1
|
Shaftoe JB, Gillis TE. Effects of hemodynamic load on cardiac remodeling in fish and mammals: the value of comparative models. J Exp Biol 2024; 227:jeb247836. [PMID: 39429041 DOI: 10.1242/jeb.247836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The ability of the vertebrate heart to remodel enables the cardiac phenotype to be responsive to changes in physiological conditions and aerobic demand. Examples include exercise-induced cardiac hypertrophy, and the significant remodeling of the trout heart during thermal acclimation. Such changes are thought to occur in response to a change in hemodynamic load (i.e. the forces that the heart must work against to circulate blood). Variations in hemodynamic load are caused by either a volume overload (high volume of blood returning to the heart, impairing contraction) or a pressure overload (elevated afterload pressure that the heart must contract against). The changes observed in the heart during remodeling are regulated by multiple cellular signaling pathways. The cardiac response to these regulatory mechanisms occurs across levels of biological organization, affecting cardiac morphology, tissue composition and contractile function. Importantly, prolonged exposure to pressure overload can cause a physiological response - that improves function - to transition to a pathological response that causes loss of function. This Review explores the role of changes in hemodynamic load in regulating the remodeling response, and considers the cellular signals responsible for regulating remodeling, incorporating knowledge gained from studying biomedical models and comparative animal models. We specifically focus on the renin-angiotensin system, and the role of nitric oxide, oxygen free radicals and transforming growth factor beta. Through this approach, we highlight the strong conservation of the regulatory pathways of cardiac remodeling, and the specific conditions within endotherms that may be conducive to the development of pathological phenotypes.
Collapse
Affiliation(s)
- Jared B Shaftoe
- Department of Integrative Biology, University of Guelph, Ontario, Canada, N1G 2W1
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
2
|
Xing W. Contemplating Maritime Autonomous Surface Ships (MASS) under the international law on ship-source pollution. MARINE POLLUTION BULLETIN 2024; 207:116884. [PMID: 39244888 DOI: 10.1016/j.marpolbul.2024.116884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Autonomous ships are seen as the next generation of ships to meet sustainability challenges. While abundant studies have noted the potential of autonomous ships to be emission-free and reduce air pollution, research has paid scant attention to the significant uncertainties of the autonomous shipping that may lead to new environmental risks such as traffic incidents and oil spills. It is therefore necessary to assess the compatibility of the autonomous ships with international environmental laws and regulations. An analytical framework of international law on ship-source pollution has been proposed to contemplate such a legal assessment. Autonomous ships would challenge the relevant treaty provisions on preventing, combating and compensating for ship-source pollution and raise a number of new legal issues, resulting in a current lack of legal predictability and certainty. Only as autonomous ships become more widely tested, recognised and trusted will a robust roadmap for legalising MASS become clearer.
Collapse
Affiliation(s)
- Wangwang Xing
- School of Law, Anhui University, Hefei 230601, Anhui, China; Walther Schücking Institute for International Law, Kiel University, Kiel 24118, Germany.
| |
Collapse
|
3
|
Long Y, Sinutok S, Buapet P, Yucharoen M. Unraveling the physiological responses of morphologically distinct corals to low oxygen. PeerJ 2024; 12:e18095. [PMID: 39329136 PMCID: PMC11426318 DOI: 10.7717/peerj.18095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Background Low oxygen in marine environments, intensified by climate change and local pollution, poses a substantial threat to global marine ecosystems, especially impacting vulnerable coral reefs and causing metabolic crises and bleaching-induced mortality. Yet, our understanding of the potential impacts in tropical regions is incomplete. Furthermore, uncertainty surrounds the physiological responses of corals to hypoxia and anoxia conditions. Methods We initially monitored in situ dissolved oxygen (DO) levels at Kham Island in the lower Gulf of Thailand. Subsequently, we conducted a 72-hour experimental exposure of corals with different morphologies-Pocillopora acuta, Porites lutea, and Turbinaria mesenterina-to low oxygen conditions, while following a 12/12-hour dark/light cycle. Three distinct DO conditions were employed: ambient (DO 6.0 ± 0.5 mg L-1), hypoxia (DO 2.0 ± 0.5 mg L-1), and anoxia (DO < 0.5 mg L-1). We measured and compared photosynthetic efficiency, Symbiodiniaceae density, chlorophyll concentration, respiratory rates, primary production, and calcification across the various treatments. Results Persistent hypoxia was observed at the study site. Subsequent experiments revealed that low oxygen levels led to a notable decrease in the maximum quantum yield over time in all the species tested, accompanied by declining rates of respiration and calcification. Our findings reveal the sensitivity of corals to both hypoxia and anoxia, particularly affecting processes crucial to energy balance and structural integrity. Notably, P. lutea and T. mesenterina exhibited no mortality over the 72-hour period under hypoxia and anoxia conditions, while P. acuta, exposed to anoxia, experienced mortality with tissue loss within 24 hours. This study underscores species-specific variations in susceptibility associated with different morphologies under low oxygen conditions. The results demonstrate the substantial impact of deoxygenation on coral growth and health, with the compounded challenges of climate change and coastal pollution exacerbating oxygen availability, leading to increasingly significant implications for coral ecosystems.
