1
|
Xu Y, Gao Z, Liu J, Yang Q, Xu S. Role of gut microbiome in suppression of cancers. Gut Microbes 2025; 17:2495183. [PMID: 40254597 PMCID: PMC12013426 DOI: 10.1080/19490976.2025.2495183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/23/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025] Open
Abstract
The pathogenesis of cancer is closely related to the disruption of homeostasis in the human body. The gut microbiome plays crucial roles in maintaining the homeostasis of its host throughout lifespan. In recent years, a large number of studies have shown that dysbiosis of the gut microbiome is involved in the entire process of cancer initiation, development, and prognosis by influencing the host immune system and metabolism. Some specific intestinal bacteria promote the occurrence and development of cancers under certain conditions. Conversely, some other specific intestinal bacteria suppress the oncogenesis and progression of cancers, including inhibiting the occurrence of cancers, delaying the progression of cancers and boosting the therapeutic effect on cancers. The promoting effects of the gut microbiome on cancers have been comprehensively discussed in the previous review. This article will review the latest advances in the roles and mechanisms of gut microbiome in cancer suppression, providing a new perspective for developing strategies of cancer prevention and treatment.
Collapse
Affiliation(s)
- Yao Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Zhaoyu Gao
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, P. R. China
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| | - Jiaying Liu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| | - Qianqian Yang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| | - Shunjiang Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, P. R. China
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| |
Collapse
|
2
|
Yang Y, Zhang Z, Lu HT, Xu QQ, Zhuo L, Li WG. Smoking as a causative factor in chronic kidney disease: a two-sample Mendelian randomization study. Ren Fail 2025; 47:2453014. [PMID: 39837594 PMCID: PMC11753011 DOI: 10.1080/0886022x.2025.2453014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/01/2025] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
Smoking is widely acknowledged for its harmful effects on multiple organs. However, its specific causal relationship with chronic kidney disease (CKD) remains uncertain. This study applied bivariate causal analysis and two-sample Mendelian randomization (MR) methods to examine the association between various smoking behaviors - initiation, cessation, age at initiation, cigarettes smoked per day, and lifetime smoking - and CKD, using genome-wide data. The inverse variance weighted (IVW) method was the primary analytical tool, supported by sensitivity analyses, pleiotropy assessments, and mediation analyses. External validation was conducted using independent datasets. The results revealed positive associations between CKD and smoking initiation (Pivw = 1.8 × 10-2, OR = 1.192), earlier age at initiation (Pivw = 2.3 × 10-3, OR = 1.481), cigarettes smoked per day (Pivw = 8.8 × 10-3, OR = 1.216), and lifetime smoking (Pivw = 2.3 × 10-7, OR = 2.445). In contrast, smoking cessation demonstrated a protective effect against CKD (Pivw = 4.0 × 10-12, OR = 0.791). External validation results aligned with the primary findings, and the absence of significant heterogeneity confirmed the robustness of the MR analysis. Additionally, the effect of smoking on CKD was mediated by factors such as body mass index, cardiovascular disease, hypertension, and type 2 diabetes. These findings identify smoking as a contributing factor to CKD and suggest that reducing smoking prevalence could significantly lower the incidence of CKD in the population.
Collapse
Affiliation(s)
- Yue Yang
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Zheng Zhang
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Hai-tao Lu
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Qian-qian Xu
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Li Zhuo
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Wen-ge Li
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
3
|
Deng F, Yang D, Qing L, Chen Y, Zou J, Jia M, Wang Q, Jiang R, Huang L. Exploring the interaction between the gut microbiota and cyclic adenosine monophosphate-protein kinase A signaling pathway: a potential therapeutic approach for neurodegenerative diseases. Neural Regen Res 2025; 20:3095-3112. [PMID: 39589173 PMCID: PMC11881707 DOI: 10.4103/nrr.nrr-d-24-00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/07/2024] [Accepted: 09/10/2024] [Indexed: 11/27/2024] Open
Abstract
The interaction between the gut microbiota and cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut-brain axis. The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites, which activates the vagus nerve and modulates the immune and neuroendocrine systems. Conversely, alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota, creating a dynamic network of microbial-host interactions. This reciprocal regulation affects neurodevelopment, neurotransmitter control, and behavioral traits, thus playing a role in the modulation of neurological diseases. The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation, mitochondrial dysfunction, abnormal energy metabolism, microglial activation, oxidative stress, and neurotransmitter release, which collectively influence the onset and progression of neurological diseases. This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway, along with its implications for potential therapeutic interventions in neurological diseases. Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders. This can be achieved through various methods such as dietary modifications, probiotic supplements, Chinese herbal extracts, combinations of Chinese herbs, and innovative dosage forms. These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases.
Collapse
Affiliation(s)
- Fengcheng Deng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Dan Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Lingxi Qing
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yifei Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Jilian Zou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Meiling Jia
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Qian Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Runda Jiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Lihua Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
4
|
Jiang M, Li H, Zhang Q, Xu T, Huang L, Zhang J, Yu H, Zhang J. The role of RGS12 in tissue repair and human diseases. Genes Dis 2025; 12:101480. [PMID: 40271194 PMCID: PMC12017852 DOI: 10.1016/j.gendis.2024.101480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/05/2024] [Accepted: 11/02/2024] [Indexed: 04/25/2025] Open
Abstract
Regulator of G protein signaling 12 (RGS12) belongs to the superfamily of RGS proteins defined by a conserved RGS domain that canonically binds and deactivates heterotrimeric G-proteins. As the largest family member, RGS12 is widely expressed in many cells and tissues. In the past few decades, it has been found that RGS12 affects the activity of various cells in the human body, participates in many physiological and pathological processes, and plays an important role in the pathogenesis of many diseases. Here, we set out to comprehensively review the role of RGS12 in human diseases and its mechanisms, highlighting the possibility of RGS12 as a therapeutic target for the treatment of human diseases.
Collapse
Affiliation(s)
- Min Jiang
- Department of Geriatric Oncology and Department of Palliative Care, Chongqing University Cancer Hospital, Chongqing 400030, China
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hongmei Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qiong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Tongtong Xu
- General Department of Critical Care Medicine, Zhenjiang Traditional Chinese Medicine Hospital, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Zhenjiang, Jiangsu 212003, China
| | - Le Huang
- Army 72nd Group Military Hospital, Huzhou, Zhejiang 313000, China
| | - Jinghong Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Huiqing Yu
- Department of Geriatric Oncology and Department of Palliative Care, Chongqing University Cancer Hospital, Chongqing 400030, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Junhui Zhang
- Department of Geriatric Oncology and Department of Palliative Care, Chongqing University Cancer Hospital, Chongqing 400030, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
5
|
Huang H, Yang C, Li S, Zhan H, Tan J, Chen C, Liu J, Wang M, Li H. Lizhong decoction alleviates experimental ulcerative colitis via regulating gut microbiota-SCFAs-Th17/Treg axis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 349:119958. [PMID: 40350047 DOI: 10.1016/j.jep.2025.119958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/26/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lizhong decoction (LZD), a Traditional Chinese Medicine formula, is widely utilized to treat gastrointestinal diseases, including ulcerative colitis in China for thousands of years. AIM OF THE STUDY To investigate whether the protective effect of LZD on ulcerative colitis is dependent on gut microbiota and T-cell immune homeostasis. MATERIAL AND METHODS The preventive effects of LZD on dextran sodium sulfate (DSS)-induced colitis mice were evaluated through the measurement of body weight, disease activity index, colon length and hematoxylin-eosin staining. Flow cytometry was used to detect the ratio of Th17/Treg cells. Pseudo sterile mice and fecal transplantation experiments were used to investigate whether the preventive effect of LZD was dependent on the gut microbiota. The alterations of gut microbiota were identified by the 16S rDNA sequencing. The content of intestinal short-chain fatty acids (SCFAs) was detected by LC-MS/MS analysis. The downstream signal pathways of SCFAs were detected by the immunoblotting. RESULTS LZD administration significantly alleviated weight loss and intestinal injury in DSS-induced colitis mice. LZD administration also promotes the balance of Th17/Treg cells. Moreover, LZD administration relies on gut microbiota to alleviate ulcerative colitis and regulate Th17/Treg cell balance. LZD administration significantly improves gut microbial composition in colitis mice, elevating the abundance of SCFAs producing bacterium such as lachnospiraceae_nk4a136_group and Akkermansia. LZD treatment further increases the abundance of SCFAs and promotes activation of free fatty acid activated receptor 2 (FFAR2). CONCLUSION LZD administration promotes Th17/Treg cell balance in a gut microbiota-SCFAs dependent manner, which in turn ameliorates ulcerative colitis.
Collapse
MESH Headings
- Animals
- Gastrointestinal Microbiome/drug effects
- Colitis, Ulcerative/drug therapy
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/chemically induced
- Colitis, Ulcerative/microbiology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Dextran Sulfate
- Male
- Mice
- Mice, Inbred C57BL
- Fatty Acids, Volatile/metabolism
- Disease Models, Animal
- Colon/drug effects
- Colon/pathology
- Colon/microbiology
- Fecal Microbiota Transplantation
Collapse
Affiliation(s)
- Hengjun Huang
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China.
| | - Chengyu Yang
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China
| | - Silu Li
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China
| | - Huang Zhan
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China
| | - Jinlong Tan
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China
| | - Congcong Chen
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China
| | - Jian Liu
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China
| | - Maolin Wang
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China
| | - Hui Li
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
6
|
Wachsmuth LP, Srinivasan ES, Puviindran BJ, Haskell-Mendoza AP, DeSpenza T, Fecci PE. Autonomic modulation of the immune response and implications for CNS malignancies. NPJ Precis Oncol 2025; 9:168. [PMID: 40483275 PMCID: PMC12145445 DOI: 10.1038/s41698-025-00957-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 05/21/2025] [Indexed: 06/11/2025] Open
Abstract
While the central nervous system (CNS) has long been known to regulate global physiologic processes, its role in regulating immune responses has only relatively recently been appreciated. Specifically, CNS input via the autonomic nervous system (ANS) is increasingly emerging as a crucial modulator of immune responses in numerous pathologies, though understanding of the role of these pathways in malignancy is limited. Herein, we provide an overview of CNS-immune signaling pathways, outline the evidence of ANS inputs to immune organs, provide a detailed description of the impact of ANS signaling on immune cell functions, and consider the implications of ANS-immune regulation for the antitumor immune response and CNS inflammation, with a specific focus on how these factors coalesce to impact the antitumor immune response in intracranial malignancies. This review concludes by highlighting the need to better understand cancer neuro-immunology, the tripartite interactions of malignancy and immune cells within the unique niche of the nervous system.
Collapse
Affiliation(s)
- Lucas P Wachsmuth
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
- Medical Science Training Program, Duke University, Durham, NC, USA
| | - Ethan S Srinivasan
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, USA
- School of Medicine, Duke University, Durham, NC, USA
| | - Bhairavy J Puviindran
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Aden P Haskell-Mendoza
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, USA
- Department of Neurosurgery, Duke University, Durham, NC, USA
| | - Tyrone DeSpenza
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, USA
- Department of Neurosurgery, Duke University, Durham, NC, USA
| | - Peter E Fecci
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, USA.
- Department of Pathology, Duke University, Durham, NC, USA.
- School of Medicine, Duke University, Durham, NC, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Department of Neurosurgery, Duke University, Durham, NC, USA.
- Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA.
| |
Collapse
|
7
|
Wang Z, Chu R, Ge H, Zhu Z, Zhang R, Han D, Fang R, Wang N, Gao S, Wang Y, Han Y, Wang Q. GRK2-facilitated TLR4 signaling promotes cardiac fibrosis in rheumatic mice. Int Immunopharmacol 2025; 157:114709. [PMID: 40339495 DOI: 10.1016/j.intimp.2025.114709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/25/2025] [Accepted: 04/20/2025] [Indexed: 05/10/2025]
Abstract
OBJECTIVE Patients with rheumatoid arthritis (RA) have a much higher prevalence of cardiac dysfunction, which explains the high mortality rate in RA patients despite treatment with anti-arthritic drugs. This study elucidates a molecular mechanism that causes abnormal activation of cardiac fibroblasts in the inflammatory state of RA through transactivation of canonical TLR4 signaling by GRK2-dependent signaling mechanisms, and which ultimately induces heart disease. METHODS AND RESULTS Collagen-induced arthritis (CIA) models were established in mice, and the cardiac function in these CIA mice was dynamically examined using echocardiography. Cardiac diastolic and systolic dysfunction appeared and persisted in the hearts of CIA mice even after joint inflammation subsides, and significant fibrosis occurred in the cardiac tissue. TLR4 expression was elevated in the hearts of CIA mice which was associated with cardiac fibrosis. Cardiac fibroblasts from CIA mice undergo aberrant proliferation and a significant increase in NF-κB p65 nuclear translocation. Treatment with the specific TLR4 inhibitor, TAK-242, effectively protected CIA mice from cardiac fibrosis and cardiac diastolic dysfunction. Cardiac function was effectively rescued by administration of the GRK2 inhibitor paroxetine and carvedilol as well, with a concomitant reduction in NF-κB nuclear localization. In cardiac tissues of CIA mice, elevated levels of GRK2 expression thereby cause cardiac fibroblasts to undergo transdifferentiation. CONCLUSION GRK2 transactivates TLR4 signaling, which promoted cardiac fibroblast transdifferentiation. Furthermore, GRK2 inhibition effectively mitigated myocardial fibrosis and protected cardiac function, which offered an important strategy to protect RA patients from heart failure.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Rui Chu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Hui Ge
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Zhenduo Zhu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Renhao Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Dafei Han
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Ruhong Fang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Nan Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shan Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| | - Yongsheng Wang
- Department of Cardiology, The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), Hefei, China..
| | - Yongsheng Han
- Department of Emergency Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Qingtong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China.
