1
|
Martineau É, Malescot A, Elmkinssi N, Rungta RL. Distal activity patterns shape the spatial specificity of neurovascular coupling. Nat Neurosci 2024; 27:2101-2114. [PMID: 39232066 DOI: 10.1038/s41593-024-01756-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/07/2024] [Indexed: 09/06/2024]
Abstract
Neurovascular coupling links brain activity to local changes in blood flow, forming the basis for non-invasive brain mapping. Using multiscale imaging, we investigated how vascular activity spatially relates to neuronal activity elicited by single whiskers across different columns and layers of mouse cortex. Here we show that mesoscopic hemodynamic signals quantitatively reflect neuronal activity across space but are composed of a highly heterogeneous pattern of responses across individual vessel segments that is poorly predicted by local neuronal activity. Rather, this heterogeneity is dependent on vessel directionality, specifically in thalamocortical input layer 4, where capillaries respond preferentially to neuronal activity patterns along their downstream perfusion domain. Thus, capillaries fine-tune blood flow based on distant activity and encode laminar-specific activity patterns. These findings imply that vascular anatomy sets a resolution limit on functional imaging signals, where individual blood vessels inaccurately report neuronal activity in their immediate vicinity but, instead, integrate activity patterns along the vascular arbor.
Collapse
Affiliation(s)
- Éric Martineau
- Centre for Interdisciplinary Research on Brain and Learning (CIRCA), Université de Montréal, Montréal, Quebec, Canada
- Department of Physiology and Pharmacology, Université de Montréal, Montréal, Quebec, Canada
| | - Antoine Malescot
- Centre for Interdisciplinary Research on Brain and Learning (CIRCA), Université de Montréal, Montréal, Quebec, Canada
- Department of Physiology and Pharmacology, Université de Montréal, Montréal, Quebec, Canada
| | - Nouha Elmkinssi
- Centre for Interdisciplinary Research on Brain and Learning (CIRCA), Université de Montréal, Montréal, Quebec, Canada
- Department of Neuroscience, Université de Montréal, Montréal, Quebec, Canada
| | - Ravi L Rungta
- Centre for Interdisciplinary Research on Brain and Learning (CIRCA), Université de Montréal, Montréal, Quebec, Canada.
- Department of Neuroscience, Université de Montréal, Montréal, Quebec, Canada.
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, Quebec, Canada.
| |
Collapse
|
2
|
Grimm C, Duss SN, Privitera M, Munn BR, Karalis N, Frässle S, Wilhelm M, Patriarchi T, Razansky D, Wenderoth N, Shine JM, Bohacek J, Zerbi V. Tonic and burst-like locus coeruleus stimulation distinctly shift network activity across the cortical hierarchy. Nat Neurosci 2024; 27:2167-2177. [PMID: 39284964 PMCID: PMC11537968 DOI: 10.1038/s41593-024-01755-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 08/07/2024] [Indexed: 11/07/2024]
Abstract
Noradrenaline (NA) release from the locus coeruleus (LC) changes activity and connectivity in neuronal networks across the brain, modulating multiple behavioral states. NA release is mediated by both tonic and burst-like LC activity. However, it is unknown whether the functional changes in target areas depend on these firing patterns. Using optogenetics, photometry, electrophysiology and functional magnetic resonance imaging in mice, we show that tonic and burst-like LC firing patterns elicit brain responses that hinge on their distinct NA release dynamics. During moderate tonic LC activation, NA release engages regions associated with associative processing, while burst-like stimulation biases the brain toward sensory processing. These activation patterns locally couple with increased astrocytic and inhibitory activity and change the brain's topological configuration in line with the hierarchical organization of the cerebral cortex. Together, these findings reveal how the LC-NA system achieves a nuanced regulation of global circuit operations.
Collapse
Affiliation(s)
- Christina Grimm
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Neuro-X institute, School of Engineering (STI), EPFL, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Sian N Duss
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Mattia Privitera
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Brandon R Munn
- School of Physics, The University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Nikolaos Karalis
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Stefan Frässle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zürich & ETH Zürich, Zürich, Switzerland
| | - Maria Wilhelm
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Tommaso Patriarchi
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
- Chemical Neuropharmacology, Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Daniel Razansky
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zürich, Zürich, Switzerland
- Institute of Biological and Medical Imaging (IBMI), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Nicole Wenderoth
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - James M Shine
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Johannes Bohacek
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland.
| | - Valerio Zerbi
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
- Neuro-X institute, School of Engineering (STI), EPFL, Lausanne, Switzerland.
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland.
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
3
|
Sundqvist N, Podéus H, Sten S, Engström M, Dura-Bernal S, Cedersund G. A Model-Driven Meta-Analysis Supports the Emerging Consensus View that Inhibitory Neurons Dominate BOLD-fMRI Responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618416. [PMID: 39464088 PMCID: PMC11507712 DOI: 10.1101/2024.10.15.618416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Functional magnetic resonance imaging (fMRI) is a pivotal tool for mapping neuronal activity in the brain. Traditionally, the observed hemodynamic changes are assumed to reflect the activity of the most common neuronal type: excitatory neurons. In contrast, recent experiments, using optogenetic techniques, suggest that the fMRI-signal instead reflects the activity of inhibitory interneurons. However, these data paint a complex picture, with numerous regulatory interactions, and where the different experiments display many qualitative differences. It is therefore not trivial how to quantify the relative contributions of the different cell types and to combine all observations into a unified theory. To address this, we present a new model-driven meta-analysis, which provides a unified and quantitative explanation for all data. This model-driven analysis allows for quantification of the relative contribution of different cell types: the contribution to the BOLD-signal from the excitatory cells is <20 % and 50-80 % comes from the interneurons. Our analysis also provides a mechanistic explanation for the observed experiment-to-experiment differences, e.g. a biphasic vascular response dependent on different stimulation intensities and an emerging secondary post-stimulation peak during longer stimulations. In summary, our study provides a new, emerging consensus-view supporting the larger role of interneurons in fMRI.
Collapse
Affiliation(s)
- Nicolas Sundqvist
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Henrik Podéus
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Sebastian Sten
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maria Engström
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Salvador Dura-Bernal
- Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, USA
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Gunnar Cedersund
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- School of Medical Sciences and Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
4
|
Sugimoto K, Chung DY, Fischer P, Takizawa T, Qin T, Yaseen MA, Sakadžić S, Ayata C. Optogenetic Functional Activation Is Detrimental During Acute Ischemic Stroke in Mice. Stroke 2024; 55:2502-2509. [PMID: 39234742 PMCID: PMC11421960 DOI: 10.1161/strokeaha.124.048032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/03/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Functional activation of the focal ischemic brain has been reported to improve outcomes by augmenting collateral blood flow. However, functional activation also increases metabolic demand and might thereby worsen outcomes. Indeed, preclinical and clinical reports have been conflicting. Here, we tested the effect of functional activation during acute ischemic stroke using distal middle cerebral artery occlusion in anesthetized mice. METHODS Using transgenic mice expressing channelrhodopsin-2 in neurons, we delivered functional activation using physiological levels of transcranial optogenetic stimulation of the moderately ischemic cortex (ie, penumbra), identified using real-time full-field laser speckle perfusion imaging during a 1-hour distal microvascular clip of the middle cerebral artery. Neuronal activation was confirmed using evoked field potentials, and infarct volumes were measured in tissue slices 48 hours later. RESULTS Optogenetic stimulation of the penumbra was associated with more than 2-fold larger infarcts than stimulation of the contralateral homotopic region and the sham stimulation group (n=10, 7, and 9; 11.0±5.6 versus 5.1±4.3 versus 4.1±3.7 mm3; P=0.008, 1-way ANOVA). Identical stimulation in wild-type mice that do not express channelrhodopsin-2 did not have an effect. Optogenetic stimulation was associated with a small increase in penumbral perfusion that did not explain enlarged infarcts. CONCLUSIONS Our data suggest that increased neuronal activity during acute focal arterial occlusions can be detrimental, presumably due to increased metabolic demand, and may have implications for the clinical management of hyperacute stroke patients.
Collapse
Affiliation(s)
- Kazutaka Sugimoto
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, USA
- Department of Neurosurgery, Yamaguchi University School of Medicine, Japan
| | - David Y. Chung
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, USA
| | - Paul Fischer
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, USA
- Department of Neurology with Experimental Neurology Charité-Universitätsmedizin Berlin and Berlin Institute of Health at Charité – Universitätsmedizin Berlin,BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, Berlin Germany
| | - Tsubasa Takizawa
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, USA
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Tao Qin
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, USA
| | - Mohammad A. Yaseen
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Bioengineering Department, Northeastern University, Boston, MA, USA
| | - Sava Sakadžić
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Cenk Ayata
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, USA
| |
Collapse
|
5
|
Wang X, Padawer-Curry JA, Bice AR, Kim B, Rosenthal ZP, Lee JM, Goyal MS, Macauley SL, Bauer AQ. Spatiotemporal relationships between neuronal, metabolic, and hemodynamic signals in the awake and anesthetized mouse brain. Cell Rep 2024; 43:114723. [PMID: 39277861 PMCID: PMC11523563 DOI: 10.1016/j.celrep.2024.114723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 07/08/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024] Open
Abstract
Neurovascular coupling (NVC) and neurometabolic coupling (NMC) provide the basis for functional magnetic resonance imaging and positron emission tomography to map brain neurophysiology. While increases in neuronal activity are often accompanied by increases in blood oxygen delivery and oxidative metabolism, these observations are not the rule. This decoupling is important when interpreting brain network organization (e.g., resting-state functional connectivity [RSFC]) because it is unclear whether changes in NMC/NVC affect RSFC measures. We leverage wide-field optical imaging in Thy1-jRGECO1a mice to map cortical calcium activity in pyramidal neurons, flavoprotein autofluorescence (representing oxidative metabolism), and hemodynamic activity during wake and ketamine/xylazine anesthesia. Spontaneous dynamics of all contrasts exhibit patterns consistent with RSFC. NMC/NVC relative to excitatory activity varies over the cortex. Ketamine/xylazine profoundly alters NVC but not NMC. Compared to awake RSFC, ketamine/xylazine affects metabolic-based connectomes moreso than hemodynamic-based measures of RSFC. Anesthesia-related differences in NMC/NVC timing do not appreciably alter RSFC structure.
Collapse
Affiliation(s)
- Xiaodan Wang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Jonah A Padawer-Curry
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Imaging Sciences Program, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Annie R Bice
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Byungchan Kim
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Zachary P Rosenthal
- Department of Psychiatry, University of Pennsylvania Health System Penn Medicine, Philadelphia, PA 19104, USA
| | - Jin-Moo Lee
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Manu S Goyal
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shannon L Macauley
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA
| | - Adam Q Bauer
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA; Imaging Sciences Program, Washington University in Saint Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
6
|
Natsubori A, Kwon S, Honda Y, Kojima T, Karashima A, Masamoto K, Honda M. Serotonergic regulation of cortical neurovascular coupling and hemodynamics upon awakening from sleep in mice. J Cereb Blood Flow Metab 2024; 44:1591-1607. [PMID: 38477254 PMCID: PMC11418750 DOI: 10.1177/0271678x241238843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Neurovascular coupling (NVC) is the functional hyperemia of the brain responding to local neuronal activity. It is mediated by astrocytes and affected by subcortical ascending pathways in the cortex that convey information, such as sensory stimuli and the animal condition. Here, we investigate the influence of the raphe serotonergic system, a subcortical ascending arousal system in animals, on the modulation of cortical NVC and cerebral blood flow (CBF). Raphe serotonergic neurons were optogenically activated for 30 s, which immediately awakened the mice from non-rapid eye movement sleep. This caused a biphasic cortical hemodynamic change: a transient increase for a few seconds immediately after photostimulation onset, followed by a large progressive decrease during the stimulation period. Serotonergic neuron activation increased intracellular Ca2+ levels in cortical pyramidal neurons and astrocytes, demonstrating its effect on the NVC components. Pharmacological inhibition of cortical neuronal firing activity and astrocyte metabolic activity had small hypovolemic effects on serotonin-induced biphasic CBF changes, while blocking 5-HT1B receptors expressed primarily in cerebral vasculature attenuated the decreasing CBF phase. This suggests that serotonergic neuron activation leading to animal awakening could allow the NVC to exert a hyperemic function during a biphasic CBF response, with a predominant decrease in the cortex.
Collapse
Affiliation(s)
- Akiyo Natsubori
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Soojin Kwon
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshiko Honda
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takashi Kojima
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Akihiro Karashima
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, Sendai, Japan
| | - Kazuto Masamoto
- Dept. Mechanical and Intelligent Systems Engineering, Univ. of Electro-Communications, Tokyo, Japan
| | - Makoto Honda
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
7
|
Tu W, Cramer SR, Zhang N. Disparity in temporal and spatial relationships between resting-state electrophysiological and fMRI signals. eLife 2024; 13:RP95680. [PMID: 39102347 PMCID: PMC11299978 DOI: 10.7554/elife.95680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024] Open
Abstract
Resting-state brain networks (RSNs) have been widely applied in health and disease, but the interpretation of RSNs in terms of the underlying neural activity is unclear. To address this fundamental question, we conducted simultaneous recordings of whole-brain resting-state functional magnetic resonance imaging (rsfMRI) and electrophysiology signals in two separate brain regions of rats. Our data reveal that for both recording sites, spatial maps derived from band-specific local field potential (LFP) power can account for up to 90% of the spatial variability in RSNs derived from rsfMRI signals. Surprisingly, the time series of LFP band power can only explain to a maximum of 35% of the temporal variance of the local rsfMRI time course from the same site. In addition, regressing out time series of LFP power from rsfMRI signals has minimal impact on the spatial patterns of rsfMRI-based RSNs. This disparity in the spatial and temporal relationships between resting-state electrophysiology and rsfMRI signals suggests that electrophysiological activity alone does not fully explain the effects observed in the rsfMRI signal, implying the existence of an rsfMRI component contributed by 'electrophysiology-invisible' signals. These findings offer a novel perspective on our understanding of RSN interpretation.