Collapse
Affiliation(s)
- Ying Long
- Coastal Oceanography and Climate Change Research Center, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Marine and Coastal Resources Institute, Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Sutinee Sinutok
- Coastal Oceanography and Climate Change Research Center, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Pimchanok Buapet
- Coastal Oceanography and Climate Change Research Center, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Mathinee Yucharoen
- Coastal Oceanography and Climate Change Research Center, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Marine and Coastal Resources Institute, Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
4
|
Gimeno M, Giménez J, Chiaradia A, Davis LS, Seddon PJ, Ropert-Coudert Y, Reisinger RR, Coll M, Ramírez F. Climate and human stressors on global penguin hotspots: Current assessments for future conservation. GLOBAL CHANGE BIOLOGY 2024; 30:e17143. [PMID: 38273518 DOI: 10.1111/gcb.17143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024]
Abstract
As charismatic and iconic species, penguins can act as "ambassadors" or flagship species to promote the conservation of marine habitats in the Southern Hemisphere. Unfortunately, there is a lack of reliable, comprehensive, and systematic analysis aimed at compiling spatially explicit assessments of the multiple impacts that the world's 18 species of penguin are facing. We provide such an assessment by combining the available penguin occurrence information from Global Biodiversity Information Facility (>800,000 occurrences) with three main stressors: climate-driven environmental changes at sea, industrial fisheries, and human disturbances on land. Our analyses provide a quantitative assessment of how these impacts are unevenly distributed spatially within species' distribution ranges. Consequently, contrasting pressures are expected among species, and populations within species. The areas coinciding with the greatest impacts for penguins are the coast of Perú, the Patagonian Shelf, the Benguela upwelling region, and the Australian and New Zealand coasts. When weighting these potential stressors with species-specific vulnerabilities, Humboldt (Spheniscus humboldti), African (Spheniscus demersus), and Chinstrap penguin (Pygoscelis antarcticus) emerge as the species under the most pressure. Our approach explicitly differentiates between climate and human stressors, since the more achievable management of local anthropogenic stressors (e.g., fisheries and land-based threats) may provide a suitable means for facilitating cumulative impacts on penguins, especially where they may remain resilient to global processes such as climate change. Moreover, our study highlights some poorly represented species such as the Northern Rockhopper (Eudyptes moseleyi), Snares (Eudyptes robustus), and Erect-crested penguin (Eudyptes sclateri) that need internationally coordinated efforts for data acquisition and data sharing to understand their spatial distribution properly.
