1
|
Joshi V, Awasthi R. Iron Homeostasis and Metabolism During Pregnancy: Exploring Innovative Drug Delivery Approaches for Treating Iron Deficiency Anemia in Pregnant Women. Arch Pharm (Weinheim) 2025; 358:e12002. [PMID: 40390174 DOI: 10.1002/ardp.202400983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/25/2025] [Accepted: 04/06/2025] [Indexed: 05/21/2025]
Abstract
Pregnant women and small children are more prone to anemia. Even among the most affluent and educated portions of society, an estimated 50% of pregnant women, adolescent girls, and youngsters are anemic. This review recapitulates previous findings exploring advancements in anemia management in pregnant women. The published articles were searched using Google Scholar, Web of Science, Scopus, and Clinical Trials. Primary causes of anemia are an inadequate supply of dietary iron, deficiency of folate due to the lack of vegetable consumption, and thus a lack of vitamin B12, and a lack of dietary iron bioavailability from phytate and fiber-rich diets. When hemoglobin falls below 5 g/dL, the maternal mortality rate multiplies 8-10 times. Early detection and treatment of anemia during pregnancy may minimize maternal mortality, substantially decrease childhood and adolescent nutritional deficiency, and improve adult height. Maternal anemia decreases intrauterine growth, which increases the risk of premature delivery and low birth weight in babies. Intrauterine growth retardation coupled with a low birth weight leads to an inadequate growth trajectory throughout childhood, adolescence, and adulthood. Nano-delivery systems stand out as a promising avenue, utilizing nanotechnology to enhance the absorption of iron. These systems offer targeted delivery of iron supplements, overcoming challenges associated with conventional formulations. The exploration of nanotechnology in iron deficiency anemia treatment marks a significant stride toward developing advanced and tailored solutions for improving iron supplementation.
Collapse
Affiliation(s)
- Vaishali Joshi
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, India
| |
Collapse
|
2
|
Das A, Suar M, Reddy K. Hormones in malaria infection: influence on disease severity, host physiology, and therapeutic opportunities. Biosci Rep 2024; 44:BSR20240482. [PMID: 39492784 PMCID: PMC11581842 DOI: 10.1042/bsr20240482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024] Open
Abstract
Human malaria, caused by Plasmodium parasites, is a fatal disease that disrupts the host's physiological balance and affects the neuroendocrine system. This review explores how malaria influences and is influenced by hormones. Malaria activates the Hypothalamus-Pituitary-Adrenal axis, leading to increased cortisol, aldosterone, and epinephrine. Cortisol, while reducing inflammation, aids parasite survival, whereas epinephrine helps manage hypoglycemia. The Hypothalamus-Pituitary-Gonad and Hypothalamus-Pituitary-Thyroid axes are also impacted, resulting in lower sex and thyroid hormone levels. Malaria disrupts the renin-angiotensin-aldosterone system (RAAS), causing higher angiotensin-II and aldosterone levels, contributing to edema, hyponatremia and hypertension. Malaria-induced anemia is exacerbated by increased hepcidin, which impairs iron absorption, reducing both iron availability for the parasite and red blood cell formation, despite elevated erythropoietin. Hypoglycemia is common due to decreased glucose production and hyperinsulinemia, although some cases show hyperglycemia due to stress hormones and inflammation. Hypocalcemia, and hypophosphatemia are associated with low Vitamin D3 and parathyroid hormone but high calcitonin. Hormones such as DHEA, melatonin, PTH, Vitamin D3, hepcidin, progesterone, and erythropoietin protects against malaria. Furthermore, synthetic analogs, receptor agonists and antagonists or mimics of hormones like DHEA, melatonin, serotonin, PTH, vitamin D3, estrogen, progesterone, angiotensin, and somatostatin are being explored as potential antimalarial treatments or adjunct therapies. Additionally, hormones like leptin and PCT are being studied as probable markers of malaria infection.
Collapse
Affiliation(s)
- Aleena Das
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
- Technology Business Incubator, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
| | - K Sony Reddy
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
| |
Collapse
|
3
|
Pêgo AC, Lima IS, Martins AC, Sá-Pereira I, Martins G, Gozzelino R. Infection vs. Reinfection: The Immunomodulation of Erythropoiesis. Int J Mol Sci 2024; 25:6153. [PMID: 38892340 PMCID: PMC11172545 DOI: 10.3390/ijms25116153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Severe malarial anemia (SMA) increases the morbidity and mortality of Plasmodium, the causative agent of malaria. SMA is mainly developed by children and pregnant women in response to the infection. It is characterized by ineffective erythropoiesis caused by impaired erythropoietin (EPO) signaling. To gain new insights into the pathogenesis of SMA, we investigated the relationship between the immune system and erythropoiesis, conducting comparative analyses in a mouse model of malaria. Red blood cell (RBC) production was evaluated in infected and reinfected animals to mimic endemic occurrences. Higher levels of circulating EPO were observed in response to (re)infection. Despite no major differences in bone marrow erythropoiesis, compensatory mechanisms of splenic RBC production were significantly reduced in reinfected mice. Concomitantly, a pronounced immune response activation was observed in erythropoietic organs of reinfected animals in relation to single-infected mice. Aged mice were also used to mimic the occurrence of malaria in the elderly. The increase in symptom severity was correlated with the enhanced activation of the immune system, which significantly impaired erythropoiesis. Immunocompromised mice further support the existence of an immune-shaping regulation of RBC production. Overall, our data reveal the strict correlation between erythropoiesis and immune cells, which ultimately dictates the severity of SMA.
Collapse
Affiliation(s)
| | | | | | | | | | - Raffaella Gozzelino
- NOVA Medical School Research, NOVA University of Lisbon, 1150-082 Lisbon, Portugal
| |
Collapse
|
4
|
Nkansah C, Bannison Bani S, Mensah K, Appiah SK, Osei-Boakye F, Abbam G, Daud S, Agyare EM, Agbadza PE, Derigubah CA, Serwaa D, Apodola FA, Quansah Y, Issah R, Dindiok SY, Chukwurah FE. Serum anti-erythropoietin antibodies among pregnant women with Plasmodium falciparum malaria and anaemia: A case-control study in northern Ghana. PLoS One 2023; 18:e0283427. [PMID: 36989322 PMCID: PMC10058094 DOI: 10.1371/journal.pone.0283427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Anaemia in pregnancy is common in underdeveloped countries, and malaria remains the predominant cause of the condition in Ghana. Anti-erythropoietin (anti-EPO) antibody production may be implicated in the pathogenesis of Plasmodium falciparum malaria-related anaemia in pregnancy. This study ascertained the prevalence of anti-EPO antibody production and evaluated the antibodies' relationship with Plasmodium falciparum malaria and malaria-related anaemia in pregnancy. METHODS This hospital-based case-control study recruited a total of 85 pregnant women (55 with Plasmodium falciparum malaria and 30 controls without malaria). Venous blood was taken from participants for thick and thin blood films for malaria parasite microscopy. Complete blood count (CBC) analyses were done using an automated haematology analyzer. Sandwich enzyme-linked immunosorbent assay (ELISA) was used to assess serum erythropoietin (EPO) levels and anti-EPO antibodies. Data were analyzed using IBM SPSS version 22.0. RESULTS Haemoglobin (p<0.001), RBC (p<0.001), HCT (p = 0.006) and platelet (p<0.001) were significantly lower among pregnant women infected with Plasmodium falciparum. Of the 85 participants, five (5.9%) had anti-EPO antibodies in their sera, and the prevalence of anti-EPO antibody production among the Plasmodium falciparum-infected pregnant women was 9.1%. Plasmodium falciparum-infected pregnant women with anti-EPO antibodies had lower Hb (p<0.001), RBC (p<0.001), and HCT (p<0.001), but higher EPO levels (p<0.001). Younger age (p = 0.013) and high parasite density (p = 0.004) were significantly associated with Plasmodium falciparum-related anti-EPO antibodies production in pregnancy. Also, younger age (p = 0.039) and anti-EPO antibody production (p = 0.012) related to the development of Plasmodium falciparum malaria anaemia in pregnancy. CONCLUSION The prevalence of anti-EPO antibodies among pregnant women with Plasmodium falciparum malaria was high. Plasmodium falciparum parasite density and younger age could stimulate the production of anti-EPO antibodies, and the antibodies may contribute to the development of malarial anaemia in pregnancy. Screening for anti-EPO antibodies should be considered in pregnant women with P. falciparum malaria.
Collapse
Affiliation(s)
- Charles Nkansah
- Department of Haematology, School of Allied Health Sciences, University for Development Studies, Tamale, Ghana
- Department of Medical Laboratory Sciences, Faculty of Health Science and Technology, Ebonyi State University, Abakaliki, Nigeria
| | - Simon Bannison Bani
- Department of Biomedical Laboratory Sciences, School of Allied Health Sciences, University for Development Studies, Tamale, Ghana
| | - Kofi Mensah
- Department of Haematology, School of Allied Health Sciences, University for Development Studies, Tamale, Ghana
- Department of Medical Laboratory Sciences, Faculty of Health Science and Technology, Ebonyi State University, Abakaliki, Nigeria
| | - Samuel Kwasi Appiah
- Department of Haematology, School of Allied Health Sciences, University for Development Studies, Tamale, Ghana
- Department of Medical Laboratory Sciences, Faculty of Health Science and Technology, Ebonyi State University, Abakaliki, Nigeria
| | - Felix Osei-Boakye
- Department of Medical Laboratory Technology, Faculty of Applied Science and Technology, Sunyani Technical University, Sunyani, Ghana
| | - Gabriel Abbam
- Department of Haematology, School of Allied Health Sciences, University for Development Studies, Tamale, Ghana
| | - Samira Daud
- Department of Haematology, School of Allied Health Sciences, University for Development Studies, Tamale, Ghana
| | - Eugene Mensah Agyare
- Department of Biomedical Laboratory Sciences, School of Allied Health Sciences, University for Development Studies, Tamale, Ghana
| | - Peace Esenam Agbadza
- Department of Biomedical Laboratory Sciences, School of Allied Health Sciences, University for Development Studies, Tamale, Ghana
| | - Charles Angnataa Derigubah
- Department of Medical Laboratory Technology, School of Applied Science and Arts, Bolgatanga Technical University, Bolgatanga, Ghana
| | - Dorcas Serwaa
- Department of Obstetrics and Gynecology, C4C Homeopathic Medical College, Accra, Ghana
| | - Francis Atoroba Apodola
- Department of Medical Diagnostics, College of Nursing and Allied Health Sciences, Nalerigu, Ghana
| | - Yeduah Quansah
- Department of Biomedical Laboratory Sciences, School of Allied Health Sciences, University for Development Studies, Tamale, Ghana
| | - Rahama Issah
- Department of Biomedical Laboratory Sciences, School of Allied Health Sciences, University for Development Studies, Tamale, Ghana
| | - Samuel Yennuloom Dindiok
- Department of Biomedical Laboratory Sciences, School of Allied Health Sciences, University for Development Studies, Tamale, Ghana
| | - Felix Ejike Chukwurah
- Department of Medical Laboratory Sciences, Faculty of Health Science and Technology, Ebonyi State University, Abakaliki, Nigeria
| |
Collapse
|
5
|
Mungkalasut P, Kiatamornrak P, Jugnam-Ang W, Krudsood S, Cheepsunthorn P, Cheepsunthorn CL. Haematological profile of malaria patients with G6PD and PKLR variants (erythrocytic enzymopathies): a cross-sectional study in Thailand. Malar J 2022; 21:250. [PMID: 36038921 PMCID: PMC9426002 DOI: 10.1186/s12936-022-04267-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Background Glucose 6-phosphate dehydrogenase (G6PD) and pyruvate kinase (PKLR) deficiencies are common causes of erythrocyte haemolysis in the presence of antimalarial drugs such as primaquine and tafenoquine. The present study aimed to elucidate such an association by thoroughly investigating the haematological indices in malaria patients with G6PD and PKLRR41Q variants. Methods Blood samples from 255 malaria patients from Thailand, Myanmar, Laos, and Cambodia were collected to determine haematological profile, G6PD enzyme activity and G6PD deficiency variants. The multivariate analysis was performed to investigate the association between anaemia and G6PD MahidolG487A, the most common mutation in this study. Results The prevalence of G6PD deficiency was 11.1% (27/244) in males and 9.1% (1/11) in female. The MAFs of the G6PD MahidolG487A and PKLRR41Q variants were 7.1% and 2.6%, respectively. Compared with patients with wildtype G6PD after controlling for haemoglobinopathies, G6PD-deficient patients with hemizygous and homozygous G6PD MahidolG487A exhibited anaemia with low levels of haemoglobin (11.16 ± 2.65 g/dl, p = 0.041). These patients also exhibited high levels of reticulocytes (3.60%). The median value of G6PD activity before treatment (Day 0) was significantly lower than that of after treatment (Day 28) (5.51 ± 2.54 U/g Hb vs. 6.68 ± 2.45 U/g Hb; p < 0.001). Reticulocyte levels on Day 28 were significantly increased compared to that of on Day 0 (2.14 ± 0.92% vs 1.57 ± 1.06%; p < 0.001). PKLRR41Q had no correlation with anaemia in malaria patients. The risk of anaemia inpatients with G6PDMahidolG487A was higher than wildtype patients (OR = 3.48, CI% 1.24–9.75, p = 0.018). Univariate and multivariate analyses confirmed that G6PDMahidolG487A independently associated with anaemia (< 11 g/dl) after adjusted by age, gender, Plasmodium species, parasite density, PKLRR41Q, and haemoglobinopathies (p < 0.001). Conclusions This study revealed that malaria patients with G6PD MahidolG487A, but not with PKLRR41Q, had anaemia during infection. As a compensatory response to haemolytic anaemia after malaria infection, these patients generated more reticulocytes. The findings emphasize the effect of host genetic background on haemolytic anaemia and the importance of screening patients for erythrocyte enzymopathies and related mutations prior to anti-malarial therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04267-7.
