1
|
Cheng Y, Liu L, Ye Y, He Y, Hu W, Ke H, Guo ZY, Shao G. Roles of macrophages in lupus nephritis. Front Pharmacol 2024; 15:1477708. [PMID: 39611168 PMCID: PMC11602334 DOI: 10.3389/fphar.2024.1477708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
LN is a serious complication of systemic lupus erythematosus (SLE), affecting up to 60% of patients with SLE and may lead to end-stage renal disease (ESRD). Macrophages play multifaceted roles in the pathogenesis of LN, including clearance of immune complexes, antigen presentation, regulation of inflammation, and tissue repair. Macrophages are abundant in the glomeruli and tubulointerstitium of LN patients and are positively correlated with serum creatinine levels and the severity of renal pathology. It has been shown that the infiltration of macrophages is closely associated with several clinical indicators, such as serum creatinine and complement C3 levels, anti-dsDNA antibody titers, Austin score, interstitial fibrosis and renal tubular atrophy. Moreover, cytokines expressed by macrophages were upregulated at LN onset and downregulated after remission, suggesting that macrophages may serve as markers of LN pathogenesis and remission. Therapies targeting macrophages have been shown to alleviate LN. There are two main types of macrophages in the kidney: kidney-resident macrophages (KRMs) and monocyte-derived macrophages (MDMs). KRMs and MDMs play different pathological roles in LN, with KRMs promoting leukocyte recruitment at sites of inflammation by expressing monocyte chemokines, while MDMs may exacerbate autoimmune responses by presenting immune complex antigens. Macrophages exhibit high plasticity and can differentiate into various phenotypes in response to distinct environmental stimuli. M1 (proinflammatory) macrophages are linked to the progression of active SLE, whereas the M2 (anti-inflammatory) phenotype is observed during the remission phase of LN. The polarization of macrophages in LN can be manipulated through multiple pathways, such as the modulation of signaling cascades including TLR 2/1, S1P, ERS, metabolic reprogramming, and HMGB1. This paper provides a comprehensive overview of the role of macrophages in the progression of lupus nephritis (LN), and elucidates how these cells and their secretory products function as indicators and therapeutic targets for the disease in the context of diagnosis and treatment of LN.
Collapse
Affiliation(s)
- Yaqian Cheng
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| | - Lulu Liu
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yufei Ye
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yingxue He
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| | - Wenwen Hu
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| | - Haiyan Ke
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| | - Zhi-Yong Guo
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guojian Shao
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| |
Collapse
|
2
|
van der Velden AIM, Koudijs A, Kooijman S, Rietjens RGJ, Sol WMPJ, Avramut MC, Wang G, Rensen PCN, Rabelink TJ, van der Vlag J, van den Berg BM. Fasting mimicking diet in diabetic mice partially preserves glomerular endothelial glycocalyx coverage, without changing the diabetic metabolic environment. Am J Physiol Renal Physiol 2024; 326:F681-F693. [PMID: 38205540 DOI: 10.1152/ajprenal.00333.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/11/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Intermittent fasting has become of interest for its possible metabolic benefits and reduction of inflammation and oxidative damage, all of which play a role in the pathophysiology of diabetic nephropathy. We tested in a streptozotocin (60 mg/kg)-induced diabetic apolipoprotein E knockout mouse model whether repeated fasting mimicking diet (FMD) prevents glomerular damage. Diabetic mice received 5 FMD cycles in 10 wk, and during cycles 1 and 5 caloric measurements were performed. After 10 wk, glomerular endothelial morphology was determined together with albuminuria, urinary heparanase-1 activity, and spatial mass spectrometry imaging to identify specific glomerular metabolic dysregulation. During FMD cycles, blood glucose levels dropped while a temporal metabolic switch was observed to increase fatty acid oxidation. Overall body weight at the end of the study was reduced together with albuminuria, although urine production was dramatically increased without affecting urinary heparanase-1 activity. Weight loss was found to be due to lean mass and water, not fat mass. Although capillary loop morphology and endothelial glycocalyx heparan sulfate contents were preserved, hyaluronan surface expression was reduced together with the presence of UDP-glucuronic acid. Mass spectrometry imaging further revealed reduced protein catabolic breakdown products and increased oxidative stress, not different from diabetic mice. In conclusion, although FMD preserves partially glomerular endothelial glycocalyx, loss of lean mass and increased glomerular oxidative stress argue whether such diet regimes are safe in patients with diabetes.NEW & NOTEWORTHY Repeated fasting mimicking diet (FMD) partially prevents glomerular damage in a diabetic mouse model; however, although endothelial glycocalyx heparan sulfate contents were preserved, hyaluronan surface expression was reduced in the presence of UDP-glucuronic acid. The weight loss observed was of lean mass, not fat mass, and increased glomerular oxidative stress argue whether such a diet is safe in patients with diabetes.
Collapse
Affiliation(s)
- Anouk I M van der Velden
- Einthoven Laboratory of Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Angela Koudijs
- Einthoven Laboratory of Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Sander Kooijman
- Einthoven Laboratory of Vascular and Regenerative Medicine, Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Rosalie G J Rietjens
- Einthoven Laboratory of Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Wendy M P J Sol
- Einthoven Laboratory of Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - M Cristina Avramut
- Section of Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gangqi Wang
- Einthoven Laboratory of Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C N Rensen
- Einthoven Laboratory of Vascular and Regenerative Medicine, Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ton J Rabelink
- Einthoven Laboratory of Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bernard M van den Berg
- Einthoven Laboratory of Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
3
|
Wu L, Zhang X, Zhao J, Yang M, Yang J, Qiu P. The therapeutic effects of marine sulfated polysaccharides on diabetic nephropathy. Int J Biol Macromol 2024; 261:129269. [PMID: 38211917 DOI: 10.1016/j.ijbiomac.2024.129269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Marine sulfated polysaccharide (MSP) is a natural high molecular polysaccharide containing sulfate groups, which widely exists in various marine organisms. The sources determine structural variabilities of MSPs which have high security and wide biological activities, such as anticoagulation, antitumor, antivirus, immune regulation, regulation of glucose and lipid metabolism, antioxidant, etc. Due to the structural similarities between MSP and endogenous heparan sulfate, a majority of studies have shown that MSP can be used to treat diabetic nephropathy (DN) in vivo and in vitro. In this paper, we reviewed the anti-DN activities, the dominant mechanisms and structure-activity relationship of MSPs in order to provide the overall scene of MSPs as a modality of treating DN.
Collapse
Affiliation(s)
- Lijuan Wu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road, Qingdao 266003, China; Center for Innovation Marine Drug Screening &Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China.
| | - Xiaonan Zhang
- Center for Innovation Marine Drug Screening &Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Jun Zhao
- Center for Innovation Marine Drug Screening &Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Menglin Yang
- Center for Innovation Marine Drug Screening &Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Jinbo Yang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road, Qingdao 266003, China; Center for Innovation Marine Drug Screening &Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China.
| | - Peiju Qiu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road, Qingdao 266003, China; Center for Innovation Marine Drug Screening &Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China.
| |
Collapse
|
4
|
Chen L, Ye X, Yang L, Zhao J, You J, Feng Y. Linking fatty liver diseases to hepatocellular carcinoma by hepatic stellate cells. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:25-35. [PMID: 39036388 PMCID: PMC11256631 DOI: 10.1016/j.jncc.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 07/23/2024] Open
Abstract
Hepatic stellate cells (HSCs), a distinct category of non-parenchymal cells in the liver, are critical for liver homeostasis. In healthy livers, HSCs remain non-proliferative and quiescent. However, under conditions of acute or chronic liver damage, HSCs are activated and participate in the progression and regulation of liver diseases such as liver fibrosis, cirrhosis, and liver cancer. Fatty liver diseases (FLD), including nonalcoholic (NAFLD) and alcohol-related (ALD), are common chronic inflammatory conditions of the liver. These diseases, often resulting from multiple metabolic disorders, can progress through a sequence of inflammation, fibrosis, and ultimately, cancer. In this review, we focused on the activation and regulatory mechanism of HSCs in the context of FLD. We summarized the molecular pathways of activated HSCs (aHSCs) in mediating FLD and their role in promoting liver tumor development from the perspectives of cell proliferation, invasion, metastasis, angiogenesis, immunosuppression, and chemo-resistance. We aimed to offer an in-depth discussion on the reciprocal regulatory interactions between FLD and HSC activation, providing new insights for researchers in this field.
Collapse
Affiliation(s)
- Liang'en Chen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xiangshi Ye
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Lixian Yang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Hangzhou Medical College), Hangzhou, China
| | - Jiangsha Zhao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Jia You
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Yuxiong Feng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Swaminathan SM, Rao IR, Bhojaraja MV, Attur RP, Nagri SK, Rangaswamy D, Shenoy SV, Nagaraju SP. Role of novel biomarker monocyte chemo-attractant protein-1 in early diagnosis & predicting progression of diabetic kidney disease: A comprehensive review. J Natl Med Assoc 2024; 116:33-44. [PMID: 38195327 DOI: 10.1016/j.jnma.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/11/2023] [Accepted: 12/03/2023] [Indexed: 01/11/2024]
Abstract
Diabetic kidney disease (DKD) is the most devastating complication of diabetes mellitus. Identification of patients at the early stages of progression may reduce the disease burden. The limitation of conventional markers such as serum creatinine and proteinuria intensify the need for novel biomarkers. The traditional paradigm of DKD pathogenesis has expanded to the activation of the immune system and inflammatory pathways. Monocyte chemo-attractant protein-1 (MCP-1) is extensively studied, as a key inflammatory mediator that modulates the development of DKD. Recent evidence supports the diagnostic role of MCP-1 in patients with or without proteinuria in DKD, as well as a significant role in the early prediction and risk stratification of DKD. In this review, we will summarize and update present evidence for MCP-1 for diagnostic ability and predicting the progression of DKD.
Collapse
Affiliation(s)
- Shilna Muttickal Swaminathan
- Department of Nephrology, Kasturba medical college, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Indu Ramachandra Rao
- Department of Nephrology, Kasturba medical college, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Mohan V Bhojaraja
- Department of Nephrology, Kasturba medical college, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Ravindra Prabhu Attur
- Department of Nephrology, Kasturba medical college, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Shivashankara Kaniyoor Nagri
- Department of Medicine, Kasturba medical college, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Dharshan Rangaswamy
- Department of Nephrology, Kasturba medical college, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Srinivas Vinayak Shenoy
- Department of Nephrology, Kasturba medical college, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Shankar Prasad Nagaraju
- Department of Nephrology, Kasturba medical college, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India.
| |
Collapse
|
6
|
Shao X, Shi Y, Wang Y, Zhang L, Bai P, Wang J, Aniwan A, Lin Y, Zhou S, Yu P. Single-Cell Sequencing Reveals the Expression of Immune-Related Genes in Macrophages of Diabetic Kidney Disease. Inflammation 2024; 47:227-243. [PMID: 37777674 DOI: 10.1007/s10753-023-01906-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023]
Abstract
Diabetic kidney disease (DKD) is characterized by macrophage infiltration, which requires further investigation. This study aims to identify immune-related genes (IRGs) in macrophage and explore their potential as therapeutic targets. This study analyzed isolated glomerular cells from three diabetic mice and three control mice. A total of 59 glomeruli from normal kidney samples and 66 from DKD samples were acquired from four kidney transcriptomic profiling datasets. Bioinformatics analysis was conducted using both single-cell RNA (scRNA) and bulk RNA sequencing data to investigate inflammatory responses in DKD. Additionally, the "AUCell" function was used to investigate statistically different gene sets. The significance of each interaction pair was determined by assigning a probability using "CellChat." The study also analyzed the biological diagnostic importance of immune hub genes for DKD and validated the expression of these immune genes in mice models. The top 2000 highly variable genes (HVGs) were identified after data normalization. Subsequently, a total of eight clusters were identified. It is worth mentioning that macrophages showed the highest percentage increase among all cell types in the DKD group. Furthermore, the present study observed significant differences in gene sets related to inflammatory responses and complement pathways. The study also identified several receptor-ligand pairs and co-stimulatory interactions between endothelial cells and macrophages. Notably, SYK, ITGB2, FCER1G, and VAV1 were identified as immunological markers of DKD with promising predictive ability. This study identified distinct cell clusters and four marker genes. SYK, ITGB2, FCER1G, and VAV1 may be important roles. Consequently, the present study extends our understanding regarding IRGs in DKD and provides a foundation for future investigations into the underlying mechanisms.
