1
|
Treatment of Mouse Sperm with a Non-Catalytic Mutant of PLA2G10 Reveals That PLA2G10 Improves In Vitro Fertilization through Both Its Enzymatic Activity and as Ligand of PLA2R1. Int J Mol Sci 2022; 23:ijms23148033. [PMID: 35887380 PMCID: PMC9320362 DOI: 10.3390/ijms23148033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
The group X secreted phospholipase A2 (PLA2G10) is present at high levels in mouse sperm acrosome. The enzyme is secreted during capacitation and amplifies the acrosome reaction and its own secretion via an autocrine loop. PLA2G10 also improves the rate of fertilization. In in vitro fertilization (IVF) experiments, sperm from Pla2g10-deficient mice produces fewer two-cell embryos, and the absence of PLA2G10 is rescued by adding recombinant enzymes. Moreover, wild-type (WT) sperm treated with recombinant PLA2G10 produces more two-cell embryos. The effects of PLA2G10 on mouse fertility are inhibited by sPLA2 inhibitors and rescued by products of the enzymatic reaction such as free fatty acids, suggesting a role of catalytic activity. However, PLA2G10 also binds to mouse PLA2R1, which may play a role in fertility. To determine the relative contribution of enzymatic activity and PLA2R1 binding in the profertility effect of PLA2G10, we tested H48Q-PLA2G10, a catalytically-inactive mutant of PLA2G10 with low enzymatic activity but high binding properties to PLA2R1. Its effect was tested in various mouse strains, including Pla2r1-deficient mice. H48Q-PLA2G10 did not trigger the acrosome reaction but was as potent as WT-PLA2G10 to improve IVF in inbred C57Bl/6 mice; however, this was not the case in OF1 outbred mice. Using gametes from these mouse strains, the effect of H48Q-PLA2G10 appeared dependent on both spermatozoa and oocytes. Moreover, sperm from C57Bl/6 Pla2r1-deficient mice were less fertile and lowered the profertility effects of H48Q-PLA2G10, which were completely suppressed when sperm and oocytes were collected from Pla2r1-deficient mice. Conversely, the effect of WT-PLA2G10 was not or less sensitive to the absence of PLA2R1, suggesting that the effect of PLA2G10 is polymodal and complex, acting both as an enzyme and a ligand of PLA2R1. This study shows that the action of PLA2G10 on gametes is complex and can simultaneously activate the catalytic pathway and the PLA2R1-dependent receptor pathway. This work also shows for the first time that PLA2G10 binding to gametes’ PLA2R1 participates in fertilization optimization.
Collapse
|
2
|
Doré E, Joly-Beauparlant C, Morozumi S, Mathieu A, Lévesque T, Allaeys I, Duchez AC, Cloutier N, Leclercq M, Bodein A, Payré C, Martin C, Petit-Paitel A, Gelb MH, Rangachari M, Murakami M, Davidovic L, Flamand N, Arita M, Lambeau G, Droit A, Boilard E. The interaction of secreted phospholipase A2-IIA with the microbiota alters its lipidome and promotes inflammation. JCI Insight 2022; 7:152638. [PMID: 35076027 PMCID: PMC8855825 DOI: 10.1172/jci.insight.152638] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022] Open
Abstract
Secreted phospholipase A2-IIA (sPLA2-IIA) hydrolyzes phospholipids to liberate lysophospholipids and fatty acids. Given its poor activity toward eukaryotic cell membranes, its role in the generation of proinflammatory lipid mediators is unclear. Conversely, sPLA2-IIA efficiently hydrolyzes bacterial membranes. Here, we show that sPLA2-IIA affects the immune system by acting on the intestinal microbial flora. Using mice overexpressing transgene-driven human sPLA2-IIA, we found that the intestinal microbiota was critical for both induction of an immune phenotype and promotion of inflammatory arthritis. The expression of sPLA2-IIA led to alterations of the intestinal microbiota composition, but housing in a more stringent pathogen-free facility revealed that its expression could affect the immune system in the absence of changes to the composition of this flora. In contrast, untargeted lipidomic analysis focusing on bacteria-derived lipid mediators revealed that sPLA2-IIA could profoundly alter the fecal lipidome. The data suggest that a singular protein, sPLA2-IIA, produces systemic effects on the immune system through its activity on the microbiota and its lipidome.
Collapse
Affiliation(s)
- Etienne Doré
- CHU de Québec-Université Laval Research Center, Department of Microbiology, Infectiology and Immunology, Quebec City, Quebec, Canada
- ARThrite Research Center, University Laval, Quebec City, Quebec, Canada
| | - Charles Joly-Beauparlant
- CHU de Québec-Université Laval Research Center, Endocrinology and Nephrology Axis, Quebec City, Quebec, Canada
| | - Satoshi Morozumi
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Alban Mathieu
- CHU de Québec-Université Laval Research Center, Endocrinology and Nephrology Axis, Quebec City, Quebec, Canada
| | - Tania Lévesque
- CHU de Québec-Université Laval Research Center, Department of Microbiology, Infectiology and Immunology, Quebec City, Quebec, Canada
- ARThrite Research Center, University Laval, Quebec City, Quebec, Canada
| | - Isabelle Allaeys
- CHU de Québec-Université Laval Research Center, Department of Microbiology, Infectiology and Immunology, Quebec City, Quebec, Canada
- ARThrite Research Center, University Laval, Quebec City, Quebec, Canada
| | - Anne-Claire Duchez
- CHU de Québec-Université Laval Research Center, Department of Microbiology, Infectiology and Immunology, Quebec City, Quebec, Canada
| | - Nathalie Cloutier
- CHU de Québec-Université Laval Research Center, Department of Microbiology, Infectiology and Immunology, Quebec City, Quebec, Canada
| | - Mickaël Leclercq
- CHU de Québec-Université Laval Research Center, Endocrinology and Nephrology Axis, Quebec City, Quebec, Canada
| | - Antoine Bodein
- CHU de Québec-Université Laval Research Center, Endocrinology and Nephrology Axis, Quebec City, Quebec, Canada
| | - Christine Payré
- Côte d’Azur University, The French National Centre for Scientific Research, Institute of Molecular and Cellular Pharmacology, UMR7275, Valbonne Sophia Antipolis, France
| | - Cyril Martin
- The Research Center of the University Institute of Cardiology and Pneumology of Quebec, Quebec City, Quebec, Canada
| | - Agnes Petit-Paitel
- Côte d’Azur University, The French National Centre for Scientific Research, Institute of Molecular and Cellular Pharmacology, UMR7275, Valbonne Sophia Antipolis, France
| | - Michael H. Gelb
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Manu Rangachari
- CHU de Québec-Université Laval Research Center, Neurosciences Axis, Quebec City, Quebec, Canada
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Laetitia Davidovic
- Côte d’Azur University, The French National Centre for Scientific Research, Institute of Molecular and Cellular Pharmacology, UMR7275, Valbonne Sophia Antipolis, France
| | - Nicolas Flamand
- ARThrite Research Center, University Laval, Quebec City, Quebec, Canada
- The Research Center of the University Institute of Cardiology and Pneumology of Quebec, Quebec City, Quebec, Canada
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama-City University, Yokohama, Japan
| | - Gérard Lambeau
- Côte d’Azur University, The French National Centre for Scientific Research, Institute of Molecular and Cellular Pharmacology, UMR7275, Valbonne Sophia Antipolis, France
| | - Arnaud Droit
- CHU de Québec-Université Laval Research Center, Endocrinology and Nephrology Axis, Quebec City, Quebec, Canada
| | - Eric Boilard
- CHU de Québec-Université Laval Research Center, Department of Microbiology, Infectiology and Immunology, Quebec City, Quebec, Canada
- ARThrite Research Center, University Laval, Quebec City, Quebec, Canada
| |
Collapse
|
3
|
Christerson U, Keita ÅV, Winberg ME, Söderholm JD, Gustafson-Svärd C. Possible Involvement of Intracellular Calcium-Independent Phospholipase A 2 in the Release of Secretory Phospholipases from Mast Cells-Increased Expression in Ileal Mast Cells of Crohn's Disease. Cells 2019; 8:cells8070672. [PMID: 31277247 PMCID: PMC6678282 DOI: 10.3390/cells8070672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 12/24/2022] Open
Abstract
Increased activity of secretory phospholipases A2 (sPLA2) type-II was previously observed in ileum of Crohn’s disease (CD). Our aims were to explore the involvement of calcium-independent (i)PLA2β in the release of sPLA2s from the human mast cell (MC) line (HMC-1) and investigate expressions of cytosolic (c)PLA2α, iPLA2β, sPLA2-IIA and sPLA2-V in MCs of CD ileum. The release of sPLA2 was investigated in HMC-1 by immunocytochemistry and ELISA. The expression intensities of PLA2s in mucosal MCs, and the proportion of PLA2-positive MCs, were investigated in normal ileum and in ileum from patients with CD by immunohistochemistry. The calcium ionophore-stimulated release of sPLA2-IIA and sPLA2-V from HMC-1 was reduced by the iPLA2-inhibitor bromoenol lactone. All four PLA2s were detectable in mucosal MCs, both in normal ileum and in CD, but the proportion of iPLA2β-containing mucosal MCs and the expression intensity of sPLA2-IIA was increased in CD. Results indicate that iPLA2β is involved in the secretion of sPLA2s from HMC-1, and suggest that iPLA2β-mediated release of sPLA2 from intestinal MCs may contribute to CD pathophysiology. Ex vivo studies on isolated mucosal mast cells are however needed to clarify the precise role of MC PLA2s in the inflammatory processes of CD.
Collapse
Affiliation(s)
- Ulrika Christerson
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 391 82 Kalmar, Sweden
| | - Åsa V Keita
- Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics & Oncology, Linköping University, 581 85 Linköping, Sweden
| | - Martin E Winberg
- Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics & Oncology, Linköping University, 581 85 Linköping, Sweden
| | - Johan D Söderholm
- Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics & Oncology, Linköping University, 581 85 Linköping, Sweden
- Department of Surgery, County Council of Östergötland, 581 85 Linköping, Sweden
| | - Christina Gustafson-Svärd
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 391 82 Kalmar, Sweden
| |
Collapse
|
4
|
Sukocheva O, Menschikowski M, Hagelgans A, Yarla NS, Siegert G, Reddanna P, Bishayee A. Current insights into functions of phospholipase A2 receptor in normal and cancer cells: More questions than answers. Semin Cancer Biol 2019; 56:116-127. [PMID: 29104026 DOI: 10.1016/j.semcancer.2017.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/18/2017] [Accepted: 11/01/2017] [Indexed: 02/08/2023]
Abstract
Lipid signaling network was proposed as a potential target for cancer prevention and treatment. Several recent studies revealed that phospholipid metabolising enzyme, phospholipase A2 (PLA2), is a critical regulator of cancer accelerating pathologies and apoptosis in several types of cancers. In addition to functioning as an enzyme, PLA2 can activate a phospholipase A2 receptor (PLA2R1) in plasma membrane. While the list of PLA2 targets extends to glucose homeostasis, intracellular energy balance, adipocyte development, and hepatic lipogenesis, the PLA2R1 downstream effectors are few and scarcely investigated. Among the most addressed PLA2R1 effects are regulation of pro-inflammatory signaling, autoimmunity, apoptosis, and senescence. Localized in glomeruli podocytes, the receptor can be identified by circulating anti-PLA2R1 autoantibodies leading to development of membranous nephropathy, a strong autoimmune inflammatory cascade. PLA2R1 was shown to induce activation of Janus-kinase 2 (JAK2) and estrogen-related receptor α (ERRα)-controlled mitochondrial proteins, as well as increasing the accumulation of reactive oxygen species, thus leading to apoptosis and senescence. These findings indicate the potential role of PLA2R1 as tumor suppressor. Epigenetic investigations addressed the role of DNA methylation, histone modifications, and specific microRNAs in the regulation of PLA2R1 expression. However, involvement of PLA2R1 in suppression of malignant growth and metastasis remains controversial. In this review, we summarize the recent findings that highlight the role of PLA2R1 in the regulation of carcinogenesis-related intracellular signaling.
Collapse
Affiliation(s)
- Olga Sukocheva
- School of Health Sciences, Flinders University of South Australia, Bedford Park, South Australia 5042, Australia.