Collapse
Affiliation(s)
- Míriam Gimeno
- Institut de Ciencies del Mar, Recursos Marins Renovables, Barcelona, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Joan Giménez
- Institut de Ciencies del Mar, Recursos Marins Renovables, Barcelona, Spain
- Centro Oceanográfico de Málaga (COMA), Instituto Español de Oceanografía (IEO-CSIC), Fuengirola, Spain
| | - Andre Chiaradia
- Conservation Department, Phillip Island Nature Parks, Cowes, Victoria, Australia
| | | | | | | | - Ryan R Reisinger
- School of Ocean and Earth Science, University of Southampton, Southampton, UK
| | - Marta Coll
- Institut de Ciencies del Mar, Recursos Marins Renovables, Barcelona, Spain
- Ecopath International Initiative (EII), Barcelona, Spain
| | - Francisco Ramírez
- Institut de Ciencies del Mar, Recursos Marins Renovables, Barcelona, Spain
| |
Collapse
|
5
|
Ghaemi M, Soleimani F, Gholamipour S. Heavy metal and persistent organic pollutant profile of sediments from marine protected areas: the northern Persian Gulf. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120877-120891. [PMID: 37945966 DOI: 10.1007/s11356-023-30688-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/21/2023] [Indexed: 11/12/2023]
Abstract
Marine protected areas (MPAs) are one of the policy tools to support marine biodiversity conservation and sustainable use of marine resources. The distribution, sources, and ecological risk assessment of persistent organic pollutants (POPs), including polycyclic aromatic hydrocarbon (PAHs), total petroleum hydrocarbons (TPHs), polychlorinated biphenyls (PCBs), and heavy metals (HMs) in sediments of MPAs in the northern Persian Gulf, were evaluated for the first time in this study. The Σ16PAHs ranged from 4.65 to 20.86 μg/kg dry weight (dw). The molecular ratios and ring's pattern of PAHs suggested a mixed origin with a predominance of pyrogenic sources. The TPH concentration varied from 5.21 to 17.90 μg/g dw. Ecological risk assessment suggested that sediment samples in Bushehr Province's MPAs can be categorized as medium risk. The mean concentration of ∑18PCB was 0.345-0.419 ng/g dw, and the main components correspond to PCB-77, PCB-105, PCB-81, PCB-101, and PCB-114. The mean concentration of As, Co, Cr, Ni, V, Mg, Pb, Zn, Cu, Al, and Fe varied from 4.79 to 9.69, 2-12, 39-142, 18-90, 15-58, 184-425, 7-45.9, 6-42.4, 4-20 μg/g dw, 0.75-4.12%, and 0.35-1.62%, respectively. Multivariate analysis, such as principal component analysis (PCA) and cluster analysis (CA), coupled with correlation coefficient analysis, was used to analyze the analytical data and to identify possible pollution sources. The results of this study provided the background information on the extent of POP contamination in the sediment and highlighted the need to further control pollution in MPAs.
Collapse
Affiliation(s)
- Maryam Ghaemi
- Iranian National Institute for Oceanography and Atmospheric Science, No. 3, Etemadzadeh St., Fatemi Ave., Tehran, 1411813389, Iran.
| | - Farshid Soleimani
- Iranian National Institute for Oceanography and Atmospheric Science, No. 3, Etemadzadeh St., Fatemi Ave., Tehran, 1411813389, Iran
- Tobacco and Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Sara Gholamipour
- Iranian National Institute for Oceanography and Atmospheric Science, No. 3, Etemadzadeh St., Fatemi Ave., Tehran, 1411813389, Iran
| |
Collapse
|
6
|
Otero P, Cabrero Á, Alonso-Pérez F, Gago J, Nogueira E. Temperature and salinity trends in the northern limit of the Canary Current Upwelling System. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165791. [PMID: 37527717 DOI: 10.1016/j.scitotenv.2023.165791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/09/2023] [Accepted: 07/23/2023] [Indexed: 08/03/2023]
Abstract
Thermohaline time series are crucial for detecting and quantifying abiotic changes in the marine environment, and even more so in the present global change scenario. This is particularly relevant for the Ría the Vigo and its adjacent shelf, a highly productive ecosystem at the northern limit of the Canary Current Upwelling System (CanCUS). This study analyses a 34-year time series (1987-2020) of Conductivity-Temperature-Depth (CTD) casts, the longest series available to date in the region. Long-term trends, shifts, and seasonal variability of temperature and salinity were assessed and investigated in relation to regional meteorological variability and basin-scale atmospheric teleconnection indices. Generalized Additive Models (GAM) allowed us to determine that monthly thermohaline variability can be largely explained by regional meteo-climatic variability, mainly upwelling index and river discharge. Trends and shifts in some teleconnection patterns, especially the East Atlantic (EA) pattern, may also be related to both the shift in salinity in 2013 and its long-term decrease below 50 m depth. Despite the current global warming context, no statistically significant trend was observed for either the upwelling index or temperature. The spatial analysis of sea surface temperature trends suggests that our study area has been responding to climate change differently from other surrounding near-shore areas, as the Finisterre Cape or the southern Bay of Biscay. Overall, this study highlights the importance of long-term observations to elucidate the impact of climate change in the northern limit of the CanCUS and encourages caution when extrapolating conclusions from ecosystem studies on a regional scale.
