1
|
Orellano MS, Scelza-Figueredo A, Lameroli Mauriz L, Sétula C, Argañarás M, Atorrasagasti C, Perone MJ, Andreone L. A dissociated glucocorticoid receptor modulator mitigates glucolipotoxicity in the endocrine pancreas and peripheral tissues: Preclinical data from a mouse model of diet-induced type 2 diabetes. Life Sci 2025; 362:123363. [PMID: 39761744 DOI: 10.1016/j.lfs.2024.123363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/16/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
AIMS Type 2 diabetes (T2D) is a prevalent metabolic disease linked to obesity and metabolic syndrome (MS). The glucolipotoxic environment (GLT) impacts tissues causing low-grade inflammation, insulin resistance and the gradual loss of pancreatic β-cell function, leading to hyperglycemia. We have previously shown that Compound A (CpdA), a plant-derived dissociative glucocorticoid receptor-modulator with inflammation-suppressive activity, displays protective effects on β-cells in type 1 diabetes murine models. This study aimed to evaluate whether the administration of CpdA can attenuate GLT effects and improve pathophysiological parameters in a murine model of T2D/MS. MAIN METHODS Eight-week-old male C57BL/6NCrl mice were fed either a standard chow diet or a high-fat/high-sucrose diet (HFHS) for 15 weeks. From week 5 of feeding, each group received i.p. injections of CpdA (2.5 μg/g) or vehicle three times a week. We also examined CpdA in vitro effect against GLT using the insulinoma cell line INS-1E and naïve isolated mouse islets. KEY FINDINGS CpdA administration in HFHS fed mice improved glucose homeostasis and insulin sensitivity with no apparent side effects. CpdA treatment also preserved pancreatic islet architecture and insulin expression, while reducing hepatic steatosis and visceral adipose tissue inflammation induced by HFHS diet. In vitro assays in INS-1E cells and naïve isolated mouse islets demonstrated that CpdA counteracted GLT-induced inhibition of glucose-stimulated insulin secretion and supported the expression of key β-cell identity genes under GLT conditions. SIGNIFICANCE These findings highlight the potential protective effect of CpdA in preserving β-cell functionality and peripheral tissue physiology in the context of T2D/MS.
Collapse
Affiliation(s)
- Miranda Sol Orellano
- Immuno-Endocrinology, Diabetes & Metabolism Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET - Universidad Austral, Pilar, Argentina; Facultad de Ciencias Biomédicas, , Universidad Austral, Pilar, Argentina
| | - Andrea Scelza-Figueredo
- Immuno-Endocrinology, Diabetes & Metabolism Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET - Universidad Austral, Pilar, Argentina; Facultad de Ciencias Biomédicas, , Universidad Austral, Pilar, Argentina
| | - Lucía Lameroli Mauriz
- Facultad de Ciencias Biomédicas, , Universidad Austral, Pilar, Argentina; Experimental Hepatology and Gene Therapy Program, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET - Universidad Austral, Pilar, Argentina
| | - Carolina Sétula
- Immuno-Endocrinology, Diabetes & Metabolism Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET - Universidad Austral, Pilar, Argentina; Facultad de Ciencias Biomédicas, , Universidad Austral, Pilar, Argentina
| | - Milagros Argañarás
- Immuno-Endocrinology, Diabetes & Metabolism Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET - Universidad Austral, Pilar, Argentina
| | - Catalina Atorrasagasti
- Facultad de Ciencias Biomédicas, , Universidad Austral, Pilar, Argentina; Experimental Hepatology and Gene Therapy Program, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET - Universidad Austral, Pilar, Argentina
| | - Marcelo Javier Perone
- Immuno-Endocrinology, Diabetes & Metabolism Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET - Universidad Austral, Pilar, Argentina; Facultad de Ciencias Biomédicas, , Universidad Austral, Pilar, Argentina
| | - Luz Andreone
- Immuno-Endocrinology, Diabetes & Metabolism Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET - Universidad Austral, Pilar, Argentina; Facultad de Ciencias Biomédicas, , Universidad Austral, Pilar, Argentina.
| |
Collapse
|
2
|
Mgwenya TN, Abrahamse H, Houreld NN. Photobiomodulation studies on diabetic wound healing: An insight into the inflammatory pathway in diabetic wound healing. Wound Repair Regen 2025; 33:e13239. [PMID: 39610015 PMCID: PMC11628774 DOI: 10.1111/wrr.13239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/06/2024] [Accepted: 09/02/2024] [Indexed: 11/30/2024]
Abstract
Diabetes mellitus remains a global challenge to public health as it results in non-healing chronic ulcers of the lower limb. These wounds are challenging to heal, and despite the different treatments available to improve healing, there is still a high rate of failure and relapse, often necessitating amputation. Chronic diabetic ulcers do not follow an orderly progression through the wound healing process and are associated with a persistent inflammatory state characterised by the accumulation of pro-inflammatory macrophages, cytokines and proteases. Photobiomodulation has been successfully utilised in diabetic wound healing and involves illuminating wounds at specific wavelengths using predominantly light-emitting diodes or lasers. Photobiomodulation induces wound healing through diminishing inflammation and oxidative stress, among others. Research into the application of photobiomodulation for wound healing is current and ongoing and has drawn the attention of many researchers in the healthcare sector. This review focuses on the inflammatory pathway in diabetic wound healing and the influence photobiomodulation has on this pathway using different wavelengths.
Collapse
Affiliation(s)
- Tintswalo N. Mgwenya
- Laser Research Centre, Faculty of Health SciencesUniversity of JohannesburgJohannesburgGautengSouth Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health SciencesUniversity of JohannesburgJohannesburgGautengSouth Africa
| | - Nicolette N. Houreld
- Laser Research Centre, Faculty of Health SciencesUniversity of JohannesburgJohannesburgGautengSouth Africa
| |
Collapse
|
3
|
Huo L, Zhang H, Hou S, Li W, Meng Q, Li C, Ma X, Huang L, He J, Zhao B. Low-dose IL-2 restores metabolic dysfunction and immune dysregulation in mice with type 2 diabetes induced by a high-fat, high-sugar diet and streptozotocin. Int J Biol Macromol 2025; 286:138468. [PMID: 39647763 DOI: 10.1016/j.ijbiomac.2024.138468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Interleukin-2 (IL-2) is pivotal in immune regulation, particularly in the promotion of regulatory T (Treg) cells and the maintenance of immune tolerance. While its efficacy in autoimmune diseases is well established, its role in type 2 diabetes (T2D) remains largely unexplored. This study investigates the effects of low-dose IL-2 in a KM mouse model of T2D induced by streptozotocin (STZ) and a high-fat, high-sugar (HFHS) diet. We found that low-dose IL-2 administration significantly improved fasting plasma glucose (FPG), glycosylated hemoglobin (HbA1c) levels, and glucose tolerance, indicating better glycemic control. Additionally, IL-2 treatment improved insulin sensitivity, enhanced insulin secretion, and ameliorated lipid metabolism, as evidenced by reduced cholesterol and triglyceride levels. These metabolic improvements were associated with a modulation of inflammation, including a reduction in pro-inflammatory cytokines (TNF-α, IL-1β) and an increase in anti-inflammatory cytokines (IL-10). Importantly, IL-2 also altered the gut microbiome, reducing intestinal inflammation and endotoxin levels, which suggests a broader impact on metabolic health beyond immune regulation. These findings support the potential of low-dose IL-2 as an immunotherapeutic approach for improving metabolic dysfunction and inflammation in T2D.
Collapse
Affiliation(s)
- Lijing Huo
- College of Life Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, People's Republic of China
| | - Hairui Zhang
- College of Life Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, People's Republic of China
| | - Shiyu Hou
- College of Life Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, People's Republic of China
| | - Wenting Li
- College of Life Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, People's Republic of China
| | - Qingwen Meng
- College of Life Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, People's Republic of China
| | - Chenhui Li
- Hebei Fitness Biotechnology Co., Ltd., Shijiazhuang High-tech Industrial Park, Shijiazhuang City, Hebei Province, People's Republic of China; Hebei Key Laboratory of Autoimmune Disease Medicine Research, Shijiazhuang City, Hebei Province 050035, People's Republic of China
| | - Xiaohan Ma
- Hebei Fitness Biotechnology Co., Ltd., Shijiazhuang High-tech Industrial Park, Shijiazhuang City, Hebei Province, People's Republic of China; Hebei Key Laboratory of Autoimmune Disease Medicine Research, Shijiazhuang City, Hebei Province 050035, People's Republic of China
| | - Lijing Huang
- Hebei Fitness Biotechnology Co., Ltd., Shijiazhuang High-tech Industrial Park, Shijiazhuang City, Hebei Province, People's Republic of China; Hebei Key Laboratory of Autoimmune Disease Medicine Research, Shijiazhuang City, Hebei Province 050035, People's Republic of China
| | - Jintian He
- College of Life Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, People's Republic of China.
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, People's Republic of China.
| |
Collapse
|
4
|
Wang Y, Yu J, Chen B, Jin W, Wang M, Chen X, Jian M, Sun L, Piao C. Bile acids as a key target: traditional Chinese medicine for precision management of insulin resistance in type 2 diabetes mellitus through the gut microbiota-bile acids axis. Front Endocrinol (Lausanne) 2024; 15:1481270. [PMID: 39720247 PMCID: PMC11666381 DOI: 10.3389/fendo.2024.1481270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease caused by insulin resistance (IR) and insufficient insulin secretion. Its characteristic pathophysiological processes involve the interaction of multiple mechanisms. In recent years, globally, the prevalence of T2DM has shown a sharp rise due to profound changes in socio-economic structure, the persistent influence of environmental factors, and the complex role of genetic background. It is worth noting that most T2DM patients show significant IR, which further exacerbates the difficulty of disease progression and prevention. In the process of extensively exploring the pathogenesis of T2DM, the dynamic equilibrium of gut microbes and its diverse metabolic activities have increasingly emphasized its central role in the pathophysiological process of T2DM. Bile acids (BAs) metabolism, as a crucial link between gut microbes and the development of T2DM, not only precisely regulates lipid absorption and metabolism but also profoundly influences glucose homeostasis and energy balance through intricate signaling pathways, thus playing a pivotal role in IR progression in T2DM. This review aims to delve into the specific mechanism through which BAs contribute to the development of IR in T2DM, especially emphasizing how gut microbes mediate the metabolic transformation of BAs based on current traditional Chinese medicine research. Ultimately, it seeks to offer new insights into the prevention and treatment of T2DM. Diet, genetics, and the environment intricately sculpt the gut microbiota and BAs metabolism, influencing T2DM-IR. The research has illuminated the significant impact of single herbal medicine, TCM formulae, and external therapeutic methods such as electroacupuncture on the BAs pool through perturbations in gut microbiota structure. This interaction affects glucose and lipid metabolism as well as insulin sensitivity. Additionally, multiple pathways including BA-FXR-SHP, BA-FXR-FGFR15/19, BA-FXR-NLRP3, BA-TGR5-GLP-1, BAs-TGR5/FXR signaling pathways have been identified through which the BAs pool significantly alter blood glucose levels and improve IR. These findings offer novel approaches for enhancing IR and managing metabolic disorders among patients with T2DM.
Collapse
Affiliation(s)
- Yu Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jing Yu
- Department of Endocrinology, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Binqin Chen
- Applicants with Equivalent Academic Qualifications for Master Degree, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Shenzhen Hospital (Futian), Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Wenqi Jin
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Meili Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xuenan Chen
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Mengqiong Jian
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Chunli Piao
- Shenzhen Hospital (Futian), Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
5
|
Oprea AD, Kalra SK, Duggan EW, Russell LL, Urman RD, Abdelmalak BB, Patel P, Pfeifer KJ, Grant PJ, Charitou MM, Mendez CE, Sherr JL, Umpierrez GE, Klonoff DC. Perioperative Management of Adult Patients with Diabetes Wearing Devices: A Society for Perioperative Assessment and Quality Improvement (SPAQI) Expert Consensus Statement. J Clin Anesth 2024; 99:111627. [PMID: 39388833 DOI: 10.1016/j.jclinane.2024.111627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/01/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024]
Abstract
In recent years, the integration of advanced diabetes technology into the care of individuals with diabetes has grown exponentially. Given their increasing prevalence, insulin-requiring people with diabetes may present to preoperative clinics or the operating rooms wearing such devices. While advantageous from a diabetes management perspective, for those unfamiliar with devices this can add another layer of complexity to diabetes management in both the outpatient and inpatient settings, particularly because of the rapidly evolving technology. Therefore, perioperative clinicians need to become familiar with diabetes technological advances, and device features and have an understanding of how they can be used in the perioperative period. This consensus statement aims to serve as an educational material as well as to serve as a guide to perioperative clinicians caring for patients wearing diabetes devices (insulin pumps and continuous glucose monitors).
Collapse
Affiliation(s)
- Adriana D Oprea
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, United States of America.
| | - Smita K Kalra
- Director Pre-operative Clinic, University of California Irvine School of Medicine, Orange, CA, United States of America
| | - Elizabeth W Duggan
- Director of Professional Development Collaboration, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Linda L Russell
- Anne and Joel Ehrenkranz Chair in Perioperative Medicine, Weill Cornell Medical College, Director of Perioperative Medicine, Hospital for Special Surgery, New York, NY, United States of America
| | - Richard D Urman
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Basem B Abdelmalak
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, United States of America
| | - Preethi Patel
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, United States of America
| | - Kurt J Pfeifer
- Section of Perioperative & Consultative Medicine, Preoperative Clinic, Froedtert Hospital, Froedtert Menomonee Falls Hospital, Medical College of Wisconsin, Milwalkee, WI, United States of America
| | - Paul J Grant
- Associate Chief Medical Information Officer, Perioperative and Consultative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States of America
| | - Marina M Charitou
- Division of Endocrinology, Stony Brook Medicine, Stony Brook, NY, United States of America
| | - Carlos E Mendez
- Director Diabetes Program, Division of General Internal Medicine, Medical College of Wisconsin, Division of Diabetes and Endocrinology, Co-Chair National VA Diabetes Field Advisory Committee, Zablocki Veteran Affairs Medical Center, Milwalkee, WI, United States of America
| | - Jennifer L Sherr
- Division of Pediatric Endocrinology, Yale School of Medicine, New Haven, CT, United States of America
| | - Guillermo E Umpierrez
- Division of Endocrinology, Emory University School of Medicine, Atlanta, GA, United States of America
| | - David C Klonoff
- Diabetes Technology Society, Clinical Professor of Medicine, U.C. San Francisco, CA, United States of America; Journal of Diabetes Science and Technology, Medical Director, Diabetes Research Institute, Mills-Peninsula Medical Center, San Mateo, CA, United States of America
| |
Collapse
|
6
|
Glasgow AC, Kim JY. Metabolic targets in the Postural Orthostatic Tachycardia Syndrome: A short thematic review. Auton Neurosci 2024; 256:103232. [PMID: 39631266 DOI: 10.1016/j.autneu.2024.103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/24/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Postural Orthostatic Tachycardia Syndrome (POTS) is a chronic autonomic condition hallmarked by orthostatic intolerance and tachycardia in the upright position. POTS impacts approximately 1-3 million people in the U.S. alone, in which the majority of patients are premenopausal women. The etiology of POTS is multi-factorial with three primary clinical subtypes, including neuropathic, hyperadrenergic, and hypovolemic POTS. Recent evidence suggests potential metabolic associations with POTS pathophysiology, particularly involving insulin resistance and abnormal vasoactive gut hormones. This review aims to characterize POTS phenotypes and explore potential metabolic links, focusing on insulin resistance and vasoactive gut hormones. Understanding the metabolic aspects of POTS pathophysiology could provide novel insights into its mechanisms and guide therapeutic approaches.