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Albert Hagelgans
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Nagendra Sastry Yarla
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - Gabriele Siegert
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Pallu Reddanna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
5
|
Nolin JD, Murphy RC, Gelb MH, Altemeier WA, Henderson WR, Hallstrand TS. Function of secreted phospholipase A 2 group-X in asthma and allergic disease. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:827-837. [PMID: 30529275 DOI: 10.1016/j.bbalip.2018.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022]
Abstract
Elevated secreted phospholipase A2 (sPLA2) activity in the airways has been implicated in the pathogenesis of asthma and allergic disease for some time. The identity and function of these enzymes in asthma is becoming clear from work in our lab and others. We focused on sPLA2 group X (sPLA2-X) after identifying increased levels of this enzyme in asthma, and that it is responsible for a large portion of sPLA2 activity in the airways and that the levels are strongly associated with features of airway hyperresponsiveness (AHR). In this review, we discuss studies that implicated sPLA2-X in human asthma, and murine models that demonstrate a critical role of this enzyme as a regulator of type-2 inflammation, AHR and production of eicosanoids. We discuss the mechanism by which sPLA2-X acts to regulate eicosanoids in leukocytes, as well as effects that are mediated through the generation of lysophospholipids and through receptor-mediated functions. This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.
Collapse
Affiliation(s)
- James D Nolin
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of Washington, Seattle, WA, United States of America
| | - Ryan C Murphy
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of Washington, Seattle, WA, United States of America
| | - Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, WA, United States of America; Department of Biochemistry, University of Washington, Seattle, WA, United States of America
| | - William A Altemeier
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of Washington, Seattle, WA, United States of America
| | - William R Henderson
- Division of Allergy and Infectious DIseases, University of Washington, Seattle, WA, United States of America
| | - Teal S Hallstrand
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of Washington, Seattle, WA, United States of America.
| |
Collapse
|
6
|
Nolin JD, Ogden HL, Lai Y, Altemeier WA, Frevert CW, Bollinger JG, Naika GS, Kicic A, Stick SM, Lambeau G, Henderson WR, Gelb MH, Hallstrand TS. Identification of Epithelial Phospholipase A 2 Receptor 1 as a Potential Target in Asthma. Am J Respir Cell Mol Biol 2017; 55:825-836. [PMID: 27448109 DOI: 10.1165/rcmb.2015-0150oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Secreted phospholipase A2s (sPLA2s) regulate eicosanoid formation and have been implicated in asthma. Although sPLA2s function as enzymes, some of the sPLA2s bind with high affinity to a C-type lectin receptor, called PLA2R1, which has functions in both cellular signaling and clearance of sPLA2s. We sought to examine the expression of PLA2R1 in the airway epithelium of human subjects with asthma and the function of the murine Pla2r1 gene in a model of asthma. Expression of PLA2R1 in epithelial brushings was assessed in two distinct cohorts of children with asthma by microarray and quantitative PCR, and immunostaining for PLA2R1 was conducted on endobronchial tissue and epithelial brushings from adults with asthma. C57BL/129 mice deficient in Pla2r1 (Pla2r1-/-) were characterized in an ovalbumin (OVA) model of allergic asthma. PLA2R1 was differentially overexpressed in epithelial brushings of children with atopic asthma in both cohorts. Immunostaining for PLA2R1 in endobronchial tissue localized to submucosal glandular epithelium and columnar epithelial cells. After OVA sensitization and challenge, Pla2r1-/- mice had increased airway hyperresponsiveness, as well as an increase in cellular trafficking of eosinophils to the peribronchial space and bronchoalveolar lavage fluid, and an increase in airway permeability. In addition, Pla2r1-/- mice had more dendritic cells in the lung, higher levels of OVA-specific IgG, and increased production of both type-1 and type-2 cytokines by lung leukocytes. PLA2R1 is increased in the airway epithelium in asthma, and serves as a regulator of airway hyperresponsiveness, airway permeability, antigen sensitization, and airway inflammation.
Collapse
Affiliation(s)
- James D Nolin
- From the 1 Division of Pulmonary and Critical Care and
| | - H Luke Ogden
- From the 1 Division of Pulmonary and Critical Care and
| | - Ying Lai
- From the 1 Division of Pulmonary and Critical Care and
| | | | - Charles W Frevert
- From the 1 Division of Pulmonary and Critical Care and.,2 Department of Comparative Medicine
| | | | | | - Anthony Kicic
- 4 The Telethon Kids Institute, Centre for Health Research, University of Western Australia, Nedlands, Western Australia, Australia.,5 Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia.,6 School of Paediatrics and Child Health, University of Western Australia, Perth, Western Australia, Australia.,7 Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia; and
| | - Stephen M Stick
- 4 The Telethon Kids Institute, Centre for Health Research, University of Western Australia, Nedlands, Western Australia, Australia.,5 Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia.,6 School of Paediatrics and Child Health, University of Western Australia, Perth, Western Australia, Australia.,7 Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia; and
| | - Gerard Lambeau
- 8 Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | | | - Michael H Gelb
- 3 Department of Chemistry, and.,10 Department of Biochemistry, University of Washington, Seattle, Washington
| | | |
Collapse
|
7
|
Pappa V, Seydel K, Gupta S, Feintuch CM, Potchen MJ, Kampondeni S, Goldman-Yassen A, Veenstra M, Lopez L, Kim RS, Berman JW, Taylor T, Daily JP. Lipid metabolites of the phospholipase A2 pathway and inflammatory cytokines are associated with brain volume in paediatric cerebral malaria. Malar J 2015; 14:513. [PMID: 26691993 PMCID: PMC4687364 DOI: 10.1186/s12936-015-1036-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/04/2015] [Indexed: 11/13/2022] Open
Abstract
Background Cerebral malaria (CM) remains a significant cause of morbidity and mortality in children in sub-Saharan Africa. CM mortality has been associated with increased brain volume, seen on neuroimaging studies. Methods To examine the potential role of blood metabolites and inflammatory mediators in increased brain volume in Malawian children with CM, an association study was performed between plasma metabolites, cytokine levels and phospholipase A2 (PLA2) activity with brain volume. Results The metabolomics analysis demonstrated arachidonic acid and other lysophospholipids to be positively associated with brain swelling. These lipids are products of the PLA2 enzyme and an association of plasma PLA2 enzymatic activity with brain swelling was confirmed. TNFα, which can upregulate PLA2 activity, was associated with brain volume. In addition, CCL2 and IL-8 were also associated with brain volume. Some of these cytokines can alter endothelial cell tight junction proteins and increase blood brain barrier permeability. Conclusions Taken together, paediatric CM brain volume was associated with products of the PLA2 pathway and inflammatory cytokines. Their role in causality is unknown. These molecules will need to undergo testing in vitro and in animal models to understand their role in processes of increased brain volume. These observations provide novel data on host physiology associated with paediatric CM brain swelling, and may both inform pathogenesis models and suggest adjunct therapies that could improve the morbidity and mortality associated with paediatric CM. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-1036-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vasiliki Pappa
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Karl Seydel
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi. .,Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| | - Sanchit Gupta
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Catherine M Feintuch
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Michael J Potchen
- Department of Radiology, University of Rochester, Rochester, NY, 14642, USA. .,Lusaka Apex Medical University, Medical Radiation Sciences, Lusaka, Zambia.
| | - Samuel Kampondeni
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi.
| | - Adam Goldman-Yassen
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Mike Veenstra
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Lillie Lopez
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Ryung S Kim
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Joan W Berman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA. .,Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Terrie Taylor
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi. .,Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| | - Johanna P Daily
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA. .,Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
8
|
Zhi H, Qu L, Wu F, Chen L, Tao J. Group IIE secretory phospholipase A2 regulates lipolysis in adipocytes. Obesity (Silver Spring) 2015; 23:760-8. [PMID: 25755141 DOI: 10.1002/oby.21015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/10/2014] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To examine the function of group IIE secretory phospholipase A(2) (sPLA(2) -IIE) in adipocytes and to explore the possible signaling mechanism involved. METHODS The expression of sPLA(2) -IIE was demonstrated using real-time PCR and Western blot analysis. Lipid accumulation was evaluated via the measurement of cellular triglycerides (TG). Lipolysis was quantified by measuring the release of free glycerol. The expressions of M-type sPLA(2) receptor (PLA(2) R1) and the genes encoding adipogenic proteins were measured using real-time PCR. The activities of the Janus kinase 2 (JAK2), extracellular regulated protein kinase (ERK), and hormone-sensitive lipase (HSL) were determined using Western blot. RESULTS sPLA(2) -IIE(-/-) mice gained significantly more epididymal fat than wild-type (WT) mice. When treated with adipogenic stimuli ex vivo, stromal vascular cells isolated from the adipose tissue of sPLA(2) -IIE(-/-) mice accumulated significantly more TG than those from WT mice. Conversely, a significant reduction in lipid accumulation and an increase of free glycerol were observed in OP9 cells overexpressing sPLA(2) -IIE and in 3T3-L1 cells treated with sPLA(2) -IIE protein. Moreover, sPLA(2) -IIE significantly induced adipocyte glycerol release and HSL activity, which was inhibited by PD98059, an ERK inhibitor. CONCLUSIONS sPLA(2) -IIE regulates lipolysis in adipocytes, likely through the ERK/HSL signaling pathway.
Collapse
Affiliation(s)
- Hui Zhi
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China. Correspondence: Ling Chen ; State Key Laboratory of Respiratory Diseases, Institute of Respiratory Diseases, Guangzhou College of Medicine, Guangzhou, China
| | | | | | | | | |
Collapse
|
9
|
sPLA2 IB induces human podocyte apoptosis via the M-type phospholipase A2 receptor. Sci Rep 2014; 4:6660. [PMID: 25335547 PMCID: PMC4205892 DOI: 10.1038/srep06660] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/29/2014] [Indexed: 02/07/2023] Open
Abstract
The M-type phospholipase A2 receptor (PLA2R) is expressed in podocytes in human glomeruli. Group IB secretory phospholipase A2 (sPLA2 IB), which is one of the ligands of the PLA2R, is more highly expressed in chronic renal failure patients than in controls. However, the roles of the PLA2R and sPLA2 IB in the pathogenesis of glomerular diseases are unknown. In the present study, we found that more podocyte apoptosis occurs in the kidneys of patients with higher PLA2R and serum sPLA2 IB levels. In vitro, we demonstrated that human podocyte cells expressed the PLA2R in the cell membrane. After binding with the PLA2R, sPLA2 IB induced podocyte apoptosis in a time- and concentration-dependent manner. sPLA2 IB-induced podocyte PLA2R upregulation was not only associated with increased ERK1/2 and cPLA2α phosphorylation but also displayed enhanced apoptosis. In contrast, PLA2R-silenced human podocytes displayed attenuated apoptosis. sPLA2 IB enhanced podocyte arachidonic acid (AA) content in a dose-dependent manner. These data indicate that sPLA2 IB has the potential to induce human podocyte apoptosis via binding to the PLA2R. The sPLA2 IB-PLA2R interaction stimulated podocyte apoptosis through activating ERK1/2 and cPLA2α and through increasing the podocyte AA content.
Collapse
|
10
|
The step further to understand the role of cytosolic phospholipase A2 alpha and group X secretory phospholipase A2 in allergic inflammation: pilot study. BIOMED RESEARCH INTERNATIONAL 2014; 2014:670814. [PMID: 25247183 PMCID: PMC4163415 DOI: 10.1155/2014/670814] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/11/2014] [Accepted: 08/11/2014] [Indexed: 11/18/2022]
Abstract
Allergens, viral, and bacterial infections are responsible for asthma exacerbations that occur with progression of airway inflammation. cPLA2α and sPLA2X are responsible for delivery of arachidonic acid for production of eicosanoids—one of the key mediators of airway inflammation. However, cPLA2α and sPLA2X role in allergic inflammation has not been fully elucidated. The aim of this study was to analyze the influence of rDer p1 and rFel d1 and lipopolysaccharide (LPS) on cPLA2α expression and sPLA2X secretion in PBMC of asthmatics and in A549 cell line. PBMC isolated from 14 subjects, as well as A549 cells, were stimulated with rDer p1, rFel d1, and LPS. Immunoblotting technique was used to study the changes in cPLA2α protein expression and ELISA was used to analyze the release of sPLA2X. PBMC of asthmatics released more sPLA2X than those from healthy controls in the steady state. rDer p1 induced more sPLA2X secretion than cPLA2α protein expression. rFel d1 caused decrease in cPLA2α relative expression in PBMC of asthmatics and in A549 cells. Summarizing, Der p1 and Fel d1 involve phospholipase A2 enzymes in their action. sPLA2X seems to be one of important PLA2 isoform in allergic inflammation, especially caused by house dust mite allergens.