| |
Collapse
|
8
|
Güvenç M, Aydin T, Kutlu T, Etyemez M, İşler CT. Tomentosin mitigates the LPS induced cardiac injury by regulating Nrf-2/Nf-κβ pathway in mice. Eur J Pharmacol 2025; 996:177589. [PMID: 40187600 DOI: 10.1016/j.ejphar.2025.177589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Endotoxemic shock is a severe complication characterized by multiple organ failure, hypotension, and impaired tissue perfusion, all contributing to high morbidity and mortality. Recent studies have highlighted the anti-inflammatory and antioxidant properties of tomentosin. This study investigates the protective effects of tomentosin against lipopolysaccharide (LPS)-induced cardiac injury and elucidates its underlying mechanisms. Mice were pre-treated with tomentosin before the LPS administration. Subsequently, cardiac injury markers, oxidative stress parameters, inflammatory mediators, and Nrf-2/NF-κB protein expression levels were analysed. The results demonstrated that tomentosin significantly reduced Troponin and CK-MB levels, alleviated oxidative stress, and suppressed inflammatory responses. Furthermore, tomentosin inhibited NF-κB activation while enhancing Nrf-2 expression. In conclusion, our findings suggest that tomentosin exerts cardioprotective effects by modulating the Nrf-2/NF-κB pathway, positioning it as a potential therapeutic candidate for preventing LPS-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Mehmet Güvenç
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, 31060, Turkey.
| | - Tuba Aydin
- Department of Pharmacognosy, Faculty of Pharmacy, Ağrı İbrahim Çeçen University, Ağrı, 04100, Turkey
| | - Tuncer Kutlu
- Department of Pathology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, 31060, Turkey
| | - Muhammed Etyemez
- Department of Physiology, Faculty of Veterinary Medicine, University of Kastamonu, Kastamonu, 37150, Turkey
| | - Cafer Tayer İşler
- Department of Surgery, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, 31060, Turkey
| |
Collapse
|
9
|
Huang H, Xiong Y, Zeng J. Silencing RGS7 attenuates atrial fibrillation progression by activating the cGMP-PKG signaling pathway. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167786. [PMID: 40086518 DOI: 10.1016/j.bbadis.2025.167786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 02/05/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Atrial fibrillation (AF) is a common diagnosed heart disease that needs novel managements. This study aimed to seek potential biomarkers and underlying regulatory pathways associated with AF. METHODS Differential expressed genes (DEGs) were identified from the Gene Expression Omnibus database, followed by a protein-protein interaction (PPI) network to discover hub genes. Principal components analysis (PCA) and receiver operating characteristic (ROC) curves were performed to evaluate the ability of hub genes to discriminate between AF and control. RGS7 was selected as a key hub gene, and genes co-expressed with RGS7 were identified for functional enrichment analysis. Further in vivo and in vitro experiments were conducted to investigate the effects of silencing RGS7 on AF and the potential pathway. RESULTS We identified top 5 hub genes (RGS7, EGFR, RGS4, GNA13 and RGS11) from the PPI network. PCA showed these genes could distinguish between AF and control samples, with 100 % of the area under curve (AUC) values. Silencing RGS7 inhibited cell apoptosis, inflammation and oxidative stress, and increased mitochondrial membrane potential in angiotensin II (AngII)-treated HL-1 cells, while overexpression of RGS7 reversed the inhibitory effects of silencing RGS7 on AF. Additionally, silencing RGS7 improved cardiac function and decreased cardiac fibrosis in AF rats. The cGMP-PKG signaling pathway was screened as a potential signal transduction pathway, and silencing RGS7 increased the expression of PKG1, while KT5823 blocked the process. CONCLUSION Silencing RGS7 attenuates AF by activating the cGMP-PKG signaling pathway, which may offer directions for selecting biomarkers and regulatory pathways for AF.
Collapse
Affiliation(s)
- Hao Huang
- Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu City, PR China
| | - Yan Xiong
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of, PR China
| | - Jie Zeng
- Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu City, PR China.
| |
Collapse
|
10
|
Mahmood NMS, Mahmud AMR, Maulood IM. Vascular actions of Ang 1-7 and Ang 1-8 through EDRFs and EDHFs in non-diabetes and diabetes mellitus. Nitric Oxide 2025; 156:9-26. [PMID: 40032212 DOI: 10.1016/j.niox.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
The renin-angiotensin system (RAS) plays a pivotal role in regulating vascular homeostasis, while angiotensin 1-8 (Ang 1-8) traditionally dominates as a vasoconstrictor factor. However, the discovery of angiotensin 1-7 (Ang 1-7) and Ang 1-8 has revealed counter-regulatory mechanisms mediated through endothelial-derived relaxing factors (EDRFs) and endothelial-derived hyperpolarizing factors (EDHFs). This review delves into the vascular actions of Ang 1-7 and Ang 1-8 in both non-diabetes mellitus (non-DM) and diabetes mellitus (DM) conditions, highlighting their effects on vascular endothelial cell (VECs) function as well. In a non-DM vasculature context, Ang 1-8 demonstrate dual effect including vasoconstriction and vasodilation, respectively. Additionally, Ang 1-7 induces vasodilation upon nitric oxide (NO) production as a prominent EDRFs in distinct mechanisms. Further research elucidating the precise mechanisms underlying the vascular actions of Ang 1-7 and Ang 1-8 in DM will facilitate the development of tailored therapeutic interventions aimed at preserving vascular health and preventing cardiovascular complications.
Collapse
Affiliation(s)
- Nazar M Shareef Mahmood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq.
| | - Almas M R Mahmud
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Ismail M Maulood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| |
Collapse
|
11
|
Shen C, Zuo Q, Shao Z, Lin Y, Chen S. Research progress in myocardial function and diseases related to muscarinic acetylcholine receptor (Review). Int J Mol Med 2025; 55:86. [PMID: 40183403 PMCID: PMC12005369 DOI: 10.3892/ijmm.2025.5527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/10/2025] [Indexed: 04/05/2025] Open
Abstract
Muscarinic acetylcholine (ACh) receptors (also known as M receptors) are widely distributed in all organs and tissues of the body, mainly playing a role in cholinergic nerve conduction. There are five known subtypes of muscarinic ACh receptors, but their pharmacological mechanisms of action on myocardial function have remained to be clearly defined. Functional myocardial diseases and myocardial injuries, such as arrhythmia, myocardial ischemia, myocarditis and myocardial fibrosis, may be affected by muscarinic ACh receptors. This article reviews the research progress of the regulation of myocardial function by muscarinic ACh receptors and related diseases, with the aim of developing better strategies and providing references for further revealing and clarifying the signal transduction and mechanisms of muscarinic ACh receptors in cardiomyocytes, and finding potential myocardial protective drugs that act on muscarinic ACh receptors.
Collapse
Affiliation(s)
- Chuqiao Shen
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Qiang Zuo
- Department of Cardiology, First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Zhengbin Shao
- Department of Cardiology, First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Yixuan Lin
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Shuo Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230038, P.R. China
| |
Collapse
|
12
|
Harding-Fox SL, Cellek S. The role of cyclic adenosine monophosphate (cAMP) in pathophysiology of fibrosis. Drug Discov Today 2025; 30:104368. [PMID: 40318753 DOI: 10.1016/j.drudis.2025.104368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/11/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Fibrosis, the excessive production and disorganised deposition of extracellular matrix proteins, can occur in any organ system, disrupting functionality and causing fatality. The number, efficacy and safety of antifibrotic drugs are incredibly limited. Therapeutics which elevate intracellular cyclic adenosine monophosphate (cAMP) offer a potential solution. In this review, we present the signalling mechanisms involved in fibrosis pathophysiology, how cAMP and its effectors might interact with these pathways, and the current preclinical and clinical efforts in this field. cAMP elevating agents have the potential to be future antifibrotic drug candidates, but further studies are required, particularly to develop tissue specific therapeutics.
Collapse
Affiliation(s)
- Sophie L Harding-Fox
- Fibrosis Research Group, Medical Technology Research Centre, School of Allied Health and Social Care, Faculty of Health, Medicine and Social Care, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK.
| | - Selim Cellek
- Fibrosis Research Group, Medical Technology Research Centre, School of Allied Health and Social Care, Faculty of Health, Medicine and Social Care, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK
| |
Collapse
|
13
|
Ballout J, Akiba Y, Kaunitz JD, Schwiertz A, Mazzuoli-Weber G, Breves G, Diener M. Alteration of the microbiota with vancomycin and high-fiber diet affects short-chain fatty acid/free fatty acid receptor signaling in rat caecum. J Nutr Biochem 2025; 140:109881. [PMID: 39993646 DOI: 10.1016/j.jnutbio.2025.109881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
Microbial short-chain fatty acids (SCFA) regulate intestinal functions via free-fatty acid (FFA) receptors type 2 and 3. Though the caecum is the most important fermentation chamber in many species, it is unknown whether this signaling system is modulated in dependence on the rate of fermentation within the lumen of this part of the large intestine. Thus, we asked the question whether alteration of the microbiota composition by antibiotic treatment or high-fiber diet affects the SCFA/FFA signaling using rat caecum as model system. SCFA concentrations and microbiota were analyzed in caecal samples from untreated rats, following vancomycin treatment, or after feeding with a high-fiber diet. Oral and aboral caecal segments were harvested for Ussing chamber experiments paralleled by Ca2+ imaging experiments with Fura-2 loaded crypts, immunofluorescence, and qPCR. Vancomycin treatment reduced total SCFA concentrations in the caecal content, whereas the high-fiber diet increased the concentration of acetate, but reduced that of propionate and butyrate. Propionate-induced anion secretion was abolished in the vancomycin group, whereas it nearly doubled in the high-fiber group. These effects could not be explained by changes in the expression of FFA2 receptor or in Ca2+ signaling evoked by FFA2 receptor activation. Parallel changes in ion secretion evoked by carbachol suggest that alterations in cholinergic signaling might be responsible for the observed changes in epithelial ion transport. Additionally, mucosal mast cell and enterochromaffin cell density increased after vancomycin and high-fiber diet, respectively. This study emphasizes the complex interactions between the microbiota and the caecal epithelium focusing on SCFA/FFA signaling.
Collapse
Affiliation(s)
- Jasmin Ballout
- Institute for Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany.
| | - Yasutada Akiba
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California, USA; David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jonathan D Kaunitz
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California, USA; David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | | - Gemma Mazzuoli-Weber
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Gerhard Breves
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Martin Diener
- Institute for Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
14
|
Ziegler KA, Engelhardt S, Carnevale D, McAlpine CS, Guzik TJ, Dimmeler S, Swirski FK. Neural Mechanisms in Cardiovascular Health and Disease. Circ Res 2025; 136:1233-1261. [PMID: 40403111 DOI: 10.1161/circresaha.125.325580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 04/22/2025] [Accepted: 04/22/2025] [Indexed: 05/24/2025]
Abstract
Although the neurocardiac axis is central to cardiovascular homeostasis, its dysregulation drives heart failure and cardiometabolic diseases. This review examines the bidirectional interplay between the autonomic nervous system and the heart, highlighting the role of this interplay in disease progression and its therapeutic potential. The autonomic nervous system modulates cardiac function and vascular tone through its sympathetic and parasympathetic branches. However, in heart failure, chronic sympathetic overdrive and parasympathetic withdrawal exacerbate myocardial remodeling and metabolic dysfunction, both of which are exacerbated by cardiometabolic conditions such as obesity and diabetes. These conditions are increasingly recognized to impair neurocardiac regulation, thereby promoting inflammation and adverse outcomes. An important emerging area concerns neuroimmune control, in which the brain orchestrates systemic inflammation through circuits involving the bone marrow, spleen, and other organs, thereby amplifying cardiovascular damage. This neuroimmune axis integrates peripheral signals to influence immune responses that contribute to disease progression. Lifestyle factors, such as stress, sleep, exercise, and diet, affect autonomic and immune balance and, thus, cardiovascular disease. Therapeutically, targeting neurocardiac and neuroimmune pathways pharmacologically or via neuromodulation (eg, vagal or splenic nerve stimulation) offers promise although the clinical translation of the latter remains challenging. In this review, we synthesize preclinical and clinical data to highlight the neurocardiac axis as a critical nexus in heart failure and cardiometabolic disease. Harnessing neuroimmune and neurocardiac interactions may inform precision approaches to reduce the burden of these conditions.
Collapse
Affiliation(s)
- Karin A Ziegler
- Institute of Pharmacology and Toxicology, School of Medicine and Health, Technical University of Munich, Germany (K.A.Z., S.E.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (K.A.Z., S.E.)
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, School of Medicine and Health, Technical University of Munich, Germany (K.A.Z., S.E.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (K.A.Z., S.E.)
| | - Daniela Carnevale
- Faculty of Pharmacy and Medicine, Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy (D.C.)
- Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Pozzilli, Italy (D.C.)
| | - Cameron S McAlpine
- Cardiovascular Research Institute, The Friedman Brain Institute, and Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY (C.S.M., F.K.S.)
| | - Tomasz J Guzik
- Centre for Cardiovascular Sciences, The University of Edinburgh, United Kingdom (T.J.G.)
- Department of Internal Medicine (T.J.G.), Jagiellonian University Medical College, Kraków, Poland
- Center for Medical Genomics OMICRON (T.J.G.), Jagiellonian University Medical College, Kraków, Poland
| | - Stefanie Dimmeler
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Germany (S.D.)
- German Centre for Cardiovascular Research (DZHK), Frankfurt am Main, Germany (S.D.)