Collapse
Affiliation(s)
- Xian Shao
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yueyue Shi
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300134, China
| | - Yao Wang
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, 610081, People's Republic of China
| | - Li Zhang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Pufei Bai
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - JunMei Wang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Ashanjiang Aniwan
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yao Lin
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Saijun Zhou
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|
7
|
Lin J, Li X, Lin Y, Huang Z, He F, Xiong F. Unveiling FOS as a Potential Diagnostic Biomarker and Emetine as a Prospective Therapeutic Agent for Diabetic Nephropathy. J Inflamm Res 2023; 16:6139-6153. [PMID: 38107383 PMCID: PMC10725685 DOI: 10.2147/jir.s435596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023] Open
Abstract
Background Diabetic nephropathy (DN) is one of the primary causes of end-stage renal disease, yet effective therapeutic targets remain elusive. This study aims to identify novel diagnostic biomarkers and potential therapeutic candidates for DN. Methods Differentially expressed genes (DEGs) in GSE96804 and GSE142025 were identified and functional enrichment analysis was performed. Diagnostic biomarkers were selected using machine learning algorithms and evaluated by Receiver Operating Characteristic analysis. c-Fos expression was validated in an established DN mouse model. Immune infiltration levels were assessed with Single-Sample Gene Set Enrichment Analysis. Co-expression analysis revealed regulatory relationships involving FOS. cMAP predicted potential therapeutic candidates. Transcriptome sequencing and experiments in RAW264.7 cells was performed to investigate molecular mechanisms of emetine. Results In both datasets, we identified 44 upregulated and 74 downregulated DEGs involved in focal adhesion, ECM-receptor interaction, and the PI3K-Akt signaling pathway. FOS emerged as a robust diagnostic marker with decreased expression in DN patients and DN mouse. Co-expression analysis revealed potential regulatory mechanisms of FOS, implicating the MAPK signaling pathway, regulation of cell proliferation and apoptotic signaling pathways. Immune dysregulation was observed in DN patients. Notably, emetine was identified as a potential therapeutic candidate. Transcriptome sequencing and experimental validation demonstrated emetine suppressed M1 macrophage polarization by inhibiting the activation of NF-κB signaling pathway, as well as reducing the expression of Il-18 and Ccl5. Conclusion In conclusion, our study identified FOS as a promising diagnostic biomarker and emetine as a potential therapeutic candidate for DN. These findings enhance our understanding of DN pathogenesis and present novel prospects for therapeutic strategies.
Collapse
Affiliation(s)
- Jiaqiong Lin
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, People’s Republic of China
| | - Xiaoyong Li
- General Surgery Department; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yan Lin
- Yunkang School of Medicine and Health, Nanfang College, Guangzhou, People’s Republic of China
| | - Zena Huang
- Yunkang School of Medicine and Health, Nanfang College, Guangzhou, People’s Republic of China
| | - Fei He
- Department of Medical Genetics/Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Fu Xiong
- Department of Medical Genetics/Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
8
|
Bilen Y, Almoushref A, Alkwatli K, Osman O, Mehdi A, Sawaf H. Treatment and practical considerations of diabetic kidney disease. Front Med (Lausanne) 2023; 10:1264497. [PMID: 38105902 PMCID: PMC10722293 DOI: 10.3389/fmed.2023.1264497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/19/2023] [Indexed: 12/19/2023] Open
Abstract
Diabetic kidney disease (DKD) is a complication of diabetes that can lead to kidney failure. Over the years, several drugs have been developed to combat this disease. In the early 90s, angiotensin blockade (ACEi and ARBs) was introduced, which revolutionized the treatment of DKD. In recent years, newer drugs such as sodium-glucose co-transporter 2 (SGLT2) inhibitors, glucagon-like peptide-1 (GLP-1) receptor agonists, endothelin antagonists, and mineralocorticoid receptor antagonists (MRA) have shown great promise in reducing albuminuria and protecting the kidneys. These drugs are being used in combination with lifestyle modifications, patient education, and risk factor modification to effectively manage DKD. In this review, we will explore the latest pharmacological options, their efficacy, and their potential to revolutionize the management of this debilitating disease.
Collapse
Affiliation(s)
- Yara Bilen
- Cleveland Clinic, Department of Internal Medicine, Cleveland, OH, United States
| | - Allaa Almoushref
- Cleveland Clinic, Department of Kidney Medicine, Cleveland, OH, United States
| | - Kenda Alkwatli
- Cleveland Clinic, Department of Endocrinology, Cleveland, OH, United States
| | - Omar Osman
- Cleveland Clinic, Department of Kidney Medicine, Cleveland, OH, United States
| | - Ali Mehdi
- Cleveland Clinic, Department of Kidney Medicine, Cleveland, OH, United States
| | - Hanny Sawaf
- Cleveland Clinic, Department of Kidney Medicine, Cleveland, OH, United States
| |
Collapse
|
9
|
Tan Z, Hall P, Costin A, Crawford SA, Ramm G, Wong CHY, Kitching AR, Hickey MJ. Removal of the endothelial surface layer via hyaluronidase does not modulate monocyte and neutrophil interactions with the glomerular endothelium. Microcirculation 2023; 30:e12823. [PMID: 37494581 PMCID: PMC10909409 DOI: 10.1111/micc.12823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
OBJECTIVE The endothelial surface layer (ESL), a layer of macromolecules on the surface of endothelial cells, can both impede and facilitate leukocyte recruitment. However, its role in monocyte and neutrophil recruitment in glomerular capillaries is unknown. METHODS We used multiphoton intravital microscopy to examine monocyte and neutrophil behavior in the glomerulus following ESL disruption with hyaluronidase. RESULTS Constitutive retention and migration of monocytes and neutrophils within the glomerular microvasculature was unaltered by hyaluronidase. Consistent with this, inhibition of the hyaluronan-binding molecule CD44 also failed to modulate glomerular trafficking of these immune cells. To investigate the contribution of the ESL during acute inflammation, we induced glomerulonephritis via in situ immune complex deposition. This resulted in increases in glomerular retention of monocytes and neutrophils but did not induce marked reduction in the glomerular ESL. Furthermore, hyaluronidase treatment did not modify the prolonged retention of monocytes and neutrophils in the acutely inflamed glomerular microvasculature. CONCLUSIONS These observations indicate that, despite evidence that the ESL has the capacity to inhibit leukocyte-endothelial cell interactions while also containing adhesive ligands for immune cells, neither of these functions modulate trafficking of monocytes and neutrophils in steady-state or acutely-inflamed glomeruli.
Collapse
Affiliation(s)
- ZheHao Tan
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVictoriaAustralia
| | - Pam Hall
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVictoriaAustralia
| | - Adam Costin
- Monash Ramaciotti Centre for Cryo‐Electron MicroscopyMonash UniversityClaytonVictoriaAustralia
| | - Simon A. Crawford
- Monash Ramaciotti Centre for Cryo‐Electron MicroscopyMonash UniversityClaytonVictoriaAustralia
| | - Georg Ramm
- Monash Ramaciotti Centre for Cryo‐Electron MicroscopyMonash UniversityClaytonVictoriaAustralia
| | - Connie H. Y. Wong
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVictoriaAustralia
| | - A. Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVictoriaAustralia
- Department of NephrologyMonash Medical CentreClaytonVictoriaAustralia
- Department of Pediatric NephrologyMonash Medical CentreClaytonVictoriaAustralia
| | - Michael J. Hickey
- Centre for Inflammatory Diseases, Monash University Department of MedicineMonash Medical CentreClaytonVictoriaAustralia
| |
Collapse
|
10
|
Jin Q, Liu T, Qiao Y, Liu D, Yang L, Mao H, Ma F, Wang Y, Peng L, Zhan Y. Oxidative stress and inflammation in diabetic nephropathy: role of polyphenols. Front Immunol 2023; 14:1185317. [PMID: 37545494 PMCID: PMC10401049 DOI: 10.3389/fimmu.2023.1185317] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
Diabetic nephropathy (DN) often leads to end-stage renal disease. Oxidative stress demonstrates a crucial act in the onset and progression of DN, which triggers various pathological processes while promoting the activation of inflammation and forming a vicious oxidative stress-inflammation cycle that induces podocyte injury, extracellular matrix accumulation, glomerulosclerosis, epithelial-mesenchymal transition, renal tubular atrophy, and proteinuria. Conventional treatments for DN have limited efficacy. Polyphenols, as antioxidants, are widely used in DN with multiple targets and fewer adverse effects. This review reveals the oxidative stress and oxidative stress-associated inflammation in DN that led to pathological damage to renal cells, including podocytes, endothelial cells, mesangial cells, and renal tubular epithelial cells. It demonstrates the potent antioxidant and anti-inflammatory properties by targeting Nrf2, SIRT1, HMGB1, NF-κB, and NLRP3 of polyphenols, including quercetin, resveratrol, curcumin, and phenolic acid. However, there remains a long way to a comprehensive understanding of molecular mechanisms and applications for the clinical therapy of polyphenols.
Collapse
Affiliation(s)
- Qi Jin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan Qiao
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Donghai Liu
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Liping Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Yongli Zhan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Yan J, Li X, Liu N, He JC, Zhong Y. Relationship between Macrophages and Tissue Microenvironments in Diabetic Kidneys. Biomedicines 2023; 11:1889. [PMID: 37509528 PMCID: PMC10377233 DOI: 10.3390/biomedicines11071889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage kidney disease. Increasing evidence has suggested that inflammation is a key microenvironment involved in the development and progression of DN. Studies have confirmed that macrophage accumulation is closely related to the progression to human DN. Macrophage phenotype is highly regulated by the surrounding microenvironment in the diabetic kidneys. M1 and M2 macrophages represent distinct and sometimes coexisting functional phenotypes of the same population, with their roles implicated in pathological changes, such as in inflammation and fibrosis associated with the stage of DN. Recent findings from single-cell RNA sequencing of macrophages in DN further confirmed the heterogeneity and plasticity of the macrophages. In addition, intrinsic renal cells interact with macrophages directly or through changes in the tissue microenvironment. Macrophage depletion, modification of its polarization, and autophagy could be potential new therapies for DN.
Collapse
Affiliation(s)
- Jiayi Yan
- Division of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xueling Li
- Division of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ni Liu
- Division of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - John Cijiang He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yifei Zhong
- Division of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
12
|
Han Z, Liu Q, Li H, Zhang M, You L, Lin Y, Wang K, Gou Q, Wang Z, Zhou S, Cai Y, Yuan L, Chen H. The role of monocytes in thrombotic diseases: a review. Front Cardiovasc Med 2023; 10:1113827. [PMID: 37332592 PMCID: PMC10272466 DOI: 10.3389/fcvm.2023.1113827] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Cardiovascular and cerebrovascular diseases are the number one killer threatening people's life and health, among which cardiovascular thrombotic events are the most common. As the cause of particularly serious cardiovascular events, thrombosis can trigger fatal crises such as acute coronary syndrome (myocardial infarction and unstable angina), cerebral infarction and so on. Circulating monocytes are an important part of innate immunity. Their main physiological functions are phagocytosis, removal of injured and senescent cells and their debris, and development into macrophages and dendritic cells. At the same time, they also participate in the pathophysiological processes of pro-coagulation and anticoagulation. According to recent studies, monocytes have been found to play a significant role in thrombosis and thrombotic diseases of the immune system. In this manuscript, we review the relationship between monocyte subsets and cardiovascular thrombotic events and analyze the role of monocytes in arterial thrombosis and their involvement in intravenous thrombolysis. Finally, we summarize the mechanism and therapeutic regimen of monocyte and thrombosis in hypertension, antiphospholipid syndrome, atherosclerosis, rheumatic heart disease, lower extremity deep venous thrombosis, and diabetic nephropathy.
