1
|
Shiri Aghbash P, Rasizadeh R, Sadri Nahand J, Bannazadeh Baghi H. The role of immune cells and inflammasomes in Modulating cytokine responses in HPV-Related cervical cancer. Int Immunopharmacol 2025; 145:113625. [PMID: 39637578 DOI: 10.1016/j.intimp.2024.113625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/26/2024] [Accepted: 11/10/2024] [Indexed: 12/07/2024]
Abstract
One of the most frequent cancers associated with gynecological malignancies is cervical cancer. Nearly 99% of cervical tumor lesions are produced by prolonged infection with hr-HPV and almost 70% of cases are related to HPV-16 and HPV-18. The human immune system has a crucial role in defending against infections caused by HPV infection. As an illustration, elevation in neutrophils reduces T cell antitumor activity, which in turn results in the development of malignancies and subsequently inhibits immune system function. HPV-infected cells, also, express a significant number of genes related to pro-inflammatory mediators including IL-1β. Moreover, inflammasomes, which are multi-protein complexes, owing the production of the pro-inflammatory cytokines including IL-1β and IL-18 in response to viral infections. In other words, these multi-protein complexes have a crucial role in tumor immunity regulation through the secretion of pro-inflammatory cytokines and induction of antigen presentation and maturation by APCs including dendritic cells. In this study, we attempted to investigate the inflammasome's general role in the initiation and advancement of cervical cancer, as well as a summary of the pathways connected to the possible participation of inflammasomes in the pathological process of cervical carcinoma and immune cell engagement. Novel strategy techniques that target the inflammatory reaction of tumor-related antigens may be created with an understanding of inflammasome-dependent pathways to accomplish tumor immunotherapy and cervical tumor treatment.
Collapse
Affiliation(s)
- Parisa Shiri Aghbash
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reyhaneh Rasizadeh
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Jamison BL, Lawrance M, Wang CJ, DeBerg HA, Ziegler LJ, Sansom DM, Gavin MA, Walker LSK, Campbell DJ. An IL-2 mutein increases regulatory T cell suppression of dendritic cells via IL-10 and CTLA-4 to promote T cell anergy. Cell Rep 2024; 43:114938. [PMID: 39488830 PMCID: PMC11602548 DOI: 10.1016/j.celrep.2024.114938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 08/15/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Interleukin-2 (IL-2) variants with increased CD25 dependence that selectively expand Foxp3+ regulatory T (TR) cells are in clinical trials for treating inflammatory diseases. Using an Fc-fused IL-2 mutein (Fc.IL-2 mutein) we developed that prevents diabetes in non-obese diabetic (NOD) mice, we show that Fc.IL-2 mutein induced an activated TR population with elevated proliferation, a transcriptional program associated with Stat5- and T cell receptor-dependent gene modules, and high IL-10 and CTLA-4 expression. Increased IL-10 signaling limited surface major histocompatibility complex class II upregulation during conventional dendritic cell (cDC) maturation, while increased CTLA-4-dependent transendocytosis led to the transfer of CD80 and CD86 co-stimulatory ligands from maturing cDCs to TR cells. In NOD mice, Fc.IL-2 mutein treatment promoted the suppression of cDCs in the inflamed pancreas and pancreatic lymph nodes, resulting in T cell anergy. Thus, IL-2 mutein-expanded TR cells have enhanced functional properties and restrict cDC function, offering promise for targeted immunotherapy use in autoimmune disease.
Collapse
Affiliation(s)
- Braxton L Jamison
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98126, USA
| | - Matthew Lawrance
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA 98126, USA
| | - Chun Jing Wang
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London NW3 2PP, UK
| | - Hannah A DeBerg
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA 98126, USA
| | - Lauren J Ziegler
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98126, USA
| | - David M Sansom
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London NW3 2PP, UK
| | - Marc A Gavin
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA 98126, USA
| | - Lucy S K Walker
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London NW3 2PP, UK
| | - Daniel J Campbell
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98126, USA; Department of Immunology, University of Washington School of Medicine, Seattle, WA 981098, USA.
| |
Collapse
|
3
|
Olbrich M, Hartmann AM, Künzel S, Aherrahrou Z, Schilf P, Baines JF, Ibrahim SM, Hirose M. Mitochondrial DNA variants and microbiota: An experimental strategy to identify novel therapeutic potential in chronic inflammatory diseases. Pharmacol Res 2024; 205:107231. [PMID: 38815878 DOI: 10.1016/j.phrs.2024.107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/06/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
We previously demonstrated that mice carrying natural mtDNA variants of the FVB/NJ strain (m.7778 G>T in the mt-Atp8 gene in mitochondrial complex V), namely C57BL/6 J-mtFVB/NJ (B6-mtFVB), exhibited (i) partial protection from experimental skin inflammatory diseases in an anti-murine type VII collagen antibody-induced skin inflammation model and psoriasiform dermatitis model; (ii) significantly altered metabolites, including short-chain fatty acids, according to targeted metabolomics of liver, skin and lymph node samples; and (iii) a differential composition of the gut microbiota according to bacterial 16 S rRNA gene sequencing of stool samples compared to wild-type C57BL/6 J (B6) mice. To further dissect these disease-contributing factors, we induced an experimental antibody-induced skin inflammatory disease in gnotobiotic mice. We performed shotgun metagenomic sequencing of caecum contents and untargeted metabolomics of liver, CD4+ T cell, and caecum content samples from conventional B6-mtFVB and B6 mice. We identified D-glucosamine as a candidate mediator that ameliorated disease severity in experimental antibody-induced skin inflammation by modulating immune cell function in T cells, neutrophils and macrophages. Because mice carrying mtDNA variants of the FVB/NJ strain show differential disease susceptibility to a wide range of experimental diseases, including diet-induced atherosclerosis in low-density lipoprotein receptor knockout mice and collagen antibody-induced arthritis in DBA/1 J mice, this experimental approach is valuable for identifying novel therapeutic options for skin inflammatory conditions and other chronic inflammatory diseases to which mice carrying specific mtDNA variants show differential susceptibility.
Collapse
Affiliation(s)
- Michael Olbrich
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany; Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates; University Heart Centre Lübeck, Lübeck, Germany
| | | | - Sven Künzel
- Max Plank Institute of Evolutionary Biology, Plön, Germany; University Heart Centre Lübeck, Lübeck, Germany
| | - Zouhair Aherrahrou
- Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg / Kiel / Lübeck, Germany; University Heart Centre Lübeck, Lübeck, Germany
| | - Paul Schilf
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany; University Heart Centre Lübeck, Lübeck, Germany
| | - John F Baines
- Max Plank Institute of Evolutionary Biology, Plön, Germany; University Heart Centre Lübeck, Lübeck, Germany; Institute of Experimental Medicine, Christian-Albrecht University of Kiel, Kiel, Germany
| | - Saleh M Ibrahim
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany; Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates; University Heart Centre Lübeck, Lübeck, Germany; College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.
| | - Misa Hirose
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany; University Heart Centre Lübeck, Lübeck, Germany; Lübeck Institute of Neurobiology, University of Lübeck, Germany.
| |
Collapse
|
4
|
Hellenbrand DJ, Quinn CM, Piper ZJ, Elder RT, Mishra RR, Marti TL, Omuro PM, Roddick RM, Lee JS, Murphy WL, Hanna AS. The secondary injury cascade after spinal cord injury: an analysis of local cytokine/chemokine regulation. Neural Regen Res 2024; 19:1308-1317. [PMID: 37905880 PMCID: PMC11467934 DOI: 10.4103/1673-5374.385849] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/24/2023] [Accepted: 09/04/2023] [Indexed: 11/02/2023] Open
Abstract
After spinal cord injury, there is an extensive infiltration of immune cells, which exacerbates the injury and leads to further neural degeneration. Therefore, a major aim of current research involves targeting the immune response as a treatment for spinal cord injury. Although much research has been performed analyzing the complex inflammatory process following spinal cord injury, there remain major discrepancies within previous literature regarding the timeline of local cytokine regulation. The objectives of this study were to establish an overview of the timeline of cytokine regulation for 2 weeks after spinal cord injury, identify sexual dimorphisms in terms of cytokine levels, and determine local cytokines that significantly change based on the severity of spinal cord injury. Rats were inflicted with either a mild contusion, moderate contusion, severe contusion, or complete transection, 7 mm of spinal cord centered on the injury was harvested at varying times post-injury, and tissue homogenates were analyzed with a Cytokine/Chemokine 27-Plex assay. Results demonstrated pro-inflammatory cytokines including tumor necrosis factor α, interleukin-1β, and interleukin-6 were all upregulated after spinal cord injury, but returned to uninjured levels within approximately 24 hours post-injury, while chemokines including monocyte chemoattractant protein-1 remained upregulated for days post-injury. In contrast, several anti-inflammatory cytokines and growth factors including interleukin-10 and vascular endothelial growth factor were downregulated by 7 days post-injury. After spinal cord injury, tissue inhibitor of metalloproteinase-1, which specifically affects astrocytes involved in glial scar development, increased more than all other cytokines tested, reaching 26.9-fold higher than uninjured rats. After a mild injury, 11 cytokines demonstrated sexual dimorphisms; however, after a severe contusion only leptin levels were different between female and male rats. In conclusion, pro-inflammatory cytokines initiate the inflammatory process and return to baseline within hours post-injury, chemokines continue to recruit immune cells for days post-injury, while anti-inflammatory cytokines are downregulated by a week post-injury, and sexual dimorphisms observed after mild injury subsided with more severe injuries. Results from this work define critical chemokines that influence immune cell infiltration and important cytokines involved in glial scar development after spinal cord injury, which are essential for researchers developing treatments targeting secondary damage after spinal cord injury.
Collapse
Affiliation(s)
- Daniel J. Hellenbrand
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Charles M. Quinn
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Zachariah J. Piper
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Ryan T. Elder
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Raveena R. Mishra
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Taylor L. Marti
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Phoebe M. Omuro
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Rylie M. Roddick
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Jae Sung Lee
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - William L. Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Forward BIO Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Amgad S. Hanna
- Department of Neurosurgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
5
|
de Souza Theodoro S, Gonçalves Tozato ME, Warde Luis L, Goloni C, Bassi Scarpim L, Bortolo M, Cavalieri Carciofi A. β-glucans from Euglena gracilis or Saccharomyces cerevisiae effects on immunity and inflammatory parameters in dogs. PLoS One 2024; 19:e0304833. [PMID: 38820480 PMCID: PMC11142716 DOI: 10.1371/journal.pone.0304833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/20/2024] [Indexed: 06/02/2024] Open
Abstract
Considering the differences in molecular structure and function, the effects of β-1,3-glucans from Euglena gracilis and β-1,3/1,6-glucans from Saccharomyces cerevisiae on immune and inflammatory activities in dogs were compared. Four diets were compared: control without β-glucans (CON), 0.15 mg/kg BW/day of β-1,3/1,6-glucans (Β-Y15), 0.15 mg/kg BW/day of β-1,3-glucans (Β-S15), and 0.30 mg/kg BW/day of β-1,3-glucans (Β-S30). Thirty-two healthy dogs (eight per diet) were organized in a block design. All animals were fed CON for a 42-day washout period and then sorted into one of four diets for 42 days. Blood and faeces were collected at the beginning and end of the food intake period and analysed for serum and faecal cytokines, ex vivo production of hydrogen peroxide (H2O2) and nitric oxide (NO), phagocytic activity of neutrophils and monocytes, C-reactive protein (CRP), ex vivo production of IgG, and faecal concentrations of IgA and calprotectin. Data were evaluated using analysis of covariance and compared using Tukey's test (P<0.05). Dogs fed Β-Y15 showed higher serum IL-2 than dogs fed Β-S30 (P<0.05). A higher phagocytic index of monocytes was observed in dogs fed the B-S15 diet than in those fed the other diets, and a higher neutrophil phagocytic index was observed for B-S15 and B-Y15 than in dogs fed the CON diet (P<0.05). Monocytes from dogs fed B-S15 and B-S30 produced more NO and less H2O2 than those from the CON and B-Y15 groups (P<0.05). Despite in the reference value, CRP levels were higher in dogs fed B-S15 and B-S30 diets (P<0.05). β-1,3/1,6-glucan showed cell-mediated activation of the immune system, with increased serum IL-2 and neutrophil phagocytic index, whereas β-1,3-glucan acted on the immune system by increasing the ex vivo production of NO by monocytes, neutrophil phagocytic index, and serum CRP. Calprotectin and CRP levels did not support inflammation or other health issues related to β-glucan intake. In conclusion, both β-glucan sources modulated some immune and inflammatory parameters in dogs, however, different pathways have been suggested for the recognition and action of these molecules, reinforcing the necessity for further mechanistic studies, especially for E. gracilis β-1,3-glucan.
