1
|
Radivojević I, Stojilković N, Antonijević-Miljaković E, Đorđević AB, Baralić K, Ćurčić M, Marić Đ, Đukić-Ćosić D, Bulat Z, Durgo K, Antonijević B. In silico attempt to reveal the link between cancer development and combined exposure to the maize herbicides: Glyphosate, nicosulfuron, S-metolachlor and terbuthylazine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175187. [PMID: 39094656 DOI: 10.1016/j.scitotenv.2024.175187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Pesticides are crucial for crop protection and have seen a 50 % increase in use in the last decade. Besides preventing significant crop losses their use has raised health concerns due to consumer exposure through residues in food and water. The toxicity data from individual components is often used to assess overall mixture toxicity, but uncertainty persists in understanding the behaviors of individual chemicals within these mixtures. Assessing the risk of pesticide mixture exposure remains challenging, potentially leading to overestimation or underestimation of toxicity. This study aims to establish a possible link between exposure to a herbicide mixture and genotoxic effects, focusing on cancer development. Our analysis was focused on four herbicides glyphosate, nicosulfuron, S-metolachlor and terbuthylazine. To determine the link between genes associated with cancer development due to exposure to herbicide mixture, a CTD database tools were used. Through the ToppFun tool molecular function and biological process associated with genes common to the disease of interest and selected herbicides were evaluated. And finally, GeneMANIA was used in order to analyze the function and interaction between common genes of herbicide mixture. Among the 7 common genes for herbicide mixture and cancer development coexpression characteristics were dominant at 65.41 %, 22.14 % of annotated genes shared the same pathway and 7.88 % showed co-localization. Among six target genes involved in genetic disease development co-expression was dominant at 87.34 %, colocalization at 8.03 % and shared protein domains at 4.52 %. Comprehensive molecular analyses, encompassing genomics, proteomics, and pathway analysis, are essential to unravel the specific mechanisms involved in the context of the studied mixture and its potential carcinogenic effects.
Collapse
Affiliation(s)
- Ivana Radivojević
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Nikola Stojilković
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Evica Antonijević-Miljaković
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Aleksandra Buha Đorđević
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Đurđica Marić
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Ksenija Durgo
- Faculty of food technology and biotechnology, University of Zagreb, Pierottijeva street 6, 10000 Zagreb, Croatia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| |
Collapse
|
2
|
Thiel KL, da Silva J, Wolfarth M, Vanini J, Henriques JAP, de Oliveira IM, da Silva FR. Assessment of cytotoxic and genotoxic effects of glyphosate-based herbicide on glioblastoma cell lines: Role of p53 in cellular response and network analysis. Toxicology 2024; 508:153902. [PMID: 39094917 DOI: 10.1016/j.tox.2024.153902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Glyphosate, the world's most widely used herbicide, has a low toxicity rating despite substantial evidence of adverse health effects. Furthermore, glyphosate-based formulations (GBFs) contain several other chemicals, some of which are known to be harmful. Additionally, chronic, and acute exposure to GBFs among rural workers may lead to health impairments, such as neurodegenerative diseases and cancer. P53 is known as a tumor suppressor protein, acting as a key regulator of the cellular response to stress and DNA damage. Therefore, mutations in the TP53 gene, which encodes p53, are common genetic alterations found in various types of cancer. Therefore, this study aimed to evaluate the cytotoxicity and genotoxicity of GBF in two glioblastoma cell lines: U87MG (TP53-proficient) and U251MG (TP53-mutant). Additionally, the study aimed to identify the main proteins involved in the response to GBF exposure using Systems Biology in a network containing p53 and another network without p53. The MTT assay was used to study the toxicity of GBF in the cell lines, the clonogenic assay was used to investigate cell survival, and the Comet Assay was used for genotoxicity evaluation. For data analysis, bioinformatics tools such as String 12.0 and Stitch 5.0 were applied, serving as a basis for designing binary networks in the Cytoscape 3.10.1 program. From the in vitro test analyses, it was observed a decrease in cell viability at doses starting from 10 ppm. Comet Assay at concentrations of 10 ppm and 30 ppm for the U251MG and U87MG cell lines, respectively observed DNA damage. The network generated with systems biology showed that the presence of p53 is important for the regulation of biological processes involved in genetic stability and neurotoxicity, processes that did not appear in the TP53-mutant network.
Collapse
Affiliation(s)
- Kelly Louise Thiel
- Laboratory of Genetics Toxicology, La Salle University, Av. Victor Barreto, 2288, Canoas, RS 92010-000, Brazil
| | - Juliana da Silva
- Laboratory of Genetics Toxicology, La Salle University, Av. Victor Barreto, 2288, Canoas, RS 92010-000, Brazil; Laboratory of Genetic Toxicology, Lutheran University of Brazil, Av. Farroupilha 8001, Canoas, RS 92425-900, Brazil.
| | - Micaele Wolfarth
- Laboratory of Genetics Toxicology, La Salle University, Av. Victor Barreto, 2288, Canoas, RS 92010-000, Brazil; Laboratory of Genetic Toxicology, Lutheran University of Brazil, Av. Farroupilha 8001, Canoas, RS 92425-900, Brazil
| | - Julia Vanini
- Department of Biophysics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - João Antonio Pêgas Henriques
- Department of Biophysics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Biotecnologia e em Ciências Médicas, Universidade do Vale do Taquari - UNIVATES, Lajeado, RS, Brazil
| | | | - Fernanda Rabaioli da Silva
- Laboratory of Genetics Toxicology, La Salle University, Av. Victor Barreto, 2288, Canoas, RS 92010-000, Brazil.
| |
Collapse
|
3
|
He X, Yang Y, Zhou S, Wei Q, Zhou H, Tao J, Yang G, You M. Alterations in microbiota-metabolism-circRNA crosstalk in autism spectrum disorder-like behaviours caused by maternal exposure to glyphosate-based herbicides in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117060. [PMID: 39299209 DOI: 10.1016/j.ecoenv.2024.117060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Epidemiological evidence indicates exposure to glyphosate-based herbicides (GBHs) increases the risk for autism spectrum disorder (ASD). The gut microbiota has been found to influence ASD behaviours through the microbiota-gut-brain axis. However, the underlying links between early life GBH exposure and ASD-like phenotypes through the microbiota-gut-brain axis remain unclear. Therefore, we exposed mice to low-dose GBH (0.10, 0.25, 0.50, and 1.00 %) and determined the effects on ASD-like behaviours. Furthermore, three kinds of omics (gut microbiomics, metabolomics, and transcriptomics) were conducted to investigate the effects of GBH exposure on gut microbiota, gut metabolites, and circular RNAs (circRNAs) in the prefrontal cortex (PFC) using a cross-generational mouse model. Behavioural analyses suggested social impairment and repetitive/stereotypic behaviours in the GBH-exposed offspring. Furthermore, maternal exposure to glyphosate significantly altered the ASD-associated gut microbiota of offspring, and ASD-associated gut metabolites were identified. Specifically, we found that alterations in the gut microenvironment may contribute to changes in gut permeability and the blood-brain barrier, which are related to changes in the levels of circRNAs in the PFC. Our results suggest a potential effect of circRNAs through the disruption of the gut-brain interaction, which is an important factor in the pathogenesis of ASD in offspring induced by maternal exposure to GBH.
Collapse
Affiliation(s)
- Xiu He
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China
| | - Yongyong Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China; Department of Occupational and Environmental Health, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 561113, China
| | - Shun Zhou
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China; Department of Occupational and Environmental Health, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 561113, China
| | - Qinghao Wei
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China; Department of Occupational and Environmental Health, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 561113, China
| | - Hao Zhou
- Department of Developmental Behavioural Pediatrics, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Junyan Tao
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 561113, China
| | - Guanghong Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China; Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 550004, China.
| | - Mingdan You
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China; Department of Occupational and Environmental Health, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 561113, China.
| |
Collapse
|
4
|
Ojha A, Shekhar S, Gupta P, Jaiswal S, Mishra SK. Comparative study of oxidative stress in cancer patients occupationally exposed to the mixture of pesticides. Discov Oncol 2024; 15:526. [PMID: 39367924 PMCID: PMC11456095 DOI: 10.1007/s12672-024-01235-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/13/2024] [Indexed: 10/07/2024] Open
Abstract
Cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020. Reviews indicated a positive relationship between exposure to pesticides and the development of cancers. In the present study, we have estimated the level of oxidative stress markers in serum samples of pesticide exposure and unexposed cancer patients as compared to normal control. We have found a significant decrease in peroxygenase (PON) and arylesterase (ARE) activity and substantial increases in homocysteine levels in both cancer groups. The level of heme biosynthesis rate-limiting enzymes delta-aminolevulinic acid dehydratase (δ-ALA-D) also significantly decreased compared to control. The statistical comparison between the cancer groups does not show significant changes. We concluded the involvement of oxidative stress in carcinogenesis in both cancer group patients. However, more study is needed to put homocysteine as a novel marker for a variety of diseases on a single platform.
Collapse
Affiliation(s)
- Anupama Ojha
- Department of Medical Biochemistry, Mahayogi Gorakhnath University Gorakhpur, Gorakhpur, Uttar Pradesh, India.
| | - Shashank Shekhar
- Department of Radiotherapy, AIIMS, Gorakhpur, Uttar Pradesh, India
| | - Poonam Gupta
- Department of Radiotherapy, Hanumaan Prasad Poddar Cancer Hospital and Research Centre, Gorakhpur, Uttar Pradesh, India
| | - Sonali Jaiswal
- Department of Biotechnology, DDU Gorakhpur University, Gorakhpur, India
| | | |
Collapse
|
5
|
Galli FS, Mollari M, Tassinari V, Alimonti C, Ubaldi A, Cuva C, Marcoccia D. Overview of human health effects related to glyphosate exposure. FRONTIERS IN TOXICOLOGY 2024; 6:1474792. [PMID: 39359637 PMCID: PMC11445186 DOI: 10.3389/ftox.2024.1474792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
Glyphosate is a chemical compound derived from glycine, marketed as a broad-spectrum herbicide, and represents one of the most widely used pesticides in the world. For a long time, it was assumed that glyphosate was harmless, either due to its selective enzymatic acting method on plants, and because commercial formulations were believed to contain only inert chemicals. Glyphosate is widely spread in the environment, the general population is daily exposed to it via different routes, including the consumption of both plant, and non-plant based foods. Glyphosate has been detected in high amounts in workers' urine, but has been detected likewise in bodily fluids, such as blood and maternal milk, and also in 60%-80% of general population, including children. Considering its massive presence, daily exposure to glyphosate could be considered a health risk for humans. Indeed, in 2015, the IARC (International Agency for Research on Cancer) classified glyphosate and its derivatives in Group 2A, as probable human carcinogens. In 2022, nevertheless, EFSA (European Food Safety Authority) stated that the available data did not provide sufficient evidence to prove the mutagenic/carcinogenic effects of glyphosate. Therefore, the European Commission (EC) decided to renew the approval of glyphosate for another 10 years. The purpose of this review is to examine the scientific literature, focusing on potential risks to human health arising from exposure to glyphosate, its metabolites and its commercial products (e.g., Roundup®), with particular regard to its mutagenic and carcinogenic potential and its effects as endocrine disrupter (ED) especially in the human reproductive system.
Collapse
Affiliation(s)
- Flavia Silvia Galli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Marta Mollari
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Valentina Tassinari
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Cristian Alimonti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Alessandro Ubaldi
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Camilla Cuva
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Daniele Marcoccia
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| |
Collapse
|
6
|
Ashley-Martin J, Marro L, Owen J, Borghese MM, Arbuckle T, Bouchard MF, Lanphear B, Walker M, Foster W, Fisher M. Gestational urinary concentrations of glyphosate and aminomethylphosphonic acid in relation to preterm birth: the MIREC study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024:10.1038/s41370-024-00702-w. [PMID: 39294416 DOI: 10.1038/s41370-024-00702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND Few high-quality studies have evaluated associations between urinary glyphosate or its environmental degradate (aminomethylphosphonic acid (AMPA)] and preterm birth (PTB). OBJECTIVES To quantify associations between urinary glyphosate and AMPA and preterm birth in the pan-Canadian Maternal-Infant Research on Environmental Chemicals (MIREC) study and determine if associations differ by fetal sex. METHODS We measured first trimester urinary glyphosate and AMPA concentrations in MIREC participants who were recruited between 2008-2011 from 10 Canadian cities. Of the 1880 participants whose first trimester urine samples were analyzed for glyphosate or AMPA, 1765 delivered a singleton, live birth. Our primary outcome was preterm birth (PTB) defined as births occurring between 20 and <37 weeks. Secondary outcomes were spontaneous preterm births (sPTB) and gestational age. We modelled the hazard of PTB and sPTB using discrete time survival analysis with multivariable logistic regression to calculate odds ratios (OR). We used multivariable linear regression models to quantify associations between analytes and gestational age. To assess effect modification by fetal sex, we stratified all models and calculated interaction terms. In the logistic regressions models we additionally calculated the relative excess risk due to interaction. RESULTS Six percent (n = 106) of the study population delivered preterm, and 4.7% (n = 83) had a spontaneous preterm birth. Median specific-gravity standardized concentrations of glyphosate and AMPA were 0.25 and 0.21 µg/L. Associations between both glyphosate or AMPA and PTB, sPTB, and gestational age centered around the null value. The adjusted ORs of PTB for each doubling of glyphosate and AMPA concentrations were 0.98 (95% CI: 0.94, 1.03) and 0.99 (95% CI: 0.92, 1.06) respectively. We observed no evidence of differences by fetal sex. CONCLUSIONS In this Canadian pregnancy cohort, neither glyphosate nor AMPA urinary concentrations was associated with PTB or reduced gestational length.