Collapse
|
11
|
Beaulieu E, Ioffe J, Watson SN, Hermann PM, Wildering WC. Oxidative-stress induced increase in circulating fatty acids does not contribute to phospholipase A2-dependent appetitive long-term memory failure in the pond snail Lymnaea stagnalis. BMC Neurosci 2014; 15:56. [PMID: 24886155 PMCID: PMC4013061 DOI: 10.1186/1471-2202-15-56] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/23/2014] [Indexed: 11/23/2022] Open
Abstract
Background Reactive oxygen species (ROS) are essential for normal physiological functioning of the brain. However, uncompensated increase in ROS levels may results in oxidative stress. Phospholipase A2 (PLA2) is one of the key players activated by elevated ROS levels resulting in the hydrolysis of various products from the plasmamembrane such as peroxidized fatty acids. Free fatty acids (FFAs) and fatty acid metabolites are often implicated to the genesis of cognitive impairment. Previously we have shown that age-, and experimentally induced oxidative stress causes PLA2-dependent long-term memory (LTM) failure in an aversive operant conditioning model in Lymnaea stagnalis. In the present study, we investigate the effects of experimentally induced oxidative stress and the role of elevated levels of circulating FFAs on LTM function using a non-aversive appetitive classical conditioning paradigm. Results We show that intracoelomic injection of exogenous PLA2 or pro-oxidant induced PLA2 activation negatively affects LTM performance in our learning paradigm. In addition, we show that experimental induction of oxidative stress causes significant temporal changes in circulating FFA levels. Importantly, the time of training coincides with the peak of this change in lipid metabolism. However, intracoelomic injection with exogenous arachidonic acid, one of the main FFAs released by PLA2, does not affect LTM function. Moreover, sequestrating circulating FFAs with the aid of bovine serum albumin does not rescue pro-oxidant induced appetitive LTM failure. Conclusions Our data substantiates previous evidence linking lipid peroxidation and PLA2 activation to age- and oxidative stress-related cognitive impairment, neuronal dysfunction and disease. In addition however, our data indicate that lipid peroxidation induced increased levels of circulating (per)oxidized FFAs are not a factor in oxidative stress induced LTM impairment.
Collapse
Affiliation(s)
| | | | | | | | - Willem C Wildering
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
12
|
Xiang Y, Chen L, Liu H, Liu X, Wei X, Sun B, Wang T, Zhang X. Inhibition of sPLA₂-IIA prevents LPS-induced neuroinflammation by suppressing ERK1/2-cPLA₂α pathway in mice cerebral cortex. PLoS One 2013; 8:e77909. [PMID: 24130900 PMCID: PMC3793966 DOI: 10.1371/journal.pone.0077909] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 09/16/2013] [Indexed: 12/18/2022] Open
Abstract
Neuroinflammation is involved in various central nervous system (CNS) disorders, including brain infections, ischemia, trauma, stroke, and degenerative CNS diseases. In the CNS inflammation, secretory phospholipase A₂-IIA (sPLA₂-IIA) acts as a mediator, resulting in the generation of the precursors of pro-inflammatory lipid mediators, such as prostaglandins (PGs) and leukotrienes (LTs). However, the role of sPLA₂-IIA in neuroinflammation is more complicated and remains unclear yet. In the present study, we investigated the effect of sPLA₂-IIA inhibition by specific inhibitor SC-215 on the inflammation in LPS-induced mice cerebral cortex and primary astrocytes. Our results showed that the inhibition of sPLA₂-IIA alleviated the release of PGE₂ by suppressing the activation of ERK1/2, cPLA₂α, COX-2 and mPGES-1. These findings demonstrated that sPLA₂-IIA showed the potential to regulate the neuroinflammation in vivo and in vitro, indicating that sPLA₂-IIA might be a novel target for the treatment of acute neuroinflammation.
Collapse
Affiliation(s)
- Yanxiao Xiang
- Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong, PR China
| | - Lin Chen
- Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong, PR China
| | - Huiqing Liu
- Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong, PR China
| | - Xiaoqian Liu
- Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong, PR China
| | - Xinbing Wei
- Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong, PR China
| | - Baozhu Sun
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, PR China
| | - Tian Wang
- Department of Pharmacology, Yantai University School of Pharmacy, Yantai, Shandong, PR China
| | - Xiumei Zhang
- Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong, PR China
- * E-mail:
| |
Collapse
|
13
|
Anti-inflammatory Effect of Acetylpuerarin on Eicosanoid Signaling Pathway in Primary Rat Astrocytes. J Mol Neurosci 2013; 52:577-85. [DOI: 10.1007/s12031-013-0113-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/02/2013] [Indexed: 01/15/2023]
|
14
|
Tamaru S, Mishina H, Watanabe Y, Watanabe K, Fujioka D, Takahashi S, Suzuki K, Nakamura T, Obata JE, Kawabata K, Yokota Y, Murakami M, Hanasaki K, Kugiyama K. Deficiency of phospholipase A2 receptor exacerbates ovalbumin-induced lung inflammation. THE JOURNAL OF IMMUNOLOGY 2013; 191:1021-8. [PMID: 23817419 DOI: 10.4049/jimmunol.1300738] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Secretory phospholipase A2 (sPLA2) plays a critical role in the genesis of lung inflammation through proinflammatory eicosanoids. A previous in vitro experiment showed a possible role of cell surface receptor for sPLA2 (PLA2R) in the clearance of extracellular sPLA2. PLA2R and groups IB and X sPLA2 are expressed in the lung. This study examined a pathogenic role of PLA2R in airway inflammation using PLA2R-deficient (PLA2R(-/-)) mice. Airway inflammation was induced by immunosensitization with OVA. Compared with wild-type (PLA2R(+/+)) mice, PLA2R(-/-) mice had a significantly greater infiltration of inflammatory cells around the airways, higher levels of groups IB and X sPLA2, eicosanoids, and Th2 cytokines, and higher numbers of eosinophils and neutrophils in bronchoalveolar lavage fluid after OVA treatment. In PLA2R(-/-) mice, intratracheally instilled [(125)I]-labeled sPLA2-IB was cleared much more slowly from bronchoalveolar lavage fluid compared with PLA2R(+/+) mice. The degradation of the instilled [(125)I]-labeled sPLA2-IB, as assessed by trichloroacetic acid-soluble radioactivity in bronchoalveolar lavage fluid after instillation, was lower in PLA2R(-/-) mice than in PLA2R(+/+) mice. In conclusion, PLA2R deficiency increased sPLA2-IB and -X levels in the lung through their impaired clearance from the lung, leading to exaggeration of lung inflammation induced by OVA treatment in a murine model.
Collapse
Affiliation(s)
- Shun Tamaru
- Department of Internal Medicine II, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pniewska E, Pawliczak R. The involvement of phospholipases A2 in asthma and chronic obstructive pulmonary disease. Mediators Inflamm 2013; 2013:793505. [PMID: 24089590 PMCID: PMC3780701 DOI: 10.1155/2013/793505] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 01/02/2013] [Accepted: 02/27/2013] [Indexed: 12/21/2022] Open
Abstract
The increased morbidity, mortality, and ineffective treatment associated with the pathogenesis of chronic inflammatory diseases such as asthma and chronic obstructive pulmonary disease (COPD) have generated much research interest. The key role is played by phospholipases from the A2 superfamily: enzymes which are involved in inflammation through participation in pro- and anti-inflammatory mediators production and have an impact on many immunocompetent cells. The 30 members of the A2 superfamily are divided into 7 groups. Their role in asthma and COPD has been studied in vitro and in vivo (animal models, cell cultures, and patients). This paper contains complete and updated information about the involvement of particular enzymes in the etiology and course of asthma and COPD.
Collapse
Affiliation(s)
- Ewa Pniewska
- Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, 7/9 Zeligowskiego Street, Building 2, Room 122, 90-752 Lodz, Poland
| | - Rafal Pawliczak
- Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, 7/9 Zeligowskiego Street, Building 2, Room 122, 90-752 Lodz, Poland
| |
Collapse
|
16
|
Abstract
Bee venom (BV) (api-toxin) has been widely used in the treatment of some immune-related diseases, as well as in recent times in treatment of tumors. Several cancer cells, including renal, lung, liver, prostate, bladder, and mammary cancer cells as well as leukemia cells, can be targets of bee venom peptides such as melittin and phospholipase A2. The cell cytotoxic effects through the activation of PLA2 by melittin have been suggested to be the critical mechanism for the anti-cancer activity of BV. The induction of apoptotic cell death through several cancer cell death mechanisms, including the activation of caspase and matrix metalloproteinases, is important for the melittin-induced anti-cancer effects. The conjugation of cell lytic peptide (melittin) with hormone receptors and gene therapy carrying melittin can be useful as a novel targeted therapy for some types of cancer, such as prostate and breast cancer. This review summarizes the current knowledge regarding potential of bee venom and its compounds such as melittin to induce cytotoxic, antitumor, immunomodulatory, and apoptotic effects in different tumor cells in vivo or in vitro. The recent applications of melittin in various cancers and a molecular explanation for the antiproliferative properties of bee venom are discussed.
Collapse
|
17
|
Zhan C, Wang J, Kolko M. Diverse Regulation of Retinal Pigment Epithelium Phagocytosis of Photoreceptor Outer Segments by Calcium-Independent Phospholipase A2, Group VIA and Secretory Phospholipase A2, Group IB. Curr Eye Res 2012; 37:930-40. [DOI: 10.3109/02713683.2012.691598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Pancreatic cancer cell lines can induce prostaglandin e2 production from human blood mononuclear cells. JOURNAL OF ONCOLOGY 2011; 2011:741868. [PMID: 21785593 PMCID: PMC3139198 DOI: 10.1155/2011/741868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 05/19/2011] [Accepted: 06/06/2011] [Indexed: 01/01/2023]
Abstract
Accumulating evidence suggests an important role for cyclooxygenase-2 (COX-2) in the pathogenesis of a wide range of malignancies. The protumorigenic properties of COX-2 are generally thought to be mediated by its product, PGE(2), which is shown to promote tumor spread and growth by multiple mechanisms but most importantly through modulation of the local immune response in the tumor. Pancreatic tumor cells produce various amounts of PGE(2), some of them being even deficient in COX enzymes or other PGE(2) synthases. Here we describe that, beside pancreatic tumor cells or stromal fibroblasts, human peripheral blood mononuclear cells can also produce PGE(2) upon coculture with pancreatic cancer cells. Stimulating of cellular cPLA2 within PBMCs by secreted factors, presumably sPLA2, from tumor cells appeared crucial, while the direct contact between PBMCs and PDACs seemed to be dispensable for this effect. Our data is emphasizing the complex interactions participating in the formation of the tolerogenic immune milieu within pancreatic tumors.