- Cardiopulmonary Institute, Goethe University Frankfurt am Main, Germany (S.D.)
| | - Filip K Swirski
- Cardiovascular Research Institute, The Friedman Brain Institute, and Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY (C.S.M., F.K.S.)
| |
Collapse
|
15
|
Chakraborty S, Tiwari V, Banerjee SK. Targeting the non-neuronal cholinergic machinery: A novel approach to mitigate cardiac aging. Ageing Res Rev 2025; 109:102782. [PMID: 40412764 DOI: 10.1016/j.arr.2025.102782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/12/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Acetylcholine (ACh) secreted by the non-neuronal cholinergic system (NNCS), an intrinsic system found in the mammalian heart, is not dependent on neuronal inputs for its synthesis. Accumulating evidence demonstrates that ACh exerts multifaceted cardioprotective effects through the NNCS. Under extreme stress or demand, ACh slows heart rate by modulating cardiac chronotropy. Simultaneously, it protects the myocardium from ischemic, hypoxic, and other stressors. Beyond its direct effects on the heart, ACh has also been found to play a vital role in controlling mitochondrial homeostasis via specific signaling pathways in hearts. Through these pathways, ACh induces mitochondrial biogenesis and the renewal of the mitochondrial network while suppressing the generation of reactive oxygen species (ROS) within the mitochondria. Aging weakens the cardiac NNCS, lowering the heart's local ACh availability. Reducing mitochondrial activity and ROS-related inflammatory stress are essential indicators of cardiac aging and related disorders. As individuals age, mitochondria become less efficient at generating sufficient ATP to sustain the heart's ability to pump oxygen-rich blood and reduce cardiac performance. Therefore, the exciting prospect of increasing ACh secretion or stabilizing ACh levels through therapeutic targeting of the NNCS may provide a beacon of hope in the fight against age-related cardiovascular disorders. Further elucidating the mechanisms by which the NNCS regulates cardiac function through mitochondria may develop a novel treatment that rejuvenates the properties of this evolutionarily conserved system of the heart.
Collapse
Affiliation(s)
- Samhita Chakraborty
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Vikas Tiwari
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Sanjay K Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
| |
Collapse
|
16
|
Marques PL, Galac S, Mateus L, Leal RO. Bridging the gap-Rethinking the role of the adrenal gland in chronic kidney disease from the feline perspective. Domest Anim Endocrinol 2025; 93:106955. [PMID: 40412070 DOI: 10.1016/j.domaniend.2025.106955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 05/16/2025] [Accepted: 05/16/2025] [Indexed: 05/27/2025]
Abstract
Chronic kidney disease (CKD) is the most common metabolic disease in domestic cats. Unlike humans and dogs, CKD in cats seems to have a highly complex and multifactorial etiology. Despite great effort being poured into research trying to elucidate possible pathways for the pathogenesis of CKD, there is still a lack of understanding regarding its initiating and progression factors. There is also a lack of therapeutic options for these patients, with most treatment plans relying on a low-phosphate diet, dietary protein modification and medical management of complications (e.g. hypertension) as they arise. In this review, we propose the hypothalamic-pituitary-adrenal (HPA) axis plays a central role in the development, pathophysiology and progression of feline chronic kidney disease. The adrenal glands and the hormones they secrete, in particular, may act as lynchpins in chronic kidney disease, mediating virtually every aspect of the disease: from the establishment of fibrosis and kidney damage to the development of hypertension and a pro-inflammatory status. By compiling the available research regarding the influence of adrenal hormones and the HPA axis, we hope to highlight possible future areas of scientific interest regarding feline CKD as well as possible aspects in which the cat may act as a model for research in human medicine.
Collapse
Affiliation(s)
- Patricia Lunet Marques
- Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal.
| | - Sara Galac
- Utrecht University - Faculty of Veterinary Medicine, Utrecht, Netherlands.
| | - Luísa Mateus
- Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal.
| | - Rodolfo Oliveira Leal
- Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal.
| |
Collapse
|
17
|
Tang H, Li K, Shi Z, Wu J. G-Protein-Coupled Receptors in Chronic Kidney Disease Induced by Hypertension and Diabetes. Cells 2025; 14:729. [PMID: 40422232 DOI: 10.3390/cells14100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/12/2025] [Accepted: 05/12/2025] [Indexed: 05/28/2025] Open
Abstract
Hypertension and diabetes are two common causes of chronic kidney disease. Hypertension can induce renal vascular injury, glomerular damage, podocyte loss, and tubular injury, leading to tubulointerstitial fibrosis. A number of factors influence the regulation of hypertension, among which G-protein-coupled receptors (GPCRs) have been studied extensively because they are desirable targets for drug development. Compared to hypertension, the regulatory effects of GPCRs on hypertensive kidney disease (HKD) are less generalized. In this review, we discussed the GPCRs involved in hypertensive kidney disease, such as angiotensin II receptors (AT1R and AT2R), Mas receptor (MasR), Mas-related G-protein-coupled receptor member D (MrgD), relaxin family receptor 1 (RXFP1), adenosine receptors (A1, A2A, A2B, and A3), purinergic P2Y receptors, and endothelin receptors (ETA and ETB). The progression of HKD is rarely reversed but can be retarded by ameliorating the hypertensive microenvironment in the kidneys. However, simply reducing blood pressure cannot stop the progression of HKD. Diabetic nephropathy (DN) is the most common cause of end-stage renal disease (ESRD), which is a major cause of morbidity and mortality in diabetes. Many GPCRs are involved in DN. Here, we select some well-studied GPCRs that are directly associated with the pathogenesis of DN to illustrate their mechanisms. The main purpose of this review is to provide an overview of the GPCRs involved in the occurrence and progression of HKD and DN and their probable pathophysiological mechanisms, which we hope will help in developing new therapeutic strategies.
Collapse
Affiliation(s)
- Huidi Tang
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Kang Li
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Zhan Shi
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Jichao Wu
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| |
Collapse
|
18
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Mechanism of ferroptosis in heart failure: The role of the RAGE/TLR4-JNK1/2 pathway in cardiomyocyte ferroptosis and intervention strategies. Ageing Res Rev 2025; 109:102770. [PMID: 40360081 DOI: 10.1016/j.arr.2025.102770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/29/2025] [Accepted: 05/08/2025] [Indexed: 05/15/2025]
Abstract
The ferroptosis of cardiomyocytes has been recognized as the core pathological mechanism of heart failure. During the evolution of cardiovascular diseases, the accumulation of angiotensin II and advanced glycation end products can lead to the excessive activation of the RAGE/TLR4-JNK1/2 pathway, which subsequently triggers ferritinophagy, clockophagy, and enhanced p53 activity, ultimately leading to cardiomyocyte ferroptosis. It is evident that deeply unraveling the specific mechanisms in this field and comprehensively evaluating potential drugs and therapeutic strategies targeting this pathway is crucial for improving the status of cardiomyocyte ferroptosis. However, our current understanding of this pathway's specific molecular biological mechanisms in the process of cardiomyocyte ferroptosis remains limited. In light of this, this paper first comprehensively reviews the historical context of ferroptosis research, compares the similarities and differences between ferroptosis and other standard modes of cell death, elucidates the core mechanisms of ferroptosis and its close connection with heart failure, aiming to establish a basic cognitive framework for readers on ferroptosis and its role in heart failure. Subsequently, the paper delves into the pivotal role of the RAGE/TLR4-JNK1/2 pathway in cardiomyocyte ferroptosis and its intricate molecular biological regulatory network. Furthermore, it systematically integrates various therapeutic approaches aimed at inhibiting RAGE, TLR4, and JNK1/2 activity to alleviate cardiomyocyte ferroptosis, encompassing RNA interference technology, gene knockout techniques, small molecule inhibitors, natural active ingredients, as well as traditional Chinese and Western medicines, with the ultimate goal of forging new avenues and strategies for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, PR China.
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, PR China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, PR China.
| |
Collapse
|
19
|
Ashim J, Seo MJ, Ji S, Heo J, Yu W. Research approaches for exploring the hidden conversations of G protein-coupled receptor transactivation. Mol Pharmacol 2025; 107:100043. [PMID: 40449085 DOI: 10.1016/j.molpha.2025.100043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/19/2025] [Accepted: 04/25/2025] [Indexed: 06/02/2025] Open
Abstract
G protein-coupled receptor (GPCR) signaling is a crucial physiological mechanism that encompasses a wide range of signaling phenomena. Although traditional GPCR signaling involves G protein or arrestin-related activation, other modes such as biphasic activation, dimer or oligomeric activation, and transactivation have also been observed. Herein, we focus on the increasingly recognized process of GPCR-transactivation. Transactivation refers to the ability of GPCRs to activate other receptor types, especially receptor tyrosine kinases, without engaging their own specific ligands. This cross-talk between GPCRs and other receptors facilitates the integration of multiple signaling pathways, thereby regulating diverse cellular responses, which underscores its physiological significance. In this review, we provide a comprehensive overview of the role of GPCR-transactivation in physiology. We also discuss the growing interest in this field and examine the various tools available for studying transactivation. Additionally, we highlight recent advancements in emerging tools and their application to GPCR-transactivation research. Finally, we propose future research directions and consider the potential impact of new technologies in this rapidly evolving field. SIGNIFICANCE STATEMENT: G protein-coupled receptor transactivation plays a key role in integrating multiple signaling pathways by activating other proteins, like receptor tyrosine kinases, without binding their specific ligands. Here, we focus on the significance of transactivation and the various approaches used to study this phenomenon.
Collapse
Affiliation(s)
- Janbolat Ashim
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - Min Jae Seo
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - Sangho Ji
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - Joongyu Heo
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - Wookyung Yu
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea; Core Protein Resources Center, DGIST, Daegu, Republic of Korea; Center for Synapse Diversity and Specificity, DGIST, Daegu, Republic of Korea.
| |
Collapse
|
20
|
Yu Q, Tian W. The role of SERCA in vascular diseases, a potential therapeutic target. Cell Calcium 2025; 129:103039. [PMID: 40367766 DOI: 10.1016/j.ceca.2025.103039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/19/2025] [Accepted: 05/06/2025] [Indexed: 05/16/2025]
Abstract
SERCA, the sarco/endoplasmic reticulum Ca2+-ATPase, is a pivotal protein that transports calcium ions (Ca2+) from the cytoplasm into the sarcoplasmic/endoplasmic reticulum (SR/ER), thus sustaining cellular Ca2+ homeostasis. A growing body of evidence indicates that SERCA dysfunction correlates with disrupted cellular Ca2+ homeostasis and ER stress, precipitating a spectrum of chronic diseases. As a regulator of Ca2+ homeostasis, SERCA emerges as a potential therapeutic target for conditions associated with Ca2+ imbalance. This review delineates the association between SERCA and a variety of vascular diseases.
Collapse
Affiliation(s)
- Qinghua Yu
- Department of Geriatric Cardiology, The First Hospital of China Medical University, China
| | - Wen Tian
- Department of Geriatric Cardiology, The First Hospital of China Medical University, China.
| |
Collapse
|
21
|
Montuoro S, Gentile F, Giannoni A. Neuroimmune cross-talk in heart failure. Cardiovasc Res 2025; 121:550-567. [PMID: 39498795 DOI: 10.1093/cvr/cvae236] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
Heart failure (HF) is characterized by autonomic nervous system (ANS) imbalance and low-grade chronic inflammation. The bidirectional relationship between the ANS and immune system (IS) is named 'neuroimmune cross-talk' (NICT) and is based on common signaling molecules, receptors, and pathways. NICT may be altered in HF, and neuroinflammation seems to be a main driver of HF progression. In HF, heightened sympathetic nerve activity triggers inflammatory cascades that lead to cardiomyocyte death and myocardial interstitial fibrosis. Concurrently, parasympathetic withdrawal may impair the cholinergic anti-inflammatory pathway, with a less effective immune response to infections or inflammatory events. Additionally, microglial activation and inflammatory molecules contribute to autonomic imbalance by acting on central nuclei and peripheral visceral feedbacks, which in turn promote adverse cardiac remodeling, HF decompensation, and potentially life-threatening arrhythmias. Therefore, neuroinflammation has been identified as a potential target for treatment. Pharmacological antagonism of the neurohormonal system remains the cornerstone of chronic HF therapy. While some drugs used in HF management may have additional benefits due to their anti-inflammatory properties, clinical trials targeting inflammation in patients with HF have so far produced inconclusive results. Nevertheless, considering the pathophysiological relevance of NICT, its modulation seems an appealing strategy to optimize HF management. Current research is therefore investigating novel pharmacological targets for anti-inflammatory drugs, and the immunomodulatory properties of denervation approaches and bioelectronic medicine devices targeting NICT and neuroinflammation in HF. A deeper understanding of the complex relationship between the ANS and IS, as outlined in this review, could therefore facilitate the design of future studies aimed at improving outcomes by targeting NICT in patients with HF.
Collapse
Affiliation(s)
- Sabrina Montuoro
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33, 56127 Pisa, Italy
| | - Francesco Gentile
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33, 56127 Pisa, Italy
- Cardiovascular Medicine Division, Fondazione Toscana G. Monasterio, Via Moruzzi 1, 56126 Pisa, Italy
| | - Alberto Giannoni
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33, 56127 Pisa, Italy
- Cardiovascular Medicine Division, Fondazione Toscana G. Monasterio, Via Moruzzi 1, 56126 Pisa, Italy
| |
Collapse
|
22
|
Chen FY, Lee CW, Chen YJ, Lin YH, Yeh CF, Lin CC, Cheng HM. Pathophysiology and blood pressure measurements of hypertension in the elderly. J Formos Med Assoc 2025:S0929-6646(25)00145-7. [PMID: 40328594 DOI: 10.1016/j.jfma.2025.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/20/2024] [Accepted: 03/26/2025] [Indexed: 05/08/2025] Open
Abstract
Hypertension is a serious concern among the elderly, posing health risks and treatment challenges. In the first part of this review, we explore the pathophysiological mechanisms linking hypertension and aging, focusing on physiological changes such as arterial stiffening, in autonomic nervous system dysfunction, disruption of the renin-angiotensin-aldosterone system, aging-induced alterations in renal function, and the impact of salt-sensitive hypertension. The mnemonic "King/A+++/Hermès" aids in recalling the pathophysiology of aging-related hypertension. Accurate blood pressure measurements are important to determine the prognosis and treatment in the elderly; however, obtaining reliable measurement data in this population is not always easy, as changes in cardiovascular structure and hemodynamics with aging may lead to increased blood pressure variability. In the second part of this review, we evaluate the effectiveness of blood pressure monitoring in older adults, emphasizing the importance of precise measurements. We also assess the efficacy of home and ambulatory monitoring, discuss orthostatic hypotension and orthostatic hypertension, outline challenges in measuring blood pressure in individuals with atrial fibrillation, and explore the impact of aging on measurement errors. We conclude that understanding the interplay between hypertension and aging, coupled with precise blood pressure monitoring strategies tailored for older adults, is essential for effective management and to improve overall cardiovascular health in the elderly population.
