph J Eron
- Department of Medicine, University of North Carolina at Chapel Hill
| | | |
Collapse
|
42
|
New approaches for the enhancement of chimeric antigen receptors for the treatment of HIV. Transl Res 2017; 187:83-92. [PMID: 28755872 DOI: 10.1016/j.trsl.2017.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/30/2017] [Accepted: 07/08/2017] [Indexed: 12/20/2022]
Abstract
HIV infection continues to be a life-long chronic disease in spite of the success of antiretroviral therapy (ART) in controlling viral replication and preventing disease progression. However, because of the high cost of treatment, severe side effects, and inefficiency in curing the disease with ART, there is a call for alternative therapies that will provide a functional cure for HIV. Cytotoxic T lymphocytes (CTLs) are vital in the control and clearance of viral infections and therefore immune-based therapies have attempted to engineer HIV-specific CTLs that would be able to clear the infection from the body. The development of chimeric antigen receptors (CARs) provides an opportunity to engineer superior HIV-specific CTLs that will be independent of the major histocompatibility complex for target recognition. A CD4-based CAR has been previously tested in clinical trials to test the antiviral efficacy of peripheral T cells armed with this CD4-based CAR. The results from these clinical trials showed the safety and feasibility of CAR T cell therapy for HIV infection; however, minimal antiviral efficacy was seen. In this review, we will discuss the various strategies being developed to enhance the therapeutic potency of anti-HIV CARs with the goal of generating superior antiviral responses that will lead to life-long HIV immunity and clearance of the virus from the body.
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW The purpose of this article is to review recent advances in immunotherapeutic approaches aiming at reducing the latent HIV reservoir. RECENT FINDINGS HIV-1 establishes early during infection a pool of latently infected cells that persist long term and are largely undetectable to the immune system. Highly active antiretroviral therapy has dramatically improved the life expectancy and life quality of HIV-1-infected individuals, but is incapable of eliminating the pool of latently HIV-1-infected cells. Recent studies have started to test immunotherapeutic interventions in combination with latency reversing agents to reduce the latent HIV-1 reservoir, including approaches aimed at enhancing antiviral T-cell immunity, innate immunity, and virus-specific antibodies. SUMMARY The better understanding of virus-specific immunity and the pathways used by HIV-1 to evade host immune responses have enabled the development of new strategies focusing on targeting latently HIV-1-infected cells, with the goal to reduce the HIV-1 reservoir. Here, we will review recent advances in harnessing effector cells of the immune system, including CD8 T cells and natural killer cells, antiviral antibodies and new immunomodulatory molecules, to target HIV-1 persistence.
Collapse
|
44
|
Walsh NC, Kenney LL, Jangalwe S, Aryee KE, Greiner DL, Brehm MA, Shultz LD. Humanized Mouse Models of Clinical Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 12:187-215. [PMID: 27959627 DOI: 10.1146/annurev-pathol-052016-100332] [Citation(s) in RCA: 390] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Immunodeficient mice engrafted with functional human cells and tissues, that is, humanized mice, have become increasingly important as small, preclinical animal models for the study of human diseases. Since the description of immunodeficient mice bearing mutations in the IL2 receptor common gamma chain (IL2rgnull) in the early 2000s, investigators have been able to engraft murine recipients with human hematopoietic stem cells that develop into functional human immune systems. These mice can also be engrafted with human tissues such as islets, liver, skin, and most solid and hematologic cancers. Humanized mice are permitting significant progress in studies of human infectious disease, cancer, regenerative medicine, graft-versus-host disease, allergies, and immunity. Ultimately, use of humanized mice may lead to the implementation of truly personalized medicine in the clinic. This review discusses recent progress in the development and use of humanized mice and highlights their utility for the study of human diseases.
Collapse
Affiliation(s)
- Nicole C Walsh
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Laurie L Kenney
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Sonal Jangalwe
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Ken-Edwin Aryee
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Dale L Greiner
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Michael A Brehm
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | | |
Collapse
|
45
|
Jogdand GM, Mohanty S, Devadas S. Regulators of Tfh Cell Differentiation. Front Immunol 2016; 7:520. [PMID: 27933060 PMCID: PMC5120123 DOI: 10.3389/fimmu.2016.00520] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/08/2016] [Indexed: 12/14/2022] Open
Abstract
The follicular helper T (Tfh) cells help is critical for activation of B cells, antibody class switching, and germinal center (GC) formation. The Tfh cells are characterized by the expression of CXC chemokine receptor 5 (CXCR5), ICOS, programed death 1 (PD-1), B cell lymphoma 6 (BCL-6), and IL-21. They are involved in clearing infections and are adversely linked with autoimmune diseases and also have a role in viral replication as well as clearance. On the one hand, Tfh cells are generated from naive CD4+ T cells with sequential steps involving cytokine signaling (IL-21, IL-6, IL-12, activin A), migration, and positioning in the GC by CXCR5, surface receptors (ICOS/ICOSL, signaling lymphocyte activation molecule-associated protein/signaling lymphocyte activation molecule) as well as transcription factor (BCL-6, c-Maf, and signal transducer and activator of transcription 3) signaling and repressor miR155. On the other hand, Tfh generation is negatively regulated at specific steps of Tfh generation by specific cytokine (IL-2, IL-7), surface receptor (PD-1, CTLA-4), transcription factors B lymphocyte maturation protein 1, signal transducer and activator of transcription 5, T-bet, KLF-2 signaling, and repressor miR 146a. Interestingly, miR-17-92 and FOXO1 act as a positive as well as a negative regulator of Tfh differentiation depending on the time of expression and disease specificity. Tfh cells are also generated from the conversion of other effector T cells as exemplified by Th1 cells converting into Tfh during viral infection. The mechanistic details of effector T cells conversion into Tfh are yet to be clear. To manipulate Tfh cells for therapeutic implication and or for effective vaccination strategies, it is important to know positive and negative regulators of Tfh generation. Hence, in this review, we have highlighted and interlinked molecular signaling from cytokines, surface receptors, transcription factors, ubiquitin ligase, and microRNA as positive and negative regulators for Tfh differentiation.