Collapse
Affiliation(s)
- Pablo Otero
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), CSIC, Subida a Radio Faro 50, 36390, Vigo, Spain.
| | - Águeda Cabrero
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), CSIC, Subida a Radio Faro 50, 36390, Vigo, Spain.
| | - Fernando Alonso-Pérez
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), CSIC, Subida a Radio Faro 50, 36390, Vigo, Spain.
| | - Jesús Gago
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), CSIC, Subida a Radio Faro 50, 36390, Vigo, Spain.
| | - Enrique Nogueira
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), CSIC, Subida a Radio Faro 50, 36390, Vigo, Spain.
| |
Collapse
|
7
|
Almawgani AHM, Fathy HM, Elsayed HA, Abdelrahman Ali YA, Mehaney A. A promising ultra-sensitive CO 2 sensor at varying concentrations and temperatures based on Fano resonance phenomenon in different 1D phononic crystal designs. Sci Rep 2023; 13:15028. [PMID: 37700005 PMCID: PMC10497549 DOI: 10.1038/s41598-023-41999-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
Detecting of the levels of greenhouse gases in the air with high precision and low cost is a very urgent demand for environmental protection. Phononic crystals (PnCs) represent a novel sensor technology, particularly for high-performance sensing applications. This study has been conducted by using two PnC designs (periodic and quasi-periodic) to detect the CO2 pollution in the surrounding air through a wide range of concentrations (0-100%) and temperatures (0-180 °C). The detection process is physically dependent on the displacement of Fano resonance modes. The performance of the sensor is demonstrated for the periodic and Fibonacci quasi-periodic (S3 and S4 sequences) structures. In this regard, the numerical findings revealed that the periodic PnC provides a better performance than the quasi-periodic one with a sensitivity of 31.5 MHz, the quality factor (Q), along with a figure of merit (FOM) of 280 and 95, respectively. In addition, the temperature effects on the Fano resonance mode position were examined. The results showed a pronounced temperature sensitivity with a value of 13.4 MHz/°C through a temperature range of 0-60 °C. The transfer matrix approach has been utilized for modeling the acoustic wave propagation through each PnC design. Accordingly, the proposed sensor has the potential to be implemented in many industrial and biomedical applications as it can be used as a monitor for other greenhouse gases.
Collapse
Affiliation(s)
- Abdulkarem H M Almawgani
- Electrical Engineering Department, College of Engineering, Najran University, Najran, Kingdom of Saudi Arabia.
| | - Hamza Makhlouf Fathy
- Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62512, Egypt
| | - Hussein A Elsayed
- Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62512, Egypt
| | - Yahya Ali Abdelrahman Ali
- Information Systems Department, College of Computer Sciences and Information Systems, Najran University, Najran, Saudi Arabia
| | - Ahmed Mehaney
- Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62512, Egypt.
| |
Collapse
|
8
|
Dataset AqADAPT: Physicochemical Parameters, Vibrio Abundance, and Species Determination in Water Columns of Two Adriatic Sea Aquaculture Sites. DATA 2023. [DOI: 10.3390/data8030055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Aquaculture provides more than 50% of all seafood for human consumption. This important industrial sector is already under pressure from climate-change-induced shifts in water column temperature, nutrient loads, precipitation patterns, microbial community composition, and ocean acidification, all affecting fish welfare. Disease-related risks are also shifting with important implications for risk from vibriosis, a disease that can lead to massive economic losses. Adaptation to these pressures pose numerous challenges for aquaculture producers, policy makers, and researchers. The dataset AqADAPT aims to help the development of management and adaptation tools by providing (i) measurements of physicochemical (temperature, salinity, total dissolved solids, pH, dissolved oxygen, conductivity, transparency, total nitrogen, ammonia, nitrate, nitrite, total phosphorus, total particulate matter, particulate organic matter, and particulate inorganic matter) and microbiological (heterotrophic (total) bacteria, fecal indicators, and Vibrio abundance) parameters of seawater and (ii) biochemical determination of culturable bacteria in two locations near floating cage fish farms in the Adriatic Sea. Water sampling was conducted seasonally in two fish farms (Cres and Vrgada) and corresponding reference (control) sites between 2019 and 2021 of four vertical layers for a total of 108 observations: the surface, 6 m, 12 m, and the bottom.