Collapse
Affiliation(s)
- Jillian Ashley-Martin
- Environmental Health Research and Science Bureau, Health Canada, Ottawa, ON, Canada.
| | - Leonora Marro
- Environmental Health Research and Science Bureau, Health Canada, Ottawa, ON, Canada
| | - James Owen
- Environmental Health Research and Science Bureau, Health Canada, Ottawa, ON, Canada
| | - Michael M Borghese
- Environmental Health Research and Science Bureau, Health Canada, Ottawa, ON, Canada
| | - Tye Arbuckle
- Environmental Health Research and Science Bureau, Health Canada, Ottawa, ON, Canada
| | - Maryse F Bouchard
- Armand-Frappier Santé Biotechnologie Research Centre, Institut National de la Recherche Scientifique, Laval, QC, Canada
| | - Bruce Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Mark Walker
- Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, ON, Canada
| | - Warren Foster
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Mandy Fisher
- Environmental Health Research and Science Bureau, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
7
|
Dinep-Schneider O, Appiah E, Dapper A, Patterson S, Vermulst M, Gout JF. Effects of the glyphosate-based herbicide roundup on C. elegans and S. cerevisiae mortality, reproduction, and transcription fidelity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124203. [PMID: 38830529 PMCID: PMC11321929 DOI: 10.1016/j.envpol.2024.124203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024]
Abstract
Glyphosate-based weed killers such as Roundup have been implicated in detrimental effects on single- and multicellular eukaryotic model organism health and longevity. However, the mode(s) of action for these effects are currently unknown. In this study, we investigate the impact of exposure to Roundup on two model organisms: Saccharomyces cerevisiae and Caenorhabditis elegans and test the hypothesis that exposure to Roundup decreases transcription fidelity. Population growth assays and motility assays were performed in order to determine the phenotypic effects of Roundup exposure. We also used Rolling-Circle Amplification RNA sequencing to quantify the impact of exposure to Roundup on transcription fidelity in these two model organisms. Our results show that exposure to the glyphosate-based herbicide Roundup increases mortality, reduces reproduction, and increases transcription error rates in C. elegans and S. cerevisiae. We suggest that these effects may be due in part to the involvement of inflammation and oxidative stress, conditions which may also contribute to increases in transcription error rates.
Collapse
Affiliation(s)
| | - Eastilan Appiah
- Department of Computer Science and Engineering, Computational Biology, Mississippi State University, Starkville, MS, USA
| | - Amy Dapper
- Department of Biology, Mississippi State University, Starkville, MS, USA
| | - Sarah Patterson
- Department of Computer Science and Engineering, Computational Biology, Mississippi State University, Starkville, MS, USA
| | - Marc Vermulst
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, CA, 90089, USA
| | - Jean-Francois Gout
- Department of Biology, Mississippi State University, Starkville, MS, USA
| |
Collapse
|
8
|
Porru S, Ferrian M, Mastrangelo G, Capovilla D, Corsini E, Fustinoni S, Peruzzi M, Colosio C. Short occupational exposure to glyphosate and its biomonitoring via urinary levels of glyphosate and metabolite AMPA (Amino-MethylPhosphonic acid), in Italian vineyard workers. Heliyon 2024; 10:e36407. [PMID: 39253168 PMCID: PMC11381772 DOI: 10.1016/j.heliyon.2024.e36407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/19/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Glyphosate, an herbicide largely used in various contexts, can have adverse effects on human health. Although it is currently the most applied pesticide worldwide, few studies evaluated the extent of human exposure via biomonitoring. To expand such information, biological monitoring of exposure to glyphosate was conducted. The study has a before-and-after design to demonstrate the immediate impact of short-term interventions. Accordingly, the urine concentrations of glyphosate and its main biodegradation product (amino-methylphosphonic acid- AMPA) were measured before and the day after the single herbicide application in 17 male winegrowers. Urine samples were analyzed by high performance liquid chromatography coupled with a triple quadrupole mass spectrometer equipped with an electrospray ionization source. Glyphosate and AMPA were not detectable in pre-application urine samples (limit of quantification for glyphosate (LOQG) was 0.1 μg/L; limit of quantification for AMPA (LOQAMPA) was 0.5 μg/L). After application, glyphosate urinary levels were above LOQG in all workers. The median, min, and max values were 2.30, 0.51, and 47.2 μg/L, respectively. The same values were found for 50 %, 5 % and 95 % percentiles. After assigning numerical values, such as one half the LOQ, to each of the non-detects, the "z" of Wilcoxon matched-pairs signed-ranks test was -3.62 (p = 0.0003), suggesting the pre-application values being significantly lower than the post-application urinary glyphosate concentration. A similar analysis was not feasible with AMPA urinary levels, which were detectable only in 3 workers, after application. 12 (71 %) workers were significantly exposed to glyphosate, but adherence to the adoption of personal protective equipment was good: 14 (82 %) workers used gloves, 13 (76 %) used overalls and 13 (76 %) facial masks. Our data show that glyphosate can be absorbed by the workers after a single application and confirms the usefulness of biomonitoring in exposed workers. Further studies are needed in larger working populations and with multiple glyphosate applications, as well as to evaluate the correlations of glyphosate urine levels with exposure questionnaire data, in order to assess the actual relevance of risk and protection factors.
Collapse
Affiliation(s)
- Stefano Porru
- Section of Occupational Medicine, Department of Diagnostics and Public Health, University of Verona, Italy
- MISTRAL, Interuniversity Research Centre 'Integrated Models of Study for Health Protection and Prevention in Living and Working Environments', University of Brescia, Milano Bicocca and Verona, University of Verona, Italy
| | - Melissa Ferrian
- Section of Occupational Medicine, Department of Diagnostics and Public Health, University of Verona, Italy
| | - Giuseppe Mastrangelo
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Italy
| | - Diego Capovilla
- Section of Occupational Medicine, Department of Diagnostics and Public Health, University of Verona, Italy
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Italy
| | - Silvia Fustinoni
- Department of Clinical and Community Sciences, Università degli Studi di Milano, Italy
- Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Manuela Peruzzi
- Occupational Health Service, Local Health Authority 9, Verona, Italy
| | - Claudio Colosio
- Post graduate School of Occupational Health, Università degli Studi di Milano, Italy and IRCCS Don Carlo Gnocchi Foundation, Milano, Italy
| |
Collapse
|
9
|
Franco GA, Molinari F, Marino Y, Tranchida N, Inferrera F, Fusco R, Di Paola R, Crupi R, Cuzzocrea S, Gugliandolo E, Britti D. Enviromental endocrine disruptor risks in the central nervous system: Neurotoxic effects of PFOS and glyphosate. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104496. [PMID: 38959819 DOI: 10.1016/j.etap.2024.104496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Endocrine disruptors (EDs) pose significant risks to human and environmental health, with potential implications for neurotoxicity. This study investigates the synergistic neurotoxic effects of perfluorooctane sulfonate (PFOS) and glyphosate (GLY), two ubiquitous EDs, using SHSY5Y neuronal and C6 astrocytic cell lines. While individual exposures to PFOS and glyphosate at non-toxic concentrations did not induce significant changes, their combination resulted in a marked increase in oxidative stress and neuroinflammatory responses. Specifically, the co-exposure led to elevated levels of interleukin-6, tumor necrosis factor alpha, and interferon gamma, along with reduced interleukin-10 expression, indicative of heightened neuroinflammatory processes. These findings underscore the importance of considering the synergistic interactions of EDs in assessing neurotoxic risks and highlight the urgent need for further research to mitigate the adverse effects of these compounds on neurological health.
Collapse
Affiliation(s)
| | - Francesco Molinari
- Department of Veterinary Sciences, University of Messina, Messina 98168, Italy
| | - Ylenia Marino
- Department CHIBIOFARAM, University of Messina, Messina 98166, Italy
| | - Nicla Tranchida
- Department CHIBIOFARAM, University of Messina, Messina 98166, Italy
| | | | - Roberta Fusco
- Department CHIBIOFARAM, University of Messina, Messina 98166, Italy
| | - Rosanna Di Paola
- Department CHIBIOFARAM, University of Messina, Messina 98166, Italy
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, Messina 98168, Italy
| | | | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, Messina 98168, Italy.
| | - Domenico Britti
- Department of Health Sciences, Campus Universitario "Salvatore Venuta" Viale Europa, 4 "Magna Græcia University" of Catanzaro, Catanzaro 88100, Italy
| |
Collapse
|
10
|
Beausoleil C, Thébault A, Andersson P, Cabaton NJ, Ermler S, Fromenty B, Garoche C, Griffin JL, Hoffmann S, Kamstra JH, Kubickova B, Lenters V, Kos VM, Poupin N, Remy S, Sapounidou M, Zalko D, Legler J, Jacobs MN, Rousselle C. Weight of evidence evaluation of the metabolism disrupting effects of triphenyl phosphate using an expert knowledge elicitation approach. Toxicol Appl Pharmacol 2024; 489:116995. [PMID: 38862081 DOI: 10.1016/j.taap.2024.116995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Identification of Endocrine-Disrupting Chemicals (EDCs) in a regulatory context requires a high level of evidence. However, lines of evidence (e.g. human, in vivo, in vitro or in silico) are heterogeneous and incomplete for quantifying evidence of the adverse effects and mechanisms involved. To date, for the regulatory appraisal of metabolism-disrupting chemicals (MDCs), no harmonised guidance to assess the weight of evidence has been developed at the EU or international level. To explore how to develop this, we applied a formal Expert Knowledge Elicitation (EKE) approach within the European GOLIATH project. EKE captures expert judgment in a quantitative manner and provides an estimate of uncertainty of the final opinion. As a proof of principle, we selected one suspected MDC -triphenyl phosphate (TPP) - based on its related adverse endpoints (obesity/adipogenicity) relevant to metabolic disruption and a putative Molecular Initiating Event (MIE): activation of peroxisome proliferator activated receptor gamma (PPARγ). We conducted a systematic literature review and assessed the quality of the lines of evidence with two independent groups of experts within GOLIATH, with the objective of categorising the metabolic disruption properties of TPP, by applying an EKE approach. Having followed the entire process separately, both groups arrived at the same conclusion, designating TPP as a "suspected MDC" with an overall quantitative agreement exceeding 85%, indicating robust reproducibility. The EKE method provides to be an important way to bring together scientists with diverse expertise and is recommended for future work in this area.
Collapse
Affiliation(s)
- Claire Beausoleil
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), 94701 Maisons-Alfort, France.
| | - Anne Thébault
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), 94701 Maisons-Alfort, France
| | | | - Nicolas J Cabaton
- INRAE. UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, 31027 Toulouse, France
| | - Sibylle Ermler
- Department of Life Sciences, Centre of Genome Engineering and Maintenance, College of Health, Medicine and Life Sciences, Brunel University London, UB8 3PH Uxbridge, United Kingdom
| | - Bernard Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1317, F-35000 Rennes, France
| | - Clémentine Garoche
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Julian L Griffin
- The Rowett Institute, Foresterhill Health Campus, University of Aberdeen, Aberdeen, UK
| | | | - Jorke H Kamstra
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Utrecht University, Utrecht, the Netherlands
| | - Barbara Kubickova
- Radiation, Chemical and Environmental Hazards (RCE), Department of Toxicology, UK Health Security Agency (UKHSA), Harwell Science and Innovation Campus, Chilton OX11 0RQ, Oxon, United Kingdom
| | - Virissa Lenters
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Utrecht University, Utrecht, the Netherlands
| | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Nathalie Poupin
- INRAE. UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, 31027 Toulouse, France
| | - Sylvie Remy
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | | | - Daniel Zalko
- INRAE. UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, 31027 Toulouse, France
| | - Juliette Legler
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Utrecht University, Utrecht, the Netherlands
| | - Miriam N Jacobs
- Radiation, Chemical and Environmental Hazards (RCE), Department of Toxicology, UK Health Security Agency (UKHSA), Harwell Science and Innovation Campus, Chilton OX11 0RQ, Oxon, United Kingdom
| | - Christophe Rousselle
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), 94701 Maisons-Alfort, France
| |
Collapse
|
11
|
Mathias F, Anthony E, Christelle R, Gaëlle L, Benoît P, Marine C, Pascal F, Joëlle D. Chronic dietary exposure to a glyphosate-based herbicide alters ovarian functions in young female broilers. Poult Sci 2024; 103:103767. [PMID: 38718536 PMCID: PMC11097068 DOI: 10.1016/j.psj.2024.103767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 05/19/2024] Open
Abstract
Glyphosate (GLY)-based herbicide (GBH) formulations are widely used pesticides in agriculture. The European Union recently decided to extend the use of GLY in Europe until 2034. Previously, we showed that chronic dietary GBH exposure in adult hens resulted in a reversible increase in early mortality in chicken embryos. In this present study, we investigated the GBH effects on metabolism and ovarian functions by using a transcriptomic approach in vivo in young female broilers and in vitro in ovarian explant cultures. We exposed 11-day-old female broilers to 13 mg GLY equivalent/kg body weight/d (GBH13, n = 20), 34 mg GLY equivalent/kg body weight/d (GBH34, n = 20), or a standard diet (control [CT], n = 20) for 25 d. These 2 GBH concentrations correspond to approximatively one-eighth and one-third of the no observed adverse effect level (NOAEL) as defined by European Food Safety Authority in birds. During this period, we evaluated body weight, fattening, food intake, and the weight of organs (including the ovaries). Chronic dietary GBH exposure dose dependently reduced food intake, body weight, and fattening, but increased oxidative stress and relative ovary weight. We analyzed the ovarian gene expression profile in CT, GBH13, and GBH34 broilers with RNA sequencing and showed that differentially expressed genes are mainly enriched in pathways related to cholesterol metabolism, steroidogenesis, and RNA processing. With quantitative polymerase chain reaction and western blotting, we confirmed that GBH decreased ovarian STAR and CYP19A1 messenger RNA and protein expression, respectively. Furthermore, we confirmed that GBH altered steroid production in ovarian explants. We have identified potential regulatory networks associated with GBH. These data provide valuable support for understanding the ovarian transcriptional regulatory mechanism of GBH in growing broilers.
Collapse
Affiliation(s)
- Freville Mathias
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l'Equitation, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université de Tours, Physiologie de la Reproduction et des Comportements, UMR85, Nouzilly F-37380, France
| | - Estienne Anthony
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l'Equitation, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université de Tours, Physiologie de la Reproduction et des Comportements, UMR85, Nouzilly F-37380, France
| | - Ramé Christelle
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l'Equitation, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université de Tours, Physiologie de la Reproduction et des Comportements, UMR85, Nouzilly F-37380, France
| | - Lefort Gaëlle
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l'Equitation, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université de Tours, Physiologie de la Reproduction et des Comportements, UMR85, Nouzilly F-37380, France
| | - Piégu Benoît
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l'Equitation, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université de Tours, Physiologie de la Reproduction et des Comportements, UMR85, Nouzilly F-37380, France
| | - Chahnamian Marine
- Unité Expérimentale du Pôle d'Expérimentation Avicole de Tours UEPEAT 1295, Nouzilly F-37380, France
| | - Froment Pascal
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l'Equitation, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université de Tours, Physiologie de la Reproduction et des Comportements, UMR85, Nouzilly F-37380, France
| | - Dupont Joëlle
- Unité Expérimentale du Pôle d'Expérimentation Avicole de Tours UEPEAT 1295, Nouzilly F-37380, France.
| |
Collapse
|
12
|
S Araújo W, Caldeira Rêgo CR, Guedes-Sobrinho D, Cavalheiro Dias A, Rodrigues do Couto I, Bordin JR, Ferreira de Matos C, Piotrowski MJ. Quantum Simulations and Experimental Insights into Glyphosate Adsorption Using Graphene-Based Nanomaterials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31500-31512. [PMID: 38842224 DOI: 10.1021/acsami.4c05733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The increasing global demand for food and agrarian development brings to light a dual issue concerning the use of substances that are crucial for increasing productivity yet can be harmful to human health and the environment when misused. Herein, we combine insights from high-level quantum simulations and experimental findings to elucidate the fundamental physicochemical mechanisms behind developing graphene-based nanomaterials for the adsorption of emerging contaminants, with a specific focus on pesticide glyphosate (GLY). We conducted a comprehensive theoretical and experimental investigation of graphene-based supports as promising candidates for detecting, sensing, capturing, and removing GLY applications. By combining ab initio molecular dynamics and density functional theory calculations, we explored several chemical environments encountered by GLY during its interaction with graphene-based substrates, including pristine and punctual defect regions. Our results unveiled distinct interaction behaviors: physisorption in pristine and doped graphene regions, chemisorption leading to molecular dissociation in vacancy-type defect regions, and complex transformations involving the capture of N and O atoms from impurity-adsorbed graphene, resulting in the formation of new GLY-derived compounds. The theoretical findings were substantiated by FTIR and Raman spectroscopy, which proposed a mechanism explaining GLY adsorption in graphene-based nanomaterials. The comprehensive evaluation of adsorption energies and associated properties provides valuable insights into the intricate nature of these interactions, shedding light on potential applications and guiding future experimental investigations of graphene-based nanofilters for water decontamination.