Collapse
Affiliation(s)
- Wenyu Tu
- The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State UniversityUniversity ParkUnited States
| | - Samuel R Cramer
- The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State UniversityUniversity ParkUnited States
| | - Nanyin Zhang
- The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State UniversityUniversity ParkUnited States
- Center for Neural Engineering, Pennsylvania State UniversityUniversity ParkUnited States
- Center for Neurotechnology in Mental Health Research, Pennsylvania State UniversityUniversity ParkUnited States
- Department of Biomedical Engineering, Pennsylvania State UniversityUniversity ParkUnited States
| |
Collapse
|
8
|
Kim TA, Cruz G, Syty MD, Wang F, Wang X, Duan A, Halterman M, Xiong Q, Palop JJ, Ge S. Neural circuit mechanisms underlying aberrantly prolonged functional hyperemia in young Alzheimer's disease mice. Mol Psychiatry 2024:10.1038/s41380-024-02680-9. [PMID: 39043843 DOI: 10.1038/s41380-024-02680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
Neurovascular defects are one of the most common alterations in Alzheimer's disease (AD) pathogenesis, but whether these deficits develop before the onset of amyloid beta (Aβ) accumulation remains to be determined. Using in vivo optical imaging in freely moving mice, we explored activity-induced hippocampal microvascular blood flow dynamics in AppSAA knock-in and J20 mouse models of AD at early stages of disease progression. We found that prior to the onset of Aβ accumulation, there was a pathologically elevated blood flow response to context exploration, termed functional hyperemia. After the onset of Aβ accumulation, this context exploration-induced hyperemia declined rapidly relative to that in control mice. Using in vivo electrophysiology recordings to explore the neural circuit mechanism underlying this blood flow alteration, we found that hippocampal interneurons before the onset of Aβ accumulation were hyperactive during context exploration. Chemogenetic tests suggest that hyperactive activation of inhibitory neurons accounted for the elevated functional hyperemia. The suppression of nitric oxide (NO) produced from hippocampal interneurons in young AD mice decreased the accumulation of Aβ. Together, these findings reveal that neurovascular coupling is aberrantly elevated before Aβ deposition, and this hyperactive functional hyperemia declines rapidly upon Aβ accumulation.
Collapse
Affiliation(s)
- Thomas A Kim
- Medical Scientist Training Program (MSTP), Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
- Program in Neuroscience, Stony Brook University, Stony Brook, NY, 11794, USA
| | - George Cruz
- Program in Neuroscience, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Michelle D Syty
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Faye Wang
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Xinxing Wang
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Alexandra Duan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Marc Halterman
- Department of Neurology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Qiaojie Xiong
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Jorge J Palop
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA.
- Department of Neurology, University of California, San Francisco, CA, 94158, USA.
| | - Shaoyu Ge
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
9
|
Doran PR, Fomin-Thunemann N, Tang RP, Balog D, Zimmerman B, Kılıç K, Martin EA, Kura S, Fisher HP, Chabbott G, Herbert J, Rauscher BC, Jiang JX, Sakadzic S, Boas DA, Devor A, Chen IA, Thunemann M. Widefield in vivo imaging system with two fluorescence and two reflectance channels, a single sCMOS detector, and shielded illumination. NEUROPHOTONICS 2024; 11:034310. [PMID: 38881627 PMCID: PMC11177117 DOI: 10.1117/1.nph.11.3.034310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024]
Abstract
Significance Widefield microscopy of the entire dorsal part of mouse cerebral cortex enables large-scale ("mesoscopic") imaging of different aspects of neuronal activity with spectrally compatible fluorescent indicators as well as hemodynamics via oxy- and deoxyhemoglobin absorption. Versatile and cost-effective imaging systems are needed for large-scale, color-multiplexed imaging of multiple fluorescent and intrinsic contrasts. Aim We aim to develop a system for mesoscopic imaging of two fluorescent and two reflectance channels. Approach Excitation of red and green fluorescence is achieved through epi-illumination. Hemoglobin absorption imaging is achieved using 525- and 625-nm light-emitting diodes positioned around the objective lens. An aluminum hemisphere placed between objective and cranial window provides diffuse illumination of the brain. Signals are recorded sequentially by a single sCMOS detector. Results We demonstrate the performance of our imaging system by recording large-scale spontaneous and stimulus-evoked neuronal, cholinergic, and hemodynamic activity in awake, head-fixed mice with a curved "crystal skull" window expressing the red calcium indicator jRGECO1a and the green acetylcholine sensorGRAB ACh 3.0 . Shielding of illumination light through the aluminum hemisphere enables concurrent recording of pupil diameter changes. Conclusions Our widefield microscope design with a single camera can be used to acquire multiple aspects of brain physiology and is compatible with behavioral readouts of pupil diameter.
Collapse
Affiliation(s)
- Patrick R. Doran
- Boston University, Graduate Program in Biomedical Engineering, Boston, Massachusetts, United States
| | - Natalie Fomin-Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Rockwell P. Tang
- Boston University, Graduate Program in Biomedical Engineering, Boston, Massachusetts, United States
| | - Dora Balog
- Boston University, Graduate Program in Biomedical Engineering, Boston, Massachusetts, United States
| | - Bernhard Zimmerman
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Kıvılcım Kılıç
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Emily A. Martin
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Sreekanth Kura
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Harrison P. Fisher
- Boston University, Graduate Program in Biomedical Engineering, Boston, Massachusetts, United States
| | - Grace Chabbott
- Boston University, Undergraduate Program in Biomedical Engineering, Boston, Massachusetts, United States
| | - Joel Herbert
- Boston University, Undergraduate Program in Neuroscience, Boston, Massachusetts, United States
| | - Bradley C. Rauscher
- Boston University, Graduate Program in Biomedical Engineering, Boston, Massachusetts, United States
| | - John X. Jiang
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Sava Sakadzic
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - David A. Boas
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Anna Devor
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Ichun Anderson Chen
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Martin Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| |
Collapse
|
10
|
Ruff CF, Juarez Anaya F, Dienel SJ, Rakymzhan A, Altamirano-Espinoza A, Couey JJ, Fukuda M, Watson AM, Su A, Fish KN, Rubio ME, Hooks BM, Ross SE, Vazquez AL. Long-range inhibitory neurons mediate cortical neurovascular coupling. Cell Rep 2024; 43:113970. [PMID: 38512868 PMCID: PMC11168451 DOI: 10.1016/j.celrep.2024.113970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/29/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
To meet the high energy demands of brain function, cerebral blood flow (CBF) parallels changes in neuronal activity by a mechanism known as neurovascular coupling (NVC). However, which neurons play a role in mediating NVC is not well understood. Here, we identify in mice and humans a specific population of cortical GABAergic neurons that co-express neuronal nitric oxide synthase and tachykinin receptor 1 (Tacr1). Through whole-tissue clearing, we demonstrate that Tacr1 neurons extend local and long-range projections across functionally connected cortical areas. We show that whisker stimulation elicited Tacr1 neuron activity in the barrel cortex through feedforward excitatory pathways. Additionally, through optogenetic experiments, we demonstrate that Tacr1 neurons are instrumental in mediating CBF through the relaxation of mural cells in a similar fashion to whisker stimulation. Finally, by electron microscopy, we observe that Tacr1 processes contact astrocytic endfeet. These findings suggest that Tacr1 neurons integrate cortical activity to mediate NVC.
Collapse
Affiliation(s)
- Catherine F Ruff
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Samuel J Dienel
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adiya Rakymzhan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Jonathan J Couey
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mitsuhiro Fukuda
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alan M Watson
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aihua Su
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kenneth N Fish
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria E Rubio
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bryan M Hooks
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah E Ross
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Alberto L Vazquez
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Doran PR, Fomin-Thunemann N, Tang RP, Balog D, Zimmerman B, Kilic K, Martin EA, Kura S, Fisher HP, Chabbott G, Herbert J, Rauscher BC, Jiang JX, Sakadzic S, Boas DA, Devor A, Chen IA, Thunemann M. Widefield in vivo imaging system with two fluorescence and two reflectance channels, a single sCMOS detector, and shielded illumination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.07.566086. [PMID: 37986755 PMCID: PMC10659277 DOI: 10.1101/2023.11.07.566086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
SIGNIFICANCE Widefield microscopy of the entire dorsal part of mouse cerebral cortex enables large-scale (mesoscopic) imaging of neuronal activity with fluorescent indicators as well as hemodynamics via oxy- and deoxyhemoglobin absorption. Versatile and cost-effective imaging systems are needed for large-scale, color-multiplexed imaging of multiple fluorescent and intrinsic contrasts. AIM Develop a system for mesoscopic imaging of two fluorescent and two reflectance channels. APPROACH Excitation of red and green fluorescence is achieved through epi-illumination. Hemoglobin absorption imaging is achieved using 525- and 625nm LEDs positioned around the objective lens. An aluminum hemisphere placed between objective and cranial window provides diffuse illumination of the brain. Signals are recorded sequentially by a single sCMOS detector. RESULTS We demonstrate performance of our imaging system by recording large-scale spontaneous and stimulus-evoked neuronal, cholinergic, and hemodynamic activity in awake head-fixed mice with a curved crystal skull window expressing the red calcium indicator jRGECO1a and the green acetylcholine sensor GRABACh3.0 . Shielding of illumination light through the aluminum hemisphere enables concurrent recording of pupil diameter changes. CONCLUSIONS Our widefield microscope design with single camera can be used to acquire multiple aspects of brain physiology and is compatible with behavioral readouts of pupil diameter.
Collapse
|
12
|
Renden RB, Institoris A, Sharma K, Tran CHT. Modulatory effects of noradrenergic and serotonergic signaling pathway on neurovascular coupling. Commun Biol 2024; 7:287. [PMID: 38459113 PMCID: PMC10923894 DOI: 10.1038/s42003-024-05996-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 02/28/2024] [Indexed: 03/10/2024] Open
Abstract
Dynamic changes in astrocyte Ca2+ are recognized as contributors to functional hyperemia, a critical response to increased neuronal activity mediated by a process known as neurovascular coupling (NVC). Although the critical role of glutamatergic signaling in this process has been extensively investigated, the impact of behavioral state, and the release of behavior-associated neurotransmitters, such as norepinephrine and serotonin, on astrocyte Ca2+ dynamics and functional hyperemia have received less attention. We used two-photon imaging of the barrel cortex in awake mice to examine the role of noradrenergic and serotonergic projections in NVC. We found that both neurotransmitters facilitated sensory stimulation-induced increases in astrocyte Ca2+. Interestingly, while ablation of serotonergic neurons reduced sensory stimulation-induced functional hyperemia, ablation of noradrenergic neurons caused both attenuation and potentiation of functional hyperemia. Our study demonstrates that norepinephrine and serotonin are involved in modulating sensory stimulation-induced astrocyte Ca2+ elevations and identifies their differential effects in regulating functional hyperemia.
Collapse
Affiliation(s)
- Robert B Renden
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV, USA
| | - Adam Institoris
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kushal Sharma
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV, USA
| | - Cam Ha T Tran
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV, USA.
| |
Collapse
|
13
|
Mester JR, Rozak MW, Dorr A, Goubran M, Sled JG, Stefanovic B. Network response of brain microvasculature to neuronal stimulation. Neuroimage 2024; 287:120512. [PMID: 38199427 DOI: 10.1016/j.neuroimage.2024.120512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
Neurovascular coupling (NVC), or the adjustment of blood flow in response to local increases in neuronal activity is a hallmark of healthy brain function, and the physiological foundation for functional magnetic resonance imaging (fMRI). However, it remains only partly understood due to the high complexity of the structure and function of the cerebrovascular network. Here we set out to understand NVC at the network level, i.e. map cerebrovascular network reactivity to activation of neighbouring neurons within a 500×500×500 μm3 cortical volume (∼30 high-resolution 3-nL fMRI voxels). Using 3D two-photon fluorescence microscopy data, we quantified blood volume and flow changes in the brain vessels in response to spatially targeted optogenetic activation of cortical pyramidal neurons. We registered the vessels in a series of image stacks acquired before and after stimulations and applied a deep learning pipeline to segment the microvascular network from each time frame acquired. We then performed image analysis to extract the microvascular graphs, and graph analysis to identify the branch order of each vessel in the network, enabling the stratification of vessels by their branch order, designating branches 1-3 as precapillary arterioles and branches 4+ as capillaries. Forty-five percent of all vessels showed significant calibre changes; with 85 % of responses being dilations. The largest absolute CBV change was in the capillaries; the smallest, in the venules. Capillary CBV change was also the largest fraction of the total CBV change, but normalized to the baseline volume, arterioles and precapillary arterioles showed the biggest relative CBV change. From linescans along arteriole-venule microvascular paths, we measured red blood cell velocities and hematocrit, allowing for estimation of pressure and local resistance along these paths. While diameter changes following neuronal activation gradually declined along the paths; the pressure drops from arterioles to venules increased despite decreasing resistance: blood flow thus increased more than local resistance decreases would predict. By leveraging functional volumetric imaging and high throughput deep learning-based analysis, our study revealed distinct hemodynamic responses across the vessel types comprising the microvascular network. Our findings underscore the need for large, dense sampling of brain vessels for characterization of neurovascular coupling at the network level in health and disease.
