1
|
Lyu Y, Ji Z, Liu D, Xu X, Guo R, Shi X, Wang X. Spider-silk inspired ultrafast alkali-induced molecular aggregation for 3D printing arbitrary tubular hydrogels. MATERIALS HORIZONS 2024. [PMID: 39494672 DOI: 10.1039/d4mh01291g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Fabricating tubular hydrogel models with arbitrary structural complexity and controllable diameters using an ultrafast, facile yet universal method is desirable for vascular prototypes yet still a great challenge. Herein, inspired by the denaturing ability of spider silks, a novel strategy to induce complexation via applying highly concentrated alkali into a polyvinyl alcohol/ionic liquid (PVA/IL) solution, i.e., alkali-induced molecular aggregation (AMA), is proposed to achieve such purpose. This strategy enables the rapid and facile fabrication of tubular hydrogel architectures with tunable diameters, controllable thicknesses, and excellent mechanical performance with a tensile strength of up to 1.1 MPa and stretchability exceeding 600%. Importantly, this novel strategy combined with 3D printing facilitates the rapid fabrication of a variety of precise tubular hydrogel models with connected cavity structures which are difficult to achieve using current methods. This ultrafast solidification strategy could also be extended to various alkalis, cations and anions to build different hydrogels, showcasing its versatility and universality. Hence, this strategy can be pioneering to rapidly fabricate complex three-dimensional and hollow enclosed hydrogel models for simulating endovascular interventional therapy.
Collapse
Affiliation(s)
- Yang Lyu
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
| | - Zhongying Ji
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Di Liu
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Xinqiang Xu
- School of Chemistry and Chemical Engineering, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, 832003, China
| | - Rui Guo
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Xinyan Shi
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Xiaolong Wang
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
2
|
Li M, Qin D, Chen J, Jia B, Wei Z, Zhang Y, Cheng W, Liu Q, Wang F, Li J, Zhang H, Liu K. Engineered Protein Fibers with Reinforced Mechanical Properties Via β-Sheet High-Order Assembly. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2410199. [PMID: 39435633 DOI: 10.1002/advs.202410199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/09/2024] [Indexed: 10/23/2024]
Abstract
Protein fibers are ideal alternatives to synthetic polymers due to their unique mechanical properties, biocompatibility, and sustainability. However, engineering biomimetic protein fibers with high mechanical properties remains challenging, particularly in mimicking the high molecular weight of natural proteins and regulating their complex hierarchical structures. Here, a modular design and multi-scale assembly strategy is developed to manufacture robust protein fibers using low- or medium-molecular-weight proteins. The distinct functional and structural properties of flexible, rigid, and cross-linked domains in modular proteins are skillfully harnessed. By regulating the ratio of rigid to flexible domains, the formation of high-order β-sheet crystals aligned along the fiber axis is promoted, enhancing both strength and toughness. Furthermore, the dynamic imine cross-linking network, formed by the aldehyde-amine condensation reaction of the cross-linked domains, further reinforces the protein fibers. Remarkably, fibers spun from modular proteins significantly smaller than natural spidroin exhibit outstanding mechanical properties, surpassing those of protein fibers with same or even higher molecular weights. This strategy offers a promising pathway for fabricating protein fibers suitable for diverse applications.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Dawen Qin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jing Chen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Bo Jia
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zheng Wei
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yi Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Wenhao Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Qianqian Liu
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100084, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang, 314102, China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang, 314102, China
| |
Collapse
|
3
|
Schmuck B, Greco G, Shilkova O, Rising A. Effects of Mini-Spidroin Repeat Region on the Mechanical Properties of Artificial Spider Silk Fibers. ACS OMEGA 2024; 9:42423-42432. [PMID: 39431068 PMCID: PMC11483375 DOI: 10.1021/acsomega.4c06031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/19/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024]
Abstract
Spiders can produce up to seven different types of silk, each with unique mechanical properties that stem from variations in the repetitive regions of spider silk proteins (spidroins). Artificial spider silk can be made from mini-spidroins in an all-aqueous-based spinning process, but the strongest fibers seldom reach more than 25% of the strength of native silk fibers. With the aim to improve the mechanical properties of silk fibers made from mini-spidroins and to understand the relationship between the protein design and the mechanical properties of the fibers, we designed 16 new spidroins, ranging from 31.7 to 59.5 kDa, that feature the globular spidroin N- and C-terminal domains, but harbor different repetitive sequences. We found that more than 50% of these constructs could be spun by extruding them into low-pH aqueous buffer and that the best fibers were produced from proteins whose repeat regions were derived from major ampullate spidroin 4 (MaSp4) and elastin. The mechanical properties differed between fiber types but did not correlate with the expected properties based on the origin of the repeats, suggesting that additional factors beyond protein design impact the properties of the fibers.
Collapse
Affiliation(s)
- Benjamin Schmuck
- Department
of Medicine Huddinge, Karolinska Institutet,
Neo, 141 83 Huddinge, Sweden
- Department
of Animal Biosciences, Swedish University
of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Gabriele Greco
- Department
of Animal Biosciences, Swedish University
of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Olga Shilkova
- Department
of Medicine Huddinge, Karolinska Institutet,
Neo, 141 83 Huddinge, Sweden
| | - Anna Rising
- Department
of Medicine Huddinge, Karolinska Institutet,
Neo, 141 83 Huddinge, Sweden
- Department
of Animal Biosciences, Swedish University
of Agricultural Sciences, 750 07 Uppsala, Sweden
| |
Collapse
|
4
|
Higashi T, Okamura H, Sato TK, Morinaga T, Satoh R, Suzuki Y. Influence of Initial Secondary Structure on Conformation and Mechanical Properties of Spider Silk Protein Gels. ACS Biomater Sci Eng 2024; 10:6135-6143. [PMID: 39289793 DOI: 10.1021/acsbiomaterials.4c00809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Recombinant spider silk protein (RSP) is a promising biomaterial for developing high-performance materials independent of fossil fuels. In this study, we investigated the influence of the initial secondary structure of RSPs on the properties of RSP-based hydrogels. By altering the initial structure of RSP to β-sheets (β-RSP), α-helices (α-RSP), and random coils (rc-RSP) through solvent treatment, we compared the structures and mechanical properties of the resulting gels. Solid-state NMR revealed a β-sheet-rich structure in all gels, with the α-RSP gel exhibiting significantly higher strength and Young's modulus compared to the rc-RSP gel. X-ray diffraction revealed that the α-RSP gel had a unique crystalline structure, distinguishing it from the β-RSP and rc-RSP gels. The different initial secondary structures possibly lead to variations in the crystalline and network structures of the molecular chains within the gels, explaining the superior mechanical properties observed in the α-RSP gels.
Collapse
Affiliation(s)
- Takanori Higashi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1, Bunkyo, Fukui-shi, Fukui 910-8507, Japan
| | - Hideyasu Okamura
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1, Bunkyo, Fukui-shi, Fukui 910-8507, Japan
| | - Takehiro K Sato
- Spiber Inc., 234-1 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Takashi Morinaga
- Department of Chemical and Biological Engineering, National Institute of Technology, Tsuruoka College, 104 Sawada, Inooka, Tsuruoka, Yamagata 997-8511, Japan
| | - Ryo Satoh
- Department of Chemical and Biological Engineering, National Institute of Technology, Tsuruoka College, 104 Sawada, Inooka, Tsuruoka, Yamagata 997-8511, Japan
| | - Yu Suzuki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1, Bunkyo, Fukui-shi, Fukui 910-8507, Japan
| |
Collapse
|
5
|
Tzror Y, Bezner M, Deri S, Trigano T, Ben-Harush K. Nanofilament organization in highly tough fibers based on lamin proteins. J Mech Behav Biomed Mater 2024; 160:106748. [PMID: 39332142 DOI: 10.1016/j.jmbbm.2024.106748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/14/2024] [Indexed: 09/29/2024]
Abstract
The escalating plastic pollution crisis necessitates sustainable alternatives, and one promising solution involves replacing petroleum-based polymers with fibrous proteins. This study focused on the recombinant production of intracellular fibrous proteins, specifically Caenorhabditis elegans lamin (Ce-lamin). Ce-lamins spontaneously organize within the cell nucleus, forming a network of nanofilaments. This intricate structure serves as an active layer that responds dynamically to mechanical strain and stress. Herein, we investigated the arrangement of nanofilaments into nanofibrils within wet-spun Ce-lamin fibers using alcoholic solutions as coagulants. Our goal was to understand their structural and mechanical properties, particularly in comparison with those produced with solutions containing Ca+2 ions, which typically result in the formation of nanofibrils with a collagen-like pattern. The introduction of ethanol solutions significantly altered this pattern, likely through rearrangement of the nanofilaments. Nevertheless, the resulting fibers exhibited superior toughness and strain, outperforming various synthetic fibers. The significance of the nanofilament structure in enhancing fiber toughness was emphasized through both the secondary structure transition during stretching and the influence of the Q159K point mutation. This study improves our understanding of the structural and mechanical aspects of Ce-lamin fibers, paving the way for the development of eco-friendly and high-quality fibers suitable for various applications, including medical implants and composite materials.
Collapse
Affiliation(s)
- Yael Tzror
- Department of Chemical Engineering, Shamoon College of Engineering, Jabotinsky 84, 77245, Ashdod, Israel
| | - Mark Bezner
- Department of Chemical Engineering, Shamoon College of Engineering, Jabotinsky 84, 77245, Ashdod, Israel
| | - Shani Deri
- Department of Chemical Engineering, Shamoon College of Engineering, Jabotinsky 84, 77245, Ashdod, Israel
| | - Tom Trigano
- Department of Electrical Engineering, SCE - Shamoon College of Engineering, Jabotinsky 84, 77245, Ashdod, Israel
| | - Kfir Ben-Harush
- Department of Chemical Engineering, Shamoon College of Engineering, Jabotinsky 84, 77245, Ashdod, Israel.
| |
Collapse
|
6
|
Guessous G, Blake L, Bui A, Woo Y, Manzanarez G. Disentangling the Web: An Interdisciplinary Review on the Potential and Feasibility of Spider Silk Bioproduction. ACS Biomater Sci Eng 2024; 10:5412-5438. [PMID: 39136701 PMCID: PMC11388149 DOI: 10.1021/acsbiomaterials.4c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
The remarkable material properties of spider silk, such as its high toughness and tensile strength combined with its low density, make it a highly sought-after material with myriad applications. In addition, the biological nature of spider silk makes it a promising, potentially sustainable alternative to many toxic or petrochemical-derived materials. Therefore, interest in the heterologous production of spider silk proteins has greatly increased over the past few decades, making recombinant spider silk an important frontier in biomanufacturing. This has resulted in a diversity of potential host organisms, a large space for sequence design, and a variety of downstream processing techniques and product applications for spider silk production. Here, we highlight advances in each of these technical aspects as well as white spaces therein, still ripe for further investigation and discovery. Additionally, industry landscaping, patent analyses, and interviews with Key Opinion Leaders help define both the research and industry landscapes. In particular, we found that though textiles dominated the early products proposed by companies, the versatile nature of spider silk has opened up possibilities in other industries, such as high-performance materials in automotive applications or biomedical therapies. While continuing enthusiasm has imbued scientists and investors alike, many technical and business considerations still remain unsolved before spider silk can be democratized as a high-performance product. We provide insights and strategies for overcoming these initial hurdles, and we highlight the importance of collaboration between academia, industry, and policy makers. Linking technical considerations to business and market entry strategies highlights the importance of a holistic approach for the effective scale-up and commercial viability of spider silk bioproduction.