Collapse
Affiliation(s)
- Fan-Yu Chen
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Wei Lee
- Institute of Public Health and Community Medicine Research Center, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan; Cardiovascular Division, Department of Internal Medicine, MacKay Memorial Hospital, MacKay Medical College, New Taipei City, Taiwan; MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Yu-Jen Chen
- Department of Cardiology, Taipei Municipal Wanfang Hospital, Taipei, Taiwan
| | - Yen-Hung Lin
- Primary Aldosteronism Center at National Taiwan University Hospital, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Fan Yeh
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Ching Lin
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Hao-Min Cheng
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medicine, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan; Center for Evidence-Based Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; PhD Program of Interdisciplinary Medicine (PIM), National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
23
|
Alfarano M, Marchionni G, Costantino J, Ballatore F, Verardo R, Miraldi F, Ciciarello FL, Petramala L, Letizia C, Frustaci A, Chimenti C. Aldosterone-Related Cardiovascular Disease and Benefits of Mineralocorticoid Receptor Antagonists in Clinical Practice. JACC. ADVANCES 2025; 4:101762. [PMID: 40319836 DOI: 10.1016/j.jacadv.2025.101762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/24/2025] [Accepted: 03/10/2025] [Indexed: 05/07/2025]
Abstract
High levels of aldosterone are associated with vascular and cardiac remodeling, myocardial fibrosis, and endothelial dysfunction with consequent increased risk of cardiovascular events and cardiovascular mortality. Indeed, mineralcorticoid receptor antagonists (MRAs) are recommended in the treatment of arterial hypertension, heart failure, alone or associated with chronic kidney disease. Nevertheless, molecular pathways underlying aldosterone-induced cardiac remodeling are poorly investigated. High levels of aldosterone induce reactive oxygen species with consequent oxidative stress and mitochondrial dysfunction. Moreover, aldosterone induces myocardial hypertrophy through increase of sarcomere mass mediated by pro-hypertrophic effect mediated by a G protein-coupled receptor kinase 5 cytosolic signaling and retention of ions and water regulated by aquaporins. Aim of this review is to report the data from the literature regarding excessive aldosterone signaling in mediating cardiovascular disease, also highlighting the morphostructural and molecular pathways correlated to myocardial damage and the role of MRAs in clinical practice.
Collapse
Affiliation(s)
- Maria Alfarano
- Department of Clinical, Internal, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Giulia Marchionni
- Department of Clinical, Internal, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy; Policlinico San Matteo Pavia IRCCS Foundation, University of Pavia, Pavia, Italy
| | - Jacopo Costantino
- Department of Clinical, Internal, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Federico Ballatore
- Department of Clinical, Internal, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Romina Verardo
- Cellular and Molecular Cardiology Lab, IRCCS Lazzaro Spallanzani, Rome, Italy
| | - Fabio Miraldi
- Department of Clinical, Internal, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Luigi Ciciarello
- Department of Clinical, Internal, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Luigi Petramala
- Department of Clinical, Internal, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Claudio Letizia
- Department of Clinical, Internal, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Andrea Frustaci
- Cellular and Molecular Cardiology Lab, IRCCS Lazzaro Spallanzani, Rome, Italy
| | - Cristina Chimenti
- Department of Clinical, Internal, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
24
|
Zhou Y, Li MY, Li CY, Sheng YJ, Ye QT, Chen RY, Zhou KY, Zhang Y, Shen LF, Shou D. Effective mechanism of polysaccharides from Erxian herbal pair in promoting bone repair in traumatic osteomyelitis by activating osteoblast GPR41 and inhibiting the MEK/ERK/MAPK signalling axis. Int J Biol Macromol 2025; 307:141858. [PMID: 40058443 DOI: 10.1016/j.ijbiomac.2025.141858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/14/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Polysaccharides are the key components of natural products; however, their effects on bone repair haven't been fully evaluated. This study aimed to assess the efficacy and mechanism of polysaccharides in promoting bone repair. The Erxian herb pair polysaccharide (EHP) was isolated and purified using water extraction (1:20 (w/v); 100 ± 2 °C; 5 h) and alcohol precipitation (80 ± 2 %). A traumatic osteomyelitis (TO) rat model was established using lipopolysaccharide (LPS). The gut microbiota was analysed through intestinal flora and metagenomic sequencing. The results revealed that the yields of crude polysaccharide and purified polysaccharide EHP were 3.73 ± 0.34 % and 0.48 ± 0.06 %, respectively. The total sugar content of EHP was 83.53 ± 0.16 %. The EHP, with a molecular weight of 31.964 kDa, was primarily composed of mannose, rhamnose, glucose, galactose, and arabinose. In vivo experiments demonstrated that EHP intervention (300 mg/kg/day) significantly augmented bone density and enhanced the activity of alkaline phosphatase (ALP) (P < 0.01). EHP upregulated the abundance of probiotics and increased the production of butyric acid (P < 0.05). In vitro experiments revealed that butyric acid (500-1000 μM) enhanced osteoblast activity and inhibited the expression of mitogen-activated protein kinase kinase (MEK) and extracellular signal-regulated kinase (ERK) (P < 0.01). These findings indicate that polysaccharides may represent a promising therapeutic agent for bone-healing.
Collapse
Affiliation(s)
- Yun Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Meng Ying Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Cheng Yan Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Yun Jie Sheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Qi Tao Ye
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Ru Yi Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Kang Yu Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Yang Zhang
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, PR China.
| | - Li Feng Shen
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Affiliated with the Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China.
| | - Dan Shou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| |
Collapse
|
25
|
Masvosva W, Voutilainen T, Lehtonen M, Haikonen R, Auriola S, Keski-Nisula L, Rysä J, Kärkkäinen O. Alterations in the Plasma Metabolome Associated With Maternal Smoking During the First Trimester and Foetal Growth. Basic Clin Pharmacol Toxicol 2025; 136:e70037. [PMID: 40223348 DOI: 10.1111/bcpt.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/15/2025]
Abstract
Tobacco smoking during pregnancy has been associated with an increased risk of adverse outcomes like low birth weight. This study determined changes in the circulating metabolome linked to maternal smoking in the first trimester and correlated these changes to the growth of the foetus. The circulating metabolome was examined from first trimester plasma samples by non-targeted (global) liquid chromatography mass spectrometry-based metabolite profiling of 227 pregnant women (99 smokers and 117 non-smokers) from the Kuopio Birth Cohort Study. Tobacco smoking was self-reported through a questionnaire and verified with cotinine measurements from plasma samples. In summary, 64 significant differences were observed between the groups after correction for multiple testing e.g. in metabolites indicating endocrine disruption (e.g. dehydroepiandrosterone sulphate [DHEA-S], VIP = 2.70, d = 0.68, p < 0.0001), metabolites associated with oxidative stress (e.g. bilirubin, VIP = 2.00, d = 0.50, p < 0.0001) and lipid metabolism (e.g. LysoPC 16:1, VIP = 2.07, d = 0.51, p < 0.0001). Some of these metabolites, e.g. DHEA-S and bilirubin, correlated with low birth weight, and some, e.g. LysoPC 16:1, correlated with small head circumference at birth. In conclusion, maternal smoking during the first trimester of pregnancy was associated with an altered metabolite profile linked to endocrine disruption and increased oxidative stress.
Collapse
Affiliation(s)
| | | | - Marko Lehtonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Retu Haikonen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Leea Keski-Nisula
- Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Obstetrics and Gynecology, Kuopio University Hospital, Kuopio, Finland
| | - Jaana Rysä
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Olli Kärkkäinen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
26
|
Liu W, Wang D, Wang L, Hu S, Jiang Y, Wang Y, Cai X, Chen J. Receptor dimers and biased ligands: Novel strategies for targeting G protein-coupled receptors. Pharmacol Ther 2025; 269:108829. [PMID: 40023322 DOI: 10.1016/j.pharmthera.2025.108829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/16/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
G protein-coupled receptors (GPCRs) are the largest superfamily of membrane receptors. They regulate physiological and pathological processes such as metabolic homeostasis, cell proliferation and differentiation, and the immune response, and are one of the most important classes of drug targets, being targeted by 30-40 % of marketed drugs. A growing number of studies continue to reveal the complexity of GPCRs, especially their ability to interact with each other to form higher-order structures such as homodimers and heterodimers, which have different functions than monomers, and are involved in disease development and progression. The existence of GPCR homodimers and heterodimers is opening up new directions in drug discovery and development to harness their therapeutic potential. Particularly striking is the ability of GPCR dimers to trigger unique biased signalling pathways, which exquisitely balance the relationship between therapeutic effects and side effects. By suppressing adverse reactions and enhancing beneficial drug effects, GPCR dimers provide an unprecedented opportunity to minimise side effects, maximise therapeutic efficacy and enhance safety. This review aims to highlight the latest research advances in GPCR dimerization and GPCR-biased signalling, focusing on the development of dimer-targeting and biased ligands as innovative drugs that will likely provide new strategies for treating GPCR-related diseases as well as a better understanding of drug design for compounds that target GPCRs. GPCRs will play an increasingly important role in precision medicine and personalised therapy, leading us towards a safer, more efficient and smarter pharmaceutical future.
Collapse
Affiliation(s)
- Wenkai Liu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, 261042, PR China
| | - Dexiu Wang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, 261042, PR China
| | - Luoqi Wang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, 261042, PR China
| | - Shujuan Hu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, 261042, PR China
| | - Yunlu Jiang
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, PR China
| | - Yixiang Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong 261042, PR China
| | - Xin Cai
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, 261042, PR China.
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, PR China; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
27
|
Tiwari RK, Rawat SG, Rai S, Kumar A. Stress regulatory hormones and cancer: the contribution of epinephrine and cancer therapeutic value of beta blockers. Endocrine 2025; 88:359-386. [PMID: 39869294 DOI: 10.1007/s12020-025-04161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/08/2025] [Indexed: 01/28/2025]
Abstract
The word "cancer" evokes myriad emotions, ranging from fear and despair to hope and determination. Cancer is aptly defined as a complex and multifaceted group of diseases that has unapologetically led to the loss of countless lives and affected innumerable families across the globe. The battle with cancer is not only a physical battle, but also an emotional, as well as a psychological skirmish for patients and for their loved ones. Cancer has been a part of our history, stories, and lives for centuries and has challenged the ingenuity of health and medical science, and the resilience of the human spirit. From the early days of surgery and radiation therapy to cutting-edge developments in chemotherapeutic agents, immunotherapy, and targeted treatments, the medical field continues to make significant headway in the fight against cancer. However, even after all these advancements, cancer is still among the leading cause of death globally. This urges us to understand the central hallmarks of neoplastic cells to identify novel molecular targets for the development of promising therapeutic approaches. Growing research suggests that stress mediators, including epinephrine, play a critical role in the development and progression of cancer by inducing neoplastic features through activating adrenergic receptors, particularly β-adrenoreceptors. Further, our experimental data has also shown that epinephrine mediates the growth of T-cell lymphoma by inducing proliferation, glycolysis, and apoptosis evasion via altering the expression levels of key regulators of these vital cellular processes. The beauty of receptor-based therapy lies in its precision and higher therapeutic value. Interestingly, the enhanced expression of β-adrenergic receptors (ADRBs), namely ADRB2 (β2-adrenoreceptor) and ADRB3 (β3-adrenoreceptor) has been noted in many cancers, such as breast, colon, gastric, pancreatic, and prostate and has been reported to play a pivotal role in facilitating cancer growth mainly by promoting proliferation, evasion of apoptosis, angiogenesis, invasion and metastasis, and chemoresistance. The present review article is an attempt to summarize the available findings which indicate a distinct relationship between stress hormones and cancer, with a special emphasis on epinephrine, considered as a key stress regulatory molecule. This article also discusses the possibility of using beta-blockers for cancer therapy.
Collapse
Affiliation(s)
- Rajan Kumar Tiwari
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- School of Medicine and Health Sciences, The George Washington University, Washington DC, USA
| | - Shiv Govind Rawat
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- MD Anderson Cancer Center, The University of Texas, Texas, USA
| | - Siddharth Rai
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
28
|
Yan J, Meng Q, Hao F, Xu M. cFos-mediated β-Arrestin1 in the RVLM alleviates sympathetic hyperactivity induced by ovariectomy. Mol Cell Endocrinol 2025; 601:112520. [PMID: 40096880 DOI: 10.1016/j.mce.2025.112520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Sympathetic hyperactivity is a key feature of cardiovascular dysfunction in postmenopausal women and is closely linked to the onset, progression, and outcomes of cardiovascular events. However, the mechanisms underlying sympathetic nerve hyperactivity due to menopause remain unclear. β-arrestin is a versatile class of intracellular proteins that were initially discovered for their ability to disrupt the G protein-coupled receptors (GPCRs) signaling by binding to activated receptors. A notable reduction in the expression of β-arrestin1 in the rostral ventrolateral medulla (RVLM) associated with increased sympathetic activity and elevated blood pressure (BP) in spontaneously hypertensive rats. It has been reported that the cellular oncogene fos (cFos), as a transcription factor, plays a crucial role in BP regulation. This study aimed to investigate whether β-arrestin1, regulated by cFos in the RVLM, contributes to sympathetic hyperactivity induced by menopause. Bilateral ovariectomy (OVX) was performed to establish a postmenopausal rat model. We found that the expression of β-arrestin1 in the RVLM of OVX rats was reduced, whereas estrogen supplementation increased the expression of β-arrestin1. Furthermore, overexpression of β-arrestin1 in the RVLM of OVX rats attenuated the sympathetic hyperactivity. Conversely, reducing β-arrestin1 expression in the RVLM compromised the cardioprotective effects of estrogen in OVX rats. Additionally, inhibiting the expression of the transcription factor cFos in the RVLM of OVX rats diminished the estrogen-induced increase in the expression of β-arrestin1. These findings suggest that estrogen enhances the expression of β-arrestin1 mediated by cFos in the RVLM of OVX rats, thereby alleviating sympathetic nerve hyperactivity and hypertension.