Collapse
Affiliation(s)
- James R Mester
- University of Toronto, Department of Medical Biophysics, Toronto, Ontario, Canada; Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Matthew W Rozak
- University of Toronto, Department of Medical Biophysics, Toronto, Ontario, Canada; Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Adrienne Dorr
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Maged Goubran
- University of Toronto, Department of Medical Biophysics, Toronto, Ontario, Canada; Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - John G Sled
- University of Toronto, Department of Medical Biophysics, Toronto, Ontario, Canada; Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bojana Stefanovic
- University of Toronto, Department of Medical Biophysics, Toronto, Ontario, Canada; Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.
| |
Collapse
|
14
|
Zhang D, Ruan J, Peng S, Li J, Hu X, Zhang Y, Zhang T, Ge Y, Zhu Z, Xiao X, Zhu Y, Li X, Li T, Zhou L, Gao Q, Zheng G, Zhao B, Li X, Zhu Y, Wu J, Li W, Zhao J, Ge WP, Xu T, Jia JM. Synaptic-like transmission between neural axons and arteriolar smooth muscle cells drives cerebral neurovascular coupling. Nat Neurosci 2024; 27:232-248. [PMID: 38168932 PMCID: PMC10849963 DOI: 10.1038/s41593-023-01515-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/02/2023] [Indexed: 01/05/2024]
Abstract
Neurovascular coupling (NVC) is important for brain function and its dysfunction underlies many neuropathologies. Although cell-type specificity has been implicated in NVC, how active neural information is conveyed to the targeted arterioles in the brain remains poorly understood. Here, using two-photon focal optogenetics in the mouse cerebral cortex, we demonstrate that single glutamatergic axons dilate their innervating arterioles via synaptic-like transmission between neural-arteriolar smooth muscle cell junctions (NsMJs). The presynaptic parental-daughter bouton makes dual innervations on postsynaptic dendrites and on arteriolar smooth muscle cells (aSMCs), which express many types of neuromediator receptors, including a low level of glutamate NMDA receptor subunit 1 (Grin1). Disruption of NsMJ transmission by aSMC-specific knockout of GluN1 diminished optogenetic and whisker stimulation-caused functional hyperemia. Notably, the absence of GluN1 subunit in aSMCs reduced brain atrophy following cerebral ischemia by preventing Ca2+ overload in aSMCs during arteriolar constriction caused by the ischemia-induced spreading depolarization. Our findings reveal that NsMJ transmission drives NVC and open up a new avenue for studying stroke.
Collapse
Affiliation(s)
- Dongdong Zhang
- School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jiayu Ruan
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Shiyu Peng
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Jinze Li
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xu Hu
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yiyi Zhang
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Tianrui Zhang
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yaping Ge
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Zhu Zhu
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xian Xiao
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yunxu Zhu
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xuzhao Li
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Tingbo Li
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Lili Zhou
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Qingzhu Gao
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Guoxiao Zheng
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Bingrui Zhao
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xiangqing Li
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China
| | - Yanming Zhu
- Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA
| | - Jinsong Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China
- Institute of Brain-Intelligence Technology, Zhangjiang Lab, Shanghai, China, Shanghai, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Wensheng Li
- Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jingwei Zhao
- Department of Anatomy, Histology, and Embryology, Research Center of Systemic Medicine, School of Basic Medicine, and Department of Pathology of the Sir Run-Run Shaw Hospital, The Cryo-EM Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Woo-Ping Ge
- Chinese Institute for Brain Research, Beijing, Beijing, China
| | - Tian Xu
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Jie-Min Jia
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, China.
| |
Collapse
|
15
|
Buxton RB. Thermodynamic limitations on brain oxygen metabolism: physiological implications. J Physiol 2024; 602:683-712. [PMID: 38349000 DOI: 10.1113/jp284358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/03/2024] [Indexed: 02/20/2024] Open
Abstract
Recent thermodynamic modelling indicates that maintaining the brain tissue ratio of O2 to CO2 (abbreviated tissue O2 /CO2 ) is critical for preserving the entropy increase available from oxidative metabolism of glucose, with a fall of that available entropy leading to a reduction of the phosphorylation potential and impairment of brain energy metabolism. This provides a novel perspective for understanding physiological responses under different conditions in terms of preserving tissue O2 /CO2 . To enable estimation of tissue O2 /CO2 in the human brain, a detailed mathematical model of O2 and CO2 transport was developed, and applied to reported physiological responses to different challenges, asking: how well is tissue O2 /CO2 preserved? Reported experimental results for increased neural activity, hypercapnia and hypoxia due to high altitude are consistent with preserving tissue O2 /CO2 . The results highlight two physiological mechanisms that control tissue O2 /CO2 : cerebral blood flow, which modulates tissue O2 ; and ventilation rate, which modulates tissue CO2 . The hypoxia modelling focused on humans at high altitude, including acclimatized lowlanders and Tibetan and Andean adapted populations, with a primary finding that decreasing CO2 by increasing ventilation rate is more effective for preserving tissue O2 /CO2 than increasing blood haemoglobin content to maintain O2 delivery to tissue. This work focused on the function served by particular physiological responses, and the underlying mechanisms require further investigation. The modelling provides a new framework and perspective for understanding how blood flow and other physiological factors support energy metabolism in the brain under a wide range of conditions. KEY POINTS: Thermodynamic modelling indicates that preserving the O2 /CO2 ratio in brain tissue is critical for preserving the entropy change available from oxidative metabolism of glucose and the phosphorylation potential underlying energy metabolism. A detailed model of O2 and CO2 transport was developed to allow estimation of the tissue O2 /CO2 ratio in the human brain in different physiological states. Reported experimental results during hypoxia, hypercapnia and increased oxygen metabolic rate in response to increased neural activity are consistent with maintaining brain tissue O2 /CO2 ratio. The hypoxia modelling of high-altitude acclimatization and adaptation in humans demonstrates the critical role of reducing CO2 with increased ventilation for preserving tissue O2 /CO2 . Preservation of tissue O2 /CO2 provides a novel perspective for understanding the function of observed physiological responses under different conditions in terms of preserving brain energy metabolism, although the mechanisms underlying these functions are not well understood.
Collapse
Affiliation(s)
- Richard B Buxton
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California, San Diego, California, USA
| |
Collapse
|
16
|
Wang C, Lin C, Zhao Y, Samantzis M, Sedlak P, Sah P, Balbi M. 40-Hz optogenetic stimulation rescues functional synaptic plasticity after stroke. Cell Rep 2023; 42:113475. [PMID: 37979173 DOI: 10.1016/j.celrep.2023.113475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023] Open
Abstract
Evoked brain oscillations in the gamma range have been shown to assist in stroke recovery. However, the causal relationship between evoked oscillations and neuroprotection is not well understood. We have used optogenetic stimulation to investigate how evoked gamma oscillations modulate cortical dynamics in the acute phase after stroke. Our results reveal that stimulation at 40 Hz drives activity in interneurons at the stimulation frequency and phase-locked activity in principal neurons at a lower frequency, leading to increased cross-frequency coupling. In addition, 40-Hz stimulation after stroke enhances interregional communication. These effects are observed up to 24 h after stimulation. Our stimulation protocol also rescues functional synaptic plasticity 24 h after stroke and leads to an upregulation of plasticity genes and a downregulation of cell death genes. Together these results suggest that restoration of cortical dynamics may confer neuroprotection after stroke.
Collapse
Affiliation(s)
- Cong Wang
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4067, Australia; Engineering Research Centre of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai 201203, China
| | - Caixia Lin
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Yue Zhao
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Centre, Shanghai 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Montana Samantzis
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Petra Sedlak
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Matilde Balbi
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4067, Australia.
| |
Collapse
|
17
|
Pandey K, Bessières B, Sheng SL, Taranda J, Osten P, Sandovici I, Constancia M, Alberini CM. Neuronal activity drives IGF2 expression from pericytes to form long-term memory. Neuron 2023; 111:3819-3836.e8. [PMID: 37788670 PMCID: PMC10843759 DOI: 10.1016/j.neuron.2023.08.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/03/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023]
Abstract
Investigations of memory mechanisms have been, thus far, neuron centric, despite the brain comprising diverse cell types. Using rats and mice, we assessed the cell-type-specific contribution of hippocampal insulin-like growth factor 2 (IGF2), a polypeptide regulated by learning and required for long-term memory formation. The highest level of hippocampal IGF2 was detected in pericytes, the multi-functional mural cells of the microvessels that regulate blood flow, vessel formation, the blood-brain barrier, and immune cell entry into the central nervous system. Learning significantly increased pericytic Igf2 expression in the hippocampus, particularly in the highly vascularized stratum lacunosum moleculare and stratum moleculare layers of the dentate gyrus. Igf2 increases required neuronal activity. Regulated hippocampal Igf2 knockout in pericytes, but not in fibroblasts or neurons, impaired long-term memories and blunted the learning-dependent increase of neuronal immediate early genes (IEGs). Thus, neuronal activity-driven signaling from pericytes to neurons via IGF2 is essential for long-term memory.
Collapse
Affiliation(s)
- Kiran Pandey
- Center for Neural Science, New York University, New York, NY 10003, USA
| | | | - Susan L Sheng
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Julian Taranda
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Ionel Sandovici
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Miguel Constancia
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
18
|
Bordoni L, Thoren AE, Gutiérrez‐Jiménez E, Åbjørsbråten KS, Bjørnstad DM, Tang W, Stern M, Østergaard L, Nagelhus EA, Frische S, Ottersen OP, Enger R. Deletion of aquaporin-4 improves capillary blood flow distribution in brain edema. Glia 2023; 71:2559-2572. [PMID: 37439315 PMCID: PMC10952478 DOI: 10.1002/glia.24439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
Brain edema is a feared complication to disorders and insults affecting the brain. It can be fatal if the increase in intracranial pressure is sufficiently large to cause brain herniation. Moreover, accruing evidence suggests that even slight elevations of intracranial pressure have adverse effects, for instance on brain perfusion. The water channel aquaporin-4 (AQP4), densely expressed in perivascular astrocytic endfeet, plays a key role in brain edema formation. Using two-photon microscopy, we have studied AQP4-mediated swelling of astrocytes affects capillary blood flow and intracranial pressure (ICP) in unanesthetized mice using a mild brain edema model. We found improved regulation of capillary blood flow in mice devoid of AQP4, independently of the severity of ICP increase. Furthermore, we found brisk AQP4-dependent astrocytic Ca2+ signals in perivascular endfeet during edema that may play a role in the perturbed capillary blood flow dynamics. The study suggests that astrocytic endfoot swelling and pathological signaling disrupts microvascular flow regulation during brain edema formation.
Collapse
Affiliation(s)
- Luca Bordoni
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
- Department of BiomedicineAarhus UniversityAarhusDenmark
| | - Anna E. Thoren
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Eugenio Gutiérrez‐Jiménez
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Knut S. Åbjørsbråten
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Daniel M. Bjørnstad
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Wannan Tang
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
- Department of Neurology, NeuroclinicSt. Olavs HospitalTrondheimNorway
| | - Mette Stern
- Department of BiomedicineAarhus UniversityAarhusDenmark
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of NeuroradiologyAarhus University HospitalAarhusDenmark
| | - Erlend A. Nagelhus
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | | | - Ole P. Ottersen
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Rune Enger
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| |
Collapse
|
19
|
Theriault JE, Shaffer C, Dienel GA, Sander CY, Hooker JM, Dickerson BC, Barrett LF, Quigley KS. A functional account of stimulation-based aerobic glycolysis and its role in interpreting BOLD signal intensity increases in neuroimaging experiments. Neurosci Biobehav Rev 2023; 153:105373. [PMID: 37634556 PMCID: PMC10591873 DOI: 10.1016/j.neubiorev.2023.105373] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/28/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
In aerobic glycolysis, oxygen is abundant, and yet cells metabolize glucose without using it, decreasing their ATP per glucose yield by 15-fold. During task-based stimulation, aerobic glycolysis occurs in localized brain regions, presenting a puzzle: why produce ATP inefficiently when, all else being equal, evolution should favor the efficient use of metabolic resources? The answer is that all else is not equal. We propose that a tradeoff exists between efficient ATP production and the efficiency with which ATP is spent to transmit information. Aerobic glycolysis, despite yielding little ATP per glucose, may support neuronal signaling in thin (< 0.5 µm), information-efficient axons. We call this the efficiency tradeoff hypothesis. This tradeoff has potential implications for interpretations of task-related BOLD "activation" observed in fMRI. We hypothesize that BOLD "activation" may index local increases in aerobic glycolysis, which support signaling in thin axons carrying "bottom-up" information, or "prediction error"-i.e., the BIAPEM (BOLD increases approximate prediction error metabolism) hypothesis. Finally, we explore implications of our hypotheses for human brain evolution, social behavior, and mental disorders.