Collapse
Affiliation(s)
- Punchalee Mungkalasut
- Interdisciplinary Programme of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Patcharakorn Kiatamornrak
- Medical Biochemistry Programme, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Watcharapong Jugnam-Ang
- Medical Biochemistry Programme, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Srivicha Krudsood
- Department of Tropical Hygiene and Clinical Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | |
Collapse
|
6
|
Scovino AM, Totino PRR, Morrot A. Eryptosis as a New Insight in Malaria Pathogenesis. Front Immunol 2022; 13:855795. [PMID: 35634341 PMCID: PMC9136947 DOI: 10.3389/fimmu.2022.855795] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
Eryptosis is a programmed cell death-like process that occurs in red blood cells. Although the red blood cells are anucleated, there are similarities between eryptosis and apoptosis, such as increased calcium efflux, calpain activation, phosphatidylserine exposure, cell blebbing and cell shrinkage. Eryptosis occurs physiologically in red blood cells, as a consequence of the natural senescence process of these cells, but it can also be stimulated in pathological situations such as metabolic syndromes, uremic syndromes, polycythemia vera, anemias such as sickle cell anemia and thalassemia, and infectious processes including Plasmodium infection. Infection-induced eryptosis is believed to contribute to damage caused by Plasmodium, but it’s still a topic of debate in the literature. In this review, we provided an overview of eryptosis mechanisms and its possible pathogenic role in malaria.
Collapse
Affiliation(s)
- Aline Miranda Scovino
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Alexandre Morrot
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Alexandre Morrot,
| |
Collapse
|
7
|
Lakkavaram A, Lundie RJ, Do H, Ward AC, de Koning-Ward TF. Acute Plasmodium berghei Mouse Infection Elicits Perturbed Erythropoiesis With Features That Overlap With Anemia of Chronic Disease. Front Microbiol 2020; 11:702. [PMID: 32373101 PMCID: PMC7176981 DOI: 10.3389/fmicb.2020.00702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/26/2020] [Indexed: 12/21/2022] Open
Abstract
Severe malaria anemia is one of the most common causes of morbidity and mortality arising from infection with Plasmodium falciparum. The pathogenesis of malarial anemia is complex, involving both parasite and host factors. As mouse models of malaria also develop anemia, they can provide a useful resource to study the impact of Plasmodium infections and the resulting host innate immune response on erythropoiesis. In this study, we have characterized the bone marrow and splenic responses of the erythroid as well as other hematopoietic lineages after an acute infection of Balb/c mice with Plasmodium berghei. Such characterization of the hematopoietic changes is critical to underpin future studies, using knockout mice and transgenic parasites, to tease out the interplay between host genes and parasite modulators implicated in susceptibility to malaria anemia. P. berghei infection led to a clear perturbation of steady-state erythropoiesis, with the most profound defects in polychromatic and orthochromatic erythroblasts as well as erythroid colony- and burst-forming units (CFU-E and BFU-E), resulting in an inability to compensate for anemia. The perturbation in erythropoiesis was not attributable to parasites infecting erythroblasts and affecting differentiation, nor to insufficient erythropoietin (EPO) production or impaired activation of the Signal transducer and activator of transcription 5 (STAT5) downstream of the EPO receptor, indicating EPO-signaling remained functional in anemia. Instead, the results point to acute anemia in P. berghei-infected mice arising from increased myeloid cell production in order to clear the infection, and the concomitant release of pro-inflammatory cytokines and chemokines from myeloid cells that inhibit erythroid development, in a manner that resembles the pathophysiology of anemia of chronic disease.
Collapse
Affiliation(s)
- Asha Lakkavaram
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | - Rachel J Lundie
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Hang Do
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | | |
Collapse
|
8
|
Scheu K, Adegnika AA, Addo MM, Ansong D, Cramer JP, Fürst S, Kremsner PG, Kurth F, Jacobs T, May J, Ramharter M, Sylverken J, Vinnemeier CD, Agbenyega T, Rolling T. Determinants of post-malarial anemia in African children treated with parenteral artesunate. Sci Rep 2019; 9:18134. [PMID: 31792345 PMCID: PMC6888809 DOI: 10.1038/s41598-019-54639-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/18/2019] [Indexed: 12/28/2022] Open
Abstract
The pathophysiology of malarial anemia is multifactorial and incompletely understood. We assessed mechanistic and risk factors for post-malarial anemia in Ghanaian and Gabonese children with severe P. falciparum malaria treated with parenteral artesunate followed by an oral artemisinin-combination therapy. We analyzed data from two independent studies in which children were followed on Days 7,14, and 28 after treatment with artesunate. Specific hematological parameters included the presence of hemoglobinopathies and erythropoietin. Presence of once-infected erythrocytes was assessed by flow cytometry in a sub-population. Of 143 children with a geometric mean parasitemia of 116,294/µL (95% CI: 95,574-141,505), 91 (88%) had anemia (Hb < 10 g/dL) at presentation. Hemoglobin increased after Day 7 correlating with increased erythropoiesis through adequate erythropoietin stimulation. 22 children (24%) remained anemic until Day 28. Post-artesunate delayed hemolysis was detected in 7 children (5%) with only minor differences in the dynamics of once-infected erythrocytes. Hyperparasitemia and hemoglobin at presentation were associated with anemia on Day 14. On Day 28 only lower hemoglobin at presentation was associated with anemia. Most children showed an adequate erythropoiesis and recovered from anemia within one month. Post-artesunate delayed hemolysis (PADH) and hyperparasitemia are associated with early malarial anemia and pre-existing anemia is the main determinant for prolonged anemia.
Collapse
Affiliation(s)
- Katrin Scheu
- Division of Infectious Diseases, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | - Ayola Akim Adegnika
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute of Tropical Medicine, University Medical Center Tübingen, Tübingen, Germany
- Central African Network for Tuberculosis, Aids and Malaria (CANTAM), Brazzaville, Republic of Congo
| | - Marylyn M Addo
- Division of Infectious Diseases, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
- Department of Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Daniel Ansong
- School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Jakob P Cramer
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Coalition for Epidemic Preparedness Innovations (CEPI), London, UK
| | - Svenja Fürst
- Division of Infectious Diseases, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter G Kremsner
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute of Tropical Medicine, University Medical Center Tübingen, Tübingen, Germany
| | - Florian Kurth
- Medizinische Klinik mit Schwerpunkt Infektiologie und Pneumologie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Jürgen May
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
- Department of Infectious Diseases Epidemiology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Michael Ramharter
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Justice Sylverken
- School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Christof D Vinnemeier
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tsiri Agbenyega
- School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Thierry Rolling
- Division of Infectious Diseases, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany.
- Department of Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
- Infectious Disease Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
9
|
Abstract
Malaria is a major cause of anaemia in tropical areas. Malaria infection causes haemolysis of infected and uninfected erythrocytes and bone marrow dyserythropoiesis which compromises rapid recovery from anaemia. In areas of high malaria transmission malaria nearly all infants and young children, and many older children and adults have a reduced haemoglobin concentration as a result. In these areas severe life-threatening malarial anaemia requiring blood transfusion in young children is a major cause of hospital admission, particularly during the rainy season months when malaria transmission is highest. In severe malaria, the mortality rises steeply below an admission haemoglobin of 3 g/dL, but it also increases with higher haemoglobin concentrations approaching the normal range. In the management of severe malaria transfusion thresholds remain uncertain. Prevention of malaria by vector control, deployment of insecticide-treated bed nets, prompt and accurate diagnosis of illness and appropriate use of effective anti-malarial drugs substantially reduces the burden of anaemia in tropical countries.