Collapse
|
19
|
Hewson CA, Watson JR, Liu WL, Fidock MD. A differential role for ceramide kinase in antigen/FcɛRI-mediated mast cell activation and function. Clin Exp Allergy 2011; 41:389-98. [DOI: 10.1111/j.1365-2222.2010.03682.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
The role of mast cell-derived secreted phospholipases A2 in respiratory allergy. Biochimie 2010; 92:588-93. [PMID: 20219624 DOI: 10.1016/j.biochi.2010.02.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 02/19/2010] [Indexed: 11/23/2022]
Abstract
Secreted phospholipases A(2) (sPLA(2)s) are molecules released in plasma and biological fluids of patients with systemic inflammatory, autoimmune and allergic diseases. These molecules exert proinflammatory effects by either enzymatic-mechanisms or through binding to surface molecules expressed on inflammatory cells. sPLA(2)s are released at low levels in the normal airways and tend to increase during respiratory allergies (e.g., rhinitis and bronchial asthma) as the result of local secretion. Several sPLA(2) isoforms are expressed in the human lung and some of them (e.g., group IIA and group X) are released in the airways of patients with rhinitis or asthma. Mast cells play a major role in the pathogenesis of respiratory allergies and other chronic inflammatory lung diseases. Recent evidence indicates that mast cells purified from human lung express most of the sPLA(2) isoforms so far described. IgE-mediated activation of these cells induce the release of sPLA(2)s suggesting that mast cells are a main source of extracellular sPLA(2)s during allergic reactions. Once released, sPLA(2)s may contribute to the generation of eicosanoids (e.g., PGD(2) and LTC(4)) and to the release of preformed mediators (e.g., histamine) by an autocrine loop involving the interaction of sPLA(2)s with surface molecules such as heparan sulphate proteoglycans or the M-type receptor. Thus, mast cell-derived sPLA(2)s may play an important role in the initiation and amplification of the inflammatory reactions in patients with allergic rhinitis and bronchial asthma.
Collapse
|
21
|
Granata F, Nardicchi V, Loffredo S, Frattini A, Ilaria Staiano R, Agostini C, Triggiani M. Secreted phospholipases A(2): A proinflammatory connection between macrophages and mast cells in the human lung. Immunobiology 2009; 214:811-21. [PMID: 19628294 DOI: 10.1016/j.imbio.2009.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Secretory phospholipases A(2) (sPLA(2)) are an emerging class of mediators of inflammation. These enzymes accumulate in plasma and other biological fluids of patients with inflammatory, autoimmune and allergic diseases. sPLA(2)s are secreted at low levels in the normal airways and tend to increase during inflammatory lung diseases (e.g. bronchial asthma, chronic obstructive pulmonary disease, interstitial lung fibrosis, and sarcoidosis) as the result of plasma extravasation and/or local production. Such immune resident cells as macrophages and mast cells can be a source of sPLA(2)s in the lung. However, these cells are also targets for sPLA(2)s that sustain the activation programs of macrophages and mast cells with mechanism related to their enzymatic activity as well as to their capacity to interact with surface molecules (e.g., heparan sulfate proteoglycans, M-type receptor, mannose receptor). Recent evidence suggests that mast cells are a better source of extracellular sPLA(2)s than macrophages. On the other hand, macrophages appear to be a preferential target for sPLA(2)s. Anatomical association between macrophages and mast cells in the airways suggest that sPLA(2)s released by mast cells may activate in a paracrine fashion several macrophage functions relevant to the modulation of lung inflammation. Thus, sPLA(2)s may play a major role in inflammatory lung diseases by acting as a proinflammatory connection between macrophages and mast cells.
Collapse
Affiliation(s)
- Francescopaolo Granata
- Department of Clinical Immunology and Allergy and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
22
|
Lung mast cells are a source of secreted phospholipases A2. J Allergy Clin Immunol 2009; 124:558-65, 565.e1-3. [PMID: 19541351 DOI: 10.1016/j.jaci.2009.04.035] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 03/20/2009] [Accepted: 04/29/2009] [Indexed: 11/22/2022]
Abstract
BACKGROUND Secreted phospholipases A(2) (sPLA(2)s) are released in plasma and other biologic fluids of patients with inflammatory, autoimmune, and allergic diseases. OBJECTIVE We sought to evaluate sPLA(2) activity in the bronchoalveolar lavage fluid (BALF) of asthmatic patients and to examine the expression and release of sPLA(2)s from primary human lung mast cells (HLMCs). METHODS sPLA(2) activity was measured in BALF and supernatants of either unstimulated or anti-IgE-activated HLMCs as hydrolysis of oleic acid from radiolabeled Escherichia coli membranes. Expression of sPLA(2)s was examined by using RT-PCR. The release of cysteinyl leukotriene (LT) C(4) was measured by means of enzyme immunoassay. RESULTS Phospholipase A(2) (PLA(2)) activity was higher in the BALF of asthmatic patients than in the control group. BALF PLA(2) activity was blocked by the sPLA(2) inhibitors dithiothreitol and Me-Indoxam but not by the cytosolic PLA(2) inhibitor AZ-1. HLMCs spontaneously released a PLA(2) activity that was increased on stimulation with anti-IgE. This PLA(2) activity was blocked by dithiothreitol and Me-Indoxam but not by AZ-1. HLMCs constitutively express mRNA for group IB, IIA, IID, IIE, IIF, III, V, X, XIIA, and XIIB sPLA(2)s. Anti-IgE did not modify the expression of sPLA(2)s. The cell-impermeable inhibitor Me-Indoxam significantly reduced (up to 40%) the production of LTC(4) from anti-IgE-stimulated HLMCs. CONCLUSIONS sPLA(2) activity is increased in the airways of asthmatic patients. HLMCs express multiple sPLA(2)s and release 1 or more of them when activated by anti-IgE. The sPLA(2)s released by mast cells contribute to LTC(4) production by acting in an autocrine fashion. Mast cells can be a source of sPLA(2)s in the airways of asthmatic patients.
Collapse
|
23
|
Augert A, Payré C, de Launoit Y, Gil J, Lambeau G, Bernard D. The M-type receptor PLA2R regulates senescence through the p53 pathway. EMBO Rep 2009; 10:271-7. [PMID: 19197340 DOI: 10.1038/embor.2008.255] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 12/15/2008] [Accepted: 12/17/2008] [Indexed: 11/09/2022] Open
Abstract
Senescence is a stable proliferative arrest induced by various stresses such as telomere erosion, oncogenic or oxidative stress. Compelling evidence suggests that it acts as a barrier against tumour development. Describing new mechanisms that favour an escape from senescence can thus reveal new insights into tumorigenesis. To identify new genes controlling the senescence programme, we performed a loss-of-function genetic screen in primary human fibroblasts. We report that knockdown of the M-type receptor PLA2R (phospholipase A2 receptor) prevents the onset of replicative senescence and diminishes stress-induced senescence. Interestingly, expression of PLA2R increases during replicative senescence, and its ectopic expression results in premature senescence. We show that PLA2R regulates senescence in a reactive oxygen species-DNA damage-p53-dependent manner. Taken together, our study identifies PLA2R as a potential new tumour suppressor gene crucial in the induction of cellular senescence through the activation of the p53 pathway.
Collapse
Affiliation(s)
- Arnaud Augert
- UMR 8161, Institut de Biologie de Lille, CNRS/Universités de Lille 1 et 2/Institut Pasteur de Lille, IFR 142, 59021 Lille, France
| | | | | | | | | | | |
Collapse
|
24
|
Titsworth WL, Liu NK, Xu XM. Role of secretory phospholipase a(2) in CNS inflammation: implications in traumatic spinal cord injury. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2008; 7:254-69. [PMID: 18673210 DOI: 10.2174/187152708784936671] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Secretory phospholipases A(2) (sPLA(2)s) are a subfamily of lipolytic enzymes which hydrolyze the acyl bond at the sn-2 position of glycerophospholipids to produce free fatty acids and lysophospholipids. These products are precursors of bioactive eicosanoids and platelet-activating factor (PAF). The hydrolysis of membrane phospholipids by PLA(2) is a rate-limiting step for generation of eicosanoids and PAF. To date, more than 10 isozymes of sPLA(2) have been found in the mammalian central nervous system (CNS). Under physiological conditions, sPLA(2)s are involved in diverse cellular responses, including host defense, phospholipid digestion and metabolism. However, under pathological situations, increased sPLA(2) activity and excessive production of free fatty acids and their metabolites may lead to inflammation, loss of membrane integrity, oxidative stress, and subsequent tissue injury. Emerging evidence suggests that sPLA(2) plays a role in the secondary injury process after traumatic or ischemic injuries in the brain and spinal cord. Importantly, sPLA(2) may act as a convergence molecule that mediates multiple key mechanisms involved in the secondary injury since it can be induced by multiple toxic factors such as inflammatory cytokines, free radicals, and excitatory amino acids, and its activation and metabolites can exacerbate the secondary injury. Blocking sPLA(2) action may represent a novel and efficient strategy to block multiple injury pathways associated with the CNS secondary injury. This review outlines the current knowledge of sPLA(2) in the CNS with emphasis placed on the possible roles of sPLA(2) in mediating CNS injuries, particularly the traumatic and ischemic injuries in the brain and spinal cord.
Collapse
Affiliation(s)
- W Lee Titsworth
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | | | |
Collapse
|
25
|
Muñoz NM, Meliton AY, Arm JP, Bonventre JV, Cho W, Leff AR. Deletion of secretory group V phospholipase A2 attenuates cell migration and airway hyperresponsiveness in immunosensitized mice. THE JOURNAL OF IMMUNOLOGY 2007; 179:4800-7. [PMID: 17878379 DOI: 10.4049/jimmunol.179.7.4800] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We investigated the role of group V phospholipase A2 (gVPLA2) in OVA-induced inflammatory cell migration and airway hyperresponsiveness (AHR) in C57BL/6 mice. Repeated allergen challenge induced biosynthesis of gVPLA2 in airways. By aerosol, gVPLA2 caused dose-related increase in airway resistance in saline-treated mice; in allergic mice, gVPLA2 caused persistent airway narrowing. Neither group IIa phospholipase A2, a close homolog of gVPLA2, nor W31A, an inactive gVPLA2 mutant with reduced activity, caused airway narrowing in immune-sensitized mice. Pretreatment with MCL-3G1, a blocking Ab against gVPLA2, before OVA challenge blocked fully gVPLA2-induced cell migration and airway narrowing as marked by reduction of migrating leukocytes in bronchoalveolar lavage fluid and decreased airway resistance. We also assessed whether nonspecific AHR caused by methacholine challenge was elicited by gVPLA2 secreted from resident airway cells of immune-sensitized mice. MCL-3G1 also blocked methacholine-induced airway bronchoconstriction in allergic mice. Blockade of bronchoconstriction by MCL-3G1 was replicated in allergic pla2g5-/- mice, which lack the gene encoding gVPLA2. Bronchoconstriction caused by gVPLA2 in pla2g4-/- mice was comparable to that in pla2g4+/+ mice. Our data demonstrate that gVPLA2 is a critical messenger enzyme in the development of AHR and regulation of cell migration during immunosensitization by a pathway that is independent of group IVa phospholipase A2.
Collapse
Affiliation(s)
- Nilda M Muñoz
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
26
|
Culver CA, Laster SM. Adenovirus type 5 exerts multiple effects on the expression and activity of cytosolic phospholipase A2, cyclooxygenase-2, and prostaglandin synthesis. THE JOURNAL OF IMMUNOLOGY 2007; 179:4170-9. [PMID: 17785856 DOI: 10.4049/jimmunol.179.6.4170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, we examine how infection of murine and human fibroblasts by adenovirus (Ad) serotype 5 (Ad5) affects the expression and activity of cytosolic phospholipase A2 (cPLA2), cyclooxygenase-2 (COX-2), and production of PGs. Our experiments showed that infection with Ad5 is accompanied by the rapid activation of cPLA2 and the cPLA2-dependent release of [3H]arachidonic acid ([3H]AA). Increased expression of COX-2 was also observed after Ad infection, as was production of PGE2 and PGI2. Later, however, as the infection progressed, release of [3H]AA and production of PGs stopped. Late-stage Ad5-infected cells also did not release [3H]AA or PGs following treatment with a panel of biologically diverse agents. Experiments with UV-inactivated virus confirmed that Ad infection is accompanied by the activation of a host-dependent response that is later inhibited by the virus. Investigations of the mechanism of suppression of the PG pathway by Ad5 did not reveal major effects on the expression or activity of cPLA2 or COX-2. We did note a change in the intracellular position of cPLA2 and found that cPLA2 did not translocate normally in infected cells, raising the possibility that Ad5 interferes with the PG pathway by interfering with the intracellular movement of cPLA2. Taken together, these data reveal dynamic interactions between Ad5 and the lipid mediator pathways of the host and highlight a novel mechanism by which Ad5 evades the host immune response. In addition, our results offer insight into the inflammatory response induced by many Ad vectors lacking early region gene products.