Collapse
Affiliation(s)
- Jordan E Theriault
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| | - Clare Shaffer
- Northeastern University, Department of Psychology, Boston, MA, USA
| | - Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, USA
| | - Christin Y Sander
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Bradford C Dickerson
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Lisa Feldman Barrett
- Northeastern University, Department of Psychology, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Karen S Quigley
- Northeastern University, Department of Psychology, Boston, MA, USA; VA Bedford Healthcare System, Bedford, MA, USA
| |
Collapse
|
20
|
Zedde M, Grisendi I, Assenza F, Vandelli G, Napoli M, Moratti C, Lochner P, Seiffge DJ, Piazza F, Valzania F, Pascarella R. The Venular Side of Cerebral Amyloid Angiopathy: Proof of Concept of a Neglected Issue. Biomedicines 2023; 11:2663. [PMID: 37893037 PMCID: PMC10604278 DOI: 10.3390/biomedicines11102663] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Small vessel diseases (SVD) is an umbrella term including several entities affecting small arteries, arterioles, capillaries, and venules in the brain. One of the most relevant and prevalent SVDs is cerebral amyloid angiopathy (CAA), whose pathological hallmark is the deposition of amyloid fragments in the walls of small cortical and leptomeningeal vessels. CAA frequently coexists with Alzheimer's Disease (AD), and both are associated with cerebrovascular events, cognitive impairment, and dementia. CAA and AD share pathophysiological, histopathological and neuroimaging issues. The venular involvement in both diseases has been neglected, although both animal models and human histopathological studies found a deposition of amyloid beta in cortical venules. This review aimed to summarize the available information about venular involvement in CAA, starting from the biological level with the putative pathomechanisms of cerebral damage, passing through the definition of the peculiar angioarchitecture of the human cortex with the functional organization and consequences of cortical arteriolar and venular occlusion, and ending to the hypothesized links between cortical venular involvement and the main neuroimaging markers of the disease.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Ilaria Grisendi
- Neurology Unit, Stroke Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Federica Assenza
- Neurology Unit, Stroke Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Gabriele Vandelli
- Neurology Unit, Stroke Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Manuela Napoli
- Neuroradiology Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Claudio Moratti
- Neuroradiology Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Piergiorgio Lochner
- Department of Neurology, Saarland University Medical Center, 66421 Homburg, Germany;
| | - David J. Seiffge
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Fabrizio Piazza
- CAA and AD Translational Research and Biomarkers Laboratory, School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy;
| | - Franco Valzania
- Neurology Unit, Stroke Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Rosario Pascarella
- Neuroradiology Unit, AUSL-IRCCS di Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| |
Collapse
|
21
|
Inoue Y, Shue F, Bu G, Kanekiyo T. Pathophysiology and probable etiology of cerebral small vessel disease in vascular dementia and Alzheimer's disease. Mol Neurodegener 2023; 18:46. [PMID: 37434208 PMCID: PMC10334598 DOI: 10.1186/s13024-023-00640-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
Vascular cognitive impairment and dementia (VCID) is commonly caused by vascular injuries in cerebral large and small vessels and is a key driver of age-related cognitive decline. Severe VCID includes post-stroke dementia, subcortical ischemic vascular dementia, multi-infarct dementia, and mixed dementia. While VCID is acknowledged as the second most common form of dementia after Alzheimer's disease (AD) accounting for 20% of dementia cases, VCID and AD frequently coexist. In VCID, cerebral small vessel disease (cSVD) often affects arterioles, capillaries, and venules, where arteriolosclerosis and cerebral amyloid angiopathy (CAA) are major pathologies. White matter hyperintensities, recent small subcortical infarcts, lacunes of presumed vascular origin, enlarged perivascular space, microbleeds, and brain atrophy are neuroimaging hallmarks of cSVD. The current primary approach to cSVD treatment is to control vascular risk factors such as hypertension, dyslipidemia, diabetes, and smoking. However, causal therapeutic strategies have not been established partly due to the heterogeneous pathogenesis of cSVD. In this review, we summarize the pathophysiology of cSVD and discuss the probable etiological pathways by focusing on hypoperfusion/hypoxia, blood-brain barriers (BBB) dysregulation, brain fluid drainage disturbances, and vascular inflammation to define potential diagnostic and therapeutic targets for cSVD.
Collapse
Affiliation(s)
- Yasuteru Inoue
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Francis Shue
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Guojun Bu
- SciNeuro Pharmaceuticals, Rockville, MD 20850 USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| |
Collapse
|
22
|
Cauli B, Dusart I, Li D. Lactate as a determinant of neuronal excitability, neuroenergetics and beyond. Neurobiol Dis 2023:106207. [PMID: 37331530 DOI: 10.1016/j.nbd.2023.106207] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023] Open
Abstract
Over the last decades, lactate has emerged as important energy substrate for the brain fueling of neurons. A growing body of evidence now indicates that it is also a signaling molecule modulating neuronal excitability and activity as well as brain functions. In this review, we will briefly summarize how different cell types produce and release lactate. We will further describe different signaling mechanisms allowing lactate to fine-tune neuronal excitability and activity, and will finally discuss how these mechanisms could cooperate to modulate neuroenergetics and higher order brain functions both in physiological and pathological conditions.
Collapse
Affiliation(s)
- Bruno Cauli
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS), 9 quai Saint Bernard, 75005 Paris, France.
| | - Isabelle Dusart
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS), 9 quai Saint Bernard, 75005 Paris, France
| | - Dongdong Li
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS), 9 quai Saint Bernard, 75005 Paris, France
| |
Collapse
|
23
|
Piccirilli E, Chiarelli AM, Sestieri C, Mascali D, Calvo Garcia D, Primavera A, Salomone R, Wise RG, Ferretti A, Caulo M. Cerebral blood flow patterns in preterm and term neonates assessed with pseudo-continuous arterial spin labeling perfusion MRI. Hum Brain Mapp 2023; 44:3833-3844. [PMID: 37186355 DOI: 10.1002/hbm.26315] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/21/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
In preterm (PT) infants, regional cerebral blood flow (CBF) disturbances may predispose to abnormal brain maturation even without overt brain injury. Therefore, it would be informative to determine the spatial distribution of grey matter (GM) CBF in PT and full-term (FT) newborns at term-equivalent age (TEA) and to assess the relationship between the features of the CBF pattern and both prematurity and prematurity-related brain lesions. In this prospective study, we obtained measures of CBF in 66 PT (51 without and 15 with prematurity-related brain lesions) and 38 FT newborns through pseudo-continuous arterial spin labeling (pCASL) MRI acquired at TEA. The pattern of GM CBF was characterized by combining an atlas-based automated segmentation of structural MRI with spatial normalization and hierarchical clustering. The effects of gestational age (GA) at birth and brain injury on the CBF pattern were investigated. We identified 4 physiologically-derived clusters of brain regions that were labeled Fronto-Temporal, Parieto-Occipital, Insular-Deep GM (DGM) and Sensorimotor, from the least to the most perfused. We demonstrated that GM perfusion was associated with GA at birth in the Fronto-Temporal and Sensorimotor clusters, positively and negatively, respectively. Moreover, the presence of periventricular leukomalacia was associated with significantly increased Fronto-Temporal GM perfusion and decreased Insular-DGM perfusion, while the presence of germinal matrix hemorrhage appeared to mildly decrease the Insular-DGM perfusion. Prematurity and prematurity-related brain injury heterogeneously affect brain perfusion. ASL MRI may, therefore, have strong potential as a noninvasive tool for the accurate stratification of individuals at risk of domain-specific impairment.
Collapse
Affiliation(s)
- Eleonora Piccirilli
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Antonio M Chiarelli
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Carlo Sestieri
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Daniele Mascali
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Darien Calvo Garcia
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Adele Primavera
- Department of Paediatrics, Neonatology and Neonatal Intensive Care Unit, University Hospital of Chieti, Chieti, Italy
| | - Rita Salomone
- Department of Paediatrics, Neonatology and Neonatal Intensive Care Unit, University Hospital of Chieti, Chieti, Italy
| | - Richard G Wise
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Antonio Ferretti
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Massimo Caulo
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Radiology, SS. Annunziata Hospital, Chieti, Italy
| |
Collapse
|
24
|
Crouzet C, Phan T, Wilson RH, Shin TJ, Choi B. Intrinsic, widefield optical imaging of hemodynamics in rodent models of Alzheimer's disease and neurological injury. NEUROPHOTONICS 2023; 10:020601. [PMID: 37143901 PMCID: PMC10152182 DOI: 10.1117/1.nph.10.2.020601] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/30/2023] [Indexed: 05/06/2023]
Abstract
The complex cerebrovascular network is critical to controlling local cerebral blood flow (CBF) and maintaining brain homeostasis. Alzheimer's disease (AD) and neurological injury can result in impaired CBF regulation, blood-brain barrier breakdown, neurovascular dysregulation, and ultimately impaired brain homeostasis. Measuring cortical hemodynamic changes in rodents can help elucidate the complex physiological dynamics that occur in AD and neurological injury. Widefield optical imaging approaches can measure hemodynamic information, such as CBF and oxygenation. These measurements can be performed over fields of view that range from millimeters to centimeters and probe up to the first few millimeters of rodent brain tissue. We discuss the principles and applications of three widefield optical imaging approaches that can measure cerebral hemodynamics: (1) optical intrinsic signal imaging, (2) laser speckle imaging, and (3) spatial frequency domain imaging. Future work in advancing widefield optical imaging approaches and employing multimodal instrumentation can enrich hemodynamic information content and help elucidate cerebrovascular mechanisms that lead to the development of therapeutic agents for AD and neurological injury.
Collapse
Affiliation(s)
- Christian Crouzet
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Thinh Phan
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- University of California, Irvine, Department of Biomedical Engineering, Irvine, California, United States
| | - Robert H. Wilson
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- University of California, Irvine, Department of Medicine, Irvine, California, United States
| | - Teo Jeon Shin
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- Seoul National University, Department of Pediatric Dentistry and Dental Research Institute, Seoul, Republic of Korea
| | - Bernard Choi
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- University of California, Irvine, Department of Biomedical Engineering, Irvine, California, United States
- University of California, Irvine, Department of Surgery, Irvine, California, United States
- University of California, Irvine, Edwards Lifesciences Foundation Cardiovascular Innovation Research Center, California, United States
| |
Collapse
|
25
|
Zhang Q, Cramer SR, Turner KL, Neuberger T, Drew PJ, Zhang N. High-frequency neuronal signal better explains multi-phase BOLD response. Neuroimage 2023; 268:119887. [PMID: 36681134 PMCID: PMC9962576 DOI: 10.1016/j.neuroimage.2023.119887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Visual stimulation-evoked blood-oxygen-level dependent (BOLD) responses can exhibit more complex temporal dynamics than a simple monophasic response. For instance, BOLD responses sometimes include a phase of positive response followed by a phase of post-stimulus undershoot. Whether the BOLD response during these phases reflects the underlying neuronal signal fluctuations or is contributed by non-neuronal physiological factors remains elusive. When presenting blocks of sustained (i.e. DC) light ON-OFF stimulations to unanesthetized rats, we observed that the response following a decrease in illumination (i.e. OFF stimulation-evoked BOLD response) in the visual cortices displayed reproducible multiple phases, including an initial positive BOLD response, followed by an undershoot and then an overshoot before the next ON trial. This multi-phase BOLD response did not result from the entrainment of the periodic stimulation structure. When we measured the neural correlates of these responses, we found that the high-frequency band from the LFP power (300 - 3000 Hz, multi-unit activity (MUA)), but not the power in the gamma band (30 - 100 Hz) exhibited the same multiphasic dynamics as the BOLD signal. This study suggests that the post-stimulus phases of the BOLD response can be better explained by the high-frequency neuronal signal.
Collapse
Affiliation(s)
- Qingqing Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, USA; Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park 16802, USA; Center for Neural Engineering, The Pennsylvania State University, University Park 16802, USA
| | - Samuel R Cramer
- The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, USA; Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park 16802, USA; Center for Neural Engineering, The Pennsylvania State University, University Park 16802, USA
| | - Kevin L Turner
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, USA; Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park 16802, USA; Center for Neural Engineering, The Pennsylvania State University, University Park 16802, USA
| | - Thomas Neuberger
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, USA; Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park 16802, USA
| | - Patrick J Drew
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, USA; The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, USA; Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park 16802, USA; Center for Neural Engineering, The Pennsylvania State University, University Park 16802, USA; Departments of Engineering Science and Mechanics, Neurosurgery, and Biology, The Pennsylvania State University, University Park, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, USA; The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, USA; Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park 16802, USA; Center for Neural Engineering, The Pennsylvania State University, University Park 16802, USA.
| |
Collapse
|
26
|
Wang Y, Ma Z, Li W, Su F, Wang C, Xiong W, Li C, Zhang C. Cable-free brain imaging for multiple free-moving animals with miniature wireless microscopes. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:026503. [PMID: 36777333 PMCID: PMC9917720 DOI: 10.1117/1.jbo.28.2.026503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
SIGNIFICANCE Although several miniature microscope systems have been developed to allow researchers to image brain neuron activities of free moving rodents, they generally require a long cable connecting to the miniature microscope. It not only limits the behavior of the animal, but also makes it challenging to study multiple animals simultaneously. AIM The aim of this work is to develop a fully wireless miniature microscope that would break constraints from the connecting cables so that the animals could move completely freely, allowing neuroscience researchers to study more of animals' behaviors simultaneously, such as social behavior. APPROACH We present a wireless mini-microscope (wScope) that enables simultaneously real-time brain imaging preview from multiple free-moving animals. The wScope has a mass of 2.7 g and a maximum frame rate of 25 Hz at 750 μ m × 450 μ m field of view with 1.8 - μ m resolution. RESULTS The performance of the wScope is validated via real-time imaging of the cerebral blood flow and the activity of neurons in the primary visual cortex (V1) of different mice. CONCLUSIONS The wScope provides a powerful tool for brain imaging of multiple free moving animals in their much larger spaces and more naturalistic environments.