Collapse
Affiliation(s)
- Nicholas J White
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Namaste SML, Rohner F, Huang J, Bhushan NL, Flores-Ayala R, Kupka R, Mei Z, Rawat R, Williams AM, Raiten DJ, Northrop-Clewes CA, Suchdev PS. Adjusting ferritin concentrations for inflammation: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Am J Clin Nutr 2017; 106:359S-371S. [PMID: 28615259 PMCID: PMC5490647 DOI: 10.3945/ajcn.116.141762] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background: The accurate estimation of iron deficiency is important in planning and implementing interventions. Ferritin is recommended as the primary measure of iron status, but interpretability is challenging in settings with infection and inflammation.Objective: We assessed the relation between ferritin concentrations and inflammation and malaria in preschool children (PSC) (age range: 6-59 mo) and women of reproductive age (WRA) (age range: 15-49 y) and investigated adjustment algorithms to account for these effects.Design: Cross-sectional data from 15 surveys for PSC (n = 27,865) and 8 surveys for WRA (24,844), from the Biomarkers Reflecting the Inflammation and Nutritional Determinants of Anemia (BRINDA) project were analyzed individually and combined with the use of a meta-analysis. Several approaches were explored to estimate depleted iron stores (ferritin concentration <12 μg/L in PSC and <15 μg/L in WRA) in inflammation and malaria settings as follows: 1) increase ferritin-concentration cutoff to <30 μg/L; 2) exclude individuals with C-reactive protein (CRP) concentrations >5 mg/L or α-1-acid glycoprotein (AGP) concentrations >1 g/L; 3) apply arithmetic correction factors; and 4) use a regression correction approach.Results: Depleted iron-store estimates incrementally increased as CRP and AGP deciles decreased (4% compared with 30%, and 6% compared with 29% from highest compared with lowest CRP deciles for pooled PSC and WRA, respectively, with similar results for AGP). Depending on the approach used to adjust for inflammation (CRP plus AGP), the estimated prevalence of depleted iron stores increased by 7-25 and 2-8 absolute median percentage points for PSC and WRA, respectively, compared with unadjusted values. Adjustment for malaria in addition to CRP and AGP did not substantially change the estimated prevalence of depleted iron stores.Conclusions: Our results lend support for the use of internal regression correction to estimate the prevalence of depleted iron stores in regions with inflammation. This approach appears to mathematically reflect the linear relation of ferritin concentrations with acute-phase proteins. More research is warranted to validate the proposed approaches, but this study contributes to the evidence base to guide decisions about how and when to adjust ferritin for inflammation.
Collapse
Affiliation(s)
- Sorrel ML Namaste
- Strengthening Partnerships, Results, and Innovations in Nutrition Globally, Arlington, VA;,Helen Keller International, Washington, DC
| | | | - Jin Huang
- Department of Oncology, Johns Hopkins University, Baltimore, MD
| | - Nivedita L Bhushan
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Chapel Hill, NC
| | | | | | | | - Rahul Rawat
- Poverty Health and Nutrition Division, International Food Policy Research Institute, Dakar, Senegal
| | | | - Daniel J Raiten
- Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD; and
| | | | - Parminder S Suchdev
- Nutrition Branch, CDC, Atlanta, GA;,Emory University, Department of Pediatrics, Atlanta, GA
| |
Collapse
|
11
|
Arias CF, Arias CF. How do red blood cells know when to die? ROYAL SOCIETY OPEN SCIENCE 2017; 4:160850. [PMID: 28484605 PMCID: PMC5414242 DOI: 10.1098/rsos.160850] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/01/2017] [Indexed: 05/19/2023]
Abstract
Human red blood cells (RBCs) are normally phagocytized by macrophages of splenic and hepatic sinusoids at 120 days of age. The destruction of RBCs is ultimately controlled by antagonist effects of phosphatidylserine (PS) and CD47 on the phagocytic activity of macrophages. In this work, we introduce a conceptual model that explains RBC lifespan as a consequence of the dynamics of these molecules. Specifically, we suggest that PS and CD47 define a molecular algorithm that sets the timing of RBC phagocytosis. We show that significant changes in RBC lifespan described in the literature can be explained as alternative outcomes of this algorithm when it is executed in different conditions of oxygen availability. The theoretical model introduced here provides a unified framework to understand a variety of empirical observations regarding RBC biology. It also highlights the role of RBC lifespan as a key element of RBC homeostasis.
Collapse
Affiliation(s)
- Clemente Fernandez Arias
- Departamento de Matemática Aplicada, Universidad Complutense de Madrid, Spain
- Grupo Interdisciplinar de Sistemas Complejos, Madrid, Spain
| | - Cristina Fernandez Arias
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, USA
| |
Collapse
|
12
|
Roberts DJ. Hematologic Changes Associated with Specific Infections in the Tropics. Hematol Oncol Clin North Am 2016; 30:395-415. [PMID: 27040961 DOI: 10.1016/j.hoc.2015.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Anemia frequently accompanies and plays a minor role in the presentation and course of infection, whether parasitic, bacterial, or viral. However, a variety of infections, many of which are common in Africa and Asia, cause specific hematologic syndromes. The pathophysiology of these syndromes is complex, and to some extent, reduced red cell production may form part of an innate protective host response to infection. Across the world and in endemic areas, malaria is the most important among this group of infections and forms a major part of everyday practice.
Collapse
Affiliation(s)
- David J Roberts
- National Health Service Blood and Transplant, John Radcliffe Hospital, University of Oxford, Level 2, Headington, Oxford OX3 9BQ, UK.
| |
Collapse
|
13
|
Totino PRR, Daniel-Ribeiro CT, Ferreira-da-Cruz MDF. Evidencing the Role of Erythrocytic Apoptosis in Malarial Anemia. Front Cell Infect Microbiol 2016; 6:176. [PMID: 28018860 PMCID: PMC5145864 DOI: 10.3389/fcimb.2016.00176] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/21/2016] [Indexed: 01/06/2023] Open
Abstract
In the last decade it has become clear that, similarly to nucleated cells, enucleated red blood cells (RBCs) are susceptible to programmed apoptotic cell death. Erythrocytic apoptosis seems to play a role in physiological clearance of aged RBCs, but it may also be implicated in anemia of different etiological sources including drug therapy and infectious diseases. In malaria, severe anemia is a common complication leading to death of children and pregnant women living in malaria-endemic regions of Africa. The pathogenesis of malarial anemia is multifactorial and involves both ineffective production of RBCs by the bone marrow and premature elimination of non-parasitized RBCs, phenomena potentially associated with apoptosis. In the present overview, we discuss evidences associating erythrocytic apoptosis with the pathogenesis of severe malarial anemia, as well as with regulation of parasite clearance in malaria. Efforts to understand the role of erythrocytic apoptosis in malarial anemia can help to identify potential targets for therapeutic intervention based on apoptotic pathways and consequently, mitigate the harmful impact of malaria in global public health.
Collapse
Affiliation(s)
- Paulo R R Totino
- Laboratory of Malaria Research, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz Rio de Janeiro, Brazil
| | - Cláudio T Daniel-Ribeiro
- Laboratory of Malaria Research, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz Rio de Janeiro, Brazil
| | | |
Collapse
|
14
|
Camacho LH, Gordeuk VR, Wilairatana P, Pootrakul P, Brittenham GM, Looareesuwan S. The course of anaemia after the treatment of acute, falciparum malaria. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.1998.11813310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Fernandez-Arias C, Arias CF, Rodriguez A. Is malarial anaemia homologous to neocytolysis after altitude acclimatisation? Int J Parasitol 2014; 44:19-22. [DOI: 10.1016/j.ijpara.2013.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 01/01/2023]
|
16
|
Abstract
Iron deficiency anemia arises when the balance of iron intake, iron stores, and the body's loss of iron are insufficient to fully support production of erythrocytes. Iron deficiency anemia rarely causes death, but the impact on human health is significant. In the developed world, this disease is easily identified and treated, but frequently overlooked by physicians. In contrast, it is a health problem that affects major portions of the population in underdeveloped countries. Overall, the prevention and successful treatment for iron deficiency anemia remains woefully insufficient worldwide, especially among underprivileged women and children. Here, clinical and laboratory features of the disease are discussed, and then focus is placed on relevant economic, environmental, infectious, and genetic factors that converge among global populations.
Collapse
Affiliation(s)
- Jeffery L Miller
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
17
|
Taylor WRJ, Widjaja H, Basri H, Tjitra E, Ohrt C, Taufik T, Baso S, Hoffman SL, Richie TL. Haemoglobin dynamics in Papuan and non-Papuan adults in northeast Papua, Indonesia, with acute, uncomplicated vivax or falciparum malaria. Malar J 2013; 12:209. [PMID: 23777546 PMCID: PMC3691772 DOI: 10.1186/1475-2875-12-209] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 06/05/2013] [Indexed: 12/19/2022] Open
Abstract
Background Haemoglobin (Hb) recovers slowly in malaria and may be influenced by naturally acquired immunity. Hb recovery was compared in malaria immune, indigenous Papuan and non-Papuan adults with limited malaria exposure. Methods Hb concentrations were measured on Days (D) 0, 3, 7, and 28 in 57 Papuans and 105 non-Papuans treated with chloroquine, doxycycline or both drugs for acute, uncomplicated Plasmodium vivax (n?=?64) or Plasmodium falciparum (n?=?98). Results Mean (SD, range) D0 Hb was 12.7 (2.2, 7–21.3) g/dL and was similar in P. falciparum infected Papuans and non-Papuans: 12.2 vs. 12.8 g/dL (P?=?0.15) but significantly lower in: (i) P. vivax-infected Papuans vs. P. vivax-infected non-Papuans: 11.4 vs. 13.47 g/dL [∆?=?−2.07 (95% CI: –3.3 – –0.8), P?=?0.0018], (ii) all patients with splenomegaly (vs. those without splenomegaly): 12.16 vs. 13.01 g/dL [∆?=?−0.85 (−1.6– –0.085), P?=?0.029], and (iii) all females vs. all males: 10.18 vs. 13.01 g/dL [∆?=?−2.82 (−3.97 – –1.67), P?<?0.0001].Multiple regression identified female sex (P?=?0.000), longer illness duration (P?=?0.015) (P. falciparum patients) and Papuan ethnicity (P?=?0.017) (P. vivax patients) as significant factors for a lower D0 Hb. Mean D28 Hb increased to 13.6 g/dL [∆?=?1.01 (0.5-1.5) vs. D0 Hb, P?=?0.0001]. It was: (i) positively correlated with the D0 Hb (adjusted R2?=?0.24, P?=?0.000), and was significantly lower in P. vivax infected Papuans vs. non-Papuans: 12.71 vs. 14.46 g/dL [∆?=?−1.7 (−2.95– –0.5, P?=?0.006). Conclusions Haemoglobin recovery was related to baseline Hb. Vivax-infected malaria immune Papuans had persistently lower Hb concentrations compared to non-Papuans with limited malaria exposure. This haematological disadvantage remains unexplained.
Collapse
Affiliation(s)
- Walter R J Taylor
- The US Navy Medical Research Unit no. 2-NAMRU-2, Jakarta, Indonesia.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Plasmodium coatneyi in rhesus macaques replicates the multisystemic dysfunction of severe malaria in humans. Infect Immun 2013; 81:1889-904. [PMID: 23509137 DOI: 10.1128/iai.00027-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Severe malaria, a leading cause of mortality among children and nonimmune adults, is a multisystemic disorder characterized by complex clinical syndromes that are mechanistically poorly understood. The interplay of various parasite and host factors is critical in the pathophysiology of severe malaria. However, knowledge regarding the pathophysiological mechanisms and pathways leading to the multisystemic disorders of severe malaria in humans is limited. Here, we systematically investigate infections with Plasmodium coatneyi, a simian malaria parasite that closely mimics the biological characteristics of P. falciparum, and develop baseline data and protocols for studying erythrocyte turnover and severe malaria in greater depth. We show that rhesus macaques (Macaca mulatta) experimentally infected with P. coatneyi develop anemia, coagulopathy, and renal and metabolic dysfunction. The clinical course of acute infections required suppressive antimalaria chemotherapy, fluid support, and whole-blood transfusion, mimicking the standard of care for the management of severe malaria cases in humans. Subsequent infections in the same animals progressed with a mild illness in comparison, suggesting that immunity played a role in reducing the severity of the disease. Our results demonstrate that P. coatneyi infection in rhesus macaques can serve as a highly relevant model to investigate the physiological pathways and molecular mechanisms of malaria pathogenesis in naïve and immune individuals. Together with high-throughput postgenomic technologies, such investigations hold promise for the identification of new clinical interventions and adjunctive therapies.