Collapse
Affiliation(s)
- Gajendra M Jogdand
- T Cell and Immune Response, Infectious Disease Biology, Institute of Life Sciences , Bhubaneswar , India
| | - Suchitra Mohanty
- Tumor Virology Lab, Infectious Disease Biology, Institute of Life Sciences , Bhubaneswar , India
| | - Satish Devadas
- T Cell and Immune Response, Infectious Disease Biology, Institute of Life Sciences , Bhubaneswar , India
| |
Collapse
|
46
|
Schade H, Sen S, Neff CP, Freed BM, Gao D, Gutman JA, Palmer BE. Programmed Death 1 Expression on CD4 + T Cells Predicts Mortality after Allogeneic Stem Cell Transplantation. Biol Blood Marrow Transplant 2016; 22:2172-2179. [PMID: 27519280 DOI: 10.1016/j.bbmt.2016.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/08/2016] [Indexed: 12/22/2022]
Abstract
Excessive or persistent programmed death 1 (PD-1) expression on virus- or tumor-specific T cells during chronic viral infection or malignancy has been associated with impaired immune control. To assess the role of the PD-1 pathway in allogeneic stem cell transplantation (SCT), we examined PD-1 expression and maturation phenotype on T cells from 42 patients early (day 55 to 85) after cord blood (CB), matched unrelated donor, and matched related donor transplantation. Expression of PD-1 on CD4+ T cells was significantly elevated in all transplantation types, with the highest level observed in CB subjects. Elevated PD-1 expression on CD4+ T cells early after transplantation was observed in nonsurvivors (median, 40.2%; range, 15.1 to 86.1) compared with survivors (median, 23.6%; range, 8.4 to 55.2; P = .001), indicating its association with increased risk for mortality, especially with CB transplantations, where PD-1 was increased in nonsurvivors (median, 64.6%; range, 36.5 to 86.1) compared with survivors (median, 34.1%; range, 15.9 to 55.2; P = .01). Furthermore, T cell subset analysis revealed that PD-1 expression was further elevated on CD4+ T central memory in nonsurvivors (median, 49.8%; range, 15.1 to 83.4) compared with survivors (median, 24.8%; range, 8.9 to 71.3; P = .002) and on T effector memory cells in nonsurvivors (median, 69.1%; range, 24.7 to 92.6) compared with survivors (median, 43.7%; range, 13.9 to 96.5; P = .0003). Our findings suggest that elevation of PD-1 expression on CD4+ T cells is associated with mortality in CB and possibly all SCT recipients.