Collapse
Affiliation(s)
- Stephanie de Souza Theodoro
- Veterinary Medicine and Surgery Department, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Maria Eduarda Gonçalves Tozato
- Veterinary Medicine and Surgery Department, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Letícia Warde Luis
- Veterinary Medicine and Surgery Department, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Camila Goloni
- Veterinary Medicine and Surgery Department, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Lucas Bassi Scarpim
- Animal Science Department, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Marcelino Bortolo
- Kemin Nutrisurance Nutrição Animal LTDA, Brasil, Vargeão, Santa Catarina, Brazil
| | - Aulus Cavalieri Carciofi
- Veterinary Medicine and Surgery Department, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| |
Collapse
|
6
|
Pavlidis MA, Viborg N, Lausen M, Rønø B, Kleine-Kohlbrecher D. Refined analytical pipeline for the pharmacodynamic assessment of T-cell responses to vaccine antigens. Front Immunol 2024; 15:1404121. [PMID: 38720900 PMCID: PMC11076743 DOI: 10.3389/fimmu.2024.1404121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Pharmacodynamic assessment of T-cell-based cancer immunotherapies often focus on detecting rare circulating T-cell populations. The therapy-induced immune cells in blood-derived clinical samples are often present in very low frequencies and with the currently available T-cell analytical assays, amplification of the cells of interest prior to analysis is often required. Current approaches aiming to enrich antigen-specific T cells from human Peripheral Blood Mononuclear Cells (PBMCs) depend on in vitro culturing in presence of their cognate peptides and cytokines. In the present work, we improved a standard, publicly available protocol for T-cell immune analyses based on the in vitro expansion of T cells. We used PBMCs from healthy subjects and well-described viral antigens as a model system for optimizing the experimental procedures and conditions. Using the standard protocol, we first demonstrated significant enrichment of antigen-specific T cells, even when their starting frequency ex vivo was low. Importantly, this amplification occurred with high specificity, with no or neglectable enrichment of irrelevant T-cell clones being observed in the cultures. Testing of modified culturing timelines suggested that the protocol can be adjusted accordingly to allow for greater cell yield with strong preservation of the functionality of antigen-specific T cells. Overall, our work has led to the refinement of a standard protocol for in vitro stimulation of antigen-specific T cells and highlighted its reliability and reproducibility. We envision that the optimized protocol could be applied for longitudinal monitoring of rare blood-circulating T cells in scenarios with limited sample material.
Collapse
|
7
|
Sakellariou C, Roser LA, Schiffmann S, Lindstedt M. Fine tuning of the innate and adaptive immune responses by Interleukin-2. J Immunotoxicol 2024; 21:2332175. [PMID: 38526995 DOI: 10.1080/1547691x.2024.2332175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/13/2024] [Indexed: 03/27/2024] Open
Abstract
Novel immunotherapies for cancer and other diseases aim to trigger the immune system to produce durable responses, while overcoming the immunosuppression that may contribute to disease severity, and in parallel considering immunosafety aspects. Interleukin-2 (IL-2) was one of the first cytokines that the FDA approved as a cancer-targeting immunotherapy. However, in the past years, IL-2 immunotherapy is not actively offered to patients, due to limited efficacy, when compared to other novel immunotherapies, and the associated severe adverse events. In order to design improved in vitro and in vivo models, able to predict the efficacy and safety of novel IL-2 alternatives, it is important to delineate the mechanistic immunological events triggered by IL-2. Particularly, in this review we will discuss the effects IL-2 has with the bridging cell type of the innate and adaptive immune responses, dendritic cells. The pathways involved in the regulation of IL-2 by dendritic cells and T-cells in cancer and autoimmune disease will also be explored.
Collapse
Affiliation(s)
| | - Luise A Roser
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | - Susanne Schiffmann
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Skariah N, James OJ, Swamy M. Signalling mechanisms driving homeostatic and inflammatory effects of interleukin-15 on tissue lymphocytes. DISCOVERY IMMUNOLOGY 2024; 3:kyae002. [PMID: 38405398 PMCID: PMC10883678 DOI: 10.1093/discim/kyae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/19/2023] [Accepted: 01/26/2024] [Indexed: 02/27/2024]
Abstract
There is an intriguing dichotomy in the function of cytokine interleukin-15-at low levels, it is required for the homeostasis of the immune system, yet when it is upregulated in response to pathogenic infections or in autoimmunity, IL-15 drives inflammation. IL-15 associates with the IL-15Rα within both myeloid and non-haematopoietic cells, where IL-15Rα trans-presents IL-15 in a membrane-bound form to neighboring cells. Alongside homeostatic maintenance of select lymphocyte populations such as NK cells and tissue-resident T cells, when upregulated, IL-15 also promotes inflammatory outcomes by driving effector function and cytotoxicity in NK cells and T cells. As chronic over-expression of IL-15 can lead to autoimmunity, IL-15 expression is tightly regulated. Thus, blocking dysregulated IL-15 and its downstream signalling pathways are avenues for immunotherapy. In this review we discuss the molecular pathways involved in IL-15 signalling and how these pathways contribute to both homeostatic and inflammatory functions in IL-15-dependent mature lymphoid populations, focusing on innate, and innate-like lymphocytes in tissues.
Collapse
Affiliation(s)
- Neema Skariah
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Olivia J James
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Mahima Swamy
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
9
|
Zhang M, Wang S, Guan Q, Wang J, Yan B, Zhang L, Li D. A bidirectional Mendelian randomization study investigating the relationship between genetically predicted systemic inflammatory regulators and chronic obstructive pulmonary disease. Heliyon 2024; 10:e24109. [PMID: 38268600 PMCID: PMC10806290 DOI: 10.1016/j.heliyon.2024.e24109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
Research has shown a connection between inflammation and chronic obstructive pulmonary disease (COPD), however the relationship between inflammation mediators and COPD causation remains unknown. To investigate the causal relationship of mediators of inflammation and COPD, we conducted a two-sample Mendelian randomization (MR) study. In our study, we incorporated 41 regulators of inflammation from 8293 Finnish individuals from genome-wide association studies (GWASs) of COPD corresponding to GWAS summary data for 2115 cases and 454,233 healthy individuals in Europe. Our research validated that higher levels of interleukin 8 (IL-8) are related with a decrease occurrence of COPD (OR = 0.795, 95 % CI = 0.642-0.984, p = 0.035) but that elevated levels of interleukin 18(IL-18) and interleukin 2 (IL-2) may be connected to an amplified risk of COPD (OR = 1.247, 95 % CI = 1.011-1.538; p = 0.039; OR = 1.257, 95 % CI = 1.037-1.523, p = 0.020, respectively). According to our research, cytokines play a crucial role in the development of COPD, and further investigation is necessary to explore the potential of utilizing these cytokines as targets for treatment and prevention of COPD.
Collapse
Affiliation(s)
- Mengyuan Zhang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Shengnan Wang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qingtian Guan
- First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Jianglong Wang
- First Operating Room, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Bailing Yan
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Li Zhang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Dan Li
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
10
|
Spiliopoulou P, Kaur P, Hammett T, Di Conza G, Lahn M. Targeting T regulatory (T reg) cells in immunotherapy-resistant cancers. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:2. [PMID: 38318526 PMCID: PMC10838381 DOI: 10.20517/cdr.2023.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024]
Abstract
Primary or secondary (i.e., acquired) resistance is a common occurrence in cancer patients and is often associated with high numbers of T regulatory (Treg) cells (CD4+CD25+FOXP3+). The approval of ipilimumab and the development of similar pharmacological agents targeting cell surface proteins on Treg cells demonstrates that such intervention may overcome resistance in cancer patients. Hence, the clinical development and subsequent approval of Cytotoxic T Lymphocyte Antigen-4 (CTLA-4) targeting agents can serve as a prototype for similar agents. Such new agents aspire to be highly specific and have a reduced toxicity profile while increasing effector T cell function or effector T/T regulatory (Teff/Treg) ratio. While clinical development with large molecules has shown the greatest advancement, small molecule inhibitors that target immunomodulation are increasingly entering early clinical investigation. These new small molecule inhibitors often target specific intracellular signaling pathways [e.g., phosphoinositide-3-kinase delta (PI3K-δ)] that play an important role in regulating the function of Treg cells. This review will summarize the lessons currently applied to develop novel clinical agents that target Treg cells.
Collapse
Affiliation(s)
- Pavlina Spiliopoulou
- Department of Drug Development Program, Phase I Unit, Beatson West of Scotland Cancer Center, Glasgow G12 0YN, UK
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - Paramjit Kaur
- Department of Oncology Clinical Development, iOnctura SA, Geneva 1202, Switzerland
| | - Tracey Hammett
- Department of Oncology Clinical Development, iOnctura SA, Geneva 1202, Switzerland
| | - Giusy Di Conza
- Department of Oncology Clinical Development, iOnctura SA, Geneva 1202, Switzerland
| | - Michael Lahn
- Department of Oncology Clinical Development, iOnctura SA, Geneva 1202, Switzerland
| |
Collapse
|
11
|
Jamison BL, Lawrance M, Wang CJ, DeBerg HA, Sansom DM, Gavin MA, Walker LS, Campbell DJ. An IL-2 mutein increases IL-10 and CTLA-4-dependent suppression of dendritic cells by regulatory T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569613. [PMID: 38106196 PMCID: PMC10723345 DOI: 10.1101/2023.12.01.569613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Interleukin-2 (IL-2) variants with increased CD25 dependence that selectively expand Foxp3+ regulatory T (TR) cells are in clinical trials for treating inflammatory diseases. Using an Fc-fused IL-2 mutein (Fc.IL-2 mutein) we developed that prevents diabetes in non-obese diabetic (NOD) mice, we show that Fc.IL-2 mutein induced an activated TR population with elevated proliferation, a transcriptional program associated with Stat5- and TCR-dependent gene modules, and high IL-10 and CTLA-4 expression. Increased IL-10 signaling limited surface MHC class II upregulation during conventional dendritic cell (cDC) maturation, while increased CTLA-4-dependent transendocytosis led to the transfer of CD80 and CD86 costimulatory ligands from maturing cDCs to TR cells. In NOD mice, Fc.IL-2 mutein treatment promoted the suppression of cDCs in the inflamed pancreas and pancreatic lymph nodes resulting in T cell anergy. Thus, IL-2 mutein-expanded TR cells have enhanced functional properties and restrict cDC function, offering promise for targeted immunotherapy use in autoimmune disease.
Collapse
Affiliation(s)
- Braxton L. Jamison
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA
| | | | - Chun Jing Wang
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London, UK
| | | | - David M. Sansom
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London, UK
| | | | - Lucy S.K. Walker
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London, UK
| | - Daniel J. Campbell
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
| |
Collapse
|
12
|
Ning Z, Liu Y, Guo D, Lin WJ, Tang Y. Natural killer cells in the central nervous system. Cell Commun Signal 2023; 21:341. [PMID: 38031097 PMCID: PMC10685650 DOI: 10.1186/s12964-023-01324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/17/2023] [Indexed: 12/01/2023] Open
Abstract
Natural killer (NK) cells are essential components of the innate lymphoid cell family that work as both cytotoxic effectors and immune regulators. Accumulating evidence points to interactions between NK cells and the central nervous system (CNS). Here, we review the basic knowledge of NK cell biology and recent advances in their roles in the healthy CNS and pathological conditions, with a focus on normal aging, CNS autoimmune diseases, neurodegenerative diseases, cerebrovascular diseases, and CNS infections. We highlight the crosstalk between NK cells and diverse cell types in the CNS and the potential value of NK cells as novel therapeutic targets for CNS diseases. Video Abstract.
Collapse
Affiliation(s)
- Zhiyuan Ning
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ying Liu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Daji Guo
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Wei-Jye Lin
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
| |
Collapse
|
13
|
Lao P, Chen J, Tang L, Zhang J, Chen Y, Fang Y, Fan X. Regulatory T cells in lung disease and transplantation. Biosci Rep 2023; 43:BSR20231331. [PMID: 37795866 PMCID: PMC10611924 DOI: 10.1042/bsr20231331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023] Open
Abstract
Pulmonary disease can refer to the disease of the lung itself or the pulmonary manifestations of systemic diseases, which are often connected to the malfunction of the immune system. Regulatory T (Treg) cells have been shown to be important in maintaining immune homeostasis and preventing inflammatory damage, including lung diseases. Given the increasing amount of evidence linking Treg cells to various pulmonary conditions, Treg cells might serve as a therapeutic strategy for the treatment of lung diseases and potentially promote lung transplant tolerance. The most potent and well-defined Treg cells are Foxp3-expressing CD4+ Treg cells, which contribute to the prevention of autoimmune lung diseases and the promotion of lung transplant rejection. The protective mechanisms of Treg cells in lung disease and transplantation involve multiple immune suppression mechanisms. This review summarizes the development, phenotype and function of CD4+Foxp3+ Treg cells. Then, we focus on the therapeutic potential of Treg cells in preventing lung disease and limiting lung transplant rejection. Furthermore, we discussed the possibility of Treg cell utilization in clinical applications. This will provide an overview of current research advances in Treg cells and their relevant application in clinics.