Collapse
Affiliation(s)
- Alaina C Glasgow
- Department of Exercise Science, Syracuse University, Syracuse, NY, United States
| | - Joon Young Kim
- Department of Exercise Science, Syracuse University, Syracuse, NY, United States.
| |
Collapse
|
7
|
Gong Y, Wei M, Cao X, Xu C, Jin J, Pei L, Li Y, Xiao H, Wu L. Mbnl1-mediated alternative splicing of circMlxipl regulates Rbbp6-involved ChREBP turnover to inhibit lipotoxicity-induced β-cell damage. Mol Med 2024; 30:229. [PMID: 39580381 PMCID: PMC11585089 DOI: 10.1186/s10020-024-00991-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/06/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Diabetes, a global epidemic, is the leading cause of mortality globally. The aim of this study is to get better understanding of pathophysiology of diabetes. METHODS Palmitic acid (PA)-treated β-cells, db/db mice and high fat diet (HFD)-fed mouse model of type 2 diabetes were established. H&E was used to assess the histological changes of pancreas. IHC, FISH, western blot or qRT-PCR was employed to detect the expression of key molecules in primary islets or lipotoxic β-cells. Cell behaviors were detected by MTT, EdU incorporation assay, TUNEL assay and glucose-induced insulin secretion (GSIS). The associations among circMlxipl, Mbnl1 and Rbbp6 were validated by RIP and RNA pull-down assays, and the direct binding between Hdac3 and Mbnl1 promoter was examined by ChIP and luciferase assays. Co-IP was employed to assess the interaction between ChREBP and Rbbp6, as well as the ubiquitination of ChREBP. RESULTS Hdac3 and ChREBP were upregulated, but Mbnl1 and circMlxipl were downregulated in islets from diabetic mice and lipotoxic β-cells. Mbnl1 overexpression protected against PA-induced impairments in lipotoxic β-cells through modulating back-splicing of circMlxipl and suppressing ChREBP. Hdac3 served as a transcriptional repressor of Mbnl1, and it was implicated in circMlxipl-mediated protection via regulating ChREBP expression in lipotoxic β-cells. Lack of circMlxipl inhibited Rbbp6-mediated ubiquitin-proteasomal degradation of ChREBP in lipotoxic β-cells. In vivo studies revealed that Hdac3 knockdown or Mbnl1 overexpression alleviated diabetes symptoms through circMlxipl-regulated ChREBP in diabetic mice. CONCLUSION Mbnl1-mediated alternative splicing of circMlxipl regulates Rbbp6-involved ChREBP turnover to inhibit lipotoxicity-induced β-cell damage.
Collapse
Affiliation(s)
- Yingying Gong
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Meilin Wei
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiaopei Cao
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Changliu Xu
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jiewen Jin
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ling Pei
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Yanbing Li
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Liting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
8
|
Saadati S, de Courten M, Deceneux C, Plebanski M, Scott D, Mesinovic J, Jansons P, Aldini G, Cameron J, Feehan J, Mousa A, de Courten B. Carnosine Supplementation Has No Effect on Inflammatory Markers in Adults with Prediabetes and Type 2 Diabetes: A Randomised Controlled Trial. Nutrients 2024; 16:3900. [PMID: 39599686 PMCID: PMC11597812 DOI: 10.3390/nu16223900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES In vitro studies suggest that carnosine reduces inflammation by upregulating anti-inflammatory mediators and downregulating pro-inflammatory cytokines. However, human clinical trials examining the effects of carnosine on inflammatory biomarkers are scant. We conducted a secondary analysis of a double-blind randomised controlled trial (RCT) to examine the effects of carnosine supplementation on inflammatory markers and adipokines in participants with prediabetes or well-controlled type 2 diabetes (T2D). METHODS Out of 88 participants who were recruited, 49 adults with prediabetes or well-controlled T2D (HbA1c: 6.6 ± 0.7% [mean ± SD]) who were treated with diet and/or metformin were eligible for inclusion. Participants were randomised to receive 2 g/day of carnosine or a matching placebo for 14 weeks. We measured serum concentrations of monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-6, IL-10, C-reactive protein (CRP), tumour necrosis factor-α (TNF-α), adiponectin, leptin, adipsin, serpin, and resistin levels at baseline and after 14 weeks. The trial was registered at clinicaltrials.gov (NCT02917928). RESULTS Forty-one participants (M = 29/F = 12) aged 53 (42.6, 59.3) years [median (IQR)] completed the trial. After 14 weeks of supplementation, changes in pro- and anti-inflammatory cytokine and adipokine levels did not differ between the carnosine and placebo groups (p > 0.05 for all). The results remained unchanged after adjustment for confounders including age, sex, and anthropometric measures (e.g., body fat percentage and visceral adipose tissue). CONCLUSIONS In individuals with prediabetes and well-controlled T2D, carnosine supplementation did not result in any significant changes in inflammatory markers. Larger RCTs with longer follow-up durations are needed to evaluate whether carnosine may be beneficial in individuals with poorly controlled T2D.
Collapse
Affiliation(s)
- Saeede Saadati
- Monash Centre for Health Research and Implementation (MCHRI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia; (S.S.); (A.M.)
| | - Maximilian de Courten
- Australian Health Policy Collaboration, Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC 8001, Australia;
| | - Cyril Deceneux
- Cancer Aging and Vaccine Laboratory, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (C.D.); (M.P.)
| | - Magdalena Plebanski
- Cancer Aging and Vaccine Laboratory, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (C.D.); (M.P.)
| | - David Scott
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC 3220, Australia; (D.S.); (J.M.); (P.J.)
| | - Jakub Mesinovic
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC 3220, Australia; (D.S.); (J.M.); (P.J.)
| | - Paul Jansons
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC 3220, Australia; (D.S.); (J.M.); (P.J.)
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy;
| | - James Cameron
- School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia;
| | - Jack Feehan
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia;
| | - Aya Mousa
- Monash Centre for Health Research and Implementation (MCHRI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia; (S.S.); (A.M.)
| | - Barbora de Courten
- School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia;
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia;
| |
Collapse
|
9
|
Le Ha K, Nguyen Van D, Do Manh H, Tran Thi D, Nguyen Trung K, Le Viet T, Nguyen Thi Thu H. Elevated Plasma High Sensitive C-Reactive Protein and Triglyceride/High-Density Lipoprotein Cholesterol Ratio are Risks Factors of Diabetes Progression in Prediabetes Patients After Kidney Transplant: A 3-Year Single-Center Study in Vietnam. Int J Gen Med 2024; 17:5095-5103. [PMID: 39526064 PMCID: PMC11550698 DOI: 10.2147/ijgm.s490561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose Determination the rate of developing post-transplant diabetes mellitus (PTDM) in prediabetic patients and the relationship with plasma hs-CRP levels and TG/HDL-C ratio in patients after kidney transplantation from living donors followed for 3 years. Subjects and Methods A total of 206 post-transplant patients diagnosed with prediabetes by oral glucose tolerance test (OGTT) were included in the study. At the time of diagnosis of prediabetes, all patients were clinically examined, paraclinical tests were performed, plasma hs-CRP was quantified, and the TG/HDL-C ratio was determined. Patients are individualized and given a reasonable diet and exercise regimen. Patients had their fasting blood glucose measured monthly or had an OGTT every 3 months. Patients meeting the criteria for diagnosis of PTDM according to the American Diabetes Association (ADA)-2018 were collected during 3 years of follow-up. Results The study group had an average age of 39.46 ± 10.26 years old, including 74.8% males and 25.2% females. The rate of patients who had a development of PTDM from prediabetes was 29.6% (61/206 patients). BMI, plasma TG, HDL-C, hs-CRP, and TG/HDL-C ratio at the time of prediabetes diagnosis were factors related to the progression of PTDM, in which hs-CRP and TG/HDL-C ratio were good predictors (with AUC = 0.85 and 0.874, respectively; p < 0.001). Conclusion After 3 years of follow-up, nearly one-third of prediabetic patients developed PTDM post-living donor kidney transplantation. BMI, plasma TG, HDL-C, hs-CRP, and the TG/HDL-C ratio were linked to DM progression, with hs-CRP and TG/HDL-C being the strongest predictors.
Collapse
Affiliation(s)
- Khoa Le Ha
- Hanoi Medical University, Hanoi, Vietnam
| | - Duc Nguyen Van
- Organ Transplant Center, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Ha Do Manh
- Organ Transplant Center, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Doan Tran Thi
- Department of Metabolic Disorders and Cardiology, National Hospital of Endocrinology, Hanoi, Vietnam
| | - Kien Nguyen Trung
- Hematology and Blood Transfusion Center, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Thang Le Viet
- Organ Transplant Center, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Ha Nguyen Thi Thu
- Organ Transplant Center, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| |
Collapse
|
10
|
Adewale OO, Oyelola RF, Adetuyi OA, Adebisi OA, Adekomi DA, Oladele JO. Water-soluble phenolics from Phoenix dactylifera fruits as potential reno-protective agent against cisplatin-induced toxicity: pre- and post-treatment strategies. Drug Chem Toxicol 2024; 47:1058-1071. [PMID: 38529813 DOI: 10.1080/01480545.2024.2329762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/07/2024] [Indexed: 03/27/2024]
Abstract
Nephrotoxicity is the major side effect of cisplatin, an effective platinum-based chemotherapeutic drug that is applicable in the treatment of several solid-tissue cancers. Studies have indicated that certain water-soluble phenolics offer renal protection. Thus, this study investigates the role of pre and post-treatment of rats with water-soluble phenolics from Phoenix dactylifera (PdP) against nephrotoxicity induced by cisplatin. Rats were either orally pretreated or post-treated with 200 mg/kg body weight of PdP before or after exposure to a single therapeutic dose of cisplatin (5 mg/kg body weight) for 7 successive days intraperitoneally. The protective effects of PdP against Cisplatin-induced nephrotoxicity was based on the evaluation of various biochemical and redox biomarkers, together with histopathological examination of kidney tissues. The composition, structural features, and antioxidative influence of PdP were determined based on chromatographic, spectroscopic, and in vitro antioxidative models. Cisplatin single exposure led to a substantial increase in the tested renal function biomarkers (uric acid, creatinine, and urea levels), associated with an increase in malondialdehyde indicating lipid peroxidation and a significant decline (p < 0.05) in reduced glutathione (GSH) levels in the renal tissue when compared with the control group. A marked decline exists in the kidney antioxidant enzymes (catalase, SOD, and GPx). Nevertheless, treatment with PdP significantly suppressed the heightened renal function markers, lipid peroxidation, and oxidative stress. Spectroscopic analysis revealed significant medicinal phenolics, and in vitro tests demonstrated antioxidative properties. Taken together, results from this study indicate that pre- and/or post-treatment strategies of PdP could serve therapeutic purposes in cisplatin-induced renal damage.
Collapse
Affiliation(s)
| | | | - Oluwatosin Adefunke Adetuyi
- Department of Biochemistry, Osun State University, Osogbo, Nigeria
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, KS, USA
| | - Oluwaseun Abraham Adebisi
- Department of Biochemistry, Osun State University, Osogbo, Nigeria
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Damilare Adedayo Adekomi
- Department of Anatomy, Faculty of Basic Medical Sciences, Osun State University, Osogbo, Nigeria
| | - Johnson Olaleye Oladele
- Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Phytochemical research unit, Royal Scientific Research Institute, Osogbo, Nigeria
| |
Collapse
|
11
|
Fang H, Li X, Lv J, Huo X, Guo M, Liu X, Li C, Chen Z, Du X. Adipocytokines and Inflammation in Patients and a Gerbil Model: Implications for Obesity-Related and Nonobese Diabetes. J Diabetes Res 2024; 2024:9683512. [PMID: 39474247 PMCID: PMC11521580 DOI: 10.1155/2024/9683512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/21/2024] [Indexed: 12/27/2024] Open
Abstract
Background: Obesity is a predisposing risk factor for type 2 diabetes mellitus (T2DM). Actually, not only obese/overweight but also nonobese/lean individuals may be prone to T2DM. This study is aimed at identifying the contribution of adipose tissue to the development of nonobese diabetes (NOD) and obese diabetes (OD). Methods: Serum samples from the nonobese nondiabetes (NOND, n = 47, age = 46.8 ± 8.4, BMI ≤ 23.9 kg/m2) controls, NOD (n = 48, age = 50.7 ± 6.5, BMI ≤ 23.9 kg/m2) and OD (n = 65, age = 49.8 ± 10.2, BMI ≥ 28 kg/m2) patients were utilized to measure the expression of metabolic indicators, adipocytokines, inflammatory factors. Different adipose depots from offspring with corresponding blood glucose and obesity levels of a spontaneously diabetic gerbil line with various degrees of diabetic penetrance and body weights were examined for adipocytokines and inflammation factors detected by ELISA and western blot. Adipose tissue volume and fat cell size of the gerbils were evaluated by magnetic resonance imaging and immunohistochemistry, respectively. Results: The study yielded four key findings. Firstly, in comparison to the NOD group, the OD group exhibited more severe insulin resistance (IR) and metabolic dysfunction in both patients and gerbils, attributed to higher visceral adipose tissue mass and larger fat cell sizes. Secondly, in gerbils, gonadal fat deposition was linked to obesity development, whereas kidney fat deposition correlated with obesity and diabetes occurrence. Thirdly, in both patients and gerbils, the interplay between adiponectin and leptin levels in serum may significantly influence the development of obesity and diabetes. Lastly, heightened expression of MCP3 in gerbils' kidney adipose tissue may serve as a pivotal factor in initiating obesity-associated diabetes. Conclusions: Our study, which may be considered a pilot investigation, suggests that the interaction of adipocytokines and inflammation factors in different adipose depots could play diverse roles in the development of diabetes or obesity.