Collapse
Affiliation(s)
- Henning Schade
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Division of Hematology and Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sharon Sen
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Division of Allergy and Clinical Immunology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - C Preston Neff
- Division of Allergy and Clinical Immunology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Brian M Freed
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Division of Allergy and Clinical Immunology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Dexiang Gao
- Department of Pediatrics and Department of Biostatistics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jonathan A Gutman
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Division of Hematology and Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Brent E Palmer
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Division of Allergy and Clinical Immunology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
47
|
Suivi biologique des patients vivant avec le VIH traités par anti-PD-1 ou anti-PD-L1 pour un cancer bronchique non à petites cellules : propositions d’un groupe de travail. Rev Mal Respir 2016; 33:419-21. [DOI: 10.1016/j.rmr.2016.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/25/2016] [Indexed: 01/06/2023]
|
48
|
Taylor A, Harker JA, Chanthong K, Stevenson PG, Zuniga EI, Rudd CE. Glycogen Synthase Kinase 3 Inactivation Drives T-bet-Mediated Downregulation of Co-receptor PD-1 to Enhance CD8(+) Cytolytic T Cell Responses. Immunity 2016; 44:274-86. [PMID: 26885856 PMCID: PMC4760122 DOI: 10.1016/j.immuni.2016.01.018] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 05/12/2015] [Accepted: 11/11/2015] [Indexed: 01/22/2023]
Abstract
Despite the importance of the co-receptor PD-1 in T cell immunity, the upstream signaling pathway that regulates PD-1 expression has not been defined. Glycogen synthase kinase 3 (GSK-3, isoforms α and β) is a serine-threonine kinase implicated in cellular processes. Here, we identified GSK-3 as a key upstream kinase that regulated PD-1 expression in CD8(+) T cells. GSK-3 siRNA downregulation, or inhibition by small molecules, blocked PD-1 expression, resulting in increased CD8(+) cytotoxic T lymphocyte (CTL) function. Mechanistically, GSK-3 inactivation increased Tbx21 transcription, promoting enhanced T-bet expression and subsequent suppression of Pdcd1 (encodes PD-1) transcription in CD8(+) CTLs. Injection of GSK-3 inhibitors in mice increased in vivo CD8(+) OT-I CTL function and the clearance of murine gamma-herpesvirus 68 and lymphocytic choriomeningitis clone 13 and reversed T cell exhaustion. Our findings identify GSK-3 as a regulator of PD-1 expression and demonstrate the applicability of GSK-3 inhibitors in the modulation of PD-1 in immunotherapy.
Collapse
Affiliation(s)
- Alison Taylor
- Cell Signalling Section, Division of Immunology, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK
| | - James A Harker
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Kittiphat Chanthong
- Cell Signalling Section, Division of Immunology, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK
| | - Philip G Stevenson
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Elina I Zuniga
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Christopher E Rudd
- Cell Signalling Section, Division of Immunology, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK.
| |
Collapse
|
49
|
Akkina R, Allam A, Balazs AB, Blankson JN, Burnett JC, Casares S, Garcia JV, Hasenkrug KJ, Kashanchi F, Kitchen SG, Klein F, Kumar P, Luster AD, Poluektova LY, Rao M, Sanders-Beer BE, Shultz LD, Zack JA. Improvements and Limitations of Humanized Mouse Models for HIV Research: NIH/NIAID "Meet the Experts" 2015 Workshop Summary. AIDS Res Hum Retroviruses 2016; 32:109-19. [PMID: 26670361 DOI: 10.1089/aid.2015.0258] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The number of humanized mouse models for the human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) and other infectious diseases has expanded rapidly over the past 8 years. Highly immunodeficient mouse strains, such as NOD/SCID/gamma chain(null) (NSG, NOG), support better human hematopoietic cell engraftment. Another improvement is the derivation of highly immunodeficient mice, transgenic with human leukocyte antigens (HLAs) and cytokines that supported development of HLA-restricted human T cells and heightened human myeloid cell engraftment. Humanized mice are also used to study the HIV reservoir using new imaging techniques. Despite these advances, there are still limitations in HIV immune responses and deficits in lymphoid structures in these models in addition to xenogeneic graft-versus-host responses. To understand and disseminate the improvements and limitations of humanized mouse models to the scientific community, the NIH sponsored and convened a meeting on April 15, 2015 to discuss the state of knowledge concerning these questions and best practices for selecting a humanized mouse model for a particular scientific investigation. This report summarizes the findings of the NIH meeting.
Collapse
Affiliation(s)
- Ramesh Akkina
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Atef Allam
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Silver Spring, Maryland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | | - Joel N. Blankson
- Department of Medicine, Center for AIDS Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John C. Burnett
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California
| | - Sofia Casares
- U.S. Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland
| | - J. Victor Garcia
- Division of Infectious Diseases, Department of Medicine, UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kim J. Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana
| | - Fatah Kashanchi
- School of Systems Biology, National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia
| | - Scott G. Kitchen
- Departments of Medicine and Microbiology, Immunology and Molecular Genetics, UCLA AIDS Institute, Los Angeles, California
| | - Florian Klein
- First Department of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Priti Kumar
- School of Medicine, Infectious Diseases/Internal Medicine, Yale University, New Haven, Connecticut
| | - Andrew D. Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Brigitte E. Sanders-Beer
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | | - Jerome A. Zack
- Departments of Medicine and Microbiology, Immunology and Molecular Genetics, UCLA AIDS Institute, Los Angeles, California
| |
Collapse
|
50
|
Abstract
HIV persistence in patients undergoing antiretroviral therapy is a major impediment to the cure of HIV/AIDS. The molecular and cellular mechanisms underlying HIV persistence in vivo have not been fully elucidated. This lack of basic knowledge has hindered progress in this area. The in vivo analysis of HIV persistence and the implementation of curative strategies would benefit from animal models that accurately recapitulate key aspects of the human condition. This Review summarizes the contribution that humanized mouse models of HIV infection have made to the field of HIV cure research. Even though these models have been shown to be highly informative in many specific areas, their great potential to serve as excellent platforms for discovery in HIV pathogenesis and treatment has yet to be fully developed.
Collapse
|