1
|
Karam J, Ashfaq N, Benitez C, Morales V, Partida E, Hernandez M, Yokoyama J, Villegas A, Brown B, Sakthivel P, Anderson AJ, Cummings BJ. Minimally invasive serial collection of cerebrospinal fluid reveals sex-dependent differences in neuroinflammation in a rat model of mild traumatic brain injury. Brain Behav Immun 2025; 124:237-252. [PMID: 39612965 DOI: 10.1016/j.bbi.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/17/2024] [Accepted: 11/08/2024] [Indexed: 12/01/2024] Open
Abstract
Traumatic brain injuries (TBI) are the seventh leading cause of disability globally with 48.99 million prevalent cases and 7.08 million years lived with diability. Approximately 80 % of TBI patients are diagnosed with mild TBI (mTBI), or concussion, caused by nonpenetrating mechanical trauma to the head or body along with sudden rotational motion of the head. Studies investigating the temporal dynamics of neuroinflammation after mTBI are greatly needed. Without longitudinal studies, translating preclinical studies to clinical studies remains challenging as the difference in timing remains poorly understood. In this study, we describe a method of minimally invasive serial cerebrospinal fluid (CSF) collection that enables longitudinal investigation of CSF inflammation. The method described in this study can easily be adapted by any laboratory prepared for animal studies. Multiplex immunoassay of serially collected and singly collected CSF samples show collection frequency does not alter protein expression in the CSF. Further, sex-dependent differences in TBI have been reported, but remain poorly understood. This study establishes a framework for assessing sex difference in neuroinflammation after a concussion. We showed that results vary based on the framing of the statistical test. However, it is evident that males experience a more robust inflammatory response to a single concussion than females.
Collapse
Affiliation(s)
- Josh Karam
- Sue & Bill Gross Stem Cell Research Center, University of California - Irvine, Irvine, CA 92697, United States
| | - Nimrah Ashfaq
- Sue & Bill Gross Stem Cell Research Center, University of California - Irvine, Irvine, CA 92697, United States
| | - Cynthia Benitez
- Sue & Bill Gross Stem Cell Research Center, University of California - Irvine, Irvine, CA 92697, United States
| | - Victor Morales
- Sue & Bill Gross Stem Cell Research Center, University of California - Irvine, Irvine, CA 92697, United States
| | - Elizabeth Partida
- Sue & Bill Gross Stem Cell Research Center, University of California - Irvine, Irvine, CA 92697, United States
| | - Michelle Hernandez
- Sue & Bill Gross Stem Cell Research Center, University of California - Irvine, Irvine, CA 92697, United States
| | - Jordan Yokoyama
- Sue & Bill Gross Stem Cell Research Center, University of California - Irvine, Irvine, CA 92697, United States
| | - Alyssa Villegas
- Sue & Bill Gross Stem Cell Research Center, University of California - Irvine, Irvine, CA 92697, United States
| | - Brielle Brown
- Physical Medicine & Rehabilitation, University of California - Irvine, Irvine, CA 92697, United States
| | - Pooja Sakthivel
- Sue & Bill Gross Stem Cell Research Center, University of California - Irvine, Irvine, CA 92697, United States; Anatomy & Neurobiology, University of California - Irvine, Irvine, CA 92697, United States
| | - Aileen J Anderson
- Sue & Bill Gross Stem Cell Research Center, University of California - Irvine, Irvine, CA 92697, United States; Institute for Memory Impairments & Neurological Disorders, University of California - Irvine, Irvine, CA 92697, United States; Physical Medicine & Rehabilitation, University of California - Irvine, Irvine, CA 92697, United States; Anatomy & Neurobiology, University of California - Irvine, Irvine, CA 92697, United States
| | - Brian J Cummings
- Sue & Bill Gross Stem Cell Research Center, University of California - Irvine, Irvine, CA 92697, United States; Institute for Memory Impairments & Neurological Disorders, University of California - Irvine, Irvine, CA 92697, United States; Physical Medicine & Rehabilitation, University of California - Irvine, Irvine, CA 92697, United States; Anatomy & Neurobiology, University of California - Irvine, Irvine, CA 92697, United States.
| |
Collapse
|
2
|
Jeon E, Seo MS, Lkhagva-Yondon E, Lim YR, Kim SW, Kang YJ, Lee JS, Lee BD, Wi R, Won SY, Chung YC, Park ES, Kim E, Jin BK, Jeon MS. Neuroprotective effect of L-DOPA-induced interleukin-13 on striatonigral degeneration in cerebral ischemia. Cell Death Dis 2024; 15:854. [PMID: 39578419 PMCID: PMC11584695 DOI: 10.1038/s41419-024-07252-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Levodopa (L-DOPA) treatment is a clinically effective strategy for improving motor function in patients with ischemic stroke. However, the mechanisms by which modulating the dopamine system relieves the pathology of the ischemic brain remain unclear. Emerging evidence from an experimental mouse model of ischemic stroke, established by middle cerebral artery occlusion (MCAO), suggested that L-DOPA has the potential to modulate the inflammatory and immune response that occurs during a stroke. Here, we aimed to demonstrate the therapeutic effect of L-DOPA in regulating the systemic immune response and improving functional deficits in mice with ischemia. Transient MCAO led to progressive degeneration of nigrostriatal dopamine neurons and significant rotational behavior in mice. Exogenous L-DOPA treatment attenuated the striatonigral degeneration and reversed motor behavioral impairment. Notably, treatment with L-DOPA significantly increased IL-13 but reduced IFN-γ in infarct lesions. To investigate the role of IL-13 in motor behavior, we stereotaxically injected anti-IL-13 antibodies into the infarct area of the mouse brain one week after MCAO, followed by L-DOPA treatment. The intervention reduced dopamine, IL-13, and IL-10 levels and exacerbated motor function. IL-13 is potentially expressed on CD4 T cells, while IL-10 is mainly expressed on microglia rather than astrocytes. Finally, IL-13 activates the phagocytosis of microglia, which may contribute to neuroprotection by eliminating degenerating neurons. Our study provides evidence that the L-DOPA-activated dopamine system modulates peripheral immune cells, resulting in the expression of anti-inflammatory and neuroprotective cytokines in mice with ischemic stroke.
Collapse
Affiliation(s)
- Eunhae Jeon
- Translational Research Center, Inha University Hospital, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Myeong-Seong Seo
- Translational Research Center, Inha University Hospital, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Enkhmaa Lkhagva-Yondon
- Translational Research Center, Inha University Hospital, Incheon, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Yu-Ree Lim
- Translational Research Center, Inha University Hospital, Incheon, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Seung-Woo Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Yu Jeong Kang
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jun Seok Lee
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Byoung Dae Lee
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Rayul Wi
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - So-Yoon Won
- Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Young Cheul Chung
- Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Predictive Toxicology, Korea Institute of Toxicology 1, Human and Environmental Toxicology, University of Science and Technology, Daejeon, Republic of Korea
| | - Eun S Park
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Eunhee Kim
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Byung Kwan Jin
- Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea.
| | - Myung-Shin Jeon
- Translational Research Center, Inha University Hospital, Incheon, Republic of Korea.
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea.
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea.
| |
Collapse
|
3
|
Tran-Chi VL, Maes M, Nantachai G, Hemrungrojn S, Solmi M, Stoyanov D, Stoyanova K, Tunvirachaisakul C. Cytokine dysregulation in amnestic mild cognitive impairment. Sci Rep 2024; 14:22486. [PMID: 39341896 PMCID: PMC11439069 DOI: 10.1038/s41598-024-73099-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
The pathophysiology of amnestic Mild Cognitive Impairment (aMCI) is largely unknown, although some papers found signs of immune activation. To assess the cytokine network in aMCI after excluding patients with major depression (MDD) and to examine the immune profiles of quantitative aMCI (qMCI) and distress symptoms of old age (DSOA) scores. A case-control study was conducted on 61 Thai aMCI participants and 60 healthy old adults (both without MDD). The Bio-Plex Pro human cytokine 27-plex test kit was used to assay cytokines/chemokines/growth factors in fasting plasma samples. aMCI is characterized by a significant immunosuppression, and reductions in T helper 1 (Th)1 and T cell growth profiles, the immune-inflammatory responses system, interleukin (IL)1β, IL6, IL7, IL12p70, IL13, GM-CSF, and MCP-1. These 7 cytokines/chemokines exhibit neuroprotective effects at physiologic concentrations. In multivariate analyses, three neurotoxic chemokines, CCL11, CCL5, and CXCL8, emerged as significant predictors of aMCI. Logistic regression showed that aMCI was best predicted by combining IL7, IL1β, MCP-1, years of education (all inversely associated) and CCL5 (positively associated). We found that 38.2% of the variance in the qMCI score was explained by IL7, IL1β, MCP-1, IL13, years of education (inversely associated) and CCL5 (positively associated). The DSOA was not associated with any immune data. An imbalance between lowered levels of neuroprotective cytokines and chemokines, and relative increases in neurotoxic chemokines are key factors in aMCI. Future MCI research should always control for the confounding effects of affective symptoms.
Collapse
Affiliation(s)
- Vinh-Long Tran-Chi
- Ph.D. Programme in Clinical Sciences, School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China.
- Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria.
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
- Kyung Hee University, Dongdaemun-gu, Seoul, South Korea.
- Center of Excellence in Cognitive Impairment and Dementia, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
- Cognitive Fitness and Biopsychiatry Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Strategic Research and Innovation Program for the Development of MU-PLOVDIV-(SRIPD-MUP), European Union-NextGenerationEU, Plovdiv, Bulgaria.
| | - Gallayaporn Nantachai
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Medical Services, Somdet Phra Sungharaj Nyanasumvara Geriatric Hospital, Ministry of Public Health, Chon Buri, Chon Buri Province, Thailand
| | - Solaphat Hemrungrojn
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Cognitive Fitness and Biopsychiatry Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Marco Solmi
- Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada
- Regional Centre for the Treatment of Eating Disorders and On Track, The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute (OHRI), Clinical Epidemiology Program, University of Ottawa, Ottawa, Ontario, Canada
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - Drozdstoy Stoyanov
- Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- Strategic Research and Innovation Program for the Development of MU-PLOVDIV-(SRIPD-MUP), European Union-NextGenerationEU, Plovdiv, Bulgaria
| | - Kristina Stoyanova
- Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- Strategic Research and Innovation Program for the Development of MU-PLOVDIV-(SRIPD-MUP), European Union-NextGenerationEU, Plovdiv, Bulgaria
| | - Chavit Tunvirachaisakul
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Center of Excellence in Cognitive Impairment and Dementia, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
4
|
Zeng F, Chen A, Chen W, Cheng S, Lin S, Mei R, Mei X. Knockout of TNF-α in microglia decreases ferroptosis and convert microglia phenotype after spinal cord injury. Heliyon 2024; 10:e36488. [PMID: 39281475 PMCID: PMC11395737 DOI: 10.1016/j.heliyon.2024.e36488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
Spinal cord injury (SCI) is a serious and difficult to treat traumatic disease of the central nervous system. Spinal cord injury causes a variety of detrimental effects, including neuroinflammation and ferroptosis, leading to chronic functional impairment and death. Recent studies have shown that microglia/macrophages (M/Ms) at the injury site remain primarily in the pro-inflammatory state, which is detrimental to recovery. However, information on the factors behind pro-inflammatory polarization skew in the injured spinal cord remains unclear. In this study, we found that Tumor Necrosis Factor-α(TNF-α) ablation protected after SCI by suppressing neuroinflammation and ferroptosis. Though using TNF-α knock out mice (TNF-/-), we induced downregulation of TNF-α in M/Ms and further investigated its effect on SCI outcome. In TNF-/- mice, significant behavioral improvements were observed as early as 7 days after injury. We showed that TNF-α inhibition promote injury-mediated M/Ms polarization from pro-inflammatory to anti-inflammatory phenotype in vivo. Furthermore, accumulated iron in M/Ms after SCI increased the expression of TNF-α and the population of M/Ms to pro-inflammatory phenotype. Moreover, zinc supplement reduced the secondary damage caused by iron overload. In conclusion, we found that knock out of TNF-α promotes recovery of motor function after spinal cord injury in mice by inhibiting ferroptosis and promoting the shift of macrophages to an anti-inflammatory phenotype, indicating that there is great potential for this therapy to SCI.
Collapse
Affiliation(s)
- Fanzhuo Zeng
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
- Department of Orthopedics, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121002, Liaoning, China
- Department of Neurobiology, School of Basic Medical Sciences, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Anqi Chen
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
- Medical College of Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Wei Chen
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
| | - Shuai Cheng
- Department of Orthopedics, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121002, Liaoning, China
| | - Sen Lin
- Department of Orthopedics, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121002, Liaoning, China
| | - Rongcheng Mei
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, Hubei, China
- Medical College of Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Xifan Mei
- Department of Orthopedics, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121002, Liaoning, China
| |
Collapse
|
5
|
Nessel I, Whiley L, Dyall SC, Michael-Titus AT. A plasma lipid signature in acute human traumatic brain injury: Link with neuronal injury and inflammation markers. J Cereb Blood Flow Metab 2024:271678X241276951. [PMID: 39188133 PMCID: PMC11572080 DOI: 10.1177/0271678x241276951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/12/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024]
Abstract
Traumatic brain injury (TBI) leads to major membrane lipid breakdown. We investigated plasma lipids over 3 days post-TBI, to identify a signature of acute human TBI and assess its correlation with neuronal injury and inflammation. Plasma from patients with TBI (Abbreviated Injury Scale (AIS)3 - serious injury, n = 5; AIS4 - severe injury, n = 8), and controls (n = 13) was analysed for lipidomic profile, neurofilament light (NFL) and cytokines, and the omega-3 index was measured in red blood cells. A lipid signature separated TBI from controls, at 24 and 72 h. Major species driving the separation were: lysophosphatidylcholine (LPC), phosphatidylcholine (PC) and hexosylceramide (HexCer). Docosahexaenoic acid (DHA, 22:6) and LPC (0:0/22:6) decreased post-injury. NFL levels were increased at 24 and 72 h post-injury in AIS4 TBI vs. controls. Interleukin (IL-)6, IL-2 and IL-13 were elevated at 24 h in AIS4 patients vs. controls. NFL and IL-6 were negatively correlated with several lipids. The omega-3 index at admission was low in all patients (controls: 4.3 ± 1.1% and TBI: 4.0 ± 1.1%) and did not change significantly over 3 days post-injury. We have identified specific lipid changes, correlated with markers of injury and inflammation in acute TBI. These observations could inform future lipid-based therapeutic approaches.