Collapse
Affiliation(s)
- Hongjuan Fang
- Department of Endocrinology, Aviation General Hospital, Beijing 100012, China
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Xiaohong Li
- School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
- School of Basic Medical Science, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Jianyi Lv
- School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Xueyun Huo
- School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Meng Guo
- School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Xin Liu
- School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Changlong Li
- School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Zhenwen Chen
- School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Xiaoyan Du
- School of Basic Medical Science, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| |
Collapse
|
12
|
Zhuang L, Li Q, You W, Wen S, Chen T, Su J, Zhao W, Hu J. Complement C3 promotes islet β-cell dedifferentiation by activating Wnt/β-catenin pathway. iScience 2024; 27:111064. [PMID: 39635125 PMCID: PMC11615230 DOI: 10.1016/j.isci.2024.111064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/03/2024] [Accepted: 09/25/2024] [Indexed: 12/07/2024] Open
Abstract
Islet β-cell dedifferentiation is a key step in the progression of diabetes, and complement C3 enhances secretion of several inflammatory mediators and cytokines in type 2 diabetes mellitus (T2DM). Here, we identified the underlying mechanisms of complement C3 in islet β-cell dedifferentiation. The protein level of C3 is increased in blood of T2DM patients and mice, as well as in T2DM islet β cells. Insulin, gliclazide, and metformin decreased complement C3, Nga3, and Oct4 levels but increased Pdx1 and MafA expressions; these treatments inhibit islet β-cell dedifferentiation in in vitro and in vivo models. We also observed that C3 promoted islet β-cell dedifferentiation, whereas C3 knockdown inhibited β-cell dedifferentiation. Moreover, C3 activates Wnt/β-catenin pathway by upregulating p-β-catenin levels, Wnt/β-catenin inhibitors significantly blocked C3-induced upregulation of islet β-cell dedifferentiation. In conclusion, C3 promoted islet β-cell dedifferentiation by activation of Wnt/β-catenin in T2DM. Targeting C3 might be a potential therapeutic strategy for T2DM treatment.
Collapse
Affiliation(s)
- Lei Zhuang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Endocrinology, The Second People’s Hospital of Nantong, Nantong, China
| | - Qi Li
- Department of Clinical Biochemistry, School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Wenjun You
- Department of Endocrinology, The Second People’s Hospital of Nantong, Nantong, China
| | - Shengke Wen
- Department of Clinical Biochemistry, School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | | | - Jianbin Su
- Department of Endocrinology, Affiliated Hospital of Nantong University, and First People’s Hospital of Nantong, Nantong, China
| | - Wei Zhao
- Department of Clinical Biochemistry, School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
13
|
Tegegne BA, Adugna A, Yenet A, Yihunie Belay W, Yibeltal Y, Dagne A, Hibstu Teffera Z, Amare GA, Abebaw D, Tewabe H, Abebe RB, Zeleke TK. A critical review on diabetes mellitus type 1 and type 2 management approaches: from lifestyle modification to current and novel targets and therapeutic agents. Front Endocrinol (Lausanne) 2024; 15:1440456. [PMID: 39493778 PMCID: PMC11527681 DOI: 10.3389/fendo.2024.1440456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024] Open
Abstract
Diabetes mellitus (DM) has emerged as an international health epidemic due to its rapid rise in prevalence. Consequently, scientists and or researchers will continue to find novel, safe, effective, and affordable anti-diabetic medications. The goal of this review is to provide a thorough overview of the role that lifestyle changes play in managing diabetes, as well as the standard medications that are currently being used to treat the condition and the most recent advancements in the development of novel medical treatments that may be used as future interventions for the disease. A literature search was conducted using research databases such as PubMed, Web of Science, Scopus, ScienceDirect, Wiley Online Library, Google Scholar, etc. Data were then abstracted from these publications using words or Phrases like "pathophysiology of diabetes", "Signe and symptoms of diabetes", "types of diabetes", "major risk factors and complication of diabetes", "diagnosis of diabetes", "lifestyle modification for diabetes", "current antidiabetic agents", and "novel drugs and targets for diabetes management" that were published in English and had a strong scientific foundation. Special emphasis was given to the importance of lifestyle modification, as well as current, novel, and emerging/promising drugs and targets helpful for the management of both T1DM and T2DM.
Collapse
Affiliation(s)
- Bantayehu Addis Tegegne
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Adane Adugna
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Aderaw Yenet
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Wubetu Yihunie Belay
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Yared Yibeltal
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Dagne
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu Teffera
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Gashaw Azanaw Amare
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Desalegn Abebaw
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Haymanot Tewabe
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Rahel Belete Abebe
- Department of Clinical Pharmacy, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Tirsit Ketsela Zeleke
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
14
|
Zhang R, Wei D, Fan K, Wang L, Song Y, Huo W, Xu Q, Ni H. Association of polychlorinated biphenyls with vitamin D among rural Chinese adults with normal glycaemia and type 2 diabetes mellitus. Environ Health 2024; 23:86. [PMID: 39415262 PMCID: PMC11484225 DOI: 10.1186/s12940-024-01130-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Endocrine function in patients with type 2 diabetes (T2DM) typically differs from those with normal glucose tolerance (NGT). However, few epidemiologic studies have explored how these differences impact the association between exposure to polychlorinated biphenyls (PCBs) and vitamin D levels. METHODS This study included 1,705 subjects aged 18-79 years from the Henan Rural Cohort [887 NGT and 818 T2DM]. Linear regression was applied to evaluate the associations between PCB exposure and vitamin D levels. Quantile g-computation regression (QG) and Bayesian kernel machine regression (BKMR) were applied to evaluate the impact of PCB mixtures on vitamin D levels. Interaction effects of ΣPCBs with HOMA2-%β and HOMA2-IR on vitamin D levels were assessed. RESULTS Plasma ΣPCBs was positively associated with 25(OH)D2 in the NGT group (β = 0.060, 95% CI: 0.028, 0.092). Conversely, in T2DM group, ΣPCBs was negatively associated with 25(OH)D3 and 25(OH)D (β = -0.049, 95% CI: -0.072, -0.026; β = -0.043, 95% CI: -0.063, -0.023). Similarly, both QG and BKMR analysis revealed a negative association between PCB mixture exposure and vitamin D levels in the T2DM group, contrary to the results observed in the NGT groups. Furthermore, the negative association of ΣPCBs with 25(OH)D2 and 25(OH)D disappeared or changed to a positive association with the increase of HOMA2-%β levels. CONCLUSIONS These findings suggest that decreased β cell function may exacerbate the negative effects of PCB exposure on vitamin D levels. Recognizing T2DM patients' sensitivity to PCBs is vital for protecting chronic disease health.
Collapse
Affiliation(s)
- Rui Zhang
- Zhengzhou Customs Districe P.R. CHINA, Henan, PR China
| | - Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Keliang Fan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Lulu Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yu Song
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenqian Huo
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Qingqing Xu
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, China.
- Department of Anesthesia and Pain Medicine, Hospital of Jiaxing University, The First Hospital of Jiaxing, 1882 Zhonghuansouth Road, Jiaxing, 314001, Zhejiang, China.
| | - Huadong Ni
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, China.
- Department of Anesthesia and Pain Medicine, Hospital of Jiaxing University, The First Hospital of Jiaxing, 1882 Zhonghuansouth Road, Jiaxing, 314001, Zhejiang, China.
| |
Collapse
|
15
|
Ahmad R, Haque M. Metformin: Beyond Type 2 Diabetes Mellitus. Cureus 2024; 16:e71730. [PMID: 39421288 PMCID: PMC11486535 DOI: 10.7759/cureus.71730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024] Open
Abstract
Metformin was developed from an offshoot of Guanidine. It is known to be the first-line medication for type 2 diabetes mellitus, polycystic ovarian syndrome, and weight reduction. Metformin has also been shown to have effectiveness in the management of non-alcoholic fatty liver disease (NAFLD), liver cirrhosis, and various carcinomas like hepatocellular, colorectal, prostate, breast, urinary bladder, blood, melanoma, bone, skin, lung and so on. This narrative review focuses on the effect of metformin on non-alcoholic fatty liver disease, liver cirrhosis, and hepatocellular carcinoma. The search platforms for the topic were PubMed, Scopus, and Google search engine. Critical words for searching included 'Metformin,' AND 'Indications of Metformin,' AND 'Non-Alcoholic Fatty Liver Disease,' AND 'Metformin mechanism of action,' AND 'NAFLD management,' AND 'NAFLD and inflammation,' AND 'Metformin and insulin,' AND 'Metformin and inflammation,' AND 'Liver cirrhosis,' AND 'Hepatocellular carcinoma.' Lifestyle modification and the use of hypoglycemic agents can help improve liver conditions. Metformin has several mechanisms that enhance liver health, including reducing reactive oxygen species, nuclear factor kappa beta (NF-κB), liver enzymes, improving insulin sensitivity, and improving hepatic cell lipophagy. Long-term use of metformin may cause some adverse effects like lactic acidosis and gastrointestinal disturbance. Metformin long-term overdose may lead to a rise in hydrogen sulfide in liver cells, which calls for pharmacovigilance. Drug regulating authorities should provide approval for further research, and national and international guidelines need to be developed for liver diseases, perhaps with the inclusion of metformin as part of the management regime.
Collapse
Affiliation(s)
- Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka, BGD
| | - Mainul Haque
- Department of Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| |
Collapse
|
16
|
Frans P, Mkabayi L, Pletschke BI, Frost CL. The effects of Cannabis sativa and cannabinoids on the inhibition of pancreatic lipase - An enzyme involved in obesity. Biomed Pharmacother 2024; 179:117357. [PMID: 39232382 DOI: 10.1016/j.biopha.2024.117357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
INTRODUCTION Obesity is a chronic noncommunicable disease characterized by excessive body fat that can have negative health consequences. Obesity is a complex disease caused by a combination of genetic, environmental, and lifestyle factors. It is characterized by a discrepancy between caloric intake and expenditure. Obesity increases the risk of acquiring major chronic diseases, including heart disease, stroke, cancer, and Type 2 diabetes mellitus (T2DM). Currently, the inhibition of pancreatic lipases (PL) is a promising pharmacological therapy for obesity and weight management. In this study, the inhibition of pancreatic lipase by Cannabis sativa (C. sativa) plant extract and cannabinoids was investigated. METHODS The inhibitory effect was assessed using p-nitrophenyl butyrate (pNPB), and the results were obtained by calculating the percentage relative activity and assessed using one-way analysis of variance (ANOVA). Kinetic studies and spectroscopy techniques were used to evaluate the mode of inhibition. Diet-induced; and diabetic rat models were studied to evaluate the direct effects of C. sativa extract on PL activity. RESULTS Kinetic analyses showed that the plant extracts inhibited pancreatic lipase, with tetrahydrocannabinol (THC) and cannabinol (CBN) being the potential cause of the inhibition noted for the C. sativa plant extract. CBN and THC inhibited the pancreatic lipase activity in a competitive manner, with the lowest residual enzyme activity of 52 % observed at a 10 μg/mL concentration of CBN and 39 % inhibition at a 25 μg/mL concentration of THC. Circular dichroism (CD) spectroscopy revealed that the inhibitors caused a change in the enzyme's secondary structure. At low concentrations, THC showed potential for synergistic inhibition with orlistat. C.sativa treatment in an in vivo rat model confirmed its inhibitory effects on pancreatic lipase activity. CONCLUSION The findings in this study provided insight into the use of cannabinoids as pancreatic lipase inhibitors and the possibility of using these compounds to develop new pharmacological treatments for obesity.
Collapse
Affiliation(s)
- Phelokazi Frans
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth 6031, South Africa
| | - Lithalethu Mkabayi
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | - Brett I Pletschke
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | - Carminita L Frost
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth 6031, South Africa.
| |
Collapse
|
17
|
Nigdelioglu Dolanbay S, Şirin S, Aslim B. Allocryptopine Attenuates Inflammatory Responses in Microglial Cells Via TLR4-Dependent NF-κB and p38 MAPK Pathways. Mol Neurobiol 2024:10.1007/s12035-024-04520-x. [PMID: 39331354 DOI: 10.1007/s12035-024-04520-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Studies in the existing literature propose that allocryptopine possesses both antioxidant and anti-inflammatory properties, showcasing its neuroprotective effects by potentially mitigating oxidative stress and inflammation. This study aims to investigate the antioxidant and anti-inflammatory effects of allocryptopine on various targets and potential mechanisms that have not been previously explored in the literature. Initially, we used MTT and LDH methods to evaluate the effects of allocryptopine on cell viability in BV-2 cells exposed to LPS-induced damage. Subsequently, we evaluated the impact of allocryptopine on pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), other inflammatory mediators (Cox-2 and iNOS), and p38 MAPK genes and proteins through qRT-PCR and Western blot analyses. Also, we evaluated the impact of allocryptopine on NF-κB proteins (TLR4, MyD88, IκBα, p-p50, and p-p65) through ELISA assay. Molecular docking analyses were performed to investigate the potential binding of allocryptopine to target proteins (TLR4, MyD88, IκBα, p50, p65, MKK3, MKK4, MKK6, p38, AP-1 (c-Jun and ATF2), IL-1β, IL-6, TNF-α, Cox-2, and iNOS) associated with the TLR4, NF-κB, and p38 MAPK pathways. Our results indicate that allocryptopine exerts a comprehensive influence on pro-inflammatory cytokines and other inflammatory mediators by inhibiting TLR4 signaling and modulating the NF-κB and p38 MAPK pathways. The outcomes of our study suggest that the antioxidant and anti-inflammatory efficacy of allocryptopine is intricately linked to the modulation of key molecular pathways associated with oxidative stress and inflammation. These findings highlight the potential of allocryptopine as a therapeutic agent for addressing neurodegenerative diseases by safeguarding neuronal health.
Collapse
Affiliation(s)
| | - Seda Şirin
- Faculty of Science, Department of Biology, Gazi University, 06500, Teknikokullar, Ankara, Turkey.
| | - Belma Aslim
- Faculty of Science, Department of Biology, Gazi University, 06500, Teknikokullar, Ankara, Turkey
| |
Collapse
|
18
|
Sinha SK, Carpio MB, Nicholas SB. Fiery Connections: Macrophage-Mediated Inflammation, the Journey from Obesity to Type 2 Diabetes Mellitus and Diabetic Kidney Disease. Biomedicines 2024; 12:2209. [PMID: 39457523 PMCID: PMC11503991 DOI: 10.3390/biomedicines12102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
The high prevalence of diabetes mellitus (DM) poses a significant public health challenge, with diabetic kidney disease (DKD) as one of its most serious consequences. It has become increasingly clear that type 2 DM (T2D) and the complications of DKD are not purely metabolic disorders. This review outlines emerging evidence related to the step-by-step contribution of macrophages to the development and progression of DKD in individuals who specifically develop T2D as a result of obesity. The macrophage is a prominent inflammatory cell that contributes to obesity, where adipocyte hypertrophy leads to macrophage recruitment and eventually to the expansion of adipose tissue. The recruited macrophages secrete proinflammatory cytokines, which cause systemic inflammation, glucose dysregulation, and insulin sensitivity, ultimately contributing to the development of T2D. Under such pathological changes, the kidney is susceptible to elevated glucose and thereby activates signaling pathways that ultimately drive monocyte recruitment. In particular, the early recruitment of proinflammatory macrophages in the diabetic kidney produces inflammatory cytokines/chemokines that contribute to inflammation and tissue damage associated with DKD pathology. Macrophage activation and recruitment are crucial inciting factors that also persist as DKD progresses. Thus, targeting macrophage activation and function could be a promising therapeutic approach, potentially offering significant benefits for managing DKD at all stages of progression.