Collapse
Affiliation(s)
- Yangzhen Wang
- Capital Medical University, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Department of Neurobiology, Beijing, China
- Tsinghua University, School of Life Sciences, Beijing, China
| | - Zhongtian Ma
- Peking University, College of Future Technology, Department of Biomedical Engineering, Beijing, China
| | - Wenzhao Li
- Peking University, College of Future Technology, Department of Biomedical Engineering, Beijing, China
| | - Feng Su
- Peking University, Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Chong Wang
- Beihang University, School of Biological Science and Medical Engineering, Beijing, China
| | - Wei Xiong
- Tsinghua University, School of Life Sciences, Beijing, China
| | - Changhui Li
- Peking University, College of Future Technology, Department of Biomedical Engineering, Beijing, China
- Peking University, National Biomedical Imaging Center, Beijing, China
| | - Chen Zhang
- Capital Medical University, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Department of Neurobiology, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
27
|
Sten S, Podéus H, Sundqvist N, Elinder F, Engström M, Cedersund G. A quantitative model for human neurovascular coupling with translated mechanisms from animals. PLoS Comput Biol 2023; 19:e1010818. [PMID: 36607908 PMCID: PMC9821752 DOI: 10.1371/journal.pcbi.1010818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Abstract
Neurons regulate the activity of blood vessels through the neurovascular coupling (NVC). A detailed understanding of the NVC is critical for understanding data from functional imaging techniques of the brain. Many aspects of the NVC have been studied both experimentally and using mathematical models; various combinations of blood volume and flow, local field potential (LFP), hemoglobin level, blood oxygenation level-dependent response (BOLD), and optogenetics have been measured and modeled in rodents, primates, or humans. However, these data have not been brought together into a unified quantitative model. We now present a mathematical model that describes all such data types and that preserves mechanistic behaviors between experiments. For instance, from modeling of optogenetics and microscopy data in mice, we learn cell-specific contributions; the first rapid dilation in the vascular response is caused by NO-interneurons, the main part of the dilation during longer stimuli is caused by pyramidal neurons, and the post-peak undershoot is caused by NPY-interneurons. These insights are translated and preserved in all subsequent analyses, together with other insights regarding hemoglobin dynamics and the LFP/BOLD-interplay, obtained from other experiments on rodents and primates. The model can predict independent validation-data not used for training. By bringing together data with complementary information from different species, we both understand each dataset better, and have a basis for a new type of integrative analysis of human data.
Collapse
Affiliation(s)
- Sebastian Sten
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Henrik Podéus
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Nicolas Sundqvist
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Fredrik Elinder
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maria Engström
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Gunnar Cedersund
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
28
|
Mächler P, Fomin-Thunemann N, Thunemann M, Sætra MJ, Desjardins M, Kılıç K, Amra LN, Martin EA, Chen IA, Şencan-Eğilmez I, Li B, Saisan P, Jiang JX, Cheng Q, Weldy KL, Boas DA, Buxton RB, Einevoll GT, Dale AM, Sakadžić S, Devor A. Baseline oxygen consumption decreases with cortical depth. PLoS Biol 2022; 20:e3001440. [PMID: 36301995 PMCID: PMC9642908 DOI: 10.1371/journal.pbio.3001440] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/08/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
The cerebral cortex is organized in cortical layers that differ in their cellular density, composition, and wiring. Cortical laminar architecture is also readily revealed by staining for cytochrome oxidase-the last enzyme in the respiratory electron transport chain located in the inner mitochondrial membrane. It has been hypothesized that a high-density band of cytochrome oxidase in cortical layer IV reflects higher oxygen consumption under baseline (unstimulated) conditions. Here, we tested the above hypothesis using direct measurements of the partial pressure of O2 (pO2) in cortical tissue by means of 2-photon phosphorescence lifetime microscopy (2PLM). We revisited our previously developed method for extraction of the cerebral metabolic rate of O2 (CMRO2) based on 2-photon pO2 measurements around diving arterioles and applied this method to estimate baseline CMRO2 in awake mice across cortical layers. To our surprise, our results revealed a decrease in baseline CMRO2 from layer I to layer IV. This decrease of CMRO2 with cortical depth was paralleled by an increase in tissue oxygenation. Higher baseline oxygenation and cytochrome density in layer IV may serve as an O2 reserve during surges of neuronal activity or certain metabolically active brain states rather than reflecting baseline energy needs. Our study provides to our knowledge the first quantification of microscopically resolved CMRO2 across cortical layers as a step towards better understanding of brain energy metabolism.
Collapse
Affiliation(s)
- Philipp Mächler
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Natalie Fomin-Thunemann
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Martin Thunemann
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Marte Julie Sætra
- Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, Oslo, Norway
| | - Michèle Desjardins
- Département de Physique, de Génie Physique et d’Optique and Axe Oncologie, Centre de Recherche du CHU de Québec–Université Laval, Université Laval, Québec, Canada
| | - Kıvılcım Kılıç
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Layth N. Amra
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Emily A. Martin
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Ichun Anderson Chen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Ikbal Şencan-Eğilmez
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Baoqiang Li
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Payam Saisan
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - John X. Jiang
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Qun Cheng
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Kimberly L. Weldy
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - David A. Boas
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Richard B. Buxton
- Department of Radiology, University of California San Diego, La Jolla, California, United States of America
| | - Gaute T. Einevoll
- Department of Physics, University of Oslo, Oslo, Norway
- Department of Physics, Norwegian University of Life Sciences, Ås, Norway
| | - Anders M. Dale
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
- Department of Radiology, University of California San Diego, La Jolla, California, United States of America
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- * E-mail: (SS); (AD)
| | - Anna Devor
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- * E-mail: (SS); (AD)
| |
Collapse
|
29
|
Ilhan-Bayrakcı M, Cabral-Calderin Y, Bergmann TO, Tüscher O, Stroh A. Individual slow wave events give rise to macroscopic fMRI signatures and drive the strength of the BOLD signal in human resting-state EEG-fMRI recordings. Cereb Cortex 2022; 32:4782-4796. [PMID: 35094045 PMCID: PMC9627041 DOI: 10.1093/cercor/bhab516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 08/19/2024] Open
Abstract
The slow wave state is a general state of quiescence interrupted by sudden bursts of activity or so-called slow wave events (SWEs). Recently, the relationship between SWEs and blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) signals was assessed in rodent models which revealed cortex-wide BOLD activation. However, it remains unclear which macroscopic signature corresponds to these specific neurophysiological events in the human brain. Therefore, we analyzed simultaneous electroencephalographic (EEG)-fMRI data during human non-REM sleep. SWEs individually detected in the EEG data were used as predictors in event-related fMRI analyses to examine the relationship between SWEs and fMRI signals. For all 10 subjects we identified significant changes in BOLD activity associated with SWEs covering substantial parts of the gray matter. As demonstrated in rodents, we observed a direct relation of a neurophysiological event to specific BOLD activation patterns. We found a correlation between the number of SWEs and the spatial extent of these BOLD activation patterns and discovered that the amplitude of the BOLD response strongly depends on the SWE amplitude. As altered SWE propagation has recently been found in neuropsychiatric diseases, it is critical to reveal the brain's physiological slow wave state networks to potentially establish early imaging biomarkers for various diseases long before disease onset.
Collapse
Affiliation(s)
- Merve Ilhan-Bayrakcı
- Systemic Mechanisms of Resilience, Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
| | - Yuranny Cabral-Calderin
- Neural and Environmental Rhythms, Max Planck Institute for Empirical Aesthetics, 60322 Frankfurt, Germany
| | - Til Ole Bergmann
- Systemic Mechanisms of Resilience, Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Oliver Tüscher
- Systemic Mechanisms of Resilience, Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Albrecht Stroh
- Systemic Mechanisms of Resilience, Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| |
Collapse
|
30
|
Chan RW, Cron GO, Asaad M, Edelman BJ, Lee HJ, Adesnik H, Feinberg D, Lee JH. Distinct local and brain-wide networks are activated by optogenetic stimulation of neurons specific to each layer of motor cortex. Neuroimage 2022; 263:119640. [PMID: 36176220 PMCID: PMC10025169 DOI: 10.1016/j.neuroimage.2022.119640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022] Open
Abstract
Primary motor cortex (M1) consists of a stack of interconnected but distinct layers (L1-L6) which affect motor control through large-scale networks. However, the brain-wide functional influence of each layer is poorly understood. We sought to expand our knowledge of these layers' circuitry by combining Cre-driver mouse lines, optogenetics, fMRI, and electrophysiology. Neuronal activities initiated in Drd3 neurons (within L2/3) were mainly confined within M1, while stimulation of Scnn1a, Rbp4, and Ntsr1 neurons (within L4, L5, and L6, respectively) evoked distinct responses in M1 and motor-related subcortical regions, including striatum and motor thalamus. We also found that fMRI responses from targeted stimulations correlated with both local field potentials (LFPs) and spike changes. This study represents a step forward in our understanding of how different layers of primary motor cortex are embedded in brain-wide circuitry.
Collapse
Affiliation(s)
- Russell W Chan
- Department of Neurology and Neurological Sciences, Stanford University, CA 94305, USA
| | - Greg O Cron
- Department of Neurology and Neurological Sciences, Stanford University, CA 94305, USA
| | - Mazen Asaad
- Department of Molecular and Cellular Physiology, Stanford University, CA 94305, USA
| | - Bradley J Edelman
- Department of Neurology and Neurological Sciences, Stanford University, CA 94305, USA
| | - Hyun Joo Lee
- Department of Neurology and Neurological Sciences, Stanford University, CA 94305, USA
| | - Hillel Adesnik
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - David Feinberg
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Jin Hyung Lee
- Department of Neurology and Neurological Sciences, Stanford University, CA 94305, USA; Department of Bioengineering, Stanford University, CA 94305, USA; Department of Neurosurgery, Stanford University, CA 94305, USA; Department of Electrical Engineering, Stanford University, CA 94305, USA.
| |
Collapse
|
31
|
Shafiei G, Baillet S, Misic B. Human electromagnetic and haemodynamic networks systematically converge in unimodal cortex and diverge in transmodal cortex. PLoS Biol 2022; 20:e3001735. [PMID: 35914002 PMCID: PMC9371256 DOI: 10.1371/journal.pbio.3001735] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/11/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
Whole-brain neural communication is typically estimated from statistical associations among electromagnetic or haemodynamic time-series. The relationship between functional network architectures recovered from these 2 types of neural activity remains unknown. Here, we map electromagnetic networks (measured using magnetoencephalography (MEG)) to haemodynamic networks (measured using functional magnetic resonance imaging (fMRI)). We find that the relationship between the 2 modalities is regionally heterogeneous and systematically follows the cortical hierarchy, with close correspondence in unimodal cortex and poor correspondence in transmodal cortex. Comparison with the BigBrain histological atlas reveals that electromagnetic-haemodynamic coupling is driven by laminar differentiation and neuron density, suggesting that the mapping between the 2 modalities can be explained by cytoarchitectural variation. Importantly, haemodynamic connectivity cannot be explained by electromagnetic activity in a single frequency band, but rather arises from the mixing of multiple neurophysiological rhythms. Correspondence between the two is largely driven by MEG functional connectivity at the beta (15 to 29 Hz) frequency band. Collectively, these findings demonstrate highly organized but only partly overlapping patterns of connectivity in MEG and fMRI functional networks, opening fundamentally new avenues for studying the relationship between cortical microarchitecture and multimodal connectivity patterns.
Collapse
Affiliation(s)
- Golia Shafiei
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| |
Collapse
|
32
|
Guilbert J, Légaré A, De Koninck P, Desrosiers P, Desjardins M. Toward an integrative neurovascular framework for studying brain networks. NEUROPHOTONICS 2022; 9:032211. [PMID: 35434179 PMCID: PMC8989057 DOI: 10.1117/1.nph.9.3.032211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/11/2022] [Indexed: 05/28/2023]
Abstract
Brain functional connectivity based on the measure of blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) signals has become one of the most widely used measurements in human neuroimaging. However, the nature of the functional networks revealed by BOLD fMRI can be ambiguous, as highlighted by a recent series of experiments that have suggested that typical resting-state networks can be replicated from purely vascular or physiologically driven BOLD signals. After going through a brief review of the key concepts of brain network analysis, we explore how the vascular and neuronal systems interact to give rise to the brain functional networks measured with BOLD fMRI. This leads us to emphasize a view of the vascular network not only as a confounding element in fMRI but also as a functionally relevant system that is entangled with the neuronal network. To study the vascular and neuronal underpinnings of BOLD functional connectivity, we consider a combination of methodological avenues based on multiscale and multimodal optical imaging in mice, used in combination with computational models that allow the integration of vascular information to explain functional connectivity.
Collapse
Affiliation(s)
- Jérémie Guilbert
- Université Laval, Department of Physics, Physical Engineering, and Optics, Québec, Canada
- Université Laval, Centre de recherche du CHU de Québec, Québec, Canada
| | - Antoine Légaré
- Université Laval, Department of Physics, Physical Engineering, and Optics, Québec, Canada
- Centre de recherche CERVO, Québec, Canada
- Université Laval, Department of Biochemistry, Microbiology, and Bioinformatics, Québec, Canada
| | - Paul De Koninck
- Centre de recherche CERVO, Québec, Canada
- Université Laval, Department of Biochemistry, Microbiology, and Bioinformatics, Québec, Canada
| | - Patrick Desrosiers
- Université Laval, Department of Physics, Physical Engineering, and Optics, Québec, Canada
- Centre de recherche CERVO, Québec, Canada
| | - Michèle Desjardins
- Université Laval, Department of Physics, Physical Engineering, and Optics, Québec, Canada
- Université Laval, Centre de recherche du CHU de Québec, Québec, Canada
| |
Collapse
|
33
|
Bojovic D, Stackhouse TL, Mishra A. Assaying activity-dependent arteriole and capillary responses in brain slices. NEUROPHOTONICS 2022; 9:031913. [PMID: 35558646 PMCID: PMC9089234 DOI: 10.1117/1.nph.9.3.031913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
Significance: Neurovascular coupling (NVC) is the process that increases cerebral blood flow in response to neuronal activity. NVC is orchestrated by signaling between neurons, glia, and vascular cells. Elucidating the mechanisms underlying NVC at different vascular segments and in different brain regions is imperative for understanding of brain function and mechanisms of dysfunction. Aim: Our goal is to describe a protocol for concurrently monitoring stimulation-evoked neuronal activity and resultant vascular responses in acute brain slices. Approach: We describe a step-by-step protocol that allows the study of endogenous NVC mechanisms engaged by neuronal activity in a controlled, reduced preparation. Results: This ex vivo NVC assay allows researchers to disentangle the mechanisms regulating the contractile responses of different vascular segments in response to neuronal firing independent of flow and pressure mediated effects from connected vessels. It also enables easy pharmacological manipulations in a simplified, reduced system and can be combined with Ca 2 + imaging or broader electrophysiology techniques to obtain multimodal data during NVC. Conclusions: The ex vivo NVC assay will facilitate investigations of cellular and molecular mechanisms that give rise to NVC and should serve as a valuable complement to in vivo imaging methods.