Collapse
Affiliation(s)
- Ghita Guessous
- Department of Physics, University of California at San Diego, La Jolla, California 92092, United States
- Research Initiative, Nucleate, 88 Gordon Street #401, Brighton, Massachusetts 02135, United States
| | - Lauren Blake
- Research Initiative, Nucleate, 88 Gordon Street #401, Brighton, Massachusetts 02135, United States
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Tufts University Center for Cellular Agriculture (TUCCA), Tufts University, Medford, Massachusetts 02155, United States
| | - Anthony Bui
- Research Initiative, Nucleate, 88 Gordon Street #401, Brighton, Massachusetts 02135, United States
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14850, United States
| | - Yelim Woo
- Research Initiative, Nucleate, 88 Gordon Street #401, Brighton, Massachusetts 02135, United States
- Questrom School of Business, Boston University, Boston, Massachusetts 02215, United States
| | - Gabriel Manzanarez
- Research Initiative, Nucleate, 88 Gordon Street #401, Brighton, Massachusetts 02135, United States
- Division of Biological Sciences, University of California at San Diego, La Jolla, California 92092, United States
| |
Collapse
|
7
|
Schmuck B, Greco G, Pessatti TB, Sonavane S, Langwallner V, Arndt T, Rising A. Strategies for Making High-Performance Artificial Spider Silk Fibers. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2305040. [PMID: 39355086 PMCID: PMC11440630 DOI: 10.1002/adfm.202305040] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/08/2023] [Indexed: 10/03/2024]
Abstract
Artificial spider silk is an attractive material for many technical applications since it is a biobased fiber that can be produced under ambient conditions but still outcompetes synthetic fibers (e.g., Kevlar) in terms of toughness. Industrial use of this material requires bulk-scale production of recombinant spider silk proteins in heterologous host and replication of the pristine fiber's mechanical properties. High molecular weight spider silk proteins can be spun into fibers with impressive mechanical properties, but the production levels are too low to allow commercialization of the material. Small spider silk proteins, on the other hand, can be produced at yields that are compatible with industrial use, but the mechanical properties of such fibers need to be improved. Here, the literature on wet-spinning of artificial spider silk fibers is summarized and analyzed with a focus on mechanical performance. Furthermore, several strategies for how to improve the properties of such fibers, including optimized protein composition, smarter spinning setups, innovative protein engineering, chemical and physical crosslinking as well as the incorporation of nanomaterials in composite fibers, are outlined and discussed.
Collapse
Affiliation(s)
- Benjamin Schmuck
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| | - Gabriele Greco
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Tomas Bohn Pessatti
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Sumalata Sonavane
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Viktoria Langwallner
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Tina Arndt
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| | - Anna Rising
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| |
Collapse
|
8
|
Li D, Wang Y, Zhu S, Hu X, Liang R. Recombinant fibrous protein biomaterials meet skin tissue engineering. Front Bioeng Biotechnol 2024; 12:1411550. [PMID: 39205856 PMCID: PMC11349559 DOI: 10.3389/fbioe.2024.1411550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Natural biomaterials, particularly fibrous proteins, are extensively utilized in skin tissue engineering. However, their application is impeded by batch-to-batch variance, limited chemical or physical versatility, and environmental concerns. Recent advancements in gene editing and fermentation technology have catalyzed the emergence of recombinant fibrous protein biomaterials, which are gaining traction in skin tissue engineering. The modular and highly customizable nature of recombinant synthesis enables precise control over biomaterial design, facilitating the incorporation of multiple functional motifs. Additionally, recombinant synthesis allows for a transition from animal-derived sources to microbial sources, thereby reducing endotoxin content and rendering recombinant fibrous protein biomaterials more amenable to scalable production and clinical use. In this review, we provide an overview of prevalent recombinant fibrous protein biomaterials (collagens, elastin, silk proteins and their chimeric derivatives) used in skin tissue engineering (STE) and compare them with their animal-derived counterparts. Furthermore, we discuss their applications in STE, along with the associated challenges and future prospects.
Collapse
Affiliation(s)
- Dipeng Li
- Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Yirong Wang
- Hangzhou Singclean Medical Products Co., Ltd., Hangzhou, China
| | - Shan Zhu
- Hangzhou Singclean Medical Products Co., Ltd., Hangzhou, China
| | - Xuezhong Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China
| | - Renjie Liang
- Hangzhou Ninth People’s Hospital, Hangzhou, China
- Hangzhou Singclean Medical Products Co., Ltd., Hangzhou, China
- School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
9
|
Yin Y, Griffo A, Gutiérrez Cruz A, Hähl H, Jacobs K, Linder MB. Effect of Phosphate on the Molecular Properties, Interactions, and Assembly of Engineered Spider Silk Proteins. Biomacromolecules 2024; 25:3990-4000. [PMID: 38916967 PMCID: PMC11238326 DOI: 10.1021/acs.biomac.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024]
Abstract
Phosphate plays a vital role in spider silk spinning and has been utilized in numerous artificial silk spinning attempts to replicate the remarkable mechanical properties of natural silk fiber. Its application in artificial processes has, however, yielded varying outcomes. It is thus necessary to investigate the origins and mechanisms behind these differences. By using recombinant silk protein SC-ADF3 derived from the garden spider Araneus diadematus, here, we describe its conformational changes under various conditions, elucidating the effect of phosphate on SC-ADF3 silk protein properties and interactions. Our results demonstrate that elevated phosphate levels induce the irreversible conformational conversion of SC-ADF3 from random coils to β-sheet structures, leading to decreased protein solubility over time. Furthermore, exposure of SC-ADF3 to phosphate stiffens already formed structures and reduces the ability to form new interactions. Our findings offer insights into the underlying mechanism through which phosphate-induced β-sheet structures in ADF3-related silk proteins impede fiber formation in the subsequent phases. From a broader perspective, our studies emphasize the significance of silk protein conformation for functional material formation, highlighting that the formation of β-sheet structures at the initial stages of protein assembly will affect the outcome of material forming processes.
Collapse
Affiliation(s)
- Yin Yin
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
- Finnish
Centre of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Alessandra Griffo
- Biophysical
Engineering Group, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany
- Department
of Experimental Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Adrián Gutiérrez Cruz
- Department
of Experimental Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Hendrik Hähl
- Department
of Experimental Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Karin Jacobs
- Department
of Experimental Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
- Max
Planck School “Matter to Life”, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Markus B. Linder
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
- Finnish
Centre of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Kemistintie 1, 02150 Espoo, Finland
| |
Collapse
|
10
|
Wang M, Yang Z, Jia B, Qin D, Liu Y, Wang F, Sun J, Zhang H, Li J, Liu K. Modular Protein Fibers with Outstanding High-Strength and Acid-Resistance Performance Mediated by Copper Ion Binding and Imine Networking. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400544. [PMID: 38390909 DOI: 10.1002/adma.202400544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Engineered protein fibers are promising biomaterials with diverse applications due to their tunable protein structure and outstanding mechanical properties. However, it remains challenging at the molecular level to achieve satisfied mechanical properties and environmental tolerance simultaneously, especially under extreme acid conditions. Herein, the construction of artificial fibers comprising chimeric proteins made of rigid amyloid peptide and flexible cationic elastin-like protein (ELP) module is reported. The amyloid peptide readily assembles into highly organized β-sheet structures that can be further strengthened by the coordination of Cu2+, while the flexible ELP module allows the formation of imine-based crosslinking networks. These double networks synergistically enhance the mechanical properties of the fibers, leading to a high tensile strength and toughness, overwhelming many reported recombinant spidroin fibers. Notably, the coordination of Cu2+ with serine residues could stabilize β-sheet structures in the fibers under acidic conditions, which makes the fibers robust against acid, thus enabling their successful utilization in gastric perforation suturing. This work highlights the customization of double networks at the molecular level to create tailored high-performance protein fibers for various application scenarios.
Collapse
Affiliation(s)
- Mengyao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China, 130022
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China, 230026
| | - Zhenyue Yang
- Academy for Advanced Interdisciplinary Studies, Northeast Normal University, Changchun, China, 130024
| | - Bo Jia
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China, 130022
| | - Dawen Qin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China, 130022
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China, 130022
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China, 130022
| | - Jing Sun
- School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, China, 200241
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China, 130022
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China, 230026
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China, 100084
- Xiangfu Laboratory, Jiaxing, China, 314102
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China, 130022
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China, 130022
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China, 230026
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China, 100084
- Xiangfu Laboratory, Jiaxing, China, 314102
| |
Collapse
|
11
|
Li J, Yang GZ, Li X, Tan HL, Wong ZW, Jiang S, Yang D. Nanoassembly of spider silk protein mediated by intrinsically disordered regions. Int J Biol Macromol 2024; 271:132438. [PMID: 38761906 DOI: 10.1016/j.ijbiomac.2024.132438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Spider silk is the self-assembling product of silk proteins each containing multiple repeating units. Each repeating unit is entirely intrinsically disordered or contains a small disordered domain. The role of the disordered domain/unit in conferring silk protein storage and self-assembly is not fully understood yet. Here, we used biophysical and biochemical techniques to investigate the self-assembly of a miniature version of a minor ampullate spidroin (denoted as miniMiSp). miniMiSp consists of two identical intrinsically disordered domains, one folded repetitive domain, and two folded terminal domains. Our data indicated that miniMiSp self-assembles into oligomers and further into liquid droplets. The oligomerization is attributed to the aggregation-prone property of both the disordered domains and the folded repetitive domain. Our results support the model of micellar structure for silk proteins at high protein concentrations. The disordered domain is indispensable for liquid droplet formation via liquid-liquid phase separation, and tyrosine residues located in the disordered domain make dominant contributions to stability of the liquid droplets. As the same tyrosine residues are also critical to fibrillation, the liquid droplets are likely an intermediate state between the solution state and the fiber state. Additionally, the terminal domains contribute to the pH- and salt-dependent self-assembly properties.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Gabriel Z Yang
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Xue Li
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Hao Lei Tan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Zhi Wei Wong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Shimin Jiang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
12
|
Hu CF, Gan CY, Zhu YJ, Xia XX, Qian ZG. Modulating Polyalanine Motifs of Synthetic Spidroin for Controllable Preassembly and Strong Fiber Formation. ACS Biomater Sci Eng 2024; 10:2925-2934. [PMID: 38587986 DOI: 10.1021/acsbiomaterials.3c01784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Spider dragline (major ampullate) silk is one of the toughest known fibers in nature and exhibits an excellent combination of high tensile strength and elasticity. Increasing evidence has indicated that preassembly plays a crucial role in facilitating the proper assembly of silk fibers by bridging the mesoscale gap between spidroin molecules and the final strong fibers. However, it remains challenging to control the preassembly of spidroins and investigate its influence on fiber structural and mechanical properties. In this study, we explored to bridge this gap by modulating the polyalanine (polyA) motifs in repetitive region of spidroins to tune their preassemblies in aqueous dope solutions. Three biomimetic silk proteins with varying numbers of alanine residues in polyA motif and comparable molecular weights were designed and biosynthesized, termed as N16C-5A, N15C-8A, and N13C-12A, respectively. It was found that all three proteins could form nanofibril assemblies in the concentrated aqueous dopes, but the size and structural stability of the fibrils were distinct from each other. The silk protein N15C-8A with 8 alanine residues in polyA motif allowed for the formation of stable nanofibril assemblies with a length of approximately 200 nm, which were not prone to disassemble or aggregate as that of N16C-5A and N13C-12A. More interestingly, the stable fibril assembly of N15C-8A enabled spinning of simultaneously strong (623.3 MPa) and tough (107.1 MJ m-3) synthetic fibers with fine molecular orientation and close interface packing of fibril bundles. This work highlights that modulation of polyA motifs is a feasible way to tune the morphology and stability of the spidroin preassemblies in dope solutions, thus controlling the structural and mechanical properties of the resulting fibers.
Collapse
Affiliation(s)
- Chun-Fei Hu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Chao-Yi Gan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Ya-Jiao Zhu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
13
|
Qin D, Wang M, Cheng W, Chen J, Wang F, Sun J, Ma C, Zhang Y, Zhang H, Li H, Liu K, Li J. Spidroin-mimetic Engineered Protein Fibers with High Toughness and Minimized Batch-to-batch Variations through β-sheets Co-assembly. Angew Chem Int Ed Engl 2024; 63:e202400595. [PMID: 38321642 DOI: 10.1002/anie.202400595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/08/2024]
Abstract
Synthetic spidroin fibers have not yet attained the same level of toughness and stability as natural spider silks due to the complexity of composition and hierarchical structure. Particularly, understanding the intricate interactions between spidroin components in spider fiber is still elusive. Herein, we report modular design and preparation of spidroin-mimetic fibers composed of a conservative C-terminus spidroin module, two different natural β-sheets modules, and a non-spidroin random-coil module. The resulting fibers exhibit a toughness of ~200 MJ/m3, reaching the highest value among the reported artificial spider silks. The interactions between two components of recombinant spidroins facilitate the intermolecular co-assembly of β-sheets, thereby enhancing the mechanical strength and reducing batch-to-batch variability in the dual-component spidroin fibers. Additionally, the dual-component spidroin fibers offer potential applications in implantable or even edible devices. Therefore, our work presents a generic strategy to develop high-performance protein fibers for diverse translations in different scenarios.