Collapse
Affiliation(s)
- Jiuqiong Yan
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, 200433, PR China
| | - Qi Meng
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, 200433, PR China; Marine Corps Hospital, PLA, 521011, PR China
| | - Fan Hao
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, 200433, PR China; Reproductive Medical Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 200092, PR China
| | - Mingjuan Xu
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, 200433, PR China.
| |
Collapse
|
29
|
Herrador L, Gayán-Ordás J, Llatjós R, Claver-Garrido E, González-Costello J. Case report on heart transplantation in endomyocardial fibrosis: 'do not let your guard down'-suspicion of disease recurrence after heart transplantation. Eur Heart J Case Rep 2025; 9:ytaf149. [PMID: 40322492 PMCID: PMC12046388 DOI: 10.1093/ehjcr/ytaf149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/28/2024] [Accepted: 03/19/2025] [Indexed: 05/08/2025]
Abstract
Background Endomyocardial fibrosis (EMF) is a challenging disease that leads to severe heart failure (HF) due to progressive fibrosis. Diet, parasitic infections, autoimmune disorders, and genetic predisposition have been advocated in EMF pathogenesis, and treatment options for EMF are limited with scarce evidence supporting heart transplantation (HTx). Case summary A 38-year-old man was diagnosed with EMF with biventricular involvement. The diagnostic work-up ruled out eosinophilia, infections, and autoimmune conditions. The patient rapidly deteriorated, leading to cardiogenic shock with multiorgan failure, and an emergency HTx was performed. Three months later, the graft developed biventricular hypertrophy with atrial fibrosis and the endomyocardial biopsy (EMB) showed extensive inflammation and myocardial damage, compatible with Grade 2R (G3a) cellular rejection. After steroid pulses, the follow-up EMB reveals subendocardial fibrosis and microcalcifications, suggesting the possibility of an EMF recurrence. Nevertheless, the patient had a good clinical outcome, remaining asymptomatic with good graft function 2 years after the transplant. Discussion This is the first reported case of suspected EMF recurrence following HTx. Given the unknown pathogenesis of EMF, close monitoring is crucial, though HTx appears to be a viable and successful treatment option for these patients.
Collapse
Affiliation(s)
- Lorena Herrador
- Department of Cardiology, Hospital Universitari de Bellvitge, C/Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
- Bioheart-Cardiovascular Diseases Group, Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, C/Feixa Llarga s/n, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Jara Gayán-Ordás
- Department of Cardiology, Hospital Universitari Arnau de Vilanova, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
- Biomedical Research Institute of Lleida (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Roger Llatjós
- Department of Pathology, Hospital Universitari de Bellvitge -IDIBELL, C/Feixa Llarga s/n, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Eduard Claver-Garrido
- Department of Cardiology, Hospital Universitari de Bellvitge, C/Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
- Bioheart-Cardiovascular Diseases Group, Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, C/Feixa Llarga s/n, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - José González-Costello
- Department of Cardiology, Hospital Universitari de Bellvitge, C/Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
- Bioheart-Cardiovascular Diseases Group, Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, C/Feixa Llarga s/n, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Ciber Cardiovascular (CIBERCV), Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
30
|
Panwar A, Malik SO, Adib M, Lopaschuk GD. Cardiac energy metabolism in diabetes: emerging therapeutic targets and clinical implications. Am J Physiol Heart Circ Physiol 2025; 328:H1089-H1112. [PMID: 40192025 DOI: 10.1152/ajpheart.00615.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/15/2024] [Accepted: 04/01/2025] [Indexed: 04/25/2025]
Abstract
Patients with diabetes are at an increased risk for developing diabetic cardiomyopathy and other cardiovascular complications. Alterations in cardiac energy metabolism in patients with diabetes, including an increase in mitochondrial fatty acid oxidation and a decrease in glucose oxidation, are important contributing factors to this increase in cardiovascular disease. A switch from glucose oxidation to fatty acid oxidation not only decreases cardiac efficiency due to increased oxygen consumption but it can also increase reactive oxygen species production, increase lipotoxicity, and redirect glucose into other metabolic pathways that, combined, can lead to heart dysfunction. Currently, there is a lack of therapeutics available to treat diabetes-induced heart failure that specifically target cardiac energy metabolism. However, it is becoming apparent that part of the benefit of existing agents such as GLP-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors may be related to their effects on cardiac energy metabolism. In addition, direct approaches aimed at inhibiting cardiac fatty acid oxidation or increasing glucose oxidation hold future promise as potential therapeutic approaches to treat diabetes-induced cardiovascular disease.
Collapse
Affiliation(s)
- Archee Panwar
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Sufyan O Malik
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Muhtasim Adib
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
31
|
Tsantoulas A, Roukas D, Mastronikoli S, Tsiambas E, Tsouvelas G, Kafkas N, Fotiades P, Papouliakos S, Agrogiannis G, Lazaris AC, Kavantzas N. Connexin-43 Protein Expression Pattern Analysis in Myocardial Infarction Tissues. In Vivo 2025; 39:1370-1377. [PMID: 40295004 PMCID: PMC12042007 DOI: 10.21873/invivo.13940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND/AIM Ischemic heart disease is a leading cause of death worldwide in comparison to malignant neoplasia. Myocardial infarction (MI) is the result of severe ischemia due to a low consumption of oxygen in the myocardium. The main pathophysiological reason is a progressive obstructive atherosclerotic endothelial lesion that causes reduction in coronary blood flow and increases the corresponding arterial stenosis. Our research aim was to investigate the role of altered expression connexin-43 (gene locus: 6q22.31) protein in MI tissue substrates with different clinico-pathological characteristics. MATERIALS AND METHODS A set of fifty (n=50) MI archival tissue sections derived from a forensic pathology file were selected and micro-sectioned. Immunohistochemistry and digital image analysis assays were implemented for detecting and measuring the levels of connexin-43, respectively. RESULTS Low expression of Connexin-43 protein was detected in 16/50 (32%) cases, biphasic expression pattern (low/medium) was identified in 10/50 (20%), whereas moderate and high levels of protein expression were observed in the rest of them (24/50-48%). Connexin-43 overall expression was significantly correlated with the timing of the MI onset (recent or past) (p=0.001). CONCLUSION Connexin-43 is a critical gap junction intermediate protein in MI pathology diagnosis and research. Different Connexin-43 expression levels, including single phase or biphasic patterns, should be a reliable biomarker for determining the timing of the MI lesions inside the corresponding tissue sections. Furthermore, implementation of sophisticated, accurate computerized techniques, such as digital image analysis provide very detailed, objective results regarding protein expression as modern precise (evidence-based) medicine requires.
Collapse
Affiliation(s)
| | - Dimitrios Roukas
- Department of Psychiatry, 417 Veterans Army (NIMTS) Hospital, Athens, Greece
| | | | - Evangelos Tsiambas
- Department of Cytology, 417 Veterans Army (NIMTS) Hospital, Athens, Greece
- Department of Pathology, Medical School, University of Athens, Athens, Greece
| | - George Tsouvelas
- Department of Nursing, University of West Attica, Athens, Greece
| | - Nikolaos Kafkas
- Department of Cardiology, ''KAT'' General Hospital, Athens, Greece
| | | | | | - George Agrogiannis
- Department of Pathology, Medical School, University of Athens, Athens, Greece
| | - Andreas C Lazaris
- Department of Pathology, Medical School, University of Athens, Athens, Greece
| | - Nikolaos Kavantzas
- Department of Pathology, Medical School, University of Athens, Athens, Greece
| |
Collapse
|
32
|
He Y, Yang Z, Guo D, Luo C, Liu Q, Xian L, Yang F, Huang C, Wei Q. The multifaceted nature of SUMOylation in heart disease and its therapeutic potential. Mol Cell Biochem 2025:10.1007/s11010-025-05286-z. [PMID: 40287894 DOI: 10.1007/s11010-025-05286-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 04/06/2025] [Indexed: 04/29/2025]
Abstract
SUMOylation (SUMO), a crucial post-translational modification, is implicated in the regulation of diverse biological processes and plays a pivotal role in both the maintenance of cardiac function and progression and treatment of heart disease. Here, we reviewed the mechanisms by which SUMO-related various aspects of cardiac function and disease, including cardiac hypertrophy, heart failure, ischemia-reperfusion injury, and myocardial infarction. Furthermore, we highlight its potential as a therapeutic target.
Collapse
Affiliation(s)
- Ying He
- The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhijie Yang
- The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Dan Guo
- Medical College, Guangxi University, Nanning, Guangxi, China
| | - Cheng Luo
- The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Qiaoqiao Liu
- The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Lei Xian
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fan Yang
- The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China.
- Liuzhou Key Laboratory of Primary Cardiomyopathy in Prevention and Treatment, Liuzhou, Guangxi, China.
| | - Chusheng Huang
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| | - Qingjun Wei
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
33
|
Matthees ESF, Kletzin LE, Löbbert A, Hoffmann JS, Große C, Gossert AD, Hoffmann C. Isoprenaline shows unique kinase dependencies in stimulating β 1AR-β-arrestin2 interaction compared to endogenous catecholamines. Mol Pharmacol 2025; 107:100041. [PMID: 40354729 DOI: 10.1016/j.molpha.2025.100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/21/2025] [Accepted: 04/12/2025] [Indexed: 05/14/2025] Open
Abstract
The β1-adrenergic receptor (β1AR) is an essential G protein-coupled receptor in the heart. Its dysregulation represents a hallmark of cardiac diseases. Studies have identified a unique mode of β-arrestin interaction, where β1AR briefly engages with β-arrestins before catalytically accumulating them at the plasma membrane (PM) independently of the receptor. Although receptor phosphorylation crucially impacts β-arrestins, the contributions of specific kinases vital in β1AR regulation remain unclear. Here, we employed G protein-coupled receptor kinase (GRK) GRK2/3/5/6 knockout cells and the protein kinase A inhibitor H89 in bioluminescence resonance energy transfer-based assays to systematically assess GRKs and protein kinase A in direct β-arrestin2 recruitment to β1AR and β-arrestin2 translocation to the PM. Furthermore, we compared the effects of the synthetic agonist isoprenaline with the endogenous catecholamines: epinephrine and norepinephrine. We observed pronounced differences in their kinase dependencies to mediate β-arrestin2 translocation to the PM. Upon isoprenaline stimulation, GRKs strongly influenced β-arrestin2 translocation to the PM but had no effect on direct β-arrestin2 recruitment to β1AR. Additionally, in a GRK2-specific context, protein kinase A inhibition primarily reduced the efficacy of isoprenaline for β-arrestin2 translocation, whereas for GRK5, it decreased potency. Strikingly, these kinase-dependent effects were absent for epinephrine and norepinephrine, suggesting distinct underlying molecular mechanisms for β-arrestin2 accumulation at the PM. This observation could be explained by agonist-specific differences in receptor conformational rearrangements, as suggested by distinct changes in the NMR spectra of β1AR. Our findings highlight that synthetic and endogenous ligands induce distinct molecular mechanisms in β1AR regulation, emphasizing the need to consider these differences when translating molecular insights into physiological contexts. SIGNIFICANCE STATEMENT: Our findings reveal mechanistic differences in β1-adrenergic receptor-mediated catalytic activation of β-arrestin2 by synthetic and endogenous agonists, driven by distinct G protein-coupled receptor kinases and protein kinase A dependencies. Although β-arrestin2 translocation to the PM occurred to similar extents with isoprenaline, epinephrine, and norepinephrine, kinase involvement was crucial only upon Iso stimulation of β1-adrenergic receptor. By elucidating these ligand-specific pathways, this study advances our understanding of β1-adrenergic receptor signaling and regulation while additionally highlighting the importance of considering these differences when translating molecular insights into pathophysiological contexts.
Collapse
Affiliation(s)
- Edda S F Matthees
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, Jena, Germany.
| | - Luca E Kletzin
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, Jena, Germany
| | - Arnelle Löbbert
- Department of Biology, Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| | - Jana S Hoffmann
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, Jena, Germany
| | - Carolin Große
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, Jena, Germany
| | - Alvar D Gossert
- Department of Biology, Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| | - Carsten Hoffmann
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, Jena, Germany.
| |
Collapse
|
34
|
John HT, Thomas TC, Chukwuebuka EC, Ali AB, Anass R, Tefera YY, Babu B, Negrut N, Ferician A, Marian P. The Microbiota-Human Health Axis. Microorganisms 2025; 13:948. [PMID: 40284784 PMCID: PMC12029893 DOI: 10.3390/microorganisms13040948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
Trillions of microorganisms play a pivotal role in maintaining health and preventing disease in humans. Their presence influences daily life, habits, energy levels, and pathologies. The present narrative review synthesized recent studies of microbial diversity across organ systems. The composition of the microbiota regulates the intestinal barrier, modulates the immune response, influences metabolism, and produces essential compounds such as short-chain fatty acids and neurotransmitters. Dysbiosis is associated with numerous pathologies, including metabolic, autoimmune, neurodegenerative, and cardiovascular diseases. The microbiota is key to maintaining physiological balance and reducing disease risk. Therapeutic interventions, such as probiotics, prebiotics, postbiotics, and microbiome transplantation, offer promising perspectives in restoring microbial homeostasis and preventing chronic diseases.