Collapse
|
19
|
Anstey NM, Douglas NM, Poespoprodjo JR, Price RN. Plasmodium vivax: clinical spectrum, risk factors and pathogenesis. ADVANCES IN PARASITOLOGY 2013. [PMID: 23199488 DOI: 10.1016/b978-0-12-397900-1.00003-7] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Vivax malaria was historically described as 'benign tertian malaria' because individual clinical episodes were less likely to cause severe illness than Plasmodium falciparum. Despite this, Plasmodium vivax was, and remains, responsible for major morbidity and significant mortality in vivax-endemic areas. Single infections causing febrile illness in otherwise healthy individuals rarely progress to severe disease. Nevertheless, in the presence of co-morbidities, P. vivax can cause severe illness and fatal outcomes. Recurrent or chronic infections in endemic areas can cause severe anaemia and malnutrition, particularly in early childhood. Other severe manifestations include acute lung injury, acute kidney injury and uncommonly, coma. Multiorgan failure and shock are described but further studies are needed to investigate the role of bacterial and other co-infections in these syndromes. In pregnancy, P. vivax infection can cause maternal anaemia, miscarriage, low birth weight and congenital malaria. Compared to P. falciparum, P. vivax has a greater capacity to elicit an inflammatory response, resulting in a lower pyrogenic threshold. Conversely, cytoadherence of P. vivax to endothelial cells is less frequent and parasite sequestration is not thought to be a significant cause of severe illness in vivax malaria. With a predilection for young red cells, P. vivax does not result in the high parasite biomass associated with severe disease in P. falciparum, but a four to fivefold greater removal of uninfected red cells from the circulation relative to P. falciparum is associated with a similar risk of severe anaemia. Mechanisms underlying the pathogenesis of severe vivax syndromes remain incompletely understood.
Collapse
Affiliation(s)
- Nicholas M Anstey
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | | | | | | |
Collapse
|
20
|
Abanyie FA, McCracken C, Kirwan P, Molloy SF, Asaolu SO, Holland CV, Gutman J, Lamb TJ. Ascaris co-infection does not alter malaria-induced anaemia in a cohort of Nigerian preschool children. Malar J 2013; 12:1. [PMID: 23282136 PMCID: PMC3544581 DOI: 10.1186/1475-2875-12-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/26/2012] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Co-infection with malaria and intestinal parasites such as Ascaris lumbricoides is common. Malaria parasites induce a pro-inflammatory immune response that contributes to the pathogenic sequelae, such as malarial anaemia, that occur in malaria infection. Ascaris is known to create an anti-inflammatory immune environment which could, in theory, counteract the anti-malarial inflammatory immune response, minimizing the severity of malarial anaemia. This study examined whether Ascaris co-infection can minimize the severity of malarial anaemia. METHODS Data from a randomized controlled trial on the effect of antihelminthic treatment in Nigerian preschool-aged (6-59 months) children conducted in 2006-2007 were analysed to examine the effect of malaria and Ascaris co-infection on anaemia severity. Children were enrolled and tested for malaria, helminths and anaemia at baseline, four, and eight months. Six hundred and ninety subjects were analysed in this study. Generalized linear mixed models were used to assess the relationship between infection status and Ascaris and Plasmodium parasite intensity on severity of anaemia, defined as a haemoglobin less than 11 g/dL. RESULTS Malaria prevalence ranged from 35-78% over the course of this study. Of the malaria-infected children, 55% were co-infected with Ascaris at baseline, 60% were co-infected four months later and 48% were co-infected eight months later, underlining the persistent prevalence of malaria-nematode co-infections in this population. Over the course of the study the percentage of anaemic subjects in the population ranged between 84% at baseline and 77% at the eight-month time point. The odds of being anaemic were four to five times higher in children infected with malaria compared to those without malaria. Ascaris infection alone did not increase the odds of being anaemic, indicating that malaria was the main cause of anaemia in this population. There was no significant difference in the severity of anaemia between children singly infected with malaria and co-infected with malaria and Ascaris. CONCLUSION In this cohort of Nigerian preschool children, malaria infection was the major contributor to anaemia status. Ascaris co-infection neither exacerbated nor ameliorated the severity of malarial anaemia.
Collapse
|
21
|
Manning L, Laman M, Rosanas-Urgell A, Michon P, Aipit S, Bona C, Siba P, Mueller I, Davis TME. Severe anemia in Papua New Guinean children from a malaria-endemic area: a case-control etiologic study. PLoS Negl Trop Dis 2012; 6:e1972. [PMID: 23272266 PMCID: PMC3521670 DOI: 10.1371/journal.pntd.0001972] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/02/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND There are few detailed etiologic studies of severe anemia in children from malaria-endemic areas and none in those countries with holoendemic transmission of multiple Plasmodium species. METHODOLOGY/PRINCIPAL FINDINGS We examined associates of severe anemia in 143 well-characterized Papua New Guinean (PNG) children aged 0.5-10 years with hemoglobin concentration <50 g/L (median [inter-quartile range] 39 [33]-[44] g/L) and 120 matched healthy children (113 [107-119] g/L) in a case-control cross-sectional study. A range of socio-demographic, behavioural, anthropometric, clinical and laboratory (including genetic) variables were incorporated in multivariate models with severe anemia as dependent variable. Consistent with a likely trophic effect of chloroquine or amodiaquine on parvovirus B19 (B19V) replication, B19V PCR/IgM positivity had the highest odds ratio (95% confidence interval) of 75.8 (15.4-526), followed by P. falciparum infection (19.4 (6.7-62.6)), vitamin A deficiency (13.5 (5.4-37.7)), body mass index-for-age z-score <2.0 (8.4 (2.7-27.0)) and incomplete vaccination (2.94 (1.3-7.2)). P. vivax infection was inversely associated (0.12 (0.02-0.47), reflecting early acquisition of immunity and/or a lack of reticulocytes for parasite invasion. After imputation of missing data, iron deficiency was a weak positive predictor (6.4% of population attributable risk). CONCLUSIONS/SIGNIFICANCE These data show that severe anemia is multifactorial in PNG children, strongly associated with under-nutrition and certain common infections, and potentially preventable through vitamin A supplementation and improved nutrition, completion of vaccination schedules, and intermittent preventive antimalarial treatment using non-chloroquine/amodiaquine-based regimens.
Collapse
Affiliation(s)
- Laurens Manning
- School of Medicine and Pharmacology, University of Western Australia, Fremantle Hospital, Fremantle, Western Australia, Australia
| | - Moses Laman
- School of Medicine and Pharmacology, University of Western Australia, Fremantle Hospital, Fremantle, Western Australia, Australia
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | | | - Pascal Michon
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Faculty of Health Sciences, Divine Word University, Madang, Madang Province, Papua New Guinea
| | - Susan Aipit
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Cathy Bona
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Peter Siba
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Ivo Mueller
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Infection and Immunity Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Center de Recerca en Salut Internacional de Barcelona (CRESIB), Barcelona, Spain
| | - Timothy M. E. Davis
- School of Medicine and Pharmacology, University of Western Australia, Fremantle Hospital, Fremantle, Western Australia, Australia
- * E-mail:
| |
Collapse
|
22
|
Anyona SB, Kempaiah P, Raballah E, Davenport GC, Were T, Konah SN, Vulule JM, Hittner JB, Gichuki CW, Ong'echa JM, Perkins DJ. Reduced systemic bicyclo-prostaglandin-E2 and cyclooxygenase-2 gene expression are associated with inefficient erythropoiesis and enhanced uptake of monocytic hemozoin in children with severe malarial anemia. Am J Hematol 2012; 87:782-9. [PMID: 22730036 DOI: 10.1002/ajh.23253] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 04/26/2012] [Indexed: 11/09/2022]
Abstract
In holoendemic Plasmodium falciparum transmission areas, severe malaria primarily occurs in children aged <48 months and manifests as severe malarial anemia [SMA; hemoglobin (Hb) < 6.0 g/dL]. Induction of high levels of prostaglandin-E(2) (PGE(2)) through inducible cyclooxygenase-2 (COX-2) is an important host-defense mechanism against invading pathogens. We have previously shown that COX-2-derived PGE(2) levels are reduced in children residing in hyperendemic transmission regions with cerebral malaria and in those with mixed sequelae of anemia and hyperparasitemia. Our in vitro studies further demonstrated that reduced PGE(2) was due to downregulation of COX-2 gene products following phagocytosis of malarial pigment (hemozoin, PfHz). However, as COX-2-PGE(2) pathways and the impact of naturally acquired PfHz on erythropoietic responses have not been determined in children with SMA, plasma and urinary bicyclo-PGE(2)/creatinine and leukocytic COX-2 transcripts were determined in parasitized children (<36 months) stratified into SMA (n = 36) and non-SMA (Hb ≥ 6.0 g/dL; n = 38). Children with SMA had significantly reduced plasma (P = 0.001) and urinary (P < 0.001) bicyclo-PGE(2)/creatinine and COX-2 transcripts (P = 0.007). There was a significant positive association between Hb and both plasma (r = 0.363, P = 0.002) and urinary (r = 0.500, P = 0.001)] bicyclo-PGE(2)/creatinine. Furthermore, decreased systemic bicyclo-PGE(2)/creatinine was associated with inefficient erythropoiesis (i.e., reticulocyte production index; RPI < 2.0, P = 0.026). Additional analyses demonstrated that plasma (P = 0.031) and urinary (P = 0.070) bicyclo-PGE(2)/creatinine and COX-2 transcripts (P = 0.026) progressively declined with increasing concentrations of naturally acquired PfHz by monocytes. Results presented here support a model in which reduced COX-2-derived PGE(2), driven in part by naturally acquired PfHz by monocytes, promotes decreased erythropoietic responses in children with SMA.
Collapse
Affiliation(s)
- Samuel B Anyona
- Laboratories of Parasitic and Viral Diseases, Centre for Global Health Research, Kenya Medical Research Institute, University of New Mexico, Kisumu, Kenya
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Douglas NM, Anstey NM, Buffet PA, Poespoprodjo JR, Yeo TW, White NJ, Price RN. The anaemia of Plasmodium vivax malaria. Malar J 2012; 11:135. [PMID: 22540175 PMCID: PMC3438072 DOI: 10.1186/1475-2875-11-135] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 04/17/2012] [Indexed: 12/22/2022] Open
Abstract
Plasmodium vivax threatens nearly half the world's population and is a significant impediment to achievement of the millennium development goals. It is an important, but incompletely understood, cause of anaemia. This review synthesizes current evidence on the epidemiology, pathogenesis, treatment and consequences of vivax-associated anaemia. Young children are at high risk of clinically significant and potentially severe vivax-associated anaemia, particularly in countries where transmission is intense and relapses are frequent. Despite reaching lower densities than Plasmodium falciparum, Plasmodium vivax causes similar absolute reduction in red blood cell mass because it results in proportionately greater removal of uninfected red blood cells. Severe vivax anaemia is associated with substantial indirect mortality and morbidity through impaired resilience to co-morbidities, obstetric complications and requirement for blood transfusion. Anaemia can be averted by early and effective anti-malarial treatment.