Collapse
Affiliation(s)
- Isabell Nessel
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Luke Whiley
- Health Futures Institute, Murdoch University, Murdoch, Australia
| | - Simon C Dyall
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - Adina T Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
6
|
Kong X, Xu L, Mou Z, Lyu W, Shan K, Wang L, Liu F, Rong F, Li J, Wei P. The anti-inflammatory effects of itaconate and its derivatives in neurological disorders. Cytokine Growth Factor Rev 2024; 78:37-49. [PMID: 38981775 DOI: 10.1016/j.cytogfr.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Almost 16 % of the global population is affected by neurological disorders, including neurodegenerative and cerebral neuroimmune diseases, triggered by acute or chronic inflammation. Neuroinflammation is recognized as a common pathogenic mechanism in a wide array of neurological conditions including Alzheimer's disease, Parkinson's disease, postoperative cognitive dysfunction, stroke, traumatic brain injury, and multiple sclerosis. Inflammatory process in the central nervous system (CNS) can lead to neuronal damage and neuronal apoptosis, consequently exacerbating these diseases. Itaconate, an immunomodulatory metabolite from the tricarboxylic acid cycle, suppresses neuroinflammation and modulates the CNS immune response. Emerging human studies suggest that itaconate levels in plasma and cerebrospinal fluid may serve as biomarkers associated with inflammatory responses in neurological disorders. Preclinical studies have shown that itaconate and its highly cell-permeable derivatives are promising candidates for preventing and treating neuroinflammation-related neurological disorders. The underlying mechanism may involve the regulation of immune cells in the CNS and neuroinflammation-related signaling pathways and molecules including Nrf2/KEAP1 signaling pathway, reactive oxygen species, and NLRP3 inflammasome. Here, we introduce the metabolism and function of itaconate and the synthesis and development of its derivatives. We summarize the potential impact and therapeutic potential of itaconate and its derivatives on brain immune cells and the associated signaling pathways and molecules, based on preclinical evidence via various neurological disorder models. We also discuss the challenges and potential solutions for clinical translation to promote further research on itaconate and its derivatives for neuroinflammation-related neurological disorders.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Lin Xu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Zheng Mou
- Department of Pharmacy, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Wenyuan Lyu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Kaiyue Shan
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Longfei Wang
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Fanghao Liu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Fei Rong
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Jianjun Li
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Penghui Wei
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China.
| |
Collapse
|
7
|
Gęgotek A, Moniuszko-Malinowska A, Groth M, Skrzydlewska E. Changes in cerebrospinal fluid proteome of patients with tick-borne encephalitis. J Med Virol 2024; 96:e29763. [PMID: 38949193 DOI: 10.1002/jmv.29763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/11/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
Tick-borne encephalitis (TBE) is one of the main diseases transmitted by ticks, the incidence of which is increasing. Moreover, its diagnosis and therapy are often long and difficult according to nonspecific symptoms and complex etiology. This study aimed to observe changes in the proteome of cerebrospinal fluid from TBE patients. Cerebrospinal fluid (CSF) of TBE patients (n = 20) and healthy individuals (n = 10) was analyzed using a proteomic approach (QExactiveHF-Orbitrap mass spectrometer) and zymography. Obtained results show that in CSF of TBE patients, the top-upregulated proteins are involved in pro-inflammatory reaction (interleukins), as well as antioxidant/protective response (peroxiredoxins, heat shock proteins). Moreover, changes in the proteome of CSF are not only the result of this disease development, but they can also be an indicator of its course. This mainly applies to proteins involved in proteolysis including serpins and metalloproteinases, whose activity is proportional to the length of patients' convalescence. The obtained proteomic data strongly direct attention to the changes caused by the development of TBE to antioxidant, pro-inflammatory, and proteolytic proteins, knowledge about which can significantly contribute to faster and more accurate diagnosis of various clinical forms of TBE.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Monika Groth
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
8
|
Zhou C, Li S, Qiu N, Sun P, Hamblin MH, Dixon CE, Chen J, Yin KJ. Loss of microRNA-15a/16-1 function promotes neuropathological and functional recovery in experimental traumatic brain injury. JCI Insight 2024; 9:e178650. [PMID: 38912585 PMCID: PMC11383186 DOI: 10.1172/jci.insight.178650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/15/2024] [Indexed: 06/25/2024] Open
Abstract
The diffuse axonal damage in white matter and neuronal loss, along with excessive neuroinflammation, hinder long-term functional recovery after traumatic brain injury (TBI). MicroRNAs (miRs) are small noncoding RNAs that negatively regulate protein-coding target genes in a posttranscriptional manner. Recent studies have shown that loss of function of the miR-15a/16-1 cluster reduced neurovascular damage and improved functional recovery in ischemic stroke and vascular dementia. However, the role of the miR-15a/16-1 cluster in neurotrauma is poorly explored. Here, we report that genetic deletion of the miR-15a/16-1 cluster facilitated the recovery of sensorimotor and cognitive functions, alleviated white matter/gray matter lesions, reduced cerebral glial cell activation, and inhibited infiltration of peripheral blood immune cells to brain parenchyma in a murine model of TBI when compared with WT controls. Moreover, intranasal delivery of the miR-15a/16-1 antagomir provided similar brain-protective effects conferred by genetic deletion of the miR-15a/16-1 cluster after experimental TBI, as evidenced by showing improved sensorimotor and cognitive outcomes, better white/gray matter integrity, and less inflammatory responses than the control antagomir-treated mice after brain trauma. miR-15a/16-1 genetic deficiency and miR-15a/16-1 antagomir also significantly suppressed inflammatory mediators in posttrauma brains. These results suggest miR-15a/16-1 as a potential therapeutic target for TBI.
Collapse
Affiliation(s)
- Chao Zhou
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Shun Li
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Na Qiu
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Ping Sun
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Milton H Hamblin
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA
| | - C Edward Dixon
- Geriatric Research Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jun Chen
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Ke-Jie Yin
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Hedley KE, Gomez HM, Kecelioglu E, Carroll OR, Jobling P, Horvat JC, Tadros MA. Neonatal Chlamydia muridarum respiratory infection causes neuroinflammation within the brainstem during the early postnatal period. J Neuroinflammation 2024; 21:158. [PMID: 38879567 PMCID: PMC11179230 DOI: 10.1186/s12974-024-03150-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024] Open
Abstract
Respiratory infections are one of the most common causes of illness and morbidity in neonates worldwide. In the acute phase infections are known to cause wide-spread peripheral inflammation. However, the inflammatory consequences to the critical neural control centres for respiration have not been explored. Utilising a well characterised model of neonatal respiratory infection, we investigated acute responses within the medulla oblongata which contains key respiratory regions. Neonatal mice were intranasally inoculated within 24 h of birth, with either Chlamydia muridarum or sham-infected, and tissue collected on postnatal day 15, the peak of peripheral inflammation. A key finding of this study is that, while the periphery appeared to show no sex-specific effects of a neonatal respiratory infection, sex had a significant impact on the inflammatory response of the medulla oblongata. There was a distinct sex-specific response in the medulla coincident with peak of peripheral inflammation, with females demonstrating an upregulation of anti-inflammatory cytokines and males showing very few changes. Microglia also demonstrated sex-specificity with the morphology of females and males differing based upon the nuclei. Astrocytes showed limited changes during the acute response to neonatal infection. These data highlight the strong sex-specific impact of a respiratory infection can have on the medulla in the acute inflammatory phase.
Collapse
Affiliation(s)
- Kateleen E Hedley
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Henry M Gomez
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Eda Kecelioglu
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Olivia R Carroll
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Phillip Jobling
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jay C Horvat
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Melissa A Tadros
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia.
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| |
Collapse
|
10
|
Lu C, Hyde DR. Cytokines IL-1β and IL-10 are required for Müller glia proliferation following light damage in the adult zebrafish retina. Front Cell Dev Biol 2024; 12:1406330. [PMID: 38938553 PMCID: PMC11208712 DOI: 10.3389/fcell.2024.1406330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/16/2024] [Indexed: 06/29/2024] Open
Abstract
Zebrafish possess the ability to regenerate dying neurons in response to retinal injury, with both Müller glia and microglia playing integral roles in this response. Resident Müller glia respond to damage by reprogramming and undergoing an asymmetric cell division to generate a neuronal progenitor cell, which continues to proliferate and differentiate into the lost neurons. In contrast, microglia become reactive, phagocytose dying cells, and release inflammatory signals into the surrounding tissue following damage. In recent years, there has been increased attention on elucidating the role that microglia play in regulating retinal regeneration. Here we demonstrate that inflammatory cytokines are differentially expressed during retinal regeneration, with the expression of a subset of pro-inflammatory cytokine genes upregulated shortly after light damage and the expression of a different subset of cytokine genes subsequently increasing. We demonstrate that both cytokine IL-1β and IL-10 are essential for Müller glia proliferation in the light-damaged retina. While IL-1β is sufficient to induce Müller glia proliferation in an undamaged retina, expression of IL-10 in undamaged retinas only induces Müller glia to express gliotic markers. Together, these findings demonstrate the essential role of inflammatory cytokines IL-1β and IL-10 on Müller glia proliferation following light damage in adult zebrafish.
Collapse
Affiliation(s)
| | - David R. Hyde
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, and Center for Zebrafish Research, Galvin Life Sciences Building, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
11
|
Hong J, Li Y, Chen L, Han D, Li Y, Mi X, Liu K, Wang Q, Song Y, Liu T, Yang N, Liu Y, Li Z, Guo X. A53T α-synuclein mutation increases susceptibility to postoperative delayed neurocognitive recovery via hippocampal Ang-(1-7)/MasR axis. Biochem Pharmacol 2024; 224:116261. [PMID: 38705534 DOI: 10.1016/j.bcp.2024.116261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Delayed neurocognitive recovery (dNCR) is a common complication in geriatric surgical patients. The impact of anesthesia and surgery on patients with neurodegenerative diseases, such as Parkinson's disease (PD) or prion disease, has not yet been reported. In this study, we aimed to determine the association between a pre-existing A53T genetic background, which involves a PD-related point mutation, and the development of postoperative dNCR. We observed that partial hepatectomy induced hippocampus-dependent cognitive deficits in 5-month-old A53T transgenic mice, a model of early-stage PD without cognitive deficits, unlike in age-matched wild-type (WT) mice. We respectively examined molecular changes at 6 h, 1 day, and 2 days after partial hepatectomy and observed that cognitive changes were accompanied by weakened angiotensin-(1-7)/Mas receptor [Ang-(1-7)/MasR] axis, increased alpha-synuclein (α-syn) expression and phosphorylation, decreased methylated protein phosphatase-2A (Me-PP2A), and prompted microglia M1 polarization and neuronal apoptosis in the hippocampus at 1 day after surgery. Nevertheless, no changes in blood-brain barrier (BBB) integrity or plasma α-syn levels in either A53T or WT mice. Furthermore, intranasal administration of selective MasR agonist AVE 0991, reversed the mentioned cognitive deficits in A53T mice, enhanced MasR expression, reduced α-syn accumulation and phosphorylation, and attenuated microglia activation and apoptotic response. Our findings suggest that individuals with the A53T genetic background may be more susceptible to developing postoperative dNCR. This susceptibility could be linked to central α-syn accumulation mediated by the weakened Ang-(1-7)/MasR/methyl-PP2A signaling pathway in the hippocampus following surgery, independent of plasma α-syn level and BBB.
Collapse
Affiliation(s)
- Jingshu Hong
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Yue Li
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Lei Chen
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Dengyang Han
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Yitong Li
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Xinning Mi
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Kaixi Liu
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Qian Wang
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Yanan Song
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China; Beijing Center of Quality Control and Improvement on Clinical Anesthesia, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Taotao Liu
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Ning Yang
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Yajie Liu
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China; Beijing Center of Quality Control and Improvement on Clinical Anesthesia, No. 49, North Garden Street, Haidian District, Beijing 100191, China; Anesthesia and Perioperative Medicine Branch of China International Exchange and Promotive Association for Medical and Health Care (CPAM), No. 49, North Garden Street, Haidian District, Beijing 100191, China.