Collapse
Affiliation(s)
- Carolyn A Culver
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695, USA
| | | |
Collapse
|
27
|
Kikawada E, Bonventre JV, Arm JP. Group V secretory PLA2 regulates TLR2-dependent eicosanoid generation in mouse mast cells through amplification of ERK and cPLA2alpha activation. Blood 2007; 110:561-7. [PMID: 17369491 PMCID: PMC1924482 DOI: 10.1182/blood-2006-10-052258] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 02/06/2007] [Indexed: 01/28/2023] Open
Abstract
Mast cells may be activated through Toll-like receptors (TLRs) for the dose- and time-dependent release of eicosanoids. However, the signaling mechanisms of TLR-dependent rapid eicosanoid generation are not known. We previously reported a role for group V secretory phospholipase A(2) (PLA(2)) in regulating phagocytosis of zymosan and the ensuing eicosanoid generation in mouse resident peritoneal macrophages, suggesting a role for the enzyme in innate immunity. In the present study, we have used gene knockout mice to define an essential role for MyD88 and cytosolic PLA(2)alpha in TLR2-dependent eicosanoid generation. Furthermore, in mast cells lacking group V secretory PLA(2), the time course of phosphorylation of ERK1/2 and of cPLA(2)alpha was markedly truncated, leading to attenuation of eicosanoid generation in response to stimulation through TLR2, but not through c-kit or FcepsilonRI. These findings provide the first dissection of the mechanisms of TLR-dependent rapid eicosanoid generation, which is MyD88-dependent, requires cPLA(2)alpha, and is amplified by group V sPLA(2) through its regulation of the sequential phosphorylation and activation of ERK1/2 and cPLA(2)alpha. The findings support the suggestion that group V sPLA(2) regulates innate immune responses.
Collapse
Affiliation(s)
- Eriya Kikawada
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
28
|
Putz T, Ramoner R, Gander H, Rahm A, Bartsch G, Bernardo K, Ramsay S, Thurnher M. Bee venom secretory phospholipase A2 and phosphatidylinositol-homologues cooperatively disrupt membrane integrity, abrogate signal transduction and inhibit proliferation of renal cancer cells. Cancer Immunol Immunother 2007; 56:627-40. [PMID: 16947021 PMCID: PMC11030745 DOI: 10.1007/s00262-006-0220-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 08/02/2006] [Indexed: 02/02/2023]
Abstract
Bee venom secretory phospholipase A2 (bv-sPLA2) and phosphatidylinositol-(3,4)-bisphosphate (PtdIns(3,4)P2) act synergistically to induce cell death in tumour cells of various origins with concomitant stimulation of the immune system. Here, we investigated the mechanisms involved in such actions and examined structural requirements of PtdIns-homologues to inhibit tumour cells in combination with bv-sPLA2. Renal cancer cells were treated with bv-sPLA2 alone or in combination with PtdIns-homologues. Inhibitory effects on [(3)H] thymidine incorporation and intracellular signal transduction pathways were tested. Reaction products generated by bv-sPLA2 interaction with PtdIns(3,4)P2 were identified by mass spectrometry. Among the tested PtdIns-homologues those with a phosphate esterified to position 3 of the inositol head group, were most efficient in cooperating with bv-sPLA2 to block tumour cell proliferation. Growth inhibition induced by the combined action of bv-sPLA2 with either PtdIns(3,4)bisphosphate or PtdIns(3,4,5)trisphosphate were synergistic and accompanied by potent cell lysis. In contrast, PtdIns, which lacked the phosphate group at position 3, failed to promote synergistic growth inhibition. The combined administration of PtdIns(3,4)P2 and bv-sPLA2 abrogated signal transduction mediated by extracellular signal regulated kinase 1 and 2 and prevented transduction of survival signals mediated by protein kinase B. Surface expression of the epidermal growth factor (EGF)-receptor was reduced after PtdIns(3,4)P2-bv-sPLA2 administration and associated with a blockade of EGF-induced signalling. In addition, mass spectroscopy revealed that bv-sPLA2 cleaves PtdIns(3,4)P2 to generate lyso-PtdIns(3,4)P2. In conclusion, we suggest that the cytotoxic activity mediated by PtdIns(3,4)P2 and bv-sPLA2 is due to cell death that results from disruption of membrane integrity, abrogation of signal transduction and the generation of cytotoxic lyso-PtdIns(3,4)P2.
Collapse
Affiliation(s)
- Thomas Putz
- Department of Urology and kompetenzzentrum medizin tirol, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Payne SG, Oskeritzian CA, Griffiths R, Subramanian P, Barbour SE, Chalfant CE, Milstien S, Spiegel S. The immunosuppressant drug FTY720 inhibits cytosolic phospholipase A2 independently of sphingosine-1-phosphate receptors. Blood 2007; 109:1077-85. [PMID: 17008548 PMCID: PMC1785128 DOI: 10.1182/blood-2006-03-011437] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 09/13/2006] [Indexed: 01/01/2023] Open
Abstract
FTY720 is a potent immunomodulator drug that inhibits the egress of lymphocytes from secondary lymphoid tissues and thymus. FTY720 is phosphorylated in vivo by sphingosine kinase 2 to FTY720-phosphate, which acts as a potent sphingosine-1-phosphate (S1P) receptor agonist. However, in contrast to S1P, FTY720 has no effect on mast-cell degranulation, yet significantly reduces antigen-induced secretion of PGD2 and cysteinyl-leukotriene. Unexpectedly, this effect of FTY720 was independent of its phosphorylation and S1P receptor functions. The rate-limiting step in the biosynthesis of all eicosanoids is the phospholipase A2 (PLA2)-mediated release of arachidonic acid from glycerol phospholipids. Although FTY720 also reduced arachidonic acid release in response to antigen, it had no effect on translocation of cPLA2 or ERK1/2 activation, suggesting that it does not interfere with FcepsilonRI-mediated events leading to cPLA2 activation. Remarkably, however, FTY720 drastically inhibited recombinant cPLA2alpha activity, whereas FTY720-phosphate, sphingosine, or S1P had no effect. This study has uncovered a unique action of FTY720 as an inhibitor of cPLA2alpha and hence on production of all eicosanoids. Our results have important implications for the potential therapeutic mechanism of action of FTY720 in eicosanoid-driven inflammatory disorders such as asthma and multiple sclerosis.
Collapse
Affiliation(s)
- Shawn G Payne
- Department of Biochemistry, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0614, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Cunningham TJ, Maciejewski J, Yao L. Inhibition of secreted phospholipase A2 by neuron survival and anti-inflammatory peptide CHEC-9. J Neuroinflammation 2006; 3:25. [PMID: 16965626 PMCID: PMC1624820 DOI: 10.1186/1742-2094-3-25] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2006] [Accepted: 09/11/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nonapeptide CHEC-9 (CHEASAAQC), a putative inhibitor of secreted phospholipase A2 (sPLA2), has been shown previously to inhibit neuron death and aspects of the inflammatory response following systemic treatment of rats with cerebral cortex lesions. In this study, the properties of CHEC-9 inhibition of sPLA2 enzymes were investigated, using a venom-derived sPLA2 group I and the plasma of rats and humans as the sources of enzyme activity. The results highlight the advantages of inhibitors with uncompetitive properties for inflammatory disorders including those resulting in degeneration of neurons. METHODS Samples of enzyme and plasma were reacted with 1-Palmitoyl-2-Pyrenedecanoyl Phosphatidylcholine, a sPLA2 substrate that forms phospholipid vesicles in aqueous solutions. Some of the plasma samples were collected from restrained peptide-treated rats in order to confirm the validity of the in vitro assays for extrapolation to in vivo effects of the peptide. The enzyme reactions were analyzed in terms of well-studied relationships between the degree of inhibition and the concentrations of different reactants. We also examined interactions between different components of the reaction mixture on native polyacrylamide gels. RESULTS In all cases, the peptide showed the properties of an uncompetitive (or anti-competitive) enzyme inhibitor with Ki values less than 100 nanomolar. The electrophoresis experiments suggested CHEC-9 modifies the binding properties of the enzyme only in the presence of substrate, consistent with its classification as an uncompetitive inhibitor. Both the in vitro observations and the analysis of plasma samples from restrained rats injected with peptide suggest the efficacy of the peptide increases under conditions of high enzyme activity. CONCLUSION Modeling studies by others have shown that uncompetitive inhibitors may be optimal for enzyme inhibition therapy because, unlike competitive inhibitors, they are not rendered ineffective by the accumulation of unmodified substrate. Such conditions likely apply to several instances of neuroinflammation where there are cascading increases in sPLA2s and their substrates, both systemically and in the CNS. Thus, the present results may explain the efficacy of CHEC-9 in vivo.
Collapse
Affiliation(s)
- Timothy J Cunningham
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Jaquie Maciejewski
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Lihua Yao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| |
Collapse
|
31
|
Gorovetz M, Baekelandt M, Berner A, Trope' CG, Davidson B, Reich R. The clinical role of phospholipase A2 isoforms in advanced-stage ovarian carcinoma. Gynecol Oncol 2006; 103:831-40. [PMID: 16919315 DOI: 10.1016/j.ygyno.2006.06.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2006] [Revised: 06/07/2006] [Accepted: 06/22/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To analyze the expression of phospholipase A2 (PLA2) isoforms and its relationship with matrix metalloproteinase (MMP) expression and clinical parameters in advanced-stage (FIGO III-IV) ovarian carcinoma. METHODS Seventy-seven fresh frozen effusions from ovarian carcinoma patients were studied for messenger RNA (mRNA) expression of 10 secretory PLA2 (sPLA2) isoforms (IB, IIA/D/E/F, III, V, X, XII and XIII), the PLA2 receptor (sPLA2R), cytoplasmic PLA2 (cPLA2), PLA2-activating protein (PLAP) and MMP-2 using reverse transcription polymerase chain reaction (RT-PCR). Phosphorylated cPLA2 (p-cPLA2) protein expression was studied in 52 effusions using immunohistochemistry. MMP-2 and MMP-9 activity was evaluated in 22 and 20 effusions, respectively, using zymography. Expression was analyzed for correlation with clinicopathologic parameters, chemotherapy status and survival. RESULTS PLA2 isoforms, sPLA2R, PLAP and MMP-2 mRNA was expressed in >95% of specimens. p-cPLA2 protein was expressed in 46/52 (88%) effusions. MMP-2 activity was found in all specimens, while that of MMP-9 was detected in 19/20 effusions. MMP-2 was found to be co-expressed with p-cPLA2 (p=0.003) and sPLA2-IIA (p=0.021). Lower expression of sPLA2-IIA (p<0.001) and higher expression of sPLA2-V (p=0.038) and sPLA2-XIII (p=0.001) was found in post-chemotherapy effusions. In univariate survival analysis, higher levels of sPLA2-V correlated with better overall (OS, p=0.021) and progression-free (PFS, p=0.025) survival. For patients with post-chemotherapy effusions, FIGO stage IV and higher PLAP mRNA expression correlated with worse OS (p=0.005 for both PLAP and stage), while higher PLAP (p=0.025) and sPLA2-XII (p=0.027) levels and FIGO stage IV (p<0.001) correlated with shorter PFS. In Cox multivariate analysis, PLAP expression (p=0.022) and FIGO stage (p=0.036) independently predicted poor OS, while higher sPLA2-XII levels (p=0.04) and FIGO stage (p=0.003) were independent predictors of shorter PFS. CONCLUSIONS The present study documents for the first time expression of PLA2 isoforms, sPLA2R and PLAP in ovarian carcinoma. PLA2 isoenzyme expression differs in pre- and post-chemotherapy specimens. PLAP and sPLA2-XII may be independent predictors of poor outcome for patients with post-chemotherapy effusions.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/metabolism
- Adenocarcinoma, Clear Cell/mortality
- Adenocarcinoma, Clear Cell/pathology
- Adenocarcinoma, Mucinous/metabolism
- Adenocarcinoma, Mucinous/mortality
- Adenocarcinoma, Mucinous/pathology
- Adult
- Aged
- Ascitic Fluid/metabolism
- Cystadenocarcinoma, Serous/metabolism
- Cystadenocarcinoma, Serous/mortality
- Cystadenocarcinoma, Serous/pathology
- DNA Primers
- Disease-Free Survival
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immunohistochemistry
- Matrix Metalloproteinase 2/genetics
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Matrix Metalloproteinases/genetics
- Matrix Metalloproteinases/metabolism
- Middle Aged
- Neoplasm Staging
- Neoplasms, Glandular and Epithelial/metabolism
- Neoplasms, Glandular and Epithelial/mortality
- Neoplasms, Glandular and Epithelial/pathology
- Norway
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/mortality
- Ovarian Neoplasms/pathology
- Phospholipases/genetics
- Phospholipases/metabolism
- Prognosis
- Protein Isoforms
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Analysis
Collapse
Affiliation(s)
- Michal Gorovetz
- Department of Pharmacology and Experimental Therapeutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel, and Department of Gynecologic Oncology, National Hospital-Norwegian Radium Hospital, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
32
|
Schaloske RH, Dennis EA. The phospholipase A2 superfamily and its group numbering system. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1246-59. [PMID: 16973413 DOI: 10.1016/j.bbalip.2006.07.011] [Citation(s) in RCA: 637] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 07/05/2006] [Accepted: 07/29/2006] [Indexed: 01/07/2023]
Abstract
The superfamily of phospholipase A(2) (PLA(2)) enzymes currently consists of 15 Groups and many subgroups and includes five distinct types of enzymes, namely the secreted PLA(2)s (sPLA(2)), the cytosolic PLA(2)s (cPLA(2)), the Ca(2+) independent PLA(2)s (iPLA(2)), the platelet-activating factor acetylhydrolases (PAF-AH), and the lysosomal PLA(2)s. In 1994, we established the systematic Group numbering system for these enzymes. Since then, the PLA(2) superfamily has grown continuously and over the intervening years has required several updates of this Group numbering system. Since our last update, a number of new PLA(2)s have been discovered and are now included. Additionally, tools for the investigation of PLA(2)s and approaches for distinguishing between the different Groups are described.