Collapse
Affiliation(s)
- Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongpeng Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meiqi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luling You
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaoyin Gou
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhanzhan Wang
- Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Shuwei Zhou
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - YiJin Cai
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haoran Chen
- Science and Education Department, Chengdu Xinhua Hospital, Chengdu, China
| |
Collapse
|
13
|
Franceković P, Gliemann L. Endothelial Glycocalyx Preservation-Impact of Nutrition and Lifestyle. Nutrients 2023; 15:nu15112573. [PMID: 37299535 DOI: 10.3390/nu15112573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023] Open
Abstract
The endothelial glycocalyx (eGC) is a dynamic hair-like layer expressed on the apical surface of endothelial cells throughout the vascular system. This layer serves as an endothelial cell gatekeeper by controlling the permeability and adhesion properties of endothelial cells, as well as by controlling vascular resistance through the mediation of vasodilation. Pathogenic destruction of the eGC could be linked to impaired vascular function, as well as several acute and chronic cardiovascular conditions. Defining the precise functions and mechanisms of the eGC is perhaps the limiting factor of the missing link in finding novel treatments for lifestyle-related diseases such as atherosclerosis, type 2 diabetes, hypertension, and metabolic syndrome. However, the relationship between diet, lifestyle, and the preservation of the eGC is an unexplored territory. This article provides an overview of the eGC's importance for health and disease and describes perspectives of nutritional therapy for the prevention of the eGC's pathogenic destruction. It is concluded that vitamin D and omega-3 fatty acid supplementation, as well as healthy dietary patterns such as the Mediterranean diet and the time management of eating, might show promise for preserving eGC health and, thus, the health of the cardiovascular system.
Collapse
Affiliation(s)
- Paula Franceković
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen, Denmark
| | - Lasse Gliemann
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen, Denmark
| |
Collapse
|
14
|
Yu H, Song YY, Li XH. Early diabetic kidney disease: Focus on the glycocalyx. World J Diabetes 2023; 14:460-480. [PMID: 37273258 PMCID: PMC10236994 DOI: 10.4239/wjd.v14.i5.460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
The incidence of diabetic kidney disease (DKD) is sharply increasing worldwide. Microalbuminuria is the primary clinical marker used to identify DKD, and its initiating step in diabetes is glomerular endothelial cell dysfunction, particularly glycocalyx impairment. The glycocalyx found on the surface of glomerular endothelial cells, is a dynamic hydrated layer structure composed of pro-teoglycans, glycoproteins, and some adsorbed soluble components. It reinforces the negative charge barrier, transduces the shear stress, and mediates the interaction of blood corpuscles and podocytes with endothelial cells. In the high-glucose environment of diabetes, excessive reactive oxygen species and proinflammatory cytokines can damage the endothelial glycocalyx (EG) both directly and indirectly, which induces the production of microalbuminuria. Further research is required to elucidate the role of the podocyte glycocalyx, which may, together with endothelial cells, form a line of defense against albumin filtration. Interestingly, recent research has confirmed that the negative charge barrier function of the glycocalyx found in the glomerular basement membrane and its repulsion effect on albumin is limited. Therefore, to improve the early diagnosis and treatment of DKD, the potential mechanisms of EG degradation must be analyzed and more responsive and controllable targets must be explored. The content of this review will provide insights for future research.
Collapse
Affiliation(s)
- Hui Yu
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Yi-Yun Song
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Xian-Hua Li
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
15
|
Su S, Ma Z, Wu H, Xu Z, Yi H. Oxidative stress as a culprit in diabetic kidney disease. Life Sci 2023; 322:121661. [PMID: 37028547 DOI: 10.1016/j.lfs.2023.121661] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/26/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
Diabetic kidney disease (DKD) has become the leading cause of end-stage renal disease (ESRD), and the prevalence of DKD has increased worldwide during recent years. DKD is associated with poor therapeutic outcomes in most patients, but there is limited understanding of its pathogenesis. This review suggests that oxidative stress interacts with many other factors in causing DKD. Highly active mitochondria and NAD(P)H oxidase are major sources of oxidants, and they significantly affect the risk for DKD. Oxidative stress and inflammation may be considered reciprocal causes of DKD, in that each is a cause and an effect of DKD. Reactive oxygen species (ROS) can act as second messengers in various signaling pathways and as regulators of metabolism, activation, proliferation, differentiation, and apoptosis of immune cells. Epigenetic modifications, such as DNA methylation, histone modifications, and non-coding RNAs can modulate oxidative stress. The development of new technologies and identification of new epigenetic mechanisms may provide novel opportunities for the diagnosis and treatment of DKD. Clinical trials demonstrated that novel therapies which reduce oxidative stress can slow the progression of DKD. These therapies include the NRF2 activator bardoxolone methyl, new blood glucose-lowering drugs such as sodium-glucose cotransporter 2 inhibitors, and glucagon-like peptide-1 receptor agonists. Future studies should focus on improving early diagnosis and the development of more effective combination treatments for this multifactorial disease.
Collapse
|
16
|
Baltusnikiene A, Staneviciene I, Jansen E. Beneficial and adverse effects of vitamin E on the kidney. Front Physiol 2023; 14:1145216. [PMID: 37007997 PMCID: PMC10050743 DOI: 10.3389/fphys.2023.1145216] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/01/2023] [Indexed: 03/17/2023] Open
Abstract
This article reviews the beneficial and adverse effects of high-dose vitamin E supplementation on the vitamin E status and renal function in human and rodent studies. The high doses of vitamin E, which can cause renal effects, were compared to upper limits of toxicity (UL) as established by various authorities worldwide. In recent mice studies with higher doses of vitamin E, several biomarkers of tissue toxicity and inflammation were found to be significantly elevated. In these biomarker studies, the severity of inflammation and the increased levels of the biomarkers are discussed together with the need to re-evaluate ULs, given the toxic effects of vitamin E on the kidney and emphasizing oxidative stress and inflammation. The controversy in the literature about vitamin E effects on the kidney is mainly caused by the dose-effects relations that do not give a clear view, neither in human nor animals studies. In addition, more recent studies on rodents with new biomarkers of oxidative stress and inflammation give new insights into possible mechanisms. In this review, the controversy is shown and an advice given on the vitamin E supplementation for renal health.
Collapse
Affiliation(s)
- Aldona Baltusnikiene
- Department of Biochemistry, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Inga Staneviciene
- Department of Biochemistry, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Eugène Jansen
- Retired from Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| |
Collapse
|
17
|
Li L, Cook C, Liu Y, Li J, Jiang J, Li S. Endothelial glycocalyx in hepatopulmonary syndrome: An indispensable player mediating vascular changes. Front Immunol 2022; 13:1039618. [PMID: 36618396 PMCID: PMC9815560 DOI: 10.3389/fimmu.2022.1039618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatopulmonary syndrome (HPS) is a serious pulmonary vascular complication that causes respiratory insufficiency in patients with chronic liver diseases. HPS is characterized by two central pathogenic features-intrapulmonary vascular dilatation (IPVD) and angiogenesis. Endothelial glycocalyx (eGCX) is a gel-like layer covering the luminal surface of blood vessels which is involved in a variety of physiological and pathophysiological processes including controlling vascular tone and angiogenesis. In terms of lung disorders, it has been well established that eGCX contributes to dysregulated vascular contraction and impaired blood-gas barrier and fluid clearance, and thus might underlie the pathogenesis of HPS. Additionally, pharmacological interventions targeting eGCX are dramatically on the rise. In this review, we aim to elucidate the potential role of eGCX in IPVD and angiogenesis and describe the possible degradation-reconstitution equilibrium of eGCX during HPS through a highlight of recent literature. These studies strongly underscore the therapeutic rationale in targeting eGCX for the treatment of HPS.
Collapse
Affiliation(s)
- Liang Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Liang Li, ; Shaomin Li,
| | - Christopher Cook
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Yale Liu
- Department of Dermatology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianzhong Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jiantao Jiang
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shaomin Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Liang Li, ; Shaomin Li,
| |
Collapse
|
18
|
Macrophages in Lupus Nephritis: Exploring a potential new therapeutic avenue. Clin Exp Rheumatol 2022; 21:103211. [PMID: 36252930 DOI: 10.1016/j.autrev.2022.103211] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/11/2022] [Indexed: 12/14/2022]
Abstract
Lupus nephritis (LN) is a serious complication of systemic lupus erythematosus (SLE) that occurs in about half of patients. LN is characterized by glomerular deposition of immune complexes, leading to subendothelial, mesangial and subepithelial electron dense deposits, triggering immune cell infiltration and glomerular as well as tubulointerstitial injury. Monocytes and macrophages are abundantly present in inflammatory lesions, both in glomeruli and the tubulointerstitium. Here we discuss how monocytes and macrophages are involved in this process and how monocytes and macrophages may represent specific therapeutic targets to control LN.
Collapse
|
19
|
Li HD, You YK, Shao BY, Wu WF, Wang YF, Guo JB, Meng XM, Chen H. Roles and crosstalks of macrophages in diabetic nephropathy. Front Immunol 2022; 13:1015142. [PMID: 36405700 PMCID: PMC9666695 DOI: 10.3389/fimmu.2022.1015142] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
Diabetic nephropathy (DN) is the most common chronic kidney disease. Accumulation of glucose and metabolites activates resident macrophages in kidneys. Resident macrophages play diverse roles on diabetic kidney injuries by releasing cytokines/chemokines, recruiting peripheral monocytes/macrophages, enhancing renal cell injuries (podocytes, mesangial cells, endothelial cells and tubular epithelial cells), and macrophage-myofibroblast transition. The differentiation and cross-talks of macrophages ultimately result renal inflammation and fibrosis in DN. Emerging evidence shows that targeting macrophages by suppressing macrophage activation/transition, and macrophages-cell interactions may be a promising approach to attenuate DN. In the review, we summarized the diverse roles of macrophages and the cross-talks to other cells in DN, and highlighted the therapeutic potentials by targeting macrophages.
Collapse
Affiliation(s)
- Hai-Di Li
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yong-Ke You
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Bao-Yi Shao
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wei-Feng Wu
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yi-Fan Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jian-Bo Guo
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- *Correspondence: Haiyong Chen, ; Xiao-Ming Meng,
| | - Haiyong Chen
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- *Correspondence: Haiyong Chen, ; Xiao-Ming Meng,
| |
Collapse
|
20
|
Liu Y, Xu D, Wang L, Du W, Zhang L, Xiang X. MBTPS2 exacerbates albuminuria in streptozotocin-induced type I diabetic nephropathy by promoting endoplasmic reticulum stress-mediated renal damage. Arch Physiol Biochem 2022; 128:1050-1057. [PMID: 32255378 DOI: 10.1080/13813455.2020.1749084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The membrane-bound transcription factor protease site 2 (MBTPS2) is an intramembranous metalloprotease involved in the regulation of ER stress response, however, whether it is associated with DN is unknown. RESULTS We report that MBTPS2 expression is upregulated in the renal cortex of diabetic mice induced by streptozotocin (STZ), a murine model of insulinopenic type 1 DN. Functionally, in vivo, MBTPS2 overexpression exacerbates and its knockdown attenuates albuminuria, which indicate a detrimental role of MBTPS2 played in albuminuria development in DN mice. We further show that MBTPS2 promotes ER stress and renal damage in DN mice, and that reducing ER stress via a chemical chaperone 4-phenylbutyric acid (4-PBA) markedly rescues MBTPS2-exacerbated renal damage and albuminuria severity. CONCLUSIONS Collectively, our study associates the function of MBTPS2 in DN albuminuria with ER stress regulation, thus underscoring the notorious role of maladaptive ER response in influencing DN albuminuria.