Collapse
Affiliation(s)
- Dawen Qin
- School of Chemical Engineering and Technology, Hebei University of Technology, 300130, Tianjin, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Mengyao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Wenhao Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Jing Chen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Jing Sun
- School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 200241, Shanghai, China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials of the Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials of the Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Huanrong Li
- School of Chemical Engineering and Technology, Hebei University of Technology, 300130, Tianjin, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials of the Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| |
Collapse
|
14
|
Wu D, Koscic A, Schneider S, Dubini RCA, Rodriguez Camargo DC, Schneider S, Rovó P. Unveiling the Dynamic Self-Assembly of a Recombinant Dragline-Silk-Mimicking Protein. Biomacromolecules 2024; 25:1759-1774. [PMID: 38343096 PMCID: PMC10934265 DOI: 10.1021/acs.biomac.3c01239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 03/12/2024]
Abstract
Despite the considerable interest in the recombinant production of synthetic spider silk fibers that possess mechanical properties similar to those of native spider silks, such as the cost-effectiveness, tunability, and scalability realization, is still lacking. To address this long-standing challenge, we have constructed an artificial spider silk gene using Golden Gate assembly for the recombinant bacterial production of dragline-mimicking silk, incorporating all the essential components: the N-terminal domain, a 33-residue-long major-ampullate-spidroin-inspired segment repeated 16 times, and the C-terminal domain (N16C). This designed silk-like protein was successfully expressed in Escherichia coli, purified, and cast into films from formic acid. We produced uniformly 13C-15N-labeled N16C films and employed solid-state magic-angle spinning nuclear magnetic resonance (NMR) for characterization. Thus, we could demonstrate that our bioengineered silk-like protein self-assembles into a film where, when hydrated, the solvent-exposed layer of the rigid, β-nanocrystalline polyalanine core undergoes a transition to an α-helical structure, gaining mobility to the extent that it fully dissolves in water and transforms into a highly dynamic random coil. This hydration-induced behavior induces chain dynamics in the glycine-rich amorphous soft segments on the microsecond time scale, contributing to the elasticity of the solid material. Our findings not only reveal the presence of structurally and dynamically distinct segments within the film's superstructure but also highlight the complexity of the self-organization responsible for the exceptional mechanical properties observed in proteins that mimic dragline silk.
Collapse
Affiliation(s)
- Dongqing Wu
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Anamaria Koscic
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Sonja Schneider
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Romeo C. A. Dubini
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Center
for Nanoscience (CeNS), Faculty of Physics, Ludwig-Maximilians-Universität München, 80799 Munich, Germany
| | - Diana C. Rodriguez Camargo
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Sabine Schneider
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Petra Rovó
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Institute
of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
15
|
Mi J, Li X, Niu S, Zhou X, Lu Y, Yang Y, Sun Y, Meng Q. High-strength and ultra-tough supramolecular polyamide spider silk fibers assembled via specific covalent and reversible hydrogen bonds. Acta Biomater 2024; 176:190-200. [PMID: 38199426 DOI: 10.1016/j.actbio.2024.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
Achieving ultra-high tensile strength and exceptional toughness is a longstanding goal for structural materials. However, previous attempts using covalent and non-covalent bonds have failed, leading to the belief that these two properties are mutually exclusive. Consequently, commercial fibers have been forced to compromise between tensile strength and toughness, as seen in the differences between nylon and Kevlar. To address this challenge, we drew inspiration from the disparate tensile strength and toughness of nylon and Kevlar, both of which are polyamide fibers, and developed an innovative approach that combines specific intermolecular disulfide bonds and reversible hydrogen bonds to create ultra-strong and ultra-tough polyamide spider silk fibers. Our resulting Supramolecular polyamide spider silk, which has a maximum molecular weight of 1084 kDa, exhibits high tensile strength (1180 MPa) and extraordinary toughness (433 MJ/m3), surpassing Kevlar's toughness 8-fold. This breakthrough presents a new opportunity for the sustainable development of spider silk as an environmentally friendly alternative to synthetic commercial fibers, as spider silk is composed of amino acids. Future research could explore the use of these techniques and fundamental knowledge to develop other super materials in various mechanical fields, with the potential to improve people's lives in many ways. STATEMENT OF SIGNIFICANCE: • By emulating synthetic commercial fibers such as nylon and polyethylene, we have successfully produced supramolecular-weight polyamide spider silk fibers with a molecular weight of 1084 kDa through a unique covalent bond-mediated linear polymerization reaction of spider silk protein molecules. This greatly surpasses the previous record of a maximum molecular weight of 556 kDa. • We obtained supramolecular polyamide spider silk fibers with both high-tensile strength and toughness. The stress at break is 1180 MPa, and the toughness is 8 times that of kevlar, reaching 433 MJ/m3. • Our results challenge the notion that it is impossible to manufacture fibers with both ultra-high tensile strength and ultra-toughness, and provide theoretical guidance for developing environmentally friendly and sustainable structural materials that meet industrial needs.
Collapse
Affiliation(s)
- Junpeng Mi
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Xue Li
- Department of Biological Sciences, National University of Singapore,14 Science Drive 4 117543, Singapore
| | - Shiwei Niu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China
| | - Xingping Zhou
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Yihang Lu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yuchen Yang
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yuan Sun
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Qing Meng
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; College of Life and Geographic Sciences, Kashi University, Xin Jiang 844006, China.
| |
Collapse
|
16
|
Peng X, Liu Z, Gao J, Zhang Y, Wang H, Li C, Lv X, Gao Y, Deng H, Zhao B, Gao T, Li H. Influence of Spider Silk Protein Structure on Mechanical and Biological Properties for Energetic Material Detection. Molecules 2024; 29:1025. [PMID: 38474537 PMCID: PMC10934110 DOI: 10.3390/molecules29051025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Spider silk protein, renowned for its excellent mechanical properties, biodegradability, chemical stability, and low immune and inflammatory response activation, consists of a core domain with a repeat sequence and non-repeating sequences at the N-terminal and C-terminal. In this review, we focus on the relationship between the silk structure and its mechanical properties, exploring the potential applications of spider silk materials in the detection of energetic materials.
Collapse
Affiliation(s)
- Xinying Peng
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Zhiyong Liu
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Junhong Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Yuhao Zhang
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Hong Wang
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Cunzhi Li
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Xiaoqiang Lv
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Yongchao Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Hui Deng
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Bin Zhao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Ting Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| | - Huan Li
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China (Z.L.)
- Xi’an Key Laboratory of Toxicology and Biological Effects, NO. 12 Zhangbadong Road, Yanta District, Xi’an 710065, China
| |
Collapse
|
17
|
Hovanová V, Hovan A, Humenik M, Sedlák E. Only kosmotrope anions trigger fibrillization of the recombinant core spidroin eADF4(C16) from Araneus diadematus. Protein Sci 2023; 32:e4832. [PMID: 37937854 PMCID: PMC10661072 DOI: 10.1002/pro.4832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/20/2023] [Accepted: 11/05/2023] [Indexed: 11/09/2023]
Abstract
Recombinant core spidroin eADF4(C16) has received increasing attention due to its ability to form micro- and nano-structured scaffolds, which are based on nanofibrils with great potential for biomedical and biotechnological applications. Phosphate anions have been demonstrated to trigger the eADF4(C16) self-assembly into cross-beta fibrils. In the present work, we systematically addressed the effect of nine sodium anions, namely SO4 2- , HPO4 2- (Pi), F- , Cl- , Br- , NO3 - , I- , SCN- , and ClO4 - from the Hofmeister series on the in vitro self-assembly kinetics of eADF4(C16). We show that besides the phosphate anions, only kosmotropic anions such as sulfate and fluoride can initiate the eADF4(C16) fibril formation. Global analysis of the self-assembly kinetics, utilizing the platform AmyloFit, showed the nucleation-based mechanism with a major role of secondary nucleation, surprisingly independent of the type of the kosmotropic anion. The rate constant of the fibril elongation in mixtures of phosphate anions with other studied anions correlated with their kosmotropic or chaotropic position in the Hofmeister series. Our findings suggest an important role of anion hydration in the eADF4(C16) fibrillization process.
Collapse
Affiliation(s)
- Veronika Hovanová
- Center for Interdisciplinary Biosciences, Technology and Innovation ParkP.J. Šafárik UniversityKošiceSlovakia
- Department of Biophysics, Faculty of ScienceP.J. Šafárik UniversityKošiceSlovakia
| | - Andrej Hovan
- Department of Biophysics, Faculty of ScienceP.J. Šafárik UniversityKošiceSlovakia
| | - Martin Humenik
- Department of Biomaterials, Faculty of Engineering ScienceUniversity BayreuthBayreuthGermany
| | - Erik Sedlák
- Center for Interdisciplinary Biosciences, Technology and Innovation ParkP.J. Šafárik UniversityKošiceSlovakia
- Department of Biochemistry, Faculty of ScienceP.J. Šafárik UniversityKošiceSlovakia
| |
Collapse
|
18
|
Momeni Bashusqeh S, Pugno NM. Development of mechanically-consistent coarse-grained molecular dynamics model: case study of mechanics of spider silk. Sci Rep 2023; 13:19316. [PMID: 37935753 PMCID: PMC10630411 DOI: 10.1038/s41598-023-46376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023] Open
Abstract
Understanding mechanics of spider silk holds immense importance due to its potential to drive innovation in the development of materials with exceptional mechanical characteristics suited for a wide range of applications. Coarse-grained (CG) molecular simulations plays a particularly valuable role in this endeavor, allowing for the efficient investigation of spider silk's mechanical properties. Our research is centered on the examination of spider silk, which comprises major ampullate silk protein (MaSp1). To achieve this, we developed a CG molecular dynamics model. Our investigation began with a focus on MaSp1 chains subjected to uniaxial tensile load, with comparisons made between the CG model results and all-atom simulations. Subsequently, we extended our simulations to encompass more extensive systems, including fully-ordered MaSp1 bundles undergoing uniaxial static stretching. Through comparison with existing literature, we assess how well the CG model reproduces the mechanical properties of spider silk in highly ordered structures. Furthermore, we explored a scenario where MaSp1 bundles were randomly positioned and stretched, providing valuable insights into silk behavior when the initial structure lacks order. Another simulation involved random positioning, but with some degree of orientation in the loading direction, allowing for a closer examination of the initial structure's influence.
Collapse
Affiliation(s)
- S Momeni Bashusqeh
- Laboratory for Bioinspired, Bionic, Nano, Meta Materials and Mechanics, University of Trento, Via Mesiano 77, 38123, Trento, Italy
| | - N M Pugno
- Laboratory for Bioinspired, Bionic, Nano, Meta Materials and Mechanics, University of Trento, Via Mesiano 77, 38123, Trento, Italy.