Collapse
Affiliation(s)
- Peizhen Lao
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Jingyi Chen
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Longqian Tang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Jiwen Zhang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Yuxi Chen
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Yuyin Fang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Xingliang Fan
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| |
Collapse
|
14
|
Johansson K, Gagnon JD, Zhou SK, Fassett MS, Schroeder AW, Kageyama R, Bautista RA, Pham H, Woodruff PG, Ansel KM. An essential role for miR-15/16 in Treg suppression and restriction of proliferation. Cell Rep 2023; 42:113298. [PMID: 37862171 PMCID: PMC10664750 DOI: 10.1016/j.celrep.2023.113298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/07/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023] Open
Abstract
The miR-15/16 family targets a large network of genes in T cells to restrict their cell cycle, memory formation, and survival. Upon T cell activation, miR-15/16 are downregulated, allowing rapid expansion of differentiated effector T cells to mediate a sustained response. Here, we used conditional deletion of miR-15/16 in regulatory T cells (Tregs) to identify immune functions of the miR-15/16 family in T cells. miR-15/16 are indispensable to maintain peripheral tolerance by securing efficient suppression by a limited number of Tregs. miR-15/16 deficiency alters expression of critical Treg proteins and results in accumulation of functionally impaired FOXP3loCD25loCD127hi Tregs. Excessive proliferation in the absence of miR-15/16 shifts Treg fate and produces an effector Treg phenotype. These Tregs fail to control immune activation, leading to spontaneous multi-organ inflammation and increased allergic inflammation in a mouse model of asthma. Together, our results demonstrate that miR-15/16 expression in Tregs is essential to maintain immune tolerance.
Collapse
Affiliation(s)
- Kristina Johansson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 40530 Gothenburg, Sweden; Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, 40530 Gothenburg, Sweden
| | - John D Gagnon
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Simon K Zhou
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Marlys S Fassett
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andrew W Schroeder
- Department of Medicine, Genomics CoLab, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Robin Kageyama
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rodriel A Bautista
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hewlett Pham
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Prescott G Woodruff
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - K Mark Ansel
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
15
|
Nasiri F, Muhammadnejad S, Rahbarizadeh F. Effects of polybrene and retronectin as transduction enhancers on the development and phenotypic characteristics of VHH-based CD19-redirected CAR T cells: a comparative investigation. Clin Exp Med 2023; 23:2535-2549. [PMID: 36434173 DOI: 10.1007/s10238-022-00928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 10/15/2022] [Indexed: 11/26/2022]
Abstract
Chimeric antigen receptor T cells (CAR T cells) have improved the prognosis of patients with certain hematologic malignancies. However, broader clinical application of this type of therapy is dependent on production protocols. We characterized VHH-based CD19-redirected CAR T cells generated using the transduction enhancers (TEs) polybrene or retronectin. The proliferation rate of activated T cells transduced using polybrene concentrations > 6 mg/mL decreased compared with untreated group. There was a direct relationship between polybrene concentration and transduction efficacy. Moreover, we demonstrated the proliferation of retronectin-transduced T cells increased in a dose-dependent manner (4-20 μg/mL). Whereas, different retronectin concentrations did not mediate a significant increase in T cell transduction rate. Moreover, lentiviral transduction rate was also dependent on the concentration of lentiviruses. At optimized TE concentrations, multiplicity of infection (MOI) of > 10 decreased living T cell transduction rate. Additionally, we demonstrated that CAR T cell phenotype is highly affected by TE type. Naïve T cell differentiation to central memory T cell was observed in the beginning of the expansion process and effector memory T cells became the predominant subset in the second week of expansion. Importantly, retronectin increased the proliferation of CAR T cells alongside medicating higher transduction rates, resulting in more naïve and central memory T cells. We demonstrated that a higher percentage of CAR T cells were generated using retronectin (with a less differentiated phenotype) making retronectin a more effective TE than polybrene for long-term CAR T cell processing in preclinical or clinical studies.
Collapse
Affiliation(s)
- Fatemeh Nasiri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box: 14115-331, Tehran, Iran
| | - Samad Muhammadnejad
- Gene Therapy Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box: 14115-331, Tehran, Iran.
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
16
|
Trujillo-Cirilo L, Weiss-Steider B, Vargas-Angeles CA, Corona-Ortega MT, Rangel-Corona R. Immune microenvironment of cervical cancer and the role of IL-2 in tumor promotion. Cytokine 2023; 170:156334. [PMID: 37598478 DOI: 10.1016/j.cyto.2023.156334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 07/06/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
The tumor microenvironment (TME) is a heterogeneous mixture of resident and tumor cells that maintain close communication through their secretion products. The composition of the TME is dynamic and complex among the different types of cancer, where the immune cells play a relevant role in the elimination of tumor cells, however, under certain circumstances they contribute to tumor development. In cervical cancer (CC) the human papilloma virus (HPV) shapes the microenvironment in order to mediate persistent infections that favors transformation and tumor development. Interleukin-2 (IL-2) is an important TME cytokine that induces CD8+ effector T cells and NKs to eliminate tumor cells, however, IL-2 can also suppress the immune response through Treg cells. Recent studies have shown that CC cells express the IL-2 receptor (IL-2R), that are induced to proliferate at low concentrations of exogenous IL-2 through alterations in the JAK/STAT pathway. This review provides an overview of the main immune cells that make up the TME in CC, as well as the participation of IL-2 in the tumor promotion. Finally, it is proposed that the low density of IL-2 produced by immunocompetent cells is used by tumor cells through its IL-2R as a mechanism to proliferate simultaneously depleting this molecule in order to evade immune response.
Collapse
Affiliation(s)
- Leonardo Trujillo-Cirilo
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico.
| | - Benny Weiss-Steider
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico
| | - Carlos Adrian Vargas-Angeles
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico
| | - Maria Teresa Corona-Ortega
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico
| | - Rosalva Rangel-Corona
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico
| |
Collapse
|
17
|
Xie Y, Jin C, Sang H, Liu W, Wang J. Ivermectin Protects Against Experimental Autoimmune Encephalomyelitis in Mice by Modulating the Th17/Treg Balance Involved in the IL-2/STAT5 Pathway. Inflammation 2023; 46:1626-1638. [PMID: 37227550 PMCID: PMC10209955 DOI: 10.1007/s10753-023-01829-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/21/2023] [Accepted: 04/30/2023] [Indexed: 05/26/2023]
Abstract
Multiple sclerosis (MS), a T-cell-mediated autoimmune disease that affects the central nervous system (CNS), is characterized by white matter demyelination, axon destruction, and oligodendrocyte degeneration. Ivermectin, an anti-parasitic drug, has anti-inflammatory, anti-tumor, and antiviral properties. However, to date, there are no in-depth studies on the effect of ivermectin on the function effector of T cells in murine experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Here, we conducted in vitro experiments and found that ivermectin inhibited the proliferation of total T cells (CD3+) and their subsets (CD4+ and CD8+ T cells) as well as T cells secreting the pro-inflammatory cytokines IFN-γ and IL-17A; ivermectin also increased IL-2 production and IL-2Rα (CD25) expression, which was accompanied by an increase in the frequency of CD4+CD25+Foxp3+ regulatory T cells (Treg). Importantly, ivermectin administration reduced the clinical symptoms of EAE mice by preventing the infiltration of inflammatory cells into the CNS. Additional mechanisms showed that ivermectin promoted Treg cells while inhibiting pro-inflammatory Th1 and Th17 cells and their IFN-γ and IL-17 secretion; ivermectin also upregulated IL-2 production from MOG35-55-stimulated peripheral lymphocytes. Finally, ivermectin decreased IFN-γ and IL-17A production and increased IL-2 level, CD25 expression, and STAT5 phosphorylation in the CNS. These results reveal a previously unknown etiopathophysiological mechanism by which ivermectin attenuates the pathogenesis of EAE, indicating that it may be a promising option for T-cell-mediated autoimmune diseases such as MS.
Collapse
Affiliation(s)
- Yu Xie
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, 115 Ximen Street, Kaifeng, 475000, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Chaolei Jin
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, 115 Ximen Street, Kaifeng, 475000, China
| | - Hongzhen Sang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, 115 Ximen Street, Kaifeng, 475000, China
| | - Wenhua Liu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, 115 Ximen Street, Kaifeng, 475000, China
| | - Junpeng Wang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, 115 Ximen Street, Kaifeng, 475000, China.
| |
Collapse
|
18
|
Rastogi S, Haldar C. Seasonal plasticity in immunocompetent cytokines (IL-2, IL-6, and TNF-α), myeloid progenitor cell (CFU-GM) proliferation, and LPS-induced oxido-inflammatory aberrations in a tropical rodent Funambulus pennanti: role of melatonin. Cell Stress Chaperones 2023; 28:567-582. [PMID: 36542205 PMCID: PMC10469145 DOI: 10.1007/s12192-022-01313-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
In seasonal breeders, photoperiods regulate the levels of circulatory melatonin, a well-known immunomodulator and an antioxidant. Melatonin is known to play a complex physiological role in maintaining the immune homeostasis by affecting cytokine production in immunocompetent cells. In this study, we have quantified seasonal and temporal variations in immunocompetent cytokines-IL-2, IL-6, and TNF-α-and circulatory corticosterone along with in- vitro proliferation of bone marrow-derived granulocyte macrophage-colony forming unit (CFU-GM) progenitor cells of a tropical seasonal breeder Funambulus pennanti (northern palm squirrel). Transient variations in antioxidant status of seasonal breeders might be due to the fluctuations associated with immunity and inflammation. Further, to establish a direct immunomodulatory effect of photoperiod, we recorded the LPS-induced oxidative and inflammatory responses of squirrels by housing them in artificial photoperiodic chambers mimicking summer and winter seasons respectively. We observed a marked variation in cytokines level, melatonin, and corticosterone , and CFU-GM cell proliferation during summer and winter seasons. High Peripheral melatonin levels directly correlated with cytokine IL-2 levels, and inversely correlated with TNF-α, and circulatory corticosterone level. LPS-challenged squirrels housed in short photoperiod (10L:14D; equivalent to winter days) showed a marked reduction in the components of the inflammatory cascade, CRP, TNF-α, IL-6, NOx, NF-κB, Cox-2, and PGES, with an overall improvement in antioxidant status when compared to squirrels maintained under a long photoperiod (16L:8D; equivalent to summer days). Our results underline the impact of seasonality, photoperiod, and melatonin in maintaining an intrinsic redox-immune homeostasis which helps the animal to withstand environmental stresses.
Collapse
Affiliation(s)
- Shraddha Rastogi
- Pineal Research Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
- Present address: NCI-NIH, Bethesda, MD, USA
| | - Chandana Haldar
- Pineal Research Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
19
|
Muhammad S, Fan T, Hai Y, Gao Y, He J. Reigniting hope in cancer treatment: the promise and pitfalls of IL-2 and IL-2R targeting strategies. Mol Cancer 2023; 22:121. [PMID: 37516849 PMCID: PMC10385932 DOI: 10.1186/s12943-023-01826-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
Interleukin-2 (IL-2) and its receptor (IL-2R) are essential in orchestrating immune responses. Their function and expression in the tumor microenvironment make them attractive targets for immunotherapy, leading to the development of IL-2/IL-2R-targeted therapeutic strategies. However, the dynamic interplay between IL-2/IL-2R and various immune cells and their dual roles in promoting immune activation and tolerance presents a complex landscape for clinical exploitation. This review discusses the pivotal roles of IL-2 and IL-2R in tumorigenesis, shedding light on their potential as diagnostic and prognostic markers and their therapeutic manipulation in cancer. It underlines the necessity to balance the anti-tumor activity with regulatory T-cell expansion and evaluates strategies such as dose optimization and selective targeting for enhanced therapeutic effectiveness. The article explores recent advancements in the field, including developing genetically engineered IL-2 variants, combining IL-2/IL-2R-targeted therapies with other cancer treatments, and the potential benefits of a multidimensional approach integrating molecular profiling, immunological analyses, and clinical data. The review concludes that a deeper understanding of IL-2/IL-2R interactions within the tumor microenvironment is crucial for realizing the full potential of IL-2-based therapies, heralding the promise of improved outcomes for cancer patients.