Collapse
Affiliation(s)
- Yongliang Liu
- Central of Translation Medicine, Zibo Central Hospital, Shandong University, Zibo, China
| | - Dayu Xu
- Department of Urology, Zibo Central Hospital, Shandong University, Zibo, China
| | - Linping Wang
- Central of Translation Medicine, Zibo Central Hospital, Shandong University, Zibo, China
| | - Wenyan Du
- Central of Translation Medicine, Zibo Central Hospital, Shandong University, Zibo, China
| | - Limei Zhang
- Department of Endocrinology, Zibo Central Hospital, Shandong University, Zibo, China
| | - Xinxin Xiang
- Central of Translation Medicine, Zibo Central Hospital, Shandong University, Zibo, China
| |
Collapse
|
21
|
Aboolian A, Urner S, Roden M, Jha JC, Jandeleit-Dahm K. Diabetic Kidney Disease: From Pathogenesis to Novel Treatment Possibilities. Handb Exp Pharmacol 2022; 274:269-307. [PMID: 35318511 DOI: 10.1007/164_2021_576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One of the microvascular complications of diabetes is diabetic kidney disease (DKD), often leading to end stage renal disease (ESRD) in which patients require costly dialysis or transplantation. The silent onset and irreversible progression of DKD are characterized by a steady decline of the estimated glomerular filtration rate, with or without concomitant albuminuria. The diabetic milieu allows the complex pathophysiology of DKD to enter a vicious cycle by inducing the synthesis of excessive amounts of reactive oxygen species (ROS) causing oxidative stress, inflammation, and fibrosis. As no cure is available, intensive research is required to develop novel treatments possibilities. This chapter provides an overview of the important pathomechanisms identified in diabetic kidney disease, the currently established therapies, as well as recently developed novel therapeutic strategies in DKD.
Collapse
Affiliation(s)
- Ara Aboolian
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sofia Urner
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Centre for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Jay Chandra Jha
- Department of Diabetes, Monash University, Melbourne, VIC, Australia
| | - Karin Jandeleit-Dahm
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Department of Diabetes, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
22
|
Zhu Q, He J, Cao Y, Liu X, Nie W, Han F, Shi P, Shen XZ. Analysis of Mononuclear Phagocytes Disclosed the Establishment Processes of Two Macrophage Subsets in the Adult Murine Kidney. Front Immunol 2022; 13:805420. [PMID: 35359928 PMCID: PMC8960422 DOI: 10.3389/fimmu.2022.805420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/18/2022] [Indexed: 12/24/2022] Open
Abstract
The interstitium of kidney involves a variety of components including resident immune cells, in particular mononuclear phagocytes. However, many proposed markers for distinguishing macrophages or dendritic cells are, in fact, shared by the majority of renal mononuclear phagocytes, which impedes the research of kidney diseases. Here, by employing a flow cytometry strategy and techniques of fate mapping, imaging and lineage depletion, we were able to demarcate renal monocytes, macrophages and dendritic cells and their subsets in mice. In particular, using this strategy, we found that even in steady state, the renal macrophage pool was continuously replenished by bone marrow-derived monocytes in a stepwise process, i.e., from infiltration of classical monocyte, to development of nonclassical monocyte and eventually to differentiation to macrophages. In mechanism, we demonstrated that the ligation of tissue-anchored CX3CL1 and monocytic CX3CR1 was required for promoting monocyte differentiation to macrophages in the kidney, but CX3CL1-CX3CR1 signaling was dispensable in monocyte infiltrating into the kidney. In addition to the bone marrow-derived macrophages, fate mapping in adult mice revealed another population of renal resident macrophages which were embryo-derived and self-maintaining. Thus, the dissecting strategies developed by us would assist in exploration of the biology of renal mononuclear phagocytes.
Collapse
Affiliation(s)
- Qian Zhu
- Department of Physiology and Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian He
- Department of Physiology and Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yangyang Cao
- Department of Physiology and Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoli Liu
- Department of Neurology, Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wanyun Nie
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Han
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Shi
- Department of Cardiology, The Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Z Shen
- Department of Physiology and Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
23
|
Jung CY, Yoo TH. Pathophysiologic Mechanisms and Potential Biomarkers in Diabetic Kidney Disease. Diabetes Metab J 2022; 46:181-197. [PMID: 35385633 PMCID: PMC8987689 DOI: 10.4093/dmj.2021.0329] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/14/2022] [Indexed: 12/15/2022] Open
Abstract
Although diabetic kidney disease (DKD) remains the leading cause of end-stage kidney disease eventually requiring chronic kidney replacement therapy, the prevalence of DKD has failed to decline over the past 30 years. In order to reduce disease prevalence, extensive research has been ongoing to improve prediction of DKD onset and progression. Although the most commonly used markers of DKD are albuminuria and estimated glomerular filtration rate, their limitations have encouraged researchers to search for novel biomarkers that could improve risk stratification. Considering that DKD is a complex disease process that involves several pathophysiologic mechanisms such as hyperglycemia induced inflammation, oxidative stress, tubular damage, eventually leading to kidney damage and fibrosis, many novel biomarkers that capture one specific mechanism of the disease have been developed. Moreover, the increasing use of high-throughput omic approaches to analyze biological samples that include proteomics, metabolomics, and transcriptomics has emerged as a strong tool in biomarker discovery. This review will first describe recent advances in the understanding of the pathophysiology of DKD, and second, describe the current clinical biomarkers for DKD, as well as the current status of multiple potential novel biomarkers with respect to protein biomarkers, proteomics, metabolomics, and transcriptomics.
Collapse
Affiliation(s)
- Chan-Young Jung
- Department of Internal Medicine and Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine and Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Korea
- Corresponding author: Tae-Hyun Yoo https://orcid.org/0000-0002-9183-4507 Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea E-mail:
| |
Collapse
|
24
|
Scurt FG, Menne J, Brandt S, Bernhardt A, Mertens PR, Haller H, Chatzikyrkou C. Monocyte chemoattractant protein-1 predicts the development of diabetic nephropathy. Diabetes Metab Res Rev 2022; 38:e3497. [PMID: 34541760 DOI: 10.1002/dmrr.3497] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 12/11/2022]
Abstract
AIM Diabetic nephropathy (DN) is a devastating complication of diabetes mellitus (DM). Therefore, screening strategies in order to prevent its development and/or retard its progression are of paramount importance. We investigated if monocyte chemoattractant protein-1 (MCP-1) was associated with new onset microalbuminuria-the earliest sign of the albuminuric phenotype of DN- in patients with type 2 DM and normoalbuminuria. METHODS We measured MCP-1 in serum and urine samples from patients of the Randomized Olmesartan And Diabetes Microalbuminuria Prevention (ROADMAP) study and its Observational Follow-up (OFU) cohort. A case control design was used with inclusion of 172 patients who developed microalbuminuria (MA) and of 188 well matched controls who remained normoalbuminuric. RESULTS The median duration of follow-up for the ROADMAP cohorts was 6.5 years, whereas the mean time until occurrence of MA was 53.2 months. In the multivariate analysis, serum and urine MCP-1 remained significant predictors of new onset MA. The risk for MA increased continuously with increasing serum and urine MCP-1 levels but reached statistical significance only in the highest quartiles. The risk associations were stronger with serum MCP-1. CONCLUSIONS MCP-1 is a marker and possibly a mediator of early diabetic nephropathy. Further prospective studies are necessary to test whether diabetic patients with elevated MCP-1 levels would benefit from specific therapeutic interventions.
Collapse
Affiliation(s)
- Florian G Scurt
- Clinic of Nephrology, Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jan Menne
- Department of Nephrology, KRH Hospital Siloah, Klinikum Region Hannover GmbH, Hanover, Germany
| | - Sabine Brandt
- Clinic of Nephrology, Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Anja Bernhardt
- Clinic of Nephrology, Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Peter R Mertens
- Clinic of Nephrology, Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Hermann Haller
- Nephrology Section, Hanover Medical School, Hanover, Germany
| | - Christos Chatzikyrkou
- Nephrology Section, Hanover Medical School, Hanover, Germany
- PHV-Dialysis Center, Halberstadt, Germany
| |
Collapse
|
25
|
Peng L, Chen Y, Shi S, Wen H. Stem cell-derived and circulating exosomal microRNAs as new potential tools for diabetic nephropathy management. Stem Cell Res Ther 2022; 13:25. [PMID: 35073973 PMCID: PMC8785577 DOI: 10.1186/s13287-021-02696-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Despite major advances in the treatment of diabetic nephropathy (DN) in recent years, it remains the most common cause of end-stage renal disease. An early diagnosis and therapy may slow down the DN progression. Numerous potential biomarkers are currently being researched. Circulating levels of the kidney-released exosomes and biological molecules, which reflect the DN pathology including glomerular and tubular dysfunction as well as mesangial expansion and fibrosis, have shown the potential for predicting the occurrence and progression of DN. Moreover, many experimental therapies are currently being investigated, including stem cell therapy and medications targeting inflammatory, oxidant, or pro-fibrotic pathways activated during the DN progression. The therapeutic potential of stem cells is partly depending on their secretory capacity, particularly exosomal microRNAs (Exo-miRs). In recent years, a growing line of research has shown the participation of Exo-miRs in the pathophysiological processes of DN, which may provide effective therapeutic and biomarker tools for DN treatment. METHODS A systematic literature search was performed in MEDLINE, Scopus, and Google Scholar to collect published findings regarding therapeutic stem cell-derived Exo-miRs for DN treatment as well as circulating Exo-miRs as potential DN-associated biomarkers. FINDINGS Glomerular mesangial cells and podocytes are the most important culprits in the pathogenesis of DN and, thus, can be considered valuable therapeutic targets. Preclinical investigations have shown that stem cell-derived exosomes can exert beneficial effects in DN by transferring renoprotective miRs to the injured mesangial cells and podocytes. Of note, renoprotective Exo-miR-125a secreted by adipose-derived mesenchymal stem cells can improve the injured mesangial cells, while renoprotective Exo-miRs secreted by adipose-derived stem cells (Exo-miR-486 and Exo-miR-215-5p), human urine-derived stem cells (Exo-miR-16-5p), and bone marrow-derived mesenchymal stem cells (Exo-miR-let-7a) can improve the injured podocytes. On the other hand, clinical investigations have indicated that circulating Exo-miRs isolated from urine or serum hold great potential as promising biomarkers in DN.
Collapse
Affiliation(s)
- Lei Peng
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Yu Chen
- Department of Cardiology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Shaoqing Shi
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Heling Wen
- Department of Cardiology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, 610072, China.
| |
Collapse
|
26
|
Sawaf H, Thomas G, Taliercio JJ, Nakhoul G, Vachharajani TJ, Mehdi A. Therapeutic Advances in Diabetic Nephropathy. J Clin Med 2022; 11:jcm11020378. [PMID: 35054076 PMCID: PMC8781778 DOI: 10.3390/jcm11020378] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
Diabetic kidney disease (DKD) is the most common cause of end-stage kidney disease (ESKD) in the United States. Risk factor modification, such as tight control of blood glucose, management of hypertension and hyperlipidemia, and the use of renin–angiotensin–aldosterone system (RAAS) blockade have been proven to help delay the progression of DKD. In recent years, new therapeutics including sodium-glucose transport protein 2 (SGLT2) inhibitors, endothelin antagonists, glucagon like peptide-1 (GLP-1) agonists, and mineralocorticoid receptor antagonists (MRA), have provided additional treatment options for patients with DKD. This review discusses the various treatment options available to treat patients with diabetic kidney disease.