Collapse
Affiliation(s)
- Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Maria Beatriz Carpio
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Susanne B. Nicholas
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
19
|
Ergul Erkec O, Huyut Z, Acikgoz E, Huyut MT. Effects of exogenous ghrelin treatment on oxidative stress, inflammation and histological parameters in a fat-fed streptozotocin rat model. Arch Physiol Biochem 2024:1-11. [PMID: 39324977 DOI: 10.1080/13813455.2024.2407551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/17/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
In this study, the anti-inflammatory, antioxidative, and protective effects of ghrelin were investigated in a fat-fed streptozotocin (STZ) rat model and compared with metformin, diabetes and the healthy control groups. Histopathological evaluations were performed on H&E-stained pancreas and brain sections. Biochemical parameters were investigated by enzyme-linked immunosorbent assay. Blood glucose levels were significantly decreased with ghrelin or metformin treatments than the diabetes group. STZ administration increased brain, renal and pancreatic IL-1β, TNF-α and MDA while decreasing GPX, CAT, SOD, and NGF levels. Ghrelin increased renal GPX, CAT, NGF pancreatic GPX, SOD, CAT, NGF and brain SOD, NGF while it decreased renal, pancreatic and brain IL-1β, TNF-α and MDA levels. Ghrelin reduced neuronal loss and degeneration in the cerebral cortex and hippocampus and greatly ameliorated diabetes-related damage in pancreas. In conclusion, the data suggested that ghrelin is an effective candidate as a protectant for reducing the adverse effects of diabetes.
Collapse
Affiliation(s)
- Ozlem Ergul Erkec
- Department of Physiology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Zubeyir Huyut
- Department of Biochemistry, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Eda Acikgoz
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Mehmet Tahir Huyut
- Department of Biostatistics, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| |
Collapse
|
20
|
Phuwilert P, Khiewkhern S, Phajan T, Wongprachum K, Wibuloutai J, Srichomphoo C, Nghiep LK, Tudpor K. Factors Affecting Glycemic Control in Patients with Type 2 Diabetes in Kalasin Province, Thailand: An Analytical Cross-Sectional Study. Healthcare (Basel) 2024; 12:1916. [PMID: 39408096 PMCID: PMC11475190 DOI: 10.3390/healthcare12191916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Optimal glycemic management is critical since it can predict all associated essential causes of death, even after accounting for other risk factors. Objectives: This study investigated the factors associated with glycemic control in patients with type 2 diabetes mellitus (T2DM), particularly self-care behaviors. Methods: An analytical cross-sectional study examined 385 patients with T2DM in 1 general and 17 community hospitals in Kalasin Province. The samples were collected using mixed-method sampling. Data were collected using a validated questionnaire with six parts and laboratory examination records between September 2021 and December 2022. Descriptive statistics (e.g., percentages and means ± SD) were used to analyze the data. The relationship between relevant factors and lack of glycemic control was analyzed by multivariate logistic regression using SPSS version 25. Results: Results showed that most patients were female (78.18%), and the mean age was 59.84 ± 9.05 years. Additionally, a significant proportion of the patients (79.74%) had poor glycemic control. Several factors are significantly associated with poor glycemic control in patients with T2DM. These factors included subjects under the age of 60 years (OR = 2.95, 95% CI: 1.57 to 5.54; p-value < 0.001), a diabetes duration of over 10 years (OR = 3.95, 95% CI: 1.90 to 8.22; p-value < 0.001), poor knowledge about diabetes (OR = 3.92, 95% CI: 1.59 to 9.67; p-value < 0.003), and inadequate self-care behaviors (OR = 6.12, 95% CI: 3.20 to 11.68; p-value < 0.001). Conclusions: In conclusion, proper interventions for controlling glycemic level behaviors are necessary to improve proper self-care behaviors in patients who have a low knowledge level of T2DM, have had diabetes for over ten years, and are aged < 60 years. This approach can reduce the likelihood of experiencing disabilities and economic hardship.
Collapse
Affiliation(s)
- Patcharin Phuwilert
- Faculty of Public Health, Mahasarakham University, Maha Sarakham 44150, Thailand; (P.P.); (K.W.); (J.W.); (K.T.)
| | - Santisith Khiewkhern
- Faculty of Public Health, Mahasarakham University, Maha Sarakham 44150, Thailand; (P.P.); (K.W.); (J.W.); (K.T.)
- Public Health and Environmental Policy in Southeast Asia Research Cluster (PHEP-SEA), Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Teerasak Phajan
- Department of Community Public Health, Sirindhorn College of Public Health Khon Kaen, Khon Kaen 40000, Thailand;
| | - Kasama Wongprachum
- Faculty of Public Health, Mahasarakham University, Maha Sarakham 44150, Thailand; (P.P.); (K.W.); (J.W.); (K.T.)
- Public Health and Environmental Policy in Southeast Asia Research Cluster (PHEP-SEA), Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Jindawan Wibuloutai
- Faculty of Public Health, Mahasarakham University, Maha Sarakham 44150, Thailand; (P.P.); (K.W.); (J.W.); (K.T.)
| | - Chitkamon Srichomphoo
- Faculty of Health and Sports Science, Thaksin University, Phatthalung Campus, Phatthalung 93210, Thailand;
| | - Le Ke Nghiep
- Vinh Long Department of Health, Vinh Long 85000, Vietnam;
| | - Kukiat Tudpor
- Faculty of Public Health, Mahasarakham University, Maha Sarakham 44150, Thailand; (P.P.); (K.W.); (J.W.); (K.T.)
- Public Health and Environmental Policy in Southeast Asia Research Cluster (PHEP-SEA), Mahasarakham University, Maha Sarakham 44150, Thailand
| |
Collapse
|
21
|
Velagapudi S, Karsai G, Karsai M, Mohammed SA, Montecucco F, Liberale L, Lee H, Carbone F, Adami GF, Yang K, Crucet M, Stein S, Paneni F, Lapikova-Bryhinska T, Jang HD, Kraler S, Vdovenko D, Züllig RA, Camici GG, Kim HS, Laaksonen R, Gerber PA, Hornemann T, Akhmedov A, Lüscher TF. Inhibition of de novo ceramide synthesis by sirtuin-1 improves beta-cell function and glucose metabolism in type 2 diabetes. Cardiovasc Res 2024; 120:1265-1278. [PMID: 38739545 DOI: 10.1093/cvr/cvae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/03/2024] [Accepted: 03/26/2024] [Indexed: 05/16/2024] Open
Abstract
AIMS Obesity and type 2 diabetes (T2D) are major risk factors for cardiovascular (CV) diseases. Dysregulated pro-apoptotic ceramide synthesis reduces β-cell insulin secretion, thereby promoting hyperglycaemic states that may manifest as T2D. Pro-apoptotic ceramides modulate insulin sensitivity and glucose tolerance while being linked to poor CV outcomes. Sirtuin-1 (SIRT1) is a NAD + -dependent deacetylase that protects against pancreatic β-cell dysfunction; however, systemic levels are decreased in obese-T2D mice and may promote pro-apoptotic ceramide synthesis and hyperglycaemia. Herein, we aimed to assess the effects of restoring circulating SIRT1 levels to prevent metabolic imbalance in obese and diabetic mice. METHODS AND RESULTS Circulating SIRT1 levels were reduced in obese-diabetic mice (db/db) as compared to age-matched non-diabetic db/+ controls. Restoration of SIRT1 plasma levels with recombinant murine SIRT1 for 4 weeks prevented body weight gain and improved glucose tolerance, insulin sensitivity, and vascular function in mice models of obesity and T2D. Untargeted lipidomics revealed that SIRT1 restored insulin secretory function of β-cells by reducing synthesis and accumulation of pro-apoptotic ceramides. Molecular mechanisms involved direct binding to and deacetylation of Toll-like receptor 4 (TLR4) by SIRT1 in β-cells, thereby decreasing the rate-limiting enzymes of sphingolipid synthesis SPTLC1/2 via AKT/NF-κB. Among patients with T2D, those with high baseline plasma levels of SIRT1 prior to metabolic surgery displayed restored β-cell function (HOMA2-β) and were more likely to have T2D remission during follow-up. CONCLUSION Acetylation of TLR4 promotes β-cell dysfunction via ceramide synthesis in T2D, which is blunted by systemic SIRT1 replenishment. Hence, restoration of systemic SIRT1 may provide a novel therapeutic strategy to counteract toxic ceramide synthesis and mitigate CV complications of T2D.
Collapse
Affiliation(s)
- Srividya Velagapudi
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | - Gergely Karsai
- Institute of Clinical Chemistry, University Hospital Zürich, Zürich, Switzerland
| | - Maria Karsai
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zürich and University of Zürich, Zürich, Switzerland
| | - Shafeeq A Mohammed
- Department of Cardiology, Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital and University of Zürich, Zürich, Switzerland
| | - Fabrizio Montecucco
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa School of Medicine, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy
| | - Luca Liberale
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa School of Medicine, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy
| | - Hwan Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Federico Carbone
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa School of Medicine, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy
| | - Giovanni Francesco Adami
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa School of Medicine, Genoa, Italy
| | - Kangmin Yang
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | - Margot Crucet
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | - Sokrates Stein
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | - Franceso Paneni
- Department of Cardiology, Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital and University of Zürich, Zürich, Switzerland
| | | | - Hyun-Duk Jang
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Simon Kraler
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | - Daria Vdovenko
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | - Richard Arnold Züllig
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zürich and University of Zürich, Zürich, Switzerland
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | - Hyo-Soo Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Reijo Laaksonen
- Zora Biosciences and Finnish Cardiovascular Research Center, Finland Medical School, Tampere University, Tampere, Finland
| | - Philipp A Gerber
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zürich and University of Zürich, Zürich, Switzerland
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University Hospital Zürich, Zürich, Switzerland
| | - Alexander Akhmedov
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
- Royal Brompton and Harefield Hospitals, Imperial College and King's College, London, United Kingdom
| |
Collapse
|
22
|
Abu-Nejem R, Hannon TS. Insulin Dynamics and Pathophysiology in Youth-Onset Type 2 Diabetes. J Clin Endocrinol Metab 2024; 109:2411-2421. [PMID: 38963882 DOI: 10.1210/clinem/dgae463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/06/2024]
Abstract
Youth-onset type 2 diabetes (T2D) is increasing around the globe. The mounting disease burden of youth-onset T2D portends substantial consequences for the health outcomes of young people and for health care systems. The pathophysiology of this condition is characterized by insulin resistance and initial insulin hypersecretion ± an inherent insulin secretory defect, with progressive loss of stimulated insulin secretion leading to pancreatic β-cell failure. Research studies focusing on youth-onset T2D have illuminated key differences for youth- vs adult-onset T2D, with youth having more profound insulin resistance and quicker progression to loss of sufficient insulin secretion to maintain euglycemia. There is a need for therapies that are targeted to improve both insulin resistance and, importantly, maintain sufficient insulin secretory function over the lifespan in youth-onset T2D.
Collapse
Affiliation(s)
- Rozan Abu-Nejem
- Department of Pediatrics, Divisions of Pediatric Endocrinology and Diabetology and Pediatric Health Services Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Tamara S Hannon
- Department of Pediatrics, Divisions of Pediatric Endocrinology and Diabetology and Pediatric Health Services Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
23
|
Kato M, Abdollahi M, Omori K, Malek V, Lanting L, Kandeel F, Rawson J, Tsark W, Zhang L, Wang M, Tunduguru R, Natarajan R. Lowering an ER stress-regulated long noncoding RNA protects mice from diabetes and isolated pancreatic islets from cell death. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102252. [PMID: 39071954 PMCID: PMC11278341 DOI: 10.1016/j.omtn.2024.102252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/13/2024] [Indexed: 07/30/2024]
Abstract
We investigated the role of the endoplasmic reticulum (ER) stress-regulated long noncoding RNA (lncRNA) lncMGC in pancreatic islets and the pathology of type 1 diabetes (T1D), as well as the potential of lncMGC-based therapeutics. In vivo, blood glucose levels (BGLs) and HbA1c were significantly lower in lncMGC-knockout (KO)-streptozotocin (STZ)-treated diabetic mice compared to wild-type STZ. Antisense oligonucleotides (GapmeR) targeting lncMGC significantly attenuated insulitis and BGLs in T1D NOD mice compared to GapmeR-negative control (NC). GapmeR-injected T1D Akita mice showed significantly lower BGLs compared to Akita-NC mice. hlncMGC-GapmeR lowered BGLs in partially humanized lncMGC (hlncMGC)-STZ mice compared to NC-injected mice. CHOP (ER stress regulating transcription factor) and lncMGC were upregulated in islets from diabetic mice but not in lncMGC-KO and GapmeR-injected diabetic mice, suggesting ER stress involvement. In vitro, hlncMGC-GapmeR increased the viability of isolated islets from human donors and hlncMGC mice and protected them from cytokine-induced apoptosis. Anti-ER stress and anti-apoptotic genes were upregulated, but pro-apoptotic genes were down-regulated in lncMGC KO mice islets and GapmeR-treated human islets. Taken together, these results show that a GapmeR-targeting lncMGC is effective in ameliorating diabetes in mice and also preserves human and mouse islet viability, implicating clinical translation potential.
Collapse
Affiliation(s)
- Mitsuo Kato
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Maryam Abdollahi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Keiko Omori
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Vajir Malek
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Linda Lanting
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Jeffrey Rawson
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Walter Tsark
- Transgenic Mouse Facility, Center for Comparative Medicine, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Lingxiao Zhang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Mei Wang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Ragadeepthi Tunduguru
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
24
|
Drzymała A. The Functions of SARS-CoV-2 Receptors in Diabetes-Related Severe COVID-19. Int J Mol Sci 2024; 25:9635. [PMID: 39273582 PMCID: PMC11394807 DOI: 10.3390/ijms25179635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is considered a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor of high importance, but due to its non-ubiquitous expression, studies of other proteins that may participate in virus internalisation have been undertaken. To date, many alternative receptors have been discovered. Their functioning may provide an explanation for some of the events observed in severe COVID-19 that cannot be directly explained by the model in which ACE2 constitutes the central point of infection. Diabetes mellitus type 2 (T2D) can induce severe COVID-19 development. Although many mechanisms associated with ACE2 can lead to increased SARS-CoV-2 virulence in diabetes, proteins such as basigin (CD147), glucose-regulated protein 78 kDa (GRP78), cluster of differentiation 4 (CD4), transferrin receptor (TfR), integrins α5β1/αvβ3, or ACE2 co-receptors neuropilin 2 (NRP2), vimentin, and even syalilated gangliosides may also be responsible for worsening the COVID-19 course. On the other hand, some others may play protective roles. Understanding how diabetes-associated mechanisms can induce severe COVID-19 via modification of virus receptor functioning needs further extensive studies.