Collapse
Affiliation(s)
- Shan Muhammad
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yang Hai
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| | - Jie He
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| |
Collapse
|
20
|
Agrez M, Rybchyn MS, De Silva WGM, Mason RS, Chandler C, Piva TJ, Thurecht K, Fletcher N, Liu F, Subramaniam G, Howard CB, Blyth B, Parker S, Turner D, Rzepecka J, Knox G, Nika A, Hall A, Gooding H, Gallagher L. An immunomodulating peptide to counteract solar radiation-induced immunosuppression and DNA damage. Sci Rep 2023; 13:11702. [PMID: 37474630 PMCID: PMC10359417 DOI: 10.1038/s41598-023-38890-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/17/2023] [Indexed: 07/22/2023] Open
Abstract
Ultraviolet radiation (UVR) induces immunosuppression and DNA damage, both of which contribute to the rising global incidence of skin cancer including melanoma. Nucleotide excision repair, which is activated upon UVR-induced DNA damage, is linked to expression of interleukin-12 (IL-12) which serves to limit immunosuppression and augment the DNA repair process. Herein, we report an immunomodulating peptide, designated IK14800, that not only elicits secretion of IL-12, interleukin-2 (IL-2) and interferon-gamma (IFN-γ) but also reduces DNA damage in the skin following exposure to UVR. Combined with re-invigoration of exhausted CD4+ T cells, inhibition of UVR-induced MMP-1 release and suppression of B16F10 melanoma metastases, IK14800 offers an opportunity to gain further insight into mechanisms underlying the development and progression of skin cancers.
Collapse
Affiliation(s)
- Michael Agrez
- InterK Peptide Therapeutics Limited, Sydney, NSW, Australia.
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia.
| | - Mark Stephen Rybchyn
- School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, Australia
| | | | - Rebecca Sara Mason
- School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, Australia
- Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | | | - Terrence J Piva
- Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Kristofer Thurecht
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Nicholas Fletcher
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Feifei Liu
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Gayathri Subramaniam
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Christopher B Howard
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Benjamin Blyth
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology at the University of Melbourne, Melbourne, Australia
| | - Stephen Parker
- InterK Peptide Therapeutics Limited, Sydney, NSW, Australia
| | | | | | - Gavin Knox
- Concept Life Sciences Limited, Edinburgh, Scotland
| | | | - Andrew Hall
- Concept Life Sciences Limited, Edinburgh, Scotland
| | | | | |
Collapse
|
21
|
Maurer K, Soiffer RJ. The delicate balance of graft versus leukemia and graft versus host disease after allogeneic hematopoietic stem cell transplantation. Expert Rev Hematol 2023; 16:943-962. [PMID: 37906445 PMCID: PMC11195539 DOI: 10.1080/17474086.2023.2273847] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION The curative basis of allogeneic hematopoietic stem cell transplantation (HSCT) relies in part upon the graft versus leukemia (GvL) effect, whereby donor immune cells recognize and eliminate recipient malignant cells. However, alloreactivity of donor cells against recipient tissues may also be deleterious. Chronic graft versus host disease (cGvHD) is an immunologic phenomenon wherein alloreactive donor T cells aberrantly react against host tissues, leading to damaging inflammatory symptoms. AREAS COVERED Here, we discuss biological insights into GvL and cGvHD and strategies to balance the prevention of GvHD with maintenance of GvL in modern HSCT. EXPERT OPINION/COMMENTARY Relapse remains the leading cause of mortality after HSCT with rates as high as 40% for some diseases. GvHD is a major cause of morbidity after HSCT, occurring in up to half of patients and responsible for 15-20% of deaths after HSCT. Intriguingly, the development of chronic GvHD may be linked to lower relapse rates after HSCT, suggesting that GvL and GvHD may be complementary sides of the immunologic foundation of HSCT. The ability to fine tune the balance of GvL and GvHD will lead to improvements in survival, relapse rates, and quality of life for patients undergoing HSCT.
Collapse
Affiliation(s)
- Katie Maurer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Robert J Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Kao CY, Mills JA, Burke CJ, Morse B, Marques BF. Role of Cytokines and Growth Factors in the Manufacturing of iPSC-Derived Allogeneic Cell Therapy Products. BIOLOGY 2023; 12:biology12050677. [PMID: 37237491 DOI: 10.3390/biology12050677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
Cytokines and other growth factors are essential for cell expansion, health, function, and immune stimulation. Stem cells have the additional reliance on these factors to direct differentiation to the appropriate terminal cell type. Successful manufacturing of allogeneic cell therapies from induced pluripotent stem cells (iPSCs) requires close attention to the selection and control of cytokines and factors used throughout the manufacturing process, as well as after administration to the patient. This paper employs iPSC-derived natural killer cell/T cell therapeutics to illustrate the use of cytokines, growth factors, and transcription factors at different stages of the manufacturing process, ranging from the generation of iPSCs to controlling of iPSC differentiation into immune-effector cells through the support of cell therapy after patient administration.
Collapse
Affiliation(s)
- Chen-Yuan Kao
- Process and Product Development, Century Therapeutics, Philadelphia, PA 19104, USA
| | - Jason A Mills
- Process and Product Development, Century Therapeutics, Philadelphia, PA 19104, USA
| | - Carl J Burke
- Process and Product Development, Century Therapeutics, Philadelphia, PA 19104, USA
| | - Barry Morse
- Research and Development, Century Therapeutics, Philadelphia, PA 19104, USA
| | - Bruno F Marques
- Process and Product Development, Century Therapeutics, Philadelphia, PA 19104, USA
| |
Collapse
|
23
|
Nishiyama N, Ruoff P, Jimenez JC, Miwakeichi F, Nishiyama Y, Yata T. Modeling the interaction between donor-derived regulatory T cells and effector T cells early after allogeneic hematopoietic stem cell transplantation. Biosystems 2023; 227-228:104889. [PMID: 37019377 DOI: 10.1016/j.biosystems.2023.104889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/12/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
While allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potential curative therapy against hematological malignancies, modulation of donor T cell alloreactivity is required to enhance the graft-versus-leukemia (GVL) effect and control graft-versus-host-disease (GVHD) after allo-HSCT. Donor-derived regulatory CD4+CD25+Foxp3+ T cells (Tregs) play a central role in establishing of immune tolerance after allo-HSCT. They could be a key target to be modulated for increasing the GVL effect and control of GVHD. We constructed an ordinary differential equation model incorporating bidirectional interactions between Tregs and effector CD4+ T cells (Teffs) as a mechanism for control of Treg cell concentration. The goal is to elucidate how the interaction between Tregs and Teffs is modulated in order to get insights into fine tuning of alloreactivity after allo-HSCT. The model was calibrated with respect to published Treg and Teff recovery data after allo-HSCT. The calibrated model exhibits perfect or near-perfect adaptation to stepwise perturbations between Treg and Teff interactions, as seen in Treg cell populations when patients with relapsed malignancy were treated with anti-CTLA-4 (cytotoxic T lymphocyte-associated antigen 4). In addition, the model predicts observed shifts of Tregs and Teffs concentrations after co-stimulatory receptor IL-2R or TNFR2 blockade with allo-HSCT. The present results suggest simultaneous blockades of co-stimulatory and co-inhibitory receptors as a potential treatment for enhancing the GVL effect after allo-HSCT without developing GVHD.
Collapse
|
24
|
Johansson K, Gagnon JD, Zhou S, Fassett MS, Schroeder AW, Kageyama R, Bautista RA, Pham H, Woodruff PG, Ansel KM. An essential role for miR-15/16 in Treg suppression and restriction of proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.26.533356. [PMID: 36993421 PMCID: PMC10055372 DOI: 10.1101/2023.03.26.533356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The miR-15/16 family is a highly expressed group of tumor suppressor miRNAs that target a large network of genes in T cells to restrict their cell cycle, memory formation and survival. Upon T cell activation, miR-15/16 are downregulated, allowing rapid expansion of differentiated effector T cells to mediate a sustained immune response. Here, using conditional deletion of miR-15/16 in immunosuppressive regulatory T cells (Tregs) that express FOXP3, we identify new functions of the miR-15/16 family in T cell immunity. miR-15/16 are indispensable to maintain peripheral tolerance by securing efficient suppression by a limited number of Tregs. miR-15/16-deficiency alters Treg expression of critical functional proteins including FOXP3, IL2Rα/CD25, CTLA4, PD-1 and IL7Rα/CD127, and results in accumulation of functionally impaired FOXP3loCD25loCD127hi Tregs. Excessive proliferation in the absence of miR-15/16 inhibition of cell cycle programs shifts Treg diversity and produces an effector Treg phenotype characterized by low expression of TCF1, CD25 and CD62L, and high expression of CD44. These Tregs fail to control immune activation of CD4+ effector T cells, leading to spontaneous multi-organ inflammation and increased allergic airway inflammation in a mouse model of asthma. Together, our results demonstrate that miR-15/16 expression in Tregs is essential to maintain immune tolerance.
Collapse
|
25
|
Zhao N, Song Y, Xie X, Zhu Z, Duan C, Nong C, Wang H, Bao R. Synthetic biology-inspired cell engineering in diagnosis, treatment, and drug development. Signal Transduct Target Ther 2023; 8:112. [PMID: 36906608 PMCID: PMC10007681 DOI: 10.1038/s41392-023-01375-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023] Open
Abstract
The fast-developing synthetic biology (SB) has provided many genetic tools to reprogram and engineer cells for improved performance, novel functions, and diverse applications. Such cell engineering resources can play a critical role in the research and development of novel therapeutics. However, there are certain limitations and challenges in applying genetically engineered cells in clinical practice. This literature review updates the recent advances in biomedical applications, including diagnosis, treatment, and drug development, of SB-inspired cell engineering. It describes technologies and relevant examples in a clinical and experimental setup that may significantly impact the biomedicine field. At last, this review concludes the results with future directions to optimize the performances of synthetic gene circuits to regulate the therapeutic activities of cell-based tools in specific diseases.
Collapse
Affiliation(s)
- Ninglin Zhao
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yingjie Song
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Xiangqian Xie
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Ziqi Zhu
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chenxi Duan
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Nong
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Rui Bao
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
26
|
Cho S, Jang E, Yoon T, Hwang H, Youn J. A novel selective spleen tyrosine kinase inhibitor SKI-O-703 (cevidoplenib) ameliorates lupus nephritis and serum-induced arthritis in murine models. Clin Exp Immunol 2023; 211:31-45. [PMID: 36346114 PMCID: PMC9993459 DOI: 10.1093/cei/uxac096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/22/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
Spleen tyrosine kinase (Syk) plays a pivotal role in the activation of B cells and innate inflammatory cells by transducing immune receptor-triggered signals. Dysregulated activity of Syk is implicated in the development of antibody-mediated autoimmune diseases including systemic lupus erythematosus (SLE) and rheumatoid arthritis, but the effect of Syk inhibition on such diseases remains to be fully evaluated. We have developed a novel selective Syk inhibitor, SKI-O-592, and its orally bioavailable salt form, SKI-O-703 (cevidoplenib). To examine the efficacy of SKI-O-703 on the progression of SLE, New Zealand black/white mice at the autoimmunity-established phase were administrated orally with SKI-O-703 for 16 weeks. Levels of IgG autoantibody, proteinuria, and glomerulonephritis fell significantly, and this was associated with hypoactivation of follicular B cells via the germinal center. In a model of serum-transferred arthritis, SKI-O-703 significantly ameliorated synovitis, with fewer neutrophils and macrophages infiltrated into the synovial tissue. This effect was recapitulated when mice otherwise refractory to anti-TNF therapy were treated by TNF blockade combined with a suboptimal dose of SKI-O-703. These results demonstrate that the novel selective Syk inhibitor SKI-O-703 attenuates the progression of autoantibody-mediated autoimmune diseases by inhibiting both autoantibody-producing and autoantibody-sensing cells.