Collapse
Affiliation(s)
- Ralph H Schaloske
- Department of Pharmacology, School of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0601, USA
| | | |
Collapse
|
33
|
Yedgar S, Cohen Y, Shoseyov D. Control of phospholipase A2 activities for the treatment of inflammatory conditions. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1373-82. [PMID: 16978919 DOI: 10.1016/j.bbalip.2006.08.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 08/01/2006] [Indexed: 01/10/2023]
Abstract
Phospholipase-A2 (PLA2) enzymes hydrolyze cell membrane phospholipids to produce arachidonic acid (AA) and lyso-phospholipids (LysoPL), playing a key role in the production of inflammatory lipid mediators, mainly eicosanoids. They are therefore considered pro-inflammatory enzymes and their inhibition has long been recognized as a desirable therapeutic target. However, attempts to develop suitable PLA2 inhibitors for the treatment of inflammatory diseases have yet to succeed. This is due to their functional and structural diversity, and their homeostatic and even anti-inflammatory roles in certain circumstances. In the present review we outline the diversity and functions of PLA2 isoforms, and their interplay in the induction and inhibition of inflammatory processes, with emphasis on discussing approaches for therapeutic manipulation of PLA2 activities.
Collapse
Affiliation(s)
- Saul Yedgar
- Department of Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | | | | |
Collapse
|
34
|
Triggiani M, Granata F, Frattini A, Marone G. Activation of human inflammatory cells by secreted phospholipases A2. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1289-300. [PMID: 16952481 DOI: 10.1016/j.bbalip.2006.07.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 07/07/2006] [Accepted: 07/17/2006] [Indexed: 10/24/2022]
Abstract
Secreted phospholipases A(2) (sPLA(2)s) are enzymes detected in serum and biological fluids of patients with various inflammatory, autoimmune and allergic disorders. Different isoforms of sPLA(2)s are expressed and released by human inflammatory cells, such as neutrophils, eosinophils, T cells, monocytes, macrophages and mast cells. sPLA(2)s generate arachidonic acid and lysophospholipids thus contributing to the production of bioactive lipid mediators in inflammatory cells. However, sPLA(2)s also activate human inflammatory cells by mechanisms unrelated to their enzymatic activity. Several human and non-human sPLA(2)s induce degranulation of mast cells, neutrophils and eosinophils and activate exocytosis in macrophages. In addition some, but not all, sPLA(2) isoforms promote cytokine and chemokine production from macrophages, neutrophils, eosinophils, monocytes and endothelial cells. These effects are primarily mediated by binding of sPLA(2)s to specific membrane targets (heparan sulfate proteoglycans, M-type, N-type or mannose receptors) expressed on effector cells. Thus, sPLA(2)s may play an important role in the initiation and amplification of inflammatory reactions by at least two mechanisms: production of lipid mediators and direct activation of inflammatory cells. Selective inhibitors of sPLA(2)-enzymatic activity and specific antagonists of sPLA(2) receptors are current being tested for pharmacological treatment of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Massimo Triggiani
- Division of Clinical Immunology and Allergy, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Via Pansini 5, Italy.
| | | | | | | |
Collapse
|
35
|
Gregory LS, Kelly WL, Reid RC, Fairlie DP, Forwood MR. Inhibitors of cyclo-oxygenase-2 and secretory phospholipase A2 preserve bone architecture following ovariectomy in adult rats. Bone 2006; 39:134-42. [PMID: 16473054 DOI: 10.1016/j.bone.2005.12.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 11/16/2005] [Accepted: 12/29/2005] [Indexed: 12/30/2022]
Abstract
Epidemiological evidence and in vitro data suggest that COX-2 is a key regulator of accelerated remodeling. Accelerated states of osteoblast and osteoclast activity are regulated by prostaglandins in vitro, but experimental evidence for specific roles of cyclooxygenase-2 (COX-2) and secretory phospholipase A2 (sPLA2) in activated states of remodeling in vivo is lacking. The aim of this study was to determine the effect of specific inhibitors of sPLA2-IIa and COX-2 on bone remodeling activated by estrogen deficiency in adult female rats. One hundred and twenty-four adult female Wistar rats were ovariectomized (OVX) or sham-operated. Rats commenced treatment 14 days after surgery with either vehicle, a COX-2 inhibitor (DFU at 0.02 mg/kg/day and 2.0 mg/kg/day) or a sPLA2-group-IIa inhibitor (KH064 at 0.4 mg/kg/day and 4.0 mg/kg/day). Treatment continued daily until rats were sacrificed at 70 days or 98 days post-OVX. The right tibiae were harvested, fixed and embedded in methylmethacrylate for structural histomorphometric bone analysis at the proximal tibial metaphysis. The specific COX-2 or sPLA2 inhibitors prevented ovariectomy-induced (OVX-induced) decreases in trabecular connectivity (P<0.05); suppressed the acceleration of bone resorption; and maintained bone turnover at SHAM levels following OVX in the rat. The sPLA2 inhibitor significantly suppressed increases in osteoclast surface induced by OVX (P<0.05), while the effect of COX-2 inhibition was less marked. These findings demonstrate that inhibitors of COX-2 and sPLA2-IIa can effectively suppress OVX-induced bone loss in the adult rat by conserving trabecular bone mass and architecture through reduced bone remodeling and decreased resorptive activity. Moreover, we report an important role of sPLA2-IIa in osteoclastogenesis that may be independent of the COX-2 metabolic pathway in the OVX rat in vivo.
Collapse
Affiliation(s)
- Laura S Gregory
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, The University of Queensland, Brisbane Qld 4072, Australia.
| | | | | | | | | |
Collapse
|
36
|
Muñoz NM, Meliton AY, Lambertino A, Boetticher E, Learoyd J, Sultan F, Zhu X, Cho W, Leff AR. Transcellular Secretion of Group V Phospholipase A2 from Epithelium Induces β2-Integrin-Mediated Adhesion and Synthesis of Leukotriene C4 in Eosinophils. THE JOURNAL OF IMMUNOLOGY 2006; 177:574-82. [PMID: 16785555 DOI: 10.4049/jimmunol.177.1.574] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We examined the mechanism by which secretory group V phospholipase A(2) (gVPLA(2)) secreted from stimulated epithelial cells activates eosinophil adhesion to ICAM-1 surrogate protein and secretion of leukotriene (LT)C(4). Exogenous human group V PLA(2) (hVPLA(2)) caused an increase in surface CD11b expression and focal clustering of this integrin, which corresponded to increased beta(2) integrin-mediated adhesion. Human IIaPLA(2), a close homolog of hVPLA(2), or W31A, an inactive mutant of hVPLA(2), did not affect these responses. Exogenous lysophosphatidylcholine but not arachidonic acid mimicked the beta(2) integrin-mediated adhesion caused by hVPLA(2) activation. Inhibition of hVPLA(2) with MCL-3G1, a mAb against gVPLA(2), or with LY311727, a global secretory phospholipase A(2) (PLA(2)) inhibitor, attenuated the activity of hVPLA(2); trifluoromethylketone, an inhibitor of cytosolic group IVA PLA(2) (gIVA-PLA(2)), had no inhibitory effect on hVPLA(2)-mediated adhesion. Activation of beta(2) integrin-dependent adhesion by hVPLA(2) did not cause ERK1/2 activation and was independent of gIVA-PLA(2) phosphorylation. In other studies, eosinophils cocultured with epithelial cells were stimulated with FMLP/cytochalasin B (FMLP/B) and/or endothelin-1 (ET-1) before LTC(4) assay. FMLP/B alone caused release of LTC(4) from eosinophils, which was augmented by coculture with epithelial cells activated with ET-1. Addition of MCL-3G1 to cocultured cells caused approximately 50% inhibition of LTC(4) secretion elicited by ET-1, which was blocked further by trifluoromethylketone. Our data indicate that hVPLA(2) causes focal clustering of CD11b and beta(2) integrin adhesion by a novel mechanism that is independent of arachidonic acid synthesis and gIVA-PLA(2) activation. We also demonstrate that gVPLA(2), endogenously secreted from activated epithelial cells, promotes secretion of LTC(4) in cocultured eosinophils.
Collapse
Affiliation(s)
- Nilda M Muñoz
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kim JY, Kwon EY, Lee YS, Kim WB, Ro JY. Eupatilin blocks mediator release via tyrosine kinase inhibition in activated guinea pig lung mast cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2005; 68:2063-80. [PMID: 16326424 DOI: 10.1080/15287390500177024] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Eupatilin, an extract from Artemisia asiatica Nakai, is known to exert anti-gastric ulcer, anticancer, and anti-inflammatory effects. The aim of this study was to elucidate whether eupatilin has antiallergic reactions in activated guinea pig lung mast cells compared to apigenin and genistein. Mast cells were purified from guinea pig lung tissues by using enzyme digestion and rough and discontinuous density Percoll gradient. The purified mast cells were sensitized with immunoglobulin (Ig) G(1) (anti-OVA antibody) and challenged with ovalbumin (OVA). Histamine was assayed using an automated fluorometric analyzer, leukotrienes by radioimmunoassay, and tyrosine phosphorylation by immunoblotting. Intracellular Ca(2+) was analyzed by confocal laser scanning microscopy, protein kinase C (PKC) activity using protein phosphorylated with [gamma-(32)P]ATP, and phopholipase D activity (PLD) and phosphatidic acid by using labeled phosphatidyl alcohol. Eupatilin, apigenin, or genistein reduced histamine release and leukotriene synthesis in a does-dependent manner. Eupatilin inhibited mediators to a greater extent than apigenin or genistein. Eupatilin, apigenin, and genistein initially blocked phosphorylation of Syk tyrosine and Ca(2+) influx, PLD activity, phosphatidic acid, and Ca(2+)-dependent PKC alpha/betaII activities during mast cell activation in a dose-dependent manner. Our data suggest that eupatilin initially inhibits Syk kinase, and then blocks downstream multisignal pathways and Ca(2+) influx during mast cell activation triggered by a specific antigen-antibody reaction. Thus, eupatilin may have use clinically as a treatment for inflammatory disorders associated with allergic diseases including asthma.