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China; Beijing Center of Quality Control and Improvement on Clinical Anesthesia, No. 49, North Garden Street, Haidian District, Beijing 100191, China; Anesthesia and Perioperative Medicine Branch of China International Exchange and Promotive Association for Medical and Health Care (CPAM), No. 49, North Garden Street, Haidian District, Beijing 100191, China.
| |
Collapse
|
12
|
Gurung P, Lim J, Thapa Magar TB, Shrestha R, Kim YW. Euonymus alatus Leaf Extract Attenuates Effects of Aging on Oxidative Stress, Neuroinflammation, and Cognitive Impairment. Antioxidants (Basel) 2024; 13:433. [PMID: 38671881 PMCID: PMC11047375 DOI: 10.3390/antiox13040433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Our study aimed to explore the impact and mechanism of Euonymus alatus leaf extract on age-dependent oxidative stress, neuroinflammation, and progressive memory impairments in aged mice. Twenty-four-month-old mice received EA-L3 (300 mg/kg/day) or the reference drug, donepezil (DPZ, 5 mg/kg/day), for 6 weeks, and learning and memory functions were detected using the Passive Avoidance Test (PAT). As expected, cognitive function deficits were detected in aged mice compared with young mice, and these deficits were significantly mitigated by dietary treatments with EA-L3. In parallel, it upregulated the brain-derived neurotrophic factor (BDNF) and subsequently activated the extracellular-signal-regulated kinase (ERK)/cAMP response element-binding (CREB) signaling in the mouse hippocampus and scopolamine-induced B35 and SH-SY5Y neuroblastoma cells. EA-L3 showed strong anti-inflammatory effects with decreased NF-κBp65, cyclooxygenase 2 (COX-2), and tumor necrosis factor alpha (TNF-α), increased interleukin (IL)-10, and doublecortin (DCX) protein expression in the hippocampus of aged mice. Similar results were also confirmed in LPS-induced BV-2 microglia and neuroblastoma cells upon treatment with EA-L3 extract. In addition, EA-L3 notably dose-dependently decreased ROS in BV2 cells after exposure to LPS. Taken together, EA-L3 might be used as a dietary supplement to alleviate oxidative stress, the deterioration of hippocampal-based memory tasks, and neuroinflammation in elderly people.
Collapse
Affiliation(s)
| | | | | | | | - Yong-Wan Kim
- Dongsung Cancer Center, Dongsung Pharmaceuticals Corporation, Daegu 41061, Republic of Korea; (P.G.); (J.L.); (T.B.T.M.); (R.S.)
| |
Collapse
|
13
|
Hwang SM, Rahman MM, Go EJ, Kim YH, Park CK. Specific transcription factors Ascl1 and Lhx6 attenuate diabetic neuropathic pain by modulating spinal neuroinflammation and microglial activation in mice. Biomed Pharmacother 2024; 173:116392. [PMID: 38479183 DOI: 10.1016/j.biopha.2024.116392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
Gamma-aminobutyric acid (GABA) neuronal system-related transcription factors (TFs) play a critical role in GABA production, and GABA modulates diabetic neuropathic pain (DNP). The present study investigated the therapeutic effects of intrathecal delivery of two TFs achaete-scute homolog 1 (Ascl1) and LIM homeobox protein 6 (Lhx6) in a mouse model of DNP and elucidated their underlying mechanisms. GABA-related specific TFs, including Ascl1, Lhx6, distal-less homeobox 1, distal-less homeobox 5, the Nkx2.1 homeobox gene, and the Nkx2.2 homeobox gene, were investigated under normal and diabetic conditions. Among these, the expression of Ascl1 and Lhx6 was significantly downregulated in mice with diabetes. Therefore, a single intrathecal injection of combined lenti-Ascl1/Lhx6 was performed. Intrathecal delivery of lenti-Ascl1/Lhx6 significantly relieved mechanical allodynia and heat hyperalgesia in mice with DNP. Ascl1/Lhx6 delivery also reduced microglial activation, decreased the levels of pro-inflammatory cytokines including tumor necrosis factor-α and interleukin (IL)-1β, increased the levels of anti-inflammatory cytokines including IL-4, IL-10, and IL-13, and reduced the activation of p38, c-Jun N-terminal kinase, and NF-κB in the spinal cord of mice with DNP, thereby reducing DNP. The results of this study suggest that intrathecal Ascl1/Lhx6 delivery attenuates DNP via upregulating spinal GABA neuronal function and inducing anti-inflammatory effects.
Collapse
Affiliation(s)
- Sung-Min Hwang
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - Md Mahbubur Rahman
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - Eun Jin Go
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea.
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea.
| |
Collapse
|
14
|
Liu M, Wang D, Xu L, Pan Y, Huang H, Li M, Liu Q. Group 2 innate lymphoid cells suppress neuroinflammation and brain injury following intracerebral hemorrhage. J Cereb Blood Flow Metab 2024; 44:355-366. [PMID: 37933727 PMCID: PMC10870958 DOI: 10.1177/0271678x231208168] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 11/08/2023]
Abstract
Intracerebral hemorrhage (ICH) mobilizes circulating leukocytes that contribute to neuroinflammation and neural injury. However, little is known about the endogenous regulatory immune mechanisms to restrict neuroinflammation following ICH. We examined the role of group 2 innate lymphoid cells (ILC2) that are a specialized subset of innate immune modulators in a mouse model of ICH. We found accumulation of ILC2 in the brain following acute ICH and a concomitant increase of ILC2 within the peripheral lymph nodes. Depletion of ILC2 exacerbated neurodeficits and brain edema after ICH in male and female mice. This aggravated ICH injury was accompanied by augmented microglia activity and leukocyte infiltration. In contrast, expansion of ILC2 using IL-33 led to reduced ICH injury, microglia activity and leukocyte infiltration. Notably, elimination of microglia using a colony stimulating factor 1 receptor inhibitor diminished the exacerbation of ICH injury induced by depletion of ILC2. Brain-infiltrating ILC2 had upregulation of IL-13 after ICH. Results from in vitro assays revealed that ILC2 suppressed thrombin-induced inflammatory activity in microglia-like BV2 cells. Thus, our findings demonstrate that ILC2 suppress neuroinflammation and acute ICH injury.
Collapse
Affiliation(s)
- Mingming Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
| | - Danni Wang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurology, The Second Hospital of Shandong University, Jinan, China
| | - Lin Xu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Pan
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
| | - Huachen Huang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
| | - Minshu Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurology, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
15
|
Yang J, Du C, Li Y, Liu R, Jing C, Xie J, Wang J. Contrasting Iron Metabolism in Undifferentiated Versus Differentiated MO3.13 Oligodendrocytes via IL-1β-Induced Iron Regulatory Protein 1. Neurochem Res 2024; 49:466-476. [PMID: 37917337 DOI: 10.1007/s11064-023-04047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/28/2023] [Accepted: 10/14/2023] [Indexed: 11/04/2023]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder characterized by the loss of dopaminergic neurons and the accumulation of iron in the substantia nigra. While iron accumulation and inflammation are implicated in PD pathogenesis, their impact on oligodendrocytes, the brain's myelin-forming cells, remains elusive. This study investigated the influence of interleukin-1β (IL-1β), an elevated proinflammatory cytokine in PD, on iron-related proteins in MO3.13 oligodendrocytes. We found that IL-1β treatment in undifferentiated MO3.13 oligodendrocytes increased iron regulatory protein 1 and transferrin receptor 1 (TfR1) expression while decreasing ferroportin 1 (FPN1) expression. Consequently, iron uptake was enhanced, and iron release was reduced, leading to intracellular iron accumulation. Conversely, IL-1β treatment in differentiated MO3.13 oligodendrocytes exhibited the opposite effect, with decreased TfR1 expression, increased FPN1 expression, and reduced iron uptake. These findings suggest that IL-1β-induced dysregulation of iron metabolism in oligodendrocytes may contribute to the pathological processes observed in PD. IL-1β can increase the iron content in undifferentiated oligodendrocytes, thus facilitating the differentiation of undifferentiated MO3.13 oligodendrocytes. In differentiated oligodendrocytes, IL-1β may facilitate iron release, providing a potential source of iron for neighboring dopaminergic neurons, thereby initiating a cascade of deleterious events. This study provides valuable insights into the intricate interplay between inflammation, abnormal iron accumulation, and oligodendrocyte dysfunction in PD. Targeting the IL-1β-mediated alterations in iron metabolism may hold therapeutic potential for mitigating neurodegeneration and preserving dopaminergic function in PD.
Collapse
Affiliation(s)
- Jiahua Yang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Chenchen Du
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Institute of Senior Care and Art, Guangdong Vocational College of Hotel Management, Dongguan, China
| | - Yinghui Li
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Rong Liu
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Cuiting Jing
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Jun Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
16
|
Tamayo JM, Osman HC, Schwartzer JJ, Pinkerton KE, Ashwood P. Characterizing the neuroimmune environment of offspring in a novel model of maternal allergic asthma and particulate matter exposure. J Neuroinflammation 2023; 20:252. [PMID: 37919762 PMCID: PMC10621097 DOI: 10.1186/s12974-023-02930-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023] Open
Abstract
Inflammation during pregnancy is associated with an increased risk for neurodevelopmental disorders (NDD). Increased gestational inflammation can be a result of an immune condition/disease, exposure to infection, and/or environmental factors. Epidemiology studies suggest that cases of NDD are on the rise. Similarly, rates of asthma are increasing, and the presence of maternal asthma during pregnancy increases the likelihood of a child being later diagnosed with NDD such as autism spectrum disorders (ASD). Particulate matter (PM), via air pollution, is an environmental factor known to worsen the symptoms of asthma, but also, PM has been associated with increased risk of neuropsychiatric disorders. Despite the links between asthma and PM with neuropsychiatric disorders, there is a lack of laboratory models investigating combined prenatal exposure to asthma and PM on offspring neurodevelopment. Thus, we developed a novel mouse model that combines exposure to maternal allergic asthma (MAA) and ultrafine iron-soot (UIS), a common component of PM. In the current study, female BALB/c mice were sensitized for allergic asthma with ovalbumin (OVA) prior to pregnancy. Following mating and beginning on gestational day 2 (GD2), dams were exposed to either aerosolized OVA to induce allergic asthma or phosphate buffered saline (PBS) for 1 h. Following the 1-h exposure, pregnant females were then exposed to UIS with a size distribution of 55 to 169 nm at an average concentration of 176 ± 45 μg/m3) (SD), or clean air for 4 h, over 8 exposure sessions. Offspring brains were collected at postnatal days (P)15 and (P)35. Cortices and hippocampal regions were then isolated and assessed for changes in cytokines using a Luminex bead-based multiplex assay. Analyses identified changes in many cytokines across treatment groups at both timepoints in the cortex, including interleukin-1 beta (IL-1β), and IL-17, which remained elevated from P15 to P35 in all treatment conditions compared to controls. There was a suppressive effect of the combined MAA plus UIS on the anti-inflammatory cytokine IL-10. Potentially shifting the cytokine balance towards more neuroinflammation. In the hippocampus at P15, elevations in cytokines were also identified across the treatment groups, namely IL-7. The combination of MAA and UIS exposure (MAA-UIS) during pregnancy resulted in an increase in microglia density in the hippocampus of offspring, as identified by IBA-1 staining. Together, these data indicate that exposure to MAA, UIS, and MAA-UIS result in changes in the neuroimmune environment of offspring that persist into adulthood.
Collapse
Affiliation(s)
- Juan M Tamayo
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, 2805, 50th Street Sacramento, Davis, CA, 95817, USA
| | - Hadley C Osman
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, 2805, 50th Street Sacramento, Davis, CA, 95817, USA
| | - Jared J Schwartzer
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA, 01075, USA
| | - Kent E Pinkerton
- Center for Health and the Environment, University of California at Davis, Davis, CA, 95616, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, 2805, 50th Street Sacramento, Davis, CA, 95817, USA.
| |
Collapse
|
17
|
Mamuladze T, Kipnis J. Type 2 immunity in the brain and brain borders. Cell Mol Immunol 2023; 20:1290-1299. [PMID: 37429945 PMCID: PMC10616183 DOI: 10.1038/s41423-023-01043-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/16/2023] [Indexed: 07/12/2023] Open
Abstract
Recent research in neuroimmunology has revolutionized our understanding of the intricate interactions between the immune system and the central nervous system (CNS). The CNS, an "immune-privileged organ", is now known to be intimately connected to the immune system through different cell types and cytokines. While type 2 immune responses have traditionally been associated with allergy and parasitic infections, emerging evidence suggests that these responses also play a crucial role in CNS homeostasis and disease pathogenesis. Type 2 immunity encompasses a delicate interplay among stroma, Th2 cells, innate lymphoid type 2 cells (ILC2s), mast cells, basophils, and the cytokines interleukin (IL)-4, IL-5, IL-13, IL-25, TSLP and IL-33. In this review, we discuss the beneficial and detrimental roles of type 2 immune cells and cytokines in CNS injury and homeostasis, cognition, and diseases such as tumors, Alzheimer's disease and multiple sclerosis.