Collapse
|
27
|
Schettini IVG, Faria DV, Nogueira LS, Otoni A, Silva ACSE, Rios DRA. Renin angiotensin system molecules and chemokine (C-C motif) ligand 2 (CCL2) in chronic kidney disease patients. J Bras Nefrol 2022; 44:19-25. [PMID: 34251390 PMCID: PMC8943881 DOI: 10.1590/2175-8239-jbn-2021-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/26/2021] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Studies have shown that the renin angiotensin aldosterone system (RAAS) and inflammation are related to kidney injury progression. The aim of this study was to evaluate RAAS molecules and chemokine (C-C motif) ligand 2 (CCL2) in 82 patients with chronic kidney disease (CKD). METHODS Patients were divided into two groups: patients diagnosed with CKD and patients without a CKD diagnosis. Glomerular filtration rate (GFR) and albumin/creatinine ratio (ACR) were determined, as well as plasma levels of angiotensin-(1-7) [Ang-(1-7)], angiotensin-converting enzyme (ACE)1, ACE2, and plasma and urinary levels of CCL2. RESULTS CCL2 plasma levels were significantly higher in patients with CKD compared to the control group. Patients with lower GFR had higher plasma levels of ACE2 and CCL2 and lower ratio ACE1/ACE2. Patients with higher ACR values had higher ACE1 plasma levels. CONCLUSION Patients with CKD showed greater activity of both RAAS axes, the classic and alternative, and higher plasma levels of CCL2. Therefore, plasma levels of RAAS molecules and CCL2 seem to be promising prognostic markers and even therapeutic targets for CKD.
Collapse
Affiliation(s)
| | - Débora Vargas Faria
- Universidade Federal de São João del-Rei, Campus Centro Oeste,
Divinópolis, MG, Brasil
| | | | - Alba Otoni
- Universidade Federal de São João del-Rei, Campus Centro Oeste,
Divinópolis, MG, Brasil
| | - Ana Cristina Simões e Silva
- Universidade Federal de Minas Gerais, Faculdade de Medicina,
Laboratório Interdisciplinar de Investigação Médica, Departamento de Pediatria, Belo
Horizonte, MG, Brasil
| | | |
Collapse
|
28
|
Amirpour-Najafabadi B, Hosseini SS, Sam-Sani P, Rezaei E, Ramezani M, Changizi-Ashtiyani S. The glycocalyx, a novel key in understanding of mechanism of diabetic nephropathy: a commentary. J Diabetes Metab Disord 2021; 20:2049-2053. [PMID: 34900840 DOI: 10.1007/s40200-021-00826-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/30/2021] [Indexed: 11/28/2022]
Abstract
Introduction Diabetes is a chronic and progressive disease that usually causes disrupts the function of the body's organs and can eventually lead to cardiomyopathy, nephropathy, retinopathy, and neuropathy. Diabetic nephropathy (DN) is the most common cause of chronic kidney disease and causes chronic structural changes in different parts of the affected kidney. Glycocalyx layer is one of the most important components of the vascular base found in the endothelium throughout the body's arteries and it has been shown that glycocalyx is also damaged during diabetic nephropathy. Our goal is to conduct this systematic review study is to find the cause-and-effect relationship between glycocalyx and diabetic nephropathy and also to clarify the role of the endothelial renal glycocalyx in understanding of mechanism of the course of diabetic nephropathy, and to provide an accurate background for further important studies. Methods All databases included MEDLINE (PubMed), Science Direct, Scopus, Ovid and Google Scholar were systematically searched for related published articles. In all databases, the following search strategy was implemented and these key words (in the title/abstract) were used: "diabetes" AND "glycocalyx" OR "diabetic nephropathy" AND "glycocalyx". Results and discussion A total of 19 articles were retrieved from all databases using search strategy. After screening based on the title and abstract, number of 17 of them selected for full text assessment. Finally, after extracting the key points and making connections between the articles, we came up with new points to consider. It can be said that diabetes with the action of reactive oxygen species through oxidative stress, increases ICAM-1 and TNF-α and decreases heparanase enzyme, it affects the glomerular endothelium and eventually leads to albuminuria and destruction of the Glx layer. Conclusion Diabetes causes super-structural changes in the kidney nephrons at the glomerular level. The glomerular filter barrier, which includes the epithelial cell called the podocyte, endothelial pore cells, and basal membrane of the glomerulus, plays a major role in stabilizing the selective glomerular function in healthy individuals. Diabetic nephropathy also causes changes in endothelial glycocalyx.
Collapse
Affiliation(s)
- Behnam Amirpour-Najafabadi
- Faculty of Para-Medicine, Arak University of Medical Sciences, Arak, Iran.,Student Research Committee, Arak University of Medical Sciences, Arak, Iran
| | | | - Parnian Sam-Sani
- Faculty of Para-Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Erfan Rezaei
- Student Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Majid Ramezani
- Department of Internal Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Saeed Changizi-Ashtiyani
- Traditional and Complementary Medicine Research Center (TCMRC), Arak University of Medical Sciences, Arak, Iran.,Faculty of Para-Medicine, Department of Physiology, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
29
|
Wu M, Zhang M, Zhang Y, Li Z, Li X, Liu Z, Liu H, Li X. Relationship between lysosomal dyshomeostasis and progression of diabetic kidney disease. Cell Death Dis 2021; 12:958. [PMID: 34663802 PMCID: PMC8523726 DOI: 10.1038/s41419-021-04271-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022]
Abstract
Lysosomes are organelles involved in cell metabolism, waste degradation, and cellular material circulation. They play a key role in the maintenance of cellular physiological homeostasis. Compared with the lysosomal content of other organs, that of the kidney is abundant, and lysosomal abnormalities are associated with the occurrence and development of certain renal diseases. Lysosomal structure and function in intrinsic renal cells are impaired in diabetic kidney disease (DKD). Promoting lysosomal biosynthesis and/or restoring lysosomal function can repair damaged podocytes and proximal tubular epithelial cells, and delay the progression of DKD. Lysosomal homeostasis maintenance may be advantageous in alleviating DKD. Here, we systematically reviewed the latest advances in the relationship between lysosomal dyshomeostasis and progression of DKD based on recent literature to further elucidate the mechanism of renal injury in diabetes mellitus and to highlight the application potential of lysosomal homeostasis maintenance as a new prevention and treatment strategy for DKD. However, research on screening effective interventions for lysosomal dyshomeostasis is still in its infancy, and thus should be the focus of future research studies. The screening out of cell-specific lysosomal function regulation targets according to the different stages of DKD, so as to realize the controllable targeted regulation of cell lysosomal function during DKD, is the key to the successful clinical development of this therapeutic strategy.
Collapse
Affiliation(s)
- Man Wu
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Minjie Zhang
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Yaozhi Zhang
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Zixian Li
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Xingyu Li
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Zejian Liu
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Huafeng Liu
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China.
| | - Xiaoyu Li
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China.
| |
Collapse
|
30
|
Mayfosh AJ, Nguyen TK, Hulett MD. The Heparanase Regulatory Network in Health and Disease. Int J Mol Sci 2021; 22:11096. [PMID: 34681753 PMCID: PMC8541136 DOI: 10.3390/ijms222011096] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
The extracellular matrix (ECM) is a structural framework that has many important physiological functions which include maintaining tissue structure and integrity, serving as a barrier to invading pathogens, and acting as a reservoir for bioactive molecules. This cellular scaffold is made up of various types of macromolecules including heparan sulfate proteoglycans (HSPGs). HSPGs comprise a protein core linked to the complex glycosaminoglycan heparan sulfate (HS), the remodeling of which is important for many physiological processes such as wound healing as well as pathological processes including cancer metastasis. Turnover of HS is tightly regulated by a single enzyme capable of cleaving HS side chains: heparanase. Heparanase upregulation has been identified in many inflammatory diseases including atherosclerosis, fibrosis, and cancer, where it has been shown to play multiple roles in processes such as epithelial-mesenchymal transition, angiogenesis, and cancer metastasis. Heparanase expression and activity are tightly regulated. Understanding the regulation of heparanase and its downstream targets is attractive for the development of treatments for these diseases. This review provides a comprehensive overview of the regulators of heparanase as well as the enzyme's downstream gene and protein targets, and implications for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Alyce J. Mayfosh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3083, Australia; (A.J.M.); (T.K.N.)
| | - Tien K. Nguyen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3083, Australia; (A.J.M.); (T.K.N.)
| | - Mark D. Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3083, Australia; (A.J.M.); (T.K.N.)
| |
Collapse
|
31
|
Yang YY, Chen Z, Yang XD, Deng RR, Shi LX, Yao LY, Xiang DX. Piperazine ferulate prevents high-glucose-induced filtration barrier injury of glomerular endothelial cells. Exp Ther Med 2021; 22:1175. [PMID: 34504620 PMCID: PMC8393711 DOI: 10.3892/etm.2021.10607] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
Filtration barrier injury induced by high glucose (HG) levels leads to the development of diabetic nephropathy. The endothelial glycocalyx plays a critical role in glomerular barrier function. In the present study, the effects of piperazine ferulate (PF) on HG-induced filtration barrier injury of glomerular endothelial cells (GEnCs) were investigated and the underlying mechanism was assessed. Immunofluorescence was used to observe the distribution of the glycocalyx as well as the expression levels of syndecan-1 and Zonula occludens-1 (ZO-1). Endothelial permeability assays were performed to assess the effects of PF on the integrity of the filtration barrier. Protein and mRNA expression levels were measured by western blotting and reverse transcription-quantitative PCR analyses, respectively. In vitro experiments revealed that adenosine monophosphate-activated protein kinase (AMPK) mediated HG-induced glycocalyx degradation and endothelial barrier injury. PF inhibited the HG-induced endothelial barrier injury and restored the expression levels of heparanase-1 (Hpa-1), ZO-1 and occludin-1 by AMPK. In vivo assays demonstrated that PF reduced the expression levels of Hpa-1, increased the expression levels of ZO-1 and attenuated glycocalyx degradation in the glomerulus. These data suggested that PF attenuated HG-induced filtration barrier injury of GEnC by regulating AMPK expression.
Collapse
Affiliation(s)
- Yong-Yu Yang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China.,Hunan Provincial Engineering Research Central of Translational Medical and Innovative Drug, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhuo Chen
- Department of Geriatrics, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Xi-Ding Yang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Rong-Rong Deng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Ling-Xing Shi
- Department of Pharmacology, Changsha Medical University, Changsha, Hunan 410219, P.R. China
| | - Liang-Yuan Yao
- Hunan Qianjin Xiangjiang Pharmaceutical Industry Co., Ltd., Zhuzhou, Hunan 412000, P.R. China
| | - Da-Xiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China.,Hunan Provincial Engineering Research Central of Translational Medical and Innovative Drug, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
32
|
Liu J, Xu J, Huang J, Gu C, Liu Q, Zhang W, Gao F, Tian Y, Miao X, Zhu Z, Jia B, Tian Y, Wu L, Zhao H, Feng X, Liu S. TRIM27 contributes to glomerular endothelial cell injury in lupus nephritis by mediating the FoxO1 signaling pathway. J Transl Med 2021; 101:983-997. [PMID: 33854173 PMCID: PMC8044289 DOI: 10.1038/s41374-021-00591-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/09/2022] Open
Abstract
Tripartite motif-containing 27 (TRIM27) belongs to the triple motif (TRIM) protein family, which plays a role in a variety of biological activities. Our previous study showed that the TRIM27 protein was highly expressed in the glomerular endothelial cells of patients suffering from lupus nephritis (LN). However, whether TRIM27 is involved in the injury of glomerular endothelial cells in lupus nephritis remains to be clarified. Here, we detected the expression of the TRIM27 protein in glomerular endothelial cells in vivo and in vitro. In addition, the influence of TRIM27 knockdown on endothelial cell damage in MRL/lpr mice and cultured human renal glomerular endothelial cells (HRGECs) was explored. The results revealed that the expression of TRIM27 in endothelial cells was significantly enhanced in vivo and in vitro. Downregulating the expression of TRIM27 inhibited the breakdown of the glycocalyx and the injury of endothelial cells via the FoxO1 pathway. Moreover, HRGECs transfected with the WT-FoxO1 plasmid showed a reduction in impairment caused by LN plasma. Furthermore, suppression of the protein kinase B (Akt) pathway could attenuate damage by mediating the expression of TRIM27. Thus, the present study showed that TRIM27 participated in the injury of glomerular endothelial cells and served as a potential therapeutic target for the treatment of lupus nephritis.