Collapse
Affiliation(s)
- Wanderson S Araújo
- Department of Physics, Federal University of Pelotas, PO Box 354, Pelotas, Rio Grande do Sul 96010-900, Brazil
| | - Celso Ricardo Caldeira Rêgo
- Institute of Nanotechnology Hermann-von-Helmholtz-Platz, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Diego Guedes-Sobrinho
- Chemistry Department, Federal University of Paraná, Curitiba, Paraná 81531-980, Brazil
| | - Alexandre Cavalheiro Dias
- Institute of Physics and International Center of Physics, University of Brasília, Brasília, Federal District 70919-970, Brazil
| | - Isadora Rodrigues do Couto
- Department of Chemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - José Rafael Bordin
- Department of Physics, Federal University of Pelotas, PO Box 354, Pelotas, Rio Grande do Sul 96010-900, Brazil
| | - Carolina Ferreira de Matos
- Department of Chemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Maurício Jeomar Piotrowski
- Department of Physics, Federal University of Pelotas, PO Box 354, Pelotas, Rio Grande do Sul 96010-900, Brazil
| |
Collapse
|
13
|
de Morais Valentim JMB, Coradi C, Viana NP, Fagundes TR, Micheletti PL, Gaboardi SC, Fadel B, Pizzatti L, Candiotto LZP, Panis C. Glyphosate as a Food Contaminant: Main Sources, Detection Levels, and Implications for Human and Public Health. Foods 2024; 13:1697. [PMID: 38890925 PMCID: PMC11171990 DOI: 10.3390/foods13111697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Glyphosate is a broad-spectrum pesticide that has become the most widely used herbicide globally. However, concerns have risen regarding its potential health impacts due to food contamination. Studies have detected glyphosate in human blood and urine samples, indicating human exposure and its persistence in the organism. A growing body of literature has reported the health risks concerning glyphosate exposure, suggesting that the daily intake of contaminated food and water poses a public health concern. Furthermore, countries with high glyphosate usage and lenient regulations regarding food and water contamination may face more severe consequences. In this context, in this review, we examined the literature regarding food contamination by glyphosate, discussed its detection methods, and highlighted its risks to human health.
Collapse
Affiliation(s)
| | - Carolina Coradi
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Francisco Beltrão 85605-010, Brazil; (C.C.); (N.P.V.); (P.L.M.); (S.C.G.); (L.Z.P.C.)
| | - Natália Prudêncio Viana
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Francisco Beltrão 85605-010, Brazil; (C.C.); (N.P.V.); (P.L.M.); (S.C.G.); (L.Z.P.C.)
| | - Tatiane Renata Fagundes
- Department of Biological Sciences, Universidade Estadual do Norte do Paraná (UENP), Bandeirantes 86360-000, Brazil;
| | - Pâmela Lonardoni Micheletti
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Francisco Beltrão 85605-010, Brazil; (C.C.); (N.P.V.); (P.L.M.); (S.C.G.); (L.Z.P.C.)
| | - Shaiane Carla Gaboardi
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Francisco Beltrão 85605-010, Brazil; (C.C.); (N.P.V.); (P.L.M.); (S.C.G.); (L.Z.P.C.)
- Instituto Federal Catarinense, Blumenau 89070-270, Brazil
| | - Bruna Fadel
- Laboratório de Biologia Molecular e Proteômica do Sangue, Instituto de Química, Universidade Federal do Rio de Janeiro (IQ-UFRJ), Rio de Janeiro 21941-909, Brazil; (B.F.); (L.P.)
| | - Luciana Pizzatti
- Laboratório de Biologia Molecular e Proteômica do Sangue, Instituto de Química, Universidade Federal do Rio de Janeiro (IQ-UFRJ), Rio de Janeiro 21941-909, Brazil; (B.F.); (L.P.)
| | - Luciano Zanetti Pessoa Candiotto
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Francisco Beltrão 85605-010, Brazil; (C.C.); (N.P.V.); (P.L.M.); (S.C.G.); (L.Z.P.C.)
| | - Carolina Panis
- Department of Pathological Sciences, Universidade Estadual de Londrina (UEL), Londrina 86057-970, Brazil;
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Francisco Beltrão 85605-010, Brazil; (C.C.); (N.P.V.); (P.L.M.); (S.C.G.); (L.Z.P.C.)
| |
Collapse
|
14
|
Díaz-Soto JA, Mussali-Galante P, Castrejón-Godínez ML, Saldarriaga-Noreña HA, Tovar-Sánchez E, Rodríguez A. Glyphosate resistance and biodegradation by Burkholderia cenocepacia CEIB S5-2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37480-37495. [PMID: 38776026 DOI: 10.1007/s11356-024-33772-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/19/2024] [Indexed: 06/20/2024]
Abstract
Glyphosate is a broad spectrum and non-selective herbicide employed to control different weeds in agricultural and urban zones and to facilitate the harvest of various crops. Currently, glyphosate-based formulations are the most employed herbicides in agriculture worldwide. Extensive use of glyphosate has been related to environmental pollution events and adverse effects on non-target organisms, including humans. Reducing the presence of glyphosate in the environment and its potential adverse effects requires the development of remediation and treatment alternatives. Bioremediation with microorganisms has been proposed as a feasible alternative for treating glyphosate pollution. The present study reports the glyphosate resistance profile and degradation capacity of the bacterial strain Burkholderia cenocepacia CEIB S5-2, isolated from an agricultural field in Morelos-México. According to the agar plates and the liquid media inhibition assays, the bacterial strain can resist glyphosate exposure at high concentrations, 2000 mg·L-1. In the degradation assays, the bacterial strain was capable of fast degrading glyphosate (50 mg·L-1) and the primary degradation metabolite aminomethylphosphonic acid (AMPA) in just eight hours. The analysis of the genomic data of B. cenocepacia CEIB S5-2 revealed the presence of genes that encode enzymes implicated in glyphosate biodegradation through the two metabolic pathways reported, sarcosine and AMPA. This investigation provides novel information about the potential of species of the genus Burkholderia in the degradation of the herbicide glyphosate and its main degradation metabolite (AMPA). Furthermore, the analysis of genomic information allowed us to propose for the first time a metabolic route related to the degradation of glyphosate in this bacterial group. According to the findings of this study, B. cenocepacia CEIB S5-2 displays a great glyphosate biodegradation capability and has the potential to be implemented in glyphosate bioremediation approaches.
Collapse
Affiliation(s)
- José Antonio Díaz-Soto
- Doctorado en Ciencias Naturales, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, CP, 62209, México
| | - Patricia Mussali-Galante
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad, 1001, Col. Chamilpa, Cuernavaca, CP, 62209, Morelos, México
| | - María Luisa Castrejón-Godínez
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad, 1001, Col. Chamilpa, Cuernavaca, CP, 62209, Morelos, México
| | - Hugo Albeiro Saldarriaga-Noreña
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad, 1001, Col. Chamilpa, Cuernavaca, CP, 62209, Morelos, México
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad, 1001, Col. Chamilpa, Cuernavaca, CP, 62209, Morelos, México
| | - Alexis Rodríguez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad, 1001, Col. Chamilpa, Cuernavaca, CP, 62209, Morelos, México.
| |
Collapse
|
15
|
Ahmad MF, Ahmad FA, Alsayegh AA, Zeyaullah M, AlShahrani AM, Muzammil K, Saati AA, Wahab S, Elbendary EY, Kambal N, Abdelrahman MH, Hussain S. Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures. Heliyon 2024; 10:e29128. [PMID: 38623208 PMCID: PMC11016626 DOI: 10.1016/j.heliyon.2024.e29128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
Pesticides are chemical constituents used to prevent or control pests, including insects, rodents, fungi, weeds, and other unwanted organisms. Despite their advantages in crop production and disease management, the use of pesticides poses significant hazards to the environment and public health. Pesticide elements have now perpetually entered our atmosphere and subsequently contaminated water, food, and soil, leading to health threats ranging from acute to chronic toxicities. Pesticides can cause acute toxicity if a high dose is inhaled, ingested, or comes into contact with the skin or eyes, while prolonged or recurrent exposure to pesticides leads to chronic toxicity. Pesticides produce different types of toxicity, for instance, neurotoxicity, mutagenicity, carcinogenicity, teratogenicity, and endocrine disruption. The toxicity of a pesticide formulation may depend on the specific active ingredient and the presence of synergistic or inert compounds that can enhance or modify its toxicity. Safety concerns are the need of the hour to control contemporary pesticide-induced health hazards. The effectiveness and implementation of the current legislature in providing ample protection for human health and the environment are key concerns. This review explored a comprehensive summary of pesticides regarding their updated impacts on human health and advanced safety concerns with legislation. Implementing regulations, proper training, and education can help mitigate the negative impacts of pesticide use and promote safer and more sustainable agricultural practices.
Collapse
Affiliation(s)
- Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Fakhruddin Ali Ahmad
- Department of Basic and Applied Science, School of Engineering and Science, G.D Goenka University, Gururgram, Haryana, 122103, India
| | - Abdulrahman A. Alsayegh
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Md. Zeyaullah
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Abdullah M. AlShahrani
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Abdullah Ali Saati
- Department of Community Medicine & Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Ehab Y. Elbendary
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Nahla Kambal
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Mohamed H. Abdelrahman
- College of Applied Medical Sciences, Medical Laboratory Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Sohail Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
16
|
Sun X, Zhang H, Huang X, Yang D, Wu C, Liu H, Zhang L. Associations of glyphosate exposure and serum sex steroid hormones among 6-19-year-old children and adolescents. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116266. [PMID: 38564862 DOI: 10.1016/j.ecoenv.2024.116266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Glyphosate, ranked as one of the most widely used herbicides in the world, has raised concerns about its potential disruptive effects on sex hormones. However, limited human evidence was available, especially for children and adolescents. The present study aimed to examine the associations between exposure to glyphosate and sex hormones among participants aged 6-19 years, utilizing data from the National Health and Nutrition Examination Survey (NHANES) conducted between 2013 and 2016. Children and adolescents who had available data on urinary glyphosate, serum sex steroid hormones, including testosterone (TT), estradiol (E2) and sex hormone binding globulin (SHBG), and covariates were selected. Additionally, the ratio of TT to E2 (TT/E2) and the free androgen index (FAI), which was calculated using TT/SHBG, were also included as sex hormone indicators. Survey regression statistical modeling was used to examine the associations between urinary glyphosate concentration and sex hormone indicators by age and sex group. Among the 964 participants, 83.71% had been exposed to glyphosate (>lower limit of detection). The survey regression revealed a marginally negative association between urinary glyphosate and E2 in the overall population, while this association was more pronounced in adolescents with a significant trend. In further sex-stratified analyses among adolescents, a significant decrease in E2, FAI, and TT (p trend <0.05) was observed in female adolescents for the highest quartile of urinary glyphosate compared to the lowest quartile. However, no similar association was observed among male adolescents. Our findings suggest that exposure to glyphosate at the current level may decrease the levels of sex steroids in adolescents, particularly female adolescents. Considering the cross-sectional study design, further research is needed to confirm our findings.
Collapse
Affiliation(s)
- Xiaojie Sun
- Department of Environmental Hygiene and Occupational Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Zhang
- Department of Environmental Hygiene and Occupational Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaojing Huang
- Department of Environmental Hygiene and Occupational Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Di Yang
- Department of Environmental Hygiene and Occupational Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Chuansha Wu
- Department of Environmental Hygiene and Occupational Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Zhang
- Department of Environmental Hygiene and Occupational Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
17
|
González A, Fullaondo A, Odriozola A. Impact of evolution on lifestyle in microbiome. ADVANCES IN GENETICS 2024; 111:149-198. [PMID: 38908899 DOI: 10.1016/bs.adgen.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
This chapter analyses the interaction between microbiota and humans from an evolutionary point of view. Long-term interactions between gut microbiota and host have been generated as a result of dietary choices through coevolutionary processes, where mutuality of advantage is essential. Likewise, the characteristics of the intestinal environment have made it possible to describe different intrahost evolutionary mechanisms affecting microbiota. For its part, the intestinal microbiota has been of great importance in the evolution of mammals, allowing the diversification of dietary niches, phenotypic plasticity and the selection of host phenotypes. Although the origin of the human intestinal microbial community is still not known with certainty, mother-offspring transmission plays a key role, and it seems that transmissibility between individuals in adulthood also has important implications. Finally, it should be noted that certain aspects inherent to modern lifestyle, including refined diets, antibiotic intake, exposure to air pollutants, microplastics, and stress, could negatively affect the diversity and composition of our gut microbiota. This chapter aims to combine current knowledge to provide a comprehensive view of the interaction between microbiota and humans throughout evolution.