Collapse
Affiliation(s)
- Adam Drzymała
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052 Opole, Poland
| |
Collapse
|
25
|
Zhao K, So HC, Lin Z. scParser: sparse representation learning for scalable single-cell RNA sequencing data analysis. Genome Biol 2024; 25:223. [PMID: 39152499 PMCID: PMC11328435 DOI: 10.1186/s13059-024-03345-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
The rapid rise in the availability and scale of scRNA-seq data needs scalable methods for integrative analysis. Though many methods for data integration have been developed, few focus on understanding the heterogeneous effects of biological conditions across different cell populations in integrative analysis. Our proposed scalable approach, scParser, models the heterogeneous effects from biological conditions, which unveils the key mechanisms by which gene expression contributes to phenotypes. Notably, the extended scParser pinpoints biological processes in cell subpopulations that contribute to disease pathogenesis. scParser achieves favorable performance in cell clustering compared to state-of-the-art methods and has a broad and diverse applicability.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Statistics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hon-Cheong So
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology and The Chinese University of Hong Kong, Hong Kong SAR, China.
- Department of Psychiatry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- Margaret K.L. Cheung Research Centre for Management of Parkinsonism, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- Hong Kong Branch of the Chinese Academy of Sciences Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Zhixiang Lin
- Department of Statistics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
26
|
Mummey HM, Elison W, Korgaonkar K, Elgamal RM, Kudtarkar P, Griffin E, Benaglio P, Miller M, Jha A, Fox JEM, McCarthy MI, Preissl S, Gloyn AL, MacDonald PE, Gaulton KJ. Single cell multiome profiling of pancreatic islets reveals physiological changes in cell type-specific regulation associated with diabetes risk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.03.606460. [PMID: 39149326 PMCID: PMC11326183 DOI: 10.1101/2024.08.03.606460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Physiological variability in pancreatic cell type gene regulation and the impact on diabetes risk is poorly understood. In this study we mapped gene regulation in pancreatic cell types using single cell multiomic (joint RNA-seq and ATAC-seq) profiling in 28 non-diabetic donors in combination with single cell data from 35 non-diabetic donors in the Human Pancreas Analysis Program. We identified widespread associations with age, sex, BMI, and HbA1c, where gene regulatory responses were highly cell type- and phenotype-specific. In beta cells, donor age associated with hypoxia, apoptosis, unfolded protein response, and external signal-dependent transcriptional regulators, while HbA1c associated with inflammatory responses and gender with chromatin organization. We identified 10.8K loci where genetic variants were QTLs for cis regulatory element (cRE) accessibility, including 20% with lineage- or cell type-specific effects which disrupted distinct transcription factor motifs. Type 2 diabetes and glycemic trait associated variants were enriched in both phenotype- and QTL-associated beta cell cREs, whereas type 1 diabetes showed limited enrichment. Variants at 226 diabetes and glycemic trait loci were QTLs in beta and other cell types, including 40 that were statistically colocalized, and annotating target genes of colocalized QTLs revealed genes with putatively novel roles in disease. Our findings reveal diverse responses of pancreatic cell types to phenotype and genotype in physiology, and identify pathways, networks, and genes through which physiology impacts diabetes risk.
Collapse
Affiliation(s)
- Hannah M Mummey
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla CA
| | - Weston Elison
- Biomedical Sciences Program, University of California San Diego, La Jolla CA, USA
| | - Katha Korgaonkar
- Department of Pediatrics, University of California San Diego, La Jolla CA, USA
| | - Ruth M Elgamal
- Biomedical Sciences Program, University of California San Diego, La Jolla CA, USA
| | - Parul Kudtarkar
- Department of Pediatrics, University of California San Diego, La Jolla CA, USA
| | - Emily Griffin
- Department of Pediatrics, University of California San Diego, La Jolla CA, USA
| | - Paola Benaglio
- Department of Pediatrics, University of California San Diego, La Jolla CA, USA
| | - Michael Miller
- Center for Epigenomics, University of California San Diego, La Jolla CA, USA
| | - Alokkumar Jha
- Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford CA, USA
| | - Jocelyn E Manning Fox
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Mark I McCarthy
- Wellcome Trust Center for Human Genetics, University of Oxford, Oxford, UK*
| | - Sebastian Preissl
- Center for Epigenomics, University of California San Diego, La Jolla CA, USA
- Department of Genetics, Stanford School of Medicine, Stanford University, Stanford CA, USA
| | - Anna L Gloyn
- Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford CA, USA
- Department of Genetics, Stanford School of Medicine, Stanford University, Stanford CA, USA
- Stanford Diabetes Research Center, Stanford School of Medicine, Stanford, CA, USA
| | - Patrick E MacDonald
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Kyle J Gaulton
- Department of Pediatrics, University of California San Diego, La Jolla CA, USA
| |
Collapse
|
27
|
Choshi J, Hanser S, Mabhida SE, Mokoena H, Moetlediwa MT, Muvhulawa N, Sekgala MD, Nkambule BB, Mchiza ZJR, Ndwandwe D, Nqebelele U, Kengne AP, Dludla PV. A systematic review assessing the association of inflammatory markers with kidney dysfunction in people living with HIV on highly active antiretroviral therapy. BMC Infect Dis 2024; 24:776. [PMID: 39095687 PMCID: PMC11297709 DOI: 10.1186/s12879-024-09594-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Monitoring chronic diseases, particularly kidney disorders, in people living with HIV (PLWH) is of paramount importance. Here, a systematic search was conducted across electronic search engine and databases like PubMed, Scopus, and Google Scholar, from date of inception until December 2023, to identify pertinent studies reporting on any association between inflammation and kidney function in PLWH. Only six clinical studies in peer-reviewed journals met the inclusion criteria, involving 1467 participants aged 37 to 51, with approximately 17% being females. The report emphasizes the potential impact of highly active antiretroviral therapy (HAART) on kidney function in PLWH, highlighting the significance of monitoring inflammation markers as indicators of kidney function, even when HAART is effective. Acknowledging study limitations, particularly the scarcity of relevant research, the findings highlight a need for more research to inform on clinical guidance to optimize HIV management, particularly regarding kidney health and HAART regimens. Although very limited studies were evaluated, the study lays an important foundation for future research to uncover the complex relationship between HAART, inflammation markers, and kidney health in PLWH.
Collapse
Affiliation(s)
- Joel Choshi
- Department of Physiology and Environmental Health, University of Limpopo, Sovenga, 0727, South Africa.
| | - Sidney Hanser
- Department of Physiology and Environmental Health, University of Limpopo, Sovenga, 0727, South Africa
| | - Sihle E Mabhida
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg, 7505, South Africa
| | - Haskly Mokoena
- Department of Physiology and Environmental Health, University of Limpopo, Sovenga, 0727, South Africa
| | - Marakiya T Moetlediwa
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho, 2735, South Africa
| | - Ndivhuwo Muvhulawa
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho, 2735, South Africa
- Cochrane South Africa, South African Medical Research Council, Tygerberg, 7505, South Africa
| | - Machoene D Sekgala
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg, 7505, South Africa
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Zandile J R Mchiza
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg, 7505, South Africa
- School of Public Health, University of the Western Cape, Bellville, 7535, South Africa
| | - Duduzile Ndwandwe
- Cochrane South Africa, South African Medical Research Council, Tygerberg, 7505, South Africa
| | - Unati Nqebelele
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg, 7505, South Africa
- Department of Medicine, University of Cape Town, Cape Town, 7700, South Africa
- Department of Internal Medicine, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - André P Kengne
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg, 7505, South Africa
- Department of Medicine, University of Cape Town, Cape Town, 7700, South Africa
| | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg, 7505, South Africa.
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3880, South Africa.
| |
Collapse
|
28
|
Ashraf MV, Khan S, Misri S, Gaira KS, Rawat S, Rawat B, Khan MAH, Shah AA, Asgher M, Ahmad S. High-Altitude Medicinal Plants as Promising Source of Phytochemical Antioxidants to Combat Lifestyle-Associated Oxidative Stress-Induced Disorders. Pharmaceuticals (Basel) 2024; 17:975. [PMID: 39204080 PMCID: PMC11357401 DOI: 10.3390/ph17080975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Oxidative stress, driven by reactive oxygen, nitrogen, and sulphur species (ROS, RNS, RSS), poses a significant threat to cellular integrity and human health. Generated during mitochondrial respiration, inflammation, UV exposure and pollution, these species damage cells and contribute to pathologies like cardiovascular issues, neurodegeneration, cancer, and metabolic syndromes. Lifestyle factors exert a substantial influence on oxidative stress levels, with mitochondria emerging as pivotal players in ROS generation and cellular equilibrium. Phytochemicals, abundant in plants, such as carotenoids, ascorbic acid, tocopherols and polyphenols, offer diverse antioxidant mechanisms. They scavenge free radicals, chelate metal ions, and modulate cellular signalling pathways to mitigate oxidative damage. Furthermore, plants thriving in high-altitude regions are adapted to extreme conditions, and synthesize secondary metabolites, like flavonoids and phenolic compounds in bulk quantities, which act to form a robust antioxidant defence against oxidative stress, including UV radiation and temperature fluctuations. These plants are promising sources for drug development, offering innovative strategies by which to manage oxidative stress-related ailments and enhance human health. Understanding and harnessing the antioxidant potential of phytochemicals from high-altitude plants represent crucial steps in combating oxidative stress-induced disorders and promoting overall wellbeing. This study offers a comprehensive summary of the production and physio-pathological aspects of lifestyle-induced oxidative stress disorders and explores the potential of phytochemicals as promising antioxidants. Additionally, it presents an appraisal of high-altitude medicinal plants as significant sources of antioxidants, highlighting their potential for drug development and the creation of innovative antioxidant therapeutic approaches.
Collapse
Affiliation(s)
- Mohammad Vikas Ashraf
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Sajid Khan
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Surya Misri
- Section of Microbiology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Kailash S. Gaira
- Sikkim Regional Centre, G.B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok 737101, Sikkim, India; (K.S.G.); (S.R.)
| | - Sandeep Rawat
- Sikkim Regional Centre, G.B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok 737101, Sikkim, India; (K.S.G.); (S.R.)
| | - Balwant Rawat
- School of Agriculture, Graphic Era University, Dehradun 24800, Utarakhand, India;
| | - M. A. Hannan Khan
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India; (M.A.H.K.); (A.A.S.)
| | - Ali Asghar Shah
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India; (M.A.H.K.); (A.A.S.)
| | - Mohd Asgher
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Shoeb Ahmad
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| |
Collapse
|
29
|
Maache S, Laaroussi H, Soulo N, Nouioura G, Boucetta N, Bouslamti M, Saghrouchni H, A Bin Jardan Y, Ibenmoussa S, Bourhia M, Lyoussi B, Elarabi I. The antioxidant, antidiabetic, and antihyperlipidemic effects of the polyphenolic extract from Salvia blancoana subsp. mesatlantica on induced diabetes in rats. BIORESOUR BIOPROCESS 2024; 11:62. [PMID: 38926327 PMCID: PMC11208370 DOI: 10.1186/s40643-024-00769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/06/2024] [Indexed: 06/28/2024] Open
Abstract
Currently, several studies have demonstrated the benefits of medicinal plants in managing type 2 diabetes. In this work, we evaluated the beneficial effects of the polyphenolic extract (PESB) from Salvia blancoana subsp. mesatlantica in the management of hypercaloric-feeding and small-dose alloxan-brought type 2 diabetes in rats. We analyzed the chemical constituents of the extract, including flavones and flavonols content, to understand its biological action. The antioxidant activities were evaluated by total antioxidant action, scavenging effect of the free radical DPPH, and reducing power. The obtained results showed that the value of TFC was estimated at 31.90 ± 0.34 mgEQ/g in the PESB extract. The total antioxidant capacity was estimated at 593.51 ± 4.09 mg (EAA)/g, the value of DPPH IC50 was 7.3 ± 0.00 μg/mL, and the value of EC50 of reducing power was estimated at 6.43 ± 0.01 μg/mL. In total, 14 phenolic compounds were identified and the naringin was the most dominant (63.19%) while the vanillin was the less recorded (0.10%). Serum glucose decreased significantly (p < 0.05) in rats given PESB (100 mg/kg) after four weeks. Glibenclamide (GLB) and PESB reduced HbA1c and increased plasma insulin in diabetic rats, restoring HOMA-β and HOMA-IR levels to near-normal. Additionally, diabetic rats treated with GLB or PESB showed statistically equivalent results to those of non-diabetic rats regarding hepatic enzymes, renal and lipid markers, as well as cardiovascular indices. The weight loss was significantly lower in diabetic rats receiving a dose of PESB (100 mg/kg), and GLB compared to corresponding untreated diabetic rats (p < 0.01). PESB and GLB showed a prominent protective function in the pancreas, liver, and kidney tissues. This investigation demonstrates the capacity of extracts from leaves of S. blancoana subsp. mesatlantica to manage diabetes mellitus due to their richness in a wide range of bioactive compounds. Therefore, more investigations are required to estimate the safety of the plant use.
Collapse
Affiliation(s)
- Souad Maache
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Hassan Laaroussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Najoua Soulo
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Ghizlane Nouioura
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | | | - Mohammed Bouslamti
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Hamza Saghrouchni
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, 01250, Balcalı, Adana, Türkiye.
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 11451, Riyadh, Saudi Arabia
| | - Samir Ibenmoussa
- Laboratory of Therapeutic and Organic Chemistry, Faculty of Pharmacy, University of Montpellier, 34000, Montpellier, France
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization , Faculty of Sciences, Ibn Zohr University, 80060, Agadir, Morocco
- Laboratory of Chemistry-Biochemistry, Environment, Nutrition, and Health, Faculty of Medicine and Pharmacy, University Hassan II, B. P. 5696, Casablanca, Morocco
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Ilham Elarabi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
30
|
Mohamed NA, Ithmil MT, Elkady AI, Abdel Salam S. Tauroursodeoxycholic Acid (TUDCA) Relieves Streptozotocin (STZ)-Induced Diabetic Rat Model via Modulation of Lipotoxicity, Oxidative Stress, Inflammation, and Apoptosis. Int J Mol Sci 2024; 25:6922. [PMID: 39000039 PMCID: PMC11241338 DOI: 10.3390/ijms25136922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/08/2024] [Indexed: 07/14/2024] Open
Abstract
Tauroursodeoxycholic acid (TUDCA) is approved for the treatment of liver diseases. However, the antihyperglycemic effects/mechanisms of TUDCA are still less clear. The present study aimed to evaluate the antidiabetic action of TUDCA in streptozotocin (STZ)-induced type 2 diabetes mellitus (T2DM) in rats. Fifteen adult Wistar albino male rats were randomly divided into three groups (n = five in each): control, diabetic (STZ), and STZ+TUDCA. The results showed that TUDCA treatment significantly reduced blood glucose, HbA1c%, and HOMA-IR as well as elevated the insulin levels in diabetic rats. TUDCA therapy increased the incretin GLP-1 concentrations, decreased serum ceramide synthase (CS), improved the serum lipid profile, and restored the glycogen content in the liver and skeletal muscles. Furthermore, serum inflammatory parameters (such as TNF-α, IL-6, IL-1ß, and PGE-2) were substantially reduced with TUDCA treatment. In the pancreas, STZ+TUDCA-treated rats underwent an obvious enhancement of enzymatic (CAT and SOD) and non-enzymatic (GSH) antioxidant defense systems and a marked decrease in markers of the lipid peroxidation rate (MDA) and nitrosative stress (NO) compared to STZ-alone. At the molecular level, TUDCA decreased the pancreatic mRNA levels of iNOS and apoptotic-related factors (p53 and caspase-3). In conclusion, TUDCA may be useful for diabetes management and could be able to counteract diabetic disorders via anti-hyperlipidemic, antioxidant, anti-inflammatory, and anti-apoptotic actions.