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
19
|
Zhang X, Long C, Zhu X, Zhang X, Li J, Luo J, Li J, Gao Q. Preparation of Strong and Thermally Conductive, Spider Silk-Inspired, Soybean Protein-Based Adhesive for Thermally Conductive Wood-Based Composites. ACS NANO 2023; 17:18850-18863. [PMID: 37781925 DOI: 10.1021/acsnano.3c03782] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The development of formaldehyde-free functional wood composite materials through the preparation of strong and multifunctional soybean protein adhesives to replace formaldehyde-based resins is an important research area. However, ensuring the bonding performance of soybean protein adhesive while simultaneously developing thermally conductive adhesive and its corresponding wood composites is challenging. Taking inspiration from the microphase separation structure of spider silk, boron nitride (BN) and soy protein isolate (SPI) were mixed by ball milling to obtain a BN@SPI matrix and combined with the self-synthesized hyperbranched reactive substrates as amorphous region reinforcer and cross-linker triglycidylamine to prepare strong and thermally conductive soybean protein adhesive with cross-linked microphase separation structure. These findings indicate that mechanical ball milling can be employed to strip BN followed by combination with SPI, resulting in a tight bonded interface connection. Subsequently, the adhesive's dry and wet shear strengths increased by 14.3% and 90.5% to 1.83 and 1.05 MPa, respectively. The resultant adhesive also possesses a good thermal conductivity (0.363 W/mK). Impressively, because hot-pressing helps the resultant adhesive to establish a thermal conduction pathway, the thermal conductivity of the resulting wood-based composite is 10 times higher than that of the SPI adhesive, which shows a thermal conductivity similar to that of ceramic tile and has excellent potential for developing biothermal conductivity materials, geothermal floors, and energy storage materials. Moreover, the adhesive possessed effective flame retardancy (limit oxygen index = 36.5%) and mildew resistance (>50 days). This bionic design represents an efficient technique for developing multifunctional biomass adhesives and composites.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Efficient Production of Forest Resources & MOE Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Chun Long
- State Key Laboratory of Efficient Production of Forest Resources & MOE Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Xiaobo Zhu
- State Key Laboratory of Efficient Production of Forest Resources & MOE Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Xilin Zhang
- State Key Laboratory of Efficient Production of Forest Resources & MOE Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Jianzhang Li
- State Key Laboratory of Efficient Production of Forest Resources & MOE Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Jing Luo
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jingchao Li
- State Key Laboratory of Efficient Production of Forest Resources & MOE Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Qiang Gao
- State Key Laboratory of Efficient Production of Forest Resources & MOE Key Laboratory of Wood Material Science and Application, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
20
|
Mi J, Zhou X, Sun R, Han J. Disabling spidroin N-terminal homologs' reverse reaction unveils why its intermolecular disulfide bonds have not evolved for 380 million years. Int J Biol Macromol 2023; 249:125974. [PMID: 37499718 DOI: 10.1016/j.ijbiomac.2023.125974] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
Spiders, ubiquitous predators known for their powerful silks, rely on spidroins that self-assemble from high-concentration solutions stored in silk glands, which are mediated by the NT and CT domains. CT homodimers containing intermolecular disulfide bonds enhance silk performance, promoting spider survival and reproduction. However, no NT capable of forming such disulfide bonds has been identified. Our study reveals that NT homodimers with sulfur substitution can form under alkaline conditions, shedding light on why spiders have not evolved intermolecular disulfide bonds in the NT module during their 380 million years of evolution. This discovery significantly advances our comprehension of spider evolution and silk spinning mechanisms, while also providing novel insights into protein storage, assembly, as well as the mechanisms and therapeutic strategies for neurodegenerative diseases associated with protein aggregation.
Collapse
Affiliation(s)
- Junpeng Mi
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Xingping Zhou
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Rou Sun
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Jiaojiao Han
- Department of Clinical Hematology and osology, Shanghai center for clinical laboratory, Shanghai 200126, China.
| |
Collapse
|
21
|
Perera D, Li L, Walsh C, Silliman J, Xiong Y, Wang Q, Schniepp HC. Natural spider silk nanofibrils produced by assembling molecules or disassembling fibers. Acta Biomater 2023; 168:323-332. [PMID: 37414111 DOI: 10.1016/j.actbio.2023.06.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
Spider silk is biocompatible, biodegradable, and rivals some of the best synthetic materials in terms of strength and toughness. Despite extensive research, comprehensive experimental evidence of the formation and morphology of its internal structure is still limited and controversially discussed. Here, we report the complete mechanical decomposition of natural silk fibers from the golden silk orb-weaver Trichonephila clavipes into ≈10 nm-diameter nanofibrils, the material's apparent fundamental building blocks. Furthermore, we produced nanofibrils of virtually identical morphology by triggering an intrinsic self-assembly mechanism of the silk proteins. Independent physico-chemical fibrillation triggers were revealed, enabling fiber assembly from stored precursors "at-will". This knowledge furthers the understanding of this exceptional material's fundamentals, and ultimately, leads toward the realization of silk-based high-performance materials. STATEMENT OF SIGNIFICANCE: Spider silk is one of the strongest and toughest biomaterials, rivaling the best man-made materials. The origins of these traits are still under debate but are mostly attributed to the material's intriguing hierarchical structure. Here we fully disassembled spider silk into 10 nm-diameter nanofibrils for the first time and showed that nanofibrils of the same appearance can be produced via molecular self-assembly of spider silk proteins under certain conditions. This shows that nanofibrils are the key structural elements in silk and leads toward the production of high-performance future materials inspired by spider silk.
Collapse
Affiliation(s)
- Dinidu Perera
- Applied Science Department, William & Mary, P.O. Box 8795, Williamsburg, VA 23187-8795, USA
| | - Linxuan Li
- Applied Science Department, William & Mary, P.O. Box 8795, Williamsburg, VA 23187-8795, USA
| | - Chloe Walsh
- Applied Science Department, William & Mary, P.O. Box 8795, Williamsburg, VA 23187-8795, USA
| | - Jacob Silliman
- Applied Science Department, William & Mary, P.O. Box 8795, Williamsburg, VA 23187-8795, USA
| | - Yawei Xiong
- Applied Science Department, William & Mary, P.O. Box 8795, Williamsburg, VA 23187-8795, USA
| | - Qijue Wang
- Applied Science Department, William & Mary, P.O. Box 8795, Williamsburg, VA 23187-8795, USA
| | - Hannes C Schniepp
- Applied Science Department, William & Mary, P.O. Box 8795, Williamsburg, VA 23187-8795, USA.
| |
Collapse
|
22
|
Xie Q, On Lee S, Vissamsetti N, Guo S, Johnson ME, Fried SD. Secretion-Catalyzed Assembly of Protein Biomaterials on a Bacterial Membrane Surface. Angew Chem Int Ed Engl 2023; 62:e202305178. [PMID: 37469298 DOI: 10.1002/anie.202305178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/28/2023] [Accepted: 07/18/2023] [Indexed: 07/21/2023]
Abstract
Protein-based biomaterials have played a key role in tissue engineering, and additional exciting applications as self-healing materials and sustainable polymers are emerging. Over the past few decades, recombinant expression and production of various fibrous proteins from microbes have been demonstrated; however, the resulting proteins typically must then be purified and processed by humans to form usable fibers and materials. Here, we show that the Gram-positive bacterium Bacillus subtilis can be programmed to secrete silk through its translocon via an orthogonal signal peptide/peptidase pair. Surprisingly, we discover that this translocation mechanism drives the silk proteins to assemble into fibers spontaneously on the cell surface, in a process we call secretion-catalyzed assembly (SCA). Secreted silk fibers form self-healing hydrogels with minimal processing. Alternatively, the fibers retained on the membrane provide a facile route to create engineered living materials from Bacillus cells. This work provides a blueprint to achieve autonomous assembly of protein biomaterials in useful morphologies directly from microbial factories.
Collapse
Affiliation(s)
- Qi Xie
- Department of Chemistry, Johns Hopkins University, 21218, Baltimore, MD, USA
| | - Sea On Lee
- Department of Chemistry, Johns Hopkins University, 21218, Baltimore, MD, USA
| | - Nitya Vissamsetti
- Department of Chemistry, Johns Hopkins University, 21218, Baltimore, MD, USA
| | - Sikao Guo
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 21218, Baltimore, MD, USA
| | - Margaret E Johnson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 21218, Baltimore, MD, USA
| | - Stephen D Fried
- Department of Chemistry, Johns Hopkins University, 21218, Baltimore, MD, USA
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 21218, Baltimore, MD, USA
| |
Collapse
|
23
|
Greco G, Schmuck B, Jalali SK, Pugno NM, Rising A. Influence of experimental methods on the mechanical properties of silk fibers: A systematic literature review and future road map. BIOPHYSICS REVIEWS 2023; 4:031301. [PMID: 38510706 PMCID: PMC10903380 DOI: 10.1063/5.0155552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/20/2023] [Indexed: 03/22/2024]
Abstract
Spider silk fibers are of scientific and industrial interest because of their extraordinary mechanical properties. These properties are normally determined by tensile tests, but the values obtained are dependent on the morphology of the fibers, the test conditions, and the methods by which stress and strain are calculated. Because of this, results from many studies are not directly comparable, which has led to widespread misconceptions in the field. Here, we critically review most of the reports from the past 50 years on spider silk mechanical performance and use artificial spider silk and native silks as models to highlight the effect that different experimental setups have on the fibers' mechanical properties. The results clearly illustrate the importance of carefully evaluating the tensile test methods when comparing the results from different studies. Finally, we suggest a protocol for how to perform tensile tests on silk and biobased fibers.
Collapse
Affiliation(s)
| | | | - S. K. Jalali
- Laboratory for Bioinspired, Bionic, Nano, Meta, Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano, 77, 38123 Trento, Italy
| | | | - Anna Rising
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
24
|
Ebbinghaus T, Lang G, Scheibel T. Biomimetic polymer fibers-function by design. BIOINSPIRATION & BIOMIMETICS 2023; 18:041003. [PMID: 37307815 DOI: 10.1088/1748-3190/acddc1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/12/2023] [Indexed: 06/14/2023]
Abstract
Biomimicry applies the fundamental principles of natural materials, processes, and structures to technological applications. This review presents the two strategies of biomimicry-bottom-up and top-down approaches, using biomimetic polymer fibers and suitable spinning techniques as examples. The bottom-up biomimicry approach helps to acquire fundamental knowledge on biological systems, which can then be leveraged for technological advancements. Within this context, we discuss the spinning of silk and collagen fibers due to their unique natural mechanical properties. To achieve successful biomimicry, it is imperative to carefully adjust the spinning solution and processing parameters. On the other hand, top-down biomimicry aims to solve technological problems by seeking solutions from natural role models. This approach will be illustrated using examples such as spider webs, animal hair, and tissue structures. To contextualize biomimicking approaches in practical applications, this review will give an overview of biomimetic filter technologies, textiles, and tissue engineering.
Collapse
Affiliation(s)
- Thomas Ebbinghaus
- Chair of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Gregor Lang
- Department of Functional Materials in Medicine and Dentistry, University Hospital of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Thomas Scheibel
- Chair of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
- Bayreuth Center for Colloids and Interfaces (BZKG), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- Bayreuth Center for Material Science (BayMAT), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
25
|
Li J, Jiang B, Chang X, Yu H, Han Y, Zhang F. Bi-terminal fusion of intrinsically-disordered mussel foot protein fragments boosts mechanical strength for protein fibers. Nat Commun 2023; 14:2127. [PMID: 37059716 PMCID: PMC10104820 DOI: 10.1038/s41467-023-37563-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/22/2023] [Indexed: 04/16/2023] Open
Abstract
Microbially-synthesized protein-based materials are attractive replacements for petroleum-derived synthetic polymers. However, the high molecular weight, high repetitiveness, and highly-biased amino acid composition of high-performance protein-based materials have restricted their production and widespread use. Here we present a general strategy for enhancing both strength and toughness of low-molecular-weight protein-based materials by fusing intrinsically-disordered mussel foot protein fragments to their termini, thereby promoting end-to-end protein-protein interactions. We demonstrate that fibers of a ~60 kDa bi-terminally fused amyloid-silk protein exhibit ultimate tensile strength up to 481 ± 31 MPa and toughness of 179 ± 39 MJ*m-3, while achieving a high titer of 8.0 ± 0.70 g/L by bioreactor production. We show that bi-terminal fusion of Mfp5 fragments significantly enhances the alignment of β-nanocrystals, and intermolecular interactions are promoted by cation-π and π-π interactions between terminal fragments. Our approach highlights the advantage of self-interacting intrinsically-disordered proteins in enhancing material mechanical properties and can be applied to a wide range of protein-based materials.
Collapse
Affiliation(s)
- Jingyao Li
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, 63130, USA
| | - Bojing Jiang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, 63130, USA
| | - Xinyuan Chang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, 63130, USA
| | - Han Yu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, 63130, USA
| | - Yichao Han
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, 63130, USA
| | - Fuzhong Zhang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, 63130, USA.
- Division of Biological & Biomedical Sciences, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, 63130, USA.