Collapse
Affiliation(s)
- Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Asier Fullaondo
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
18
|
Kaur R, Choudhary D, Bali S, Bandral SS, Singh V, Ahmad MA, Rani N, Singh TG, Chandrasekaran B. Pesticides: An alarming detrimental to health and environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170113. [PMID: 38232846 DOI: 10.1016/j.scitotenv.2024.170113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Pesticides are chemical substances of natural or synthetic origin that are used to eradicate pests and insects. These are indispensable in the agricultural processes for better crop production. Pesticide use aims to promote crop yield and protect the crops from diseases and damage. Pesticides must be handled carefully and disposed of appropriately because they are dangerous to people and other species by default. Environmental pollution occurs when pesticide contamination spreads away from the intended plants. Older pesticides such as lindane and dichlorodiphenyltrichloroethane (DDT) may remain in water and soil for a longer time. These accumulate in various parts of the food chain and cause damage to the ecosystem. Biological techniques in the management of pest control such as importation, augmentation, and conservation, and the accompanying procedures are more efficient, less expensive, and ecologically sound than other ways. This review mainly focuses on the consequences on the targeted and non-targeted organisms including the health and well-being of humans by the use of pesticides and their toxicity. The side effects that occur when a pesticide's LD50 exceeds the accepted limit through oral or skin penetration due to their binding to various receptors such as estrogen receptors, GABA, EGFR, and others. These pesticide classes include carbamates, pyrethroids, organochlorides, organophosphorus, and others. The current study seeks to highlight the urgent requirement for a novel agricultural concept that includes a major reduction in the use of chemical pesticides.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India.
| | - Diksha Choudhary
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Samriddhi Bali
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | | | - Varinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Md Altamash Ahmad
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Nidhi Rani
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | | | | |
Collapse
|
19
|
Trinh PB, Schäfer AI. Removal of glyphosate (GLY) and aminomethylphosphonic acid (AMPA) by ultrafiltration with permeate-side polymer-based spherical activated carbon (UF-PBSAC). WATER RESEARCH 2024; 250:121021. [PMID: 38218047 DOI: 10.1016/j.watres.2023.121021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/15/2024]
Abstract
Glyphosate (GLY) is the most commonly used herbicide worldwide, and aminomethylphosphonic acid (AMPA) is one of its main metabolites. GLY and AMPA are toxic to humans, and their complex physicochemical properties present challenges in their removal from water. Several technologies have been applied to remove GLY and AMPA such as adsorption, filtration, and degradation with varied efficiencies. In previous works, an ultrafiltration membrane with permeate-side polymer-based spherical activated carbon (UF-PBSAC) showed the feasibility of removing uncharged micropollutants via adsorption in a flow-through configuration. The same UF-PBSAC was investigated for GLY and AMPA adsorption to assess the removal of charged and lower molecular weight micropollutants. The results indicated that both surface area and hydraulic residence time were limiting factors in GLY/AMPA adsorption by UF-PBSAC. The higher external surface of PBSAC with strong affinity for GLY and AMPA showed higher removal in a dynamic process where the hydraulic residence time was short (tens of seconds). Extending hydraulic residence times (hundreds of seconds) resulted in higher GLY/AMPA removal by allowing GLY/AMPA to diffuse into the PBSAC pores and reach more surfaces. Enhancement was achieved by minimising both limiting factors (external surface and hydraulic residence time) with a low flux of 25 L/m2.h, increased PBSAC layer of 6 mm, and small PBSAC particle size of 78 µm. With this configuration, UF-PBSAC could remove 98 % of GLY and 95 % of AMPA from an initial concentration of 1000 ng/L at pH 8.2 ± 0.2 and meet European Union (EU) regulation for herbicides (100 ng/L for individuals and 500 ng/L for total herbicides). The results implied that UF-PBSAC was able to remove charged micropollutants to the required levels and had potential for application in wastewater treatment and water reuse.
Collapse
Affiliation(s)
- Phuong B Trinh
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Andrea I Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany.
| |
Collapse
|
20
|
Singh R, Shukla A, Kaur G, Girdhar M, Malik T, Mohan A. Systemic Analysis of Glyphosate Impact on Environment and Human Health. ACS OMEGA 2024; 9:6165-6183. [PMID: 38371781 PMCID: PMC10870391 DOI: 10.1021/acsomega.3c08080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/15/2023] [Accepted: 12/29/2023] [Indexed: 02/20/2024]
Abstract
With a growing global population, agricultural scientists are focusing on crop production management and the creation of new strategies for a higher agricultural output. However, the growth of undesirable plants besides the primary crop poses a significant challenge in agriculture, necessitating the massive application of herbicides to eradicate this problem. Several synthetic herbicides are widely utilized, with glyphosate emerging as a potential molecule for solving this emerging issue; however, it has several environmental and health consequences. Several weed species have evolved resistance to this herbicide, therefore lowering agricultural yield. The persistence of glyphosate residue in the environment, such as in water and soil systems, is due to the misuse of glyphosate in agricultural regions, which causes its percolation into groundwater via the vertical soil profile. As a result, it endangers many nontarget organisms existing in the natural environment, which comprises both soil and water. The current Review aims to provide a systemic analysis of glyphosate, its various effects on the environment, its subsequent impact on human health and animals, which will lead us toward a better understanding of the issues about herbicide usage and aid in managing it wisely, as in the near the future glyphosate market is aiming for a positive forecast until 2035.
Collapse
Affiliation(s)
- Reenu Singh
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144411, India
| | - Akanksha Shukla
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144411, India
| | - Gurdeep Kaur
- School
of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Madhuri Girdhar
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144411, India
| | - Tabarak Malik
- Department
of Biomedical Sciences, Institute of Health, Jimma University, Jimma 00000, Ethiopia
| | - Anand Mohan
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144411, India
| |
Collapse
|
21
|
Mazuryk J, Klepacka K, Kutner W, Sharma PS. Glyphosate: Impact on the microbiota-gut-brain axis and the immune-nervous system, and clinical cases of multiorgan toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115965. [PMID: 38244513 DOI: 10.1016/j.ecoenv.2024.115965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/25/2023] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
Glyphosate (GLP) and GLP-based herbicides (GBHs), such as polyethoxylated tallow amine-based GLP surfactants (GLP-SH), developed in the late 70', have become the most popular and controversial agrochemicals ever produced. Nowadays, GBHs have reached 350 million hectares of crops in over 140 countries, with an annual turnover of 5 billion and 11 billion USD in the U.S.A. and worldwide, respectively. Because of the highly efficient inhibitory activity of GLP targeted to the 5-enolpyruvylshikimate-3-phosphate synthase pathway, present in plants and several bacterial strains, the GLP-resistant crop-based genetic agricultural revolution has decreased famine and improved the costs and quality of living in developing countries. However, this progress has come at the cost of the 50-year GBH overuse, leading to environmental pollution, animal intoxication, bacterial resistance, and sustained occupational exposure of the herbicide farm and companies' workers. According to preclinical and clinical studies covered in the present review, poisoning with GLP, GLP-SH, and GBHs devastatingly affects gut microbiota and the microbiota-gut-brain (MGB) axis, leading to dysbiosis and gastrointestinal (GI) ailments, as well as immunosuppression and inappropriate immunostimulation, cholinergic neurotransmission dysregulation, neuroendocrinal system disarray, and neurodevelopmental and neurobehavioral alterations. Herein, we mainly focus on the contribution of gut microbiota (GM) to neurological impairments, e.g., stroke and neurodegenerative and neuropsychiatric disorders. The current review provides a comprehensive introduction to GLP's microbiological and neurochemical activities, including deviation of the intestinal Firmicutes-to-Bacteroidetes ratio, acetylcholinesterase inhibition, excitotoxicity, and mind-altering processes. Besides, it summarizes and critically discusses recent preclinical studies and clinical case reports concerning the harmful impacts of GBHs on the GI tract, MGB axis, and nervous system. Finally, an insightful comparison of toxic effects caused by GLP, GBH-SH, and GBHs is presented. To this end, we propose a first-to-date survey of clinical case reports on intoxications with these herbicides.
Collapse
Affiliation(s)
- Jarosław Mazuryk
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; Bio & Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium.
| | - Katarzyna Klepacka
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; ENSEMBLE(3) sp. z o. o., 01-919 Warsaw, Poland
| | - Włodzimierz Kutner
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Piyush Sindhu Sharma
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
22
|
E R, J T, Ek Q, Ss F, E H, G P, Ce P. Canadians' knowledge of cancer risk factors and belief in cancer myths. BMC Public Health 2024; 24:329. [PMID: 38291409 PMCID: PMC10829248 DOI: 10.1186/s12889-024-17832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 01/20/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Many untrue statements about cancer prevention and risks are circulating. The objective of this study was to assess Canadians' awareness of known cancer risk factors and cancer myths (untruths or statements that are not completely true), and to explore how awareness may vary by sociodemographic and cognitive factors. METHODS Cancer myths were identified by conducting scans of published, grey literature, and social media. Intuitive-analytic thinking disposition scores included were actively open- and close-minded thinking, as well as preference for intuitive and effortful thinking. A survey was administered online to participants aged 18 years and older through Prolific. Results were summarized descriptively and analyzed using chi-square tests, as well as Spearman rank and Pearson correlations. RESULTS Responses from 734 Canadians were received. Participants were better at identifying known cancer risk factors (70% of known risks) compared to cancer myths (49%). Bivariate analyses showed differential awareness of known cancer risk factors (p < 0.05) by population density and income, cancer myths by province, and for both by ethnicity, age, and all thinking disposition scores. Active open-minded thinking and preference for effortful thinking were associated with greater discernment. Tobacco-related risk factors were well-identified (> 90% correctly identified), but recognition of other known risk factors was poor (as low as 23% for low vegetable and fruit intake). Mythical cancer risk factors with high support were consuming additives (61%), feeling stressed (52%), and consuming artificial sweeteners (49%). High uncertainty of causation was observed for glyphosate (66% neither agreed or disagreed). For factors that reduce cancer risk, reasonable awareness was observed for HPV vaccination (60%), but there was a high prevalence in cancer myths, particularly that consuming antioxidants (65%) and organic foods (45%) are protective, and some uncertainty whether drinking red wine (41%), consuming vitamins (32%), and smoking cannabis (30%) reduces cancer risk. CONCLUSIONS While Canadians were able to identify tobacco-related cancer risk factors, many myths were believed and numerous risk factors were not recognized. Cancer myths can be harmful in themselves and can detract the public's attention from and action on established risk factors.
Collapse
Affiliation(s)
- Rydz E
- School of Population and Public Health, CAREX Canada, University of British Columbia, Vancouver, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Telfer J
- School of Population and Public Health, CAREX Canada, University of British Columbia, Vancouver, Canada
| | - Quinn Ek
- School of Population and Public Health, CAREX Canada, University of British Columbia, Vancouver, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Fazel Ss
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Holmes E
- Canadian Cancer Society, Toronto, Canada
| | - Pennycook G
- Department of Psychology, Cornell University, New York, USA
| | - Peters Ce
- School of Population and Public Health, CAREX Canada, University of British Columbia, Vancouver, Canada.
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
- BC Centre for Disease Control, Vancouver, BC, Canada.
- BC Cancer, Vancouver, BC, Canada.
| |
Collapse
|
23
|
Badmos S, Noriega-Landa E, Holbrook KL, Quaye GE, Su X, Gao Q, Chacon AA, Adams E, Polascik TJ, Feldman AS, Annabi MM, Lee WY. Urinary volatile organic compounds in prostate cancer biopsy pathologic risk stratification using logistic regression and multivariate analysis models. Am J Cancer Res 2024; 14:192-209. [PMID: 38323272 PMCID: PMC10839326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/15/2023] [Indexed: 02/08/2024] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related death in American men after lung cancer. The current PCa diagnostic method, the serum prostate-specific antigen (PSA) test, is not specific, thus, alternatives are needed to avoid unnecessary biopsies and over-diagnosis of clinically insignificant PCa. To explore the application of metabolomics in such effort, urine samples were collected from 386 male adults aged 44-93 years, including 247 patients with biopsy-proven PCa and 139 with biopsy-proven negative results. The PCa-positive group was further subdivided into two groups: low-grade (ISUP Grade Group = 1; n = 139) and intermediate/high-grade (ISUP Grade Group ≥ 2; n = 108). Volatile organic compounds (VOCs) in urine were extracted by stir bar sorptive extraction (SBSE) and analyzed using thermal desorption with gas chromatography and mass spectrometry (GC-MS). We used machine learning tools to develop and evaluate models for PCa diagnosis and prognosis. In total, 22,538 VOCs were identified in the urine samples. With regularized logistic regression, our model for PCa diagnosis yielded an area under the curve (AUC) of 0.99 and 0.88 for the training and testing sets respectively. Furthermore, the model for differentiating between low-grade and intermediate/high-grade PCa yielded an average AUC of 0.78 based on a repeated test-sample approach for cross-validation. These novel methods using urinary VOCs and logistic regression were developed to fill gaps in PCa screening and assessment of PCa grades prior to biopsy. Our study findings provide a promising alternative or adjunct to current PCa screening and diagnostic methods to better target patients for biopsy and mitigate the challenges associated with over-diagnosis and over-treatment of PCa.
Collapse
Affiliation(s)
- Sabur Badmos
- Department of Chemistry and Biochemistry, University of Texas at El PasoEl Paso, Texas, USA
| | | | - Kiana L Holbrook
- Department of Chemistry and Biochemistry, University of Texas at El PasoEl Paso, Texas, USA
| | - George E Quaye
- Department of Mathematical Sciences, University of Texas at El PasoEl Paso, Texas, USA
| | - Xiaogang Su
- Department of Mathematical Sciences, University of Texas at El PasoEl Paso, Texas, USA
| | - Qin Gao
- Department of Chemistry and Biochemistry, University of Texas at El PasoEl Paso, Texas, USA
- PDM Biologics Analytical Operations, Gilead Sciences Inc.Oceanside, California, USA
| | - Angelica A Chacon
- Department of Chemistry and Biochemistry, University of Texas at El PasoEl Paso, Texas, USA
| | - Eric Adams
- Department of Urological Surgery, Duke University Medical CenterDurham, North Carolina, USA
| | - Thomas J Polascik
- Department of Urological Surgery, Duke University Medical CenterDurham, North Carolina, USA
| | - Adam S Feldman
- Department of Urology, Massachusetts General HospitalBoston, Massachusetts, USA
| | | | - Wen-Yee Lee
- Department of Chemistry and Biochemistry, University of Texas at El PasoEl Paso, Texas, USA
| |
Collapse
|
24
|
Liu J, Li K, Li S, Yang G, Lin Z, Miao Z. Grape seed-derived procyanidin inhibits glyphosate-induced hepatocyte ferroptosis via enhancing crosstalk between Nrf2 and FGF12. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155278. [PMID: 38103315 DOI: 10.1016/j.phymed.2023.155278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/11/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Glyphosate (GLY) exposure induces hepatocyte ferroptosis through overproduction of reactive oxygen species, regarded as an important contributor to liver damage. Grape seed-derived procyanidin (GSDP) has been reported to be an effective antioxidant, but whether and, if any, how GSDP can attenuate GLY-induced liver injury via inhibiting ferroptosis is unclear. PURPOSE The current study aimed to investigate the hepato-protective effects and possible mechanisms of GSDP. METHODS GLY-induced liver damage mice model was established to explore the hepatoprotective roles of GSPE in vivo. Subsequently, bioinformatics methodology was used to predict the key pathways and factors related to the action targets of GSPE against hepatocyte ferroptosis. Finally, we explored the roles of nuclear factor E2 related factor 2 (Nrf2) and fibroblast growth factor 21 (FGF21) in blunting GLY-induced liver damage via suppressing ferroptosis in vitro. RESULTS GSDP exerts hepato-protective effects in vivo and in vitro through reduced oxidative stress and inhibited ferroptosis, which was related to the activation of Nrf2. Bioinformatics analysis showed an interaction between Nrf2 and FGF21. Furthermore, Nrf2 inhibition reduced FGF21 expression in the mRNA and protein levels. Fgf21 knockdown suppressed Nrf2 expression level, but recombinant FGF21 protein increased Nrf2 expression and promoted Nrf2 translocation into nucleus, suggesting a crosstalk between Nrf2 and FGF21. Intriguingly, the decreased levels of Nrf2 and FGF21 compromised the protective roles of GSDP against GLY-induced hepatocyte ferroptosis. CONCLUSION These findings suggest that GSDP attenuates GLY-caused hepatocyte ferroptosis via enhancing the interplay between Nrf2 and FGF21. Thus, GSDP may be a promising natural compound to antagonize ferroptosis-related damage.