Collapse
Affiliation(s)
- Somi Cho
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Eunkyeong Jang
- Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Taeyoung Yoon
- Department of Discovery Biology, Research Institute, Oscotec Inc., Seongnam-si, Gyeonggi-do 13488, Korea
| | - Haejun Hwang
- Department of Discovery Biology, Research Institute, Oscotec Inc., Seongnam-si, Gyeonggi-do 13488, Korea
| | - Jeehee Youn
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
27
|
Lopes AD, Galdino NAL, Figueiredo AB, Brianese RC, Morais KLP, De Brot M, Osório CABT, Teixeira-Carvalho A, Calsavara VF, Evangelista GFB, Alves NS, Makdissi FB, Sanches SM, Cordeiro de Lima VC, Carraro DM, Gollob KJ. Systemic immune mediators reflect tumour-infiltrating lymphocyte intensity and predict therapeutic response in triple-negative breast cancer. Immunology 2023; 169:229-241. [PMID: 36703241 DOI: 10.1111/imm.13627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer (BC). Neoadjuvant chemotherapy has proven efficacy in its treatment, and a pathological complete response (pCR) to therapy is predictive of improved long-term survival. The immune response is key to successful neoadjuvant chemotherapy, as indicated by the relation between the percentage of stromal tumour-infiltrating lymphocytes (TILs) in pre-treated tumour tissue samples and the likelihood of achieving pCR. Here we studied systemic immune mediators from volunteer TNBC patients before undergoing neoadjuvant chemotherapy to determine the systemic response association with TIL intensity, treatment response and survival. Patients were classified into pCR responder or non-responder at time of surgery. We found higher levels of immune mediators before treatment began in patients that went on to be pCR responders versus non-pCR, with area under the curve (AUC) values of 0.64-0.80. We also observed a positive correlation between inflammatory systemic immune mediators and the percentage of TILs in pCR responder patients. Combining TILs and systemic immune mediator levels provided stronger AUC values (range of 0.72-0.82). Last, performing a progression-free survival analysis with several of the systemic cytokines that predict pCR, segregated the patients into long- and short-survival groups based on high and low production of the cytokines, respectively. Our study demonstrates that circulating cytokines, before treatment begins, predict pCR in TNBC patients treated with neoadjuvant chemotherapy. Moreover, they may act as a surrogate marker of high TILs or together with TILs to better predict pCR and survival.
Collapse
Affiliation(s)
- Ananda D Lopes
- Translational Immuno-oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil.,Translational Immuno-oncology Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Nayane A L Galdino
- Translational Immuno-oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil.,Translational Immuno-oncology Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Amanda B Figueiredo
- Translational Immuno-oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil.,Translational Immuno-oncology Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Rafael C Brianese
- Laboratory of Genomics and Molecular Biology, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Katia L P Morais
- Translational Immuno-oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil.,Translational Immuno-oncology Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Marina De Brot
- Department of Pathology, A.C. Camargo Cancer Center, São Paulo, Brazil
| | | | | | - Vinicius F Calsavara
- Laboratory of Epidemiology and Statistics, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Guilherme F B Evangelista
- Translational Immuno-oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil.,Translational Immuno-oncology Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Natalia S Alves
- Translational Immuno-oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
| | | | - Solange M Sanches
- Department of Mastology, A.C.Camargo Cancer Center, São Paulo, Brazil
| | | | - Dirce M Carraro
- Laboratory of Genomics and Molecular Biology, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil.,INCT-INCITO, São Paulo, Brazil
| | - Kenneth J Gollob
- Translational Immuno-oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil.,INCT-INCITO, São Paulo, Brazil.,Center for Research in Immuno-oncology, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
28
|
Siewe N, Friedman A. Cancer therapy with immune checkpoint inhibitor and CSF-1 blockade: A mathematical model. J Theor Biol 2023; 556:111297. [PMID: 36228716 DOI: 10.1016/j.jtbi.2022.111297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022]
Abstract
Immune checkpoint inhibitors (ICIs) introduced in recent years have revolutionized the treatment of many metastatic cancers. However, data suggest that treatment has benefits only in a limited percentage of patients, and that this is due to immune suppression of the tumor microenvironment (TME). Anti-tumor inflammatory macrophages (M1), which are attracted to the TME, are converted by tumor secreted cytokines, such as CSF-1, to pro-tumor anti-inflammatory macrophages (M2), or tumor associated macrophages (TAMs), which block the anti-tumor T cells. In the present paper we develop a mathematical model that represents the interactions among the immune cells and cancer in terms of differential equations. The model can be used to assess treatments of combination therapy of anti-PD-1 with anti-CSF-1. Examples are given in comparing the efficacy among different strategies for anti-CSF-1 dosing in a setup of clinical trials.
Collapse
Affiliation(s)
- Nourridine Siewe
- School of Mathematical Sciences, College of Science, Rochester Institute of Technology, Rochester, NY, USA.
| | - Avner Friedman
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
29
|
Amin MM, Husada MS, Idaiani S, Effendy E, Nasution S, Purnama SD. The Effect of Interleukin-2 -330 T/G Polymorphism in People with Schizophrenia Among The Batak and Javanese Ethnic Groups. Med Arch 2023; 77:363-369. [PMID: 38299092 PMCID: PMC10825752 DOI: 10.5455/medarh.2023.77.363-369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/29/2023] [Indexed: 02/02/2024] Open
Abstract
Background Schizophrenia is a complex disorder involving multiple genes with mild to moderate effects and non-genetic risk factors such as environmental and psychological influences that alter brain chemistry. Significant reduction in interleukin-2 production by peripheral lymphocytes is an immunological finding replicated in schizophrenia across various countries. Investigations on the interleukin-2 -330 T/G polymorphism in people with schizophrenia (PWS) are still minimal, and the study location involves only a few countries with different results. Therefore, this study aims to examine the effect of interleukin-2 -330 T/G polymorphisms in people with schizophrenia among the Batak and Javanese ethnic groups in Indonesia, particularly in North Sumatra. Method This study used purposive non-probability sampling to recruit people with schizophrenia with 120 Batak and 120 Javanese subjects who were hospitalized at Prof. M. Ildrem Mental Hospital, Medan, Indonesia. The interleukin-2 -330 T/G polymorphism was examined by the PCR method. Result The results showed that the genotype frequency of the Batak people with schizophrenia is as follows: GG 11.7%, TG 53.3% and TT 35%. Furthermore, the group of Javanese people with schizophrenia is as follows: GG 23.3%, TG 44.2% and TT 32.5%. The OR for the genotypic comparison of GG was found to be 2.154 with 95% CI 0.992-4.678, p=0.053, while that of the TG genotype was 0.892 with 95% CI 0.505-1.574 and p=0.693. The T allele was higher than the G allele in Batak and Javanese ethnic groups, as demonstrated by p=0.713, OR=0.919 with 95% CI 0.641-1.318. Conclusion There is no statistically significant difference between the occurrence frequency of alleles. In addition, there is no significant relationship between the GG and the TG genotype of the interleukin-2 - 330T/G polymorphism in people with schizophrenia among the Batak and the Javanese ethnic groups.
Collapse
Affiliation(s)
- Mustafa M. Amin
- Department of Psychiatry Faculty of Medicine Universitas Sumatera Utara
| | | | - Sri Idaiani
- Centre of Preclinical and Clinical Medicine Research National Research and Innovation Agency
| | - Elmeida Effendy
- Department of Psychiatry Faculty of Medicine Universitas Sumatera Utara
| | | | | |
Collapse
|
30
|
Dhawan M, Rabaan AA, Fawarah MMA, Almuthree SA, Alsubki RA, Alfaraj AH, Mashraqi MM, Alshamrani SA, Abduljabbar WA, Alwashmi ASS, Ibrahim FA, Alsaleh AA, Khamis F, Alsalman J, Sharma M, Emran TB. Updated Insights into the T Cell-Mediated Immune Response against SARS-CoV-2: A Step towards Efficient and Reliable Vaccines. Vaccines (Basel) 2023; 11:101. [PMID: 36679947 PMCID: PMC9861463 DOI: 10.3390/vaccines11010101] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
The emergence of novel variants of SARS-CoV-2 and their abilities to evade the immune response elicited through presently available vaccination makes it essential to recognize the mechanisms through which SARS-CoV-2 interacts with the human immune response. It is essential not only to comprehend the infection mechanism of SARS-CoV-2 but also for the generation of effective and reliable vaccines against COVID-19. The effectiveness of the vaccine is supported by the adaptive immune response, which mainly consists of B and T cells, which play a critical role in deciding the prognosis of the COVID-19 disease. T cells are essential for reducing the viral load and containing the infection. A plethora of viral proteins can be recognized by T cells and provide a broad range of protection, especially amid the emergence of novel variants of SARS-CoV-2. However, the hyperactivation of the effector T cells and reduced number of lymphocytes have been found to be the key characteristics of the severe disease. Notably, excessive T cell activation may cause acute respiratory distress syndrome (ARDS) by producing unwarranted and excessive amounts of cytokines and chemokines. Nevertheless, it is still unknown how T-cell-mediated immune responses function in determining the prognosis of SARS-CoV-2 infection. Additionally, it is unknown how the functional perturbations in the T cells lead to the severe form of the disease and to reduced protection not only against SARS-CoV-2 but many other viral infections. Hence, an updated review has been developed to understand the involvement of T cells in the infection mechanism, which in turn determines the prognosis of the disease. Importantly, we have also focused on the T cells' exhaustion under certain conditions and how these functional perturbations can be modulated for an effective immune response against SARS-CoV-2. Additionally, a range of therapeutic strategies has been discussed that can elevate the T cell-mediated immune response either directly or indirectly.
Collapse
Affiliation(s)
- Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, Punjab, India
- Trafford College, Altrincham, Manchester WA14 5PQ, UK
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Mahmoud M. Al Fawarah
- Microbiology Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
| | - Souad A. Almuthree
- Department of Infectious Disease, King Abdullah Medical City, Makkah 43442, Saudi Arabia
| | - Roua A. Alsubki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Amal H. Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Mutaib M. Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Saleh A. Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Wesam A. Abduljabbar
- Department of Medical Laboratory Sciences, Fakeeh College for Medical Science, Jeddah 21134, Saudi Arabia
| | - Ameen S. S. Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Fatimah Al Ibrahim
- Infectious Disease Division, Department of Internal Medicine, Dammam Medical Complex, Dammam 32245, Saudi Arabia
| | - Abdulmonem A. Alsaleh
- Clinical Laboratory Science Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Faryal Khamis
- Infection Diseases Unit, Department of Internal Medicine, Royal Hospital, Muscat 1331, Oman
| | - Jameela Alsalman
- Infection Disease Unit, Department of Internal Medicine, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 435, Bahrain
| | - Manish Sharma
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| |
Collapse
|
31
|
Kremer J, Henschel P, Simon D, Riet T, Falk C, Hardtke-Wolenski M, Wedemeyer H, Noyan F, Jaeckel E. Membrane-bound IL-2 improves the expansion, survival, and phenotype of CAR Tregs and confers resistance to calcineurin inhibitors. Front Immunol 2022; 13:1005582. [PMID: 36618378 PMCID: PMC9816406 DOI: 10.3389/fimmu.2022.1005582] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Background Regulatory T cells (Tregs) play an important role in the maintenance of immune homeostasis and the establishment of immune tolerance. Since Tregs do not secrete endogenous IL-2, they are especially dependent on external IL-2. IL-2 deficiency leads to lower Treg numbers, instability of the Treg phenotype and loss of immune regulation. After organ transplantation, patients are treated with calcineurin inhibitors (CNIs), which further limits available IL-2. Application of low-dose IL-2 expands Tregs but also activates NK and CD8+ T cells. It was recently shown that graft-specific Tregs recognizing mismatched MHC I molecules via a chimeric antigen receptor were far more potent than polyclonal Tregs in the regulation of immune responses after solid organ transplantation in a humanized mouse model. Methods Therefore, our aim was to enhance the function and stability of transferred CAR-Tregs via expression of membrane-associated IL-2 (mbIL-2). Results mbIL-2 promoted higher survival, phenotypic stability, and function among CAR-Tregs than observed in clinical trials. The cells were also more stable under inflammatory conditions. In a preclinical humanized mouse model, we demonstrated that mbIL-2 CAR Tregs survive better in the Treg niche than control CAR Tregs and are even resistant to CNI therapy without affecting other Tregs, thus acting mainly in cis. Discussion The functional and phenotypic improvements observed after membrane-attached IL-2 expression in CAR-Tregs will be important step for enhancing CAR-Treg therapies currently being tested in clinical trials for use after kidney and liver transplantation as well as in autoimmune diseases.