Collapse
|
9
|
Court M, Paula JR, Macau M, Otjacques E, Repolho T, Rosa R, Lopes VM. Camouflage and Exploratory Avoidance of Newborn Cuttlefish under Warming and Acidification. BIOLOGY 2022; 11:1394. [PMID: 36290300 PMCID: PMC9598447 DOI: 10.3390/biology11101394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Ocean warming and acidification have been shown to elicit deleterious effects on cephalopod mollusks, especially during early ontogeny, albeit effects on behavior remain largely unexplored. This study aimed to evaluate, for the first time, the effect of end-of-the-century projected levels of ocean warming (W; + 3 °C) and acidification (A; 980 µatm pCO2) on Sepia officinalis hatchlings' exploratory behavior and ability to camouflage in different substrate complexities (sand and black and white gravel). Cuttlefish were recorded in open field tests, from which mobility and exploratory avoidance behavior data were obtained. Latency to camouflage was registered remotely, and pixel intensity of body planes and background gravel were extracted from photographs. Hatching success was lowered under A and W combined (AW; 72.7%) compared to control conditions (C; 98.8%). Motion-related behaviors were not affected by the treatments. AW delayed camouflage response in the gravel substrate compared to W alone. Moreover, cuttlefish exhibited a higher contrast and consequently a stronger disruptive pattern under W, with no changes in background matching. These findings suggest that, although climate change may elicit relevant physiological challenges to cuttlefish, camouflage and mobility of these mollusks are not undermined under the ocean of tomorrow.
Collapse
Affiliation(s)
- Mélanie Court
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - José Ricardo Paula
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Marta Macau
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - Eve Otjacques
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
- Carnegie Institution for Science, Division of Biosphere Sciences and Engineering, Church Laboratory, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Tiago Repolho
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Rui Rosa
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Vanessa Madeira Lopes
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| |
Collapse
|
10
|
Purgar M, Kapetanović D, Geček S, Marn N, Haberle I, Hackenberger BK, Gavrilović A, Pečar Ilić J, Hackenberger DK, Djerdj T, Ćaleta B, Klanjscek T. Investigating the Ability of Growth Models to Predict In Situ Vibrio spp. Abundances. Microorganisms 2022; 10:microorganisms10091765. [PMID: 36144366 PMCID: PMC9505244 DOI: 10.3390/microorganisms10091765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Vibrio spp. have an important role in biogeochemical cycles; some species are disease agents for aquatic animals and/or humans. Predicting population dynamics of Vibrio spp. in natural environments is crucial to predicting how the future conditions will affect the dynamics of these bacteria. The majority of existing Vibrio spp. population growth models were developed in controlled environments, and their applicability to natural environments is unknown. We collected all available functional models from the literature, and distilled them into 28 variants using unified nomenclature. Next, we assessed their ability to predict Vibrio spp. abundance using two new and five already published longitudinal datasets on Vibrio abundance in four different habitat types. Results demonstrate that, while the models were able to predict Vibrio spp. abundance to an extent, the predictions were not reliable. Models often underperformed, especially in environments under significant anthropogenic influence such as aquaculture and urban coastal habitats. We discuss implications and limitations of our analysis, and suggest research priorities; in particular, we advocate for measuring and modeling organic matter.
Collapse
Affiliation(s)
| | | | | | - Nina Marn
- Ruđer Bošković Institute, 10000 Zagreb, Croatia
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | | | | | - Ana Gavrilović
- Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | | | | | - Tamara Djerdj
- Department of Biology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Bruno Ćaleta
- Department of Biology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Tin Klanjscek
- Ruđer Bošković Institute, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
11
|
Effects of Hypoxia on Coral Photobiology and Oxidative Stress. BIOLOGY 2022; 11:biology11071068. [PMID: 36101446 PMCID: PMC9312924 DOI: 10.3390/biology11071068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/21/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
Global ocean oxygen (O2) content is decreasing as climate change drives declines in oxygen solubility, strengthened stratification of seawater masses, increased biological oxygen consumption and coastal eutrophication. Studies on the biological effects of nocturnal decreased oxygen concentrations (hypoxia) on coral reefs are very scarce. Coral reefs are fundamental for supporting one quarter of all marine species and essential for around 275 million people worldwide. This study investigates acute physiological and photobiological responses of a scleractinian coral (Acropora spp.) to overnight hypoxic conditions (<2 mg/L of O2). Bleaching was not detected, and visual and physical aspects of corals remained unchanged under hypoxic conditions. Most photobiological-related parameters also did not show significant changes between treatments. In addition to this, no significant differences between treatments were observed in the pigment composition. However, hypoxic conditions induced a significant decrease in coral de-epoxidation state of the xanthophyll cycle pigments and increase in DNA damage. Although the present findings suggest that Acropora spp. is resilient to some extent to short-term daily oxygen oscillations, long-term exposure to hypoxia, as predicted to occur with climate change, may still have deleterious effects on corals.