Collapse
Affiliation(s)
- Harrie Toms John
- Department of Intensive Care, Epsom and St. Helier University Hospitals NHS Trust, Wrythe Ln, Sutton SM5 1AA, UK
| | - Treesa Clare Thomas
- Faculty of Medicine and Pharmacy, University of Oradea, Piaţa 1 Decembrie 10, 410068 Oradea, Romania; (T.C.T.); (E.C.C.); (A.B.A.); (R.A.)
| | - Ezenwa Collins Chukwuebuka
- Faculty of Medicine and Pharmacy, University of Oradea, Piaţa 1 Decembrie 10, 410068 Oradea, Romania; (T.C.T.); (E.C.C.); (A.B.A.); (R.A.)
| | - Ali Bacar Ali
- Faculty of Medicine and Pharmacy, University of Oradea, Piaţa 1 Decembrie 10, 410068 Oradea, Romania; (T.C.T.); (E.C.C.); (A.B.A.); (R.A.)
| | - Reggani Anass
- Faculty of Medicine and Pharmacy, University of Oradea, Piaţa 1 Decembrie 10, 410068 Oradea, Romania; (T.C.T.); (E.C.C.); (A.B.A.); (R.A.)
| | | | - Bency Babu
- Department of General Internal Medicine, Northampton General Hospital, NHS Trust, Northampton NN1 5BD, UK;
| | - Nicoleta Negrut
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Anca Ferician
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.F.); (P.M.)
| | - Paula Marian
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.F.); (P.M.)
| |
Collapse
|
35
|
Schulz MC, Wolff N, Kopf M, Gekle M. Acidosis-induced p38-kinase activation triggers an IL-6-mediated crosstalk of renal proximal tubule cells with fibroblasts leading to their inflammatory response. Cell Commun Signal 2025; 23:180. [PMID: 40217316 PMCID: PMC11987431 DOI: 10.1186/s12964-025-02180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Local interstitial acidosis in chronic kidney disease (CKD) induces inflammatory responses and dedifferentiation of proximal tubule cells (PTCs), disrupting cellular crosstalk through cytokine and COX-2 metabolite secretion. This promotes a switch to an inflammatory fibroblast phenotype, further exacerbating inflammation and PTC dedifferentiation. p38-signaling and downstream transcription factors, including P-CREB and c-fos, contribute to these responses. This study investigates the impact of acidosis on inflammatory responses in PTCs and fibroblasts, focusing on cellular crosstalk and the role of p38-signaling. METHODS HK-2 (human PTCs) and CCD-1092Sk (human fibroblasts) were exposed to acidic or control media in mono- and coculture for 30 min, 3 h, or 48 h. Protein expression of IL-6, phosphorylated (P-) and total CREB, P- and total SRF, c-fos, and P- and total p38 was analyzed by western blot. IL-6 secretion was measured using ELISA. The impact of p38 and IL-6 receptor activity was assessed by pharmacological intervention. RESULTS In coculture, acidosis initially caused a transient decrease in IL-6 secretion but significantly increased IL-6 levels after 48 h. Acidosis induced intracellular IL-6 expression in HK-2 cells within 3 h independent of culture conditions, with sustained IL-6 protein increase after 48 h only in coculture. Acidosis also enhanced P-CREB and c-fos expression in coculture during the first 3 h. Regardless of culture conditions, acidosis increased IL-6, c-fos, and P-SRF expression in CCDSK cells after 48 h. P-CREB and COX-2 expression were elevated in CCDSK in coculture. Acidosis-mediated effects on IL-6, P-CREB, and P-SRF expression were p38-dependent in both cell lines. Finally, we assessed the pH-dependency of IL-6 action and found that IL-6 addition increased COX-2 expression via the IL-6 receptor in acidic but not control media. Thus, acidosis enhances IL-6 secretion and potentiates its receptor-mediated biological effects. CONCLUSION This study identifies IL-6 as a key mediator of tubule-fibroblast crosstalk in an acidic milieu, promoting inflammatory processes. Acidosis induces IL-6 expression, secretion, and biological effects, with p38 kinase as a crucial mediator. If validated in vivo, these findings could enhance understanding of CKD and support early interventions.
Collapse
Affiliation(s)
- Marie-Christin Schulz
- Julius-Bernstein-Institut für Physiologie, Universität Halle- Wittenberg, Magdeburger Straße 6, 06112, Halle (Saale), Germany.
| | - Nathalie Wolff
- Julius-Bernstein-Institut für Physiologie, Universität Halle- Wittenberg, Magdeburger Straße 6, 06112, Halle (Saale), Germany
| | - Michael Kopf
- Julius-Bernstein-Institut für Physiologie, Universität Halle- Wittenberg, Magdeburger Straße 6, 06112, Halle (Saale), Germany
| | - Micheal Gekle
- Julius-Bernstein-Institut für Physiologie, Universität Halle- Wittenberg, Magdeburger Straße 6, 06112, Halle (Saale), Germany
| |
Collapse
|
36
|
Liu R, Jia L, Yu L, Lai D, Li Q, Zhang B, Guo E, Xu K, Luo Q. Interaction between post-tumor inflammation and vascular smooth muscle cell dysfunction in sepsis-induced cardiomyopathy. Front Immunol 2025; 16:1560717. [PMID: 40276499 PMCID: PMC12018406 DOI: 10.3389/fimmu.2025.1560717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/28/2025] [Indexed: 04/26/2025] Open
Abstract
Background Sepsis-induced cardiomyopathy (SIC) presents a critical complication in cancer patients, contributing notably to heart failure and elevated mortality rates. While its clinical relevance is well-documented, the intricate molecular mechanisms that link sepsis, tumor-driven inflammation, and cardiac dysfunction remain inadequately explored. This study aims to elucidate the interaction between post-tumor inflammation, intratumor heterogeneity, and the dysfunction of VSMC in SIC, as well as to evaluate the therapeutic potential of exercise training and specific pharmacological interventions. Methods Transcriptomic data from NCBI and GEO databases were analyzed to identify differentially expressed genes (DEGs) associated with SIC. Weighted gene co-expression network analysis (WGCNA), gene ontology (GO), and KEGG pathway enrichment analyses were utilized to elucidate the biological significance of these genes. Molecular docking and dynamics simulations were used to investigate drug-target interactions, and immune infiltration and gene mutation analyses were carried out by means of platforms like TIMER 2.0 and DepMap to comprehend the influence of DVL1 on immune responsiveness. Results Through the utilization of the datasets, we discovered the core gene DVL1 that exhibited remarkable up-regulated expression both in SIC and in diverse kinds of cancers, which were associated with poor prognosis and inflammatory responses. Molecular docking revealed that Digoxin could bind to DVL1 and reduce oxidative stress in SIC. The DVL1 gene module related to SIC was identified by means of WGCNA, and the immune infiltration analysis demonstrated the distinctive immune cell patterns associated with DVL1 expression and the impact of DVL1 on immunotherapeutic resistance. Conclusions DVL1 is a core regulator of SIC and other cancers and, therefore, can serve as a therapeutic target. The present study suggests that targeted pharmacological therapies to enhance response to exercise regimens may be a novel therapeutic tool to reduce the inflammatory response during sepsis, particularly in cancer patients. The identified drugs, Digoxin, require further in vivo and clinical studies to confirm their effects on SIC and their potential efforts to improve outcomes in immunotherapy-resistant cancer patients.
Collapse
Affiliation(s)
- Rui Liu
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Lina Jia
- Hebei Medical University, Shijiazhuang, China
| | - Lin Yu
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Detian Lai
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Qingzhu Li
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Bingyu Zhang
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Enwei Guo
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Kailiang Xu
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Qiancheng Luo
- Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| |
Collapse
|
37
|
Sharma S, Tiwari N, Tanwar SS. The current findings on the gut-liver axis and the molecular basis of NAFLD/NASH associated with gut microbiome dysbiosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04069-z. [PMID: 40202676 DOI: 10.1007/s00210-025-04069-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/17/2025] [Indexed: 04/10/2025]
Abstract
Recent research has highlighted the complex relationship between gut microbiota, metabolic pathways, and nonalcoholic fatty liver disease (NAFLD) progression. Gut dysbiosis, commonly observed in NAFLD patients, impairs intestinal permeability, leading to the translocation of bacterial products like lipopolysaccharides, short-chain fatty acids, and ethanol to the liver. These microbiome-associated mechanisms contribute to intestinal and hepatic inflammation, potentially advancing NAFLD to NASH. Dietary habits, particularly those rich in saturated fats and fructose, can modify the microbiome composition, leading to dysbiosis and fatty liver development. Metabolomic approaches have identified unique profiles in NASH patients, with specific metabolites like ethanol linked to disease progression. While bariatric surgery has shown promise in preventing NAFLD progression, the role of gut microbiome and metabolites in this improvement remains to be proven. Understanding these microbiome-related pathways may provide new diagnostic and therapeutic targets for NAFLD and NASH. A comprehensive review of current literature was conducted using multiple medical research databases, including PubMed, Scopus, Web of Science, Embase, Cochrane Library, ClinicalTrials.gov, ScienceDirect, Medline, ProQuest, and Google Scholar. The review focused on studies that examine the relationship between gut microbiota composition, metabolic pathways, and NAFLD progression. Key areas of interest included microbial dysbiosis, endotoxin production, and the influence of diet on gut microbiota. The analysis revealed that gut dysbiosis contributes to NAFLD through several mechanisms, diet significantly influences gut microbiota composition, which in turn affects liver function through the gut-liver axis. High-fat diets can lead to dysbiosis, altering microbial metabolic activities and promoting liver inflammation. Specifically, gut microbiota-mediated generation of saturated fatty acids, such as palmitic acid, can activate liver macrophages and increase TNF-α expression, contributing to NASH development. Different dietary components, including cholesterol, fiber, fat, and carbohydrates, can modulate the gut microbiome and influence NAFLD progression. This gut-liver axis plays a crucial role in maintaining immune homeostasis, with the liver responding to gut-derived bacteria by activating innate and adaptive immune responses. Microbial metabolites, such as bile acids, tryptophan catabolites, and branched-chain amino acids, regulate adipose tissue and intestinal homeostasis, contributing to NASH pathogenesis. Additionally, the microbiome of NASH patients shows an elevated capacity for alcohol production, suggesting similarities between alcoholic steatohepatitis and NASH. These findings indicate that targeting the gut microbiota may be a promising approach for NASH treatment and prevention. Recent research highlights the potential of targeting gut microbiota for managing nonalcoholic fatty liver disease (NAFLD). The gut-liver axis plays a crucial role in NAFLD pathophysiology, with dysbiosis contributing to disease progression. Various therapeutic approaches aimed at modulating gut microbiota have shown promise, including probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and dietary interventions. Probiotics have demonstrated efficacy in human randomized controlled trials, while other interventions require further investigation in clinical settings. These microbiota-targeted therapies may improve NAFLD outcomes through multiple mechanisms, such as reducing inflammation and enhancing metabolic function. Although lifestyle modifications remain the primary recommendation for NAFLD management, microbiota-focused interventions offer a promising alternative for patients struggling to achieve weight loss targets.
Collapse
Affiliation(s)
- Seema Sharma
- Department of Pharmacy, Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore, M.P, India
| | - Nishant Tiwari
- Acropolis Institute of Pharmaceutical Education and Research, Indore, M.P, India
| | - Sampat Singh Tanwar
- Department of Pharmacy, Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore, M.P, India.
| |
Collapse
|
38
|
Michalak KP, Michalak AZ. Understanding chronic inflammation: couplings between cytokines, ROS, NO, Ca i 2+, HIF-1α, Nrf2 and autophagy. Front Immunol 2025; 16:1558263. [PMID: 40264757 PMCID: PMC12012389 DOI: 10.3389/fimmu.2025.1558263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/14/2025] [Indexed: 04/24/2025] Open
Abstract
Chronic inflammation is an important component of many diseases, including autoimmune diseases, intracellular infections, dysbiosis and degenerative diseases. An important element of this state is the mainly positive feedback between inflammatory cytokines, reactive oxygen species (ROS), nitric oxide (NO), increased intracellular calcium, hypoxia-inducible factor 1-alpha (HIF-1α) stabilisation and mitochondrial oxidative stress, which, under normal conditions, enhance the response against pathogens. Autophagy and the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant response are mainly negatively coupled with the above-mentioned elements to maintain the defence response at a level appropriate to the severity of the infection. The current review is the first attempt to build a multidimensional model of cellular self-regulation of chronic inflammation. It describes the feedbacks involved in the inflammatory response and explains the possible pathways by which inflammation becomes chronic. The multiplicity of positive feedbacks suggests that symptomatic treatment of chronic inflammation should focus on inhibiting multiple positive feedbacks to effectively suppress all dysregulated elements including inflammation, oxidative stress, calcium stress, mito-stress and other metabolic disturbances.
Collapse
Affiliation(s)
- Krzysztof Piotr Michalak
- Laboratory of Vision Science and Optometry, Physics and Astronomy Faculty, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | |
Collapse
|
39
|
Anto S, Sun C, O'Rourke ST. Activation of APJ Receptors by CMF-019, But Not Apelin, Causes Endothelium-Dependent Relaxation of Spontaneously Hypertensive Rat Coronary Arteries. J Cardiovasc Pharmacol 2025; 85:287-296. [PMID: 39836102 DOI: 10.1097/fjc.0000000000001671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/04/2025] [Indexed: 01/22/2025]
Abstract
ABSTRACT Receptors for the vasoactive adipokine apelin, termed APJ receptors, are G-protein-coupled receptors and are widely expressed throughout the cardiovascular system. APJ receptors can also signal through G-protein-independent pathways, including G-protein-coupled receptor kinase 2 (GRK2), which inhibits endothelial nitric oxide synthase (eNOS) activity and nitric oxide production in endothelial cells. Apelin causes endothelium-dependent, nitric oxide-mediated relaxation of coronary arteries from normotensive animals, but the effects of activating APJ receptor signaling pathways in hypertensive coronary arteries are largely unknown. We hypothesized that apelin-induced relaxation is impaired in coronary arteries from spontaneously hypertensive rats (SHR). Western blot and mRNA analysis revealed increased GRK2 expression in cultured SHR coronary endothelial cells. Apelin failed to cause relaxation in isolated SHR coronary arteries but, in the presence of apelin, relaxations to acetylcholine were impaired. Apelin had no effect on relaxation to diethylamine NONOate. The GRK2 inhibitor, CMPD101, increased apelin-induced phosphorylation of Akt and eNOS in SHR endothelial cells and restored relaxation to apelin in SHR arteries. CMPD101 also blocked the inhibitory effect of apelin on ACh-induced relaxation. Relaxations to the APJ receptor-biased agonist, CMF-019, which preferentially activates the G-protein-dependent pathway with minimal effect on GRK2, were similar in SHR and Wistar Kyoto coronary arteries. Immunoblot analysis in SHR coronary endothelial cells demonstrated that CMF-019 increased Akt and eNOS phosphorylation whereas apelin had no effect. Thus, APJ receptor signaling through GRK2 impairs nitric oxide production or release from SHR endothelial cells. APJ receptor-biased agonists, such as CMF-019, may be more effective than apelin in causing vasodilation of SHR coronary arteries.