Collapse
Affiliation(s)
- Jakob Kremer
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Pierre Henschel
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Daniel Simon
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Tobias Riet
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
- Department I of Internal Medicine, Tumor Genetics, University Hospital of Cologne and Center for Molecular Medicine, Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Christine Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Matthias Hardtke-Wolenski
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
- Institute of Medical Microbiology, Essen University Hospital, University Duisburg-Essen, Essen, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Fatih Noyan
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Elmar Jaeckel
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
- Department of liver transplantation, Multi Organ Transplant Program, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
32
|
Plotnikova MA, Klotchenko SA, Lozhkov AA, Lebedev KI, Taraskin AS, Baranovskaya IL, Egorova MA, Ramsay ES, Chebotkevich VN, Vasin AV. Peripheral Blood Mononuclear Cell Cytokine mRNA Profiles in Acute Respiratory Infection Patients. J Glob Infect Dis 2022; 14:147-153. [PMID: 36636297 PMCID: PMC9831213 DOI: 10.4103/jgid.jgid_301_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/08/2022] [Accepted: 10/18/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Respiratory infections, collectively, are one of the World's most common and serious illness groups. As recent observations have shown, the most severe courses of acute respiratory infection, often leading to death, are due to uncontrolled cytokine production (hypercytokinemia). Methods The study involved 364 patients with respiratory illness being treated in clinics in St. Petersburg (Russia) in 2018-2019 and 30 healthy controls. Cytokine analysis was carried out in the acute phase of illness (2-3 days from onset of initial symptoms) and in the stage of recovery (days 9-10). The research presented is devoted to the assessment of mRNA expression of specific cytokines (interleukin [IL]-1b, IL-2, IL-4, IL-6, IL-8, IL-10, IL-18, tumor necrosis factor-α [TNF-α], and interferon-λ) and MxA in whole blood leukocytes, by means of real-time polymerase chain reaction. Results In 70% of patients, bacterial or viral pathogens were identified, with influenza viral infections (types A and B) prevailing. Significant increases in the expression of IL-18, TNF, and IL-10 were observed, relative to controls, only with influenza viral infections. We have shown a difference in IL-6 mRNA expression in patients with bacterial or viral pathogens. No statistically significant difference was found in white blood cells IL-4 expression levels between patients and healthy controls. Conclusion Investigation of the nuances of systemic cytokine production, in response to specific viral and bacterial pathogens, makes it possible to assess the risks of developing hypercytokinemia during respiratory infection with agents circulating in the human population and to predict the pathogenicity and virulence of circulating threats.
Collapse
Affiliation(s)
- Marina Alexandrovna Plotnikova
- Department of Molecular Biology of Viruses, Smorodintsev Research Institute of Influenza, Russian Ministry of Health, St. Petersburg, Russia,Address for correspondence: Dr. Marina Alexandrovna Plotnikova, Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova; St. Petersburg 197376, Russia. E-mail:
| | - Sergey A. Klotchenko
- Department of Molecular Biology of Viruses, Smorodintsev Research Institute of Influenza, Russian Ministry of Health, St. Petersburg, Russia
| | - Alexey A. Lozhkov
- Department of Molecular Biology of Viruses, Smorodintsev Research Institute of Influenza, Russian Ministry of Health, St. Petersburg, Russia,Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Kirill I. Lebedev
- Department of Molecular Biology of Viruses, Smorodintsev Research Institute of Influenza, Russian Ministry of Health, St. Petersburg, Russia,Department of Clinical Laboratory Diagnostics, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - Alexander S. Taraskin
- Department of Molecular Biology of Viruses, Smorodintsev Research Institute of Influenza, Russian Ministry of Health, St. Petersburg, Russia,Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Irina L. Baranovskaya
- Department of Molecular Biology of Viruses, Smorodintsev Research Institute of Influenza, Russian Ministry of Health, St. Petersburg, Russia
| | - Maria A. Egorova
- Department of Molecular Biology of Viruses, Smorodintsev Research Institute of Influenza, Russian Ministry of Health, St. Petersburg, Russia
| | - Edward S. Ramsay
- Department of Molecular Biology of Viruses, Smorodintsev Research Institute of Influenza, Russian Ministry of Health, St. Petersburg, Russia
| | - Vitaly N. Chebotkevich
- Department of Bacteriology, Russian Research Institute of Hematology and Transfusiology, St. Petersburg, Russia
| | - Andrey V. Vasin
- Department of Molecular Biology of Viruses, Smorodintsev Research Institute of Influenza, Russian Ministry of Health, St. Petersburg, Russia,Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia,Scientific and Educational Center for Biophysical Research in the Field of Pharmaceutics, Saint Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia
| |
Collapse
|
33
|
Siewe N, Friedman A. Optimal timing of steroid initiation in response to CTLA-4 antibody in metastatic cancer: A mathematical model. PLoS One 2022; 17:e0277248. [PMID: 36355837 PMCID: PMC9648769 DOI: 10.1371/journal.pone.0277248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 10/23/2022] [Indexed: 11/12/2022] Open
Abstract
Immune checkpoint inhibitors, introduced in recent years, have revolutionized the treatment of many cancers. However, the toxicity associated with this therapy may cause severe adverse events. In the case of advanced lung cancer or metastatic melanoma, a significant number (10%) of patients treated with CTLA-4 inhibitor incur damage to the pituitary gland. In order to reduce the risk of hypophysitis and other severe adverse events, steroids may be combined with CTLA-4 inhibitor; they reduce toxicity, but they also diminish the anti-cancer effect of the immunotherapy. This trade-off between tumor reduction and the risk of severe adverse events poses the following question: What is the optimal time to initiate treatment with steroid. We address this question with a mathematical model from which we can also evaluate the comparative benefits of each schedule of steroid administration. In particular, we conclude that treatment with steroid should not begin too early, but also not very late, after immunotherapy began; more precisely, it should start as soon as tumor volume, under the effect of CTLA-4 inhibitor alone, begins to decrease. We can also compare the benefits of short term treatment of steroid at high doses to a longer term treatment with lower doses.
Collapse
Affiliation(s)
- Nourridine Siewe
- School of Mathematical Sciences, College of Science, Rochester Institute of Technology, Rochester, New York, United States of America
- * E-mail:
| | - Avner Friedman
- Department of Mathematics, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
34
|
Regulatory T Cells in Ovarian Carcinogenesis and Future Therapeutic Opportunities. Cancers (Basel) 2022; 14:cancers14225488. [PMID: 36428581 PMCID: PMC9688690 DOI: 10.3390/cancers14225488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Regulatory T cells (Tregs) have been shown to play a role in the development of solid tumors. A better understanding of the biology of Tregs, immune suppression by Tregs, and how cancer developed with the activity of Tregs has facilitated the development of strategies used to improve immune-based therapy. In ovarian cancer, Tregs have been shown to promote cancer development and resistance at different cancer stages. Understanding the various Treg-mediated immune escape mechanisms provides opportunities to establish specific, efficient, long-lasting anti-tumor immunity. Here, we review the evidence of Treg involvement in various stages of ovarian cancer. We further provide an overview of the current and prospective therapeutic approaches that arise from the modulation of Treg-related tumor immunity at those specific stages. Finally, we propose combination strategies of Treg-related therapies with other anti-tumor therapies to improve clinical efficacy and overcome tumor resistance in ovarian cancer.
Collapse
|
35
|
Advancing Biologic Therapy for Refractory Autoimmune Hepatitis. Dig Dis Sci 2022; 67:4979-5005. [PMID: 35147819 DOI: 10.1007/s10620-021-07378-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/27/2021] [Indexed: 01/05/2023]
Abstract
Biologic agents may satisfy an unmet clinical need for treatment of refractory autoimmune hepatitis. The goals of this review are to present the types and results of biologic therapy for refractory autoimmune hepatitis, indicate opportunities to improve and expand biologic treatment, and encourage comparative clinical trials. English abstracts were identified in PubMed by multiple search terms. Full-length articles were selected for review, and secondary and tertiary bibliographies were developed. Rituximab (monoclonal antibodies against CD20 on B cells), infliximab (monoclonal antibodies against tumor necrosis factor-alpha), low-dose recombinant interleukin 2 (regulatory T cell promoter), and belimumab (monoclonal antibodies against B cell activating factor) have induced laboratory improvement in small cohorts with refractory autoimmune hepatitis. Ianalumab (monoclonal antibodies against the receptor for B cell activating factor) is in clinical trial. These agents target critical pathogenic pathways, but they may also have serious side effects. Blockade of the B cell activating factor or its receptors may disrupt pivotal B and T cell responses, and recombinant interleukin 2 complexed with certain interleukin 2 antibodies may selectively expand the regulatory T cell population. A proliferation-inducing ligand that enhances T cell proliferation and survival is an unevaluated, potentially pivotal, therapeutic target. Fully human antibodies, expanded target options, improved targeting precision, more effective delivery systems, and biosimilar agents promise to improve efficacy, safety, and accessibility. In conclusion, biologic agents target key pathogenic pathways in autoimmune hepatitis, and early experiences in refractory disease encourage clarification of the preferred target, rigorous clinical trial, and comparative evaluations.
Collapse
|
36
|
Verstappen M, van der Helm-van Mil AHM. Sustained DMARD-free remission in rheumatoid arthritis - about concepts and moving towards practice. Joint Bone Spine 2022; 89:105418. [PMID: 35636705 PMCID: PMC7615888 DOI: 10.1016/j.jbspin.2022.105418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022]
Abstract
Sustained DMARD-free remission (SDFR) is the best possible outcome in RA. It is characterized by sustained absence of clinical arthritis, which is accompanied by resolution of symptoms and restoration of normal physical functioning. Therefore it's the best proxy for cure in RA. The mechanisms underlying SDFR-development are yet unidentified. Hypothetically, there are two possible scenarios. The first hypothesis is based on the concept of regaining immune-tolerance, which implies that RA-patients are similar at diagnosis and that disease-processes during the disease-course shift into a favorable direction, resulting in regaining a state in which arthritis is persistently absent. This could imply that SDFR is theoretically achievable for all RA-patients. The alternative hypothesis is that RA-patients who achieve SDFR are intrinsically different from those who cannot. This would imply that DMARD-cessation could be restricted to a subgroup of RA-patients. Since the 1990s, DMARD-discontinuation and SDFR have been increasingly studied as long-term-outcome in RA. In this review, we describe hitherto results of clinical, genetic, serological, histological and imaging studies and looked for arguments for the first or second hypothesis in both auto-antibody-positive and auto-antibody-negative RA. In auto-antibody-negative RA, SDFR is presumably restricted to a subgroup of patients with high serological-markers of inflammation at diagnosis and a rapid and sustained decrease in inflammation after treatment-start. Identifying these RA-patients could be helpful in realizing personalized-medicine. In auto-antibody-positive RA, only few patients achieve SDFR and no definite conclusions can be drawn, but data could suggest that SDFR-patients might be a subgroup with relatively low inflammation from disease-presentation onwards.
Collapse
Affiliation(s)
- Marloes Verstappen
- Department of Rheumatology, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Annette H M van der Helm-van Mil
- Department of Rheumatology, Leiden University Medical Centre, Leiden, The Netherlands; Department of Rheumatology, Erasmus Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
37
|
van der Vegt SA, Wang YJ, Polonchuk L, Wang K, Waters SL, Baker RE. A model-informed approach to assess the risk of immune checkpoint inhibitor-induced autoimmune myocarditis. Front Pharmacol 2022; 13:966180. [PMID: 36249751 PMCID: PMC9555336 DOI: 10.3389/fphar.2022.966180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs), as a novel immunotherapy, are designed to modulate the immune system to attack malignancies. Despite their promising benefits, immune-related adverse events (IRAEs) may occur, and incidences are bound to increase with surging demand of this class of drugs in treating cancer. Myocarditis, although rare compared to other IRAEs, has a significantly higher fatal frequency. Due to the overwhelming complexity of the immune system, this condition is not well understood, despite the significant research efforts devoted to it. To better understand the development and progression of autoimmune myocarditis and the roles of ICIs therein, we suggest a new approach: mathematical modelling. Mathematical modelling of myocarditis has enormous potential to determine which parts of the immune system are critical to the development and progression of the disease, and therefore warrant further investigation. We provide the immunological background needed to develop a mathematical model of this disease and review relevant existing models of immunology that serve as the mathematical inspiration needed to develop this field.