Collapse
Affiliation(s)
- Nema A Mohamed
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Mohammed T Ithmil
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
- Department of Biology, Faculty of Science, Al-Mustansiriya University, Baghdad P.O. Box 14022, Iraq
| | - Ayman I Elkady
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Sherine Abdel Salam
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
- Department of Biological Sciences, Faculty of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
31
|
Sati P, Dhyani P, Sharma E, Attri DC, Jantwal A, Devi R, Calina D, Sharifi-Rad J. Gut Microbiota Targeted Approach by Natural Products in Diabetes Management: An Overview. Curr Nutr Rep 2024; 13:166-185. [PMID: 38498287 DOI: 10.1007/s13668-024-00523-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE OF REVIEW This review delves into the complex interplay between obesity-induced gut microbiota dysbiosis and the progression of type 2 diabetes mellitus (T2DM), highlighting the potential of natural products in mitigating these effects. By integrating recent epidemiological data, we aim to provide a nuanced understanding of how obesity exacerbates T2DM through gut flora alterations. RECENT FINDINGS Advances in research have underscored the significance of bioactive ingredients in natural foods, capable of restoring gut microbiota balance, thus offering a promising approach to manage diabetes in the context of obesity. These findings build upon the traditional use of medicinal plants in diabetes treatment, suggesting a deeper exploration of their mechanisms of action. This comprehensive manuscript underscores the critical role of targeting gut microbiota dysbiosis in obesity-related T2DM management and by bridging traditional knowledge with current scientific evidence; we highlighted the need for continued research into natural products as a complementary strategy for comprehensive diabetes care.
Collapse
Affiliation(s)
- Priyanka Sati
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Praveen Dhyani
- Institute for Integrated Natural Sciences, University of Koblenz, Koblenz, Germany
| | - Eshita Sharma
- Department of Biochemistry and Molecular Biology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Dharam Chand Attri
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Arvind Jantwal
- Department of Pharmaceutical Sciences, Kumaun University, Bhimtal, Uttarakhand, India
| | - Rajni Devi
- Department of Microbiology, Punjab Agricultural University, Ludhiana-141004, Punjab, India
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | |
Collapse
|
32
|
Ryu S, Lee EK. The Pivotal Role of Macrophages in the Pathogenesis of Pancreatic Diseases. Int J Mol Sci 2024; 25:5765. [PMID: 38891952 PMCID: PMC11171839 DOI: 10.3390/ijms25115765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The pancreas is an organ with both exocrine and endocrine functions, comprising a highly organized and complex tissue microenvironment composed of diverse cellular and non-cellular components. The impairment of microenvironmental homeostasis, mediated by the dysregulation of cell-to-cell crosstalk, can lead to pancreatic diseases such as pancreatitis, diabetes, and pancreatic cancer. Macrophages, key immune effector cells, can dynamically modulate their polarization status between pro-inflammatory (M1) and anti-inflammatory (M2) modes, critically influencing the homeostasis of the pancreatic microenvironment and thus playing a pivotal role in the pathogenesis of the pancreatic disease. This review aims to summarize current findings and provide detailed mechanistic insights into how alterations mediated by macrophage polarization contribute to the pathogenesis of pancreatic disorders. By analyzing current research comprehensively, this article endeavors to deepen our mechanistic understanding of regulatory molecules that affect macrophage polarity and the intricate crosstalk that regulates pancreatic function within the microenvironment, thereby facilitating the development of innovative therapeutic strategies that target perturbations in the pancreatic microenvironment.
Collapse
Affiliation(s)
- Seungyeon Ryu
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Eun Kyung Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
33
|
Ma Y, Song J, Wu Y, Zhang R, Zhu S, Han M, Wang B, Liang Z, Liu J. First Evidence of the Associations of Exposure to Pyrethroid Insecticides with the Risk of Gestational Diabetes Mellitus. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:418-425. [DOI: 10.1021/acs.estlett.4c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/01/2024]
Affiliation(s)
- Yubing Ma
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Song
- Department of Obstetrics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Yihui Wu
- Department of Obstetrics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Ruixin Zhang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuqi Zhu
- Department of Obstetrics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Mengjia Han
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bin Wang
- Institute of Reproductive and Child Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, China
| | - Zhaoxia Liang
- Department of Obstetrics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
34
|
Han HW, Pradhan G, Villarreal D, Kim DM, Jain A, Gaharwar A, Tian Y, Guo S, Sun Y. GHSR Deletion in β-Cells of Male Mice: Ineffective in Obesity, but Effective in Protecting against Streptozotocin-Induced β-Cell Injury in Aging. Nutrients 2024; 16:1464. [PMID: 38794702 PMCID: PMC11123813 DOI: 10.3390/nu16101464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Insulin secretion from pancreatic β cells is a key pillar of glucose homeostasis, which is impaired under obesity and aging. Growth hormone secretagogue receptor (GHSR) is the receptor of nutrient-sensing hormone ghrelin. Previously, we showed that β-cell GHSR regulated glucose-stimulated insulin secretion (GSIS) in young mice. In the current study, we further investigated the effects of GHSR on insulin secretion in male mice under diet-induced obesity (DIO) and streptozotocin (STZ)-induced β-cell injury in aging. β-cell-specific-Ghsr-deficient (Ghsr-βKO) mice exhibited no glycemic phenotype under DIO but showed significantly improved ex vivo GSIS in aging. We also detected reduced insulin sensitivity and impaired insulin secretion during aging both in vivo and ex vivo. Accordingly, there were age-related alterations in expression of glucose transporter, insulin signaling pathway, and inflammatory genes. To further determine whether GHSR deficiency affected β-cell susceptibility to acute injury, young, middle-aged, and old Ghsr-βKO mice were subjected to STZ. We found that middle-aged and old Ghsr-βKO mice were protected from STZ-induced hyperglycemia and impaired insulin secretion, correlated with increased expression of insulin signaling regulators but decreased pro-inflammatory cytokines in pancreatic islets. Collectively, our findings indicate that β-cell GHSR has a major impact on insulin secretion in aging but not obesity, and GHSR deficiency protects against STZ-induced β-cell injury in aging.
Collapse
Affiliation(s)
- Hye Won Han
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (H.W.H.)
| | - Geetali Pradhan
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel Villarreal
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (H.W.H.)
| | - Da Mi Kim
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (H.W.H.)
| | - Abhishek Jain
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Akhilesh Gaharwar
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Yanan Tian
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Shaodong Guo
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (H.W.H.)
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (H.W.H.)
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
35
|
Wu L, Ye S, Deng X, Fu Z, Li J, Yang C. Conjugated Linoleic Acid Ameliorates High Fat-Induced Insulin Resistance via Regulating Gut Microbiota-Host Metabolic and Immunomodulatory Interactions. Nutrients 2024; 16:1133. [PMID: 38674824 PMCID: PMC11053735 DOI: 10.3390/nu16081133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/20/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Interaction between gut microbiota, host immunity and metabolism has been suggested to crucially affect the development of insulin resistance (IR). This study aims to investigate how gut microbiota, inflammatory responses and metabolism in individuals with IR are affected by the supplementation of conjugated linoleic acid (CLA) and how this subsequently affects the pathophysiology of IR by using a high-fat diet-induced IR mouse model. Serum biochemical indices showed that 400 mg/kg body weight of CLA effectively attenuated hyperglycemia, hyperlipidemia, glucose intolerance and IR, while also promoting antioxidant capacities. Histomorphology, gene and protein expression analysis revealed that CLA reduced fat deposition and inflammation, and enhanced fatty acid oxidation, insulin signaling and glucose transport in adipose tissue or liver. Hepatic transcriptome analysis confirmed that CLA inhibited inflammatory signaling pathways and promoted insulin, PI3K-Akt and AMPK signaling pathways, as well as linoleic acid, arachidonic acid, arginine and proline metabolism. Gut microbiome analysis further revealed that these effects were highly associated with the enriched bacteria that showed positive correlation with the production of short-chain fatty acids (SCFAs), as well as the improved SCFAs production simultaneously. This study highlights the therapeutic actions of CLA on ameliorating IR via regulating microbiota-host metabolic and immunomodulatory interactions, which have important implications for IR control.
Collapse
Affiliation(s)
- Linjun Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; (L.W.); (S.Y.); (X.D.)
| | - Shijie Ye
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; (L.W.); (S.Y.); (X.D.)
| | - Xiangfei Deng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; (L.W.); (S.Y.); (X.D.)
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; (L.W.); (S.Y.); (X.D.)
| | - Jinjun Li
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China
- Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Hangzhou 310021, China
| | - Chunlei Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; (L.W.); (S.Y.); (X.D.)
| |
Collapse
|
36
|
Banerjee O, Singh S, Paul T, Maji BK, Mukherjee S. Centella asiatica mitigates the detrimental effects of Bisphenol-A (BPA) on pancreatic islets. Sci Rep 2024; 14:8043. [PMID: 38580733 PMCID: PMC10997607 DOI: 10.1038/s41598-024-58545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/01/2024] [Indexed: 04/07/2024] Open
Abstract
Bisphenol-A (BPA) is widely used in food packaging and household products, leading to daily human exposure and potential health risks including metabolic diseases like type 2 diabetes mellitus (T2DM). Understanding BPA's mechanisms and developing intervention strategies is urgent. Centella asiatica, a traditional herbal medicine containing pentacyclic triterpenoids, shows promise due to its antioxidant and anti-inflammatory properties, utilized for centuries in Ayurvedic therapy. We investigated the effect of Centella asiatica (CA) ethanol extract on BPA-induced pancreatic islet toxicity in male Swiss albino mice. BPA administration (10 and 100 μg/kg body weight, twice daily) for 21 days caused glucose homeostasis disturbances, insulin resistance, and islet dysfunction, which were partially mitigated by CA supplementation (200 and 400 mg/kg body weight). Additionally, heightened oxidative stress, elevated levels of proinflammatory cytokines, loss of mitochondrial membrane potential (MMP), abnormal cell cycle, and increased apoptosis were implicated in the detrimental impact of BPA on the endocrine pancreas which were effectively counteracted by CA supplementation. In summary, CA demonstrated a significant ability to mitigate BPA-induced apoptosis, modulate redox homeostasis, alleviate inflammation, preserve MMP, and regulate the cell cycle. As a result, CA emerged as a potent agent in neutralizing the diabetogenic effects of BPA to a considerable extent.
Collapse
Affiliation(s)
- Oly Banerjee
- Department of Physiology, Serampore College, 9 William Carey Road, Serampore, Hooghly, West Bengal, 712201, India
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Swami Vivekananda University, Bara Kanthalia, West Bengal, 700121, India
| | - Siddhartha Singh
- Department of Physiology, Serampore College, 9 William Carey Road, Serampore, Hooghly, West Bengal, 712201, India
| | - Tiyesh Paul
- Department of Physiology, Serampore College, 9 William Carey Road, Serampore, Hooghly, West Bengal, 712201, India
| | - Bithin Kumar Maji
- Department of Physiology, Serampore College, 9 William Carey Road, Serampore, Hooghly, West Bengal, 712201, India
| | - Sandip Mukherjee
- Department of Physiology, Serampore College, 9 William Carey Road, Serampore, Hooghly, West Bengal, 712201, India.
| |
Collapse
|
37
|
Kim J, Kim M, Kim M, You YH, Song Y, Lee BW. Dysregulation of autophagy activation induced by atorvastatin contributes to new-onset diabetes mellitus in western diet-fed mice. Metabolism 2024; 153:155795. [PMID: 38253121 DOI: 10.1016/j.metabol.2024.155795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND AND AIMS The incidence of statin-induced new-onset diabetes (NOD) is increasing but its underlying mechanisms remain unclear. We aimed to investigate the effects of various doses of atorvastatin (ATO)-induced autophagy on the development of NOD. METHODS AND RESULTS The isolated rat islets and MIN6 cells-treated with ATO, exhibited impaired glucose-stimulated insulin secretion, reduced insulin content, and induced apoptosis. Additionally, autophagy was induced at all doses (in vitro: 5, 10, 20 μM; in vivo: 10, 15, 20 mg/kg) in ATO-treated MIN6 cells or western diet (WD)-fed mice. In contrast to normal glucose-tolerant mice administered a low-dose (10 mg/kg) ATO, those treated with high-doses (15 or 20 mg/kg) exhibited impaired glucose tolerance. Furthermore, high-dose ATO-treated mice showed decreased β-cell mass and increased apoptosis compared to that of vehicle-treated mice. We also observed that the number of vesicophagous cells in the pancreas of 20 mg/kg ATO-treated WD-fed mice was higher than in vehicle-treated WD-fed mice. Inhibiting autophagy using 3-methyladenine (3-MA) and siAtg5 improved glucose tolerance in vivo and in vitro by preventing apoptotic β-cell death and restoring insulin granules. CONCLUSION These results indicate that high doses of ATO induced hyperactivated autophagy in pancreatic cells, leading to impaired insulin storage, decreased cell viability, and reduced functional cell mass, ultimately resulting in NOD development.
Collapse
Affiliation(s)
- Juhee Kim
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Minjune Kim
- Department of gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Minjeong Kim
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Young-Hye You
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Youngmi Song
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea.
| | - Byung-Wan Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
38
|
Taneera J, Saber-Ayad MM. Preservation of β-Cells as a Therapeutic Strategy for Diabetes. Horm Metab Res 2024; 56:261-271. [PMID: 38387480 DOI: 10.1055/a-2239-2668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The preservation of pancreatic islet β-cells is crucial in diabetes mellitus, encompassing both type 1 and type 2 diabetes. β-cell dysfunction, reduced mass, and apoptosis are central to insufficient insulin secretion in both types. Research is focused on understanding β-cell characteristics and the factors regulating their function to develop novel therapeutic approaches. In type 1 diabetes (T1D), β-cell destruction by the immune system calls for exploring immunosuppressive therapies, non-steroidal anti-inflammatory drugs, and leukotriene antagonists. Islet transplantation, stem cell therapy, and xenogeneic transplantation offer promising strategies for type 1 diabetes treatment. For type 2 diabetes (T2D), lifestyle changes like weight loss and exercise enhance insulin sensitivity and maintain β-cell function. Additionally, various pharmacological approaches, such as cytokine inhibitors and protein kinase inhibitors, are being investigated to protect β-cells from inflammation and glucotoxicity. Bariatric surgery emerges as an effective treatment for obesity and T2D by promoting β-cell survival and function. It improves insulin sensitivity, modulates gut hormones, and expands β-cell mass, leading to diabetes remission and better glycemic control. In conclusion, preserving β-cells offers a promising approach to managing both types of diabetes. By combining lifestyle modifications, targeted pharmacological interventions, and advanced therapies like stem cell transplantation and bariatric surgery, we have a significant chance to preserve β-cell function and enhance glucose regulation in diabetic patients.