Collapse
Affiliation(s)
- Santo Anto
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND
| | | | | |
Collapse
|
40
|
Snyder J, Jiang CS, Choi RH, Morgan T, Roman J, Underwood L, Lucchese AM, Montgomery S, Grisanti LA, Doliba N, Holland WL, Sato PY. Cardioprotective effect of genetic ablation of the G-protein-coupled receptor kinase GRK2 in adult pancreatic β-cells during high-fat diet. J Biol Chem 2025; 301:108388. [PMID: 40054692 PMCID: PMC12018985 DOI: 10.1016/j.jbc.2025.108388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/17/2025] [Accepted: 03/03/2025] [Indexed: 04/17/2025] Open
Abstract
Cardiovascular diseases are a major comorbidity factor in patients with type 2 diabetes and a leading cause of death among them. Yet, mechanistically, how impairment in pancreatic islets alters cardiac function under different metabolic states remains largely unknown. Here, we investigate the role of the G-protein-coupled receptor kinase 2 (GRK2) in regulating islet adaptations to an obesogenic diet and its impact on myocardial function. Using a novel inducible β-cell-specific GRK2 knockout mouse model (βGRK2KO), we establish that loss of adult β-cell GRK2 delays metabolic islet maladaptation, protecting the heart against obesity-induced cardiac dysfunction. βGRK2KO are more insulin-sensitive than control mice and have improved cardiac function and myocardial morphology. Thus, genetic ablation of GRK2 in adult β-cells during an obesogenic diet play a cardioprotective role. This study prompts a novel therapeutic window for GRK2 intervention strategies for diabetic patients prone to cardiac dysfunction.
Collapse
Affiliation(s)
- Jonathan Snyder
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Chun-Sun Jiang
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ran Hee Choi
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
| | - Taylor Morgan
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jeffrey Roman
- Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lilly Underwood
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Anna Maria Lucchese
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Sarah Montgomery
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Laurel A Grisanti
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Nicolai Doliba
- Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
| | - Priscila Y Sato
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
41
|
Zhao WJ, Qian Y, Zhang YF, Yang AH, Cao JX, Qian HY, Liu Y, Zhu WZ. Endothelial FOSL1 drives angiotensin II-induced myocardial injury via AT1R-upregulated MYH9. Acta Pharmacol Sin 2025; 46:922-939. [PMID: 39592734 PMCID: PMC11950184 DOI: 10.1038/s41401-024-01410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/09/2024] [Indexed: 11/28/2024]
Abstract
Vascular remodeling represents a pathological basis for myocardial pathologies, including myocardial hypertrophy and myocardial infarction, which can ultimately lead to heart failure. The molecular mechanism of angiotensin II (Ang II)-induced vascular remodeling following myocardial infarction reperfusion is complex and not yet fully understood. In this study, we examined the effect of Ang II infusion on cardiac vascular remodeling in mice. Single-cell sequencing showed Ang II induced cytoskeletal pathway enrichment and that FOS like-1 (FOSL1) affected mouse cardiac endothelial dysfunction by pseudotime analysis. Myosin heavy chain 9 (MYH9) was predominantly expressed in primary cardiac endothelial cells. The Ang II type I receptor blocker telmisartan and the protein kinase C inhibitor staurosporine suppressed Ang II-induced upregulation of MYH9 and FOSL1 phosphorylation in human umbilical vein endothelial cells. Silencing MYH9 abolished Ang II-mediated inhibition of angiogenesis in human umbilical vein endothelial cells, and attenuated AngII-induced vascular hyperpermeability. We found that FOSL1 directly bound to the MYH9 promoter and thus activated transcription of MYH9 by the dual luciferase reporter and chromatin immunoprecipitation assays, leading to vascular dysfunction. In vivo, 6 weeks after injecting adeno-associated virus-ENT carrying the TEK tyrosine kinase (tie) promoter-driven short hairpin RNA for silencing FOSL1 (AAV-tie-shFOSL1), cardiac function represented by the ejection fraction and fractional shortening was improved, myocardial fibrosis was decreased, protein levels of phosphorylated FOSL1, MYH9, and collagen type I alpha were reduced, and cardiac vascular density was recovered in mice with endothelial Fosl1-specific knockdown in Ang II-infused mice. In ischemia-reperfusion mice, AAV-shFosl1 mice had a reduced infarct size and preserved cardiac function compared with control AAV mice. Our findings suggest a critical role of the FOSL1/MYH9 axis in hindering Ang II-induced vascular remodeling, and we identified FOSL1 as a potential therapeutic target in endothelial cell injuries induced by myocardial ischemia-reperfusion.
Collapse
Affiliation(s)
- Wen-Jing Zhao
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, 226001, China
- Cancer Research Center Nantong, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, 226006, China
| | - Yi Qian
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, 226001, China
| | - Yi-Feng Zhang
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, 226001, China
| | - Ai-Hua Yang
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, 226001, China
| | - Jia-Xin Cao
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, 226001, China
| | - Hong-Yan Qian
- Cancer Research Center Nantong, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, 226006, China
| | - Yi Liu
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, 226001, China
| | - Wei-Zhong Zhu
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, 226001, China.
| |
Collapse
|
42
|
Gupta MD, Goyal D, Kunal S, Shetty MK, Girish MP, Batra V, Bansal A, Mishra P, Shukla M, Kohli V, Chadha A, Fatima A, Muduli S, Gupta A, Yusuf J. Comparative evaluation of machine learning models versus TIMI score in ST-segment-elevation myocardial infarction patients. Indian Heart J 2025:S0019-4832(25)00056-2. [PMID: 40157569 DOI: 10.1016/j.ihj.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Risk stratification is an integral component of ST-segment-elevation myocardial infarction (STEMI) management practices. This study aimed to derive a machine learning (ML) model for risk stratification and identification of factors associated with in-hospital and 30-day mortality in patients with STEMI and compare it with traditional TIMI score. METHODS This was a single center prospective study wherein subjects >18 years with STEMI (n = 1700) were enrolled. Patients were divided into two groups: training (n = 1360) and validation dataset (n = 340). Six ML algorithms (Extra Tree, Random Forest, Multiple Perceptron, CatBoost, Logistic Regression and XGBoost) were used to train and tune the ML model and to determine the predictors of worse outcomes using feature selection. Additionally, the performance of ML models both for in-hospital and 30-day outcomes was compared to that of TIMI score. RESULTS Of the 1700 patients, 168 (9.88 %) had in-hospital mortality while 30-day mortality was reported in 210 (12.35 %) subjects. In terms of in-hospital mortality, Random Forest ML model (sensitivity: 80 %; specificity: 74 %; AUC: 80.83 %) outperformed the TIMI score (sensitivity: 70 %; specificity: 64 %; AUC:70.7 %). Similarly, Random Forest ML model (sensitivity: 81.63 %; specificity: 78.35 %; AUC: 78.29 %) had better performance as compared to TIMI score (sensitivity: 63.26 %; specificity: 63.91 %; AUC: 63.59 %) for 30-day mortality. Key predictors for worse outcomes at 30-days included mitral regurgitation on presentation, smoking, cardiogenic shock, diabetes, ventricular septal rupture, Killip class, age, female gender, low blood pressure and low ejection fraction. CONCLUSIONS ML model outperformed the traditional regression based TIMI score as a risk stratification tool in patients with STEMI.
Collapse
Affiliation(s)
- Mohit D Gupta
- Department of Cardiology, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research, Delhi, India.
| | - Dixit Goyal
- Department of Cardiology, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research, Delhi, India
| | - Shekhar Kunal
- Department of Cardiology, ESIC Medical College and Hospital, Faridabad, Haryana, India
| | - Manu Kumar Shetty
- Department of Pharmacology, Maulana Azad Medical College, Delhi, India
| | - M P Girish
- Department of Cardiology, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research, Delhi, India
| | - Vishal Batra
- Department of Cardiology, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research, Delhi, India
| | - Ankit Bansal
- Department of Cardiology, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research, Delhi, India
| | - Prashant Mishra
- Department of Cardiology, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research, Delhi, India
| | - Mansavi Shukla
- Department of Cardiology, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research, Delhi, India
| | - Vanshika Kohli
- Department of Cardiology, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research, Delhi, India
| | - Akul Chadha
- Department of Cardiology, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research, Delhi, India
| | - Arisha Fatima
- Department of Cardiology, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research, Delhi, India
| | - Subrat Muduli
- Department of Cardiology, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research, Delhi, India
| | - Anubha Gupta
- Department of Electronics and Communications Engineering, Indraprastha Institute of Information Technology, Delhi, India
| | - Jamal Yusuf
- Department of Cardiology, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research, Delhi, India
| |
Collapse
|
43
|
Barkhudaryan A, Doehner W, Jauert N. Autonomic dysfunction after stroke: an overview of recent clinical evidence and perspectives on therapeutic management. Clin Auton Res 2025:10.1007/s10286-025-01120-0. [PMID: 40131648 DOI: 10.1007/s10286-025-01120-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/18/2025] [Indexed: 03/27/2025]
Abstract
PURPOSE Central autonomic dysfunction is common in acute stroke and is associated with cardiovascular complications and increased mortality. The aim of this review is to present novel diagnostic and therapeutic approaches to the management of this disorder and the latest data on its impact on the clinical outcome after stroke. METHODS We performed a narrative review of recent literature, with a particular focus on articles related to underlying pathophysiological mechanisms of cardiac autonomic dysregulation, the role of cardiac autonomic dysregulation in the activation of neuroinflammatory response and the development of cardiovascular, respiratory and metabolic complications in patients with ischemic and hemorrhagic stroke. RESULTS The assessment of central autonomic dysfunction by non-invasive diagnostic techniques, including heart rate variability and baroreflex sensitivity, has gained wide practical application in recent years, and they may have a predictive role for evaluating disease prognosis. The emerging evidence derived from recent trials demonstrates that the presence of autonomic imbalance may lead to increased mortality and have an adverse effect on post-stroke rehabilitation. CONCLUSION The early detection and treatment of central autonomic system dysfunction may lead to improved survival of patients with stroke. Among the available therapeutic approaches, neuromodulatory techniques and pharmacological interventions are promising strategies which may be implemented as part of standard acute stroke care to improve patient recovery. Future studies are warranted to address the long-term effects of potential therapeutic agents on the modulation of cardiovascular autonomic function in stroke survivors.
Collapse
Affiliation(s)
- Anush Barkhudaryan
- Department of Cardiology, Clinic of General and Invasive Cardiology, University Hospital No. 1, Yerevan State Medical University, Yerevan, Armenia.
- Yerevan Scientific Medical Center, Yerevan, Armenia.
| | - Wolfram Doehner
- Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin Berlin, Berlin, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.
- Berlin Institute of Health-Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Deutsches Herzzentrum der Charité, Department of Cardiology, Campus Virchow, Charité Universitätsmedizin Berlin, Berlin, Germany.
| | - Nadja Jauert
- Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health-Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Deutsches Herzzentrum der Charité, Department of Cardiology, Campus Virchow, Charité Universitätsmedizin Berlin, Berlin, Germany
- Division of Physiology, Department of Human Medicine, Medical School Berlin (MSB), Berlin, Germany
| |
Collapse
|
44
|
Ihara J, Huang Y, Takami Y, Nozato Y, Takahashi T, Kakino A, Wang C, Wang Z, Guo Y, Liu W, Yin N, Ohara R, Fujimoto T, Yoshida S, Hongyo K, Koriyama H, Akasaka H, Takeshita H, Sakai S, Inoue K, Isaka Y, Rakugi H, Sawamura T, Yamamoto K. Oxidized low-density lipoprotein potentiates angiotensin II-induced Gq activation through the AT1-LOX1 receptor complex. eLife 2025; 13:RP98766. [PMID: 40131218 PMCID: PMC11936421 DOI: 10.7554/elife.98766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
Chronic kidney disease (CKD) and atherosclerotic heart disease, frequently associated with dyslipidemia and hypertension, represent significant health concerns. We investigated the interplay among these conditions, focusing on the role of oxidized low-density lipoprotein (oxLDL) and angiotensin II (Ang II) in renal injury via G protein αq subunit (Gq) signaling. We hypothesized that oxLDL enhances Ang II-induced Gq signaling via the AT1 (Ang II type 1 receptor)-LOX1 (lectin-like oxLDL receptor) complex. Based on CHO and renal cell model experiments, oxLDL alone did not activate Gq signaling. However, when combined with Ang II, it significantly potentiated Gq-mediated inositol phosphate 1 production and calcium influx in cells expressing both LOX-1 and AT1 but not in AT1-expressing cells. This suggests a critical synergistic interaction between oxLDL and Ang II in the AT1-LOX1 complex. Conformational studies using AT1 biosensors have indicated a unique receptor conformational change due to the oxLDL-Ang II combination. In vivo, wild-type mice fed a high-fat diet with Ang II infusion presented exacerbated renal dysfunction, whereas LOX-1 knockout mice did not, underscoring the pathophysiological relevance of the AT1-LOX1 interaction in renal damage. These findings highlight a novel mechanism of renal dysfunction in CKD driven by dyslipidemia and hypertension and suggest the therapeutic potential of AT1-LOX1 receptor complex in patients with these comorbidities.