Collapse
Affiliation(s)
- Tornike Mamuladze
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Immunology Graduate Program, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Immunology Graduate Program, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
18
|
González Ibáñez F, Halvorson T, Sharma K, McKee CG, Carrier M, Picard K, Vernoux N, Bisht K, Deslauriers J, Lalowski M, Tremblay MÈ. Ketogenic diet changes microglial morphology and the hippocampal lipidomic profile differently in stress susceptible versus resistant male mice upon repeated social defeat. Brain Behav Immun 2023; 114:383-406. [PMID: 37689276 DOI: 10.1016/j.bbi.2023.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
Psychological stress confers an increased risk for several diseases including psychiatric conditions. The susceptibility to psychological stress is modulated by various factors, many of them being modifiable lifestyle choices. The ketogenic diet (KD) has emerged as a dietary regime that offers positive outcomes on mood and health status. Psychological stress and elevated inflammation are common features of neuropsychiatric disorders such as certain types of major depressive disorder. KD has been attributed anti-inflammatory properties that could underlie its beneficial consequences on the brain and behavior. Microglia are the main drivers of inflammation in the central nervous system. They are known to respond to both dietary changes and psychological stress, notably by modifying their production of cytokines and relationships among the brain parenchyma. To assess the interactions between KD and the stress response, including effects on microglia, we examined adult male mice on control diet (CD) versus KD that underwent 10 days of repeated social defeat (RSD) or remained non-stressed (controls; CTRLs). Through a social interaction test, stressed mice were classified as susceptible (SUS) or resistant (RES) to RSD. The mouse population fed a KD tended to have a higher proportion of individuals classified as RES following RSD. Microglial morphology and ultrastructure were then analyzed in the ventral hippocampus CA1, a brain region known to present structural alterations as a response to psychological stress. Distinct changes in microglial soma and arborization linked to the KD, SUS and RES phenotypes were revealed. Ultrastructural analysis by electron microscopy showed a clear reduction of cellular stress markers in microglia from KD fed animals. Furthermore, ultrastructural analysis showed that microglial contacts with synaptic elements were reduced in the SUS compared to the RES and CTRL groups. Hippocampal lipidomic analyses lastly identified a distinct lipid profile in SUS animals compared to CTRLs. These key differences, combined with the distinct microglial responses to diet and stress, indicate that unique metabolic changes may underlie the stress susceptibility phenotypes. Altogether, our results reveal novel mechanisms by which a KD might improve the resistance to psychological stress.
Collapse
Affiliation(s)
- Fernando González Ibáñez
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de Médecine Moléculaire, Université Laval, Québec, Quebec, Canada; Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Torin Halvorson
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kaushik Sharma
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de Médecine Moléculaire, Université Laval, Québec, Quebec, Canada; Department of Chemistry, Purdue University, West Lafayette, Indiana, United States
| | - Chloe Grace McKee
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Micaël Carrier
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de Médecine Moléculaire, Université Laval, Québec, Quebec, Canada; Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Katherine Picard
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de Médecine Moléculaire, Université Laval, Québec, Quebec, Canada; Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Nathalie Vernoux
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Kanchan Bisht
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de Médecine Moléculaire, Université Laval, Québec, Quebec, Canada; Department of Chemistry, Purdue University, West Lafayette, Indiana, United States
| | | | - Maciej Lalowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland; Biochemistry/Developmental Biology and HiLIFE, Meilahti Clinical Proteomics Core Facility, University of Helsinki, Finland
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de Médecine Moléculaire, Université Laval, Québec, Quebec, Canada; Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, Quebec, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada; Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, British Columbia, Canada.
| |
Collapse
|
19
|
Zhuang Y, Xu X, Li H, Niu F, Yang M, Ge Q, Lu S, Deng Y, Wu H, Zhang B, Liu B. Megf10-related engulfment of excitatory postsynapses by astrocytes following severe brain injury. CNS Neurosci Ther 2023; 29:2873-2883. [PMID: 37081759 PMCID: PMC10493650 DOI: 10.1111/cns.14223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 04/22/2023] Open
Abstract
AIMS To investigate astrocyte-related phagocytosis of synapses in the ipsilateral hippocampus after traumatic brain injury (TBI). METHODS We performed controlled cortical impact to simulate TBI in mice. Seven days postinjury, we performed cognitive tests, synapse quantification, and examination of astrocytic phagocytosis in association with Megf10 expression. RESULTS During the subacute stage post-TBI, we found a reduction in excitatory postsynaptic materials in the ipsilateral hippocampus, which was consistent with poor performance in the cognitive test. The transcriptome data suggested that robust phagocytosis was responsible for this process. Coincidently, we identified phagocytic astrocytes containing secondary lysosomes that were wrapped around the synapses in the ipsilateral hippocampus. Moreover, a significant increase in the co-location of GFAP and PSD-95 in the CA1 region suggested astrocytic engulfment of excitatory postsynaptic proteins. After examining the reported phagocytic pathways, we found that both the transcription level and protein expression of Megf10 were elevated. Co-immunofluorescence of GFAP and Megf10 demonstrated that the expression of Megf10 was spatially upregulated in astrocytes, exclusively in the CA1 region, and was related to the astrocytic engulfment of PSD-95. CONCLUSION Our study elaborated that the Megf10-related astrocytic engulfment of PSD-95 in the CA1 region of the ipsilateral hippocampus aggravated cognitive dysfunction following severe TBI.
Collapse
Affiliation(s)
- Yuan Zhuang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xiaojian Xu
- Beijing Key Laboratory of Central Nervous System InjuryBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| | - Hao Li
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Fei Niu
- Beijing Key Laboratory of Central Nervous System InjuryBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| | - Mengshi Yang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Qianqian Ge
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Shenghua Lu
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yu Deng
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Hongbin Wu
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Bin Zhang
- Department of Intensive Care Unit, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Baiyun Liu
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Central Nervous System InjuryBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
- Center for Nerve Injury and RepairBeijing Institute of Brain DisordersBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| |
Collapse
|
20
|
Giridharan VV, Catumbela CSG, Catalão CHR, Lee J, Ganesh BP, Petronilho F, Dal-Pizzol F, Morales R, Barichello T. Sepsis exacerbates Alzheimer's disease pathophysiology, modulates the gut microbiome, increases neuroinflammation and amyloid burden. Mol Psychiatry 2023; 28:4463-4473. [PMID: 37452088 PMCID: PMC10926876 DOI: 10.1038/s41380-023-02172-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 05/25/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
While our understanding of the molecular biology of Alzheimer's disease (AD) has grown, the etiology of the disease, especially the involvement of peripheral infection, remains a challenge. In this study, we hypothesize that peripheral infection represents a risk factor for AD pathology. To test our hypothesis, APP/PS1 mice underwent cecal ligation and puncture (CLP) surgery to develop a polymicrobial infection or non-CLP surgery. Mice were euthanized at 3, 30, and 120 days after surgery to evaluate the inflammatory mediators, glial cell markers, amyloid burden, gut microbiome, gut morphology, and short-chain fatty acids (SCFAs) levels. The novel object recognition (NOR) task was performed 30 and 120 days after the surgery, and sepsis accelerated the cognitive decline in APP/PS1 mice at both time points. At 120 days, the insoluble Aβ increased in the sepsis group, and sepsis modulated the cytokines/chemokines, decreasing the cytokines associated with brain homeostasis IL-10 and IL-13 and increasing the eotaxin known to influence cognitive function. At 120 days, we found an increased density of IBA-1-positive microglia in the vicinity of Aβ dense-core plaques, compared with the control group confirming the predictable clustering of reactive glia around dense-core plaques within 15 μm near Aβ deposits in the brain. In the gut, sepsis negatively modulated the α- and β-diversity indices evaluated by 16S rRNA sequencing, decreased the levels of SCFAs, and significantly affected ileum and colon morphology in CLP mice. Our data suggest that sepsis-induced peripheral infection accelerates cognitive decline and AD pathology in the AD mouse model.
Collapse
Affiliation(s)
- Vijayasree V Giridharan
- Faillace Department of Psychiatry and Behavioural Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Celso S G Catumbela
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Carlos Henrique R Catalão
- Faillace Department of Psychiatry and Behavioural Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo (USP), Ribeirao Preto, SP, Brazil
| | - Juneyoung Lee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Bhanu P Ganesh
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Fabricia Petronilho
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Rodrigo Morales
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Tatiana Barichello
- Faillace Department of Psychiatry and Behavioural Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
21
|
González Ibáñez F, Halvorson T, Sharma K, McKee C, Carrier M, Picard K, Vernoux N, Bisht K, Deslauriers J, Lalowski M, Tremblay MÈ. Ketogenic diet alters microglial morphology and changes the hippocampal lipidomic profile distinctively in stress susceptible versus resistant male mice upon repeated social defeat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555135. [PMID: 37693370 PMCID: PMC10491121 DOI: 10.1101/2023.08.28.555135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Psychological stress confers an increased risk for several diseases including psychiatric conditions. The susceptibility to psychological stress is modulated by various factors, many of them being modifiable lifestyle choices. The ketogenic diet (KD) has emerged as a dietary regime that offers positive outcomes on mood and health status. Psychological stress and elevated inflammation are common features of neuropsychiatric disorders such as certain types of major depressive disorder. KD has been attributed anti-inflammatory properties that could underlie its beneficial consequences on the brain and behavior. Microglia are the main drivers of inflammation in the central nervous system. They are known to respond to both dietary changes and psychological stress, notably by modifying their production of cytokines and relationships among the brain parenchyma. To assess the interactions between KD and the stress response, including effects on microglia, we examined adult male mice on control diet (CD) versus KD that underwent 10 days of repeated social defeat (RSD) or remained non-stressed (controls; CTRLs). Through a social interaction test, stressed mice were classified as susceptible (SUS) or resistant (RES) to RSD. The mouse population fed a KD tended to have a higher proportion of individuals classified as RES following RSD. Microglial morphology and ultrastructure were then analyzed in the ventral hippocampus CA1, a brain region known to present structural alterations as a response to psychological stress. Distinct changes in microglial soma and arborization linked to the KD, SUS and RES phenotypes were revealed. Ultrastructural analysis by electron microscopy showed a clear reduction of cellular stress markers in microglia from KD fed animals. Furthermore, ultrastructural analysis showed that microglial contacts with synaptic elements were reduced in the SUS compared to the RES and CTRL groups. Hippocampal lipidomic analyses lastly identified a distinct lipid profile in SUS animals compared to CTRLs. These key differences, combined with the distinct microglial responses to diet and stress, indicate that unique metabolic changes may underlie the stress susceptibility phenotypes. Altogether, our results reveal novel mechanisms by which a KD might improve the resistance to psychological stress.
Collapse
Affiliation(s)
- Fernando González Ibáñez
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Torin Halvorson
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kaushik Sharma
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada
- Department of Chemistry, Purdue University, West Lafayette, IN, United States of America
| | - Chloe McKee
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Micaël Carrier
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Katherine Picard
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Nathalie Vernoux
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Kanchan Bisht
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada
- Department of Chemistry, Purdue University, West Lafayette, IN, United States of America
| | | | - Maciej Lalowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- Biochemistry/Developmental Biology, Meilahti Clinical Proteomics Core Facility, University of Helsinki, Finland
| | - Marie-Ève Tremblay
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, BC, Canada
| |
Collapse
|
22
|
Poppell M, Hammel G, Ren Y. Immune Regulatory Functions of Macrophages and Microglia in Central Nervous System Diseases. Int J Mol Sci 2023; 24:5925. [PMID: 36982999 PMCID: PMC10059890 DOI: 10.3390/ijms24065925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Macrophages can be characterized as a very multifunctional cell type with a spectrum of phenotypes and functions being observed spatially and temporally in various disease states. Ample studies have now demonstrated a possible causal link between macrophage activation and the development of autoimmune disorders. How these cells may be contributing to the adaptive immune response and potentially perpetuating the progression of neurodegenerative diseases and neural injuries is not fully understood. Within this review, we hope to illustrate the role that macrophages and microglia play as initiators of adaptive immune response in various CNS diseases by offering evidence of: (1) the types of immune responses and the processes of antigen presentation in each disease, (2) receptors involved in macrophage/microglial phagocytosis of disease-related cell debris or molecules, and, finally, (3) the implications of macrophages/microglia on the pathogenesis of the diseases.
Collapse
Affiliation(s)
| | | | - Yi Ren
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| |
Collapse
|
23
|
Saraswathula A, Liu MM, Kulaga H, Lane AP. Chronic interleukin-13 expression in mouse olfactory mucosa results in regional aneuronal epithelium. Int Forum Allergy Rhinol 2023; 13:230-241. [PMID: 35950767 PMCID: PMC9918612 DOI: 10.1002/alr.23073] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/22/2022] [Accepted: 08/08/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Olfactory dysfunction is highly associated with chronic rhinosinusitis with nasal polyps (CRSwNP), and the severity of loss has been linked with biomarkers of type 2 inflammation. The ability of dupilumab to rapidly improve the sense of smell prior to improvement in polyp size suggests a direct role of IL-4/IL-13 receptor signaling in the olfactory epithelium (OE). METHODS We created a transgenic mouse model in which IL-13 is inducibly expressed specifically within the OE. Gene expression analysis and immunohistology were utilized to characterize the effect of IL-13 on the structure of the OE. RESULTS After induction of olfactory IL-13 expression, there is a time-dependent loss of neurons from OE regions, accompanied by a modest inflammatory infiltrate. Horizontal basal cells undergo morphologic changes consistent with activation and demonstrate proliferation. Mucus production and increased expression of eotaxins is observed, with marked expression of Ym2 by sustentacular cells. DISCUSSION Chronic IL-13 exposure has several effects on the OE that are likely to affect function. The neuronal loss is in keeping with other models of allergic type 2 nasal inflammation. Future studies are needed to correlate cellular and molecular alterations in olfactory cell populations with findings in human CRSwNP, as well as to assess olfactory function in behavioral model systems.