Collapse
Affiliation(s)
- Jalal Taneera
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Maha M Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
39
|
Lu Y, Tian H, Peng H, Wang Q, Bunnell BA, Bazan NG, Hong S. Novel lipid mediator 7 S,14 R-docosahexaenoic acid: biogenesis and harnessing mesenchymal stem cells to ameliorate diabetic mellitus and retinal pericyte loss. Front Cell Dev Biol 2024; 12:1380059. [PMID: 38533089 PMCID: PMC10963555 DOI: 10.3389/fcell.2024.1380059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Introduction: Stem cells can be used to treat diabetic mellitus and complications. ω3-docosahexaenoic acid (DHA) derived lipid mediators are inflammation-resolving and protective. This study found novel DHA-derived 7S,14R-dihydroxy-4Z,8E,10Z,12E,16Z,19Z-docosahexaenoic acid (7S,14R-diHDHA), a maresin-1 stereoisomer biosynthesized by leukocytes and related enzymes. Moreover, 7S,14R-diHDHA can enhance mesenchymal stem cell (MSC) functions in the amelioration of diabetic mellitus and retinal pericyte loss in diabetic db/db mice. Methods: MSCs treated with 7S,14R-diHDHA were delivered into db/db mice i.v. every 5 days for 35 days. Results: Blood glucose levels in diabetic mice were lowered by 7S,14R-diHDHA-treated MSCs compared to control and untreated MSC groups, accompanied by improved glucose tolerance and higher blood insulin levels. 7S,14R-diHDHA-treated MSCs increased insulin+ β-cell ratio and decreased glucogan+ α-cell ratio in islets, as well as reduced macrophages in pancreas. 7S,14R-diHDHA induced MSC functions in promoting MIN6 β-cell viability and insulin secretion. 7S,14R-diHDHA induced MSC paracrine functions by increasing the generation of hepatocyte growth factor and vascular endothelial growth factor. Furthermore, 7S,14R-diHDHA enhanced MSC functions to ameliorate diabetes-caused pericyte loss in diabetic retinopathy by increasing their density in retina in db/db mice. Discussion: Our findings provide a novel strategy for improving therapy for diabetes and diabetic retinopathy using 7S,14R-diHDHA-primed MSCs.
Collapse
Affiliation(s)
- Yan Lu
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
| | - Haibin Tian
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
- Tongji University, Shanghai, China
| | - Hongying Peng
- Biostatistics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Quansheng Wang
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bruce A. Bunnell
- Tulane University School of Medicine, Center for Stem Cell Research and Regenerative Medicine, New Orleans, LA, United States
| | - Nicolas G. Bazan
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
- Department of Ophthalmology, School of Medicine, L.S.U. Health, New Orleans, LA, United States
| | - Song Hong
- Neuroscience Center of Excellence, School of Medicine, L.S.U. Health, New Orleans, LA, United States
- Department of Ophthalmology, School of Medicine, L.S.U. Health, New Orleans, LA, United States
| |
Collapse
|
40
|
Arya P, Husain N, Kumar C, Shekhar R, Prakash V, Hameed S, Mohan L, Dikshit H. C-peptide Level in Patients With Uncontrolled Type 2 Diabetes Mellitus on Oral Anti-diabetic Drugs. Cureus 2024; 16:e56810. [PMID: 38654804 PMCID: PMC11036452 DOI: 10.7759/cureus.56810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND In the development and progression of type 2 diabetes mellitus, β-cell dysfunction occurs after insulin resistance. Despite poor glycaemic control, there is a practice of increasing the dose of oral anti-diabetics or adding more drugs to the regimen due to the common perception that low endogenous insulin secretion is related to type 1 diabetes mellitus only and patient's poor compliance to injectables. Keeping this perspective in mind, this study was conducted to assess the prevalence of beta cell dysfunction by low serum C-peptide levels and its correlation with poor glycaemic control. MATERIALS AND METHODS A total of 134 patients with type 2 diabetes mellitus for more than 10 years on oral anti-diabetic drugs fulfilling our eligibility criteria were enrolled in our study. Blood samples for fasting blood sugar and fasting C-peptide level were taken before breakfast and uptake of anti-diabetic drugs. Correlation analysis was performed to evaluate the relationship between fasting C-peptide and glycaemic control with respect to glycated haemoglobin (HbA1c). RESULTS Of the patients, 19.40% had insufficient beta cell reserve serum levels (C-peptide < 0.5 ng/ml), of which most of the patients (14/26 = 53.85%) had poor glycaemic control (HbA1c < 8.0%). Overall, there was a significant correlation between poor glycaemic control with respect to HbA1c and low serum C-peptide levels (p < 0.05). We found a significant association of beta cell dysfunction (low fasting C-peptide level) with the use of insulin secretagogue. The proportion of patients with C-peptide levels less than 0.5 ng/ml was lower in patients using sodium-glucose cotransporter-2 (SGLT-2) inhibitors as compared to insulin secretagogue. CONCLUSION SGLT-2 inhibitors should be preferred over other anti-diabetic drugs as an add-on to existing metformin therapy. Insulin requirement must be assessed in patients who have long-term type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Purnendu Arya
- Department of Pharmacology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Noor Husain
- Department of Pharmacology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Chakrapani Kumar
- Department of Pharmacology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Ravi Shekhar
- Department of Biochemistry, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Ved Prakash
- Department of Endocrinology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Saajid Hameed
- Department of Pharmacology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Lalit Mohan
- Department of Pharmacology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Harihar Dikshit
- Department of Pharmacology, Indira Gandhi Institute of Medical Sciences, Patna, IND
| |
Collapse
|
41
|
González I, Lindner C, Schneider I, Diaz E, Morales MA, Rojas A. Emerging and multifaceted potential contributions of polyphenols in the management of type 2 diabetes mellitus. World J Diabetes 2024; 15:154-169. [PMID: 38464365 PMCID: PMC10921170 DOI: 10.4239/wjd.v15.i2.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/16/2023] [Accepted: 01/19/2024] [Indexed: 02/04/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is recognized as a serious public health concern with a considerable impact on human life, long-term health expenditures, and substantial health losses. In this context, the use of dietary polyphenols to prevent and manage T2DM is widely documented. These dietary compounds exert their beneficial effects through several actions, including the protection of pancreatic islet β-cell, the antioxidant capacities of these molecules, their effects on insulin secretion and actions, the regulation of intestinal microbiota, and their contribution to ameliorate diabetic complications, particularly those of vascular origin. In the present review, we intend to highlight these multifaceted actions and the molecular mechanisms by which these plant-derived secondary metabolites exert their beneficial effects on type 2 diabetes patients.
Collapse
Affiliation(s)
- Ileana González
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile
| | - Cristian Lindner
- Department of Radiology, Faculty of Medicine, University of Concepción, Concepción 4030000, Chile
| | - Ivan Schneider
- Centre of Primary Attention, South Metropolitan Health Service, Santiago 3830000, Chile
| | - Erik Diaz
- Faculty of Medicine, Catholic University of Maule, Talca 3460000, Chile
| | - Miguel Angel Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago 8320000, Chile
| | - Armando Rojas
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile
| |
Collapse
|
42
|
Savytska M, Kyriienko D, Zaychenko G, Ostapchenko D, Falalyeyeva T, Kobyliak N. Probiotic co-supplementation with absorbent smectite for pancreatic beta-cell function in type 2 diabetes: a secondary-data analysis of a randomized double-blind controlled trials. Front Endocrinol (Lausanne) 2024; 15:1276642. [PMID: 38405158 PMCID: PMC10890794 DOI: 10.3389/fendo.2024.1276642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/18/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction There is growing evidence from animal and clinical studies suggesting probiotics can positively affect type 2 diabetes (T2D). In a previous randomized clinical study, we found that administering a live multistrain probiotic and absorbent smectite once a day for eight weeks to patients with T2D could reduce chronic systemic inflammatory state, insulin resistance, waist circumference and improve the glycemic profile. However, there is a lack of evidence supporting the efficacy of probiotic co-supplementation with absorbent smectite on pancreatic β-cell function in T2D. Aim This secondary analysis aimed to assess the effectiveness of an alive multistrain probiotic co-supplementation with absorbent smectite vs placebo on β-cell function in T2D patients. Material and methods We performed a secondary analysis on a previously published randomized controlled trial (NCT04293731, NCT03614039) involving 46 patients with T2D. The main inclusion criteria were the presence of β-cell dysfunction (%B<60%) and insulin therapy alone or combined with oral anti-diabetic drugs. The primary outcome was assessing β-cell function as change C-peptide and %B. Results We observed only a tendency for improving β-cell function (44.22 ± 12.80 vs 55.69 ± 25.75; р=0.094). The effectiveness of the therapy probiotic-smectite group was confirmed by fasting glycemia decreased by 14% (p=0.019), HbA1c - 5% (p=0.007), HOMA-2 - 17% (p=0.003) and increase of insulin sensitivity by 23% (p=0.005). Analysis of the cytokine profile showed that statistical differences after treatment were in the concentration of both pro-inflammatory cytokines: IL-1β (22.83 ± 9.04 vs 19.03 ± 5.57; p=0.045) and TNF-α (31.25 ± 11.32 vs 26.23 ± 10.13; p=0.041). Conclusion Adding a live multistrain probiotic and absorbent smectite supplement slightly improved β-cell function and reduced glycemic-related parameters in patients with T2D. This suggests that adjusting the gut microbiota could be a promising treatment for diabetes and warrants further investigation through more extensive studies.
Collapse
Affiliation(s)
- Maryana Savytska
- Normal Physiology Department, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | | | - Ganna Zaychenko
- Pharmacology Department, Bogomolets National Medical University, Kyiv, Ukraine
| | - Danylo Ostapchenko
- Educational-Scientific Center “Institute of Biology and Medicine” Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Tetyana Falalyeyeva
- Educational-Scientific Center “Institute of Biology and Medicine” Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Medical Laboratory CSD, Kyiv, Ukraine
| | - Nazarii Kobyliak
- Medical Laboratory CSD, Kyiv, Ukraine
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
| |
Collapse
|
43
|
Kwan SH, Gonzalez de Mejia E. The Potential of the Adzuki Bean ( Vigna angularis) and Its Bioactive Compounds in Managing Type 2 Diabetes and Glucose Metabolism: A Narrative Review. Nutrients 2024; 16:329. [PMID: 38276567 PMCID: PMC10820388 DOI: 10.3390/nu16020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 01/27/2024] Open
Abstract
Type 2 diabetes (T2D) is a common noncommunicable disease. In the United States alone, 37 million Americans had diabetes in 2017. The adzuki bean (Vigna angularis), a legume, has been reported to possess antidiabetic benefits. However, the extent and specific mechanisms through which adzuki bean consumption may contribute to T2D prevention and management remain unclear. Therefore, the aim of this narrative review is to analyze current evidence supporting the utilization of adzuki beans in the diet as a strategy for preventing and managing T2D. Animal studies have demonstrated a positive impact of adzuki beans on managing T2D. However, supporting data from humans are limited. Conversely, the potential of adzuki bean consumption in preventing T2D via modulating two T2D risk factors (obesity and dyslipidemia) also lacks conclusive evidence. Animal studies have suggested an inconsistent and even contradictory relationship between adzuki bean consumption and the management of obesity and dyslipidemia, in which both positive and negative relationships are reported. In sum, based on the existing scientific literature, this review found that the effects of adzuki bean consumption on preventing and managing T2D in humans remain undetermined. Consequently, human randomized controlled trials are needed to elucidate the potential benefits of the adzuki bean and its bioactive components in the prevention and management of T2D.
Collapse
Affiliation(s)
- Shu Hang Kwan
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA;
| | - Elvira Gonzalez de Mejia
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA;
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
| |
Collapse
|
44
|
Gallardo-Villanueva P, Fernández-Marcelo T, Villamayor L, Valverde AM, Ramos S, Fernández-Millán E, Martín MA. Synergistic Effect of a Flavonoid-Rich Cocoa-Carob Blend and Metformin in Preserving Pancreatic Beta Cells in Zucker Diabetic Fatty Rats. Nutrients 2024; 16:273. [PMID: 38257166 PMCID: PMC10821282 DOI: 10.3390/nu16020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The loss of functional beta-cell mass in diabetes is directly linked to the development of diabetic complications. Although dietary flavonoids have demonstrated antidiabetic properties, their potential effects on pancreatic beta-cell preservation and their synergistic benefits with antidiabetic drugs remain underexplored. We have developed a potential functional food enriched in flavonoids by combining cocoa powder and carob flour (CCB), which has shown antidiabetic effects. Here, we investigated the ability of the CCB, alone or in combination with metformin, to preserve pancreatic beta cells in an established diabetic context and their potential synergistic effect. Zucker diabetic fatty rats (ZDF) were fed a CCB-rich diet or a control diet, with or without metformin, for 12 weeks. Markers of pancreatic oxidative stress and inflammation, as well as relative beta-cell mass and beta-cell apoptosis, were analyzed. Results demonstrated that CCB feeding counteracted pancreatic oxidative stress by enhancing the antioxidant defense and reducing reactive oxygen species. Moreover, the CCB suppressed islet inflammation by preventing macrophage infiltration into islets and overproduction of pro-inflammatory cytokines, along with the inactivation of nuclear factor kappa B (NFκB). As a result, the CCB supplementation prevented beta-cell apoptosis and the loss of beta cells in ZDF diabetic animals. The observed additive effect when combining the CCB with metformin underscores its potential as an adjuvant therapy to delay the progression of type 2 diabetes.
Collapse
Affiliation(s)
- Paula Gallardo-Villanueva
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (P.G.-V.); (T.F.-M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (L.V.); (A.M.V.); (S.R.)
| | - Tamara Fernández-Marcelo
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (P.G.-V.); (T.F.-M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (L.V.); (A.M.V.); (S.R.)
| | - Laura Villamayor
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (L.V.); (A.M.V.); (S.R.)
- Instituto de Investigaciones Biomedicas Sols-Morreale (IIB-CSIC), 28029 Madrid, Spain
| | - Angela M. Valverde
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (L.V.); (A.M.V.); (S.R.)
- Instituto de Investigaciones Biomedicas Sols-Morreale (IIB-CSIC), 28029 Madrid, Spain
| | - Sonia Ramos
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (L.V.); (A.M.V.); (S.R.)
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), 28040 Madrid, Spain
| | - Elisa Fernández-Millán
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (P.G.-V.); (T.F.-M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (L.V.); (A.M.V.); (S.R.)
| | - María Angeles Martín
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (L.V.); (A.M.V.); (S.R.)