Collapse
Affiliation(s)
- Nicholas M Douglas
- Global Health Division, Menzies School of Health Research, PO Box 41096, Casuarina, NT 0811, Australia
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Division of Medicine, Royal Darwin Hospital, Darwin, NT, Australia
| | - Nicholas M Anstey
- Global Health Division, Menzies School of Health Research, PO Box 41096, Casuarina, NT 0811, Australia
- Division of Medicine, Royal Darwin Hospital, Darwin, NT, Australia
| | - Pierre A Buffet
- INSERM - UPMC, (Paris 6 University) UMRs945, F-75013, Paris, France
- Department of Parasitology, Pitié-Salpétrière Hospital, Assistance Publique – Hôpitaux de Paris, F-75013, Paris, France
- Institut Pasteur, Unité d’Immunologie Moléculaire des Parasites, Département de Parasitologie Mycologie, F-75015, Paris, France
| | - Jeanne R Poespoprodjo
- Global Health Division, Menzies School of Health Research, PO Box 41096, Casuarina, NT 0811, Australia
- Mimika District Health Authority, Timika, Papua, Indonesia
- Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
| | - Tsin W Yeo
- Global Health Division, Menzies School of Health Research, PO Box 41096, Casuarina, NT 0811, Australia
- Division of Medicine, Royal Darwin Hospital, Darwin, NT, Australia
| | - Nicholas J White
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ric N Price
- Global Health Division, Menzies School of Health Research, PO Box 41096, Casuarina, NT 0811, Australia
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Division of Medicine, Royal Darwin Hospital, Darwin, NT, Australia
| |
Collapse
|
24
|
Awandare GA, Kempaiah P, Ochiel DO, Piazza P, Keller CC, Perkins DJ. Mechanisms of erythropoiesis inhibition by malarial pigment and malaria-induced proinflammatory mediators in an in vitro model. Am J Hematol 2011; 86:155-62. [PMID: 21264897 DOI: 10.1002/ajh.21933] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
One of the commonest complications of Plasmodium falciparum malaria is the development of severe malarial anemia (SMA), which is, at least in part, due to malaria-induced suppression of erythropoiesis. Factors associated with suppression of erythropoiesis and development of SMA include accumulation of malarial pigment (hemozoin, PfHz) in bone marrow and altered production of inflammatory mediators, such as tumor necrosis factor (TNF)-α, and nitric oxide (NO). However, studies investigating the specific mechanisms responsible for inhibition of red blood cell development have been hampered by difficulties in obtaining bone marrow aspirates from infants and young children, and the lack of reliable models for examining erythroid development. As such, an in vitro model of erythropoiesis was developed using CD34+ stem cells derived from peripheral blood to examine the effects of PfHz, PfHz-stimulated peripheral blood mononuclear cell (PBMC)-conditioned media (CM-PfHz), TNF-α, and NO on erythroid cell development. PfHz only slightly suppressed erythroid cell proliferation and maturation marked by decreased expression of glycophorin A (GPA). On the other hand, CM-PfHz, TNF-α, and NO significantly inhibited erythroid cell proliferation. Furthermore, decreased proliferation in cells treated with CM-PfHz and NO was accompanied by increased apoptosis of erythropoietin-stimulated CD34+ cells. In addition, NO significantly inhibited erythroid cell maturation, whereas TNF-α did not appear to be detrimental to maturation. Collectively, our results demonstrate that PfHz suppresses erythropoiesis by acting both directly on erythroid cells, and indirectly via inflammatory mediators produced from PfHz-stimulated PBMC, including TNF-α and NO.
Collapse
Affiliation(s)
- Gordon A. Awandare
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon‐Accra, Ghana
| | - Prakasha Kempaiah
- Department of Internal Medicine, Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Daniel O. Ochiel
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - Paolo Piazza
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - Christopher C. Keller
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
- Laboratory of Human Pathogens, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania
| | - Douglas J. Perkins
- Department of Internal Medicine, Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
25
|
Inhibition of erythropoiesis in malaria anemia: role of hemozoin and hemozoin-generated 4-hydroxynonenal. Blood 2010; 116:4328-37. [PMID: 20686121 DOI: 10.1182/blood-2010-03-272781] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Severe malaria anemia is characterized by inhibited/altered erythropoiesis and presence of hemozoin-(HZ)-laden bone-marrow macrophages. HZ mediates peroxidation of unsaturated fatty acids and production of bioactive aldehydes such as 4-hydroxynonenal (HNE). HZ-laden human monocytes inhibited growth of cocultivated human erythroid cells and produced HNE that diffused to adjacent cells generating HNE-protein adducts. Cocultivation with HZ or treatment with low micromolar HNE inhibited growth of erythroid cells interfering with cell cycle without apoptosis. After HZ/HNE treatment, 2 critical proteins in cell-cycle regulation, p53 and p21, were increased and the retinoblastoma protein, central regulator of G₁-to-S-phase transition, was consequently hypophosphorylated, while GATA-1, master transcription factor in erythropoiesis was reduced. The resultant decreased expression of cyclin A and D2 retarded cell-cycle progression in erythroid cells and the K562 cell line. As a second major effect, HZ and HNE inhibited protein expression of crucial receptors (R): transferrinR1, stem cell factorR, interleukin-3R, and erythropoietinR. The reduced receptor expression and the impaired cell-cycle activity decreased the production of cells expressing glycophorin-A and hemoglobin. Present data confirm the inhibitory role of HZ, identify HNE as one HZ-generated inhibitory molecule and describe molecular targets of HNE in erythroid progenitors possibly involved in erythropoiesis inhibition in malaria anemia.
Collapse
|
26
|
A novel functional variant in the stem cell growth factor promoter protects against severe malarial anemia. Infect Immun 2009; 78:453-60. [PMID: 19884328 DOI: 10.1128/iai.00895-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmodium falciparum malaria is a leading global cause of infectious disease burden. In areas in which P. falciparum transmission is holoendemic, such as western Kenya, severe malarial anemia (SMA) results in high rates of pediatric morbidity and mortality. Although the pathophysiological basis of SMA is multifactorial, we recently discovered that suppression of unexplored hematopoietic growth factors that promote erythroid and myeloid colony development, such as stem cell growth factor (SCGF) (C-type lectin domain family member 11A [CLEC11A]), was associated with enhanced development of SMA and reduced erythropoietic responses. To extend these investigations, the relationships between a novel SCGF promoter variant (-539C/T, rs7246355), SMA (hemoglobin [Hb] < 6.0 g/dl), and reduced erythropoietic responses (reticulocyte production index [RPI], <2.0) were investigated with Kenyan children (n = 486) with falciparum malaria from western Kenya. Circulating SCGF was positively correlated with hemoglobin levels (r = 0.251; P = 0.022) and the reticulocyte production index (RPI) (r = 0.268; P = 0.025). Children with SMA also had lower SCGF levels than those in the non-SMA group (P = 0.005). Multivariate logistic regression analyses controlling for covariates demonstrated that individuals with the homologous T allele were protected against SMA (odds ratio, 0.57; 95% confidence interval [95% CI] 0.34 to 0.94; P = 0.027) relative to CC (wild-type) carriers. Carriers of the TT genotype also had higher SCGF levels in circulation (P = 0.018) and in peripheral blood mononuclear cell culture supernatants (P = 0.041), as well as an elevated RPI (P = 0.005) relative to individuals with the CC genotype. The results presented here demonstrate that homozygous T at -539 in the SCGF promoter is associated with elevated SCGF production, enhanced erythropoiesis, and protection against the development of SMA in children with falciparum malaria.
Collapse
|
27
|
Suppression of a novel hematopoietic mediator in children with severe malarial anemia. Infect Immun 2009; 77:3864-71. [PMID: 19528216 DOI: 10.1128/iai.00342-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In areas of holoendemic Plasmodium falciparum transmission, severe malarial anemia (SMA) is a leading cause of pediatric morbidity and mortality. Although many soluble mediators regulate erythropoiesis, it is unclear how these factors contribute to development of SMA. Investigation of novel genes dysregulated in response to malarial pigment (hemozoin [PfHz]) revealed that stem cell growth factor (SCGF; also called C-type lectin domain family member 11A [CLEC11A]), a hematopoietic growth factor important for development of erythroid and myeloid progenitors, was one of the most differentially expressed genes. Additional experiments with cultured peripheral blood mononuclear cells (PBMCs) demonstrated that PfHz decreased SCGF/CLEC11A transcriptional expression in a time-dependent manner. Circulating SCGF levels were then determined for Kenyan children (n = 90; aged 3 to 36 months) presenting at a rural hospital with various severities of malarial anemia. SCGF levels in circulation (P = 0.001) and in cultured PBMCs (P = 0.004) were suppressed in children with SMA. Circulating SCGF also correlated positively with hemoglobin levels (r = 0.241; P = 0.022) and the reticulocyte production index (RPI) (r = 0.280; P = 0.029). In addition, SCGF was decreased in children with reduced erythropoiesis (RPI of <2) (P < 0.001) and in children with elevated levels of naturally acquired monocytic PfHz (P = 0.019). Thus, phagocytosis of PfHz promotes a decrease in SCGF gene products, which may contribute to reduced erythropoiesis in children with SMA.
Collapse
|
28
|
Casals-Pascual C, Idro R, Picot S, Roberts DJ, Newton CRJC. Can erythropoietin be used to prevent brain damage in cerebral malaria? Trends Parasitol 2009; 25:30-6. [PMID: 19008152 DOI: 10.1016/j.pt.2008.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 09/12/2008] [Accepted: 10/02/2008] [Indexed: 11/26/2022]
Abstract
Erythropoietin (Epo) modulates the survival of developing erythroid cells and the production of new erythrocytes in the bone marrow and is a key molecule in the adaptation to hypoxia and anaemia. Epo receptors have been found to be widely expressed on non-haematopoietic cells, and Epo has been shown to have diverse actions (in particular, preventing ischaemic damage to tissues of the central nervous system). Recently, Epo has been shown to improve the outcome in a murine model of malaria, and high plasma levels of Epo in children with cerebral malaria were associated with a better outcome. Here, we review the biological importance of Epo, its mechanisms of action and the rationale for the proposed use of Epo as an adjunct treatment in cerebral malaria.