Collapse
Affiliation(s)
- Jingbo Liu
- College of Biological and Brewing Engineering, Taishan University, No. 525 Dongyue Street, Tai'an, Shandong 271000, China.
| | - Kun Li
- Shanghai Pulmonary Hospital, No.507 Zhengmin Road, Yangpu District, Shanghai 200433, China
| | - Song Li
- College of Basic Medicine, Shandong First Medical University, No. 6699 Qingdao Road, Ji'nan 250024, China
| | - Guangcheng Yang
- College of Biological and Brewing Engineering, Taishan University, No. 525 Dongyue Street, Tai'an, Shandong 271000, China
| | - Zhenxian Lin
- College of Biological and Brewing Engineering, Taishan University, No. 525 Dongyue Street, Tai'an, Shandong 271000, China
| | - Zengmin Miao
- College of Life Sciences, Shandong First Medical University, No. 619 Changcheng Road, Tai'an 271016, China.
| |
Collapse
|
25
|
Zanchi MM, Marafon F, Marins K, Bagatini MD, Zamoner A. Redox imbalance and inflammation: A link to depression risk in brazilian pesticide-exposed farmers. Toxicology 2024; 501:153706. [PMID: 38097130 DOI: 10.1016/j.tox.2023.153706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/23/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
This study aims to elucidate the mechanisms linking occupational pesticide exposure to depression among rural workers from Maravilha, Brazil. We assessed the mental health, oxidative, and inflammatory profiles of farmers exposed to pesticides (N = 28) and compared them to an urban control group without occupational exposure to pesticides (N = 25). Data on sociodemographic, occupational history, and clinical records were collected. Emotional states were evaluated using the State-Trait Anxiety Inventory (STAI) and Beck Depression Inventory (BDI). Biochemical, hematological, inflammatory, and redox parameters were examined in blood samples from both groups. Results showed educational disparities between groups and unveiled a concerning underutilization of personal protective equipment (PPEs) among farmers. Glyphosate was the predominant pesticide used by farmers. Farmers exhibited higher BDI scores, including more severe cases of depression. Additionally, elevated levels of creatinine, ALT, AST, and LDH were observed in farmers, suggesting potential renal and hepatic issues due to pesticide exposure. Oxidative stress markers, such as increased lipid peroxidation and superoxide dismutase (SOD) activity, along with decreased catalase (CAT) activity and ascorbic acid levels, were noted in the pesticide-exposed group compared to controls. Elevated levels of inflammatory cytokines, particularly IL-1β, IL-6 and TNF-α, were also observed in pesticide-exposed group. Our findings suggest that inflammation, oxidative distress and lower educational levels may be associated with depression in pesticide-exposed farmers. This study highlights the impact of occupational pesticide exposure on the mental health of rural workers. The underuse of PPEs and the link between depressive symptoms, inflammation, and oxidative stress underscore the urgent need for improved safety measures in agricultural practices. Addressing these issues will contribute to a deeper understanding of the intricate relationship between environmental exposures and mental health outcomes.
Collapse
Affiliation(s)
- Mariane Magalhães Zanchi
- Laboratory of Biochemistry and Cell Signaling, Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, 88037-000 SC, Brazil
| | - Filomena Marafon
- Laboratory of Cell Culture, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, 89815-899 SC, Brazil
| | - Katiuska Marins
- Laboratory of Biochemistry and Cell Signaling, Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, 88037-000 SC, Brazil
| | - Margarete Dulce Bagatini
- Laboratory of Biochemistry and Cell Signaling, Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, 88037-000 SC, Brazil
| | - Ariane Zamoner
- Laboratory of Biochemistry and Cell Signaling, Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, 88037-000 SC, Brazil.
| |
Collapse
|
26
|
Pandey A, Gupta A, Alam U, Verma N. Construction of a stable S-scheme NiSnO 3/g-C 3N 4 heterojunction on activated carbon fibre for the degradation of glyphosate in water under flow condition. CHEMOSPHERE 2024; 347:140709. [PMID: 37977535 DOI: 10.1016/j.chemosphere.2023.140709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/20/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Creating light-harvesting heterojunctions as a photocatalyst is critical for efficiently treating organics-laden wastewater. Yet the materials stabilization and limited reusability hinder their practical applications. In this study, an S-scheme heterojunction in the Sn-based perovskite and g-C3N4 (gCN) composite, supported on an activated carbon fiber (ACF) substrate, is developed for glyphosate (GLP) degradation under water under flow conditions. The reusable NiSnO3-gCN/ACF photocatalyst was synthesized using a simple wet impregnation and calcination method. The supported photocatalyst achieved 99% GLP-removal at 4 mL/min water flowrate and 1.25 g/m2 of photocatalyst loading in ACF. The photocatalyst showed a stable structure and repeat photocatalytic performance across 5 cycles despite prolonged visible light exposure under flow conditions. The materials stability is attributed to the effective dispersion of NiSnO3-gC3N4 in ACF, preventing the photocatalyst from elution in water flow. Radical trapping experiment revealed the superoxide and hydroxyl radicals as the primary reactive species in the GLP-degradation pathway. A plausible S-scheme mechanism was proposed for heterojunction formation, based on the high resolution deconvoluted spectra of X-ray photoelectron spectroscopy and the radical trapping experimental results. The inexpensive Sn-based perovskite synthesized in this study is indicated as an alternative to Ti-based perovskites for wastewater remediation application.
Collapse
Affiliation(s)
- Arin Pandey
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Abhishek Gupta
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Umair Alam
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Nishith Verma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India; Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
27
|
Chandran D, Jayaraman S, Sankaran K, Veeraraghavan VP, R G. Antioxidant Vitamins Attenuate Glyphosate-Induced Development of Type-2 Diabetes Through the Activation of Glycogen Synthase Kinase-3 β and Forkhead Box Protein O-1 in the Liver of Adult Male Rats. Cureus 2023; 15:e51088. [PMID: 38274944 PMCID: PMC10808862 DOI: 10.7759/cureus.51088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/25/2023] [Indexed: 01/27/2024] Open
Abstract
INTRODUCTION Glyphosate is a well-known broad-spectrum desiccant and herbicide. It is an active component used widely in popular weed control products like Roundup (BigHaat Agro Pvt Ltd, Bangalore, Karnataka, India), Rodeo (Corteva, Inc., Indianapolis, Indiana, United States), and PondMaster (PBI-Gordon Corporation, Shawnee, Kansas, United States). However, due to sustained presence, they tend to get deposited in the environmental resources and leach into the living system. It has been shown to develop various cancers and diabetes. However, its impact on GSK-3β (glycogen synthase kinase-3 beta) and FOXO-1 (forkhead box protein O1), both critical proteins involved in the regulation of glucose metabolism and insulin signaling, is unknown. Objective: The primary objective of this study was to check whether antioxidant vitamins (C and E) can reduce hyperglycemia and hyperinsulinemia in response to glyphosate exposure and the secondary objective was to investigate whether antioxidant vitamins have the capacity to downregulate GSK-3β and FOXO-1-mediated oxidative stress in the liver of glyphosate induced rats. Methods: We divided the experimental animals into three groups. Group 1 - control rats (animals were injected with olive oil (0.8ml) intraperitoneally), Group 2 - glyphosate-treated rats orally for ten weeks, Group 3 - glyphosate-treated rats received vitamin C and vitamin E. After 30 days of treatment, the animals were anesthetized, sera were separated and used for the biochemical analysis. Liver tissues from control and treated animals were dissected and stored at -20°C for further gene expression analysis. Fasting blood glucose (FBG) was assessed by calorimetric analysis, while serum insulin was measured by enzyme-linked immunosorbent assay (ELISA). Gene expression studies of specific genes (FOXO1 and GSK3) were analyzed by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. RESULTS The expression level of FOX01 and GSK3β genes was higher in glyphosate-induced animals compared with the control group but was reduced significantly (p<0.05) upon treatment with antioxidant vitamins (C and E). Other biochemical parameters, including FBG, serum insulin, and antioxidant enzyme assays, also showed that antioxidant vitamins reduce glyphosate-induced insulin resistance and type-2 diabetes. Conclusion: The current study provides in vivo experimental evidence that antioxidant vitamins (C and E) reduce the glyphosate-mediated development of type-2 diabetes risk via the downregulation of FOX01 and GS-3β mRNA expression in the liver. Hence, vitamins C and E may be considered as therapeutics for the treatment of diabetes.
Collapse
Affiliation(s)
- Divaskara Chandran
- Centre of Molecular Medicine and Diagnostics, Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics, Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Kavitha Sankaran
- Centre of Molecular Medicine and Diagnostics, Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics, Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Gayathri R
- Centre of Molecular Medicine and Diagnostics, Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
28
|
de Araujo LG, Zordan DF, Celzard A, Fierro V. Glyphosate uses, adverse effects and alternatives: focus on the current scenario in Brazil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9559-9582. [PMID: 37776469 DOI: 10.1007/s10653-023-01763-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/15/2023] [Indexed: 10/02/2023]
Abstract
Brazil, a global frontrunner in pesticide consumption and sales, particularly glyphosate, appears to be at odds with other countries that increasingly ban these products in their territories. This study gathers the values of Acceptable Daily Intake and Maximum Residue Limits (MRL) in the European Union for dozens of substances and subsequently contrasts them with the corresponding benchmarks upheld in Brazil concerning its predominant crops. Furthermore, this study delves into the toxicity levels and the potential health ramifications of glyphosate on humans through the ingestion of food containing its residues. The findings from this research underscore a notable surge in glyphosate and pesticide sales and usage within Brazil over the past decade. In stark contrast to its European counterparts, Brazil not only sanctioned the sale and application of 474 new pesticides in 2019, but extended the authorization for glyphosate sales while downgrading its toxicity classification. Finally, this review not only uncovers disparities among research outcomes but also addresses the complexities of replacing glyphosate and introduces environmentally friendlier alternatives that have been subject to evaluation in the existing literature.
Collapse
Affiliation(s)
| | | | - Alain Celzard
- Institut Jean Lamour, Université de Lorraine, Epinal, France
- Institut Universitaire de France (IUF), Paris, France
| | - Vanessa Fierro
- Institut Jean Lamour, Université de Lorraine, Epinal, France.
| |
Collapse
|
29
|
Casassus B. EU allows use of controversial weedkiller glyphosate for 10 more years. Nature 2023:10.1038/d41586-023-03589-z. [PMID: 37978275 DOI: 10.1038/d41586-023-03589-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
|
30
|
Jun I, Feng Z, Avanasi R, Brain RA, Prosperi M, Bian J. Evaluating the perceptions of pesticide use, safety, and regulation and identifying common pesticide-related topics on Twitter. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:1581-1599. [PMID: 37070476 DOI: 10.1002/ieam.4777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/18/2023] [Accepted: 04/04/2023] [Indexed: 05/13/2023]
Abstract
Synthetic pesticides are important agricultural tools that increase crop yield and help feed the world's growing population. These products are also highly regulated to balance benefits and potential environmental and human risks. Public perception of pesticide use, safety, and regulation is an important topic necessitating discussion across a variety of stakeholders from lay consumers to regulatory agencies since attitudes toward this subject could differ markedly. Individuals and organizations can perceive the same message(s) about pesticides differently due to prior differences in technical knowledge, perceptions, attitudes, and individual or group circumstances. Social media platforms, like Twitter, include both individuals and organizations and function as a townhall where each group promotes their topics of interest, shares their perspectives, and engages in both well-informed and misinformed discussions. We analyzed public Twitter posts about pesticides by user group, time, and location to understand their communication behaviors, including their sentiments and discussion topics, using machine learning-based text analysis methods. We extracted tweets related to pesticides between 2013 and 2021 based on relevant keywords developed through a "snowball" sampling process. Each tweet was grouped into individual versus organizational groups, then further categorized into media, government, industry, academia, and three types of nongovernmental organizations. We compared topic distributions within and between those groups using topic modeling and then applied sentiment analysis to understand the public's attitudes toward pesticide safety and regulation. Individual accounts expressed concerns about health and environmental risks, while industry and government accounts focused on agricultural usage and regulations. Public perceptions are heavily skewed toward negative sentiments, although this varies geographically. Our findings can help managers and decision-makers understand public sentiments, priorities, and perceptions and provide insights into public discourse on pesticides. Integr Environ Assess Manag 2023;19:1581-1599. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Inyoung Jun
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Zheng Feng
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | | | - Richard A Brain
- Syngenta Crop Protection, LLC, Greensboro, North Carolina, USA
| | - Mattia Prosperi
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
31
|
Roma D, Cecchini ME, Tonini MP, Capella V, Aiassa D, Rodriguez N, Mañas F. Toxicity assessment and DNA repair kinetics in HEK293 cells exposed to environmentally relevant concentrations of Glyphosate (Roundup® Control Max). Toxicol Res (Camb) 2023; 12:970-978. [PMID: 37915486 PMCID: PMC10615827 DOI: 10.1093/toxres/tfad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 11/03/2023] Open
Abstract
Glyphosate is a systemic, non-selective, pre and post-emergence wide range herbicide. In 2015, IARC classified Glyphosate as "a probable carcinogenic agent for humans". The aim of this study was to evaluate the cytotoxicity and genotoxicity of the commercial formulation of glyphosate (Roundup® Control Max) at environmentally relevant concentrations and measure the potential effect of this herbicide over the cell capacity to repair DNA damage. HEK293 cells were exposed to 5 concentrations of Roundup® Control Max equivalent to 0.7; 7; 70; 700 and 3,500 μg/L glyphosate acid, for 1, 4 and 24 h. Cytotoxicity was quantified by the Trypan Blue staining method and by the MTT assay, while genotoxicity and evaluation of DNA damage repair kinetics were analyzed through the alkaline comet assay. In all treatments, cell viability was higher than 80%. The three highest glyphosate concentrations-70 μg/L, 700 μg/L, and 3,500 μg/L-increased levels of DNA damage compared to the control at the three exposure times tested. Finally, concerning the kinetics of DNA damage repair, cells initially exposed to 3,500 μg/L of glyphosate for 24 h were unable to repair the breaks in DNA strands even after 4 h of incubation in culture medium. The present study demonstrated for the first time that Roundup® Control Max may induce genetic damage and cause alterations in the DNA repair system in human embryonic kidney cells even at concentrations found in blood and breast milk of people exposed through residues of the herbicide in food, which values have been poorly assessed or not studied yet according to the existent literature.