Collapse
|
12
|
Dermawan D, Wang YF, You SJ, Jiang JJ, Hsieh YK. Impact of climatic and non-climatic stressors on ocean life and human health: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153387. [PMID: 35081412 DOI: 10.1016/j.scitotenv.2022.153387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Ocean life forms are fundamentally well adapted to natural environmental variations, and they can even tolerate extreme conditions for a short time. However, several anthropogenic stressors are causing such drastic changes in the ocean ecosystem. First, the review attempts to outline the impact of climatic and non-climatic stressors on ocean life, and it also outlines the synergistic impact of both stressors. Then the impact on human health caused by the damage of the marine ecosystem has been discussed. Furthermore, the type of prior studies and current mitigation adaptation programs have been presented. Finally, some perspectives about future research and mitigation adaptation are offered.
Collapse
Affiliation(s)
- Denny Dermawan
- Department of Environmental Engineering, Chung Yuan Christian University, Chung-Li 320, Taiwan; Department of Civil Engineering, Chung Yuan Christian University, Chung-Li 320, Taiwan
| | - Ya-Fen Wang
- Department of Environmental Engineering, Chung Yuan Christian University, Chung-Li 320, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| | - Sheng-Jie You
- Department of Environmental Engineering, Chung Yuan Christian University, Chung-Li 320, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| | - Jheng-Jie Jiang
- Department of Environmental Engineering, Chung Yuan Christian University, Chung-Li 320, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| | - Yen-Kung Hsieh
- Marine Ecology and Conservation Research Center, National Academy of Marine Research, Kaohsiung 80661, Taiwan; Department of Environmental Science and Occupational Safety and Health, Tajen University, Pingtung, Taiwan.
| |
Collapse
|
13
|
Orio A, Heimbrand Y, Limburg K. Deoxygenation impacts on Baltic Sea cod: Dramatic declines in ecosystem services of an iconic keystone predator. AMBIO 2022; 51:626-637. [PMID: 34075555 PMCID: PMC8800964 DOI: 10.1007/s13280-021-01572-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/07/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
The intensified expansion of the Baltic Sea's hypoxic zone has been proposed as one reason for the current poor status of cod (Gadus morhua) in the Baltic Sea, with repercussions throughout the food web and on ecosystem services. We examined the links between increased hypoxic areas and the decline in maximum length of Baltic cod, a demographic proxy for services generation. We analysed the effect of different predictors on maximum length of Baltic cod during 1978-2014 using a generalized additive model. The extent of minimally suitable areas for cod (oxygen concentration ≥ 1 ml l-1) is the most important predictor of decreased cod maximum length. We also show, with simulations, the potential for Baltic cod to increase its maximum length if hypoxic areal extent is reduced to levels comparable to the beginning of the 1990s. We discuss our findings in relation to ecosystem services affected by the decrease of cod maximum length.