Collapse
|
29
|
Ballal A, Saeed A, Rouina P, Jelkmann W. Effects of chloroquine treatment on circulating erythropoietin and inflammatory cytokines in acute Plasmodium falciparum malaria. Ann Hematol 2008; 88:411-5. [PMID: 19031076 DOI: 10.1007/s00277-008-0636-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 10/27/2008] [Indexed: 11/27/2022]
Abstract
Anemia is a common and serious complication of malaria due to Plasmodium falciparum infection, a major health problem in tropical areas. Herein, the relation was investigated between the levels of circulating erythropoietin (EPO) and immunomodulatory cytokines in response to chloroquine treatment. Thirty-seven healthy control subjects and 40 patients with acute P. falciparum infection were included in the study. All subjects were adult male Sudanese. Blood samples were collected before chloroquine administration (25 mg/kg body weight, orally on three consecutive days) and 3 and 30 days after start of the therapy. Measurements included routine hematological parameters and the concentrations of immunoreactive EPO, tumor necrosis factor-alpha (TNF-alpha), interleukin 1alpha (IL-1), IL-6, and interferon gamma (INF-gamma). Chloroquine treatment led to a decrease in EPO levels in the control subjects but an increase in malaria patients at day 30. The latter was likely due to the anti-inflammatory action of the drug because INF-gamma, IL-1, and IL-6 concentrations declined on chloroquine treatment. Based on these findings, we propose that an impaired EPO production in association with a prolonged elevation of certain inflammatory cytokines can contribute to the anemia in some malaria patients which can be reversed by chloroquine therapy.
Collapse
Affiliation(s)
- Adil Ballal
- Department of Physiology, University of Khartoum, Sudan
| | | | | | | |
Collapse
|
30
|
Leowattana W, Krudsood S, Tangpukdee N, Brittenham G, Looareesuwan S. Defective erythropoietin production and reticulocyte response in acute Plasmodium falciparum malaria-associated anemia. THE SOUTHEAST ASIAN JOURNAL OF TROPICAL MEDICINE AND PUBLIC HEALTH 2008; 39:581-8. [PMID: 19058593 PMCID: PMC3114418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To elucidate the relationship between falciparum malaria-associated anemia and serum erythropoietin (Epo) levels and reticulocyte response during acute malaria infection, 87 adults aged 18-65 years presenting with acute, uncomplicated malaria were examined on enrollment and for 28 days of follow-up. The 87 patients were divided into 2 groups: those with anemia (n = 45) and those without (n = 42). Serum samples were taken on admission (Day 0), then on Days 7, 21, and 28, to measure the reticulocyte count, absolute reticulocyte count, reticulocyte hemoglobin content, and erythropoietin level (Epo). The absolute reticulocyte counts for the anemic patients were significantly higher than for those without anemia on Days 0, 7, 21, and 28. The serum Epo levels for the anemic patients were significantly higher than the non-anemic group only on Day 0 (44.39 +/- 4.06 vs 25.91 +/- 4.86 mlU/ml, p < 0.001). Inadequate Epo production was found in 31.03% (27/87) of patients on Day 0, 37.93% (33/87) on Day 7, 43.67% (38/87) on Day 21, and 39.08% (34/87) on Day 28. These results indicate defective Epo production and reticulocyte response in adult patients suffering from acute P. falciparum malaria, which differs from pediatric patients. Our findings may provide the basis for further study into the choice of therapeutic strategies to treat acute P. falciparum malaria-associated anemia with recombinant human Epo to correct refractory anemia due to malaria.
Collapse
Affiliation(s)
- Wattana Leowattana
- Department of Clinical Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Bangkok 10400, Thailand.
| | | | | | | | | |
Collapse
|
31
|
Lamikanra AA, Brown D, Potocnik A, Casals-Pascual C, Langhorne J, Roberts DJ. Malarial anemia: of mice and men. Blood 2007; 110:18-28. [PMID: 17341664 DOI: 10.1182/blood-2006-09-018069] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Severe malaria is manifest by a variety of clinical syndromes dependent on properties of both the host and the parasite. In young infants, severe malarial anemia (SMA) is the most common syndrome of severe disease and contributes substantially to the considerable mortality and morbidity from malaria. There is now growing evidence, from both human and mouse studies of malaria, to show that anemia is due not only to increased hemolysis of infected and clearance of uninfected red blood cells (RBCs) but also to an inability of the infected host to produce an adequate erythroid response. In this review, we will summarize the recent clinical and experimental studies of malaria to highlight similarities and differences in human and mouse pathology that result in anemia and so inform the use of mouse models in the study of severe malarial anemia in humans.
Collapse
Affiliation(s)
- Abigail A Lamikanra
- Nuffield Department of Clinical Laboratory Sciences and National Blood Service Oxford Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
32
|
O'Donnell A, Premawardhena A, Arambepola M, Allen SJ, Peto TEA, Fisher CA, Rees DC, Olivieri NF, Weatherall DJ. Age-related changes in adaptation to severe anemia in childhood in developing countries. Proc Natl Acad Sci U S A 2007; 104:9440-4. [PMID: 17517643 PMCID: PMC1890513 DOI: 10.1073/pnas.0703424104] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Indexed: 12/30/2022] Open
Abstract
Severe forms of anemia in children in the developing countries may be characterized by different clinical manifestations at particular stages of development. Whether this reflects developmental changes in adaptation to anemia or other mechanisms is not clear. The pattern of adaptation to anemia has been assessed in 110 individuals with hemoglobin (Hb) E beta-thalassemia, one of the commonest forms of inherited anemia in Asia. It has been found that age and Hb levels are independent variables with respect to erythropoietin response and that there is a decline in the latter at a similar degree of anemia during development. To determine whether this finding is applicable to anemia due to other causes, a similar study has been carried out on 279 children with severe anemia due to Plasmodium falciparum malaria; the results were similar to those in the patients with thalassemia. These observations may have important implications both for the better understanding of the pathophysiology of profound anemia in early life and for its more logical and cost-effective management.
Collapse
Affiliation(s)
- Angela O'Donnell
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX 3 9DS, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zimmermann MB, Biebinger R, Rohner F, Dib A, Zeder C, Hurrell RF, Chaouki N. Vitamin A supplementation in children with poor vitamin A and iron status increases erythropoietin and hemoglobin concentrations without changing total body iron. Am J Clin Nutr 2006; 84:580-6. [PMID: 16960172 DOI: 10.1093/ajcn/84.3.580] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Vitamin A deficiency impairs iron metabolism; vitamin A supplementation of vitamin A-deficient populations may reduce anemia. The mechanism of these effects is unclear. In vitro and in animal models, vitamin A treatment increases the production of erythropoietin (EPO), a stimulant of erythropoiesis. OBJECTIVE We measured the effect of vitamin A supplementation on hemoglobin, iron status, and circulating EPO concentrations in children with poor iron and vitamin A status. DESIGN In a double-blind, randomized trial, Moroccan schoolchildren (n = 81) were given either vitamin A (200,000 IU) or placebo at baseline and at 5 mo. At baseline, 5 mo, and 10 mo, hemoglobin, indicators of iron and vitamin A status, and EPO were measured. RESULTS At baseline, 54% of children were anemic; 77% had low vitamin A status. In the vitamin A group at 10 mo, serum retinol improved significantly compared with the control group (P < 0.02). Vitamin A treatment increased mean hemoglobin by 7 g/L (P < 0.02) and reduced the prevalence of anemia from 54% to 38% (P < 0.01). Vitamin A treatment increased mean corpuscular volume (P < 0.001) and decreased serum transferrin receptor (P < 0.001), indicating improved iron-deficient erythropoiesis. Vitamin A decreased serum ferritin (P < 0.02), suggesting mobilization of hepatic iron stores. Calculated from the ratio of transferrin receptor to serum ferritin, overall body iron stores remained unchanged. In the vitamin A group at 10 mo, we observed an increase in EPO (P < 0.05) and a decrease in the slope of the regression line of log10(EPO) on hemoglobin (P < 0.01). CONCLUSION In children deficient in vitamin A and iron, vitamin A supplementation mobilizes iron from existing stores to support increased erythropoiesis, an effect likely mediated by increases in circulating EPO.
Collapse
Affiliation(s)
- Michael B Zimmermann
- Human Nutrition Laboratory, Swiss Federal Institute of Technology, Zürich, Switzerland, and The Ministry of Health, Rabat, Morocco.
| | | | | | | | | | | | | |
Collapse
|
34
|
Roberts DJ, Casals-Pascual C, Weatherall DJ. The clinical and pathophysiological features of malarial anaemia. Curr Top Microbiol Immunol 2006; 295:137-67. [PMID: 16265890 DOI: 10.1007/3-540-29088-5_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
This review will focus on the principal clinical and pathophysiological features of the anaemia of falciparum malaria, including the problems of treating malarial anaemia, and also will suggest how recent advances in genomics may help our understanding of cellular and molecular mechanisms underlying this syndrome.
Collapse
Affiliation(s)
- D J Roberts
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford and Blood Research Laboratory, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK.
| | | | | |
Collapse
|
35
|
McDevitt MA, Xie J, Ganapathy-Kanniappan S, Shanmugasundaram G, Griffith J, Liu A, McDonald C, Thuma P, Gordeuk VR, Metz CN, Mitchell R, Keefer J, David J, Leng L, Bucala R. A critical role for the host mediator macrophage migration inhibitory factor in the pathogenesis of malarial anemia. ACTA ACUST UNITED AC 2006; 203:1185-96. [PMID: 16636133 PMCID: PMC2121202 DOI: 10.1084/jem.20052398] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pathogenesis of malarial anemia is multifactorial, and the mechanisms responsible for its high mortality are poorly understood. Studies indicate that host mediators produced during malaria infection may suppress erythroid progenitor development (Miller, K.L., J.C. Schooley, K.L. Smith, B. Kullgren, L.J. Mahlmann, and P.H. Silverman. 1989. Exp. Hematol. 17:379–385; Yap, G.S., and M.M. Stevenson. 1991. Ann. NY Acad. Sci. 628:279–281). We describe an intrinsic role for macrophage migration inhibitory factor (MIF) in the development of the anemic complications and bone marrow suppression that are associated with malaria infection. At concentrations found in the circulation of malaria-infected patients, MIF suppressed erythropoietin-dependent erythroid colony formation. MIF synergized with tumor necrosis factor and γ interferon, which are known antagonists of hematopoiesis, even when these cytokines were present in subinhibitory concentrations. MIF inhibited erythroid differentiation and hemoglobin production, and it antagonized the pattern of mitogen-activated protein kinase phosphorylation that normally occurs during erythroid progenitor differentiation. Infection of MIF knockout mice with Plasmodium chabaudi resulted in less severe anemia, improved erythroid progenitor development, and increased survival compared with wild-type controls. We also found that human mononuclear cells carrying highly expressed MIF alleles produced more MIF when stimulated with the malarial product hemozoin compared with cells carrying low expression MIF alleles. These data suggest that polymorphisms at the MIF locus may influence the levels of MIF produced in the innate response to malaria infection and the likelihood of anemic complications.