- Institute of Materials Science & Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, 63130, USA.
| |
Collapse
|
26
|
Semmler L, Naghilou A, Millesi F, Wolf S, Mann A, Stadlmayr S, Mero S, Ploszczanski L, Greutter L, Woehrer A, Placheta‐Györi E, Vollrath F, Weiss T, Radtke C. Silk-in-Silk Nerve Guidance Conduits Enhance Regeneration in a Rat Sciatic Nerve Injury Model. Adv Healthc Mater 2023; 12:e2203237. [PMID: 36683305 PMCID: PMC11468823 DOI: 10.1002/adhm.202203237] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Indexed: 01/24/2023]
Abstract
Advanced nerve guidance conduits can provide an off-the-shelf alternative to autografts for the rehabilitation of segmental peripheral nerve injuries. In this study, the excellent processing ability of silk fibroin and the outstanding cell adhesion quality of spider dragline silk are combined to generate a silk-in-silk conduit for nerve repair. Fibroin-based silk conduits (SC) are characterized, and Schwann cells are seeded on the conduits and spider silk. Rat sciatic nerve (10 mm) defects are treated with an autograft (A), an empty SC, or a SC filled with longitudinally aligned spider silk fibers (SSC) for 14 weeks. Functional recovery, axonal re-growth, and re-myelination are assessed. The material characterizations determine a porous nature of the conduit. Schwann cells accept the conduit and spider silk as growth substrate. The in vivo results show a significantly faster functional regeneration of the A and SSC group compared to the SC group. In line with the functional results, the histomorphometrical analysis determines a comparable axon density of the A and SSC groups, which is significantly higher than the SC group. These findings demonstrate that the here introduced silk-in-silk nerve conduit achieves a similar regenerative performance as autografts largely due to the favorable guiding properties of spider dragline silk.
Collapse
Affiliation(s)
- Lorenz Semmler
- Department of Plastic, Reconstructive, and Aesthetic SurgeryMedical University of ViennaSpitalgasse 23Vienna1090Austria
- Austrian Cluster for Tissue RegenerationVienna1200Austria
| | - Aida Naghilou
- Department of Plastic, Reconstructive, and Aesthetic SurgeryMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Flavia Millesi
- Department of Plastic, Reconstructive, and Aesthetic SurgeryMedical University of ViennaSpitalgasse 23Vienna1090Austria
- Austrian Cluster for Tissue RegenerationVienna1200Austria
| | - Sonja Wolf
- Department of Plastic, Reconstructive, and Aesthetic SurgeryMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Anda Mann
- Department of Plastic, Reconstructive, and Aesthetic SurgeryMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Sarah Stadlmayr
- Department of Plastic, Reconstructive, and Aesthetic SurgeryMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Sascha Mero
- Department of Plastic, Reconstructive, and Aesthetic SurgeryMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Leon Ploszczanski
- Institute of Physics and Materials ScienceUniversity of Natural Resources and Life SciencesGregor‐Medel‐Straße 33Vienna1180Austria
| | - Lisa Greutter
- Department of NeurologyDivision of Neuropathology and NeurochemistryMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Adelheid Woehrer
- Department of NeurologyDivision of Neuropathology and NeurochemistryMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Eva Placheta‐Györi
- Department of Plastic, Reconstructive, and Aesthetic SurgeryMedical University of ViennaSpitalgasse 23Vienna1090Austria
| | - Fritz Vollrath
- Department of ZoologyUniversity of OxfordMansfield Rd.OxfordOX1 3SZUK
| | - Tamara Weiss
- Department of Plastic, Reconstructive, and Aesthetic SurgeryMedical University of ViennaSpitalgasse 23Vienna1090Austria
- Austrian Cluster for Tissue RegenerationVienna1200Austria
| | - Christine Radtke
- Department of Plastic, Reconstructive, and Aesthetic SurgeryMedical University of ViennaSpitalgasse 23Vienna1090Austria
- Austrian Cluster for Tissue RegenerationVienna1200Austria
| |
Collapse
|
27
|
Joel AC, Rawal A, Yao Y, Jenner A, Ariotti N, Weissbach M, Adler L, Stafstrom J, Blamires SJ. Physico-chemical properties of functionally adhesive spider silk nanofibres. Biomater Sci 2023; 11:2139-2150. [PMID: 36727424 DOI: 10.1039/d2bm01599d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Currently, synthetic fibre production focuses primarily on high performance materials. For high performance fibrous materials, such as silks, this involves interpreting the structure-function relationship and downsizing to a smaller scale to then harness those properties within synthetic products. Spiders create an array of fibres that range in size from the micrometre to nanometre scale. At about 20 nm diameter spider cribellate silk, the smallest of these silks, is too small to contain any of the typical secondary protein structures of other spider silks, let alone a hierarchical skin-core-type structure. Here, we performed a multitude of investigations to elucidate the structure of cribellate spider silk. These confirmed our hypothesis that, unlike all other types of spider silk, it has a disordered molecular structure. Alanine and glycine, the two amino acids predominantly found in other spider silks, were much less abundant and did not form the usual α-helices and β-sheet secondary structural arrangements. Correspondingly, we characterized the cribellate silk nanofibre to be very compliant. This characterization matches its function as a dry adhesive within the capture threads of cribellate spiders. Our results imply that at extremely small scales there may be a limit reached below which a silk will lose its structural, but not functional, integrity. Nano-sized fibres, such as cribellate silk, thus offer a new opportunity for inspiring the creation of novel scaled-down functional adhesives and nano meta-materials.
Collapse
Affiliation(s)
- Anna-Christin Joel
- Department of Biological Sciences, Macquarie University, Sydney, Australia. .,School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, Australia.,Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Aditya Rawal
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Yin Yao
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Andrew Jenner
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Nicholas Ariotti
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | | - Lewis Adler
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Jay Stafstrom
- School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, Australia.,Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| | - Sean J Blamires
- School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, Australia.,Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia.,School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
28
|
Saric M, Scheibel T. Two-in-One Spider Silk Protein with Combined Mechanical Features in All-Aqueous Spun Fibers. Biomacromolecules 2023; 24:1744-1750. [PMID: 36913547 DOI: 10.1021/acs.biomac.2c01500] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Major ampullate (MA) spider silk reveals outstanding mechanical properties in terms of a unique combination of high tensile strength and extensibility, unmatched by most other known native or synthetic fiber materials. MA silk contains at least two spider silk proteins (spidroins), and here, a novel two-in-one (TIO) spidroin was engineered, resembling amino acid sequences of such two of the European garden spider. The combination of mechanical and chemical features of both underlying proteins facilitated the hierarchical self-assembly into β-sheet-rich superstructures. Due to the presence of native terminal dimerization domains, highly concentrated aqueous spinning dopes could be prepared from recombinant TIO spidroins. Subsequently, fibers were spun in a biomimetic, aqueous wet-spinning process, yielding mechanical properties at least twice as high as fibers spun from individual spidroins or blends. The presented processing route holds great potential for future applications using ecological green high-performance fibers.
Collapse
Affiliation(s)
- Merisa Saric
- Lehrstuhl Biomaterialien, Universität Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien, Universität Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany.,Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany.,Bayreuther Materialzentrum (BayMat), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany.,Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany.,Bayrisches Polymerinstitut (BPI), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
29
|
Stengel D, Saric M, Johnson HR, Schiller T, Diehl J, Chalek K, Onofrei D, Scheibel T, Holland GP. Tyrosine's Unique Role in the Hierarchical Assembly of Recombinant Spider Silk Proteins: From Spinning Dope to Fibers. Biomacromolecules 2023; 24:1463-1474. [PMID: 36791420 DOI: 10.1021/acs.biomac.2c01467] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Producing recombinant spider silk fibers that exhibit mechanical properties approaching native spider silk is highly dependent on the constitution of the spinning dope. Previously published work has shown that recombinant spider silk fibers spun from dopes with phosphate-induced pre-assembly (biomimetic dopes) display a toughness approaching native spider silks far exceeding the mechanical properties of fibers spun from dopes without pre-assembly (classical dopes). Dynamic light scattering experiments comparing the two dopes reveal that biomimetic dope displays a systematic increase in assembly size over time, while light microscopy indicates liquid-liquid-phase separation (LLPS) as evidenced by the formation of micron-scale liquid droplets. Solution nuclear magnetic resonance (NMR) shows that the structural state in classical and biomimetic dopes displays a general random coil conformation in both cases; however, some subtle but distinct differences are observed, including a more ordered state for the biomimetic dope and small chemical shift perturbations indicating differences in hydrogen bonding of the protein in the different dopes with notable changes occurring for Tyr residues. Solid-state NMR demonstrates that the final wet-spun fibers from the two dopes display no structural differences of the poly(Ala) stretches, but biomimetic fibers display a significant difference in Tyr ring packing in non-β-sheet, disordered helical domains that can be traced back to differences in dope preparations. It is concluded that phosphate pre-orders the recombinant silk protein in biomimetic dopes resulting in LLPS and fibers that exhibit vastly improved toughness that could be due to aromatic ring packing differences in non-β-sheet domains that contain Tyr.
Collapse
Affiliation(s)
- Dillan Stengel
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr, San Diego, California 92182-1030, United States
| | - Merisa Saric
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Street 1, Bayreuth 95447, Germany
| | - Hannah R Johnson
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr, San Diego, California 92182-1030, United States
| | - Tim Schiller
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Street 1, Bayreuth 95447, Germany
| | - Johannes Diehl
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Street 1, Bayreuth 95447, Germany
| | - Kevin Chalek
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr, San Diego, California 92182-1030, United States
| | - David Onofrei
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr, San Diego, California 92182-1030, United States
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Street 1, Bayreuth 95447, Germany
| | - Gregory P Holland
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr, San Diego, California 92182-1030, United States
| |
Collapse
|
30
|
Miserez A, Yu J, Mohammadi P. Protein-Based Biological Materials: Molecular Design and Artificial Production. Chem Rev 2023; 123:2049-2111. [PMID: 36692900 PMCID: PMC9999432 DOI: 10.1021/acs.chemrev.2c00621] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/25/2023]
Abstract
Polymeric materials produced from fossil fuels have been intimately linked to the development of industrial activities in the 20th century and, consequently, to the transformation of our way of living. While this has brought many benefits, the fabrication and disposal of these materials is bringing enormous sustainable challenges. Thus, materials that are produced in a more sustainable fashion and whose degradation products are harmless to the environment are urgently needed. Natural biopolymers─which can compete with and sometimes surpass the performance of synthetic polymers─provide a great source of inspiration. They are made of natural chemicals, under benign environmental conditions, and their degradation products are harmless. Before these materials can be synthetically replicated, it is essential to elucidate their chemical design and biofabrication. For protein-based materials, this means obtaining the complete sequences of the proteinaceous building blocks, a task that historically took decades of research. Thus, we start this review with a historical perspective on early efforts to obtain the primary sequences of load-bearing proteins, followed by the latest developments in sequencing and proteomic technologies that have greatly accelerated sequencing of extracellular proteins. Next, four main classes of protein materials are presented, namely fibrous materials, bioelastomers exhibiting high reversible deformability, hard bulk materials, and biological adhesives. In each class, we focus on the design at the primary and secondary structure levels and discuss their interplays with the mechanical response. We finally discuss earlier and the latest research to artificially produce protein-based materials using biotechnology and synthetic biology, including current developments by start-up companies to scale-up the production of proteinaceous materials in an economically viable manner.
Collapse
Affiliation(s)
- Ali Miserez
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- School
of Biological Sciences, NTU, Singapore637551
| | - Jing Yu
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- Institute
for Digital Molecular Analytics and Science (IDMxS), NTU, 50 Nanyang Avenue, Singapore637553
| | - Pezhman Mohammadi
- VTT
Technical Research Centre of Finland Ltd., Espoo, UusimaaFI-02044, Finland
| |
Collapse
|
31
|
Rising A, Harrington MJ. Biological Materials Processing: Time-Tested Tricks for Sustainable Fiber Fabrication. Chem Rev 2023; 123:2155-2199. [PMID: 36508546 DOI: 10.1021/acs.chemrev.2c00465] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is an urgent need to improve the sustainability of the materials we produce and use. Here, we explore what humans can learn from nature about how to sustainably fabricate polymeric fibers with excellent material properties by reviewing the physical and chemical aspects of materials processing distilled from diverse model systems, including spider silk, mussel byssus, velvet worm slime, hagfish slime, and mistletoe viscin. We identify common and divergent strategies, highlighting the potential for bioinspired design and technology transfer. Despite the diversity of the biopolymeric fibers surveyed, we identify several common strategies across multiple systems, including: (1) use of stimuli-responsive biomolecular building blocks, (2) use of concentrated fluid precursor phases (e.g., coacervates and liquid crystals) stored under controlled chemical conditions, and (3) use of chemical (pH, salt concentration, redox chemistry) and physical (mechanical shear, extensional flow) stimuli to trigger the transition from fluid precursor to solid material. Importantly, because these materials largely form and function outside of the body of the organisms, these principles can more easily be transferred for bioinspired design in synthetic systems. We end the review by discussing ongoing efforts and challenges to mimic biological model systems, with a particular focus on artificial spider silks and mussel-inspired materials.