Collapse
Affiliation(s)
- Ji Young Kim
- Research Laboratories, Dong-A Pharmaceutics Co. Ltd., Yonginsi, Kyunggido, Korea
| | | | | | | | | |
Collapse
|
38
|
Femling JK, Nauseef WM, Weiss JP. Synergy between extracellular group IIA phospholipase A2 and phagocyte NADPH oxidase in digestion of phospholipids of Staphylococcus aureus ingested by human neutrophils. THE JOURNAL OF IMMUNOLOGY 2005; 175:4653-61. [PMID: 16177112 DOI: 10.4049/jimmunol.175.7.4653] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Acute inflammatory responses to invading bacteria such as Staphylococcus aureus include mobilization of polymorphonuclear leukocytes (PMN) and extracellular group IIA phospholipase A2 (gIIA-PLA2). Although accumulating coincidentally, the in vitro anti-staphylococcal activities of PMN and gIIA-PLA2 have thus far been studied separately. We now show that degradation of S. aureus phospholipids during and after phagocytosis by human PMN requires the presence of extracellular gIIA-PLA2. The concentration of extracellular gIIA-PLA2 required to produce bacterial digestion was reduced 10-fold by PMN. The effects of added gIIA-PLA2 were greater when present before phagocytosis but even apparent when added after S. aureus were ingested by PMN. Related group V and X PLA2, which are present within PMN granules, do not contribute to bacterial phospholipid degradation during and after phagocytosis even when added at concentrations 30-fold higher than that needed for action of the gIIA-PLA2. The action of added gIIA-PLA2 required catalytically active gIIA-PLA2 and, in PMN, a functional NADPH oxidase but not myeloperoxidase. These findings reveal a novel collaboration between cellular oxygen-dependent and extracellular oxygen-independent host defense systems that may be important in the ultimate resolution of S. aureus infections.
Collapse
Affiliation(s)
- Jon K Femling
- The Inflammation Program, University of Iowa and Veterans Affairs Medical Center, Iowa City 52242, USA
| | | | | |
Collapse
|
39
|
Triggiani M, Granata F, Giannattasio G, Marone G. Secretory phospholipases A2 in inflammatory and allergic diseases: not just enzymes. J Allergy Clin Immunol 2005; 116:1000-6. [PMID: 16275367 DOI: 10.1016/j.jaci.2005.08.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 08/04/2005] [Accepted: 08/08/2005] [Indexed: 12/30/2022]
Abstract
Secretory phospholipases A(2) (sPLA(2)s) are molecules released in plasma and biologic fluids of patients with systemic inflammatory, autoimmune, and allergic diseases. Several sPLA(2) isoforms are expressed and released by such human inflammatory cells as neutrophils, eosinophils, basophils, T cells, monocytes, macrophages, and mast cells. Certain sPLA(2)s release arachidonic acid, thereby providing the substrate for the biosynthesis of proinflammatory eicosanoids. However, there are other mechanisms by which sPLA(2)s might participate in the synthesis of lipid mediators. Interestingly, sPLA(2)s activate inflammatory cells through mechanisms unrelated to their enzymatic activity. Several sPLA(2)s induce degranulation of mast cells and eosinophils and activate exocytosis in macrophages. Furthermore, sPLA(2)s promote cytokine and chemokine production from macrophages, neutrophils, eosinophils, monocytes, and endothelial cells. Some of these effects are mediated by the binding of sPLA(2)s to specific receptors expressed on effector cells. Thus sPLA(2)s might play important roles in the initiation and amplification of the inflammatory reaction. Selective inhibitors of sPLA(2)s and specific antagonists of sPLA(2) receptors might prove useful in the treatment of allergic and autoimmune diseases, such as bronchial asthma and rheumatoid arthritis.
Collapse
Affiliation(s)
- Massimo Triggiani
- Division of Clinical Immunology and Allergy, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | | | | | | |
Collapse
|
40
|
Jaulmes A, Janvier B, Andreani M, Raymondjean M. Autocrine and Paracrine Transcriptional Regulation of Type IIA Secretory Phospholipase A2 Gene in Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2005; 25:1161-7. [PMID: 15802623 DOI: 10.1161/01.atv.0000164310.67356.a9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
The inflammation that occurs during the development of atherosclerosis is characterized by a massive release of sPLA2-IIA (group IIA secretory phospholipase A2) from vascular smooth muscle cells (VSMCs). We have investigated the autocrine function of sPLA2-IIA in rat aortic and human VSMCs.
Methods and Results—
We found that the transcription of the endogenous sPLA2-IIA gene increased by adding a cell supernatant containing human sPLA2-IIA proteins. We show that this effect was independent of the sPLA2 activity using sPLA2-IIA proteins lacking enzyme activity. Transient transfections with various sPLA2-IIA rat promoter-luciferase constructs demonstrated that the C/EBP, NK-κB, and Ets transcription factors are involved in the increase in sPLA2-IIA gene transcription. We also found the M-type sPLA2 receptor mRNA in VSMCs, and we showed that the sPLA2-luciferase reporter gene was induced by the specific agonist of the sPLA2 receptor, aminophenylmannopyranoside (APMP), and that this induction was mediated by the same transcription factor-binding sites. Finally, we used a sPLA2-IIA mutant unable to bind heparan-sulfate proteoglycans to show that the binding of wild-type sPLA2-IIA to proteoglycans is essential for the induction of an autocrine loop.
Conclusions—
We have thus identified new autocrine and paracrine pathways activating sPLA2-IIA gene expression in rat and human VSMCs.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/cytology
- Autocrine Communication/physiology
- CCAAT-Enhancer-Binding Proteins/metabolism
- Cells, Cultured
- Gene Expression Regulation, Enzymologic/physiology
- Group II Phospholipases A2
- Humans
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/enzymology
- NF-kappa B/metabolism
- Paracrine Communication/physiology
- Phospholipases A/genetics
- Phospholipases A/metabolism
- Phospholipases A2
- Protein Binding
- Proteoglycans/metabolism
- Rats
- Rats, Wistar
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Phospholipase A2
- Transcriptional Activation/physiology
- Winged-Helix Transcription Factors/metabolism
Collapse
Affiliation(s)
- Amandine Jaulmes
- UMR Physiologie et Physiopathologie, Université Pierre et Marie Curie, Paris, France
| | | | | | | |
Collapse
|
41
|
Bowton DL, Dmitrienko AA, Israel E, Zeiher BG, Sides GD. Impact of a soluble phospholipase A2 inhibitor on inhaled allergen challenge in subjects with asthma. J Asthma 2005; 42:65-71. [PMID: 15801331 DOI: 10.1081/jas-200044748] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The possible roles of secretory phospholipases A2 (sPLA2) in asthma include the release of arachidonic acid from cellular membranes, generation of lysophospholipids, sPLA2-mediated activation of cPLA2 with increased leukotriene production, and surfactant degradation. LY333013 is a potent inhibitor of sPLA2. This study examined the impact of two doses of LY333013 vs. placebo on allergen-induced bronchoconstriction following inhaled allergen challenge in atopic asthmatics. Fifty subjects were randomly assigned to treatment, and 40 subjects completed the study. A double-blind, placebo-controlled, random order, crossover study design was used. LY333013 had no impact on the primary outcome variables of the areas under the FEV1 response curve early (0-3 hours) (AUC(early)) and late (3-8 hours) (AUC(Iate)) following inhaled allergen challenge. No significant drug-related adverse effects were observed. The response to inhaled allergen challenge was reproducible and confirms the utility of this technique as a model in which to screen compounds for further testing in asthmatic patients.
Collapse
Affiliation(s)
- David L Bowton
- Department of Anesthesiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1009, USA.
| | | | | | | | | |
Collapse
|
42
|
Harnett KM, Cao W, Biancani P. Signal-transduction pathways that regulate smooth muscle function I. Signal transduction in phasic (esophageal) and tonic (gastroesophageal sphincter) smooth muscles. Am J Physiol Gastrointest Liver Physiol 2005; 288:G407-16. [PMID: 15701619 DOI: 10.1152/ajpgi.00398.2004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Contraction of esophageal (Eso) and lower esophageal sphincter (LES) circular muscle depends on distinct signal-transduction pathways. ACh-induced contraction of Eso muscle is linked to phosphatidylcholine metabolism, production of diacylglycerol and arachidonic acid (AA), and activation of the Ca(2+)-insensitive PKCepsilon. Although PKCepsilon does not require Ca(2+) for activation, either influx of extracellular Ca(2+) or release of Ca(2+) from stores is needed to activate the phospholipases responsible for hydrolysis of membrane phospholipids and production of second messengers, which activate PKCepsilon. In contrast, the LES uses two distinct intracellular pathways: 1) a PKC-dependent pathway activated by low doses of agonists or during maintenance of spontaneous tone, and 2) a Ca(2+)-calmodulin-myosin light chain kinase (MLCK)-dependent pathway activated in response to maximally effective doses of agonists during the initial phase of contraction. The Ca(2+) levels, released by agonist-induced activity of phospholipase C, determine which contractile pathway is activated in the LES. The Ca(2+)-calmodulin-MLCK-dependent contractile pathway has been well characterized in a variety of smooth muscles. The steps linking activation of PKC to myosin light chain (MLC20) phosphorylation and contraction, however, have not been clearly defined for LES, Eso, or other smooth muscles. In addition, in LES circular muscle, a low-molecular weight pancreatic-like phospholipase A2 (group I PLA2) causes production of AA, which is metabolized to prostaglandins and thromboxanes. These AA metabolites act on receptors linked to heterotrimeric G proteins to induce activation of phospholipases and production of second messengers to maintain contraction of LES circular muscle. We have examined the signal-transduction pathways activated by PGF(2alpha) and by thromboxane analogs during the initial contractile phase and found that these pathways are the same as those activated by other agonists. In response to low doses of agonists or during maintenance of tone, presumably due to low levels of calcium release, a PKC-dependent pathway is activated, whereas at high doses of PGF(2alpha) and thromboxane analogs, in the initial phase of contraction, calmodulin is activated, PKC activity is reduced, and contraction is mediated, in part, through a Ca(2+)-calmodulin-MLCK-dependent pathway. The PKC-dependent signaling pathways activated by PGF(2alpha) and by thromboxanes during sustained LES contraction, however, remain to be examined, but preliminary data indicate that a distinct PKC-dependent pathway may be activated during maintenance of tonic contraction, which is different from the one activated during the initial contractile response. The initial contractile response to low levels of agonists depends on activation of G(q). Sustained contraction in response to PGF(2alpha) may involve activation of the monomeric G protein RhoA, because the contraction is inhibited by the RhoA-kinase antagonist Y27632. This shift in signal-transduction pathways between initial and sustained contraction has been recently reported in intestinal smooth muscle.
Collapse
Affiliation(s)
- Karen M Harnett
- Gastrointestinal Motility Research, Rhode Island Hospital, 55 Claverick Street, Providence, RI 02903, USA
| | | | | |
Collapse
|
43
|
Saiga A, Uozumi N, Ono T, Seno K, Ishimoto Y, Arita H, Shimizu T, Hanasaki K. Group X secretory phospholipase A2 can induce arachidonic acid release and eicosanoid production without activation of cytosolic phospholipase A2 alpha. Prostaglandins Other Lipid Mediat 2005; 75:79-89. [PMID: 15789617 DOI: 10.1016/j.prostaglandins.2004.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Group X secretory phospholipase A2 (sPLA2-X) and cytosolic phospholipase A2 alpha (cPLA2alpha) are involved in the release of arachidonic acid (AA) from membrane phospholipids linked to the eicosanoid production in various pathological states. Recent studies have indicated the presence of various types of cross-talk between sPLA2s and cPLA2alpha resulting in effective AA release. Here we examined the dependence of sPLA2-X-induced potent AA release on the cPLA2alpha activation by using specific cPLA2alpha or sPLA2 inhibitors as well as cPLA2alpha-deficient mice. We found that Pyrrophenone, a cPLA2alpha-specific inhibitor, did not suppress the sPLA2-X-induced potent AA release and prostaglandin E2 formation in mouse spleen cells. Furthermore, the amount of AA released by sPLA2-X from spleen cells was not significantly altered by cPLA2alpha deficiency. These results suggest that sPLA2-X induces potent AA release without activation of cPLA2a, which might be relevant to eicosanoid production in some pathological states where cPLA2a is not activated.