Collapse
Affiliation(s)
- Anirudh Saraswathula
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Melissa M Liu
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Heather Kulaga
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew P Lane
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
24
|
Maternal Immune Activation Induced by Prenatal Lipopolysaccharide Exposure Leads to Long-Lasting Autistic-like Social, Cognitive and Immune Alterations in Male Wistar Rats. Int J Mol Sci 2023; 24:ijms24043920. [PMID: 36835329 PMCID: PMC9968168 DOI: 10.3390/ijms24043920] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Several studies have supported the association between maternal immune activation (MIA) caused by exposure to pathogens or inflammation during critical periods of gestation and an increased susceptibility to the development of various psychiatric and neurological disorders, including autism and other neurodevelopmental disorders (NDDs), in the offspring. In the present work, we aimed to provide extensive characterization of the short- and long-term consequences of MIA in the offspring, both at the behavioral and immunological level. To this end, we exposed Wistar rat dams to Lipopolysaccharide and tested the infant, adolescent and adult offspring across several behavioral domains relevant to human psychopathological traits. Furthermore, we also measured plasmatic inflammatory markers both at adolescence and adulthood. Our results support the hypothesis of a deleterious impact of MIA on the neurobehavioral development of the offspring: we found deficits in the communicative, social and cognitive domains, together with stereotypic-like behaviors and an altered inflammatory profile at the systemic level. Although the precise mechanisms underlying the role of neuroinflammatory states in neurodevelopment need to be clarified, this study contributes to a better understanding of the impact of MIA on the risk of developing behavioral deficits and psychiatric illness in the offspring.
Collapse
|
25
|
Interleukin-13 and its receptor are synaptic proteins involved in plasticity and neuroprotection. Nat Commun 2023; 14:200. [PMID: 36639371 PMCID: PMC9839781 DOI: 10.1038/s41467-023-35806-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Immune system molecules are expressed by neurons, yet their functions are often unknown. We have identified IL-13 and its receptor IL-13Ra1 as neuronal, synaptic proteins in mouse, rat, and human brains, whose engagement upregulates the phosphorylation of NMDAR and AMPAR subunits and, in turn, increases synaptic activity and CREB-mediated transcription. We demonstrate that increased IL-13 is a hallmark of traumatic brain injury (TBI) in male mice as well as in two distinct cohorts of human patients. We also provide evidence that IL-13 upregulation protects neurons from excitotoxic death. We show IL-13 upregulation occurring in several cohorts of human brain samples and in cerebrospinal fluid (CSF). Thus, IL-13 is a physiological modulator of synaptic physiology of neuronal origin, with implications for the establishment of synaptic plasticity and the survival of neurons under injury conditions. Furthermore, we suggest that the neuroprotection afforded through the upregulation of IL-13 represents an entry point for interventions in the pathophysiology of TBI.
Collapse
|
26
|
Huang T, Wu J, Mu J, Gao J. Advanced Therapies for Traumatic Central Nervous System Injury: Delivery Strategy Reinforced Efficient Microglial Manipulation. Mol Pharm 2023; 20:41-56. [PMID: 36469398 DOI: 10.1021/acs.molpharmaceut.2c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Traumatic central nervous system (CNS) injuries, including spinal cord injury and traumatic brain injury, are challenging enemies of human health. Microglia, the main component of the innate immune system in CNS, can be activated postinjury and are key participants in the pathological procedure and development of CNS trauma. Activated microglia can be typically classified into pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes. Reducing M1 polarization while promoting M2 polarization is thought to be promising for CNS injury treatment. However, obstacles such as the low permeability of the blood-brain barrier and short retention time in circulation limit the therapeutic outcomes of administrated drugs, and rational delivery strategies are necessary for efficient microglial regulation. To this end, proper administration methods and delivery systems like nano/microcarriers and scaffolds are investigated to augment the therapeutic effects of drugs, while some of these delivery systems have self-efficacies in microglial manipulation. Besides, systems based on cell and cell-derived exosomes also show impressive effects, and some underlying targeting mechanisms of these delivery systems have been discovered. In this review, we introduce the roles of microglia play in traumatic CNS injuries, discuss the potential targets for the polarization regulation of microglial phenotype, and summarize recent studies and clinical trials about delivery strategies on enhancing the effect of microglial regulation and therapeutic outcome, as well as targeting mechanisms post CNS trauma.
Collapse
Affiliation(s)
- Tianchen Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahe Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer, Pharmacology and Toxicology Research of Zhejiang Province, Affiliated, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jiafu Mu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Jinhua Institute of Zhejiang University, Jinhua 321002, China
| |
Collapse
|
27
|
Madeshiya AK, Pillai A. Innate lymphoid cells in depression: Current status and perspectives. Biomark Neuropsychiatry 2022; 7. [PMID: 37123464 PMCID: PMC10136288 DOI: 10.1016/j.bionps.2022.100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The recent discovery of innate lymphoid cells (ILCs) has provided new insights into our understanding of the pathogenesis of many disease conditions with immune dysregulation. Type 1 innate lymphoid cells (ILC1s) induce type I immunity and are characterized by the expression of signature cytokine IFN-γ and the master transcription factor T-bet; ILC2s stimulate type II immune responses and are defined by the expression of signature cytokines IL-5 and IL-13, and transcription factors ROR-α and GATA3; ILC3s requires the transcription factor RORγt and produce IL-22 and IL-17. ILCs are largely tissue-resident and are enriched at barrier surfaces of the mammalian body. Increasing evidence shows that inflammation is involved in the pathogenesis of depression. Although few studies have directly investigated the role of ILCs in depression, several studies have examined the levels of cytokines produced by ILCs in depressed subjects. This review summarizes the potential roles of ILCs in depression. A better understanding of the biology of ILCs may lead to the development of new therapeutic strategies for the management of depression.
Collapse
|
28
|
Chen Y, Tang L. The crosstalk between parenchymal cells and macrophages: A keeper of tissue homeostasis. Front Immunol 2022; 13:1050188. [PMID: 36505488 PMCID: PMC9732730 DOI: 10.3389/fimmu.2022.1050188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Non-parenchymal cells (NPCs) and parenchymal cells (PCs) collectively perform tissue-specific functions. PCs play significant roles and continuously adjust the intrinsic functions and metabolism of organs. Tissue-resident macrophages (TRMs) are crucial members of native NPCs in tissues and are essential for immune defense, tissue repair and development, and homeostasis maintenance. As a plastic-phenotypic and prevalent cluster of NPCs, TRMs dynamically assist PCs in functioning by producing cytokines, inflammatory and anti-inflammatory signals, growth factors, and proteolytic enzymes. Furthermore, the PCs of tissues modulate the functional activity and polarization of TRMs. Dysregulation of the PC-TRM crosstalk axis profoundly impacts many essential physiological functions, including synaptogenesis, gastrointestinal motility and secretion, cardiac pulsation, gas exchange, blood filtration, and metabolic homeostasis. This review focuses on the PC-TRM crosstalk in mammalian vital tissues, along with their interactions with tissue homeostasis maintenance and disorders. Thus, this review highlights the fundamental biological significance of the regulatory network of PC-TRM in tissue homeostasis.
Collapse
|
29
|
Tatu AL, Nadasdy T, Arbune A, Chioncel V, Bobeica C, Niculet E, Iancu AV, Dumitru C, Popa VT, Kluger N, Clatici VG, Vasile CI, Onisor C, Nechifor A. Interrelationship and Sequencing of Interleukins4, 13, 31, and 33 - An Integrated Systematic Review: Dermatological and Multidisciplinary Perspectives. J Inflamm Res 2022; 15:5163-5184. [PMID: 36110506 PMCID: PMC9468867 DOI: 10.2147/jir.s374060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/13/2022] [Indexed: 11/23/2022] Open
Abstract
The interrelations and sequencing of interleukins are complex (inter)actions where each interleukin can stimulate the secretion of its preceding interleukin. In this paper, we attempt to summarize the currently known roles of IL-4, IL-13, IL-31, and IL-33 from a multi-disciplinary perspective. In order to conduct a comprehensive review of the current literature, a search was conducted using PubMed, Google Scholar, Medscape, UpToDate, and Key Elsevier for keywords. The results were compiled from case reports, case series, letters, and literature review papers, and analyzed by a panel of multi-disciplinary specialist physicians for relevance. Based on 173 results, we compiled the following review of interleukin signaling and its clinical significance across a multitude of medical specialties. Interleukins are at the bed rock of a multitude of pathologies across different organ systems and understanding their role will likely lead to novel treatments and better outcomes for our patients. New interleukins are being described, and the role of this inflammatory cascade is still coming to light. We hope this multi-discipline review on the role interleukins play in current pathology assists in this scope.
Collapse
Affiliation(s)
- Alin Laurentiu Tatu
- Dermatology Department, "Sf. Cuvioasa Parascheva" Clinical Hospital of Infectious Diseases, Galati, Romania.,Clinical Medical Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University, Galati, Romania.,Multidisciplinary Integrated Center of Dermatological Interface Research (MIC-DIR) [Centrul Integrat Multi disciplinar de Cercetare de Interfata Dermatologica (CIM-CID)], Galați, Romania
| | - Thomas Nadasdy
- Multidisciplinary Integrated Center of Dermatological Interface Research (MIC-DIR) [Centrul Integrat Multi disciplinar de Cercetare de Interfata Dermatologica (CIM-CID)], Galați, Romania.,Dermatology Department, Municipal Emergency Hospital, Timişoara, Romania
| | - Anca Arbune
- Neurology Department, Fundeni Clinical Institute, Bucharest, Romania
| | - Valentin Chioncel
- Neurology Department, "Bagdasar-Arseni" Emergency Clinical Hospital, Bucharest, Romania
| | - Carmen Bobeica
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, "Dunărea de Jos" University, Galați, Romania
| | - Elena Niculet
- Multidisciplinary Integrated Center of Dermatological Interface Research (MIC-DIR) [Centrul Integrat Multi disciplinar de Cercetare de Interfata Dermatologica (CIM-CID)], Galați, Romania
| | - Alina Viorica Iancu
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, "Dunărea de Jos" University, Galați, Romania
| | - Caterina Dumitru
- Pharmaceutical Sciences Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University, Galati, Romania
| | - Valentin Tudor Popa
- Multidisciplinary Integrated Center of Dermatological Interface Research (MIC-DIR) [Centrul Integrat Multi disciplinar de Cercetare de Interfata Dermatologica (CIM-CID)], Galați, Romania.,Dermatology Department, Center for the Morphologic Study of the Skin MORPHODERM, "Victor Babeș" University of Medicine and Pharmacy, Timișoara, Romania
| | - Nicolas Kluger
- Department of Dermatology, Allergology and Venereology, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland.,Apolo Medical Center, Bucharest, Romania
| | | | - Claudiu Ionut Vasile
- Clinical Medical Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University, Galati, Romania
| | - Cristian Onisor
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, "Dunărea de Jos" University, Galați, Romania
| | - Alexandru Nechifor
- Clinical Medical Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University, Galati, Romania
| |
Collapse
|
30
|
Wang K, Wang C, Chen D, Huang Y, Li J, Wei P, Shi Z, Zhang Y, Gao Y. The role of microglial/macrophagic salt-inducible kinase 3 on normal and excessive phagocytosis after transient focal cerebral ischemia. Cell Mol Life Sci 2022; 79:439. [PMID: 35864266 PMCID: PMC9304053 DOI: 10.1007/s00018-022-04465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/17/2022] [Accepted: 07/03/2022] [Indexed: 11/28/2022]
Abstract
Previous studies suggested that anti-inflammatory microglia/macrophages (Mi/MΦ) play a role in “normal phagocytosis,” which promoted the rapid clearance of necrotic substances and apoptotic cells. More recently, a few studies have found that Mi/MΦ also play a role in “pathological phagocytosis” in the form of excessive or reduced phagocytosis, thereby worsening damage induced by CNS diseases. However, the underlying mechanisms and the Mi/MΦ subtypes related to this pathological phagocytosis are still unknown. Salt-inducible kinase 3 (SIK3), a member of the 5’ adenosine monophosphate-activated protein kinase (AMPK) family, has been shown to regulate inflammation in several peripheral diseases. Whether SIK3 also regulates the inflammatory response in CNS diseases is currently unknown. Therefore, in this study, we created a transgenic tamoxifen-induced Mi/MΦ-specific SIK3 conditional knockout (SIK3-cKO) mouse to examine SIK3’s role in phagocytotic function induced by transient focal cerebral ischemia (tFCI). By single-cell RNA-seq, we found the pro-inflammatory Mi/MΦ phenotype performed an excessive phagocytotic function, but the anti-inflammatory Mi/MΦ phenotype performed a normal phagocytotic function. We found that SIK3-cKO caused Mi/MΦ heterogenization from the transitional phenotype to the anti-inflammatory phenotype after tFCI. This phenotypic shift corresponded with enhanced phagocytosis of both apoptotic and live neurons. Interestingly, SIK3-cKO enhanced normal phagocytosis of myelin debris but attenuating excessive phagocytosis of non-damaged myelin sheath, thereby protecting white matter integrity after tFCI. CD16, a pro-inflammation marker, was decreased significantly by SIK3-cKO and correlated with “excessive phagocytosis.” SIK3-cKO promoted long-term recovery of white matter function and neurological function as assessed with electrophysiological compound action potential (CAPs) and behavioral analysis. This study is the first to show a role of SIK3 in Mi/MΦ phagocytosis in CNS diseases, and reveals that promoting Mi/MΦ anti-inflammatory heterogenization inhibits “excessive phagocytosis” of live cells and facilitates “normal phagocytosis” of apoptotic cells. Therefore, inhibition of SIK3 in Mi/MΦ may be a potential therapeutic target in stroke and other CNS diseases with accompanying white matter destruction.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Chenran Wang
- State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Di Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yichen Huang
- State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Jiaying Li
- State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Pengju Wei
- State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ziyu Shi
- State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yue Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
31
|
Shaoyao-Gancao Decoction Promoted Microglia M2 Polarization via the IL-13-Mediated JAK2/STAT6 Pathway to Alleviate Cerebral Ischemia-Reperfusion Injury. Mediators Inflamm 2022; 2022:1707122. [PMID: 35757105 PMCID: PMC9232306 DOI: 10.1155/2022/1707122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
Microglia in the penumbra shifted from M2 to M1 phenotype between 3 and 5 days after cerebral ischemia-reperfusion, which promoted local inflammation and injury. Shaoyao-Gancao Decoction (SGD) has been found to result in a significant upregulation of IL-13 in the penumbra, which has been shown to induce polarization of M2 microglia. There was thus a hypothesis that SGD could exert an anti-inflammatory and neuroprotective effect by activating IL-13 to induce microglia polarization towards M2 phenotype, and the purpose of this study was to explore the influence of SGD on microglia phenotype switching and its possible mechanism. Rats who received middle cerebral artery occlusion surgery (MCAO) were treated with SGD for 3 or 6 days, to investigate the therapeutic effect and the underlying mechanism of SGD for cerebral ischemia-reperfusion injury (CI/RP). The results indicated that SGD improved neurobehavioral scores and reduced apoptosis. Furthermore, SGD significantly decreased M1 microglia and M1-like markers, but increased M2 microglia and M2 markers. Moreover, higher levels of IL-13 and ratios of p-JAK2/JAK2 and p-STAT6/STAT6 were found in the SGD group compared to the MCAO. In conclusion, it was verified that SGD prevented injury by driving microglia phenotypic switching from M1 to M2, probably via IL-13 and its downstream JAK2-STAT6 pathway. Given that no further validation tests were included in this study, it is necessary to conduct more experiments to confirm the reliability of the above results.