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), 28040 Madrid, Spain
| |
Collapse
|
45
|
Wang JL, Yan JP, Fan JR, Li X, Guo X, Li JW, Wu YX, Wang JJ, Chen YL, Li L, Lin C, Qu XL, Liu JH, Zhang YL, Yuan YY, Yu HG, Chen YX, Cai YX, Zhang XD, Zhao S, Xu ZH, Ma L, Ma N, Guo DM, Ma LS. 2023: A year of accomplishments for the 13 Science Citation Index Expanded- and Emerging Sources Citation Index-indexed Baishideng journals. World J Gastroenterol 2024; 30:9-16. [PMID: 38293326 PMCID: PMC10823900 DOI: 10.3748/wjg.v30.i1.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/06/2024] Open
Abstract
In 2023, Baishideng Publishing Group (Baishideng) routinely published 47 open-access journals, including 46 English-language journals and 1 Chinese-language journal. Our successes were accomplished through the collective dedicated efforts of Baishideng staffs, Editorial Board Members, and Peer Reviewers. Among these 47 Baishideng journals, 7 are included in the Science Citation Index Expanded (SCIE) and 6 in the Emerging Sources Citation Index (ESCI). With the support of Baishideng authors, company staffs, Editorial Board Members, and Peer Reviewers, the publication work of 2023 is about to be successfully completed. This editorial summarizes the 2023 activities and accomplishments of the 13 SCIE- and ESCI-indexed Baishideng journals, outlines the Baishideng publishing policy changes and additions made this year, and highlights the unique advantages of Baishideng journals.
Collapse
Affiliation(s)
- Jin-Lei Wang
- Baishideng Publishing Group Inc, Pleasanton, CA 94566, United States
| | - Jia-Ping Yan
- Baishideng Publishing Group Inc, Pleasanton, CA 94566, United States
| | - Jia-Ru Fan
- Baishideng Publishing Group Inc, Pleasanton, CA 94566, United States
| | - Xiang Li
- Baishideng Publishing Group Inc, Pleasanton, CA 94566, United States
| | - Xu Guo
- Baishideng Publishing Group Inc, Pleasanton, CA 94566, United States
| | - Jia-Wei Li
- Baishideng Publishing Group Inc, Pleasanton, CA 94566, United States
| | - Yun-Xiaojian Wu
- Baishideng Publishing Group Inc, Pleasanton, CA 94566, United States
| | - Jing-Jie Wang
- Baishideng Publishing Group Inc, Pleasanton, CA 94566, United States
| | - Yu-Lu Chen
- Baishideng Publishing Group Inc, Pleasanton, CA 94566, United States
| | - Li Li
- Baishideng Publishing Group Inc, Pleasanton, CA 94566, United States
| | - Cong Lin
- Baishideng Publishing Group Inc, Pleasanton, CA 94566, United States
| | - Xin-Liang Qu
- Baishideng Publishing Group Inc, Pleasanton, CA 94566, United States
| | - Ji-Hong Liu
- Baishideng Publishing Group Inc, Pleasanton, CA 94566, United States
| | - Yan-Liang Zhang
- Baishideng Publishing Group Inc, Pleasanton, CA 94566, United States
| | - Ying-Yi Yuan
- Baishideng Publishing Group Inc, Pleasanton, CA 94566, United States
| | - Hua-Ge Yu
- Baishideng Publishing Group Inc, Pleasanton, CA 94566, United States
| | - Yu-Xi Chen
- Baishideng Publishing Group Inc, Pleasanton, CA 94566, United States
| | - Yi-Xuan Cai
- Baishideng Publishing Group Inc, Pleasanton, CA 94566, United States
| | - Xiang-Di Zhang
- Baishideng Publishing Group Inc, Pleasanton, CA 94566, United States
| | - Si Zhao
- Baishideng Publishing Group Inc, Pleasanton, CA 94566, United States
| | - Zi-Hang Xu
- Baishideng Publishing Group Inc, Pleasanton, CA 94566, United States
| | - Li Ma
- Baishideng Publishing Group Inc, Pleasanton, CA 94566, United States
| | - Na Ma
- Baishideng Publishing Group Inc, Pleasanton, CA 94566, United States
| | - Diao-Mei Guo
- Baishideng Publishing Group Inc, Pleasanton, CA 94566, United States
| | - Lian-Sheng Ma
- Baishideng Publishing Group Inc, Pleasanton, CA 94566, United States
| |
Collapse
|
46
|
Zhao Y, Liu D, Pan X, Tan Y. Ethylene oxide exposure increases impaired glucose metabolism in the US general population: a national cross-sectional study. Environ Health Prev Med 2024; 29:68. [PMID: 39647865 PMCID: PMC11631556 DOI: 10.1265/ehpm.24-00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/10/2024] [Indexed: 12/10/2024] Open
Abstract
BACKGROUND Current experimental evidence supports that ethylene oxide (EO) exposure-related pathophysiologies may affect glucose metabolism, but few population-based studies have explored the potential links. METHODS This study used cross-sectional data from 15560 participants in the National Health and Nutrition Examination Survey (NHANES) from 2017 to 2020. EO exposure levels were calculated by testing hemoglobin adducts of EO (HbEO) via a modified Edman reaction. We focused on the association of EO exposure with prediabetes and diabetes as well as indicators of impaired glucose metabolism and further analyzed the potential pathogenic mechanisms. Statistics included logistic regression, generalized additive model fitting, penalized spline method, two-piecewise linear regression, recursive algorithm, mediation analysis, and Pearson's analysis. RESULTS EO exposure was associated with changes in glucose metabolic indicators and increased prevalence of prediabetes and diabetes, showing age-consistency and being more pronounced in obese and non-smoking populations. For each one pmol/g Hb, one SD, or two-fold SD increase in log2-HbEO, the risk of prediabetes increased by 12%, 16%, and 33%, with an increased risk of diabetes by 18%, 26%, and 61%, respectively. Dose-response curves revealed that this positive correlation was approximately linear with prediabetes and "J" shaped with diabetes. When log2-HbEO > 8.03 pmol/g Hb, the risk of diabetes would be further increased. Pearson's correlation revealed that EO exposure was associated with reduced fasting insulin and elevated HbA1c in the prediabetic stage. While in the diabetes stage, EO exposure was correlated with elevated fasting glucose, HbA1c, and HOMA-IR, suggesting an exacerbation of diabetes progression by EO exposure. A potential mechanism that the early stages of impaired glucose metabolism may be initiated by EO-related inflammation and oxidative stress damaging pancreatic β-cells, resulting in decreased insulin secretion. These speculations were partially supported by mediation analysis and mediators' Pearson analysis. CONCLUSION Elevated ethylene oxide exposure increases the incidence of impaired glucose metabolism in the general U.S. population and a potential intervention may be to effectively suppress inflammation and oxidative stress imbalances.
Collapse
Affiliation(s)
- Yuqi Zhao
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha 410011, China
- Research Center of Digestive Disease, Central South University, Changsha 410011, China
- Clinical Research Center for Digestive Disease in Hunan Province, Changsha 410011, China
| | - Deliang Liu
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha 410011, China
- Research Center of Digestive Disease, Central South University, Changsha 410011, China
- Clinical Research Center for Digestive Disease in Hunan Province, Changsha 410011, China
| | - Xiaogao Pan
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China
- Emergency Medicine and Difficult Diseases Institute, Central South University, Changsha 410011, China
| | - Yuyong Tan
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha 410011, China
- Research Center of Digestive Disease, Central South University, Changsha 410011, China
- Clinical Research Center for Digestive Disease in Hunan Province, Changsha 410011, China
| |
Collapse
|
47
|
Antar SA, Ashour NA, Sharaky M, Khattab M, Ashour NA, Zaid RT, Roh EJ, Elkamhawy A, Al-Karmalawy AA. Diabetes mellitus: Classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments. Biomed Pharmacother 2023; 168:115734. [PMID: 37857245 DOI: 10.1016/j.biopha.2023.115734] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023] Open
Abstract
Nowadays, diabetes mellitus has emerged as a significant global public health concern with a remarkable increase in its prevalence. This review article focuses on the definition of diabetes mellitus and its classification into different types, including type 1 diabetes (idiopathic and fulminant), type 2 diabetes, gestational diabetes, hybrid forms, slowly evolving immune-mediated diabetes, ketosis-prone type 2 diabetes, and other special types. Diagnostic criteria for diabetes mellitus are also discussed. The role of inflammation in both type 1 and type 2 diabetes is explored, along with the mediators and potential anti-inflammatory treatments. Furthermore, the involvement of various organs in diabetes mellitus is highlighted, such as the role of adipose tissue and obesity, gut microbiota, and pancreatic β-cells. The manifestation of pancreatic Langerhans β-cell islet inflammation, oxidative stress, and impaired insulin production and secretion are addressed. Additionally, the impact of diabetes mellitus on liver cirrhosis, acute kidney injury, immune system complications, and other diabetic complications like retinopathy and neuropathy is examined. Therefore, further research is required to enhance diagnosis, prevent chronic complications, and identify potential therapeutic targets for the management of diabetes mellitus and its associated dysfunctions.
Collapse
Affiliation(s)
- Samar A Antar
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Nada A Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, Egypt
| | - Muhammad Khattab
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, National Research Centre, Cairo, Egypt
| | - Naira A Ashour
- Department of Neurology, Faculty of Physical Therapy, Horus University, New Damietta 34518, Egypt
| | - Roaa T Zaid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt
| | - Eun Joo Roh
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ahmed Elkamhawy
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| |
Collapse
|
48
|
Soliman MO, El-Kamel AH, Shehat MG, Bakr BA, El-Moslemany RM. Lactoferrin decorated bilosomes for the oral delivery of quercetin in type 2 diabetes: In vitro and in vivo appraisal. Int J Pharm 2023; 647:123551. [PMID: 37884217 DOI: 10.1016/j.ijpharm.2023.123551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Despite its tremendous potential for type 2 diabetes management, quercetin (QRC) suffers poor gastric stability, poor bioavailability, and extensive first pass metabolism. Drug encapsulation into bilosomes (BSL) has proven enhanced properties in-vitro and in-vivo. Herein, this work endeavoured to evaluate efficacy of QRC-encapsulated bilosomes capped with lactoferrin (LF); a milk protein with antidiabetic potential, for type 2 diabetes oral treatment. The optimized formulation (LF-QRC-BSL) was evaluated in-vitro on α-amylase enzyme inhibition and insulin resistant HepG2 cell model and in vivo on streptozocin/high fat diet induced diabetes in rats. LF-QRC-BSL showed a small size (68.1 nm), a narrow PDI (0.18) and a -25.5 mV zeta potential. A high entrapment efficiency (94 %) with sustained release were also observed. LF-QRC-BSL displayed 100 % permeation through excised diabetic rat intestines after 6 h, 70.2 % inhibition of α-amylase enzyme in-vitro and an augmented recovery of glucose uptake in insulin resistant cells. In diabetic rats, LF-QRC-BSL resulted in significant decrease in blood glucose level, improved lipid profile and tissue injury markers with reduced oxidative stress and inflammatory markers. Further, histopathological examination of the kidneys, liver and pancreas revealed an almost restored normal condition comparable to the negative control. Overall, LF-QRC-BSL have proven to be a promising therapy for type 2 diabetes.
Collapse
Affiliation(s)
- Mai O Soliman
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Amal H El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Michael G Shehat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Basant A Bakr
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Riham M El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
49
|
Muvhulawa N, Mazibuko-Mbeje SE, Ndwandwe D, Silvestri S, Ziqubu K, Moetlediwa MT, Mthembu SXH, Marnewick JL, Van der Westhuizen FH, Nkambule BB, Basson AK, Tiano L, Dludla PV. Sarcopenia in a type 2 diabetic state: Reviewing literature on the pathological consequences of oxidative stress and inflammation beyond the neutralizing effect of intracellular antioxidants. Life Sci 2023; 332:122125. [PMID: 37769808 DOI: 10.1016/j.lfs.2023.122125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/15/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Sarcopenia remains one of the major pathological features of type 2 diabetes (T2D), especially in older individuals. This condition describes gradual loss of muscle mass, strength, and function that reduces the overall vitality and fitness, leading to increased hospitalizations and even fatalities to those affected. Preclinical evidence indicates that dysregulated mitochondrial dynamics, together with impaired activity of the NADPH oxidase system, are the major sources of oxidative stress that drive skeletal muscle damage in T2D. While patients with T2D also display relatively higher levels of circulating inflammatory markers in the serum, including high sensitivity-C-reactive protein, interleukin-6, and tumor necrosis factor-α that are independently linked with the deterioration of muscle function and sarcopenia in T2D. In fact, beyond reporting on the pathological consequences of both oxidative stress and inflammation, the current review highlights the importance of strengthening intracellular antioxidant systems to preserve muscle mass, strength, and function in individuals with T2D.
Collapse
Affiliation(s)
- Ndivhuwo Muvhulawa
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa
| | | | - Duduzile Ndwandwe
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa
| | - Marakiya T Moetlediwa
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa
| | | | - Jeanine L Marnewick
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville 7535, South Africa
| | | | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Albertus K Basson
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| |
Collapse
|
50
|
Volpe M, Ferrera A, Piccinocchi R, Morisco C. The Emerging Role of Prediabetes and Its Management: Focus on L-Arginine and a Survey in Clinical Practice. High Blood Press Cardiovasc Prev 2023; 30:489-496. [PMID: 38060094 PMCID: PMC10721705 DOI: 10.1007/s40292-023-00613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
The worldwide impressive growth of metabolic disorders observed in the last decades, especially type 2 diabetes mellitus and obesity, has generated great interest in the potential benefits of early identification and management of patients at risk. In this view, prediabetes represents a high-risk condition for the development of type 2 diabetes mellitus and cardiovascular diseases, and an ideal target to intercept patients before they develop type 2 diabetes gaining a prominent role even in international guidelines. For prediabetic individuals, lifestyle modification is the cornerstone of diabetes prevention, with evidence of about 50% relative risk reduction. Accumulating data also show potential benefits from pharmacotherapy. In this context, the only available data pertain to metformin as a pharmaceutical drug and vitamin D and L-arginine as nutraceuticals. L-arginine appears to be a very interesting tool in the clinical management of patients with pre-diabetes. In this review we summarize the current knowledge on the role of L-arginine in prediabetes as a potentially useful preventive strategy against the progression to type 2 diabetes, with a particular focus on the underlying molecular mechanisms and the past and ongoing trials. In this article we also report the interesting data about the perception of the prediabetic condition and its therapeutic management in the clinical practice in Italy. An early identification and a prompt management of people with prediabetes appears to be of paramount importance to prevent the progression to diabetes and avoid its cardiovascular consequences.
Collapse
Affiliation(s)
- Massimo Volpe
- Department of Clinical and Molecular Medicine, ''Sapienza'' University of Rome, Rome, Italy.
- IRCCS San Raffaele, Rome, Italy.
| | - Armando Ferrera
- Department of Clinical and Molecular Medicine, ''Sapienza'' University of Rome, Rome, Italy
| | | | | |
Collapse
|