Collapse
Affiliation(s)
- Michael A McDevitt
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Helleberg M, Goka BQ, Akanmori BD, Obeng-Adjei G, Rodriques O, Kurtzhals JAL. Bone marrow suppression and severe anaemia associated with persistent Plasmodium falciparum infection in African children with microscopically undetectable parasitaemia. Malar J 2005; 4:56. [PMID: 16321150 PMCID: PMC1315355 DOI: 10.1186/1475-2875-4-56] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 12/01/2005] [Indexed: 01/22/2023] Open
Abstract
Background Severe anaemia can develop in the aftermath of Plasmodium falciparum malaria because of protracted bone marrow suppression, possibly due to residual subpatent parasites. Materials and methods Blood was collected from patients with recent malaria and negative malaria microscopy. Detection of the Plasmodium antigens, lactate dehydrogenase (Optimal®), aldolase and histidine rich protein 2 (Now malaria®) were used to differentiate between patients with (1) no malaria, (2) recent cleared malaria, (3) persistent P. falciparum infection. Red cell distribution width (RDW), plasma levels of soluble transferrin receptor (sTfR) and erythropoietin (EPO) were measured as markers of erythropoiesis. Interleukin (IL) 10 and tumour necrosis factor (TNF)α were used as inflammation markers. Results EPO was correlated with haemoglobin, irrespective of malaria (R = -0.36, P < 0.001). Persistent P. falciparum infection, but not recent malaria without residual parasites, was associated with bone marrow suppression i.e., low RDW (P < 0.001 vs. P = 0.56) and sTfR (P = 0.02 vs. P = 0.36). TNF-α and IL-10 levels were not associated with bone marrow suppression. Conclusion In the treatment of malaria, complete eradication of parasites may prevent subsequent development of anaemia. Severely anaemic children may benefit from antimalarial treatment if antigen tests are positive, even when no parasites can be demonstrated by microscopy.
Collapse
Affiliation(s)
- Marie Helleberg
- Centre for Medical Parasitology, Department of Clinical Microbiology 7602, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Bamenla Q Goka
- Department of Child Health, Korle-Bu Teaching Hospital, Accra, Ghana
| | | | | | - Onike Rodriques
- Department of Child Health, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Jorgen AL Kurtzhals
- Centre for Medical Parasitology, Department of Clinical Microbiology 7602, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| |
Collapse
|
37
|
Cusick SE, Tielsch JM, Ramsan M, Jape JK, Sazawal S, Black RE, Stoltzfus RJ. Short-term effects of vitamin A and antimalarial treatment on erythropoiesis in severely anemic Zanzibari preschool children. Am J Clin Nutr 2005; 82:406-12. [PMID: 16087986 DOI: 10.1093/ajcn.82.2.406] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The pathophysiology of anemia in coastal East Africa is complex. Impaired erythropoietin production is one possible mechanism. Plasmodium falciparum malaria has been found to blunt erythropoietin production, whereas vitamin A stimulates erythropoietin production in vitro. OBJECTIVE We investigated the 72-h effects of vitamin A and the antimalarial drug sulfadoxine pyramethamine (SP) on erythropoietin production in severely anemic (hemoglobin < or = 70 g/L) preschool children in Zanzibar, a region of known vitamin A deficiency. We hypothesized that both treatments would stimulate erythropoietin production directly, within 72 h, before a change in hemoglobin would occur. DESIGN One hundred forty-one severely anemic children were identified during the baseline assessment of a morbidity substudy of a community-based micronutrient supplementation trial. All severely anemic children were randomly assigned to receive either vitamin A (100,000 or 200,000 IU depending on age) or SP at baseline; 72 h later they received the opposite treatment plus daily hematinic syrup for 90 d. Erythropoietic and parasitic indicators were assessed at baseline and again after 72 h. RESULTS After 72 h, SP reduced the malaria parasite density (by 5029 parasites/microL; P < 0.001), CRP concentrations (by 10.6 mg/L; P = 0.001), and the proportion of children infected with malaria (by 32.4%; P < 0.001). Vitamin A reduced CRP (by 9.6 mg/L; P = 0.011), serum ferritin (by 18.1 microg/L; P = 0.042), and erythropoietin (by 194.7 mIU/mL; P = 0.011) concentrations and increased the reticulocyte production index (by 0.40; P = 0.041). CONCLUSIONS Contrary to our hypothesis, vitamin A significantly decreased erythropoietin concentration. The most important effect of both vitamin A and SP was the rapid reduction of inflammation. Vitamin A also mobilized iron from stores and stimulated the production of new erythrocytes.
Collapse
Affiliation(s)
- Sarah E Cusick
- Center for Human Nutrition, Department of International Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Cusick SE, Tielsch JM, Ramsan M, Jape JK, Sazawal S, Black RE, Stoltzfus RJ. Short-term effects of vitamin A and antimalarial treatment on erythropoiesis in severely anemic Zanzibari preschool children. Am J Clin Nutr 2005. [DOI: 10.1093/ajcn/82.2.406] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sarah E Cusick
- From the Center for Human Nutrition, Department of International Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (SEC, JMT, SS, REB, and RJS); the Public Health Laboratory Ivo de Carneri, Wawi, Chake Chake, Pemba Island, Zanzibar, United Republic of Tanzania (MR and JKJ); and the Division of Nutritional Sciences, Cornell University, Ithaca, NY (RJS)
| | - James M Tielsch
- From the Center for Human Nutrition, Department of International Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (SEC, JMT, SS, REB, and RJS); the Public Health Laboratory Ivo de Carneri, Wawi, Chake Chake, Pemba Island, Zanzibar, United Republic of Tanzania (MR and JKJ); and the Division of Nutritional Sciences, Cornell University, Ithaca, NY (RJS)
| | - Mahdi Ramsan
- From the Center for Human Nutrition, Department of International Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (SEC, JMT, SS, REB, and RJS); the Public Health Laboratory Ivo de Carneri, Wawi, Chake Chake, Pemba Island, Zanzibar, United Republic of Tanzania (MR and JKJ); and the Division of Nutritional Sciences, Cornell University, Ithaca, NY (RJS)
| | - Jape K Jape
- From the Center for Human Nutrition, Department of International Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (SEC, JMT, SS, REB, and RJS); the Public Health Laboratory Ivo de Carneri, Wawi, Chake Chake, Pemba Island, Zanzibar, United Republic of Tanzania (MR and JKJ); and the Division of Nutritional Sciences, Cornell University, Ithaca, NY (RJS)
| | - Sunil Sazawal
- From the Center for Human Nutrition, Department of International Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (SEC, JMT, SS, REB, and RJS); the Public Health Laboratory Ivo de Carneri, Wawi, Chake Chake, Pemba Island, Zanzibar, United Republic of Tanzania (MR and JKJ); and the Division of Nutritional Sciences, Cornell University, Ithaca, NY (RJS)
| | - Robert E Black
- From the Center for Human Nutrition, Department of International Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (SEC, JMT, SS, REB, and RJS); the Public Health Laboratory Ivo de Carneri, Wawi, Chake Chake, Pemba Island, Zanzibar, United Republic of Tanzania (MR and JKJ); and the Division of Nutritional Sciences, Cornell University, Ithaca, NY (RJS)
| | - Rebecca J Stoltzfus
- From the Center for Human Nutrition, Department of International Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (SEC, JMT, SS, REB, and RJS); the Public Health Laboratory Ivo de Carneri, Wawi, Chake Chake, Pemba Island, Zanzibar, United Republic of Tanzania (MR and JKJ); and the Division of Nutritional Sciences, Cornell University, Ithaca, NY (RJS)
| |
Collapse
|
39
|
Chang KH, Stevenson MM. Malarial anaemia: mechanisms and implications of insufficient erythropoiesis during blood-stage malaria. Int J Parasitol 2005; 34:1501-16. [PMID: 15582527 DOI: 10.1016/j.ijpara.2004.10.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 09/23/2004] [Accepted: 10/08/2004] [Indexed: 12/15/2022]
Abstract
It has been proposed that the basis of severe malarial anaemia, a major cause of morbidity and mortality in endemic areas, is multifactorial. Inappropriately low reticulocytosis is observed in malaria patients suggesting that insufficient erythropoiesis is a major factor. Clinical studies provide conflicting data concerning the production of adequate levels of erythropoietin (EPO) during malaria. Plasmodium chabaudi AS causes non-lethal infection in resistant C57BL/6 mice, and lethal infection in susceptible A/J mice. In P. chabaudi AS infected C57BL/6 and A/J mice, which experience varying degrees of severity of anaemia, kidney EPO production is appropriate to the severity of anaemia and is regulated by haematocrit level. Neutralisation of endogenous EPO during infection leads to lethal anaemia while timely administration of exogenous EPO rescues mice although reticulocytosis is suppressed in proportion to the parasitemia level. Characterisation of alterations in splenic erythroid compartments in naive and P. chabaudi AS infected A/J mice revealed that infection, with or without EPO treatment, leads to sub-optimal increases in TER119+ erythroblasts compared to EPO-treated naive mice. A lower percentage of TER119+ erythroblasts in infected mice undergo terminal differentiation to become mature haemoglobin-producing cells. Furthermore, there is a shift in transferrin receptor (CD71) expression from TER119+ cells to a non-erythroid population. Deficiencies in the number and maturation of TER119+ erythroblasts during infection coincide with blunted proliferation to EPO stimulation in vitro by splenocytes, although a high frequency express EPO receptor (EPOR). Together, these data suggest that during malaria, EPO-induced proliferation of early EPOR+ erythroid progenitors is suppressed, leading to sub-optimal generation of TER119+ erythroblasts. Moreover, a shift in CD71 expression may result in impaired terminal maturation of erythroblasts. Thus, suppressed proliferation, differentiation, and maturation of erythroid precursors in association with inadequate reticulocytosis may be the basis of insufficient erythropoiesis during malaria.
Collapse
Affiliation(s)
- Kai-Hsin Chang
- Centre for Host-Parasite Interactions, Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Que., Canada
| | | |
Collapse
|
40
|
Chang KH, Tam M, Stevenson MM. Inappropriately low reticulocytosis in severe malarial anemia correlates with suppression in the development of late erythroid precursors. Blood 2004; 103:3727-35. [PMID: 14739226 DOI: 10.1182/blood-2003-08-2887] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Inappropriately low reticulocytosis may exacerbate malarial anemia, but the under-lying mechanism is not clear. In this study, naive and infected mice were treated with recombinant murine erythropoietin (EPO), and the upstream events of erythropoiesis affected by blood-stage Plasmodium chabaudi AS were investigated. Malaria infection, with or without EPO treatment, led to a suboptimal increase in TER119+ erythroblasts compared with EPO-treated naive mice. Furthermore, a lower percentage of TER119+ erythroblasts in infected mice were undergoing terminal differentiation to become mature hemoglobin-producing erythroblasts. The impaired maturation of erythroblasts during infection was associated with a shift in the transferrin receptor (CD71) expression from the TER119+ population to B220+ population. Moreover, the suboptimal increase in TER119+ erythroblasts during infection coincided with a blunted proliferative response by splenocytes to EPO stimulation in vitro, although a high frequency of these splenocytes expressed EPO receptor (EPOR). Taken together, these data suggest that during malaria, EPO-induced proliferation of early EPOR-positive erythroid progenitors is suppressed, which may lead to a suboptimal generation of TER119+ erythroblasts. The shift in CD71 expression may result in impaired terminal maturation of these erythroblasts. Thus, inadequate reticulocytosis during malaria is associated with suppressed proliferation, differentiation, and maturation of erythroid precursors.