Collapse
|
32
|
Johnson NH, Hadad R, Taylor RR, Rodríguez Pilar J, Salazar O, Llompart-Pou JA, Dietrich WD, Keane RW, Pérez-Bárcena J, de Rivero Vaccari JP. Inflammatory Biomarkers of Traumatic Brain Injury. Pharmaceuticals (Basel) 2022; 15:ph15060660. [PMID: 35745576 PMCID: PMC9227014 DOI: 10.3390/ph15060660] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/26/2022] Open
Abstract
Traumatic brain injury (TBI) has a complex pathology in which the initial injury releases damage associated proteins that exacerbate the neuroinflammatory response during the chronic secondary injury period. One of the major pathological players in the inflammatory response after TBI is the inflammasome. Increased levels of inflammasome proteins during the acute phase after TBI are associated with worse functional outcomes. Previous studies reveal that the level of inflammasome proteins in biological fluids may be used as promising new biomarkers for the determination of TBI functional outcomes. In this study, we provide further evidence that inflammatory cytokines and inflammasome proteins in serum may be used to determine injury severity and predict pathological outcomes. In this study, we analyzed blood serum from TBI patients and respective controls utilizing Simple Plex inflammasome and V-PLEX inflammatory cytokine assays. We performed statistical analyses to determine which proteins were significantly elevated in TBI individuals. The receiver operating characteristics (ROC) were determined to obtain the area under the curve (AUC) to establish the potential fit as a biomarker. Potential biomarkers were then compared to documented patient Glasgow coma scale scores via a correlation matrix and a multivariate linear regression to determine how respective biomarkers are related to the injury severity and pathological outcome. Inflammasome proteins and inflammatory cytokines were elevated after TBI, and the apoptosis-associated speck like protein containing a caspase recruitment domain (ASC), interleukin (IL)-18, tumor necrosis factor (TNF)-α, IL-4 and IL-6 were the most reliable biomarkers. Additionally, levels of these proteins were correlated with known clinical indicators of pathological outcome, such as the Glasgow coma scale (GCS). Our results show that inflammatory cytokines and inflammasome proteins are promising biomarkers for determining pathological outcomes after TBI. Additionally, levels of biomarkers could potentially be utilized to determine a patient’s injury severity and subsequent pathological outcome. These findings show that inflammation-associated proteins in the blood are reliable biomarkers of injury severity that can also be used to assess the functional outcomes of TBI patients.
Collapse
Affiliation(s)
- Nathan H. Johnson
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (N.H.J.); (R.H.); (R.W.K.)
| | - Roey Hadad
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (N.H.J.); (R.H.); (R.W.K.)
| | - Ruby Rose Taylor
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.R.T.); (W.D.D.)
| | - Javier Rodríguez Pilar
- Intensive Care Department, Son Espases University Hospital, 07120 Palma de Mallorca, Spain; (J.R.P.); (O.S.); (J.A.L.-P.); (J.P.-B.)
| | - Osman Salazar
- Intensive Care Department, Son Espases University Hospital, 07120 Palma de Mallorca, Spain; (J.R.P.); (O.S.); (J.A.L.-P.); (J.P.-B.)
| | - Juan Antonio Llompart-Pou
- Intensive Care Department, Son Espases University Hospital, 07120 Palma de Mallorca, Spain; (J.R.P.); (O.S.); (J.A.L.-P.); (J.P.-B.)
| | - W. Dalton Dietrich
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.R.T.); (W.D.D.)
| | - Robert W. Keane
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (N.H.J.); (R.H.); (R.W.K.)
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.R.T.); (W.D.D.)
| | - Jon Pérez-Bárcena
- Intensive Care Department, Son Espases University Hospital, 07120 Palma de Mallorca, Spain; (J.R.P.); (O.S.); (J.A.L.-P.); (J.P.-B.)
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.R.T.); (W.D.D.)
- Correspondence:
| |
Collapse
|
33
|
Chen D, Li J, Huang Y, Wei P, Miao W, Yang Y, Gao Y. Interleukin 13 promotes long-term recovery after ischemic stroke by inhibiting the activation of STAT3. J Neuroinflammation 2022; 19:112. [PMID: 35578342 PMCID: PMC9109418 DOI: 10.1186/s12974-022-02471-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Microglia/macrophages are activated after cerebral ischemic stroke and can contribute to either brain injury or recovery by polarizing microglia/macrophage into distinctive functional phenotypes with pro- or anti-inflammatory properties. Interleukin-13 (IL-13) is an anti-inflammatory cytokine that regulates microglia/macrophage polarization toward an anti-inflammatory phenotype. However, it is not clear whether IL-13 is beneficial after ischemic stroke long-term and the underlying molecular mechanism(s) remain unknown. Thus, we examined the effect of IL-13 on long-term recovery and microglia/macrophage polarization in mice with transient middle cerebral artery occlusion model (tMCAO). METHODS tMCAO was induced in adult male C57BL/6J mice. IL-13 (60 μg/kg) was administered intranasally starting 2 h after stroke and continued for seven consecutive days. Sensorimotor function, spatial learning and memory function, as well as brain infarct volume were assessed up to 35 days after stroke. White matter integrity was evaluated by electrophysiology, immunofluorescence staining, and transmission electron microscopy. Microglia/macrophage activation was assessed using immunofluorescence staining and quantitative real-time polymerase chain reaction. Changes in immune cells in the brain and the periphery, and expression of IL-13 receptors in different brain cells were detected by flow cytometry. Primary neuron/microglia co-cultures and a STAT3 inhibitor were used for mechanistic studies. RESULTS Post-treatment with IL-13 improved long-term neurofunctional recovery and decreased brain tissue atrophy after stroke. Intranasal delivery of IL-13 enhanced the structural and functional integrity of white matter after stroke. Furthermore, the neuroprotection afforded by IL-13 administration was not due to a direct effect on neurons, but by indirectly regulating the anti-inflammatory phenotype of microglia/macrophages. IL-13 treatment also had no effect on peripheral immune cells. Mechanistically, IL-13 improved the long-term outcome after ischemic stroke by promoting the polarization of microglia/macrophages toward the anti-inflammatory phenotype at least partially by inhibiting the phosphorylation of STAT3. CONCLUSIONS IL-13 promotes white matter repair and improves neurofunctional outcomes after ischemic stroke by modulating microglia/macrophages via inhibition of STAT3 phosphorylation.
Collapse
Affiliation(s)
- Di Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, 200032, Shanghai, China
| | - Jiaying Li
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, 200032, Shanghai, China
| | - Yichen Huang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, 200032, Shanghai, China
| | - Pengju Wei
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, 200032, Shanghai, China
| | - Wanying Miao
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, 200032, Shanghai, China
| | - Yaomei Yang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, 200032, Shanghai, China
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, 200032, Shanghai, China.
| |
Collapse
|
34
|
Van Broeckhoven J, Erens C, Sommer D, Scheijen E, Sanchez S, Vidal PM, Dooley D, Van Breedam E, Quarta A, Ponsaerts P, Hendrix S, Lemmens S. Macrophage-based delivery of interleukin-13 improves functional and histopathological outcomes following spinal cord injury. J Neuroinflammation 2022; 19:102. [PMID: 35488301 PMCID: PMC9052547 DOI: 10.1186/s12974-022-02458-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 04/07/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) elicits a robust neuroinflammatory reaction which, in turn, exacerbates the initial mechanical damage. Pivotal players orchestrating this response are macrophages (Mφs) and microglia. After SCI, the inflammatory environment is dominated by pro-inflammatory Mφs/microglia, which contribute to secondary cell death and prevent regeneration. Therefore, reprogramming Mφ/microglia towards a more anti-inflammatory and potentially neuroprotective phenotype has gained substantial therapeutic interest in recent years. Interleukin-13 (IL-13) is a potent inducer of such an anti-inflammatory phenotype. In this study, we used genetically modified Mφs as carriers to continuously secrete IL-13 (IL-13 Mφs) at the lesion site. METHODS Mφs were genetically modified to secrete IL-13 (IL-13 Mφs) and were phenotypically characterized using qPCR, western blot, and ELISA. To analyze the therapeutic potential, the IL-13 Mφs were intraspinally injected at the perilesional area after hemisection SCI in female mice. Functional recovery and histopathological improvements were evaluated using the Basso Mouse Scale score and immunohistochemistry. Neuroprotective effects of IL-13 were investigated using different cell viability assays in murine and human neuroblastoma cell lines, human neurospheroids, as well as murine organotypic brain slice cultures. RESULTS In contrast to Mφs prestimulated with recombinant IL-13, perilesional transplantation of IL-13 Mφs promoted functional recovery following SCI in mice. This improvement was accompanied by reduced lesion size and demyelinated area. The local anti-inflammatory shift induced by IL-13 Mφs resulted in reduced neuronal death and fewer contacts between dystrophic axons and Mφs/microglia, suggesting suppression of axonal dieback. Using IL-4Rα-deficient mice, we show that IL-13 signaling is required for these beneficial effects. Whereas direct neuroprotective effects of IL-13 on murine and human neuroblastoma cell lines or human neurospheroid cultures were absent, IL-13 rescued murine organotypic brain slices from cell death, probably by indirectly modulating the Mφ/microglia responses. CONCLUSIONS Collectively, our data suggest that the IL-13-induced anti-inflammatory Mφ/microglia phenotype can preserve neuronal tissue and ameliorate axonal dieback, thereby promoting recovery after SCI.
Collapse
Affiliation(s)
- Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590, Diepenbeek, Belgium
| | - Céline Erens
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590, Diepenbeek, Belgium
| | - Daniela Sommer
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590, Diepenbeek, Belgium
| | - Elle Scheijen
- Department of Neurosciences, Biomedical Research Institute, Hasselt University, 3590, Diepenbeek, Belgium
| | - Selien Sanchez
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590, Diepenbeek, Belgium
| | - Pia M Vidal
- Neuroimmunology and Regeneration of the Central Nervous System Unit, Biomedical Science Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, 4090541, Concepción, Chile
| | - Dearbhaile Dooley
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland.,UCD Conway Institute of Biomolecular & Biomedical Research University College Dublin, Belfield, Dublin 4, Ireland
| | - Elise Van Breedam
- Laboratory of Experimental Hematology, University of Antwerp, 2610, Wilrijk, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610, Wilrijk, Belgium
| | - Alessandra Quarta
- Laboratory of Experimental Hematology, University of Antwerp, 2610, Wilrijk, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610, Wilrijk, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, University of Antwerp, 2610, Wilrijk, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610, Wilrijk, Belgium
| | - Sven Hendrix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590, Diepenbeek, Belgium. .,Medical School Hamburg, Am Kaiserkai 1, 20457, Hamburg, Germany.
| | - Stefanie Lemmens
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590, Diepenbeek, Belgium
| |
Collapse
|
35
|
Dickerson M, Guilhaume-Corrêa F, Strickler J, VandeVord PJ. Age-relevant in vitro models may lead to improved translational research for traumatic brain injury. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Hong AR, Jang JG, Chung YC, Won SY, Jin BK. Interleukin 13 on Microglia is Neurotoxic in Lipopolysaccharide-injected Striatum in vivo. Exp Neurobiol 2022; 31:42-53. [PMID: 35256543 PMCID: PMC8907255 DOI: 10.5607/en21032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 11/19/2022] Open
Abstract
To explore the potential function of interleukin-13 (IL-13), lipopolysaccharide (LPS) or PBS as a control was unilaterally microinjected into striatum of rat brain. Seven days after LPS injection, there was a significant loss of neurons and microglial activation in the striatum, visualized by immunohistochemical staining against neuronal nuclei (NeuN) and the OX-42 (complement receptor type 3, CR3), respectively. In parallel, IL-13 immunoreactivity was increased as early as 3 days and sustained up to 7 days post LPS injection, compared to PBS-injected control and detected exclusively within microglia. Moreover, GFAP immunostaining and blood brain barrier (BBB) permeability evaluation showed the loss of astrocytes and disruption of BBB, respectively. By contrast, treatment with IL-13 neutralizing antibody (IL-13NA) protects NeuN+ neurons against LPS-induced neurotoxicity in vivo . Accompanying neuroprotection, IL-13NA reduced loss of GFAP+ astrocytes and damage of BBB in LPS-injected striatum. Intriguingly, treatment with IL-13NA produced neurotrophic factors (NTFs) on survived astrocytes in LPS-injected rat striatum. Taken together, the present study suggests that LPS induces expression of IL-13 on microglia, which contributes to neurodegeneration via damage on astrocytes and BBB disruption in the striatum in vivo.