Collapse
Affiliation(s)
- Jinxi Liu
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Jie Xu
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Jie Huang
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Cunyang Gu
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Qingjuan Liu
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Wei Zhang
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Fan Gao
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Yuexin Tian
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Xinyan Miao
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Zixuan Zhu
- Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Baiyun Jia
- Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yu Tian
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
- Department of Rheumatology, The Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lunbi Wu
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Hang Zhao
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Xiaojuan Feng
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China.
| | - Shuxia Liu
- Department of Pathology; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China.
| |
Collapse
|
33
|
Cantero-Navarro E, Rayego-Mateos S, Orejudo M, Tejedor-Santamaria L, Tejera-Muñoz A, Sanz AB, Marquez-Exposito L, Marchant V, Santos-Sanchez L, Egido J, Ortiz A, Bellon T, Rodrigues-Diez RR, Ruiz-Ortega M. Role of Macrophages and Related Cytokines in Kidney Disease. Front Med (Lausanne) 2021; 8:688060. [PMID: 34307414 PMCID: PMC8295566 DOI: 10.3389/fmed.2021.688060] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a key characteristic of kidney disease, but this immune response is two-faced. In the acute phase of kidney injury, there is an activation of the immune cells to fight against the insult, contributing to kidney repair and regeneration. However, in chronic kidney diseases (CKD), immune cells that infiltrate the kidney play a deleterious role, actively participating in disease progression, and contributing to nephron loss and fibrosis. Importantly, CKD is a chronic inflammatory disease. In early CKD stages, patients present sub-clinical inflammation, activation of immune circulating cells and therefore, anti-inflammatory strategies have been proposed as a common therapeutic target for renal diseases. Recent studies have highlighted the plasticity of immune cells and the complexity of their functions. Among immune cells, monocytes/macrophages play an important role in all steps of kidney injury. However, the phenotype characterization between human and mice immune cells showed different markers; therefore the extrapolation of experimental studies in mice could not reflect human renal diseases. Here we will review the current information about the characteristics of different macrophage phenotypes, mainly focused on macrophage-related cytokines, with special attention to the chemokine CCL18, and its murine functional homolog CCL8, and the macrophage marker CD163, and their role in kidney pathology.
Collapse
Affiliation(s)
- Elena Cantero-Navarro
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Rayego-Mateos
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Macarena Orejudo
- Renal, Vascular and Diabetes Research Laboratory, Fundación IIS -Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Lucía Tejedor-Santamaria
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Tejera-Muñoz
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Belén Sanz
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Nephrology and Hypertension, Fundación IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Laura Marquez-Exposito
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Vanessa Marchant
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Santos-Sanchez
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, Fundación IIS -Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Alberto Ortiz
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Nephrology and Hypertension, Fundación IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Teresa Bellon
- La Paz Hospital Health Research Institute, Madrid, Spain
| | - Raúl R Rodrigues-Diez
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
34
|
Mukai S, Takaki T, Nagumo T, Sano M, Kang D, Takimoto M, Honda K. Three-dimensional electron microscopy for endothelial glycocalyx observation using Alcian blue with silver enhancement. Med Mol Morphol 2021; 54:95-107. [PMID: 33025157 PMCID: PMC8139922 DOI: 10.1007/s00795-020-00267-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/19/2020] [Indexed: 11/30/2022]
Abstract
Glycocalyx (GCX) is a thin layer of negatively charged glycoproteins that covers the vascular endothelial surface and regulates various biological processes. Because of the delicate and fragile properties of this structure, it is difficult to detect GCX morphologically. We established a simple method for a three-dimensional visualization of endothelial GCX using low-vacuum scanning electron microscopy (LVSEM) on formalin-fixed paraffin-embedded (FFPE) sections. Mouse kidney tissue was fixed with 10% buffered formalin containing 1% Alcian blue (ALB) via perfusion and immersion. FFPE sections were observed by light microscopy (LM) and LVSEM, and formalin-fixed epoxy resin-embedded ultrathin sections were observed by transmission electron microscopy (TEM). The endothelial GCX from various levels of kidney blood vessels was stained blue in LM and confirmed as a thin osmiophilic layer in TEM. In LVSEM, the sections stained by periodic acid methenamine silver (PAM) revealed the endothelial GCX as a layer of dense silver-enhanced particles, in both the samples fixed via perfusion and immersion. Correlative light and electron microscopy (CLEM) revealed the fine visible structure of endothelial GCX. This simple method using FFPE samples with ALB will enable the three-dimensional evaluation of endothelial GCX alterations in various human diseases associated with endothelial injury in future studies.
Collapse
Affiliation(s)
- Shumpei Mukai
- Department of Pathology, Showa University School of Medicine, Tokyo, Japan
| | - Takashi Takaki
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
- Division of Electron Microscopy, Showa University, Tokyo, Japan
| | - Tasuku Nagumo
- Department of Pathology, Showa University School of Medicine, Tokyo, Japan
| | - Mariko Sano
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Dedong Kang
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Masafumi Takimoto
- Department of Pathology, Showa University School of Medicine, Tokyo, Japan
| | - Kazuho Honda
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| |
Collapse
|
35
|
Empagliflozin Inhibits IL-1β-Mediated Inflammatory Response in Human Proximal Tubular Cells. Int J Mol Sci 2021; 22:ijms22105089. [PMID: 34064989 PMCID: PMC8151056 DOI: 10.3390/ijms22105089] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
SGLT2 inhibitor-related nephroprotection is—at least partially—mediated by anti-inflammatory drug effects, as previously demonstrated in diabetic animal and human studies, as well as hyperglycemic cell culture models. We recently presented first evidence for anti-inflammatory potential of empagliflozin (Empa) under normoglycemic conditions in human proximal tubular cells (HPTC) by demonstrating Empa-mediated inhibition of IL-1β-induced MCP-1/CCL2 and ET-1 expression on the mRNA and protein level. We now add corroborating evidence on a genome-wide level by demonstrating that Empa attenuates the expression of several inflammatory response genes in IL-1β-induced (10 ng/mL) normoglycemic HPTCs. Using microarray-hybridization analysis, 19 inflammatory response genes out of >30.000 human genes presented a consistent expression pattern, that is, inhibition of IL-1β (10 ng/mL)-stimulated gene expression by Empa (500 nM), in both HK-2 and RPTEC/TERT1 cells. Pathway enrichment analysis demonstrated statistically significant clustering of annotated pathways (enrichment score 3.64). Our transcriptomic approach reveals novel genes such as CXCL8/IL8, LOX, NOV, PTX3, and SGK1 that might be causally involved in glycemia-independent nephroprotection by SGLT2i.
Collapse
|
36
|
Vlodavsky I, Barash U, Nguyen HM, Yang SM, Ilan N. Biology of the Heparanase-Heparan Sulfate Axis and Its Role in Disease Pathogenesis. Semin Thromb Hemost 2021; 47:240-253. [PMID: 33794549 DOI: 10.1055/s-0041-1725066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell surface proteoglycans are important constituents of the glycocalyx and participate in cell-cell and cell-extracellular matrix (ECM) interactions, enzyme activation and inhibition, and multiple signaling routes, thereby regulating cell proliferation, survival, adhesion, migration, and differentiation. Heparanase, the sole mammalian heparan sulfate degrading endoglycosidase, acts as an "activator" of HS proteoglycans, thus regulating tissue hemostasis. Heparanase is a multifaceted enzyme that together with heparan sulfate, primarily syndecan-1, drives signal transduction, immune cell activation, exosome formation, autophagy, and gene transcription via enzymatic and nonenzymatic activities. An important feature is the ability of heparanase to stimulate syndecan-1 shedding, thereby impacting cell behavior both locally and distally from its cell of origin. Heparanase releases a myriad of HS-bound growth factors, cytokines, and chemokines that are sequestered by heparan sulfate in the glycocalyx and ECM. Collectively, the heparan sulfate-heparanase axis plays pivotal roles in creating a permissive environment for cell proliferation, differentiation, and function, often resulting in the pathogenesis of diseases such as cancer, inflammation, endotheliitis, kidney dysfunction, tissue fibrosis, and viral infection.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Uri Barash
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Neta Ilan
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
37
|
Pirklbauer M. Anti-inflammatory potential of Empagliflozin. Inflammopharmacology 2021; 29:573-576. [PMID: 33728540 PMCID: PMC7997819 DOI: 10.1007/s10787-021-00797-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/06/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Markus Pirklbauer
- Department of Internal Medicine IV-Nephrology and Hypertension, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
38
|
Pezhman L, Tahrani A, Chimen M. Dysregulation of Leukocyte Trafficking in Type 2 Diabetes: Mechanisms and Potential Therapeutic Avenues. Front Cell Dev Biol 2021; 9:624184. [PMID: 33692997 PMCID: PMC7937619 DOI: 10.3389/fcell.2021.624184] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/04/2021] [Indexed: 12/18/2022] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) is a chronic inflammatory disorder that is characterized by chronic hyperglycemia and impaired insulin signaling which in addition to be caused by common metabolic dysregulations, have also been associated to changes in various immune cell number, function and activation phenotype. Obesity plays a central role in the development of T2DM. The inflammation originating from obese adipose tissue develops systemically and contributes to insulin resistance, beta cell dysfunction and hyperglycemia. Hyperglycemia can also contribute to chronic, low-grade inflammation resulting in compromised immune function. In this review, we explore how the trafficking of innate and adaptive immune cells under inflammatory condition is dysregulated in T2DM. We particularly highlight the obesity-related accumulation of leukocytes in the adipose tissue leading to insulin resistance and beta-cell dysfunction and resulting in hyperglycemia and consequent changes of adhesion and migratory behavior of leukocytes in different vascular beds. Thus, here we discuss how potential therapeutic targeting of leukocyte trafficking could be an efficient way to control inflammation as well as diabetes and its vascular complications.
Collapse
Affiliation(s)
- Laleh Pezhman
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Abd Tahrani
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom.,University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Myriam Chimen
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
39
|
Du Q, Fu YX, Shu AM, Lv X, Chen YP, Gao YY, Chen J, Wang W, Lv GH, Lu JF, Xu HQ. Loganin alleviates macrophage infiltration and activation by inhibiting the MCP-1/CCR2 axis in diabetic nephropathy. Life Sci 2020; 272:118808. [PMID: 33245967 DOI: 10.1016/j.lfs.2020.118808] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND/AIMS The theory of inflammation is one of the important theories in the pathogenesis of diabetic nephropathy (DN). We herein aimed to explore whether loganin affected macrophage infiltration and activation upon diabetic nephropathy (DN) by a spontaneous DN mice and a co-culture system of glomerular mesangial cells (GMCs) and macrophage cells (RAW264.7) which was induced by advanced glycation end products (AGEs). METHODS AND KEY FINDINGS Loganin showed remarkable capacity on protecting renal from damage by mitigating diabetic symptoms, improving the histomorphology of the kidney, decreasing the expression of extracellular matrix such as FN, COL-IV and TGF-β, reversing the production of IL-12 and IL-10 and decreasing the number of infiltrating macrophages in the kidney. Moreover, loganin showed markedly effects by suppressing iNOS and CD16/32 expressions (M1 markers), increasing Arg-1 and CD206 expressions (M2 markers), which were the phenotypic transformation of macrophage. These effects may be attributed to the inhibition of the receptor for AGEs (RAGE) /monocyte chemotactic protein-1 (MCP-1)/CC chemokine receptor 2 (CCR2) signaling pathway, with significantly down-regulated expressions of RAGE, MCP-1 and CCR2 by loganin. Loganin further decreased MCP-1 secretion when RAGE was silenced, which means other target was involved in regulating the MCP-1 expression. While loganin combinated with the inhibitor of CCR2 exerted stronger anti-inhibition effects of iNOS expression, suggesting that CCR2 was the target of loganin in regulating the activation of macrophages. SIGNIFICANCE Loganin could ameliorate DN kidney damage by inhibiting macrophage infiltration and activation via the MCP-1/CCR2 signaling pathway in DN.