Collapse
Affiliation(s)
- Danica Bojovic
- Oregon Health & Science University, Jungers Center for Neurosciences Research, Department of Neurology, Portland, Oregon, United States
- Oregon Health & Science University, Vollum Institute, Portland, Oregon, United States
| | - Teresa L. Stackhouse
- Oregon Health & Science University, Jungers Center for Neurosciences Research, Department of Neurology, Portland, Oregon, United States
| | - Anusha Mishra
- Oregon Health & Science University, Jungers Center for Neurosciences Research, Department of Neurology, Portland, Oregon, United States
- Oregon Health & Science University, Knight Cardiovascular Institute, Portland, Oregon, United States
| |
Collapse
|
34
|
Lee SH, Thunemann M, Lee K, Cleary DR, Tonsfeldt KJ, Oh H, Azzazy F, Tchoe Y, Bourhis AM, Hossain L, Ro YG, Tanaka A, Kılıç K, Devor A, Dayeh SA. Scalable Thousand Channel Penetrating Microneedle Arrays on Flex for Multimodal and Large Area Coverage BrainMachine Interfaces. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2112045. [PMID: 36381629 PMCID: PMC9648634 DOI: 10.1002/adfm.202112045] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 05/29/2023]
Abstract
The Utah array powers cutting-edge projects for restoration of neurological function, such as BrainGate, but the underlying electrode technology has itself advanced little in the last three decades. Here, advanced dual-side lithographic microfabrication processes is exploited to demonstrate a 1024-channel penetrating silicon microneedle array (SiMNA) that is scalable in its recording capabilities and cortical coverage and is suitable for clinical translation. The SiMNA is the first penetrating microneedle array with a flexible backing that affords compliancy to brain movements. In addition, the SiMNA is optically transparent permitting simultaneous optical and electrophysiological interrogation of neuronal activity. The SiMNA is used to demonstrate reliable recordings of spontaneous and evoked field potentials and of single unit activity in chronically implanted mice for up to 196 days in response to optogenetic and to whisker air-puff stimuli. Significantly, the 1024-channel SiMNA establishes detailed spatiotemporal mapping of broadband brain activity in rats. This novel scalable and biocompatible SiMNA with its multimodal capability and sensitivity to broadband brain activity will accelerate the progress in fundamental neurophysiological investigations and establishes a new milestone for penetrating and large area coverage microelectrode arrays for brain-machine interfaces.
Collapse
Affiliation(s)
- Sang Heon Lee
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, CA 92093, USA
| | - Martin Thunemann
- Biomedical Engineering Department, Boston University, Boston, MA 02215, USA
| | - Keundong Lee
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, CA 92093, USA
| | - Daniel R Cleary
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, CA 92093, USA
- Department of Neurological Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | - Karen J Tonsfeldt
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, CA 92093, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Hongseok Oh
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, CA 92093, USA
| | - Farid Azzazy
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, CA 92093, USA
| | - Youngbin Tchoe
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, CA 92093, USA
| | - Andrew M Bourhis
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, CA 92093, USA
| | - Lorraine Hossain
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, CA 92093, USA
- Graduate Program of Materials Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Yun Goo Ro
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, CA 92093, USA
| | - Atsunori Tanaka
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, CA 92093, USA
- Graduate Program of Materials Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Kıvılcım Kılıç
- Biomedical Engineering Department, Boston University, Boston, MA 02215, USA
| | - Anna Devor
- Biomedical Engineering Department, Boston University, Boston, MA 02215, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Shadi A Dayeh
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, CA 92093, USA
- Graduate Program of Materials Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
35
|
Reeson P, Schager B, Van Sprengel M, Brown CE. Behavioral and Neural Activity-Dependent Recanalization of Plugged Capillaries in the Brain of Adult and Aged Mice. Front Cell Neurosci 2022; 16:876746. [PMID: 35722620 PMCID: PMC9204343 DOI: 10.3389/fncel.2022.876746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
The capillaries of the brain, owing to their small diameter and low perfusion pressure, are vulnerable to interruptions in blood flow. These tiny occlusions can have outsized consequences on angioarchitecture and brain function; especially when exacerbated by disease states or accumulate with aging. A distinctive feature of the brain’s microvasculature is the ability for active neurons to recruit local blood flow. The coupling of neural activity to blood flow could play an important role in recanalizing obstructed capillaries. To investigate this idea, we experimentally induced capillary obstructions in mice by injecting fluorescent microspheres and then manipulated neural activity levels though behavioral or pharmacologic approaches. We show that engaging adult and aged mice with 12 h exposure to an enriched environment (group housing, novel objects, exercise wheels) was sufficient to significantly reduce the density of obstructed capillaries throughout the forebrain. In order to more directly manipulate neural activity, we pharmacologically suppressed or increased neuronal activity in the somatosensory cortex. When we suppressed cortical activity, recanalization was impaired given the density of obstructed capillaries was significantly increased. Conversely, increasing cortical activity improved capillary recanalization. Since systemic cardiovascular factors (changes in heart rate, blood pressure) could explain these effects on recanalization, we demonstrate that unilateral manipulations of neural activity through whisker trimming or injection of muscimol, still had significant and hemisphere specific effects on recanalization, even in mice exposed to enrichment where cardiovascular effects would be evident in both hemispheres. In summary, our studies reveal that neural activity bi-directionally regulates the recanalization of obstructed capillaries. Further, we show that stimulating brain activity through behavioral engagement (i.e., environmental enrichment) can promote vascular health throughout the lifespan.
Collapse
Affiliation(s)
- Patrick Reeson
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Ben Schager
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Craig E. Brown
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Craig E. Brown,
| |
Collapse
|
36
|
Cerebral small vessel disease alters neurovascular unit regulation of microcirculation integrity involved in vascular cognitive impairment. Neurobiol Dis 2022; 170:105750. [DOI: 10.1016/j.nbd.2022.105750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/09/2022] [Accepted: 05/08/2022] [Indexed: 12/25/2022] Open
|
37
|
The effects of locomotion on sensory-evoked haemodynamic responses in the cortex of awake mice. Sci Rep 2022; 12:6236. [PMID: 35422473 PMCID: PMC9010417 DOI: 10.1038/s41598-022-10195-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/04/2022] [Indexed: 12/22/2022] Open
Abstract
Investigating neurovascular coupling in awake rodents is becoming ever more popular due, in part, to our increasing knowledge of the profound impacts that anaesthesia can have upon brain physiology. Although awake imaging brings with it many advantages, we still do not fully understand how voluntary locomotion during imaging affects sensory-evoked haemodynamic responses. In this study we investigated how evoked haemodynamic responses can be affected by the amount and timing of locomotion. Using an awake imaging set up, we used 2D-Optical Imaging Spectroscopy (2D-OIS) to measure changes in cerebral haemodynamics within the sensory cortex of the brain during either 2 s whisker stimulation or spontaneous (no whisker stimulation) experiments, whilst animals could walk on a spherical treadmill. We show that locomotion alters haemodynamic responses. The amount and timing of locomotion relative to whisker stimulation is important, and can significantly impact sensory-evoked haemodynamic responses. If locomotion occurred before or during whisker stimulation, the amplitude of the stimulus-evoked haemodynamic response was significantly altered. Therefore, monitoring of locomotion during awake imaging is necessary to ensure that conclusions based on comparisons of evoked haemodynamic responses (e.g., between control and disease groups) are not confounded by the effects of locomotion.
Collapse
|
38
|
Tran CHT. Toolbox for studying neurovascular coupling in vivo, with a focus on vascular activity and calcium dynamics in astrocytes. NEUROPHOTONICS 2022; 9:021909. [PMID: 35295714 PMCID: PMC8920490 DOI: 10.1117/1.nph.9.2.021909] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/23/2022] [Indexed: 05/14/2023]
Abstract
Significance: Insights into the cellular activity of each member of the neurovascular unit (NVU) is critical for understanding their contributions to neurovascular coupling (NVC)-one of the key control mechanisms in cerebral blood flow regulation. Advances in imaging and genetic tools have enhanced our ability to observe, manipulate and understand the cellular activity of NVU components, namely neurons, astrocytes, microglia, endothelial cells, vascular smooth muscle cells, and pericytes. However, there are still many unresolved questions. Since astrocytes are considered electrically unexcitable,Ca 2 + signaling is the main parameter used to monitor their activity. It is therefore imperative to study astrocyticCa 2 + dynamics simultaneously with vascular activity using tools appropriate for the question of interest. Aim: To highlight currently available genetic and imaging tools for studying the NVU-and thus NVC-with a focus on astrocyteCa 2 + dynamics and vascular activity, and discuss the utility, technical advantages, and limitations of these tools for elucidating NVC mechanisms. Approach: We draw attention to some outstanding questions regarding the mechanistic basis of NVC and emphasize the role of astrocyticCa 2 + elevations in functional hyperemia. We further discuss commonly used genetic, and optical imaging tools, as well as some newly developed imaging modalities for studying NVC at the cellular level, highlighting their advantages and limitations. Results: We provide an overview of the current state of NVC research, focusing on the role of astrocyticCa 2 + elevations in functional hyperemia; summarize recent advances in genetically engineeredCa 2 + indicators, fluorescence microscopy techniques for studying NVC; and discuss the unmet challenges for future imaging development. Conclusions: Advances in imaging techniques together with improvements in genetic tools have significantly contributed to our understanding of NVC. Many pieces of the puzzle have been revealed, but many more remain to be discovered. Ultimately, optimizing NVC research will require a concerted effort to improve imaging techniques, available genetic tools, and analytical software.
Collapse
Affiliation(s)
- Cam Ha T. Tran
- University of Nevada, Reno School of Medicine, Department of Physiology and Cell Biology, Reno, Nevada, United States
| |
Collapse
|
39
|
Jackson JG, Krizman E, Takano H, Lee M, Choi GH, Putt ME, Robinson MB. Activation of Glutamate Transport Increases Arteriole Diameter in v ivo: Implications for Neurovascular Coupling. Front Cell Neurosci 2022; 16:831061. [PMID: 35308116 PMCID: PMC8930833 DOI: 10.3389/fncel.2022.831061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 11/21/2022] Open
Abstract
In order to meet the energetic demands of cell-to-cell signaling, increases in local neuronal signaling are matched by a coordinated increase in local blood flow, termed neurovascular coupling. Multiple different signals from neurons, astrocytes, and pericytes contribute to this control of blood flow. Previously, several groups demonstrated that inhibition/ablation of glutamate transporters attenuates the neurovascular response. However, it was not determined if glutamate transporter activation was sufficient to increase blood flow. Here, we used multiphoton imaging to monitor the diameter of fluorescently labeled cortical arterioles in anesthetized C57/B6J mice. We delivered vehicle, glutamate transporter substrates, or a combination of a glutamate transporter substrate with various pharmacologic agents via a glass micropipette while simultaneously visualizing changes in arteriole diameter. We developed a novel image analysis method to automate the measurement of arteriole diameter in these time-lapse analyses. Using this workflow, we first conducted pilot experiments in which we focally applied L-glutamate, D-aspartate, or L-threo-hydroxyaspartate (L-THA) and measured arteriole responses as proof of concept. We subsequently applied the selective glutamate transport substrate L-THA (applied at concentrations that do not activate glutamate receptors). We found that L-THA evoked a significantly larger dilation than that observed with focal saline application. This response was blocked by co-application of the potent glutamate transport inhibitor, L-(2S,3S)-3-[3-[4-(trifluoromethyl)-benzoylamino]benzyloxy]-aspartate (TFB-TBOA). Conversely, we were unable to demonstrate a reduction of this effect through co-application of a cocktail of glutamate and GABA receptor antagonists. These studies provide the first direct evidence that activation of glutamate transport is sufficient to increase arteriole diameter. We explored potential downstream mechanisms mediating this transporter-mediated dilation by using a Ca2+ chelator or inhibitors of reversed-mode Na+/Ca2+ exchange, nitric oxide synthetase, or cyclo-oxygenase. The estimated effects and confidence intervals suggested some form of inhibition for a number of these inhibitors. Limitations to our study design prevented definitive conclusions with respect to these downstream inhibitors; these limitations are discussed along with possible next steps. Understanding the mechanisms that control blood flow are important because changes in blood flow/energy supply are implicated in several neurodegenerative disorders and are used as a surrogate measure of neuronal activity in widely used techniques such as functional magnetic resonance imaging (fMRI).