Collapse
Affiliation(s)
- Alessandro Orio
- Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, Turistgatan 5, 453 30 Lysekil, Sweden
| | - Yvette Heimbrand
- Department of Aquatic Resources, Institute of Coastal Research, Swedish University of Agricultural Sciences, Skolgatan 6, 742 42 Öregrund, Sweden
| | - Karin Limburg
- Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, Turistgatan 5, 453 30 Lysekil, Sweden
- College of Environmental Science and Forestry, State University of New York, Syracuse, NY USA
| |
Collapse
|
14
|
Micaroni V, Strano F, McAllen R, Woods L, Turner J, Harman L, Bell JJ. Adaptive strategies of sponges to deoxygenated oceans. GLOBAL CHANGE BIOLOGY 2022; 28:1972-1989. [PMID: 34854178 DOI: 10.1111/gcb.16013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Ocean deoxygenation is one of the major consequences of climate change. In coastal waters, this process can be exacerbated by eutrophication, which is contributing to an alarming increase in the so-called 'dead zones' globally. Despite its severity, the effect of reduced dissolved oxygen has only been studied for a very limited number of organisms, compared to other climate change impacts such as ocean acidification and warming. Here, we experimentally assessed the response of sponges to moderate and severe simulated hypoxic events. We ran three laboratory experiments on four species from two different temperate oceans (NE Atlantic and SW Pacific). Sponges were exposed to a total of five hypoxic treatments, with increasing severity (3.3, 1.6, 0.5, 0.4 and 0.13 mg O2 L-1 , over 7-12-days). We found that sponges are generally very tolerant of hypoxia. All the sponges survived in the experimental conditions, except Polymastia crocea, which showed significant mortality at the lowest oxygen concentration (0.13 mg O2 L-1 , lethal median time: 286 h). In all species except Suberites carnosus, hypoxic conditions do not significantly affect respiration rate down to 0.4 mg O2 L-1 , showing that sponges can uptake oxygen at very low concentrations in the surrounding environment. Importantly, sponges displayed species-specific phenotypic modifications in response to the hypoxic treatments, including physiological, morphological and behavioural changes. This phenotypic plasticity likely represents an adaptive strategy to live in reduced or low oxygen water. Our results also show that a single sponge species (i.e., Suberites australiensis) can display different strategies at different oxygen concentrations. Compared to other sessile organisms, sponges generally showed higher tolerance to hypoxia, suggesting that sponges could be favoured and survive in future deoxygenated oceans.
Collapse
Affiliation(s)
- Valerio Micaroni
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Francesca Strano
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Rob McAllen
- School of Biological Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - Lisa Woods
- School of Mathematics and Statistics, Victoria University of Wellington, Wellington, New Zealand
| | - John Turner
- School of Ocean Sciences, Bangor University, Anglesey, UK
| | - Luke Harman
- School of Biological Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - James J Bell
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
15
|
Lavender E, Fox CJ, Burrows MT. Modelling the impacts of climate change on thermal habitat suitability for shallow-water marine fish at a global scale. PLoS One 2021; 16:e0258184. [PMID: 34606498 PMCID: PMC8489719 DOI: 10.1371/journal.pone.0258184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/21/2021] [Indexed: 11/19/2022] Open
Abstract
Understanding and predicting the response of marine communities to climate change at large spatial scales, and distilling this information for policymakers, are prerequisites for ecosystem-based management. Changes in thermal habitat suitability across species’ distributions are especially concerning because of their implications for abundance, affecting species’ conservation, trophic interactions and fisheries. However, most predictive studies of the effects of climate change have tended to be sub-global in scale and focused on shifts in species’ range edges or commercially exploited species. Here, we develop a widely applicable methodology based on climate response curves to predict global-scale changes in thermal habitat suitability. We apply the approach across the distributions of 2,293 shallow-water fish species under Representative Concentration Pathways 4.5 and 8.5 by 2050–2100. We find a clear pattern of predicted declines in thermal habitat suitability in the tropics versus general increases at higher latitudes. The Indo-Pacific, the Caribbean and western Africa emerge as the areas of most concern, where high species richness and the strongest declines in thermal habitat suitability coincide. This reflects a pattern of consistently narrow thermal ranges, with most species in these regions already exposed to temperatures above inferred thermal optima. In contrast, in temperate regions, such as northern Europe, where most species live below thermal optima and thermal ranges are wider, positive changes in thermal habitat suitability suggest that these areas are likely to emerge as the greatest beneficiaries of climate change, despite strong predicted temperature increases.