Collapse
Affiliation(s)
- Dardo Roma
- Department of Animal Clinic, National University of Río Cuarto-CONICET, National Route No. 36, 601 Km, Rio Cuarto X5804ZAB, Argentina
| | - Maria Eugenia Cecchini
- Department of Animal Clinic, National University of Río Cuarto-CONICET, National Route No. 36, 601 Km, Rio Cuarto X5804ZAB, Argentina
| | - María Paula Tonini
- Department of Animal Clinic, National University of Río Cuarto-CONICET, National Route No. 36, 601 Km, Rio Cuarto X5804ZAB, Argentina
| | - Virginia Capella
- Department of Molecular Biology, National University of Río Cuarto-CONICET, National Route No. 36, 601 Km, Rio Cuarto X5804ZAB, Argentina
| | - Delia Aiassa
- Department of Natural Sciences, National University of Río Cuarto, National Route No. 36, 601 Km, Rio Cuarto X5804ZAB, Argentina
| | - Nancy Rodriguez
- Department of Molecular Biology, National University of Río Cuarto-CONICET, National Route No. 36, 601 Km, Rio Cuarto X5804ZAB, Argentina
| | - Fernando Mañas
- Department of Animal Clinic, National University of Río Cuarto-CONICET, National Route No. 36, 601 Km, Rio Cuarto X5804ZAB, Argentina
| |
Collapse
|
32
|
Le Quilliec E, Fundere A, Al-U’datt DGF, Hiram R. Pollutants, including Organophosphorus and Organochloride Pesticides, May Increase the Risk of Cardiac Remodeling and Atrial Fibrillation: A Narrative Review. Biomedicines 2023; 11:2427. [PMID: 37760868 PMCID: PMC10525278 DOI: 10.3390/biomedicines11092427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Atrial fibrillation (AF) is the most common type of cardiac rhythm disorder. Recent clinical and experimental studies reveal that environmental pollutants, including organophosphorus-organochloride pesticides and air pollution, may contribute to the development of cardiac arrhythmias including AF. Here, we discussed the unifying cascade of events that may explain the role of pollutant exposure in the development of AF. Following ingestion and inhalation of pollution-promoting toxic compounds, damage-associated molecular pattern (DAMP) stimuli activate the inflammatory response and oxidative stress that may negatively affect the respiratory, cognitive, digestive, and cardiac systems. Although the detailed mechanisms underlying the association between pollutant exposure and the incidence of AF are not completely elucidated, some clinical reports and fundamental research data support the idea that pollutant poisoning can provoke perturbed ion channel function, myocardial electrical abnormalities, decreased action potential duration, slowed conduction, contractile dysfunction, cardiac fibrosis, and arrhythmias including AF.
Collapse
Affiliation(s)
- Ewen Le Quilliec
- Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada;
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada;
| | - Alexia Fundere
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada;
| | - Doa’a G. F. Al-U’datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Roddy Hiram
- Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada;
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada;
| |
Collapse
|
33
|
Trinh PB, Schäfer AI. Adsorption of glyphosate and metabolite aminomethylphosphonic acid (AMPA) from water by polymer-based spherical activated carbon (PBSAC). JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131211. [PMID: 37121034 DOI: 10.1016/j.jhazmat.2023.131211] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 05/19/2023]
Abstract
Glyphosate (GLY) is the most commonly used herbicide worldwide, and aminomethylphosphonic acid (AMPA) is its main metabolite. Their occurrence in ground and surface waters causes diseases in humans, while complex physico-chemical properties hinder detection and effective removal. Polymer-based spherical activated carbon (PBSAC) can adsorb many micropollutants efficiently and, hence, overcome the shortfalls of conventional treatment methods. The static adsorption of a mixture of GLY and AMPA by PBSAC was investigated with varying PBSAC properties and relevant solution chemistry. The results show that PBSAC can remove 95% GLY and 57% AMPA from an initial concentration of 1 µg/L at pH 8.2. PBSAC properties (size, activation level, and surface charge) have a strong influence on herbicide removal, where surface area plays a key role. Low to neutral pH favors non-charge interactions and results in good adsorption, while higher temperatures equally enhance GLY/AMPA adsorption by PBSAC. The work demonstrated the effective removal of GLY to meet the European guideline concentration (0.1 µg/L), while AMPA could not be removed to the required level.
Collapse
Affiliation(s)
- Phuong Bich Trinh
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Andrea Iris Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
34
|
Rawat D, Bains A, Chawla P, Kaushik R, Yadav R, Kumar A, Sridhar K, Sharma M. Hazardous impacts of glyphosate on human and environment health: Occurrence and detection in food. CHEMOSPHERE 2023; 329:138676. [PMID: 37054847 DOI: 10.1016/j.chemosphere.2023.138676] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/02/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
With the ever-increasing human population, farming lands are decreasing every year, therefore, for effective crop management; agricultural scientists are continually developing new strategies. However, small plants and herbs always impart a much loss in the yields of the crop and farmers are using tons of herbicides to eradicate that problem. Across the world, several herbicides are available in the market for effective crop management, however, scientists observed various environmental and health effects of the herbicides. Over the past 40 years, the herbicide glyphosate has been used extensively with the assumption of negligible effects on the environment and human health. However, in recent years, concerns have increased globally about the potential direct and indirect effects on human health due to the excessive use of glyphosate. As well, the toxicity on ecosystems and the possible effects on all living creatures have long been at the center of a complex discrepancy about the authorization for its use. The World Health Organization also further classified glyphosate as a carcinogenic toxic component and it was banned in 2017 due to numerous life-threatening side effects on human health. In the present era, the residues of banned glyphosate are more prevalent in agricultural and environmental samples which are directly affecting human health. Various reports revealed the detailed extraction process of glyphosate from different categories of the food matrix. Therefore, in the present review, to reveal the importance of glyphosate monitoring in the food matrix, we discussed the environmental and health effects of glyphosate with acute toxicity levels. Also, the effect of glyphosate on aquatic life is discussed in detail and various detection methods such as fluorescence, chromatography, and colorimetric techniques from different food samples with a limit of detection values are revealed. Overall, this review will give an in-depth insight into the various toxicological aspects and detection of glyphosate from food matrix using various advanced analytical techniques.
Collapse
Affiliation(s)
- Deeksha Rawat
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Ravinder Kaushik
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, Uttrakhand, India
| | - Rahul Yadav
- Shoolini Life Sciences Pvt. Ltd., Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Anil Kumar
- Department of Food Science Technology and Processing, Amity University, Mohali, Punjab-140306, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India.
| |
Collapse
|
35
|
Costas-Ferreira C, Durán R, Faro LF. Neurotoxic effects of exposure to glyphosate in rat striatum: Effects and mechanisms of action on dopaminergic neurotransmission. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105433. [PMID: 37248010 DOI: 10.1016/j.pestbp.2023.105433] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/09/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023]
Abstract
The main objective of this study was to evaluate the effects and possible mechanisms of action of glyphosate and a glyphosate-based herbicide (GBH) on dopaminergic neurotransmission in the rat striatum. Acute exposure to glyphosate or GBH, administered by systemic (75 or 150 mg/kg, i.p.) or intrastriatal (1, 5, or 10 mM for 1 h) routes, produced significant concentration-dependent increases in dopamine release measured in vivo by cerebral microdialysis coupled to HPLC with electrochemical detection. Systemic administration of glyphosate also significantly impaired motor control and decreased striatal acetylcholinesterase activity and antioxidant capacity. At least two mechanisms can be proposed to explain the glyphosate-induced increases in extracellular dopamine levels: increased exocytotic dopamine release from synaptic vesicles or inhibition of dopamine transporter (DAT). Thus, we investigated the effects of intrastriatal administration of glyphosate (5 mM) in animals pretreated with tetrodotoxin (TTX) or reserpine. It was observed that TTX (10 or 20 μM) had no significant effect on glyphosate-induced dopamine release, while reserpine (10 mg/kg i.p) partially but significantly reduced the dopamine release. When glyphosate was coinfused with nomifensine (50 μM), the increase in dopamine levels was significantly higher than that observed with glyphosate or nomifensine alone. So, two possible hypotheses could explain this additive effect: both glyphosate and nomifensine act through different mechanisms at the dopaminergic terminals to increase dopamine levels; or both nomifensine and glyphosate act on DAT, with glyphosate simultaneously inhibiting reuptake and stimulating dopamine release by reversing the DAT function. Future research is needed to determine the effects of this pesticide at environmentally relevant doses.
Collapse
Affiliation(s)
- Carmen Costas-Ferreira
- Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, Vigo, Spain
| | - Rafael Durán
- Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, Vigo, Spain
| | - Lilian Ferreira Faro
- Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, Vigo, Spain.
| |
Collapse
|
36
|
Clermont-Paquette A, Mendoza DA, Sadeghi A, Piekny A, Naccache R. Ratiometric Sensing of Glyphosate in Water Using Dual Fluorescent Carbon Dots. SENSORS (BASEL, SWITZERLAND) 2023; 23:5200. [PMID: 37299928 PMCID: PMC10255972 DOI: 10.3390/s23115200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Glyphosate is a broad-spectrum pesticide used in crops and is found in many products used by industry and consumers. Unfortunately, glyphosate has been shown to have some toxicity toward many organisms found in our ecosystems and has been reported to have carcinogenic effects on humans. Hence, there is a need to develop novel nanosensors that are more sensitive and facile and permit rapid detection. Current optical-based assays are limited as they rely on changes in signal intensity, which can be affected by multiple factors in the sample. Herein, we report the development of a dual emissive carbon dot (CD) system that can be used to optically detect glyphosate pesticides in water at different pH levels. The fluorescent CDs emit blue and red fluorescence, which we exploit as a ratiometric self-referencing assay. We observe red fluorescence quenching with increasing concentrations of glyphosate in the solution, ascribed to the interaction of the glyphosate pesticide with the CD surface. The blue fluorescence remains unaffected and serves as a reference in this ratiometric approach. Using fluorescence quenching assays, a ratiometric response is observed in the ppm range with detection limits as low as 0.03 ppm. Our CDs can be used to detect other pesticides and contaminants in water, as cost-effective and simple environmental nanosensors.
Collapse
Affiliation(s)
- Adryanne Clermont-Paquette
- Center for NanoScience Research, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
- Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
- Centre for Microscopy and Cellular Imaging, Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Diego-Andrés Mendoza
- Center for NanoScience Research, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
- Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Amir Sadeghi
- Center for NanoScience Research, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
- Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Alisa Piekny
- Centre for Microscopy and Cellular Imaging, Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Rafik Naccache
- Center for NanoScience Research, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
- Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
37
|
Flach H, Dietmann P, Liess M, Kühl M, Kühl SJ. Glyphosate without Co-formulants affects embryonic development of the south african clawed frog Xenopus laevis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115080. [PMID: 37262967 DOI: 10.1016/j.ecoenv.2023.115080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/16/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Glyphosate (GLY) is the most widely used herbicide in the world. Due to its mode of action as an inhibitor of the 5-enolpyruvylshikimate-3-phosphate synthase, an important step in the shikimate pathway, specifically in plants, GLY is considered to be of low toxicity to non-target organisms. However, various studies have shown the negative effects of GLY on the mortality and development of different non-target organisms, including insects, rodents, fish and amphibians. To better understand the various effects of GLY in more detail, we studied the effects of GLY without co-formulants during the embryogenesis of the aquatic model organism Xenopus laevis. RESULTS A treatment with GLY affected various morphological endpoints in X. laevis tadpoles (body length, head width and area, eye area). Additionally, GLY interfered with the mobility as well as the neural and cardiac development of the embryos at stage 44/45. We were able to detect detailed structural changes in the cranial nerves and the heart and gained insights into the negative effects of GLY on cardiomyocyte differentiation. CONCLUSION The application of GLY without co-formulants resulted in negative effects on several endpoints in the early embryonic development of X. laevis at concentrations that are environmentally relevant and concentrations that reflect the worst-case scenarios. This indicates that GLY could have a strong negative impact on the survival and lives of amphibians in natural waters. As a result, future GLY approvals should consider its impact on the environment.
Collapse
Affiliation(s)
- Hannah Flach
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Petra Dietmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Matthias Liess
- Department System-Ecotoxicology, Helmholtz Centre for Environmental Research, UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Susanne J Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
38
|
Spangenberg JE, Zufferey V. Soil management affects carbon and nitrogen concentrations and stable isotope ratios in vine products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162410. [PMID: 36842594 DOI: 10.1016/j.scitotenv.2023.162410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Weeds reduce vineyard productivity and affect grape quality by competing with grapevines (Vitis vinifera L.) for water and nutrients. The increased banning of herbicides has prompted the evaluation of alternative soil management strategies. Cover cropping seems to be the best alternative for weed management. However, it may impact vine growth, grape yield, and quality. Quantitative studies on these changes are scarce. Our study aimed to investigate the combined effect of grass cover and water availability on vines of three cultivars, the white Chasselas and Petite Arvine and the red Pinot noir field-grown under identical climatic and pedological conditions and grafted onto the same rootstock. Soil management and irrigation experiments were performed during the 2020-2021 seasons. Two extreme soil management practices were established in the vineyard, based on 100 % bare soil (BS) by the application of herbicides with glufosinate or glyphosate as active ingredients and 100 % grass-covered soil (GS) by cover cropping with a mixture of plant species. Two water statuses were imposed by drip irrigation (DI) and no irrigation (NI). The level of vine-weed competition for water and nitrogen (N) was assessed in the vine, must, and wine solid residues (WSRs) by comparing measurements, i.e., the yeast assimilable N content, C/NWSR, carbon and N isotope ratios (δ13Cgrape-sugars, δ13CWSR, and δ15NWSR) among the different treatments (BS-DI, BS-NI, GS-DI, GS-NI). The increase in the δ13Cgrape-sugars and δ13CWSR values with increasing plant water deficit mimicked the observations in irrigation experiments on BS. The NWSR content and δ15NWSR values decreased with water stress and much more strongly in vines on GS. The dramatic N deficit in rainfed vines on GS could be alleviated with irrigation. The present study provides insights from chemical and stable isotope analyses into the potential impact of cover cropping in vineyards in the context of the banning of herbicides in a time of global water scarcity due to climate change.