Collapse
Affiliation(s)
- Qiu Du
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Pharmacy, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - Ying-Xue Fu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - An-Mei Shu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - Xing Lv
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China; Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai 201210, China
| | - Yu-Ping Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - Yu-Yan Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - Jing Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - Wei Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - Gao-Hong Lv
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - Jin-Fu Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China
| | - Hui-Qin Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Efficacy and Safety Evaluation of Traditional Chinese Medicine in Jiangsu Province, Nanjing 210023, China.
| |
Collapse
|
40
|
Pirklbauer M, Bernd M, Fuchs L, Staudinger P, Corazza U, Leierer J, Mayer G, Schramek H. Empagliflozin Inhibits Basal and IL-1β-Mediated MCP-1/CCL2 and Endothelin-1 Expression in Human Proximal Tubular Cells. Int J Mol Sci 2020; 21:ijms21218189. [PMID: 33139635 PMCID: PMC7663377 DOI: 10.3390/ijms21218189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
SGLT2 inhibitors (SGLT2i) slow the progression of chronic kidney disease; however, evidence for the underlying molecular mechanisms is scarce. We investigated SGLT2i-mediated effects on differential gene expression in two independent human proximal tubular cell (HPTC) lines (HK-2 and RPTEC/TERT1) at the mRNA and protein levels under normoglycemic conditions, utilizing IL-1β as a pro-inflammatory mediator. Microarray hybridization identified 259 genes that were uniformly upregulated by IL-1β (10 mg/mL) and downregulated by empagliflozin (Empa) (500 nM) after 24 h of stimulation in two independent HPTC lines (n = 2, each). The functional annotation of these genes identified eight pathway clusters. Among 12 genes annotated to the highest ranked cluster (enrichment score, 3.51), monocyte chemoattractant protein-1/CC-chemokine ligand 2 (MCP-1/CCL2) and endothelin-1 (ET-1) were selected for verification at mRNA and protein levels based on their established involvement in the early pathogenesis of chronic kidney disease: IL-1β upregulated basal MCP-1/CCL2 (15- and 19-fold) and ET-1 (3- and 8-fold) mRNA expression, while Empa downregulated basal MCP-1/CCL2 (0.6- and 0.5-fold) and ET-1 (0.3- and 0.2-fold) mRNA expression as early as 1 h after stimulation and for at least 24 h in HK-2 and RPTEC/TERT1 cells, respectively. The co-administration of Empa inhibited IL-1β-mediated MCP-1/CCL2 (0.2-fold, each) and ET-1 (0.2-fold, each) mRNA expression as early as 1 h after ligand stimulation and for at least 24 h in both HPTC lines, respectively. This inhibitory effect of Empa on basal and IL-1β-mediated MCP-1/CCL2 and ET-1 mRNA expression was corroborated at the protein level. Our study presents novel evidence for the interference of SGLT2 inhibition with tubular inflammatory response mechanisms under normoglycemic conditions that might account for SGLT2i-mediated nephroprotection.
Collapse
|
41
|
Danta CC, Boa AN, Bhandari S, Sathyapalan T, Xu SZ. Recent advances in drug discovery for diabetic kidney disease. Expert Opin Drug Discov 2020; 16:447-461. [PMID: 33003971 DOI: 10.1080/17460441.2021.1832077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease (ESRD), and 40% of patients with diabetes develop DKD. Although some pathophysiological mechanisms and drug targets of DKD have been described, the effectiveness or clinical usefulness of such treatment has not been well validated. Therefore, searching for new targets and potential therapeutic candidates has become an emerging research area. AREAS COVERED The pathophysiological mechanisms, new drug targets and potential therapeutic compounds for DKD are addressed in this review. EXPERT OPINION Although preclinical and clinical evidence has shown some positive results for controlling DKD progression, treatment regimens have not been well developed to reduce the mortality in patients with DKD globally. Therefore, the discovery of new therapeutic targets and effective target-based drugs to achieve better and safe treatment are urgently required. Preclinical screening and clinical trials for such drugs are needed.
Collapse
Affiliation(s)
- Chhanda Charan Danta
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK
| | - Andrew N Boa
- Department of Chemistry, University of Hull, Hull, UK
| | - Sunil Bhandari
- Department of Renal Medicine and Hull York Medical School, Hull Royal Infirmary, Hull University Teaching Hospitals NHS Trust, Hull, UK
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Shang-Zhong Xu
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK.,Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| |
Collapse
|
42
|
Buijsers B, Yanginlar C, de Nooijer A, Grondman I, Maciej-Hulme ML, Jonkman I, Janssen NAF, Rother N, de Graaf M, Pickkers P, Kox M, Joosten LAB, Nijenhuis T, Netea MG, Hilbrands L, van de Veerdonk FL, Duivenvoorden R, de Mast Q, van der Vlag J. Increased Plasma Heparanase Activity in COVID-19 Patients. Front Immunol 2020; 11:575047. [PMID: 33123154 PMCID: PMC7573491 DOI: 10.3389/fimmu.2020.575047] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/14/2020] [Indexed: 12/23/2022] Open
Abstract
Reports suggest a role of endothelial dysfunction and loss of endothelial barrier function in COVID-19. It is well established that the endothelial glycocalyx-degrading enzyme heparanase contributes to vascular leakage and inflammation. Low molecular weight heparins (LMWH) serve as an inhibitor of heparanase. We hypothesize that heparanase contributes to the pathogenesis of COVID-19, and that heparanase may be inhibited by LMWH. To test this hypothesis, heparanase activity and heparan sulfate levels were measured in plasma of healthy controls (n = 10) and COVID-19 patients (n = 48). Plasma heparanase activity and heparan sulfate levels were significantly elevated in COVID-19 patients. Heparanase activity was associated with disease severity including the need for intensive care, lactate dehydrogenase levels, and creatinine levels. Use of prophylactic LMWH in non-ICU patients was associated with a reduced heparanase activity. Since there is no other clinically applied heparanase inhibitor currently available, therapeutic treatment of COVID-19 patients with low molecular weight heparins should be explored.
Collapse
Affiliation(s)
- Baranca Buijsers
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cansu Yanginlar
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Aline de Nooijer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Inge Grondman
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marissa L. Maciej-Hulme
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Inge Jonkman
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nico A. F. Janssen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nils Rother
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mark de Graaf
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Peter Pickkers
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Matthijs Kox
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leo A. B. Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tom Nijenhuis
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Deparment of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Luuk Hilbrands
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank L. van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Raphaël Duivenvoorden
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Quirijn de Mast
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
43
|
Wu L, Li XQ, Chang DY, Zhang H, Li JJ, Wu SL, Zhang LX, Chen M, Zhao MH. Associations of urinary epidermal growth factor and monocyte chemotactic protein-1 with kidney involvement in patients with diabetic kidney disease. Nephrol Dial Transplant 2020; 35:291-297. [PMID: 30357416 DOI: 10.1093/ndt/gfy314] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/05/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND In diabetic kidney disease (DKD), it is important to find biomarkers for predicting initiation and progression of the disease. Besides glomerular damage, kidney tubular injury and inflammation are also involved in the development of DKD. The current study investigated the associations of urinary epidermal growth factor (uEGF), monocyte chemotactic protein-1 (MCP-1) and the uEGF:MCP-1 ratio with kidney involvement in patients at early and advanced stages of DKD. METHODS The concentration of uEGF and uMCP-1 was measured in two Chinese population-based studies. The associations of uEGF, uMCP-1 and uEGF/MCP-1 with occurrence of DKD were studied in a cross-sectional study (n = 1811) of early stage DKD. Associations of baseline uEGF, uMCP-1 and uEGF/MCP-1 with kidney outcome were assessed in a longitudinal cohort (n = 208) of advanced-stage DKD. RESULTS In both studies, positive correlations were found between uEGF/urine creatinine (Cr) and estimated glomerular filtration rate (eGFR) at sampling and between uMCP-1/Cr and urinary albumin:creatinine ratio (uACR). In the cross-sectional study, uEGF/Cr and uEGF/MCP-1 were negatively associated with the occurrence of DKD {odds ratio (OR) 0.65 [95% confidence interval (CI) 0.54-0.79], P < 0.001; 0.82 (0.71-0.94), P = 0.005, respectively}. In the longitudinal cohort, the uEGF:MCP-1 ratio correlated more closely with the percentage change of eGFR slope (r = 0.33, P < 0.001) as compared with uEGF/Cr or uMCP-1/Cr alone. The composite endpoint was defined as end-stage renal disease or 30% reduction of eGFR. These three markers were independently associated with composite endpoint after adjusting for potential confounders [hazard ratio 0.76 (0.59-1.00), P = 0.047 for uEGF/Cr; 1.18 (1.02-1.38), P = 0.028 for uMCP-1/Cr; 0.79 (0.68-0.91), P = 0.001 for uEGF/MCP-1]. CONCLUSION In Chinese patients, urinary EGF/MCP-1 was negatively associated with the occurrence of DKD. Moreover, uEGF/MCP-1 had a better ability to predict the composite endpoint and correlated more closely with kidney function decline in advanced DKD as compared with uEGF/Cr or uMCP-1/Cr alone.
Collapse
Affiliation(s)
- Liang Wu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Xiao-Qian Li
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Dong-Yuan Chang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Huifen Zhang
- Kailuan General Hospital Affiliated to North China University of Science and Technology, Tangshan, China
| | - Jun-Juan Li
- Kailuan General Hospital Affiliated to North China University of Science and Technology, Tangshan, China
| | - Shou-Ling Wu
- Kailuan General Hospital Affiliated to North China University of Science and Technology, Tangshan, China
| | - Lu-Xia Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China.,Center for Data Science in Health and Medicine, Peking University, Beijing, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| |
Collapse
|
44
|
Sears SM, Sharp CN, Krueger A, Oropilla GB, Saforo D, Doll MA, Megyesi J, Beverly LJ, Siskind LJ. C57BL/6 mice require a higher dose of cisplatin to induce renal fibrosis and CCL2 correlates with cisplatin-induced kidney injury. Am J Physiol Renal Physiol 2020; 319:F674-F685. [PMID: 32830540 DOI: 10.1152/ajprenal.00196.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
C57BL/6 mice are one of the most commonly used mouse strains in research, especially in kidney injury studies. However, C57BL/6 mice are resistant to chronic kidney disease-associated pathologies, particularly the development of glomerulosclerosis and interstitial fibrosis. Our laboratory and others developed a more clinically relevant dosing regimen of cisplatin (7 mg/kg cisplatin once a week for 4 wk and mice euthanized at day 24) that leads to the development of progressive kidney fibrosis in FVB/n mice. However, we found that treating C57BL/6 mice with this same dosing regimen does not result in kidney fibrosis. In this study, we demonstrated that increasing the dose of cisplatin to 9 mg/kg once a week for 4 wk is sufficient to consistently induce fibrosis in C57BL/6 mice while maintaining animal survival. In addition, we present that cohorts of C57BL/6 mice purchased from Jackson 1 yr apart and mice bred in-house display variability in renal outcomes following repeated low-dose cisplatin treatment. Indepth analyses of this intra-animal variability revealed C-C motif chemokine ligand 2 as a marker of cisplatin-induced kidney injury through correlation studies. In addition, significant immune cell infiltration was observed in the kidney after four doses of 9 mg/kg cisplatin, contrary to what has been previously reported. These results indicate that multiple strains of mice can be used with our repeated low-dose cisplatin model with dose optimization. Results also indicate that littermate control mice should be used with this model to account for population variability.