Collapse
Affiliation(s)
- Akihiko Saiga
- Shionogi Research Laboratories, Shionogi and Co. Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Granata F, Petraroli A, Boilard E, Bezzine S, Bollinger J, Del Vecchio L, Gelb MH, Lambeau G, Marone G, Triggiani M. Activation of Cytokine Production by Secreted Phospholipase A2 in Human Lung Macrophages Expressing the M-Type Receptor. THE JOURNAL OF IMMUNOLOGY 2004; 174:464-74. [PMID: 15611272 DOI: 10.4049/jimmunol.174.1.464] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Secreted phospholipases A(2) (sPLA(2)) are enzymes released in plasma and extracellular fluids during inflammatory diseases. Because human group IB and X sPLA(2)s are expressed in the lung, we examined their effects on primary human lung macrophages (HLM). Both sPLA(2)s induced TNF-alpha and IL-6 release in a concentration-dependent manner by increasing their mRNA expression. This effect was independent of their enzymatic activity because 1) the capacity of sPLA(2)s to mobilize arachidonic acid from HLM was unrelated to their ability to induce cytokine production; and 2) two catalytically inactive isoforms of group IB sPLA(2) (bromophenacyl bromide-inactivated human sPLA(2) and the H48Q mutant of the porcine sPLA(2)) were as effective as the catalytically active sPLA(2)s in inducing cytokine production. HLM expressed the M-type receptor for sPLA(2)s at both mRNA and protein levels, as determined by RT-PCR, immunoblotting, immunoprecipitation, and flow cytometry. Me-indoxam, which decreases sPLA(2) activity as well as binding to the M-type receptor, suppressed sPLA(2)-induced cytokine production. Incubation of HLM with the sPLA(2)s was associated with phosphorylation of ERK1/2, and a specific inhibitor of this pathway, PD98059, significantly reduced the production of IL-6 elicited by sPLA(2)s. In conclusion, two distinct sPLA(2)s produced in the human lung stimulate cytokine production by HLM via a mechanism that is independent of their enzymatic activity and involves activation of the ERK1/2 pathway. HLM express the M-type receptor, but its involvement in eliciting cytokine production deserves further investigation.
Collapse
Affiliation(s)
- Francescopaolo Granata
- Division of Clinical Immunology and Allergy, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Offer S, Yedgar S, Schwob O, Krimsky M, Bibi H, Eliraz A, Madar Z, Shoseyov D. Negative feedback between secretory and cytosolic phospholipase A2 and their opposing roles in ovalbumin-induced bronchoconstriction in rats. Am J Physiol Lung Cell Mol Physiol 2004; 288:L523-9. [PMID: 15557087 DOI: 10.1152/ajplung.00199.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phospholipase A2 (PLA2) hydrolyzes cell membrane phospholipids (PL) to produce arachidonic acid and lyso-PL. The PLA2 enzymes include the secretory (sPLA2) and cytosolic (cPLA2) isoforms, which are assumed to act synergistically in production of eicosanoids that are involved in inflammatory processes. However, growing evidence raises the possibility that in airways and asthma-related inflammatory cells (eosinophils, basophils), the production of the bronchoconstrictor cysteinyl leukotrienes (CysLT) is linked exclusively to sPLA2, whereas the bronchodilator prostaglandin PGE2 is produced by cPLA2. It has been further reported that the capacity of airway epithelial cells to produce CysLT is inversely proportional to PGE2 production. This seems to suggest that sPLA2 and cPLA2 play opposing roles in asthma pathophysiology and the possibility of a negative feedback between the two isoenzymes. To test this hypothesis, we examined the effect of a cell-impermeable extracellular sPLA2 inhibitor on bronchoconstriction and PLA2 expression in rats with ovalbumin (OVA)-induced asthma. It was found that OVA-induced bronchoconstriction was associated with elevation of lung sPLA2 expression and CysLT production, concomitantly with suppression of cPLA2 expression and PGE2 production. These were reversed by treatment with the sPLA2 inhibitor, resulting in amelioration of bronchoconstriction and reduced CysLT production and sPLA2 expression, concomitantly with enhanced PGE2 production and cPLA2 expression. This study demonstrates, for the first time in vivo, a negative feedback between sPLA2 and cPLA2 and assigns opposing roles for these enzymes in asthma pathophysiology: sPLA2 activation induces production of the bronchoconstrictor CysLT and suppresses cPLA2 expression and the subsequent production of the bronchodilator PGE2.
Collapse
Affiliation(s)
- Sarit Offer
- Institute of Biochemistry, Faculty of Agriculture, The Hebrew University, Rehovat, Jerusalem
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Cunningham TJ, Souayah N, Jameson B, Mitchell J, Yao L. Systemic Treatment of Cerebral Cortex Lesions in Rats with a New Secreted Phospholipase A2 Inhibitor. J Neurotrauma 2004; 21:1683-91. [PMID: 15684658 DOI: 10.1089/neu.2004.21.1683] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An internal fragment of the human neuroprotective polypeptide DSEP (Diffusible Survival Evasion Peptide) was delivered at 0.4 mg/kg (subcutaneously) 20-30 min after stab wound lesions in the parietal cortex of anesthetized rats. The peptide, CHEASAAQC or CHEC-9, inhibited the inflammatory response to the lesion and the degeneration of neurons adjacent to the wound. Four days after surgery, peptide-treated animals (n = 6) had 75% fewer reactive ameboid microglia/brain macrophages in the cortical parenchyma surrounding the lesion compared to vehicle-injected control rats (n = 6, p = 0.004). The cortical laminae in area 2 adjacent to the lesion were completely obscured in controls because of the increase in inflammatory cells and frank degeneration of neurons, while there was preservation of the neurons and cytoarchitecture after peptide treatment. In parallel experiments, CHEC-9 was found to inhibit the enzymatic activity of secreted phospholipase A2 (sPLA2), including activity present in the serum of peptide-injected rats. Kinetic analysis revealed the peptide increased the average Km for serum by 318% when tested 45 min after treatment (peptide-treated, n = 6; control-treated, n = 6; p = 0.0087), suggesting the principal effect of the peptide was to lower the affinity of serum sPLA2 for substrate. The sPLA2 inhibition by this particular peptide sequence appeared to be highly specific since inversion of a single pair of amino acids eliminated the inhibitory effect. Phorbol-12-myristate-13-acetate stimulated platelet aggregation, a PLA2-regulated activity, was also inhibited by the peptide. The discovery of CHEC-9 makes it possible to study in vivo the long appreciated contribution made by PLA2-directed inflammation to both acute and chronic neurodegeneration and may be helpful in designing therapies to limit neuron death in these conditions.
Collapse
Affiliation(s)
- Timothy J Cunningham
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA.
| | | | | | | | | |
Collapse
|
47
|
Delton-Vandenbroucke I, Lemaire P, Lagarde M, Laugier C. Hydrolysis of nuclear phospholipids in relation with proliferative state in uterine stromal cells. Biochimie 2004; 86:269-74. [PMID: 15194229 DOI: 10.1016/j.biochi.2004.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Accepted: 04/01/2004] [Indexed: 01/12/2023]
Abstract
The current study examined the metabolism of phospholipid (PL) in the whole cell homogenate and in the nuclear fraction in proliferative and non-proliferative uterine stromal cells (U(III) cells). Growth arrested cells were obtained either from contact-inhibited confluent cells or from proliferative cells treated with aristolochic acid (AR) for 2 days. Fatty acid composition and fatty acid amount of both total and nuclear PL were not significantly different between proliferative, confluent and AR-treated cells. In contrast, marked differences were observed in the incorporation of [(3)H]AA, with greater incorporation in proliferative cells than in confluent or AR-treated cells, particularly in nuclear PL. Considering endogenous level of arachidonic acid (AA) in total and nuclear PL, we found that AA turnover in nuclear PL was especially high compared to that in total PL and that this difference was accentuated in proliferative cells compared to non-proliferative cells. Interestingly, [(3)H]AA incorporation and AA turnover in proliferative, confluent and AR-treated cells vary accordingly to the expression, activity and/or content of pancreatic phospholipase A(2) (PLA(2)-I) in the nuclear compartment of these cells that we reported in previous studies. The changes in metabolism of nuclear PL during cell proliferation are consistent with an enhanced PL hydrolysis that could involve PLA(2)-I.
Collapse
|
48
|
Leistad L, Feuerherm AJ, Ostensen M, Faxvaag A, Johansen B. Presence of secretory group IIa and V phospholipase A2 and cytosolic group IVα phospholipase A2 in chondrocytes from patients with rheumatoid arthritis. ACTA ACUST UNITED AC 2004; 42:602-10. [PMID: 15259375 DOI: 10.1515/cclm.2004.104] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractBoth secretory and cytosolic phospholipase A
Collapse
Affiliation(s)
- Lilian Leistad
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | |
Collapse
|
49
|
Boilard E, Bourgoin SG, Bernatchez C, Poubelle PE, Surette ME. Interaction of low molecular weight group IIA phospholipase A2 with apoptotic human T cells: role of heparan sulfate proteoglycans. FASEB J 2003; 17:1068-80. [PMID: 12773489 DOI: 10.1096/fj.02-0938com] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human group IIA phospholipase A2 (hIIA PLA2) is a 14 kDa secreted enzyme associated with inflammatory diseases. A newly discovered property of hIIA PLA2 is the binding affinity for the heparan sulfate proteoglycan (HSPG) glypican-1. In this study, the binding of hIIA PLA2 to apoptotic human T cells was investigated. Little or no exogenous hIIA PLA2 bound to CD3-activated T cells but significant binding was measured on activated T cells induced to undergo apoptosis by anti-CD95. Binding to early apoptotic T cells was greater than to late apoptotic cells. The addition of heparin and the hydrolysis of HSPG by heparinase III only partially inhibited hIIA PLA2 binding to apoptotic cells, suggesting an interaction with both HSPG and other binding protein(s). Two low molecular weight HSPG were coimmunoprecipitated with hIIA PLA2 from apoptotic T cells, but not from living cells. Treatment of CD95-stimulated T cells with hIIA PLA2 resulted in the release of arachidonic acid but not oleic acid from cells and this release was blocked by heparin and heparinase III. Altogether, these results suggest a role for hIIA PLA2 in the release of arachidonic acid from apoptotic cells through interactions with HSPG and its potential implication in the progression of inflammatory diseases.
Collapse
Affiliation(s)
- Eric Boilard
- Pilot Therapeutics Inc., 2000 Daniel Island Dr., Suite 440, Charleston, SC 29492, USA.
| | | | | | | | | |
Collapse
|
50
|
Triggiani M, Granata F, Balestrieri B, Petraroli A, Scalia G, Del Vecchio L, Marone G. Secretory phospholipases A2 activate selective functions in human eosinophils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3279-88. [PMID: 12626587 DOI: 10.4049/jimmunol.170.6.3279] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Secretory phospholipases A(2) (sPLA(2)s) are released in large amounts in the blood of patients with systemic inflammatory diseases and accumulate at sites of chronic inflammation, such as the airways of patients with bronchial asthma. Blood eosinophils or eosinophils recruited in inflammatory areas therefore can be exposed in vivo to high concentrations of sPLA(2). We have examined the effects of two structurally different sPLA(2)s (group IA and group IIA) on several functions of eosinophils isolated from normal donors and patients with hypereosinophilia. Both group IA and IIA sPLA(2) induced a concentration-dependent release of beta-glucuronidase, IL-6, and IL-8. Release of the two cytokines was associated with the accumulation of their specific mRNA. In addition, sPLA(2)s induced the surface expression of CD44 and CD69, two major activation markers of eosinophils. In contrast, none of the sPLA(2)s examined induced the production of IL-5, the de novo synthesis of leukotriene C(4) and platelet-activating factor, or the generation of superoxide anion from human eosinophils. Incubation of eosinophils with the major enzymatic products of the sPLA(2)s (arachidonic acid, lysophosphatidylcholine, or lysophosphatidic acid) did not reproduce any of the enzymes' effects. In addition, inactivation of sPLA(2) enzymatic activity by bromophenacyl bromide did not influence the release of beta-glucuronidase or of cytokines. Stimulation of eosinophils by sPLA(2)s was associated with activation of extracellular signal-regulated kinases 1/2. These results indicate that sPLA(2)s selectively activate certain proinflammatory and immunoregulatory functions of human eosinophils through mechanism(s) independent from enzymatic activity and from the generation of arachidonic acid.
Collapse
Affiliation(s)
- Massimo Triggiani
- Division of Clinical Immunology and Allergy, University of Naples Federico II, Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|