Collapse
Affiliation(s)
- Jorge E Spangenberg
- Institute of Earth Surface Dynamics (IDYST), University of Lausanne, CH-1015 Lausanne, Switzerland.
| | - Vivian Zufferey
- Research Center of Viticulture, Agroscope, CH-1009 Pully, Switzerland
| |
Collapse
|
39
|
Odoemelam SA, Oji EO, Eddy NO, Garg R, Garg R, Islam S, Khan MA, Khan NA, Zahmatkesh S. Zinc oxide nanoparticles adsorb emerging pollutants (glyphosate pesticide) from aqueous solutions. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:658. [PMID: 37166547 DOI: 10.1007/s10661-023-11255-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/15/2023] [Indexed: 05/12/2023]
Abstract
The present study captures the precipitation synthesis of zinc nanoparticles and modification with alumina and oleic acid. The crystalline size evaluated from the XRD profile of the zinc oxide nanoparticles was 18.05 nm but was reduced to 14.20 and 14.50 nm upon modification with oleic acid and alumina. The XRD spectra also showed evidence of the amorphous nature of zinc oxide nanoparticles and subsequent enhancement upon modification. A porous appearance was observed in the SEM instrumentation but seems to be enhanced by modification. The FTIR absorption spectra of the nanoparticles showed a peak associated with ZnO vibration around 449 cm, but the enhanced intensity was observed due to modification. The prepared ZnO-NPs and the modified samples were good materials for the adsorption removal of glyphosate from water, recording efficiencies above 94% at neutral pH and showing a possible incremental trend with an enhanced period of contact and adsorbent dosage. The adsorbents showed maximum capacity that ranged from 82.85 to 82. 97 mg/g. The adsorption models of Freundlich, Temkin, Dubinin-Radushkevich and BET showed excellent fitness. Results from computational results complemented experimental data and were used to identify the sites for adsorption and characteristics of molecular descriptors for the systems.
Collapse
Affiliation(s)
- Steven A Odoemelam
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, P.M.B. 7267, Umudike, Abia State, Nigeria.
| | - Esther O Oji
- Department of Chemistry, Gregory University, Uturu, P.M.B 1012 Amaokwe Achara, Uturu, Nigeria
| | - Nnabuk Okon Eddy
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Rajni Garg
- Department of Applied Sciences, Galgotias College of Engineering and Technology, Greater Noida, UP, India
| | - Rishav Garg
- Department of Civil Engineering, Galgotias College of Engineering and Technology, Greater Noida, UP, India
| | - Saiful Islam
- Civil Engineering Department, College of Engineering, King Khalid University, Abha-61421, Asir, Kingdom of Saudi Arabia
| | - Mohammad Amir Khan
- Department of Civil Engineering, Galgotias College of Engineering and Technology, Greater Noida, UP, India.
| | - Nadeem A Khan
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Sasan Zahmatkesh
- Tecnologico de Monterrey, Escuela de Ingenieríay Ciencias, Puebla, Mexico.
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, P.O. Box 48518-78195, Behshahr, Iran.
| |
Collapse
|
40
|
Okagu IU, Okeke ES, Ezeorba WCF, Ndefo JC, Ezeorba TPC. Overhauling the ecotoxicological impact of synthetic pesticides using plants' natural products: a focus on Zanthoxylum metabolites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67997-68021. [PMID: 37148518 DOI: 10.1007/s11356-023-27258-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
The reduction in agricultural production due to the negative impact of insects and weeds, as well as the health and economic burden associated with vector-borne diseases, has promoted the wide use of chemicals that control these "enemies." However, the use of these synthetic chemicals has been recognized to elicit negative impacts on the environment as well as the health and wellbeing of man. In this study, we presented an overview of recent updates on the environmental and health impacts of synthetic pesticides against agro-pest and disease vectors while exhaustive reviewing the potentials of natural plant products from Zanthoxylum species (Rutaceae) as sustainable alternatives. This study is expected to spur further research on exploiting these plants and their chemicals as safe and effective pesticide entities to minimize the impact of their chemical and synthetic counterparts on health and the environment.
Collapse
Affiliation(s)
- Innocent Uzochukwu Okagu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | | | - Joseph Chinedum Ndefo
- Department of Science Laboratory Technology, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria.
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria.
- Department of Molecular Biotechnology, School of Biosciences, University of Birmingham Edgbaston, Birmingham, B15 2TT, United Kingdom.
| |
Collapse
|
41
|
da Silva VC, de Lima Faria JM, Guimarães LN, Costa MS, de Lima PN, Simões K, de Jesus LWO, de Saboia-Morais SMT. Ovaries of guppies (Poecilia reticulata) investigated in pre-embryonic, embryonic and post-embryonic stages after exposure to maghemite nanoparticles (y-Fe 2O 3) associated with Roundup® and glyphosate, followed by recovery period evaluation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104144. [PMID: 37149012 DOI: 10.1016/j.etap.2023.104144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Iron oxide nanoparticles (IONP) are promising alternatives to environmental remediation, so this study investigates IONP single and associated to contaminants, in this case, glyphosate (GLY) and Roundup® (GBH) in Poecilia reticulata (guppy). The guppies have internal development, therefore this study analyzed female gonads to establish the developmental stages of P. reticulata and evaluate effects of exposure (7, 14 and 21 days) and post-exposure (same period) to the treatments with Iron ions 0.3mg Fe/L (IFe); IONP 0.3mg Fe/L; IONP 0.3 mgFe/L + GBH 0,65mgGLY/L (IONP+GBH1); IONP 0.3 mgFe/L + GBH 1.30 mgGLY/L (IONP+GBH2); and IONP 0.3 mgFe/L + GLY 0.65 mg/L (IONP+GLY). The development was organized in immature, development, and gestation phases. The damage in all treatments after 21 days of exposure was evident in reaction patterns regressive inflammatory, and circulatory including total histopathologic index of liver, nevertheless there was a damage recovery trend during post-exposure period.
Collapse
Affiliation(s)
- Victória Costa da Silva
- Laboratory of Cellular Behavior, Institute of Biological Sciences (Federal University of Goiás)
| | | | - Lucas Nunes Guimarães
- Laboratory of Cellular Behavior, Institute of Biological Sciences (Federal University of Goiás)
| | - Matheus Santos Costa
- Laboratory of Human and Animal Morphology Research (Federal University of Goiás)
| | | | - Karina Simões
- Laboratory of Human and Animal Morphology Research (Federal University of Goiás)
| | - Lázaro Wender Oliveira de Jesus
- Laboratory of Applied Animal Morphophysiology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | |
Collapse
|
42
|
Rosales CA, Shields SWJ, Aulenback CLJ, Elezi G, Wasslen KV, Pallister PJ, Faull KF, Manthorpe JM, Smith JC. Improved Chromatography and MS-Based Detection of Glyphosate and Aminomethylphosphonic Acid Using iTrEnDi. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:948-957. [PMID: 37132245 DOI: 10.1021/jasms.3c00026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Glyphosate (GLY), a synthetic, nonselective systemic herbicide that is particularly effective against perennial weeds, is the most used weedkiller in the world. There are growing concerns over GLY accumulation in the environment and the attendant human health-associated risks, and despite increased attention in the media, GLY and its breakdown product aminomethylphosphonic acid (AMPA) remain elusive to many analytical strategies. Chemical derivatization coupled with high-performance liquid chromatography-mass spectrometry (HPLC-MS) addresses the challenge of quantifying low levels of GLY and AMPA in complex samples. Here we demonstrate the use of in situ trimethylation enhancement using diazomethane (iTrEnDi) to derivatize GLY and AMPA into permethylated products ([GLYTr]+ and [AMPATr]+, respectively) prior to analysis via HPLC-MS. iTrEnDi produced quantitative yields and resulted in a 12-340-fold increases in HPLC-MS-based sensitivity for [GLYTr]+ and [AMPATr]+, respectively, compared with underivatized counterparts. The limits of detection of derivatized compounds were found to be 0.99 ng/L for [GLYTr]+ and 1.30 ng/L for [AMPATr]+, demonstrating significant sensitivity improvements compared to previously established derivatization techniques. iTrEnDi is compatible with the direct derivatization of Roundup formulations. Finally, as proof of principle, a simple aqueous extraction followed by iTrEnDi enabled the detection of [GLYTr]+ and [AMPATr]+ on the exterior of field-grown soybeans that were sprayed with Roundup. Overall, iTrEnDi ameliorates issues relating to low proton affinity and chromatographic retention, boosting HPLC-MS-based sensitivity and enabling the elucidation of elusive analytes such as GLY and AMPA within agricultural systems.
Collapse
Affiliation(s)
- Christian A Rosales
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Samuel W J Shields
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Chelsey L J Aulenback
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Gazmend Elezi
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior and the Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90024, United States of America
| | - Karl V Wasslen
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Peter J Pallister
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior and the Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90024, United States of America
| | - Jeffrey M Manthorpe
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Jeffrey C Smith
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
43
|
Zhang W, Chen WJ, Chen SF, Lei Q, Li J, Bhatt P, Mishra S, Chen S. Cellular Response and Molecular Mechanism of Glyphosate Degradation by Chryseobacterium sp. Y16C. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6650-6661. [PMID: 37084257 DOI: 10.1021/acs.jafc.2c07301] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Glyphosate is one of the most widely used herbicides worldwide. Unfortunately, the continuous use of glyphosate has resulted in serious environmental contamination and raised public concern about its impact on human health. In our previous study, Chryseobacterium sp. Y16C was isolated and characterized as an efficient degrader that can completely degrade glyphosate. However, the biochemical and molecular mechanisms underlying its glyphosate biodegradation ability remain unclear. In this study, the physiological response of Y16C to glyphosate stimulation was characterized at the cellular level. The results indicated that, in the process of glyphosate degradation, Y16C induced a series of physiological responses in the membrane potential, reactive oxygen species levels, and apoptosis. The antioxidant system of Y16C was activated to alleviate the oxidative damage caused by glyphosate. Furthermore, a novel gene, goW, was expressed in response to glyphosate. The gene product, GOW, is an enzyme that catalyzes glyphosate degradation, with putative structural similarities to glycine oxidase. GOW encodes 508 amino acids, with an isoelectric point of 5.33 and a molecular weight of 57.2 kDa, which indicates that it is a glycine oxidase. GOW displays maximum enzyme activity at 30 °C and pH 7.0. Additionally, most of the metal ions exhibited little influence on the enzyme activity except for Cu2+. Finally, with glyphosate as the substrate, the catalytic efficiency of GOW was higher than that of glycine, although opposite results were observed for the affinity. Taken together, the current study provides new insights to deeply understand and reveal the mechanisms of glyphosate degradation in bacteria.
Collapse
Affiliation(s)
- Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Wen-Juan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Shao-Fang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Qiqi Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Jiayi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette 47906, United States
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
44
|
Narayanan Z, Glick BR. Biotechnologically Engineered Plants. BIOLOGY 2023; 12:biology12040601. [PMID: 37106801 PMCID: PMC10135915 DOI: 10.3390/biology12040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
The development of recombinant DNA technology during the past thirty years has enabled scientists to isolate, characterize, and manipulate a myriad of different animal, bacterial, and plant genes. This has, in turn, led to the commercialization of hundreds of useful products that have significantly improved human health and well-being. Commercially, these products have been mostly produced in bacterial, fungal, or animal cells grown in culture. More recently, scientists have begun to develop a wide range of transgenic plants that produce numerous useful compounds. The perceived advantage of producing foreign compounds in plants is that compared to other methods of producing these compounds, plants seemingly provide a much less expensive means of production. A few plant-produced compounds are already commercially available; however, many more are in the production pipeline.
Collapse
Affiliation(s)
- Zareen Narayanan
- Division of Biological Sciences, School of STEM, University of Washington, Bothell, WA 98011, USA
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L3G1, Canada
| |
Collapse
|
45
|
Kale OE, Adebesin AN, Kale TF, Farouk O, Osonuga IO, Soyinka OO, Uwaezuoke D, Olajide O, Akinloye V, Adedugbe O, Odibosa F, Akindele F, Oladele B, Wahab M, Ebele CC. Effects of glyphosate-based herbicide on gametes fertilization and four developmental stages in Clarias gariepinus. Heliyon 2023; 9:e15048. [PMID: 37064447 PMCID: PMC10102446 DOI: 10.1016/j.heliyon.2023.e15048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Comparative toxicology continues to provide information on how the age of every living organism affects the frequency, severity, and nature of the potentially toxic agent. We investigated the effect of glyphosate-based herbicide (GBH) exposure on gametes and four developmental stages of Clarius gariepinus (C. gariepinus) (African Catfish). Gametes from healthy gravid female and mature male C. gariepinus were exposed to GBH in sublethal concentrations of 0.0 (G1, control), 0.02 (G2), 0.05 (G3), 0.1 (G4), 0.5 (G5), and 1.0 (G6) mg/L for 24 h at the standard conditions of temperature and water quality parameters. The surviving embryos were examined microscopically for malformation rate and edema occurrence post-GBH exposure. In a separate experiment; postfryer, fingerling, posfingerling and juvenile C. gariepinus were exposed to G1, G2, G3, G4, G5 and G6 of GBH concentrations daily consecutively for 28 days. Fish growth performance, behavioural changes, haematology, oxidative stress, and histology were assessed. From our results, GBH showed altered morphology 24 h post-fertilization, decreased body weight, growth parameters, behavioural indices, and survival rate in the various developmental stages. Oxidative stress metabolite, malondialdehyde levels, increases in the postfryer > postfingerlin > fingerling > juvenile C. gariepinus following GBH exposure. Leukopenia and thrombocytosis were observed in the postfingerlings and juvenile fish and decrease in the levels of reduced glutathione and activity of superoxide dismutase compared with the control. Histology showed gross necrosis of the fish gills, liver, brain, and cardiac myocytes in the exposed fish. Hence, our findings provide an insight into C. gariepinus developmental toxicity due to GBH, although continuous measurement of glyphosate levels in the fish and fish environment is essential.