Collapse
Affiliation(s)
- Solveig A. van der Vegt
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
- *Correspondence: Solveig A. van der Vegt,
| | - Ying-Jie Wang
- Department of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre of Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Liudmila Polonchuk
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Ken Wang
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Sarah L. Waters
- Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Ruth E. Baker
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
38
|
Donato V, Kim HT, Stowe P, Reynolds CG, Ritz J, Koreth J, Whangbo JS. Durability of clinical and immunologic responses to extended low-dose interleukin-2 therapy in patients with refractory chronic graft-versus-host disease. Front Immunol 2022; 13:954966. [PMID: 36189229 PMCID: PMC9515381 DOI: 10.3389/fimmu.2022.954966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022] Open
Abstract
Chronic graft-versus-host disease (cGVHD) remains a frequent cause of non-relapse morbidity and mortality after allogeneic hematopoietic stem cell transplantation. In our single center trials of low-dose interleukin-2 (LD IL-2), the immunomodulatory properties of regulatory T cells (Tregs) have been harnessed to treat steroid-refractory cGVHD (SR-cGVHD) safely and effectively in adults and children. In these trials, 50-60% of patients showed clinical improvement of their cGVHD manifestations with partial responses at the primary response endpoint of 8-12 weeks. Many patients continued extended duration LD IL-2 therapy and achieved deeper clinical responses, including some complete responses. However, the durability of the clinical and immunologic improvement following IL-2 discontinuation has not been reported previously. We examined 20 adult and 2 pediatric patients who received extended duration LD IL-2 for a median of 103 weeks (range, 21-258) and had stable improvement or resolution of their cGVHD symptoms before discontinuing LD IL-2 therapy. The median follow-up after stopping IL-2 was 203 weeks (range 92-599). During this time, 16 patients (73%) were able to wean off all systemic immunosuppression without disease flare or progression. Among 13 patients with available immune cell data, the median fold change in absolute Treg count was 0.58 between 1 to 10 weeks after stopping IL-2 whereas CD4+ conventional T-cell (Tcon) and CD8+ T-cell numbers remained stable. Despite a decline in Treg numbers after IL-2 discontinuation, Treg numbers remained above the pre-treatment baseline. In addition, many patients had sustained clinical improvement after stopping IL-2, suggesting that extended IL-2 therapy can lead to immune tolerance.
Collapse
Affiliation(s)
- Veronica Donato
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, United States
- Master of Medical Sciences in Clinical Investigation Program, Harvard Medical School, Boston, MA, United States
| | - Haesook T. Kim
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard School of Public Health, Boston, MA, United States
| | - Peter Stowe
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Carol G. Reynolds
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Jerome Ritz
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - John Koreth
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Jennifer S. Whangbo
- Harvard Medical School, Boston, MA, United States
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- *Correspondence: Jennifer S. Whangbo,
| |
Collapse
|
39
|
Jin D, Jiang Y, Chang L, Wei J, Sun J. New therapeutic strategies based on biasing IL-2 mutants for cancers and autoimmune diseases. Int Immunopharmacol 2022; 110:108935. [PMID: 35732097 DOI: 10.1016/j.intimp.2022.108935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/05/2022]
Abstract
Interleukin-2 (IL-2) is an immunomodulatory multifunctional cytokine. High-dose IL-2 was first approved by the U.S. Food and Drug Administration (FDA) in the 1990s for the treatment of metastatic renal cell carcinoma and metastatic melanoma. However, the short half-life of IL-2 and its toxicity caused by high-dose IL-2 limit the clinical use of IL-2. Recently, the development of cell-type-selective engineered IL-2 products become a hot research filed, mainly because IL-2 stimulates both regulatory T cells (Treg) and effector T cells (Teff) in vivo. The selective effect of IL-2 on Treg and Teff can be improved by designing biased IL-2 mutants, which showed reduced toxicity while being more effective in stimulating anti-tumor effector immunity or ameliorating autoimmune diseases. In this review we summarize the biological properties of IL-2 mutants reported so far. The design process and principle of IL-2 mutants, IL-2 mutant antibody complexes and IL-2 fusion proteins were discussed, which provided research basis for the design and application of IL-2 mutants in the future.
Collapse
Affiliation(s)
- Dongfu Jin
- Department of Molecular and Cellular Pharmacology, Tianjin University, Tianjin 300072, PRChina
| | - Yaxin Jiang
- Department of Molecular and Cellular Pharmacology, Tianjin University, Tianjin 300072, PRChina
| | - Lu Chang
- Department of Molecular and Cellular Pharmacology, Tianjin University, Tianjin 300072, PRChina
| | - Jing Wei
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PRChina.
| | - Jian Sun
- Department of Molecular and Cellular Pharmacology, Tianjin University, Tianjin 300072, PRChina; Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PRChina.
| |
Collapse
|
40
|
Differential Expression of CD45RO and CD45RA in Bovine T Cells. Cells 2022; 11:cells11111844. [PMID: 35681539 PMCID: PMC9180881 DOI: 10.3390/cells11111844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 01/06/2023] Open
Abstract
Effective vaccination induces immune memory to protect animals upon pathogen re-encounter. Despite contradictory reports, bovine memory T cells are identified based on two isoforms of CD45, expression of CD45RO plus exclusion of CD45RA. In this report, we contrasted CD45RA/RO expression on circulatory T cells with IFNγ and IL4 expression induced by a conventional method. To our surprise, 20% of cattle from an enclosed herd did not express CD45RO on T cells without any significant difference on CD45RA expression and IFNγ or IL4 induction. In CD45RO expressing cattle, CD45RA and CD45RO expressions excluded each other, with dominant CD45RO (>90%) expression on gamma delta (γδ) followed by CD4+ (60%) but significantly higher CD45RA expression on CD8+ T cells (about 80%). Importantly, more than 80% of CD45RO expressing CD4+ and CD8+ T cells failed to produce IFNγ and IL-4; however, within the cytokine inducing cells, CD4+ T cells highly expressed CD45RO but those within CD8+ T cells mostly expressed CD45RA. Hence, CD45RO is not ubiquitously expressed in cattle, and rather than with memory phenotype, CD45RA/RO expression are more associated with distinct T cell subtypes.
Collapse
|
41
|
Wittrup KD, Kaufman HL, Schmidt MM, Irvine DJ. Intratumorally anchored cytokine therapy. Expert Opin Drug Deliv 2022; 19:725-732. [PMID: 35638290 PMCID: PMC9262866 DOI: 10.1080/17425247.2022.2084070] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/26/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION On-target, off-tumor toxicity severely limits systemic dosing of cytokines and agonist antibodies for cancer. Intratumoral administration is increasingly being explored to mitigate this problem. Full exploitation of this mode of administration must include a mechanism for sustained retention of the drug; otherwise, rapid diffusion out of the tumor eliminates any advantage. AREAS COVERED We focus here on strategies for anchoring immune agonists in accessible formats. Such anchoring may utilize extracellular matrix components, cell surface receptor targets, or exogenously administered particulate materials. Promising alternative strategies not reviewed here include slow release from the interior of a material depot, expression following local transfection, and conditional proteolytic activation of masked molecules. EXPERT OPINION An effective mechanism for tissue retention is a critical component of intratumorally anchored cytokine therapy, as leakage leads to decreased tumor drug exposure and increased systemic toxicity. Matching variable drug release kinetics with receptor-mediated cellular uptake is an intrinsic requirement for the alternative strategies mentioned above. Bioavailability of an anchored form of the administered drug is key to obviating this balancing act.
Collapse
Affiliation(s)
- K. Dane Wittrup
- Koch Institute for Integrative Cancer Research at the Massachusetts Institute of Technology, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
| | | | | | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research at the Massachusetts Institute of Technology, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
- Howard Hughes Medical Institute, MD, USA
| |
Collapse
|
42
|
Packialakshmi B, Hira S, Lund K, Zhang AH, Halterman J, Feng Y, Scott DW, Lees JR, Zhou X. NFAT5 contributes to the pathogenesis of experimental autoimmune encephalomyelitis (EAE) and decrease of T regulatory cells in female mice. Cell Immunol 2022; 375:104515. [DOI: 10.1016/j.cellimm.2022.104515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/03/2022]
|
43
|
Franko JJ, Vu MM, Parsons ME, Conner JR, Lammers DT, Ieronimakis N, Reynolds GD, Eckert MJ, Bingham JR. Adenosine, lidocaine, and magnesium for attenuating ischemia reperfusion injury from resuscitative endovascular balloon occlusion of the aorta in a porcine model. J Trauma Acute Care Surg 2022; 92:631-639. [PMID: 34840271 DOI: 10.1097/ta.0000000000003482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Minimally invasive resuscitative endovascular balloon occlusion of the aorta (REBOA) following noncompressible hemorrhage results in significant ischemia reperfusion injury (IRI). Adverse outcomes from IRI include organ dysfunction and can result in profound hemodynamic and molecular compromise. We hypothesized that adenosine, lidocaine, and magnesium (ALM) attenuates organ injury and inflammation responses following REBOA IRI in a porcine model of hemorrhage. METHODS Animals underwent a 20% controlled hemorrhage followed by 45 minutes of supraceliac balloon occlusion. They were randomized into two groups: control (n = 9) and ALM intervention (n = 9) to include a posthemorrhage, pre-REBOA bolus (200 mL of 3% NaCl ALM) followed by a continuous drip (2 mL/kg per hour of 0.9% NaCl ALM) during the 4-hour resuscitative period. Primary outcomes included hemodynamic parameters, gene expression of inflammatory signaling molecules, and plasma concentrations of select cytokines and chemokines. RESULTS The ALM cohort demonstrated a significant reduction in cardiac output and cardiac index. Plasma concentrations of interleukin 2 and interleukin 10 were significantly lower 3 hours post-REBOA in animals treated with ALM versus vehicle. Interleukin 4 levels in plasma were also lower with ALM at 3 and 4 hours post-REBOA (p < 0.05). Liver expression of IL1RN, MTOR, and LAMP3 messenger RNA was significantly lower with ALM as compared with the vehicle. No significant difference in large bowel gene expression was observed between treatments. CONCLUSION In a porcine model of hemorrhage, ALM treatment mitigated inflammatory responses early during post-REBOA resuscitation. Our findings suggest that ALM use with trauma may reduce inflammatory injury and improve outcomes related to REBOA utilization.
Collapse
Affiliation(s)
- Jace J Franko
- From the Department of Surgery (J.J.F., M.M.V., M.E.P., J.R.C., D.T.L., N.I., G.D.R., J.R.B.), Madigan Army Medical Center, Tacoma, Washington; and Department of Surgery (M.J.E.), University of North Carolina Medical Center, Chapel Hill, North Carolina
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Czaja AJ. Immune Inhibitory Properties and Therapeutic Prospects of Transforming Growth Factor-Beta and Interleukin 10 in Autoimmune Hepatitis. Dig Dis Sci 2022; 67:1163-1186. [PMID: 33835375 DOI: 10.1007/s10620-021-06968-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
Transforming growth factor-beta and interleukin 10 have diverse immune inhibitory properties that have restored homeostatic defense mechanisms in experimental models of autoimmune disease. The goals of this review are to describe the actions of each cytokine, review their investigational use in animal models and patients, and indicate their prospects as interventions in autoimmune hepatitis. English abstracts were identified in PubMed by multiple search terms. Full-length articles were selected for review, and secondary and tertiary bibliographies were developed. Transforming growth factor-beta expands the natural and inducible populations of regulatory T cells, limits the proliferation of natural killer cells, suppresses the activation of naïve CD8+ T cells, decreases the production of interferon-gamma, and stimulates fibrotic repair. Interleukin 10 selectively inhibits the CD28 co-stimulatory signal for antigen recognition and impairs antigen-specific activation of uncommitted CD4+ and CD8+ T cells. It also inhibits maturation of dendritic cells, suppresses Th17 cells, supports regulatory T cells, and limits production of diverse pro-inflammatory cytokines. Contradictory immune stimulatory effects have been associated with each cytokine and may relate to the dose and accompanying cytokine milieu. Experimental findings have not translated into successful early clinical trials. The recombinant preparation of each agent in low dosage has been safe in human studies. In conclusion, transforming growth factor-beta and interleukin 10 have powerful immune inhibitory actions of potential therapeutic value in autoimmune hepatitis. The keys to their therapeutic application will be to match their predominant non-redundant function with the pivotal pathogenic mechanism or cytokine deficiency and to avoid contradictory immune stimulatory actions.