Collapse
Affiliation(s)
- Anna Rising
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 141 52, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | | |
Collapse
|
32
|
Blamires SJ, Rawal A, Edwards AD, Yarger JL, Oberst S, Allardyce BJ, Rajkhowa R. Methods for Silk Property Analyses across Structural Hierarchies and Scales. Molecules 2023; 28:2120. [PMID: 36903366 PMCID: PMC10003856 DOI: 10.3390/molecules28052120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Silk from silkworms and spiders is an exceptionally important natural material, inspiring a range of new products and applications due to its high strength, elasticity, and toughness at low density, as well as its unique conductive and optical properties. Transgenic and recombinant technologies offer great promise for the scaled-up production of new silkworm- and spider-silk-inspired fibres. However, despite considerable effort, producing an artificial silk that recaptures the physico-chemical properties of naturally spun silk has thus far proven elusive. The mechanical, biochemical, and other properties of pre-and post-development fibres accordingly should be determined across scales and structural hierarchies whenever feasible. We have herein reviewed and made recommendations on some of those practices for measuring the bulk fibre properties; skin-core structures; and the primary, secondary, and tertiary structures of silk proteins and the properties of dopes and their proteins. We thereupon examine emerging methodologies and make assessments on how they might be utilized to realize the goal of developing high quality bio-inspired fibres.
Collapse
Affiliation(s)
- Sean J. Blamires
- School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, NSW 2052, Australia
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
- School of Mechanical and Mechatronic Engineering, University of Technology, Sydney, NSW 2007, Australia
| | - Aditya Rawal
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Angela D. Edwards
- School of Molecular Science, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Jeffrey L. Yarger
- School of Molecular Science, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Sebastian Oberst
- School of Mechanical and Mechatronic Engineering, University of Technology, Sydney, NSW 2007, Australia
| | | | - Rangam Rajkhowa
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
33
|
Hofmaier M, Malanin M, Bittrich E, Lentz S, Urban B, Scheibel T, Fery A, Müller M. β-Sheet Structure Formation within Binary Blends of Two Spider Silk Related Peptides. Biomacromolecules 2023; 24:825-840. [PMID: 36632028 DOI: 10.1021/acs.biomac.2c01266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Intrinsically disordered proteins (IDPs) play an important role in molecular biology and medicine because their induced folding can lead to so-called conformational diseases, where β-amyloids play an important role. Still, the molecular folding process into the different substructures, such as parallel/antiparallel or extended β-sheet/crossed β-sheet is not fully understood. The recombinant spider silk protein eADF4(Cx) consisting of repeating modules C, which are composed of a crystalline (pep-c) and an amorphous peptide sequence (pep-a), can be used as a model system for IDP since it can assemble into similar structures. In this work, blend films of the pep-c and pep-a sequences were investigated to modulate the β-sheet formation by varying the molar fraction of pep-c and pep-a. Dichroic Fourier-transform infrared spectroscopy (FTIR), circular dichroism, spectroscopic ellipsometry, atomic force microscopy, and IR nanospectroscopy were used to examine the secondary structure, the formation of parallel and antiparallel β-sheets, their orientation, and the microscopic roughness and phase formation within peptide blend films upon methanol post-treatment. New insights into the formation of filament-like structures in these silk blend films were obtained. Filament-like structures could be locally assigned to β-sheet-rich structures. Further, the antiparallel or parallel character and the orientation of the formed β-sheets could be clearly determined. Finally, the ideal ratio of pep-a and pep-c sequences found in the fibroin 4 of the major ampullate silk of spiders could also be rationalized by comparing the blend and spider silk protein systems.
Collapse
Affiliation(s)
- Mirjam Hofmaier
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden (IPF), Hohe Strasse 6, D-01069Dresden, Germany.,Chair of Physical Chemistry of Polymeric Materials, Technical University Dresden (TUD), D-01069Dresden, Germany
| | - Mikhail Malanin
- Leibniz Institute of Polymer Research Dresden (IPF), Institute of Macromolecular Chemistry, Hohe Strasse 6, D-01069Dresden, Germany
| | - Eva Bittrich
- Leibniz Institute of Polymer Research Dresden (IPF), Institute of Macromolecular Chemistry, Hohe Strasse 6, D-01069Dresden, Germany
| | - Sarah Lentz
- Chair of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, D-95447Bayreuth, Germany
| | - Birgit Urban
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden (IPF), Hohe Strasse 6, D-01069Dresden, Germany
| | - Thomas Scheibel
- Chair of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, D-95447Bayreuth, Germany.,Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Universität Bayreuth, Universitätsstraße 30, D-95440Bayreuth, Germany.,Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Universität Bayreuth, Universitätsstraße 30, D-95440Bayreuth, Germany.,Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Universitätsstraße 30, D-95440Bayreuth, Germany.,Bayerisches Polymerinstitut (BPI), Universität Bayreuth, Universitätsstraße 30, D-95440Bayreuth, Germany
| | - Andreas Fery
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden (IPF), Hohe Strasse 6, D-01069Dresden, Germany.,Chair of Physical Chemistry of Polymeric Materials, Technical University Dresden (TUD), D-01069Dresden, Germany
| | - Martin Müller
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden (IPF), Hohe Strasse 6, D-01069Dresden, Germany.,Chair of Macromolecular Chemistry, Technical University of Dresden (TUD), Mommsenstraße 4, D-01062Dresden, Germany
| |
Collapse
|
34
|
Sun J, Monreal Santiago G, Yan F, Zhou W, Rudolf P, Portale G, Kamperman M. Bioinspired Processing of Keratin into Upcycled Fibers through pH-Induced Coacervation. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:1985-1994. [PMID: 36778523 PMCID: PMC9906721 DOI: 10.1021/acssuschemeng.2c06865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Keratin is an important byproduct of the animal industry, but almost all of it ends up in landfills due to a lack of efficient recycling methods. To make better use of keratin-based natural resources, the current extraction and processing strategies need to be improved or replaced by more sustainable and cost-effective processes. Here, we developed a simple and environmentally benign method to process extracted keratin, using HCl to induce the formation of a coacervate, a separate aqueous phase with a very high protein concentration. Remarkably, this pH-induced coacervation did not result in the denaturation of keratin, and we could even observe an increase in the amount of ordered secondary structures. The low-pH coacervates could be extruded and wet-spun into high-performance keratin fibers, without requiring heating or any organic solvents. The secondary structure of keratin was largely conserved in these regenerated fibers, which exhibited excellent mechanical performance. The process developed in this study represents a simple and environmentally friendly strategy to upcycle waste keratin into high-performance materials.
Collapse
Affiliation(s)
- Jianwu Sun
- Polymer
Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Guillermo Monreal Santiago
- Polymer
Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Feng Yan
- Surfaces
and Thin Films, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The
Netherlands
| | - Wen Zhou
- Products
and Processes for Biotechnology, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Petra Rudolf
- Surfaces
and Thin Films, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The
Netherlands
| | - Giuseppe Portale
- Macromolecular
Chemistry and New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marleen Kamperman
- Polymer
Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
35
|
Connor A, Wigham C, Bai Y, Rai M, Nassif S, Koffas M, Zha RH. Novel insights into construct toxicity, strain optimization, and primary sequence design for producing recombinant silk fibroin and elastin-like peptide in E. coli. Metab Eng Commun 2023; 16:e00219. [PMID: 36825067 PMCID: PMC9941211 DOI: 10.1016/j.mec.2023.e00219] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/06/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Spider silk proteins (spidroins) are a remarkable class of biomaterials that exhibit a unique combination of high-value attributes and can be processed into numerous morphologies for targeted applications in diverse fields. Recombinant production of spidroins represents the most promising route towards establishing the industrial production of the material, however, recombinant spider silk production suffers from fundamental difficulties that includes low titers, plasmid instability, and translational inefficiencies. In this work, we sought to gain a deeper understanding of upstream bottlenecks that exist in the field through the production of a panel of systematically varied spidroin sequences in multiple E. coli strains. A restriction on basal expression and specific genetic mutations related to stress responses were identified as primary factors that facilitated higher titers of the recombinant silk constructs. Using these findings, a novel strain of E. coli was created that produces recombinant silk constructs at levels 4-33 times higher than standard BL21(DE3). However, these findings did not extend to a similar recombinant protein, an elastin-like peptide. It was found that the recombinant silk proteins, but not the elastin-like peptide, exert toxicity on the E. coli host system, possibly through their high degree of intrinsic disorder. Along with strain engineering, a bioprocess design that utilizes longer culturing times and attenuated induction was found to raise recombinant silk titers by seven-fold and mitigate toxicity. Targeted alteration to the primary sequence of the recombinant silk constructs was also found to mitigate toxicity. These findings identify multiple points of focus for future work seeking to further optimize the recombinant production of silk proteins and is the first work to identify the intrinsic disorder and subsequent toxicity of certain spidroin constructs as a primary factor related to the difficulties of production.
Collapse
Affiliation(s)
- Alexander Connor
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Caleb Wigham
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Yang Bai
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Manish Rai
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Sebastian Nassif
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Corresponding author. Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - R. Helen Zha
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Corresponding author. Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
36
|
Engineering Mechanical Strong Biomaterials Inspired by Structural Building Blocks in Nature. Chem Res Chin Univ 2023. [DOI: 10.1007/s40242-023-2357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
37
|
Rapid molecular diversification and homogenization of clustered major ampullate silk genes in Argiope garden spiders. PLoS Genet 2022; 18:e1010537. [PMID: 36508456 PMCID: PMC9779670 DOI: 10.1371/journal.pgen.1010537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/22/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
The evolutionary diversification of orb-web weaving spiders is closely tied to the mechanical performance of dragline silk. This proteinaceous fiber provides the primary structural framework of orb web architecture, and its extraordinary toughness allows these structures to absorb the high energy of aerial prey impact. The dominant model of dragline silk molecular structure involves the combined function of two highly repetitive, spider-specific, silk genes (spidroins)-MaSp1 and MaSp2. Recent genomic studies, however, have suggested this framework is overly simplistic, and our understanding of how MaSp genes evolve is limited. Here we present a comprehensive analysis of MaSp structural and evolutionary diversity across species of Argiope (garden spiders). This genomic analysis reveals the largest catalog of MaSp genes found in any spider, driven largely by an expansion of MaSp2 genes. The rapid diversification of Argiope MaSp genes, located primarily in a single genomic cluster, is associated with profound changes in silk gene structure. MaSp2 genes, in particular, have evolved complex hierarchically organized repeat units (ensemble repeats) delineated by novel introns that exhibit remarkable evolutionary dynamics. These repetitive introns have arisen independently within the genus, are highly homogenized within a gene, but diverge rapidly between genes. In some cases, these iterated introns are organized in an alternating structure in which every other intron is nearly identical in sequence. We hypothesize that this intron structure has evolved to facilitate homogenization of the coding sequence. We also find evidence of intergenic gene conversion and identify a more diverse array of stereotypical amino acid repeats than previously recognized. Overall, the extreme diversification found among MaSp genes requires changes in the structure-function model of dragline silk performance that focuses on the differential use and interaction among various MaSp paralogs as well as the impact of ensemble repeat structure and different amino acid motifs on mechanical behavior.
Collapse
|
38
|
Pattipaka S, Bae YM, Jeong CK, Park KI, Hwang GT. Perovskite Piezoelectric-Based Flexible Energy Harvesters for Self-Powered Implantable and Wearable IoT Devices. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22239506. [PMID: 36502209 PMCID: PMC9735637 DOI: 10.3390/s22239506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/12/2023]
Abstract
In the ongoing fourth industrial revolution, the internet of things (IoT) will play a crucial role in collecting and analyzing information related to human healthcare, public safety, environmental monitoring and home/industrial automation. Even though conventional batteries are widely used to operate IoT devices as a power source, these batteries have a drawback of limited capacity, which impedes broad commercialization of the IoT. In this regard, piezoelectric energy harvesting technology has attracted a great deal of attention because piezoelectric materials can convert electricity from mechanical and vibrational movements in the ambient environment. In particular, piezoelectric-based flexible energy harvesters can precisely harvest tiny mechanical movements of muscles and internal organs from the human body to produce electricity. These inherent properties of flexible piezoelectric harvesters make it possible to eliminate conventional batteries for lifetime extension of implantable and wearable IoTs. This paper describes the progress of piezoelectric perovskite material-based flexible energy harvesters for self-powered IoT devices for biomedical/wearable electronics over the last decade.