Collapse
Affiliation(s)
- Sophia M Sears
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Cierra N Sharp
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Austin Krueger
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Gabrielle B Oropilla
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Douglas Saforo
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Mark A Doll
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Judit Megyesi
- University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Levi J Beverly
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky.,Department of Medicine, University of Louisville, Louisville, Kentucky.,James Graham Brown Cancer Center, Louisville, Kentucky
| | - Leah J Siskind
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky.,James Graham Brown Cancer Center, Louisville, Kentucky
| |
Collapse
|
45
|
Kanduri SR, Kovvuru K, Hansrivijit P, Thongprayoon C, Vallabhajosyula S, Pivovarova AI, Chewcharat A, Garla V, Medaura J, Cheungpasitporn W. SGLT2 Inhibitors and Kidney Outcomes in Patients with Chronic Kidney Disease. J Clin Med 2020; 9:E2723. [PMID: 32846935 PMCID: PMC7564486 DOI: 10.3390/jcm9092723] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
Globally, diabetes mellitus is a leading cause of kidney disease, with a critical percent of patients approaching end-stage kidney disease. In the current era, sodium-glucose co-transporter 2 inhibitors (SGLT2i) have emerged as phenomenal agents in halting the progression of kidney disease. Positive effects of SGLT2i are centered on multiple mechanisms, including glycosuric effects, tubule-glomerular feedback, antioxidant, anti-fibrotic, natriuretic, and reduction in cortical hypoxia, alteration in energy metabolism. Concurrently, multiple kidney and cardiovascular outcome studies have reported remarkable advantages of SGLT2i including mortality benefits. Additionally, the superiority of combination therapies (SGLT2I along with metformin/DDP-4 Inhibitors) in treatment-naïve diabetic patients is further looked into with potential signal towards glycemic and blood pressure control. Reported promising results initiate a gateway for future research targeting kidney outcomes with combination therapies as an initial approach. In the current paper, we summarize leading cardiovascular and kidney outcome trials in patients with type 2 diabetes, the role of SGLT2i in non-diabetic proteinuric kidney disease, and the potential mechanisms of action of SGLT2i with special focus on combination therapy as an initial therapeutic approach in treatment-naïve diabetic patients.
Collapse
Affiliation(s)
- Swetha R. Kanduri
- Department of Nephrology, Ochsner Medical Center, New Orleans, LA 70121, USA; (S.R.K.); (K.K.)
| | - Karthik Kovvuru
- Department of Nephrology, Ochsner Medical Center, New Orleans, LA 70121, USA; (S.R.K.); (K.K.)
| | - Panupong Hansrivijit
- Department of Internal Medicine, University of Pittsburgh Medical Center Pinnacle, Harrisburg, PA 17105, USA;
| | - Charat Thongprayoon
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA; (C.T.); (A.C.)
| | - Saraschandra Vallabhajosyula
- Section of Interventional Cardiology, Division of Cardiovascular Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Aleksandra I. Pivovarova
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39156, USA; (A.I.P.); (J.M.)
| | - Api Chewcharat
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA; (C.T.); (A.C.)
| | - Vishnu Garla
- Department of Internal Medicine and Mississippi Center for Clinical and Translational Research, University of Mississippi Medical Center, Jackson, MS 39156, USA;
| | - Juan Medaura
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39156, USA; (A.I.P.); (J.M.)
| | - Wisit Cheungpasitporn
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA; (C.T.); (A.C.)
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39156, USA; (A.I.P.); (J.M.)
| |
Collapse
|
46
|
Chen Y, Lee K, Ni Z, He JC. Diabetic Kidney Disease: Challenges, Advances, and Opportunities. KIDNEY DISEASES (BASEL, SWITZERLAND) 2020; 6:215-225. [PMID: 32903946 PMCID: PMC7445658 DOI: 10.1159/000506634] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/16/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Diabetic kidney disease (DKD) is the most common cause of the end-stage renal disease (ESRD). Regardless of intensive treatments with hyperglycemic control, blood pressure control, and the use of renin-angiotensin system blockades, the prevalence of DKD remains high. Recent studies suggest that the spectrum of DKD has been changed and many progresses have been made to develop new treatments for DKD. Therefore, it is time to perform a systemic review on the new developments in the field of DKD. SUMMARY Although the classic clinical presentation of DKD is characterized by a slow progression from microalbuminuria to macroalbuminuria and by a hyperfiltration at the early stage and progressive decline of renal function at the late stage, recent epidemiological studies suggest that DKD patients have a variety of clinical presentations and progression rates to ESRD. Some DKD patients have a decline in renal function without albuminuria but display prominent vascular and interstitial fibrosis on renal histology. DKD patients are more susceptible to acute kidney injury, which might contribute to the interstitial fibrosis. A large portion of type 2 diabetic patients with albuminuria could have overlapping nondiabetic glomerular disease, and therefore, kidney biopsy is required for differential diagnosis for these patients. Only a small portion of DKD patients eventually progress to end-stage renal failure. However, we do not have sensitive and specific biomarkers to identify these high-risk patients. Genetic factors that have a strong association with DKD progression have not been identified yet. A combination of circulating tumor necrosis factor receptor (TNFR)1, TNFR2, and kidney injury molecular 1 provides predictive value for DKD progression. Artificial intelligence could enhance the predictive values for DKD progression by combining the clinical parameters and biological markers. Sodium-glucose co-transporter-2 inhibitors should be added to the new standard care of DKD patients. Several promising new drugs are in clinical trials. KEY MESSAGES Over last years, our understanding of DKD has been much improved and new treatments to halt the progression of DKD are coming. However, better diagnostic tools, predictive markers, and treatment options are still urgently needed to help us to better manage these patients with this detrimental disease.
Collapse
Affiliation(s)
- Ya Chen
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kyung Lee
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zhaohui Ni
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - John Cijiang He
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
47
|
The Role of Chemokines and Chemokine Receptors in Diabetic Nephropathy. Int J Mol Sci 2020; 21:ijms21093172. [PMID: 32365893 PMCID: PMC7246426 DOI: 10.3390/ijms21093172] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Kidney function decline is one of the complications of diabetes mellitus and may be indicated as diabetic nephropathy (DN). DN is a chronic inflammatory disease featuring proteinuria and a decreasing glomerular filtration rate. Despite several therapeutic options being currently available, DN is still the major cause of end-stage renal disease. Accordingly, widespread innovation is needed to improve outcomes in patients with DN. Chemokines and their receptors are critically involved in the inflammatory progression in the development of DN. Although recent studies have shown multiple pathways related to the chemokine system, the specific and direct effects of chemokines and their receptors remain unclear. In this review, we provide an overview of the potential role and mechanism of chemokine systems in DN proposed in recent years. Chemokine system-related mechanisms may provide potential therapeutic targets in DN.
Collapse
|
48
|
Barrera-Chimal J, Jaisser F. Pathophysiologic mechanisms in diabetic kidney disease: A focus on current and future therapeutic targets. Diabetes Obes Metab 2020; 22 Suppl 1:16-31. [PMID: 32267077 DOI: 10.1111/dom.13969] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 12/22/2022]
Abstract
Diabetic kidney disease (DKD) is the primary cause of chronic kidney disease around the globe and is one of the main complications in patients with type 1 and 2 diabetes. The standard treatment for DKD is drugs controlling hyperglycemia and high blood pressure. Renin angiotensin aldosterone system blockade and sodium glucose cotransporter 2 (SGLT2) inhibition have yielded promising results in DKD, but many diabetic patients on such treatments nevertheless continue to develop DKD, leading to kidney failure and cardiovascular comorbidities. New therapeutic options are urgently required. We review here the promising therapeutic avenues based on insights into the mechanisms of DKD that have recently emerged, including mineralocorticoid receptor antagonists, SGLT2 inhibitors, glucagon-like peptide-1 receptor agonist, endothelin receptor A inhibition, anti-inflammatory agents, autophagy activators and epigenetic remodelling. The involvement of several molecular mechanisms in DKD pathogenesis, together with the genetic and epigenetic variability of this condition, makes it difficult to target this heterogeneous patient population with a single drug. Personalized medicine, taking into account the genetic and mechanistic variability, may therefore improve renal and cardiovascular protection in diabetic patients with DKD.
Collapse
Affiliation(s)
- Jonatan Barrera-Chimal
- Laboratorio de Fisiología Cardiovascular y Trasplante Renal, Unidad de Investigación en Medicina Traslacional, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Frédéric Jaisser
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne University, Paris Descartes University, Paris, France
- INSERM U1116, Clinical Investigation Centre, Lorraine University, Vandoeuvre-lès-Nancy, France
- INI-CRCT (Cardiovascular and Renal Clinical Trialists) F-CRIN Network, Nancy, France
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Atherosclerosis is characterized by accumulation of lipids and chronic inflammation in medium size to large arteries. Recently, RNA-based antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs) are being developed, along with small molecule-based drugs and monoclonal antibodies, for the treatment of risk factors associated with atherosclerosis.. The purpose of this review is to describe nucleic acid-based therapeutics and introduce novel RNAs that might become future tools for treatment of atherosclerosis. RECENT FINDINGS RNA-based inhibitors for PCSK9, Lp(a), ApoCIII, and ANGPTL3 have been successfully tested in phase II-III clinical trials. Moreover, multiple microRNA and long non-coding RNAs have been found to reduce atherogenesis in preclinical animal models. Clinical trials especially with ASOs and siRNAs directed to liver, targeting cholesterol and lipoprotein metabolism, have shown promising results. Additional research in larger patient cohorts is needed to fully evaluate the therapeutic potential of these new drugs.
Collapse
Affiliation(s)
- Petri Mäkinen
- A.I. Virtanen Institute, University of Eastern Finland, Neulaniementie 2, P.O. Box 1627, 70211, Kuopio, Finland
| | - Anna-Kaisa Ruotsalainen
- A.I. Virtanen Institute, University of Eastern Finland, Neulaniementie 2, P.O. Box 1627, 70211, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland, Neulaniementie 2, P.O. Box 1627, 70211, Kuopio, Finland.
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
50
|
Endothelial Glycocalyx Impairment in Disease: Focus on Hyaluronan Shedding. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:768-780. [PMID: 32035885 DOI: 10.1016/j.ajpath.2019.11.016] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023]
Abstract
Hyaluronan (HA) is a ubiquitous glycosaminoglycan of the extracellular matrix. It is present in the endothelial glycocalyx covering the apical surface of endothelial cells. The endothelial glycocalyx regulates blood vessel permeability and homeostasis. HA plays a central role in numerous functions of the endothelial surface layer, protecting the endothelial cells, regulating the barrier permeability, and ensuring mechanosensing, which is essential to nitric oxide production and flow-induced vasodilation. During acute injury, inflammatory conditions, or many other pathologic conditions, the endothelial glycocalyx is damaged, and its degradation is accompanied by shedding of one or more glycocalyx components into the blood. Syndecan-1, heparan sulfate, and HA are the main components whose shedding has been claimed to represent the endothelial glycocalyx state of health. This review focuses on endothelial glycocalyx HA and highlights its key roles in the functions of the endothelial glycocalyx, its shedding in several pathologic conditions such as sepsis, diabetes, chronic and acute kidney injury, ischemia/reperfusion, atherosclerosis, and inflammation, which are all accompanied by increased circulating HA levels. Plasma/serum HA level is becoming recognized as a biomarker of endothelial glycocalyx damage in select pathologies. Hyaluronidase, the main HA-degrading enzyme, and its involvement in the impairment of endothelial glycocalyx are also addressed.
Collapse
|