Collapse
Affiliation(s)
- Albert J Czaja
- Professor Emeritus of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
45
|
Barchi JJ. Glycoconjugate Nanoparticle-Based Systems in Cancer Immunotherapy: Novel Designs and Recent Updates. Front Immunol 2022; 13:852147. [PMID: 35432351 PMCID: PMC9006936 DOI: 10.3389/fimmu.2022.852147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/04/2022] [Indexed: 11/15/2022] Open
Abstract
For many years, cell-surface glycans (in particular, Tumor-Associated Carbohydrate Antigens, TACAs) have been the target of both passive and active anticancer immunotherapeutic design. Recent advances in immunotherapy as a treatment for a variety of malignancies has revolutionized anti-tumor treatment regimens. Checkpoint inhibitors, Chimeric Antigen Receptor T-cells, Oncolytic virus therapy, monoclonal antibodies and vaccines have been developed and many approvals have led to remarkable outcomes in a subset of patients. However, many of these therapies are very selective for specific patient populations and hence the search for improved therapeutics and refinement of techniques for delivery are ongoing and fervent research areas. Most of these agents are directed at protein/peptide epitopes, but glycans-based targets are gaining in popularity, and a handful of approved immunotherapies owe their activity to oligosaccharide targets. In addition, nanotechnology and nanoparticle-derived systems can help improve the delivery of these agents to specific organs and cell types based on tumor-selective approaches. This review will first outline some of the historical beginnings of this research area and subsequently concentrate on the last 5 years of work. Based on the progress in therapeutic design, predictions can be made as to what the future holds for increasing the percentage of positive patient outcomes for optimized systems.
Collapse
Affiliation(s)
- Joseph J. Barchi
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| |
Collapse
|
46
|
Zhu J, Inomata T, Nakamura M, Fujimoto K, Akasaki Y, Fujio K, Yanagawa A, Uchida K, Sung J, Negishi N, Nagino K, Okumura Y, Miura M, Shokirova H, Kuwahara M, Hirosawa K, Midorikawa-Inomata A, Eguchi A, Huang T, Yagita H, Habu S, Okumura K, Murakami A. Anti-CD80/86 antibodies inhibit inflammatory reaction and improve graft survival in a high-risk murine corneal transplantation rejection model. Sci Rep 2022; 12:4853. [PMID: 35318419 PMCID: PMC8941080 DOI: 10.1038/s41598-022-08949-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/15/2022] [Indexed: 12/27/2022] Open
Abstract
We investigated the effects of anti-CD80/86 antibodies in a murine high-risk corneal transplantation rejection model. A mixed lymphocyte reaction (MLR) assay was conducted with anti-CD80/86 antibodies. Inflammatory cytokine levels in the culture supernatant were measured using an enzyme-linked immunosorbent assay. Interferon (IFN)-γ-producing CD4+ T cell frequencies in the MLR were assessed using flow cytometry. In vivo, high-risk corneal allograft survival and IFN-γ-producing CD4+ T cell frequencies in corneal grafts were assessed with intraperitoneal injection of anti-CD80/86 antibodies compared to phosphate-buffered saline (PBS). RNA-sequencing was performed on corneal grafts 2 weeks post-transplantation. Anti-CD80/86 antibodies significantly decreased T-cell proliferation, IFN-γ+-producing CD4+ T cell frequencies, and IFN-γ, interleukin (IL)-1β, IL-2, IL-10, and tumor necrosis factor-α production in the MLR compared to PBS injection. Intraperitoneal injection of anti-CD80/86 antibodies significantly prolonged corneal graft survival and decreased IFN-γ+-producing CD4+ T cell frequencies compared to PBS injection. Gene set enrichment analysis showed that the gene sets mainly enriched in the control group were related to allograft rejection and inflammatory response compared to PBS injection. Anti-CD80/86 antibodies significantly prolonged corneal graft survival by inhibiting T-cell proliferation and inflammatory response.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Ophthalmology, Subei People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Takenori Inomata
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,Department of Strategic Operating Room Management and Improvement, Juntendo University Graduate School of Medicine, Tokyo, Japan. .,Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan. .,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Masahiro Nakamura
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Precision Health, Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Keiichi Fujimoto
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yasutsugu Akasaki
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kenta Fujio
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ai Yanagawa
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koichiro Uchida
- Center for Immune Therapeutics and Diagnosis, Juntendo University, Tokyo, Japan
| | - Jaemyoung Sung
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Naoko Negishi
- Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Indoor Environment Neurophysiological Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ken Nagino
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuichi Okumura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Strategic Operating Room Management and Improvement, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Maria Miura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hurramhon Shokirova
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mizu Kuwahara
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kunihiko Hirosawa
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akie Midorikawa-Inomata
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Atsuko Eguchi
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tianxiang Huang
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Sonoko Habu
- Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Center for Immune Therapeutics and Diagnosis, Juntendo University, Tokyo, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
47
|
Sadri M, Hirosawa N, Le J, Romero H, Martellucci S, Kwon HJ, Pizzo D, Ohtori S, Gonias SL, Campana WM. Tumor necrosis factor receptor-1 is selectively sequestered into Schwann cell extracellular vesicles where it functions as a TNFα decoy. Glia 2022; 70:256-272. [PMID: 34559433 PMCID: PMC10656730 DOI: 10.1002/glia.24098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022]
Abstract
Schwann cells (SCs) are known to produce extracellular vesicles (EV) that participate in cell-cell communication by transferring cargo to target cells, including mRNAs, microRNAs, and biologically active proteins. Herein, we report a novel mechanism whereby SC EVs may regulate PNS physiology, especially in injury, by controlling the activity of TNFα. SCs actively sequester tumor necrosis factor receptor-1 (TNFR1) into EVs at high density, accounting for about 2% of the total protein in SC EVs (~1000 copies TNFR1/EV). Although TNFR2 was robustly expressed by SCs in culture, TNFR2 was excluded from SC EVs. SC EV TNFR1 bound TNFα, decreasing the concentration of free TNFα available to bind to cells and thus served as a TNFα decoy. SC EV TNFR1 significantly inhibited TNFα-induced p38 MAPK phosphorylation in cultured SCs. When TNFR1 was proteolytically removed from SC EVs using tumor necrosis factor-α converting enzyme (TACE) or neutralized with antibody, the ability of TNFα to activate p38 MAPK in the presence of these EVs was restored. As further evidence of its decoy activity, SC EV TNFR1 modified TNFα activities in vitro including: (1) regulation of expression of other cytokines; (2) effects on SC morphology; and (3) effects on SC viability. SC EVs also modified the effects of TNFα on sciatic nerve morphology and neuropathic pain-related behavior in vivo. By sequestering TNFR1 in EVs, SCs may buffer against the potentially toxic effects of TNFα. SC EVs provide a novel mechanism for the spatial and temporal regulation of neuro-inflammation.
Collapse
Affiliation(s)
- Mahrou Sadri
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
| | - Naoya Hirosawa
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
- Department of Orthopaedic Surgery and Graduate School in Medicine, Chiba University, Chiba, Japan
| | - Jasmine Le
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
- Veterans Administration San Diego Healthcare System, San Diego, California, USA
| | - Haylie Romero
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
- Program in Neuroscience, University of California, San Diego, La Jolla, California, USA
| | - Stefano Martellucci
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
| | - Hyo Jun Kwon
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
| | - Donald Pizzo
- Department of Pathology, University of California, San Diego, California, USA
| | - Seiji Ohtori
- Department of Orthopaedic Surgery and Graduate School in Medicine, Chiba University, Chiba, Japan
| | - Steven L. Gonias
- Department of Pathology, University of California, San Diego, California, USA
| | - Wendy M. Campana
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
- Veterans Administration San Diego Healthcare System, San Diego, California, USA
- Program in Neuroscience, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
48
|
McCall JL, Varney ME, Rice E, Dziadowicz SA, Hall C, Blethen KE, Hu G, Barnett JB, Martinez I. Prenatal Cadmium Exposure Alters Proliferation in Mouse CD4 + T Cells via LncRNA Snhg7. Front Immunol 2022; 12:720635. [PMID: 35087510 PMCID: PMC8786704 DOI: 10.3389/fimmu.2021.720635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Objective Prenatal cadmium (Cd) exposure leads to immunotoxic phenotypes in the offspring affecting coding and non-coding genes. Recent studies have shown that long non-coding RNAs (lncRNAs) are integral to T cell regulation. Here, we investigated the role of long non-coding RNA small nucleolar RNA host gene 7 (lncSnhg7) in T cell proliferation. Methods RNA sequencing was used to analyze the expression of lncRNAs in splenic CD4+ T cells with and without CD3/CD28 stimulation. Next, T cells isolated from offspring exposed to control or Cd water throughout mating and gestation were analyzed with and without stimulation with anti-CD3/CD28 beads. Quantitative qPCR and western blotting were used to detect RNA and protein levels of specific genes. Overexpression of a miR-34a mimic was achieved using nucleofection. Apoptosis was measured using flow cytometry and luminescence assays. Flow cytometry was also used to measure T cell proliferation in culture. Finally, lncSnhg7 was knocked down in splenic CD4+ T cells with lentivirus to assess its effect on proliferation. Results We identified 23 lncRNAs that were differentially expressed in stimulated versus unstimulated T cells, including lncSnhg7. LncSnhg7 and a downstream protein, GALNT7, are upregulated in T cells from offspring exposed to Cd during gestation. Overexpression of miR-34a, a regulator of lncSnhg7 and GALNT7, suppresses GALNT7 protein levels in primary T cells, but not in a mouse T lymphocyte cell line. The T cells isolated from Cd-exposed offspring exhibit increased proliferation after activation in vitro, but Treg suppression and CD4+ T cell apoptosis are not affected by prenatal Cd exposure. Knockdown on lncSnhg7 inhibits proliferation of CD4+ T cells. Conclusion Prenatal Cd exposure alters the expression of lncRNAs during T cell activation. The induction of lncSnhg7 is enhanced in splenic T cells from Cd offspring resulting in the upregulation of GALNT7 protein and increased proliferation following activation. miR-34a overexpression decreased GALNT7 expression and knockdown of lncSnhg7 inhibited proliferation suggesting that the lncSnhg7/miR-34a/GALNT7 is an important pathway in primary CD4+ T cells. These data highlight the need to understand the consequences of environmental exposures on lncRNA functions in non-cancerous cells as well as the effects in utero.
Collapse
Affiliation(s)
- Jamie L. McCall
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Melinda E. Varney
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Emily Rice
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Sebastian A. Dziadowicz
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Casey Hall
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Kathryn E. Blethen
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
- Bioinformatics Core, West Virginia University, Morgantown, WV, United States
| | - John B. Barnett
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Ivan Martinez
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
49
|
Li Q, Zhang Z, Chen S, Huang Z, Wang M, Zhou M, Yu C, Wang X, Chen Y, Jiang D, Du D, Huang Y, Tu X, Chen Z, Zhao Y. miR-190a-5p Partially Represses the Abnormal Electrical Activity of SCN3B in Cardiac Arrhythmias by Downregulation of IL-2. Front Cardiovasc Med 2022; 8:795675. [PMID: 35083300 PMCID: PMC8784662 DOI: 10.3389/fcvm.2021.795675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Cardiac arrhythmias (CAs) are generally caused by disruption of the cardiac conduction system; interleukin-2 (IL-2) is a key player in the pathological process of CAs. This study aimed to investigate the molecular mechanism underlying the regulation of IL-2 and the sodium channel current of sodium voltage-gated channel beta subunit 3 (SCN3B) by miR-190a-5p in the progression of CAs. ELISA results suggested the concentration of peripheral blood serum IL-2 in patients with atrial fibrillation (AF) to be increased compared to that in normal controls; fluorescence in situ hybridization indicated that the expression of IL-2 in the cardiac tissues of patients with AF to be upregulated and that miR-190a-5p to be downregulated. Luciferase reporter assay, quantitative real-time-PCR, and whole-cell patch-clamp experiments confirmed the downregulation of IL-2 by miR-190a-5p and influence of the latter on the sodium current of SCN3B. Overall, miR-190a-5p suppressed the increase in SCN3B sodium current caused by endogenous IL-2, whereas miR-190a-5p inhibitor significantly reversed this effect. IL-2 was demonstrated to be directly regulated by miR-190a-5p. We, therefore, concluded that the miR-190a-5p/IL-2/SCN3B pathway could be involved in the pathogenesis of CAs and miR-190a-5p might acts as a potential protective factor in pathogenesis of CAs.
Collapse
Affiliation(s)
- Qianqian Li
- Department of Obstetrics and Gynecology, Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Ziguan Zhang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, Tongji Medical College, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengrong Huang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Mengru Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Mengchen Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chenguang Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyi Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yilin Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Jiang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Dunfeng Du
- Institute of Organ Transplantation, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yufeng Huang
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
- Xin Tu
| | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Zhishui Chen
| | - Yuanyuan Zhao
- Institute of Organ Transplantation, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- *Correspondence: Yuanyuan Zhao
| |
Collapse
|
50
|
Dang N, Waer M, Sprangers B, Lin Y. Establishment of operational tolerance to sustain antitumor immunotherapy. J Heart Lung Transplant 2022; 41:568-577. [DOI: 10.1016/j.healun.2022.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/31/2021] [Accepted: 01/19/2022] [Indexed: 12/01/2022] Open
|