Collapse
Affiliation(s)
- Srinivas Pattipaka
- Department of Materials Science and Engineering, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Young Min Bae
- Department of Materials Science and Engineering, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Chang Kyu Jeong
- Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Kwi-Il Park
- School of Materials Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Geon-Tae Hwang
- Department of Materials Science and Engineering, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea
| |
Collapse
|
39
|
Recombinant Spider Silk Fiber with High Dimensional Stability in Water and Its NMR Characterization. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238479. [PMID: 36500566 PMCID: PMC9739919 DOI: 10.3390/molecules27238479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Spider dragline silk has unique characteristics of strength and extensibility, including supercontraction. When we use it as a biomaterial or material for textiles, it is important to suppress the effect of water on the fiber by as much as possible in order to maintain dimensional stability. In order to produce spider silk with a highly hydrophobic character, based on the sequence of ADF-3 silk, we produced recombinant silk (RSSP(VLI)) where all QQ sequences were replaced by VL, while single Q was replaced by I. The artificial RSSP(VLI) fiber was prepared using formic acid as the spinning solvent and methanol as the coagulant solvent. The dimensional stability and water absorption experiments of the fiber were performed for eight kinds of silk fiber. RSSP(VLI) fiber showed high dimensional stability, which is suitable for textiles. A remarkable decrease in the motion of the fiber in water was made evident by 13C solid-state NMR. This study using 13C solid-state NMR is the first trial to put spider silk to practical use and provide information regarding the molecular design of new recombinant spider silk materials with high dimensional stability in water, allowing recombinant spider silk proteins to be used in next-generation biomaterials and materials for textiles.
Collapse
|
40
|
Preparation and Characterization of Nanofibrous Membranes Electro-Spun from Blended Poly(l-lactide-co-ε-caprolactone) and Recombinant Spider Silk Protein as Potential Skin Regeneration Scaffold. Int J Mol Sci 2022; 23:ijms232214055. [PMID: 36430534 PMCID: PMC9698895 DOI: 10.3390/ijms232214055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Biomaterial scaffolding serves as an important strategy in skin tissue engineering. In this research, recombinant spider silk protein (RSSP) and poly(L-lactide-co-ε-caprolactone) (PLCL) were blended in different ratios to fabricate nanofibrous membranes as potential skin regeneration scaffolds with an electro-spinning process. Scanning electron microscopy (SEM), water contact angles measurement, Fourier transform infrared (FTIR) spectroscopy, wide angle X-ray diffraction (WAXD), tensile mechanical tests and thermo-gravimetric analysis (TGA) were carried out to characterize the nanofibrous membranes. The results showed that the blending of RSSP greatly decreased the nanofibers' average diameter, enhanced the hydrophilicity, changed the microstructure and thermal properties, and could enable tailored mechanical properties of the nanofibrous membranes. Among the blended membranes, the PLCL/RSSP (75/25) membrane was chosen for further investigation on biocompatibility. The results of hemolysis assays and for proliferation of human foreskin fibroblast cells (hFFCs) confirmed the membranes potential use as skin-regeneration scaffolds. Subsequent culture of mouse embryonic fibroblast cells (NIH-3T3) demonstrated the feasibility of the blended membranes as a human epidermal growth factor (hEGF) delivery matrix. The PLCL/RSSP (75/25) membrane possessed good properties comparable to those of human skin with high biocompatibility and the ability of hEGF delivery. Further studies can be carried out on such membranes with chemical or genetic modifications to make better scaffolds for skin regeneration.
Collapse
|
41
|
Peng X, Cui Y, Chen J, Gao C, Yang Y, Yu W, Rai K, Zhang M, Nian R, Bao Z, Sun Y. High-Strength Collagen-Based Composite Films Regulated by Water-Soluble Recombinant Spider Silk Proteins and Water Annealing. ACS Biomater Sci Eng 2022; 8:3341-3353. [PMID: 35894734 DOI: 10.1021/acsbiomaterials.2c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spider silk has attracted extensive attention in the development of high-performance tissue engineering materials because of its excellent physical properties, biocompatibility, and biodegradability. Although high-molecular-weight recombinant spider silk proteins can be obtained through metabolic engineering of host bacteria, the solubility of the recombinant protein products is always poor. Strong denaturants and organic solvents have thus had to be exploited for their dissolution, and this seriously limits the applications of recombinant spider silk protein-based composite biomaterials. Herein, through adjusting the temperature, ionic strength, and denaturation time during the refolding process, we successfully prepared water-soluble recombinant spider major ampullate spidroin 1 (sMaSp1) with different repeat modules (24mer, 48mer, 72mer, and 96mer). Then, MaSp1 was introduced into the collagen matrix for fabricating MaSp1-collagen composite films. The introduction of spider silk proteins was demonstrated to clearly alter the internal structure of the composite films and improve the mechanical properties of the collagen-based films and turn the opaque protein films into transparency ones. More interestingly, the composite film prepared with sMaSp1 exhibited better performance in mechanical strength and cell adhesion compared to that prepared with water-insoluble MaSp1 (pMaSp1), which might be attributed to the effect of the initial dissolved state of MaSp1 on the microstructure of composite films. Additionally, the molecular weight of MaSp1 was also shown to significantly influence the mechanical strength (enhanced to 1.1- to 2.3-fold) and cell adhesion of composite films, and 72mer of sMaSp1 showed the best physical properties with good bioactivity. This study provides a method to produce recombinant spider silk protein with excellent water solubility, making it possible to utilize this protein under environmentally benign, mild conditions. This paves the way for the application of recombinant spider silk proteins in the development of diverse composite biomaterials.
Collapse
Affiliation(s)
- Xinying Peng
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| | - Yuting Cui
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
| | - Jinhong Chen
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, China
| | - Cungang Gao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
| | - Yang Yang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
| | - Wenfa Yu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
| | - Kamal Rai
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| | - Ming Zhang
- Qingdao Youheng Biotechnology Co., Ltd., No. 130 Jiushui East Road, Qingdao 266199, China
| | - Rui Nian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
| | - Zixian Bao
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, China
| | - Yue Sun
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
| |
Collapse
|
42
|
Lentz S, Trossmann VT, Borkner CB, Beyersdorfer V, Rottmar M, Scheibel T. Structure-Property Relationship Based on the Amino Acid Composition of Recombinant Spider Silk Proteins for Potential Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31751-31766. [PMID: 35786828 DOI: 10.1021/acsami.2c09590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Improving biomaterials by engineering application-specific and adjustable properties is of increasing interest. Most of the commonly available materials fulfill the mechanical and physical requirements of relevant biomedical applications, but they lack biological functionality, including biocompatibility and prevention of microbial infestation. Thus, research has focused on customizable, application-specific, and modifiable surface coatings to cope with the limitations of existing biomaterials. In the case of adjustable degradation and configurable interaction with body fluids and cells, these coatings enlarge the applicability of the underlying biomaterials. Silks are interesting coating materials, e.g., for implants, since they exhibit excellent biocompatibility and mechanical properties. Herein, we present putative implant coatings made of five engineered recombinant spider silk proteins derived from the European garden spider Araneus diadematus fibroins (ADF), differing in amino acid sequence and charge. We analyzed the influence of the underlying amino acid composition on wetting behavior, blood compatibility, biodegradability, serum protein adsorption, and cell adhesion. The outcome of the comparison indicates that spider silk coatings can be engineered for explicit biomedical applications.
Collapse
Affiliation(s)
- Sarah Lentz
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Vanessa T Trossmann
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Christian B Borkner
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Vivien Beyersdorfer
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Markus Rottmar
- Laboratory for Materials-Biology Interactions, Empa Swiss Federal Laboratories for Materials Science and Technology, CH-9014 St. Gallen, Switzerland
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
- Bayerisches Polymerinstitut (BPI), Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| |
Collapse
|
43
|
Lemetti L, Scacchi A, Yin Y, Shen M, Linder MB, Sammalkorpi M, Aranko AS. Liquid-Liquid Phase Separation and Assembly of Silk-like Proteins is Dependent on the Polymer Length. Biomacromolecules 2022; 23:3142-3153. [PMID: 35796676 PMCID: PMC9364312 DOI: 10.1021/acs.biomac.2c00179] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Phase transitions
have an essential role in the assembly of nature’s
protein-based materials into hierarchically organized structures,
yet many of the underlying mechanisms and interactions remain to be
resolved. A central question for designing proteins for materials
is how the protein architecture and sequence affects the nature of
the phase transitions and resulting assembly. In this work, we produced
82 kDa (1×), 143 kDa (2×), and 204 kDa (3×) silk-mimicking
proteins by taking advantage of protein ligation by SpyCatcher/Tag
protein-peptide pair. We show that the three silk proteins all undergo
a phase transition from homogeneous solution to assembly formation.
In the assembly phase, a length- and concentration-dependent transition
between two distinct assembly morphologies, one forming aggregates
and another coacervates, exists. The coacervates showed properties
that were dependent on the protein size. Computational modeling of
the proteins by a bead-spring model supports the experimental results
and provides us a possible mechanistic origin for the assembly transitions
based on architectures and interactions.
Collapse
Affiliation(s)
- Laura Lemetti
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo 02150, Finland.,Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Kemistintie 1, Espoo 02150, Finland
| | - Alberto Scacchi
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Kemistintie 1, Espoo 02150, Finland.,Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo 02150, Finland.,Department of Applied Physics, School of Science, Aalto University, Otakaari 1, Espoo 02150, Finland
| | - Yin Yin
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo 02150, Finland.,Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Kemistintie 1, Espoo 02150, Finland
| | - Mengjie Shen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo 02150, Finland.,Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Kemistintie 1, Espoo 02150, Finland
| | - Markus B Linder
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo 02150, Finland.,Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Kemistintie 1, Espoo 02150, Finland
| | - Maria Sammalkorpi
- Department of Bioproducts and Biosystems, Department of Chemistry and Materials Science, and Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), School of Chemical Engineering, Aalto University, Espoo, 02150, Finland
| | - A Sesilja Aranko
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo 02150, Finland.,Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Kemistintie 1, Espoo 02150, Finland
| |
Collapse
|
44
|
Aznar-Cervantes SD, Cenis JL, Lozano-Picazo P, Bruno AL, Pagán A, Ruiz-León Y, Candel MJ, González-Nieto D, Rojo FJ, Elices M, Guinea GV, Pérez-Rigueiro J. Unexpected high toughness of Samia cynthia ricini silk gut. SOFT MATTER 2022; 18:4973-4982. [PMID: 35748816 DOI: 10.1039/d2sm00340f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Silk gut fibers were produced from the silkworm Samia cynthia ricini silk glands by the usual procedure of immersion in a mildly acidic solution and subsequent stretching. The morphology of the silk guts was assessed by scanning electron microscopy, and their microstructure was assessed by infrared spectroscopy and X-ray diffraction. It was found that both naturally spun and Samia silk guts share a common semicrystalline microstructure. The mechanical characterization of the silk guts revealed that these fibers show an elastomeric behavior when tested in water, and exhibit a genuine ground state to which the fiber may revert independently of its previous loading history. In spite of its large cross-sectional area compared with naturally spun silk fibers, Samia silk guts show values of work to fracture up to 160 MJ m-3, much larger than those of most of their natural counterparts, and establish a new record value for this parameter in silk guts.