Collapse
|
46
|
Sesin V, Judy JD, Kapustka L, Opeolu B, Ottinger MA, Bertsch PM, Wang Y, Lazorchak J, Smythe TA, Stahl RG. The Importance of Fostering and Funding Scientific Research, and its Relevance to Environmental Toxicology and Chemistry. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:581-593. [PMID: 36524856 PMCID: PMC10203974 DOI: 10.1002/etc.5542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/10/2022] [Accepted: 12/12/2022] [Indexed: 05/25/2023]
Abstract
What do environmental contaminants and climate change have in common with the virus SARS-CoV-2 and the disease COVID-19? We argue that one common element is the wealth of basic and applied scientific research that provides the knowledge and tools essential in developing effective programs for addressing threats to humans and social-ecological systems. Research on various chemicals, including dichlorodiphenyltrichloroethane and per- and polyfluoroalkyl substances, resulted in regulatory action to protect environmental and human health. Moreover, decades of research on coronaviruses, mRNA, and recently SARS-CoV-2 enabled the rapid development of vaccines to fight the COVID-19 pandemic. In the present study, we explore the common elements of basic and applied scientific research breakthroughs that link chemicals, climate change, and SARS-CoV-2/COVID-19 and describe how scientific information was applied for protecting human health and, more broadly, socio-ecological systems. We also offer a cautionary note on the misuse and mistrust of science that is not new in human history, but unfortunately is surging in modern times. Our goal was to illustrate the critical role of scientific research to society, and we argue that research must be intentionally fostered, better funded, and applied appropriately. To that end, we offer evidence that supports the importance of investing in scientific research and, where needed, ways to counter the spread of misinformation and disinformation that undermines legitimate discourse. Environ Toxicol Chem 2023;42:581-593. © 2022 SETAC.
Collapse
Affiliation(s)
- Verena Sesin
- Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada
| | - Jonathan D Judy
- Soil and Water Sciences Department, University of Florida, Gainesville, Florida, United States
| | | | - Beatrice Opeolu
- Environmental Chemistry and Toxicology Research Group, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Mary A Ottinger
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States
| | - Paul M Bertsch
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Brisbane, Qld, Australia
| | - Ying Wang
- Lawrence Berkeley National Laboratory, Berkeley, California, United States
| | - James Lazorchak
- US Environmental Protection Agency, Cincinnati, Ohio, United States
| | - Tristan A Smythe
- Department of Chemistry, Carleton University, Ottawa, Ontario, Canada
| | - Ralph G Stahl
- DuPont Company (Retired), Wilmington, Delaware, United States
| |
Collapse
|
47
|
Ahmed N, Vione D, Rivoira L, Castiglioni M, Beldean-Galea MS, Bruzzoniti MC. Feasibility of a Heterogeneous Nanoscale Zero-Valent Iron Fenton-like Process for the Removal of Glyphosate from Water. Molecules 2023; 28:molecules28052214. [PMID: 36903460 PMCID: PMC10005206 DOI: 10.3390/molecules28052214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Glyphosate is a widely used herbicide, and it is an important environmental pollutant that can have adverse effects on human health. Therefore, remediation and reclamation of contaminated streams and aqueous environments polluted by glyphosate is currently a worldwide priority. Here, we show that the heterogeneous nZVI-Fenton process (nZVI + H2O2; nZVI: nanoscale zero-valent iron) can achieve the effective removal of glyphosate under different operational conditions. Removal of glyphosate can also take place in the presence of excess nZVI, without H2O2, but the high amount of nZVI needed to remove glyphosate from water matrices on its own would make the process very costly. Glyphosate removal via nZVI--Fenton was investigated in the pH range of 3-6, with different H2O2 concentrations and nZVI loadings. We observed significant removal of glyphosate at pH values of 3 and 4; however, due to a loss in efficiency of Fenton systems with increasing pH values, glyphosate removal was no longer effective at pH values of 5 or 6. Glyphosate removal also occurred at pH values of 3 and 4 in tap water, despite the occurrence of several potentially interfering inorganic ions. Relatively low reagent costs, a limited increase in water conductivity (mostly due to pH adjustments before and after treatment), and low iron leaching make nZVI-Fenton treatment at pH 4 a promising technique for eliminating glyphosate from environmental aqueous matrices.
Collapse
Affiliation(s)
- Naveed Ahmed
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125 Turin, Italy
| | - Davide Vione
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125 Turin, Italy
- Correspondence: (D.V.); (M.C.B.)
| | - Luca Rivoira
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125 Turin, Italy
| | - Michele Castiglioni
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125 Turin, Italy
| | - Mihail S. Beldean-Galea
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, 400347 Cluj-Napoca, Romania
| | - Maria Concetta Bruzzoniti
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125 Turin, Italy
- Correspondence: (D.V.); (M.C.B.)
| |
Collapse
|
48
|
Ashley-Martin J, Huang R, MacPherson S, Brion O, Owen J, Gaudreau E, Bienvenu JF, Fisher M, Borghese MM, Bouchard MF, Lanphear B, Foster WG, Arbuckle TE. Urinary concentrations and determinants of glyphosate and glufosinate in pregnant Canadian participants in the MIREC study. ENVIRONMENTAL RESEARCH 2023; 217:114842. [PMID: 36410462 DOI: 10.1016/j.envres.2022.114842] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/26/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Glyphosate is the most widely applied herbicide in agriculture. Glufosinate is a broad spectrum herbicide used to manage glyphosate-resistant weeds. Despite the widespread use of these herbicides, biomonitoring data - which inform risk assessment and management - are sparse. OBJECTIVES To identify determinants of urinary concentrations of these herbicides and their metabolites in pregnancy. METHODS We measured urinary concentrations of glyphosate, glufosinate, and their primary metabolites aminomethylphosphonic acid (AMPA) and 3-methylphosphinicopropionic acid (3-MPPA) in a single spot urine specimen collected during the first trimester of pregnancy from the Maternal-Infant Research on Environmental Chemicals (MIREC) study. MIREC recruited about 2000 pregnant women from 10 Canadian cities between 2008 and 2011. We used UItra-Performance Liquid Chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) with sensitive limits of detection to quantify analyte concentrations. We examined urinary concentrations according to maternal sociodemographics, sample collection characteristics, reported pesticide use, and consumption of fruits, vegetables, legumes, and grain products. We used ANOVA models with specific gravity-standardized chemical concentrations as the dependent variable to determine associations with maternal and sample determinants. RESULTS Among women with biobanked urine samples (n = 1829-1854), 74% and 72% had detectable concentrations of glyphosate and AMPA, respectively. In contrast, one and six percent of women had detectable concentrations of glufosinate and 3-MPPA, respectively. The specific gravity-standardized geometric mean (95% CI) concentrations of glyphosate and AMPA were 0.112 (0.099-0.127) μg/L and 0.159 (0.147-0.172) μg/L, respectively. We observed a dose-response relationship between consumption of whole grain bread and higher urinary glyphosate concentrations. Season of urine collection and self-reported pesticide use were not associated with increased concentrations of any analyte. CONCLUSIONS We detected glyphosate and AMPA in the majority of pregnant women from this predominantly urban Canadian cohort. Diet was a probable route of exposure.
Collapse
Affiliation(s)
- Jillian Ashley-Martin
- Population Studies Division, Environmental Health, Research Science Bureau, Health Ottawa, ON, K1A 0K9, Canada.
| | - Rong Huang
- Population Studies Division, Environmental Health, Research Science Bureau, Health Ottawa, ON, K1A 0K9, Canada.
| | - Susan MacPherson
- Population Studies Division, Environmental Health, Research Science Bureau, Health Ottawa, ON, K1A 0K9, Canada.
| | - Orly Brion
- Population Studies Division, Environmental Health, Research Science Bureau, Health Ottawa, ON, K1A 0K9, Canada.
| | - James Owen
- Population Studies Division, Environmental Health, Research Science Bureau, Health Ottawa, ON, K1A 0K9, Canada.
| | - Eric Gaudreau
- INSPQ, Centre de Toxicologie du Québec, Direction de la Santé Environnementale et de la Toxicologie, Quebec, QC, G1V 5B3, Canada.
| | - Jean-Francois Bienvenu
- INSPQ, Centre de Toxicologie du Québec, Direction de la Santé Environnementale et de la Toxicologie, Quebec, QC, G1V 5B3, Canada.
| | - Mandy Fisher
- Population Studies Division, Environmental Health, Research Science Bureau, Health Ottawa, ON, K1A 0K9, Canada.
| | - Michael M Borghese
- Population Studies Division, Environmental Health, Research Science Bureau, Health Ottawa, ON, K1A 0K9, Canada.
| | - Maryse F Bouchard
- University of Montreal, Department of Environmental Health and Occupational Health, Montreal, QC, H3T 1J4, Canada.
| | - Bruce Lanphear
- Simon Fraser, Faculty of Health Sciences, Burnaby, BC V5A 1S6, Canada.
| | - Warren G Foster
- McMaster University, Department of Obstetrics & Gynecology, Hamilton, ON, L8S 4L8, Canada.
| | - Tye E Arbuckle
- Population Studies Division, Environmental Health, Research Science Bureau, Health Ottawa, ON, K1A 0K9, Canada.
| |
Collapse
|
49
|
Coperchini F, Greco A, Croce L, Denegri M, Magri F, Rotondi M, Chiovato L. In vitro study of glyphosate effects on thyroid cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120801. [PMID: 36462676 DOI: 10.1016/j.envpol.2022.120801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Glyphosate is a pesticide, which contaminates the environment and exposes workers and general population to its residues present in foods and waters. In soil, Glyphosate is degraded in metabolites, amino-methyl-phosphonic acid (AMPA) being the main one. Glyphosate is considered a potential cancerogenic and endocrine-disruptor agent, however its adverse effects on the thyroid were evaluated only in animal models and in vitro data are still lacking. Aim of this study was to investigate whether exposure to Glyphosate could exert adverse effects on thyroid cells in vitro. Two models (adherent-2D and spheroid-3D) derived from the same cell strain Fisher-rat-thyroid-cell line-5 (FRTL-5) were employed. After exposure to Glyphosate at increasing concentrations (0.0, 0.1-0.25- 0.5-1.0-2.0-10.0 mM) we evaluated cell viability by WST-1 (adherent and spheroids), results being confirmed by propidium-iodide staining (only for spheroids). Proliferation of adherent cells was assessed by crystal violet and trypan-blue assays, the increasing volume of spheroids was taken as a measure of proliferation. We also evaluated the ability of cells to form spheroids after Glyphosate exposure. We assessed changes of reactive-oxygen-species (ROS) by the cell-permeant H2DCFDA. Glyphosate-induced changes of mRNAs encoding for thyroid-related genes (TSHR, TPO, TG, NIS, TTF-1 and PAX8) were evaluated by RT-PCR. Glyphosate reduced cell viability and proliferation in both models, even if at different concentrations. Glyphosate at the highest concentration reduced the ability of FRTL-5 to form spheroids. An increased ROS production was found in both models after exposure to Glyphosate. Finally, Glyphosate increased the mRNA levels of some thyroid related genes (TSHR, TPO, TG and TTF-1) in both models, while it increased the mRNAs of PAX8 and NIS only in the adherent model. The present study supports an adverse effect of Glyphosate on cultured thyroid cells. Glyphosate reduced cell viability and proliferation and increased ROS production in thyroid cells.
Collapse
Affiliation(s)
- Francesca Coperchini
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100, Pavia, Italy
| | - Alessia Greco
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100, Pavia, Italy
| | - Laura Croce
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100, Pavia, Italy; Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Marco Denegri
- Unit of Molecular Cardiology, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - Flavia Magri
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100, Pavia, Italy; Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Mario Rotondi
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100, Pavia, Italy; Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Luca Chiovato
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100, Pavia, Italy; Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy.
| |
Collapse
|
50
|
Tizhe EV, Igbokwe IO, Njoku CO, Fatihu MY, Tizhe UD, Ibrahim NDG, Unanam ES, Korzerzer RM. Effect of zinc supplementation on immunotoxicity induced by subchronic oral exposure to glyphosate-based herbicide (GOBARA®) in Wistar rats. J Int Med Res 2023; 51:3000605221147188. [PMID: 36636770 PMCID: PMC9841866 DOI: 10.1177/03000605221147188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVES To evaluate the effect of zinc supplementation on immunotoxicity induced by subchronic oral exposure to glyphosate-based herbicide (GBH). METHODS Sixty adult male Wistar rats randomly divided equally into six groups were exposed to GBH by gavage daily for 16 weeks with or without zinc pretreatment. Group DW rats received distilled water (2 mL/kg), group Z rats received zinc (50 mg/kg), and group G1 and G2 rats received 187.5 and 375 mg/kg GBH, respectively. Group ZG1 and ZG2 rats were pretreated with 50 mg/kg zinc before exposure to 187.5 and 375 mg/kg GBH, respectively. Tumor necrosis factor alpha (TNF-α) and immunoglobulin (IgG, IgM, IgE) levels were measured by enzyme-linked immunosorbent assay. Spleen, submandibular lymph node, and thymus samples were processed for histopathology. RESULTS Exposure to GBH (G1 and G2) significantly increased serum TNF-α concentrations and significantly decreased serum IgG and IgM concentrations compared with the control levels. Moderate-to-severe lymphocyte depletion occurred in the spleen, lymph nodes, and thymus in the GBH-exposed groups. Zinc supplementation mitigated the immunotoxic effects of GBH exposure. CONCLUSIONS GBH exposure increased pro-inflammatory cytokine responses, decreased immunoglobulin production, and depleted lymphocytes in lymphoid organs in rats, but zinc supplementation mitigated this immunotoxicity.
Collapse
Affiliation(s)
- Emmanuel V Tizhe
- Department of Veterinary Microbiology and Pathology, Faculty of Veterinary Medicine, University of Jos, Jos, Plateau State, Nigeria,Emmanuel Vandi Tizhe, Department of Veterinary Microbiology and Pathology, Faculty of Veterinary Medicine, Naraguta Campus, Ground Floor Room 3, University of Jos, P.M.B 2084, Jos, Plateau State 930001, Nigeria.
| | - Ikechukwu O Igbokwe
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Borno State, Nigeria
| | - Celestine O Njoku
- Department of Veterinary Microbiology and Pathology, Faculty of Veterinary Medicine, University of Jos, Jos, Plateau State, Nigeria
| | - Mohammed Y Fatihu
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Ussa D Tizhe
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Najume DG Ibrahim
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Essienifiok S Unanam
- Department of Veterinary Medicine, Surgery and Radiology, Faculty of Veterinary Medicine, University of Jos, Jos, Plateau State, Nigeria
| | - Rachel M Korzerzer
- Department of Veterinary Anatomy, College of Veterinary Medicine, University of Agriculture, Makurdi, Benue State, Nigeria
| |
Collapse
|