Collapse
Affiliation(s)
- Joshua G. Jackson
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, United States
| | - Elizabeth Krizman
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, United States
| | - Hajime Takano
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Meredith Lee
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Grace H. Choi
- Department of Biostatistics, Epidemiology & Informatics, University of Pennsylvania, Philadelphia, PA, United States
| | - Mary E. Putt
- Department of Biostatistics, Epidemiology & Informatics, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael B. Robinson
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
40
|
Zhang Q, Cramer SR, Ma Z, Turner KL, Gheres KW, Liu Y, Drew PJ, Zhang N. Brain-wide ongoing activity is responsible for significant cross-trial BOLD variability. Cereb Cortex 2022; 32:5311-5329. [PMID: 35179203 PMCID: PMC9712744 DOI: 10.1093/cercor/bhac016] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/27/2022] Open
Abstract
A notorious issue of task-based functional magnetic resonance imaging (fMRI) is its large cross-trial variability. To quantitatively characterize this variability, the blood oxygenation level-dependent (BOLD) signal can be modeled as a linear summation of a stimulation-relevant and an ongoing (i.e. stimulation-irrelevant) component. However, systematic investigation on the spatiotemporal features of the ongoing BOLD component and how these features affect the BOLD response is still lacking. Here we measured fMRI responses to light onsets and light offsets in awake rats. The neuronal response was simultaneously recorded with calcium-based fiber photometry. We established that between-region BOLD signals were highly correlated brain-wide at zero time lag, including regions that did not respond to visual stimulation, suggesting that the ongoing activity co-fluctuates across the brain. Removing this ongoing activity reduced cross-trial variability of the BOLD response by ~30% and increased its coherence with the Ca2+ signal. Additionally, the negative ongoing BOLD activity sometimes dominated over the stimulation-driven response and contributed to the post-stimulation BOLD undershoot. These results suggest that brain-wide ongoing activity is responsible for significant cross-trial BOLD variability, and this component can be reliably quantified and removed to improve the reliability of fMRI response. Importantly, this method can be generalized to virtually all fMRI experiments without changing stimulation paradigms.
Collapse
Affiliation(s)
- Qingqing Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States,Center for Neural Engineering, The Pennsylvania State University, University Park, PA 16802, United States
| | - Samuel R Cramer
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA 16802, United States,The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, United States
| | - Zilu Ma
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States,Center for Neural Engineering, The Pennsylvania State University, University Park, PA 16802, United States
| | - Kevin L Turner
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States,Center for Neural Engineering, The Pennsylvania State University, University Park, PA 16802, United States
| | - Kyle W Gheres
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA 16802, United States,Graduate Program in Molecular, Cellular, and Integrative Biosciences, The Pennsylvania State University, University Park, PA 16802, United States
| | - Yikang Liu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States,Center for Neural Engineering, The Pennsylvania State University, University Park, PA 16802, United States
| | - Patrick J Drew
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States,Center for Neural Engineering, The Pennsylvania State University, University Park, PA 16802, United States,The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, United States,Graduate Program in Molecular, Cellular, and Integrative Biosciences, The Pennsylvania State University, University Park, PA 16802, United States,Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, United States,Department of Neurosurgery, The Pennsylvania State University, Hershey, PA 17033, United States
| | - Nanyin Zhang
- Corresponding author: Biomedical Engineering and Electrical Engineering, Lloyd & Dorothy Foehr Huck Chair in Brain Imaging, The Huck Institutes of Life Sciences, The Pennsylvania State University, W-341 Millennium Science Complex, University Park, PA 16802, United States.
| |
Collapse
|
41
|
Rajanathan R, Pedersen TM, Thomsen MB, Botker HE, Matchkov VV. Phenylephrine-Induced Cardiovascular Changes in the Anesthetized Mouse: An Integrated Assessment of in vivo Hemodynamics Under Conditions of Controlled Heart Rate. Front Physiol 2022; 13:831724. [PMID: 35250634 PMCID: PMC8891648 DOI: 10.3389/fphys.2022.831724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Investigating the cardiovascular system is challenging due to its complex regulation by humoral and neuronal factors. Despite this complexity, many existing research methods are limited to the assessment of a few parameters leading to an incomplete characterization of cardiovascular function. Thus, we aim to establish a murine in vivo model for integrated assessment of the cardiovascular system under conditions of controlled heart rate. Utilizing this model, we assessed blood pressure, cardiac output, stroke volume, total peripheral resistance, and electrocardiogram (ECG). Hypothesis We hypothesize that (i) our in vivo model can be utilized to investigate cardiac and vascular responses to pharmacological intervention with the α1-agonist phenylephrine, and (ii) we can study cardiovascular function during artificial pacing of the heart, modulating cardiac function without a direct vascular effect. Methods We included 12 mice that were randomly assigned to either vehicle or phenylephrine intervention through intraperitoneal administration. Mice were anesthetized with isoflurane and intubated endotracheally for mechanical ventilation. We measured blood pressure via a solid-state catheter in the aortic arch, blood flow via a probe on the ascending aorta, and ECG from needle electrodes on the extremities. Right atrium was electrically paced at a frequency ranging from 10 to 11.3 Hz before and after either vehicle or phenylephrine administration. Results Phenylephrine significantly increased blood pressure, stroke volume, and total peripheral resistance compared to the vehicle group. Moreover, heart rate was significantly decreased following phenylephrine administration. Pacing significantly decreased stroke volume and cardiac output both prior to and after drug administration. However, phenylephrine-induced changes in blood pressure and total peripheral resistance were maintained with increasing pacing frequencies compared to the vehicle group. Total peripheral resistance was not significantly altered with increasing pacing frequencies suggesting that the effect of phenylephrine is primarily of vascular origin. Conclusion In conclusion, this in vivo murine model is capable of distinguishing between changes in peripheral vascular and cardiac functions. This study underlines the primary effect of phenylephrine on vascular function with secondary changes to cardiac function. Hence, this in vivo model is useful for the integrated assessment of the cardiovascular system.
Collapse
Affiliation(s)
- Rajkumar Rajanathan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- *Correspondence: Rajkumar Rajanathan,
| | | | - Morten B. Thomsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Erik Botker
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
42
|
Knipper M, Singer W, Schwabe K, Hagberg GE, Li Hegner Y, Rüttiger L, Braun C, Land R. Disturbed Balance of Inhibitory Signaling Links Hearing Loss and Cognition. Front Neural Circuits 2022; 15:785603. [PMID: 35069123 PMCID: PMC8770933 DOI: 10.3389/fncir.2021.785603] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022] Open
Abstract
Neuronal hyperexcitability in the central auditory pathway linked to reduced inhibitory activity is associated with numerous forms of hearing loss, including noise damage, age-dependent hearing loss, and deafness, as well as tinnitus or auditory processing deficits in autism spectrum disorder (ASD). In most cases, the reduced central inhibitory activity and the accompanying hyperexcitability are interpreted as an active compensatory response to the absence of synaptic activity, linked to increased central neural gain control (increased output activity relative to reduced input). We here suggest that hyperexcitability also could be related to an immaturity or impairment of tonic inhibitory strength that typically develops in an activity-dependent process in the ascending auditory pathway with auditory experience. In these cases, high-SR auditory nerve fibers, which are critical for the shortest latencies and lowest sound thresholds, may have either not matured (possibly in congenital deafness or autism) or are dysfunctional (possibly after sudden, stressful auditory trauma or age-dependent hearing loss linked with cognitive decline). Fast auditory processing deficits can occur despite maintained basal hearing. In that case, tonic inhibitory strength is reduced in ascending auditory nuclei, and fast inhibitory parvalbumin positive interneuron (PV-IN) dendrites are diminished in auditory and frontal brain regions. This leads to deficits in central neural gain control linked to hippocampal LTP/LTD deficiencies, cognitive deficits, and unbalanced extra-hypothalamic stress control. Under these conditions, a diminished inhibitory strength may weaken local neuronal coupling to homeostatic vascular responses required for the metabolic support of auditory adjustment processes. We emphasize the need to distinguish these two states of excitatory/inhibitory imbalance in hearing disorders: (i) Under conditions of preserved fast auditory processing and sustained tonic inhibitory strength, an excitatory/inhibitory imbalance following auditory deprivation can maintain precise hearing through a memory linked, transient disinhibition that leads to enhanced spiking fidelity (central neural gain⇑) (ii) Under conditions of critically diminished fast auditory processing and reduced tonic inhibitory strength, hyperexcitability can be part of an increased synchronization over a broader frequency range, linked to reduced spiking reliability (central neural gain⇓). This latter stage mutually reinforces diminished metabolic support for auditory adjustment processes, increasing the risks for canonical dementia syndromes.
Collapse
Affiliation(s)
- Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
- *Correspondence: Marlies Knipper,
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Kerstin Schwabe
- Experimental Neurosurgery, Department of Neurosurgery, Hannover Medical School, Hanover, Germany
| | - Gisela E. Hagberg
- Department of Biomedical Magnetic Resonance, University Hospital Tübingen (UKT), Tübingen, Germany
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Yiwen Li Hegner
- MEG Center, University of Tübingen, Tübingen, Germany
- Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Christoph Braun
- MEG Center, University of Tübingen, Tübingen, Germany
- Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Rüdiger Land
- Department of Experimental Otology, Institute for Audioneurotechnology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
43
|
Abdelfattah AS, Ahuja S, Akkin T, Allu SR, Brake J, Boas DA, Buckley EM, Campbell RE, Chen AI, Cheng X, Čižmár T, Costantini I, De Vittorio M, Devor A, Doran PR, El Khatib M, Emiliani V, Fomin-Thunemann N, Fainman Y, Fernandez-Alfonso T, Ferri CGL, Gilad A, Han X, Harris A, Hillman EMC, Hochgeschwender U, Holt MG, Ji N, Kılıç K, Lake EMR, Li L, Li T, Mächler P, Miller EW, Mesquita RC, Nadella KMNS, Nägerl UV, Nasu Y, Nimmerjahn A, Ondráčková P, Pavone FS, Perez Campos C, Peterka DS, Pisano F, Pisanello F, Puppo F, Sabatini BL, Sadegh S, Sakadzic S, Shoham S, Shroff SN, Silver RA, Sims RR, Smith SL, Srinivasan VJ, Thunemann M, Tian L, Tian L, Troxler T, Valera A, Vaziri A, Vinogradov SA, Vitale F, Wang LV, Uhlířová H, Xu C, Yang C, Yang MH, Yellen G, Yizhar O, Zhao Y. Neurophotonic tools for microscopic measurements and manipulation: status report. NEUROPHOTONICS 2022; 9:013001. [PMID: 35493335 PMCID: PMC9047450 DOI: 10.1117/1.nph.9.s1.013001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Neurophotonics was launched in 2014 coinciding with the launch of the BRAIN Initiative focused on development of technologies for advancement of neuroscience. For the last seven years, Neurophotonics' agenda has been well aligned with this focus on neurotechnologies featuring new optical methods and tools applicable to brain studies. While the BRAIN Initiative 2.0 is pivoting towards applications of these novel tools in the quest to understand the brain, this status report reviews an extensive and diverse toolkit of novel methods to explore brain function that have emerged from the BRAIN Initiative and related large-scale efforts for measurement and manipulation of brain structure and function. Here, we focus on neurophotonic tools mostly applicable to animal studies. A companion report, scheduled to appear later this year, will cover diffuse optical imaging methods applicable to noninvasive human studies. For each domain, we outline the current state-of-the-art of the respective technologies, identify the areas where innovation is needed, and provide an outlook for the future directions.