Collapse
Affiliation(s)
- Ah Reum Hong
- Department of Neuroscience, Graduate School, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Jae Geun Jang
- Department of Neuroscience, Graduate School, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Young Cheul Chung
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - So-Yoon Won
- Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Byung Kwan Jin
- Department of Neuroscience, Graduate School, School of Medicine, Kyung Hee University, Seoul 02447, Korea.,Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
37
|
Barichello T. The role of innate lymphoid cells (ILCs) in mental health. DISCOVER MENTAL HEALTH 2022; 2:2. [PMID: 35224555 PMCID: PMC8855986 DOI: 10.1007/s44192-022-00006-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/25/2022] [Indexed: 11/09/2022]
Abstract
One hundred and thirty years after lymphoid and myeloid cells were discovered, in 2008, the researchers presented to the scientific community the population of innate lymphoid cells (ILCs) identified in humans and mice. Human ILC subsets were first identified in secondary lymphoid tissues and subsequently reported in the intestine, lung, liver, skin, and meninges. ILCs (ILC1, ILC2, ILC3, and ILCreg) subgroups present plastic properties concerning cytokines, chemokines, and other mediators present in the microenvironment. ILC1s were characterized by their ability to produce interferon (IFN)-γ. ILC2s have a function in innate and adaptive type 2 inflammation by producing effector cytokines such as interleukin (IL)-5 and IL-13. Meningeal ILC2s were activated in an IL-33-dependent mechanism releasing type-2 cytokines and demonstrating that ILC2s proliferate in reaction to IL-33 activation. ILC3s have been discovered as a significant contribution to the homeostasis of the gut barrier and as a source of IL-22. IL-22 presents a pleiotropic activity reinforcing the gut barrier immunity by stimulating anti-microbial peptide synthesis and promoting microbial regulation. Additionally, ILCs can have a pathogenic or protective effect on many disorders, and further research is needed to determine what elements influence the nature of their actions in diverse situations. The narrative review summarizes the role of the ILCs in mental health.
Collapse
Affiliation(s)
- Tatiana Barichello
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX USA
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação Em Ciências da Saúde, Universidade Do Extremo Sul Catarinense (UNESC), Criciúma, SC Brazil
| |
Collapse
|
38
|
Misilimu D, Li W, Chen D, Wei P, Huang Y, Li S, Grothusen J, Gao Y. Intranasal Salvinorin A Improves Long-term Neurological Function via Immunomodulation in a Mouse Ischemic Stroke Model. J Neuroimmune Pharmacol 2022; 17:350-366. [PMID: 34596819 PMCID: PMC9726789 DOI: 10.1007/s11481-021-10025-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/21/2021] [Indexed: 12/29/2022]
Abstract
Salvinorin A (SA), a highly selective kappa opioid receptor agonist, has been shown to reduce brain infarct volume and improve neurological function after ischemic stroke. However, the underlying mechanisms have not been fully understood yet. Therefore, we explored whether SA provides neuroprotective effects by regulating the immune response after ischemic stroke both in the central nervous system (CNS) and peripheral circulation. In this study, adult male mice were subjected to transient Middle Cerebral Artery Occlusion (tMCAO) and then were treated intranasally with SA (50 μg/kg) or with the vehicle dimethyl sulfoxide (DMSO). Multiple behavioral tests were used to evaluate neurofunction. Flow cytometry and immunofluorescence staining were used to evaluate the infiltration of peripheral immune cells into the brain. The tracer cadaverine and endogenous immunoglobulin G (IgG) extravasation were used to detect blood brain barrier leakage. We observed that SA intranasal administration after ischemic stroke decreased the expression of pro-inflammatory factors in the brain. SA promoted the polarization of microglia/macrophages into a transitional phenotype and decreased the pro-inflammatory phenotype in the brain after tMCAO. Interestingly, SA treatment scarcely altered the number of peripheral immune cells but decreased the macrophage and neutrophil infiltration into the brain at 24 h after tMCAO. Furthermore, SA treatment also preserved BBB integrity, reduced long-term brain atrophy and white matter injury, as well as improved the long-term neurofunctional outcome in mice. In this study, intranasal administration of SA improved long-term neurological function via immuno-modulation and by preserving blood-brain barrier integrity in a mouse ischemic stroke model, suggesting that SA could potentially serve as an alternative treatment strategy for ischemic stroke.
Collapse
Affiliation(s)
- Dilidaer Misilimu
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wei Li
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Di Chen
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Pengju Wei
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yichen Huang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Sicheng Li
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| | - John Grothusen
- grid.25879.310000 0004 1936 8972Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104 USA
| | - Yanqin Gao
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Joseph K, Kirsch M, Johnston M, Münkel C, Stieglitz T, Haas CA, Hofmann UG. Transcriptional characterization of the glial response due to chronic neural implantation of flexible microprobes. Biomaterials 2021; 279:121230. [PMID: 34736153 DOI: 10.1016/j.biomaterials.2021.121230] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 01/13/2023]
Abstract
Long term implantation of (micro-)probes into neural tissue causes unique and disruptive responses. In this study, we investigate the transcriptional trajectory of glial cells responding to chronic implantation of 380 μm flexible micro-probes for up to 18 weeks. Transcriptomic analysis shows a rapid activation of microglial cells and a strong reactive astrocytic polarization, both of which are lost over the chronic of the implant duration. Animals that were implanted for 18 weeks show a transcriptional profile similar to non-implanted controls, with increased expression of genes associated with wound healing and angiogenesis, which raises hope of a normalization of the neuropil to the pre-injury state when using flexible probes. Nevertheless, our data shows that a subset of genes upregulated after 18 weeks belong to the family of immediate early genes, which indicates that structural and functional remodeling is not complete at this time point. Our results confirm and extend previous work on the molecular changes resulting from the presence of neural probes and provide a rational basis for developing interventional strategies to control them.
Collapse
Affiliation(s)
- Kevin Joseph
- Neuroelectronic Systems, Department of Neurosurgery, Medical Center, University of Freiburg, Germany; Department of Neurosurgery, Medical Center University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany; BrainLinks-BrainTools, University of Freiburg, Germany.
| | - Matthias Kirsch
- BrainLinks-BrainTools, University of Freiburg, Germany; Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Midori Johnston
- Faculty of Medicine, University of Freiburg, Germany; BrainLinks-BrainTools, University of Freiburg, Germany; Experimental Epilepsy Research, Dept. of Neurosurgery, Medical Center- University of Freiburg, Germany
| | - Christian Münkel
- Neuroelectronic Systems, Department of Neurosurgery, Medical Center, University of Freiburg, Germany; Department of Neurosurgery, Medical Center University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Thomas Stieglitz
- BrainLinks-BrainTools, University of Freiburg, Germany; Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, Faculty of Engineering, University of Freiburg, Germany
| | - Carola A Haas
- Faculty of Medicine, University of Freiburg, Germany; Experimental Epilepsy Research, Dept. of Neurosurgery, Medical Center- University of Freiburg, Germany
| | - Ulrich G Hofmann
- Neuroelectronic Systems, Department of Neurosurgery, Medical Center, University of Freiburg, Germany; Department of Neurosurgery, Medical Center University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany; BrainLinks-BrainTools, University of Freiburg, Germany
| |
Collapse
|
40
|
Hoyer-Kimura C, Konhilas JP, Mansour HM, Polt R, Doyle KP, Billheimer D, Hay M. Neurofilament light: a possible prognostic biomarker for treatment of vascular contributions to cognitive impairment and dementia. J Neuroinflammation 2021; 18:236. [PMID: 34654436 PMCID: PMC8520282 DOI: 10.1186/s12974-021-02281-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/20/2021] [Indexed: 12/29/2022] Open
Abstract
Background Decreased cerebral blood flow and systemic inflammation during heart failure (HF) increase the risk for vascular contributions to cognitive impairment and dementia (VCID) and Alzheimer disease-related dementias (ADRD). We previously demonstrated that PNA5, a novel glycosylated angiotensin 1–7 (Ang-(1–7)) Mas receptor (MasR) agonist peptide, is an effective therapy to rescue cognitive impairment in our preclinical model of VCID. Neurofilament light (NfL) protein concentration is correlated with cognitive impairment and elevated in neurodegenerative diseases, hypoxic brain injury, and cardiac disease. The goal of the present study was to determine (1) if treatment with Ang-(1–7)/MasR agonists can rescue cognitive impairment and decrease VCID-induced increases in NfL levels as compared to HF-saline treated mice and, (2) if NfL levels correlate with measures of cognitive function and brain cytokines in our VCID model. Methods VCID was induced in C57BL/6 male mice via myocardial infarction (MI). At 5 weeks post-MI, mice were treated with daily subcutaneous injections for 24 days, 5 weeks after MI, with PNA5 or angiotensin 1–7 (500 microg/kg/day or 50 microg/kg/day) or saline (n = 15/group). Following the 24-day treatment protocol, cognitive function was assessed using the Novel Object Recognition (NOR) test. Cardiac function was measured by echocardiography and plasma concentrations of NfL were quantified using a Quanterix Simoa assay. Brain and circulating cytokine levels were determined with a MILLIPLEX MAP Mouse High Sensitivity Multiplex Immunoassay. Treatment groups were compared via ANOVA, significance was set at p < 0.05. Results Treatment with Ang-(1–7)/MasR agonists reversed VCID-induced cognitive impairment and significantly decreased NfL levels in our mouse model of VCID as compared to HF-saline treated mice. Further, NfL levels were significantly negatively correlated with cognitive scores and the concentrations of multiple pleiotropic cytokines in the brain. Conclusions These data show that treatment with Ang-(1–7)/MasR agonists rescues cognitive impairment and decreases plasma NfL relative to HF-saline-treated animals in our VCID mouse model. Further, levels of NfL are significantly negatively correlated with cognitive function and with several brain cytokine concentrations. Based on these preclinical findings, we propose that circulating NfL might be a candidate for a prognostic biomarker for VCID and may also serve as a pharmacodynamic/response biomarker for therapeutic target engagement.
Collapse
Affiliation(s)
| | - John P Konhilas
- Department of Physiology, The University of Arizona, Tucson, AZ, USA.,Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, USA.,Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA
| | - Heidi M Mansour
- Department of Pharmacy, Skaggs Pharmaceutical Sciences Center, The University of Arizona, Tucson, AZ, USA.,Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, AZ, USA
| | - Robin Polt
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, USA
| | - Kristian P Doyle
- Department of Immunobiology, The University of Arizona, Tucson, AZ, USA
| | - Dean Billheimer
- Department of Epidemiology and Biostatistics, The University of Arizona, Tucson, AZ, USA
| | - Meredith Hay
- Department of Physiology, The University of Arizona, Tucson, AZ, USA.,Department of Neurology, The University of Arizona, Tucson, AZ, USA.,Evelyn F. McKnight Brain Institute, The University of Arizona, Tucson, AZ, USA.,ProNeurogen, Inc, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
41
|
Erhardt EB, Adair JC, Knoefel JE, Caprihan A, Prestopnik J, Thompson J, Hobson S, Siegel D, Rosenberg GA. Inflammatory Biomarkers Aid in Diagnosis of Dementia. Front Aging Neurosci 2021; 13:717344. [PMID: 34489684 PMCID: PMC8416621 DOI: 10.3389/fnagi.2021.717344] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
Dual pathology of Alzheimer's disease (AD) and vascular cognitive impairment and dementia (VCID) commonly are found together at autopsy, but mixed dementia (MX) is difficult to diagnose during life. Biological criteria to diagnose AD have been defined, but are not available for vascular disease. We used the biological criteria for AD and white matter injury based on MRI to diagnose MX. Then we measured multiple biomarkers in CSF and blood with multiplex biomarker kits for proteases, angiogenic factors, and cytokines to explore pathophysiology in each group. Finally, we used machine learning with the Random forest algorithm to select the biomarkers of maximal importance; that analysis identified three proteases, matrix metalloproteinase-10 (MMP-10), MMP-3 and MMP-1; three angiogenic factors, VEGF-C, Tie-2 and PLGF, and three cytokines interleukin-2 (IL-2), IL-6, IL-13. To confirm the clinical importance of the variables, we showed that they correlated with results of neuropsychological testing.