Collapse
Affiliation(s)
- Salvador D Aznar-Cervantes
- Departamento de Biotecnología, Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Ambiental (IMIDA), 30150, La Alberca, Murcia, Spain.
| | - José Luis Cenis
- Departamento de Biotecnología, Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Ambiental (IMIDA), 30150, La Alberca, Murcia, Spain.
| | - Paloma Lozano-Picazo
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Augusto Luis Bruno
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Ana Pagán
- Departamento de Biotecnología, Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Ambiental (IMIDA), 30150, La Alberca, Murcia, Spain.
| | - Yolanda Ruiz-León
- Research Support Unit, Real Jardín Botánico, Consejo Superior de Investigaciones Científicas (CSIC), 28014 Madrid, Spain
| | - María José Candel
- Departamento de Biotecnología, Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Ambiental (IMIDA), 30150, La Alberca, Murcia, Spain.
| | - Daniel González-Nieto
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Francisco Javier Rojo
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040, Madrid, Spain
| | - Manuel Elices
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Gustavo Víctor Guinea
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040, Madrid, Spain
| | - José Pérez-Rigueiro
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040, Madrid, Spain
| |
Collapse
|
45
|
Perera D, Wang Q, Schniepp HC. Multi-Point Nanoindentation Method to Determine Mechanical Anisotropy in Nanofibrillar Thin Films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202065. [PMID: 35780468 DOI: 10.1002/smll.202202065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Biomaterials with outstanding mechanical properties, including spider silk, wood, and cartilage, often feature an oriented nanofibrillar structure. The orientation of nanofibrils gives rise to a significant mechanical anisotropy, which is extremely challenging to characterize, especially for microscopically small or inhomogeneous samples. Here, a technique utilizing atomic force microscope indentation at multiple points combined with finite element analysis to sample the mechanical anisotropy of a thin film in a microscopically small area is reported. The system studied here is the tape-like silk of the Chilean recluse spider, which entirely consists of strictly oriented nanofibrils giving rise to a large mechanical anisotropy. The most detailed directional nanoscale structure-property characterization of spider silk to date is presented, revealing the tensile and transverse elastic moduli as 9 and 1 GPa, respectively, and the binding strength between silk nanofibrils as 159 ± 13 MPa. Furthermore, based on this binding strength, the nanofibrils' surface energy is derived as 37 mJ m-2 , and concludes that van der Waals forces play a decisive role in interfibrillar binding. Due to its versatility, this technique has many potential applications, including early disease diagnostics, as underlying pathological conditions can alter the local mechanical properties of tissues.
Collapse
Affiliation(s)
- Dinidu Perera
- Department of Applied Science, William & Mary, P.O. Box 8795, Williamsburg, VA, 23187-8795, USA
| | - Qijue Wang
- Department of Applied Science, William & Mary, P.O. Box 8795, Williamsburg, VA, 23187-8795, USA
| | - Hannes C Schniepp
- Department of Applied Science, William & Mary, P.O. Box 8795, Williamsburg, VA, 23187-8795, USA
| |
Collapse
|
46
|
He W, Qian D, Wang Y, Zhang G, Cheng Y, Hu X, Wen K, Wang M, Liu Z, Zhou X, Zhu M. A Protein-Like Nanogel for Spinning Hierarchically Structured Artificial Spider Silk. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201843. [PMID: 35509216 DOI: 10.1002/adma.202201843] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Spider dragline silk is draw-spun from soluble, β-sheet-crosslinked spidroin in aqueous solution. This spider silk has an excellent combination of strength and toughness, which originates from the hierarchical structure containing β-sheet crosslinking points, spiral nanoassemblies, a rigid sheath, and a soft core. Inspired by the spidroin structure and spider spinning process, a soluble and crosslinked nanogel is prepared and crosslinked fibers are drew spun with spider-silk-like hierarchical structures containing cross-links, aligned nanoassemblies, and sheath-core structures. Introducing nucleation seeds in the nanogel solution, and applying prestretch and a spiral architecture in the nanogel fiber, further tunes the alignment and assembly of the polymer chains, and enhances the breaking strength (1.27 GPa) and toughness (383 MJ m-3 ) to approach those of the best dragline silk. Theoretical modeling provides understanding for the dependence of the fiber's spinning capacity on the nanogel size. This work provides a new strategy for the direct spinning of tough fiber materials.
Collapse
Affiliation(s)
- Wenqian He
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Dong Qian
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Yang Wang
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Guanghao Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yao Cheng
- Chemical Engineering College, Inner Mongolia University of Technology, Huhhot, 010051, China
| | - Xiaoyu Hu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Kai Wen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Meilin Wang
- Department of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiang Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
- Department of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
47
|
Asakura T, Matsuda H, Naito A, Abe Y. Formylation of Recombinant Spider Silk in Formic Acid and Wet Spinning Studied Using Nuclear Magnetic Resonance and Infrared Spectroscopies. ACS Biomater Sci Eng 2022; 8:2390-2402. [PMID: 35532754 DOI: 10.1021/acsbiomaterials.2c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We reported wet spinning of recombinant spider silk protein (RSSP) and formylation of RSSP in formic acid (FA). First, FA was selected as the spinning solvent and the detailed spinning condition was determined. Next, the mechanical property was compared between the RSSP fiber spun after allowing the spinning solution dissolved in FA to stand for 2 days and the fiber spun immediately after being dissolved in FA for 4 h. The tensile strength of the former fiber was lower than the strength of the latter fiber. This difference can be explained by the difference in the degree of formylation as follows. FA is a known formylating agent, although most researchers who prepared silk fiber by wet spinning with FA have not pointed out about formylation. The formylation of the Ser OH group was confirmed by 13C solution nuclear magnetic resonance (NMR), and the time course of formylation of the RSSP film prepared from the FA solution was tracked by Fourier transform infrared spectroscopy. The 13C solid-state NMR spectra were also compared between two kinds of the formylated RSSP fibers and indicated that the packing state was tighter for the latter fiber than the former one, which could explain higher tensile strength of the latter fiber in the dry state. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicated that the RSSP sample decomposed gradually with storage time in FA and the decomposition has begun partly even at 2 h after dissolution in FA. The decomposition by formylation seems to have no significant effect on the backbone structure of the RSSP fiber, although the packing of the fiber becomes loose as a whole. Finally, preliminary trial of deformylation of the formylated RSSP fiber was performed.
Collapse
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Hironori Matsuda
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Akira Naito
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Yunoske Abe
- Spiber Inc., 234-1 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| |
Collapse
|
48
|
Arndt T, Greco G, Schmuck B, Bunz J, Shilkova O, Francis J, Pugno NM, Jaudzems K, Barth A, Johansson J, Rising A. Engineered Spider Silk Proteins for Biomimetic Spinning of Fibers with Toughness Equal to Dragline Silks. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2200986. [PMID: 36505976 PMCID: PMC9720699 DOI: 10.1002/adfm.202200986] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/10/2022] [Indexed: 06/17/2023]
Abstract
Spider silk is the toughest fiber found in nature, and bulk production of artificial spider silk that matches its mechanical properties remains elusive. Development of miniature spider silk proteins (mini-spidroins) has made large-scale fiber production economically feasible, but the fibers' mechanical properties are inferior to native silk. The spider silk fiber's tensile strength is conferred by poly-alanine stretches that are zipped together by tight side chain packing in β-sheet crystals. Spidroins are secreted so they must be void of long stretches of hydrophobic residues, since such segments get inserted into the endoplasmic reticulum membrane. At the same time, hydrophobic residues have high β-strand propensity and can mediate tight inter-β-sheet interactions, features that are attractive for generation of strong artificial silks. Protein production in prokaryotes can circumvent biological laws that spiders, being eukaryotic organisms, must obey, and the authors thus design mini-spidroins that are predicted to more avidly form stronger β-sheets than the wildtype protein. Biomimetic spinning of the engineered mini-spidroins indeed results in fibers with increased tensile strength and two fiber types display toughness equal to native dragline silks. Bioreactor expression and purification result in a protein yield of ≈9 g L-1 which is in line with requirements for economically feasible bulk scale production.
Collapse
Affiliation(s)
- Tina Arndt
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14183Sweden
| | - Gabriele Greco
- Laboratory for Bioinspired, Bionic, Nano, Meta, Materials & MechanicsDepartment of Civil, Environmental and Mechanical EngineeringUniversity of TrentoVia Mesiano 77Trento38123Italy
- Department of AnatomyPhysiology and BiochemistrySwedish University of Agricultural SciencesUppsala75007Sweden
| | - Benjamin Schmuck
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14183Sweden
- Department of AnatomyPhysiology and BiochemistrySwedish University of Agricultural SciencesUppsala75007Sweden
| | - Jessica Bunz
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14183Sweden
- Present address:
Spiber Technologies ABAlbaNova University CenterSE‐10691StockholmSweden
| | - Olga Shilkova
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14183Sweden
| | - Juanita Francis
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14183Sweden
| | - Nicola M Pugno
- Laboratory for Bioinspired, Bionic, Nano, Meta, Materials & MechanicsDepartment of Civil, Environmental and Mechanical EngineeringUniversity of TrentoVia Mesiano 77Trento38123Italy
- School of Engineering and Materials SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Kristaps Jaudzems
- Department of Physical Organic ChemistryLatvian Institute of Organic SynthesisRigaLV‐1006Latvia
| | - Andreas Barth
- Department of Biochemistry and BiophysicsThe Arrhenius Laboratories for Natural SciencesStockholm UniversityStockholm10691Sweden
| | - Jan Johansson
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14183Sweden
| | - Anna Rising
- Department of Biosciences and NutritionKarolinska InstitutetNeoHuddinge14183Sweden
- Department of AnatomyPhysiology and BiochemistrySwedish University of Agricultural SciencesUppsala75007Sweden
| |
Collapse
|
49
|
Jorge I, Ruiz V, Lavado-García J, Vázquez J, Hayashi C, Rojo FJ, Atienza JM, Elices M, Guinea GV, Pérez-Rigueiro J. Expression of spidroin proteins in the silk glands of golden orb-weaver spiders. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:241-253. [PMID: 34981640 DOI: 10.1002/jez.b.23117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
The expression of spidroins in the major ampullate, minor ampullate, flagelliform, and tubuliform silk glands of Trichonephila clavipes spiders was analyzed using proteomics analysis techniques. Spidroin peptides were identified and assigned to different gene products based on sequence concurrence when compared with the whole genome of the spider. It was found that only a relatively low proportion of the spidroin genes are expressed as proteins in any of the studied glands. In addition, the expression of spidroin genes in different glands presents a wide range of patterns, with some spidroins being found in a single gland exclusively, while others appear in the content of several glands. The combination of precise genomics, proteomics, microstructural, and mechanical data provides new insights both on the design principles of these materials and how these principles might be translated for the production of high-performance bioinspired artificial fibers.
Collapse
Affiliation(s)
- Inmaculada Jorge
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Víctor Ruiz
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Jesús Lavado-García
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Departament d'Enginyeria Química, Grup d'Enginyeria Cel·lular i de Bioprocessos (GECIB), Biològica i Ambiental, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Cheryl Hayashi
- Division of Invertebrate Zoology, Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, USA
| | - Francisco J Rojo
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
| | - José M Atienza
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Manuel Elices
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Gustavo V Guinea
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - José Pérez-Rigueiro
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
50
|
Abstract
![]()
The tiny spider makes
dragline silk fibers with unbeatable toughness,
all under the most innocuous conditions. Scientists have persistently
tried to emulate its natural silk spinning process using recombinant
proteins with a view toward creating a new wave of smart materials,
yet most efforts have fallen short of attaining the native fiber’s
excellent mechanical properties. One reason for these shortcomings
may be that artificial spider silk systems tend to be overly simplified
and may not sufficiently take into account the true complexity of
the underlying protein sequences and of the multidimensional aspects
of the natural self-assembly process that give rise to the hierarchically
structured fibers. Here, we discuss recent findings regarding the
material constituents of spider dragline silk, including novel spidroin
subtypes, nonspidroin proteins, and possible involvement of post-translational
modifications, which together suggest a complexity that transcends
the two-component MaSp1/MaSp2 system. We subsequently consider insights
into the spidroin domain functions, structures, and overall mechanisms
for the rapid transition from disordered soluble protein into a highly
organized fiber, including the possibility of viewing spider silk
self-assembly through a framework relevant to biomolecular condensates.
Finally, we consider the concept of “biomimetics” as
it applies to artificial spider silk production with a focus on key
practical aspects of design and evaluation that may hopefully inform
efforts to more closely reproduce the remarkable structure and function
of the native silk fiber using artificial methods.
Collapse
Affiliation(s)
- Ali D Malay
- Biomacromolecules Research Team, Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hamish C Craig
- Biomacromolecules Research Team, Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jianming Chen
- Biomacromolecules Research Team, Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Nur Alia Oktaviani
- Biomacromolecules Research Team, Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Keiji Numata
- Biomacromolecules Research Team, Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Department of Material Chemistry, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|