Collapse
Affiliation(s)
- Kai-Hsin Chang
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | | | | |
Collapse
|
41
|
Chang KH, Stevenson MM. Effect of anemia and renal cytokine production on erythropoietin production during blood-stage malaria. Kidney Int 2004; 65:1640-6. [PMID: 15086902 DOI: 10.1111/j.1523-1755.2004.00573.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Renal dysfunction and severe anemia are clinical complications of blood-stage malaria. Erythropoietin (Epo) is a hormone produced by the kidney and plays an essential role in stimulating erythrocyte production. Renal dysfunction in malaria is associated with changes in renal cytokine levels, which may affect the production of Epo and the alleviation of anemia. METHODS Resistant C57BL/6 (B6) and susceptible A/J mice were infected with Plasmodium chabaudi AS. The levels of Epo and cytokines were measured by enzyme-linked immunosorbent assay (ELISA) and the degree of anemia was determined by hematocrit. Regression analyses were employed to estimate the influences of anemia and renal cytokines on the production of Epo during infection. RESULTS A/J mice developed higher peak parasitemia, more severe anemia, and succumbed as compared to B6 mice, which survived the infection. B6 mice had higher levels of renal tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-10, whereas A/J mice had higher levels of IL-12p70, granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-4, and Epo. Regression analyses revealed that kidney Epo levels were influenced most strongly by changes in hematocrit levels. In addition, albeit to a much weaker degree, kidney Epo levels correlated negatively with GM-CSF levels but positively with IL-10 levels. CONCLUSION Blood-stage malaria infection modulates the production of renal pro- and anti-inflammatory cytokines in resistant versus susceptible strains of mice differentially. However, despite the fluctuations of renal cytokines, the degree of anemia is the main determinant for Epo production during blood-stage malaria while kidney cytokines may exert secondary influences.
Collapse
Affiliation(s)
- Kai-Hsin Chang
- Institute of Parasitology, Macdonald Campus, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | | |
Collapse
|
42
|
Abstract
Anemia due to infection is a major health problem in endemic areas for young children and pregnant women. The anemia is caused by excess removal of nonparasitized erythrocytes in addition to immune destruction of parasitized red cells, and impaired compensation for this loss by bone marrow dysfunction. The pathogenesis is complex, and a predominant mechanism has not been identified. Certain parasite and host characteristics may modify the anemia. Concomitant infections and nutritional deficiencies also contribute to anemia and may interact with the malarial infection. Few preventive strategies exist, and the management of severe malarial anemia with blood transfusion carries a risk of HIV transmission. The current increase in malaria-specific childhood mortality in sub-Saharan Africa attributed to drug-resistant infection is likely partly related to an increase in severe anemia. This review summarizes recent findings on the pathogenesis and epidemiology of malarial anemia.
Collapse
Affiliation(s)
- Håkan Ekvall
- Division of Medicine, Unit of Infectious Diseases, Karolinska Institute, Karoliniska Hospital, Stockholm, Sweden.
| |
Collapse
|
43
|
Verhoef H, West CE, Kraaijenhagen R, Nzyuko SM, King R, Mbandi MM, van Laatum S, Hogervorst R, Schep C, Kok FJ. Malarial anemia leads to adequately increased erythropoiesis in asymptomatic Kenyan children. Blood 2002; 100:3489-94. [PMID: 12393621 DOI: 10.1182/blood-2001-12-0228] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malarial anemia is associated with a shift in iron distribution from functional to storage compartments. This suggests a relative deficit in erythropoietin production or action similar to that observed in other infections. Our study in Kenyan children with asymptomatic malaria aimed at investigating whether malaria causes increased erythropoiesis, and whether the erythropoietic response appeared appropriate for the degree of resulting anemia. Longitudinal and baseline data were used from a trial with a 2 x 2 factorial design, in which 328 anemic Kenyan children were randomly assigned to receive either iron or placebo, and sulfadoxine-pyrimethamine or placebo. Erythropoiesis was evaluated by serum concentrations of erythropoietin and soluble transferrin receptor. Prospectively collected data showed that malarial infection resulted in decreased hemoglobin concentrations, and increased serum concentrations of erythropoietin and transferrin receptor. Conversely, disappearance of malarial antigenemia resulted in increased hemoglobin concentrations, and decreased concentrations of these serum indicators. Additionally, our baseline data showed that current or recent malarial infection is associated with increased serum concentrations of erythropoietin and transferrin receptor, and that these were as high as or perhaps even higher than values of children without malarial infection and without inflammation. Our findings indicate that in asymptomatic malaria, the erythropoietic response is adequate for the degree of anemia, and that inflammation probably plays no or only a minor role in the pathogenesis of the resulting anemia. Further research is needed to demonstrate the role of deficient erythropoietin production or action in the pathogenesis of the anemia of symptomatic malaria.
Collapse
Affiliation(s)
- Hans Verhoef
- Division of Human Nutrition and Epidemiology, Wageningen University, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Ronald L Nagel
- Division of Hematology, Albert Einstein College of Medicine/Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
45
|
Verhoef H, West CE, Ndeto P, Burema J, Beguin Y, Kok FJ. Serum transferrin receptor concentration indicates increased erythropoiesis in Kenyan children with asymptomatic malaria. Am J Clin Nutr 2001; 74:767-75. [PMID: 11722958 DOI: 10.1093/ajcn/74.6.767] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Serum transferrin receptor concentrations indicate both erythropoietic activity and the deficit of functional iron in the erythron. In contrast with serum ferritin concentrations, serum transferrin receptor concentrations are not or are only marginally influenced by the inflammatory response to infection. OBJECTIVE We assessed iron status and examined the relation between serum transferrin receptor concentrations and malaria in children aged 2-36 mo who were asymptomatic for malaria. DESIGN This was a community-based cluster survey (n = 318). RESULTS Prevalences of malaria, anemia (hemoglobin concentration <110 g/L), iron deficiency (serum ferritin concentration <12 microg/L), and iron deficiency anemia were 18%, 69%, 53%, and 46%, respectively. Malaria was associated with lower mean hemoglobin concentrations (92.7 compared with 104.1 g/L; P = 0.0001) and higher geometric mean serum concentrations of transferrin receptor (11.4 compared with 7.8 mg/L; P = 0.005), ferritin (21.6 compared with 11.9 microg/L; P = 0.05), and C-reactive protein (12.5 compared with 6.8 mg/L; P = 0.004). There was no evidence for an association between serum concentrations of C-reactive protein and transferrin receptor. Children with malaria had higher serum transferrin receptor concentrations than expected for the degree of anemia, even after adjustment for inflammation indicated by serum C-reactive protein concentration quartiles (P = 0.02). CONCLUSIONS Our findings are consistent with the notion that malaria-induced hemolysis is accompanied by increased erythropoiesis. Serum transferrin receptor concentration is not useful for detecting iron deficiency in individuals with malaria. Individuals with high concentrations of serum C-reactive protein or similar acute phase reactants should be excluded from analysis if serum ferritin concentrations <12 microg/L are to be used to measure iron deficiency in malaria-endemic areas.
Collapse
Affiliation(s)
- H Verhoef
- Division of Human Nutrition and Epidemiology, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
46
|
Greenberg PL, Gordeuk V, Issaragrisil S, Siritanaratkul N, Fucharoen S, Ribeiro RC. Major hematologic diseases in the developing world- new aspects of diagnosis and management of thalassemia, malarial anemia, and acute leukemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2001; 2001:479-498. [PMID: 11723000 DOI: 10.1182/asheducation-2001.1.479] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The three presentations in this session encompass clinical, pathophysiological and therapeutic aspects of hematologic diseases which impact most heavily on developing world countries. Dr. Victor Gordeuk discusses new insights regarding the multi-faceted pathogenesis of anemia in the complicated malaria occurring in Africa. He describes recent investigations indicating the possible contribution of immune dysregulation to this serious complication and the implications of these findings for disease management. Dr. Surapol Issaragrisil and colleagues describe epidemiologic and clinical characteristics of the thalassemic syndromes. In addition to being considered a major health problem in Southeast Asia, the migration throughout the world of people from this region has caused the disease to have global impact. A unique thalassemia variant, Hb Ebeta-thalassemia, with distinctive clinical features, has particular relevance for this demographic issue. Special focus will be reported regarding recent prenatal molecular screening methods in Thailand which have proven useful for early disease detection and disease control strategies. Dr. Raul Ribeiro describes a clinical model for providing effective treatment for a complex malignancy (childhood acute lymphoblastic leukemia) in countries with limited resources. With the multidisciplinary approach in Central American of the joint venture between St. Jude Children's Research Hospital International Outreach Program and indigenous health care personnel, major therapeutic advances for this disease have been achieved. Given the major demographic population shifts occurring worldwide, these illnesses also have important clinical implications globally. These contributions demonstrate that lessons learned within countries of disease prevalence aid our understanding and management of a number of disorders prominently seen in developed countries. They will show how effective partnerships between hematologists in more and less developed nations may work together to produce important advances for treating major hematologic diseases in less developed regions. A major focus relates to the socio-economic and medical burden of these diseases in developing countries with limited resources. As such, these problems provide a challenge and an opportunity for collaborative interaction between hematologists and policy makers worldwide.
Collapse
Affiliation(s)
- P L Greenberg
- Howard University. Center for Sickle Cell Disease, Washington, DC 20059, USA
| | | | | | | | | | | |
Collapse
|
47
|
Graham SM, Molyneux EM, Walsh AL, Cheesbrough JS, Molyneux ME, Hart CA. Nontyphoidal Salmonella infections of children in tropical Africa. Pediatr Infect Dis J 2000; 19:1189-96. [PMID: 11144383 DOI: 10.1097/00006454-200012000-00016] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- S M Graham
- Department of Paediatrics, College of Medicine, University of Malawi, Blantyre
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Malaria infection in humans by Plasmodium species is associated with a reduction in haemoglobin levels, frequently leading to anaemia. Plasmodium falciparum causes the most severe and profound anaemia, with a significant risk of death. This cannot be explained simply by the direct destruction of parasitized red blood cells at the time of release of merozoites, a process shared by all these species. In this review, Clara Menendez, Alan Fleming and Pedro Alonso focus on recent advances in our knowledge of the pathophysiology, epidemiology, management and prevention of anaemia from falciparum malaria.
Collapse
Affiliation(s)
- C Menendez
- Unidad de Epidemiologia y Bioestadisica, Hospital Clinic, Barcelona, Spain.
| | | | | |
Collapse
|
49
|
Abstract
A variety of abnormalities in the number, morphology and function of blood and bone marrow cells may be found in Plasmodium falciparum and P. vivax malaria. In a non-immune individual, the nature of such abnormalities depends on the time after infection. In others it is determined by the pattern and intensity of malaria transmission in the area and the extent of host immunity. Severe anaemia may occur in children with chronic falciparum malaria and low parasitaemia as well as in patients with complicated acute falciparum malaria with high parasitaemia. However, the mechanisms underlying the anaemia in these two situations appear to be different. The possible roles of parasite products, T-cell-derived cytokines produced in response to the infection, macrophage activation and hyperplasia, macrophage-derived factors such as tumour necrosis factor-alpha, and macrophage dysfunction in the pathogenesis of the haematological abnormalities are discussed.
Collapse
Affiliation(s)
- S N Wickramasinghe
- Department of Haematology, Imperial College School of Medicine, St Mary's Campus, London, W2 1PG, UK
| | | |
Collapse
|
50
|
Biemba G, Gordeuk VR, Thuma P, Weiss G. Markers of inflammation in children with severe malarial anaemia. Trop Med Int Health 2000. [DOI: 10.1046/j.1365-3156.2000.00545.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|