Collapse
Affiliation(s)
- Erik B Erhardt
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, United States
| | - John C Adair
- Department of Neurology, University of New Mexico, Albuquerque, NM, United States.,Center for Memory and Aging, Albuquerque, NM, United States
| | - Janice E Knoefel
- Department of Neurology, University of New Mexico, Albuquerque, NM, United States.,Center for Memory and Aging, Albuquerque, NM, United States
| | | | | | | | - Sasha Hobson
- Center for Memory and Aging, Albuquerque, NM, United States
| | - David Siegel
- Department of Anesthesiology, University of New Mexico, Albuquerque, NM, United States
| | - Gary A Rosenberg
- Department of Neurology, University of New Mexico, Albuquerque, NM, United States.,Center for Memory and Aging, Albuquerque, NM, United States
| |
Collapse
|
42
|
Goudreau AD, Everest C, Nagpal TS, Puranda JL, Bhattacharjee J, Vasanthan T, Adamo KB. Elucidating the interaction between maternal physical activity and circulating myokines throughout gestation: A scoping review. Am J Reprod Immunol 2021; 86:e13488. [PMID: 34331363 DOI: 10.1111/aji.13488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022] Open
Abstract
Physical activity (PA) during pregnancy provides both maternal and fetal health benefits. It has been theorized that myokines, peptides secreted by contracting skeletal muscle, may play an important mechanistic role in facilitating the health benefits obtained from prenatal exercise. The objective of this review was to synthesize the current literature on the relationship between maternal PA and myokine response. A search strategy was developed using the terms pregnancy, PA, IL-6, IL-10, IL-13, and TNF-α. A systematic search was completed in July 2020, in Medline, SPORTDiscus, EMBASE, CENTRAL, and in November 2020 for unpublished dissertations (grey literature; Proquest). Both human- and animal-based studies of any design were included, while commentaries and editorial articles were excluded. Data were extracted by two independent reviewers and summarized narratively. Data were thematically summarized based on the myokine and whether findings were from human or animal studies. Ten studies were included in this review. Findings from studies that examined IL-6, IL-10, and TNF-α suggest a trimester-specific interaction between PA and myokine levels; no studies evaluated IL-13. Future research should investigate the PA-myokine relationship throughout all stages of gestation.
Collapse
Affiliation(s)
| | - Catherine Everest
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Taniya S Nagpal
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada.,Society of Obstetricians and Gynaecologists of Canada, Ottawa, ON, Canada
| | - Jessica L Puranda
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Jayonta Bhattacharjee
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada.,Department of Surgery and Obstetrics, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | | - Kristi B Adamo
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
43
|
Madry H, Grässel S, Nöth U, Relja B, Bernstein A, Docheva D, Kauther MD, Katthagen JC, Bader R, van Griensven M, Wirtz DC, Raschke MJ, Huber-Lang M. The future of basic science in orthopaedics and traumatology: Cassandra or Prometheus? Eur J Med Res 2021; 26:56. [PMID: 34127057 PMCID: PMC8200553 DOI: 10.1186/s40001-021-00521-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/20/2021] [Indexed: 12/23/2022] Open
Abstract
Orthopaedic and trauma research is a gateway to better health and mobility, reflecting the ever-increasing and complex burden of musculoskeletal diseases and injuries in Germany, Europe and worldwide. Basic science in orthopaedics and traumatology addresses the complete organism down to the molecule among an entire life of musculoskeletal mobility. Reflecting the complex and intertwined underlying mechanisms, cooperative research in this field has discovered important mechanisms on the molecular, cellular and organ levels, which subsequently led to innovative diagnostic and therapeutic strategies that reduced individual suffering as well as the burden on the society. However, research efforts are considerably threatened by economical pressures on clinicians and scientists, growing obstacles for urgently needed translational animal research, and insufficient funding. Although sophisticated science is feasible and realized in ever more individual research groups, a main goal of the multidisciplinary members of the Basic Science Section of the German Society for Orthopaedics and Trauma Surgery is to generate overarching structures and networks to answer to the growing clinical needs. The future of basic science in orthopaedics and traumatology can only be managed by an even more intensified exchange between basic scientists and clinicians while fuelling enthusiasm of talented junior scientists and clinicians. Prioritized future projects will master a broad range of opportunities from artificial intelligence, gene- and nano-technologies to large-scale, multi-centre clinical studies. Like Prometheus in the ancient Greek myth, transferring the elucidating knowledge from basic science to the real (clinical) world will reduce the individual suffering from orthopaedic diseases and trauma as well as their socio-economic impact.
Collapse
Affiliation(s)
- Henning Madry
- Institute of Experimental Orthopaedics and Osteoarthritis Research, Saarland University, Homburg, Germany
| | - Susanne Grässel
- Experimental Orthopedics, Department of Orthopedic Surgery, University of Regensburg, Regensburg, Germany
| | - Ulrich Nöth
- Department of Orthopaedics and Trauma Surgery, Evangelisches Waldkrankenhaus Berlin Spandau, Berlin, Germany
| | - Borna Relja
- Experimental Radiology, University Clinic for Radiology and Nuclear Medicine, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Anke Bernstein
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Max Daniel Kauther
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Essen, Essen, Germany
| | - Jan Christoph Katthagen
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
| | - Rainer Bader
- Department of Orthopaedics, Research Lab for Biomechanics and Implant Technology, Rostock University Medical Center, Rostock, Germany
| | - Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN-Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Dieter C Wirtz
- Department of Orthopaedics and Trauma Surgery, University Hopsital Bonn, Bonn, Germany
| | - Michael J Raschke
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma-Immunology (ITI), University Hospital Ulm, Helmholzstr. 8/1, Ulm, Germany.
| |
Collapse
|
44
|
Wu Y, Wu H, Zeng J, Pluimer B, Dong S, Xie X, Guo X, Ge T, Liang X, Feng S, Yan Y, Chen JF, Sta Maria N, Ma Q, Gomez-Pinilla F, Zhao Z. Mild traumatic brain injury induces microvascular injury and accelerates Alzheimer-like pathogenesis in mice. Acta Neuropathol Commun 2021; 9:74. [PMID: 33892818 PMCID: PMC8063402 DOI: 10.1186/s40478-021-01178-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/10/2021] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Traumatic brain injury (TBI) is considered as the most robust environmental risk factor for Alzheimer's disease (AD). Besides direct neuronal injury and neuroinflammation, vascular impairment is also a hallmark event of the pathological cascade after TBI. However, the vascular connection between TBI and subsequent AD pathogenesis remains underexplored. METHODS In a closed-head mild TBI (mTBI) model in mice with controlled cortical impact, we examined the time courses of microvascular injury, blood-brain barrier (BBB) dysfunction, gliosis and motor function impairment in wild type C57BL/6 mice. We also evaluated the BBB integrity, amyloid pathology as well as cognitive functions after mTBI in the 5xFAD mouse model of AD. RESULTS mTBI induced microvascular injury with BBB breakdown, pericyte loss, basement membrane alteration and cerebral blood flow reduction in mice, in which BBB breakdown preceded gliosis. More importantly, mTBI accelerated BBB leakage, amyloid pathology and cognitive impairment in the 5xFAD mice. DISCUSSION Our data demonstrated that microvascular injury plays a key role in the pathogenesis of AD after mTBI. Therefore, restoring vascular functions might be beneficial for patients with mTBI, and potentially reduce the risk of developing AD.
Collapse
Affiliation(s)
- Yingxi Wu
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Haijian Wu
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Jianxiong Zeng
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Brock Pluimer
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Shirley Dong
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Xiaochun Xie
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Xinying Guo
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Tenghuan Ge
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Xinyan Liang
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Sudi Feng
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Youzhen Yan
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA
| | - Naomi Sta Maria
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Qingyi Ma
- Lawrence D. Longo, MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Fernando Gomez-Pinilla
- Brain Injury Research Center, Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhen Zhao
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Room: 241, 1501 San Pablo Street, Los Angeles, CA, 90033, USA.
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
45
|
Wang K, Li J, Zhang Y, Huang Y, Chen D, Shi Z, Smith AD, Li W, Gao Y. Central nervous system diseases related to pathological microglial phagocytosis. CNS Neurosci Ther 2021; 27:528-539. [PMID: 33650762 PMCID: PMC8025646 DOI: 10.1111/cns.13619] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 12/18/2022] Open
Abstract
Microglia are important phagocytes of the central nervous system (CNS). They play an important role in protecting the CNS by clearing necrotic tissue and apoptotic cells in many CNS diseases. However, recent studies have found that microglia can phagocytose parts of neurons excessively, such as the neuronal cell body, synapse, or myelin sheaths, before or after the onset of CNS diseases, leading to aggravated injury and impaired tissue repair. Meanwhile, reduced phagocytosis of synapses and myelin results in abnormal circuit connections and inhibition of remyelination, respectively. Previous studies focused primarily on the positive effects of microglia phagocytosis, whereas only a few studies have focused on the negative effects. In this review, we use the term "pathological microglial phagocytosis" to refer to excessive or reduced phagocytosis by microglia that leads to structural or functional abnormalities in target cells and brain tissue. The classification of pathological microglial phagocytosis, the composition, and activation of related signaling pathways, as well as the process of pathological phagocytosis in various kinds of CNS diseases, are described in this review. We hypothesize that pathological microglial phagocytosis leads to aggravation of tissue damage and negative functional outcome. For example, excessive microglial phagocytosis of synapses can be observed in Alzheimer's disease and schizophrenia, leading to significant synapse loss and memory impairment. In Parkinson's disease, ischemic stroke, and traumatic brain injury, excessive microglial phagocytosis of neuronal cell bodies causes impaired gray matter recovery and sensory dysfunction. We therefore believe that more studies should focus on the mechanism of pathological microglial phagocytosis and activation to uncover potential targets of therapeutic intervention.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jiaying Li
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yue Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yichen Huang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Di Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ziyu Shi
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Amanda D Smith
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Wei Li
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
46
|
Verboon LN, Patel HC, Greenhalgh AD. The Immune System's Role in the Consequences of Mild Traumatic Brain Injury (Concussion). Front Immunol 2021; 12:620698. [PMID: 33679762 PMCID: PMC7928307 DOI: 10.3389/fimmu.2021.620698] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Mild traumatic brain injury (mild TBI), often referred to as concussion, is the most common form of TBI and affects millions of people each year. A history of mild TBI increases the risk of developing emotional and neurocognitive disorders later in life that can impact on day to day living. These include anxiety and depression, as well as neurodegenerative conditions such as chronic traumatic encephalopathy (CTE) and Alzheimer's disease (AD). Actions of brain resident or peripherally recruited immune cells are proposed to be key regulators across these diseases and mood disorders. Here, we will assess the impact of mild TBI on brain and patient health, and evaluate the recent evidence for immune cell involvement in its pathogenesis.
Collapse
Affiliation(s)
- Laura N. Verboon
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - Hiren C. Patel
- Division of Cardiovascular Sciences, Salford Royal National Health Service Foundation Trust, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service Group, University of Manchester, Manchester, United Kingdom
| | - Andrew D. Greenhalgh
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service Group, University of Manchester, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
47
|
Cortes D, Pera MF. The genetic basis of inter-individual variation in recovery from traumatic brain injury. NPJ Regen Med 2021; 6:5. [PMID: 33479258 PMCID: PMC7820607 DOI: 10.1038/s41536-020-00114-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death among young people, and is increasingly prevalent in the aging population. Survivors of TBI face a spectrum of outcomes from short-term non-incapacitating injuries to long-lasting serious and deteriorating sequelae. TBI is a highly complex condition to treat; many variables can account for the observed heterogeneity in patient outcome. The limited success of neuroprotection strategies in the clinic has led to a new emphasis on neurorestorative approaches. In TBI, it is well recognized clinically that patients with similar lesions, age, and health status often display differences in recovery of function after injury. Despite this heterogeneity of outcomes in TBI, restorative treatment has remained generic. There is now a new emphasis on developing a personalized medicine approach in TBI, and this will require an improved understanding of how genetics impacts on long-term outcomes. Studies in animal model systems indicate clearly that the genetic background plays a role in determining the extent of recovery following an insult. A candidate gene approach in human studies has led to the identification of factors that can influence recovery. Here we review studies of the genetic basis for individual differences in functional recovery in the CNS in animals and man. The application of in vitro modeling with human cells and organoid cultures, along with whole-organism studies, will help to identify genes and networks that account for individual variation in recovery from brain injury, and will point the way towards the development of new therapeutic approaches.
Collapse
|
48
|
Rhea EM, Logsdon AF, Banks WA, Erickson ME. Intranasal Delivery: Effects on the Neuroimmune Axes and Treatment of Neuroinflammation. Pharmaceutics 2020; 12:pharmaceutics12111120. [PMID: 33233734 PMCID: PMC7699866 DOI: 10.3390/pharmaceutics12111120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/02/2023] Open
Abstract
This review highlights the pre-clinical and clinical work performed to use intranasal delivery of various compounds from growth factors to stem cells to reduce neuroimmune interactions. We introduce the concept of intranasal (IN) delivery and the variations of this delivery method based on the model used (i.e., rodents, non-human primates, and humans). We summarize the literature available on IN delivery of growth factors, vitamins and metabolites, cytokines, immunosuppressants, exosomes, and lastly stem cells. We focus on the improvement of neuroimmune interactions, such as the activation of resident central nervous system (CNS) immune cells, expression or release of cytokines, and detrimental effects of signaling processes. We highlight common diseases that are linked to dysregulations in neuroimmune interactions, such as Alzheimer's disease, Parkinson's disease, stroke, multiple sclerosis, and traumatic brain injury.
Collapse
Affiliation(s)
- Elizabeth M. Rhea
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Correspondence: ; Tel.: +1-206-764-2938
| | - Aric F. Logsdon
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - William A. Banks
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Michelle E. Erickson
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|