Collapse
Affiliation(s)
- Jittoku Ihara
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
| | - Yibin Huang
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Yoichi Takami
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
| | - Yoichi Nozato
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
| | - Toshimasa Takahashi
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
- Department of Medicine, University of TorontoTorontoCanada
| | - Akemi Kakino
- Department of Molecular Pathophysiology, Shinshu University Graduate School of MedicineMatsumotoJapan
| | - Cheng Wang
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
| | - Ziwei Wang
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
| | - Yu Guo
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
| | - Weidong Liu
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
| | - Nanxiang Yin
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
| | - Ryoichi Ohara
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
| | - Taku Fujimoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
| | - Shino Yoshida
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
| | - Kazuhiro Hongyo
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
| | - Hiroshi Koriyama
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
| | - Hiroshi Akasaka
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
| | - Hikari Takeshita
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
| | - Shinsuke Sakai
- Department of Nephrology, Osaka University Graduate School of MedicineOsakaJapan
| | - Kazunori Inoue
- Department of Nephrology, Osaka University Graduate School of MedicineOsakaJapan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of MedicineOsakaJapan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
| | - Tatsuya Sawamura
- Department of Molecular Pathophysiology, Shinshu University Graduate School of MedicineMatsumotoJapan
| | - Koichi Yamamoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of MedicineOsakaJapan
| |
Collapse
|
45
|
Vieira WF, Real CC, Martins DO, Chacur M. The Role of Exercise on Glial Cell Activity in Neuropathic Pain Management. Cells 2025; 14:487. [PMID: 40214441 PMCID: PMC11988158 DOI: 10.3390/cells14070487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Chronic pain is a widespread global health problem with profound socioeconomic implications, affecting millions of people of all ages. Glial cells (GCs) in pain pathways play essential roles in the processing of pain signals. Dysregulation of GC activity contributes to chronic pain states, making them targets for therapeutic interventions. Non-pharmacological approaches, such as exercise, are strongly recommended for effective pain management. This review examines the link between exercise, regular physical activity (PA), and glial cell-mediated pain processing, highlighting its potential as a strategy for managing chronic pain. Exercise not only improves overall health and quality of life but also influences the function of GCs. Recent research highlights the ability of exercise to mitigate neuroinflammatory responses and modulate the activity of GCs by reducing the activation of microglia and astrocytes, as well as modulating the expression biomarkers, thereby attenuating pain hypersensitivity. Here, we summarize new insights into the role of exercise as a non-pharmacological intervention for the relief of chronic pain.
Collapse
Affiliation(s)
- Willians Fernando Vieira
- Department of Anatomy, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), 2415 Prof. Lineu Prestes Avenue, São Paulo 05508-000, SP, Brazil;
| | - Caroline C. Real
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark;
| | | | - Marucia Chacur
- Department of Anatomy, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), 2415 Prof. Lineu Prestes Avenue, São Paulo 05508-000, SP, Brazil;
| |
Collapse
|
46
|
Liu Z, Lv R, Guo H, Zhang B, Wang X, Qiang P, Xiong Y, Chang Y, Peng Y, Hao J, Wang X, Shimosawa T, Xu Q, Yang F. Proliferation of renal macrophage via MR/CSF1 pathway induced with aldosterone and inhibited by esaxerenone. Int Immunopharmacol 2025; 149:114208. [PMID: 39923576 DOI: 10.1016/j.intimp.2025.114208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/11/2025]
Abstract
Macrophage proliferation plays a critical role in kidney injury and repair, but due to their high plasticity and heterogeneity, the origins and subtypes of these proliferating cells remain unclear. This study investigates aldosterone-induced proliferation of renal macrophages, focusing on their origins, subtypes, and regulatory mechanisms using immunofluorescence, flow cytometry, and single-cell sequencing. The findings suggest that both resident and infiltrating macrophages proliferate in response to aldosterone, a significant proportion of which are renal resident macrophages, predominantly of the M1 subtype. The study also identifies the mineralocorticoid receptor/colony stimulation factor-1 (MR/CSF1) pathway as a key regulator of this process. Inhibition of this pathway through antagonists and inhibitors reduces macrophage proliferation and kidney damage, suggesting that targeting MR/CSF1 could be therapeutic against aldosterone-induced renal damage and inflammation.
Collapse
Affiliation(s)
- Ziqian Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Ruyan Lv
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Haixia Guo
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Boya Zhang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Xuan Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Panpan Qiang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yunzhao Xiong
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yi Chang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yunsong Peng
- Nephrology Department, Shijiazhuang Hospital of Traditional Chinese Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050000, China
| | - Juan Hao
- Nephrology Department, Shijiazhuang Hospital of Traditional Chinese Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050000, China
| | - Xiangting Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Tatsuo Shimosawa
- Department of Clinical Laboratory, School of Medicine, International University of Health and Welfare, Narita 286-8686, Japan
| | - Qingyou Xu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| | - Fan Yang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| |
Collapse
|
47
|
Gatto C, Rusciano MR, Visco V, Ciccarelli M. GRK2 and Mitochondrial Dynamics in Cardiovascular Health and Disease. Int J Mol Sci 2025; 26:2299. [PMID: 40076919 PMCID: PMC11900936 DOI: 10.3390/ijms26052299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
G protein-coupled receptors (GPCRs) represent a family of membrane proteins that regulate several cellular processes. Among the GPCRs, G protein-coupled receptor kinases (GRKs) regulate downstream signaling pathways and receptor desensitization. GRK2 has gained significant interest due to its cardiovascular physiology and pathological involvement. GRK2's presence in cardiac tissue and its influence on cardiac function, β-adrenergic signaling, and myocardial remodeling underlies its involvement in cardiovascular diseases such as heart failure and ischemia. GRK2's canonical role is receptor desensitization, but emerging evidence suggests its involvement in mitochondrial dynamics and bioenergetics, influencing processes such as oxidative phosphorylation, reactive oxygen species production, and apoptosis. Moreover, GRK2's localization within mitochondria suggests a direct role in regulating mitochondrial health and function. Notably, while GRK2 inhibition seems to be a therapeutic approach to heart failure, its precise role in mitochondrial dynamics and pathology needs further investigation. This review explores the complex relationship between mitochondrial function and GRK2 and clarifies the implications for cardiovascular health. Cardiovascular medicine might greatly benefit from future studies that focus on understanding the processes behind GRK2-mitochondrial crosstalk to develop personalized therapies.
Collapse
Affiliation(s)
- Cristina Gatto
- Department of Medicine, Surgery and Dentistry, University of Salerno “Scuola Medica Salernitana”, 84081 Baronissi, Italy; (C.G.); (M.R.R.); (V.V.)
- Scuola di Specializzazione in Patologia Clinica e Biochimica Clinica, University of Salerno “Scuola Medica Salernitana”, 84081 Baronissi, Italy
| | - Maria Rosaria Rusciano
- Department of Medicine, Surgery and Dentistry, University of Salerno “Scuola Medica Salernitana”, 84081 Baronissi, Italy; (C.G.); (M.R.R.); (V.V.)
| | - Valeria Visco
- Department of Medicine, Surgery and Dentistry, University of Salerno “Scuola Medica Salernitana”, 84081 Baronissi, Italy; (C.G.); (M.R.R.); (V.V.)
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, University of Salerno “Scuola Medica Salernitana”, 84081 Baronissi, Italy; (C.G.); (M.R.R.); (V.V.)
| |
Collapse
|
48
|
Chacar S, Abdrabou W, Al Hageh C, Ali L, Venkatachalam T, Zalloua P, Suleiman MS, Howarth FC, Khraibi AA, Nader M. Remodeling of the cardiac striatin interactome and its dynamics in the diabetic heart. Sci Rep 2025; 15:7384. [PMID: 40025125 PMCID: PMC11873221 DOI: 10.1038/s41598-025-91098-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/18/2025] [Indexed: 03/04/2025] Open
Abstract
Diabetic cardiomyopathy (DbCM) is a silent and complex condition involving numerous signaling pathways that impair cardiomyocyte metabolism and cardiac performance. Striatin (STRN) is a multifaceted protein that binds metabolic proteins, yet its role in diabetic heart remains unexplored. Here we characterized the cardiac STRN interactome by performing immunoprecipitation on left ventricle (LV) proteins from control and diabetic hearts (rats treated with streptozotocin for 24 weeks) to dissect its derivative protein complex. Diabetic rats exhibited pathological heart remodeling characterized by increased heart weight/body weight ratio, elevated levels of Atrial Natriuretic Factor (ANF), and altered expression of alpha and beta-myosin heavy chain isoforms. Notably, STRN expression mirrored that of the remodeling marker ANF across all cardiac chambers. Proteomic analysis yielded 247 proteins interacting with STRN exclusively in diabetic LV, 94 in both control and diabetic LV, and 11 only in control LV. STRN retained a higher interaction with some STRN interacting phosphatase and kinase complex (STRIPAK) proteins (i.e. protein phosphatase 2A (PP2A), and sarcolemmal associated membrane protein (SLMAP)) in diabetic LV, indicating a preserved role of this signalosome in diabetic settings. Functional enrichment and gene ontology revealed that the STRN interactome in diabetic LV carried signalosomes related to cardiac contractility, endoplasmic reticulum stress, mitochondrial function, and apoptotic processes. Western blot experiments confirmed the interaction between STRN and SLMAP in both control and diabetic heart. These data suggest a pivotal role for the STRN signalosome in cardiometabolic disorders, potentially paving the way for novel therapeutic management of DbCM. Targeting the STRN interactome in DbCM, mainly the first-line interactors SLMAP, PP2A, and Cav-1 may offer hope for patients with diabetes-induced cardiac injuries.
Collapse
Affiliation(s)
- Stephanie Chacar
- Department of Medical Sciences, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Wael Abdrabou
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Cynthia Al Hageh
- Department of Public Health and Epidemiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Liaqat Ali
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Thenmozhi Venkatachalam
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Pierre Zalloua
- Department of Public Health and Epidemiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Frank Christopher Howarth
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ali A Khraibi
- Department of Biomedical Engineering and Biotechnology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Moni Nader
- Department of Medical Sciences, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
49
|
Lai Y, Tang Z, Du Z, Zeng Q, Xia Y, Chen S, Li X, Cheng Q, Mei M, He W. Attenuation of Hypertension and protection of vascular inflammation in hyperaldosteronism: GPER1 as potential therapeutic candidate when MR antagonist is less satisfying? Endocrine 2025; 87:1276-1284. [PMID: 39565544 PMCID: PMC11845544 DOI: 10.1007/s12020-024-04106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Hyperaldosteronism is an endocrine disorder leading to persistent and severe hypertension. G protein-coupled estrogen receptor 1(GPER1) is regarded as a potential receptor of aldosterone (ALDO). OBJECTIVE This study aimed to investigate the effects of GPER1 on aldosterone (ALDO)-induced hypertension and inflammation in mice. METHODS GPER1-knockout (KO) and wild-type (WT) C57BL/6j mice were divided into control (CON, normal saline treatment), ALDO (subcutaneous injections of 600 g/kg/d ALDO), and ALDO + eplerenone (EPL) (subcutaneous injections of 600 g/kg/d ALDO and 100 mg/kg/d EPL) groups (n = 5 per group). Fourteen days after drug administration, the heart rate and tail blood pressure of the mice in the different groups were measured. S100A8 and IL-1β protein expression in arterial tissues were detected by western blotting, NLRP3 expression was assessed using immunofluorescence, and CD68 expression was investigated using immunohistochemistry. RESULTS GPER1 deficiency alleviated ALDO-induced diastolic blood pressure (P< 0.05). In addition, the protein expression levels of IL-1β, S100A8, and CD68 showed significant decreases in the arterial tissues of GPER1-KO mice after combination treatment with ALDO and EPL (all P < 0.05). CONCLUSION We discovered attenuation of hypertension and vascular inflammation of GPER1 KO mice only on the basis of mineralocorticoid receptor (MR) blocking. Collectively, our study indicates that GPER1 might become a therapeutic target of hyperaldosteronism in controlling the residual risk of cardiovascular disease when MR antagonist alone is not satisfying.
Collapse
Affiliation(s)
- Yulian Lai
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ziwei Tang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Zhipeng Du
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinglian Zeng
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Xia
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shangbin Chen
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xun Li
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingfeng Cheng
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mei Mei
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenwen He
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
50
|
Malik S, Ali ZS, Al-Rawi R, Lavercombe W, Gupta S, Zhou Z, Farina JM, Marcotte L, Baranchuk A. Emotions & Heart:Exploring the Impact of Negative Emotions on Cardiovascular Health. Curr Probl Cardiol 2025; 50:102989. [PMID: 39848354 DOI: 10.1016/j.cpcardiol.2025.102989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
Negative emotions can have a significant impact on individuals, which then influences their cardiovascular system. However, the underlying pathophysiological mechanisms and clinical implications of this association remain inadequately defined. A narrative review of pertinent literature was conducted to examine the pathophysiology, clinical manifestations, and treatment related to the interplay between emotions and conditions such as takotsubo cardiomyopathy, atherosclerosis, acute plaque rupture, and cardiac arrhythmias. Negative emotions can instigate a chronic stress response, which in turn heightens sympathetic nervous system activity and increases vulnerability to cardiovascular diseases. This intricate relationship between emotional states and cardiovascular health underscores the necessity for targeted lifestyle interventions and clinical strategies aimed at mitigating the adverse effects of negative emotions.
Collapse
Affiliation(s)
- Shaun Malik
- Faculty of Health Sciences, School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Zain S Ali
- Faculty of Health Sciences, School of Medicine, Queen's University, Kingston, Ontario, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Reem Al-Rawi
- Faculty of Health Sciences, School of Medicine, Queen's University, Kingston, Ontario, Canada
| | | | - Shyla Gupta
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Zier Zhou
- Faculty of Health Sciences, School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Juan M Farina
- Department of Cardiovascular and Thoracic Surgery, Mayo Clinic, Phoenix, AZ, USA
| | - Laura Marcotte
- Faculty of Health Sciences, School of Medicine, Queen's University, Kingston, Ontario, Canada; Division of General Internal Medicine, Queen's University, Kingston, Ontario, Canada
| | - Adrian Baranchuk
- Faculty of Health Sciences, School of Medicine, Queen's University, Kingston, Ontario, Canada; Division of Cardiology, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|