Collapse
Affiliation(s)
- Ahmed S. Abdelfattah
- Brown University, Department of Neuroscience, Providence, Rhode Island, United States
| | - Sapna Ahuja
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Taner Akkin
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Srinivasa Rao Allu
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Joshua Brake
- Harvey Mudd College, Department of Engineering, Claremont, California, United States
| | - David A. Boas
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Erin M. Buckley
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University, Department of Pediatrics, Atlanta, Georgia, United States
| | - Robert E. Campbell
- University of Tokyo, Department of Chemistry, Tokyo, Japan
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
| | - Anderson I. Chen
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Xiaojun Cheng
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Tomáš Čižmár
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Irene Costantini
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Biology, Florence, Italy
- National Institute of Optics, National Research Council, Rome, Italy
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Anna Devor
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Patrick R. Doran
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Mirna El Khatib
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | | | - Natalie Fomin-Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Yeshaiahu Fainman
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Tomas Fernandez-Alfonso
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Christopher G. L. Ferri
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Ariel Gilad
- The Hebrew University of Jerusalem, Institute for Medical Research Israel–Canada, Department of Medical Neurobiology, Faculty of Medicine, Jerusalem, Israel
| | - Xue Han
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Andrew Harris
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | | | - Ute Hochgeschwender
- Central Michigan University, Department of Neuroscience, Mount Pleasant, Michigan, United States
| | - Matthew G. Holt
- University of Porto, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - Na Ji
- University of California Berkeley, Department of Physics, Berkeley, California, United States
| | - Kıvılcım Kılıç
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evelyn M. R. Lake
- Yale School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, United States
| | - Lei Li
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Tianqi Li
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Philipp Mächler
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evan W. Miller
- University of California Berkeley, Departments of Chemistry and Molecular & Cell Biology and Helen Wills Neuroscience Institute, Berkeley, California, United States
| | | | | | - U. Valentin Nägerl
- Interdisciplinary Institute for Neuroscience University of Bordeaux & CNRS, Bordeaux, France
| | - Yusuke Nasu
- University of Tokyo, Department of Chemistry, Tokyo, Japan
| | - Axel Nimmerjahn
- Salk Institute for Biological Studies, Waitt Advanced Biophotonics Center, La Jolla, California, United States
| | - Petra Ondráčková
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Francesco S. Pavone
- National Institute of Optics, National Research Council, Rome, Italy
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Physics, Florence, Italy
| | - Citlali Perez Campos
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Darcy S. Peterka
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Filippo Pisano
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Francesca Puppo
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Bernardo L. Sabatini
- Harvard Medical School, Howard Hughes Medical Institute, Department of Neurobiology, Boston, Massachusetts, United States
| | - Sanaz Sadegh
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Sava Sakadzic
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Shy Shoham
- New York University Grossman School of Medicine, Tech4Health and Neuroscience Institutes, New York, New York, United States
| | - Sanaya N. Shroff
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - R. Angus Silver
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Ruth R. Sims
- Sorbonne University, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Spencer L. Smith
- University of California Santa Barbara, Department of Electrical and Computer Engineering, Santa Barbara, California, United States
| | - Vivek J. Srinivasan
- New York University Langone Health, Departments of Ophthalmology and Radiology, New York, New York, United States
| | - Martin Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Lei Tian
- Boston University, Departments of Electrical Engineering and Biomedical Engineering, Boston, Massachusetts, United States
| | - Lin Tian
- University of California Davis, Department of Biochemistry and Molecular Medicine, Davis, California, United States
| | - Thomas Troxler
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Antoine Valera
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Alipasha Vaziri
- Rockefeller University, Laboratory of Neurotechnology and Biophysics, New York, New York, United States
- The Rockefeller University, The Kavli Neural Systems Institute, New York, New York, United States
| | - Sergei A. Vinogradov
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Flavia Vitale
- Center for Neuroengineering and Therapeutics, Departments of Neurology, Bioengineering, Physical Medicine and Rehabilitation, Philadelphia, Pennsylvania, United States
| | - Lihong V. Wang
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Hana Uhlířová
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Chris Xu
- Cornell University, School of Applied and Engineering Physics, Ithaca, New York, United States
| | - Changhuei Yang
- California Institute of Technology, Departments of Electrical Engineering, Bioengineering and Medical Engineering, Pasadena, California, United States
| | - Mu-Han Yang
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Gary Yellen
- Harvard Medical School, Department of Neurobiology, Boston, Massachusetts, United States
| | - Ofer Yizhar
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | - Yongxin Zhao
- Carnegie Mellon University, Department of Biological Sciences, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
44
|
Szczygielski J, Kopańska M, Wysocka A, Oertel J. Cerebral Microcirculation, Perivascular Unit, and Glymphatic System: Role of Aquaporin-4 as the Gatekeeper for Water Homeostasis. Front Neurol 2021; 12:767470. [PMID: 34966347 PMCID: PMC8710539 DOI: 10.3389/fneur.2021.767470] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
In the past, water homeostasis of the brain was understood as a certain quantitative equilibrium of water content between intravascular, interstitial, and intracellular spaces governed mostly by hydrostatic effects i.e., strictly by physical laws. The recent achievements in molecular bioscience have led to substantial changes in this regard. Some new concepts elaborate the idea that all compartments involved in cerebral fluid homeostasis create a functional continuum with an active and precise regulation of fluid exchange between them rather than only serving as separate fluid receptacles with mere passive diffusion mechanisms, based on hydrostatic pressure. According to these concepts, aquaporin-4 (AQP4) plays the central role in cerebral fluid homeostasis, acting as a water channel protein. The AQP4 not only enables water permeability through the blood-brain barrier but also regulates water exchange between perivascular spaces and the rest of the glymphatic system, described as pan-cerebral fluid pathway interlacing macroscopic cerebrospinal fluid (CSF) spaces with the interstitial fluid of brain tissue. With regards to this, AQP4 makes water shift strongly dependent on active processes including changes in cerebral microcirculation and autoregulation of brain vessels capacity. In this paper, the role of the AQP4 as the gatekeeper, regulating the water exchange between intracellular space, glymphatic system (including the so-called neurovascular units), and intravascular compartment is reviewed. In addition, the new concepts of brain edema as a misbalance in water homeostasis are critically appraised based on the newly described role of AQP4 for fluid permeation. Finally, the relevance of these hypotheses for clinical conditions (including brain trauma and stroke) and for both new and old therapy concepts are analyzed.
Collapse
Affiliation(s)
- Jacek Szczygielski
- Department of Neurosurgery, Institute of Medical Sciences, University of Rzeszów, Rzeszów, Poland.,Department of Neurosurgery, Faculty of Medicine and Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Marta Kopańska
- Department of Pathophysiology, Institute of Medical Sciences, University of Rzeszów, Rzeszów, Poland
| | - Anna Wysocka
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| | - Joachim Oertel
- Department of Neurosurgery, Faculty of Medicine and Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
45
|
Polimeni JR, Lewis LD. Imaging faster neural dynamics with fast fMRI: A need for updated models of the hemodynamic response. Prog Neurobiol 2021; 207:102174. [PMID: 34525404 PMCID: PMC8688322 DOI: 10.1016/j.pneurobio.2021.102174] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 07/30/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022]
Abstract
Fast fMRI enables the detection of neural dynamics over timescales of hundreds of milliseconds, suggesting it may provide a new avenue for studying subsecond neural processes in the human brain. The magnitudes of these fast fMRI dynamics are far greater than predicted by canonical models of the hemodynamic response. Several studies have established nonlinear properties of the hemodynamic response that have significant implications for fast fMRI. We first review nonlinear properties of the hemodynamic response function that may underlie fast fMRI signals. We then illustrate the breakdown of canonical hemodynamic response models in the context of fast neural dynamics. We will then argue that the canonical hemodynamic response function is not likely to reflect the BOLD response to neuronal activity driven by sparse or naturalistic stimuli or perhaps to spontaneous neuronal fluctuations in the resting state. These properties suggest that fast fMRI is capable of tracking surprisingly fast neuronal dynamics, and we discuss the neuroscientific questions that could be addressed using this approach.
Collapse
Affiliation(s)
- Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Laura D Lewis
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
46
|
Karagiannis A, Gallopin T, Lacroix A, Plaisier F, Piquet J, Geoffroy H, Hepp R, Naudé J, Le Gac B, Egger R, Lambolez B, Li D, Rossier J, Staiger JF, Imamura H, Seino S, Roeper J, Cauli B. Lactate is an energy substrate for rodent cortical neurons and enhances their firing activity. eLife 2021; 10:e71424. [PMID: 34766906 PMCID: PMC8651295 DOI: 10.7554/elife.71424] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Glucose is the mandatory fuel for the brain, yet the relative contribution of glucose and lactate for neuronal energy metabolism is unclear. We found that increased lactate, but not glucose concentration, enhances the spiking activity of neurons of the cerebral cortex. Enhanced spiking was dependent on ATP-sensitive potassium (KATP) channels formed with KCNJ11 and ABCC8 subunits, which we show are functionally expressed in most neocortical neuronal types. We also demonstrate the ability of cortical neurons to take-up and metabolize lactate. We further reveal that ATP is produced by cortical neurons largely via oxidative phosphorylation and only modestly by glycolysis. Our data demonstrate that in active neurons, lactate is preferred to glucose as an energy substrate, and that lactate metabolism shapes neuronal activity in the neocortex through KATP channels. Our results highlight the importance of metabolic crosstalk between neurons and astrocytes for brain function.
Collapse
Affiliation(s)
- Anastassios Karagiannis
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Thierry Gallopin
- Brain Plasticity Unit, CNRS UMR 8249, CNRS, ESPCI ParisParisFrance
| | - Alexandre Lacroix
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Fabrice Plaisier
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Juliette Piquet
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Hélène Geoffroy
- Brain Plasticity Unit, CNRS UMR 8249, CNRS, ESPCI ParisParisFrance
| | - Régine Hepp
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Jérémie Naudé
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Benjamin Le Gac
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Richard Egger
- Institute for Neurophysiology, Goethe University FrankfurtFrankfurtGermany
| | - Bertrand Lambolez
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Dongdong Li
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| | - Jean Rossier
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
- Brain Plasticity Unit, CNRS UMR 8249, CNRS, ESPCI ParisParisFrance
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August- University GöttingenGoettingenGermany
| | - Hiromi Imamura
- Graduate School of Biostudies, Kyoto UniversityKyotoJapan
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of MedicineHyogoJapan
| | - Jochen Roeper
- Institute for Neurophysiology, Goethe University FrankfurtFrankfurtGermany
| | - Bruno Cauli
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS)ParisFrance
| |
Collapse
|
47
|
Roy RK, Althammer F, Seymour AJ, Du W, Biancardi VC, Hamm JP, Filosa JA, Brown CH, Stern JE. Inverse neurovascular coupling contributes to positive feedback excitation of vasopressin neurons during a systemic homeostatic challenge. Cell Rep 2021; 37:109925. [PMID: 34731601 PMCID: PMC9488983 DOI: 10.1016/j.celrep.2021.109925] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/09/2021] [Accepted: 10/12/2021] [Indexed: 01/03/2023] Open
Abstract
Neurovascular coupling (NVC), the process that links neuronal activity to cerebral blood flow changes, has been mainly studied in superficial brain areas, namely the neocortex. Whether the conventional, rapid, and spatially restricted NVC response can be generalized to deeper and functionally diverse brain regions remains unknown. Implementing an approach for in vivo two-photon imaging from the ventral surface of the brain, we show that a systemic homeostatic challenge, acute salt loading, progressively increases hypothalamic vasopressin (VP) neuronal firing and evokes a vasoconstriction that reduces local blood flow. Vasoconstrictions are blocked by topical application of a VP receptor antagonist or tetrodotoxin, supporting mediation by activity-dependent, dendritically released VP. Salt-induced inverse NVC results in a local hypoxic microenvironment, which evokes positive feedback excitation of VP neurons. Our results reveal a physiological mechanism by which inverse NVC responses regulate systemic homeostasis, further supporting the notion of brain heterogeneity in NVC responses.
Collapse
Affiliation(s)
- Ranjan K Roy
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | | | - Wenting Du
- Department of Physiology, Augusta University, Augusta, GA, USA
| | - Vinicia C Biancardi
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, USA
| | - Jordan P Hamm
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | - Colin H Brown
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Javier E Stern
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
48
|
fMRI neurofeedback in the motor system elicits bidirectional changes in activity and in white matter structure in the adult human brain. Cell Rep 2021; 37:109890. [PMID: 34706229 PMCID: PMC8961413 DOI: 10.1016/j.celrep.2021.109890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/06/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
White matter (WM) plasticity supports skill learning and memory. Up- and downregulation of brain activity in animal models lead to WM alterations. But can bidirectional brain-activity manipulation change WM structure in the adult human brain? We employ fMRI neurofeedback to endogenously and directionally modulate activity in the sensorimotor cortices. Diffusion tensor imaging is acquired before and after two separate conditions, involving regulating sensorimotor activity either up or down using real or sham neurofeedback (n = 20 participants × 4 scans). We report rapid opposing changes in corpus callosum microstructure that depend on the direction of activity modulation. Our findings show that fMRI neurofeedback can be used to endogenously and directionally alter not only brain-activity patterns but also WM pathways connecting the targeted brain areas. The level of associated brain activity in connected areas is therefore a possible mediator of previously described learning-related changes in WM.
Collapse
|
49
|
Chen C, She Z, Tang P, Qin Z, He J, Qu JY. Study of neurovascular coupling by using mesoscopic and microscopic imaging. iScience 2021; 24:103176. [PMID: 34693226 PMCID: PMC8511898 DOI: 10.1016/j.isci.2021.103176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/02/2021] [Accepted: 09/22/2021] [Indexed: 12/05/2022] Open
Abstract
Neuronal activation is often accompanied by the regulation of cerebral hemodynamics via a process known as neurovascular coupling (NVC) which is essential for proper brain function and has been observed to be disrupted in a variety of neuropathologies. A comprehensive understanding of NVC requires imaging capabilities with high spatiotemporal resolution and a field-of-view that spans different orders of magnitude. Here, we present an approach for concurrent multi-contrast mesoscopic and two-photon microscopic imaging of neurovascular dynamics in the cortices of live mice. We investigated the spatiotemporal correlation between sensory-evoked neuronal and vascular responses in the auditory cortices of living mice using four imaging modalities. Our findings unravel drastic differences in the NVC at the regional and microvascular levels and the distinctive effects of different brain states on NVC. We further investigated the brain-state-dependent changes of NVC in large cortical networks and revealed that anesthesia and sedation caused spatiotemporal disruption of NVC. Concurrent mesoscopic and microscopic imaging of neurovascular dynamics Spatiotemporal characteristics of neurovascular responses across multiple scales Distinct effects of anesthesia and sedation on neurovascular coupling Cortex-wide correlation of neuronal activity and cerebral hemodynamics
Collapse
Affiliation(s)
- Congping Chen
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.,Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Zhentao She
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.,Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Peng Tang
- Department of Neuroscience (NS), City University of Hong Kong, Hong Kong, P.R. China.,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China
| | - Zhongya Qin
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.,Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Jufang He
- Department of Neuroscience (NS), City University of Hong Kong, Hong Kong, P.R. China
| | - Jianan Y Qu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.,Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
50
|
Longitudinal functional imaging of VIP interneurons reveals sup-population specific effects of stroke that are rescued with chemogenetic therapy. Nat Commun 2021; 12:6112. [PMID: 34671051 PMCID: PMC8528851 DOI: 10.1038/s41467-021-26405-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/04/2021] [Indexed: 01/20/2023] Open
Abstract
Stroke profoundly disrupts cortical excitability which impedes recovery, but how it affects the function of specific inhibitory interneurons, or subpopulations therein, is poorly understood. Interneurons expressing vasoactive intestinal peptide (VIP) represent an intriguing stroke target because they can regulate cortical excitability through disinhibition. Here we chemogenetically augmented VIP interneuron excitability in a murine model of photothrombotic stroke and show that it enhances somatosensory responses and improves recovery of paw function. Using longitudinal calcium imaging, we discovered that stroke primarily disrupts the fidelity (fraction of responsive trials) and predictability of sensory responses within a subset of highly active VIP neurons. Partial recovery of responses occurred largely within these active neurons and was not accompanied by the recruitment of minimally active neurons. Importantly, chemogenetic stimulation preserved sensory response fidelity and predictability in highly active neurons. These findings provide a new depth of understanding into how stroke and prospective therapies (chemogenetics), can influence subpopulations of inhibitory interneurons.
Collapse
|