Collapse
Affiliation(s)
- Edward Lavender
- The Scottish Association for Marine Science, Scottish Marine Institute, Dunstaffnage, Oban, Argyll, Scotland
- * E-mail:
| | - Clive J. Fox
- The Scottish Association for Marine Science, Scottish Marine Institute, Dunstaffnage, Oban, Argyll, Scotland
| | - Michael T. Burrows
- The Scottish Association for Marine Science, Scottish Marine Institute, Dunstaffnage, Oban, Argyll, Scotland
| |
Collapse
|
16
|
Madeira C, Madeira D, Ladd N, Schubert CJ, Diniz MS, Vinagre C, Leal MC. Conserved fatty acid profiles and lipid metabolic pathways in a tropical reef fish exposed to ocean warming - An adaptation mechanism of tolerant species? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146738. [PMID: 33836377 DOI: 10.1016/j.scitotenv.2021.146738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/15/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Climate warming is causing rapid spatial expansion of ocean warm pools from equatorial latitudes towards the subtropics. Sedentary coral reef inhabitants in affected areas will thus be trapped in high temperature regimes, which may become the "new normal". In this study, we used clownfish Amphiprion ocellaris as model organism to study reef fish mechanisms of thermal adaptation and determine how high temperature affects multiple lipid aspects that influence physiology and thermal tolerance. We exposed juvenile fish to two different experimental conditions, implemented over 28 days: average tropical water temperatures (26 °C, control) or average warm pool temperatures (30 °C). We then performed several analyses on fish muscle and liver tissues: i) total lipid content (%), ii) lipid peroxides, iii) fatty acid profiles, iv) lipid metabolic pathways, and v) weight as body condition metric. Results showed that lipid storage capacity in A. ocellaris was not affected by elevated temperature, even in the presence of lipid peroxides in both tissues assessed. Additionally, fatty acid profiles were unresponsive to elevated temperature, and lipid metabolic networks were consequently well conserved. Consistent with these results, we did not observe changes in fish weight at elevated temperature. There were, however, differences in fatty acid profiles between tissue types and over time. Liver showed enhanced α-linolenic and linoleic acid metabolism, which is an important pathway in stress response signaling and modulation on environmental changes. Temporal oscillations in fatty acid profiles are most likely related to intrinsic factors such as growth, which leads to the mobilization of energetic reserves between different tissues throughout time according to organism needs. Based on these results, we propose that the stability of fatty acid profiles and lipid metabolic pathways may be an important thermal adaptation feature of fish exposed to warming environments.
Collapse
Affiliation(s)
- Carolina Madeira
- UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, 2829-516 Caparica, Portugal; MARE - Marine and Environmental Sciences Centre, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Diana Madeira
- UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, 2829-516 Caparica, Portugal; CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Edifício ECOMARE, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Nemiah Ladd
- Centre for Ecology, Evolution and Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Seestrasse 79, 6047 Kastanienbaum, Switzerland; Ecosystem Physiology, University of Freiburg, 53/54 Georges-Köhler Allee, 79119 Freiburg, Germany
| | - Carsten J Schubert
- Centre for Ecology, Evolution and Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Seestrasse 79, 6047 Kastanienbaum, Switzerland
| | - Mário S Diniz
- UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - Catarina Vinagre
- MARE - Marine and Environmental Sciences Centre, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal; CCMAR - Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Miguel C Leal
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Edifício ECOMARE, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal; Centre for Ecology, Evolution and Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Seestrasse 79, 6047 Kastanienbaum, Switzerland
| |
Collapse
|
17
|
Erickson KA, West J, Dance MA, Farmer TM, Ballenger JC, Midway SR. Changing climate associated with the range-wide decline of an estuarine finfish. GLOBAL CHANGE BIOLOGY 2021; 27:2520-2536. [PMID: 33738904 DOI: 10.1111/gcb.15568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Southern flounder (Paralichthys lethostigma) are a coastal flatfish species that supports recreational and commercial fisheries but are currently experiencing range-wide declines. To quantify the range-wide declines and investigate the role of climate in these declines, fishery-independent sampling data of age-0 flounder were obtained from 34 estuaries representing four states in the Gulf of Mexico (TX, LA, AL, and FL) and three states in the Southeastern United States Atlantic Ocean (FL, SC, and NC) spanning from 1976 to 2019. Generalized additive models (GAM) were used to estimate age-0 recruitment trends. Spatial and temporal synchrony analyses were then conducted using annual GAM-predicted values to determine if trends were similar between estuaries in close proximity, and if declines occurred at the same time. Because the species is dependent on physical transport (i.e., winds and tides) for recruitment, hourly wind speed, wind direction, water temperature, and air temperature were obtained for estuaries with non-zero sampling totals and long-term data sets. Only six estuaries showed significant relationships between age-0 flounder indices and growing degree days. However, all estuaries with wind data showed significant relationships between age-0 flounder indices and hourly summed wind speed. Southern flounder also have environmental sex determination, meaning warming estuaries could also account for population changes and declines. We document that water temperatures in the same space and time where southern flounder sexually determine are warmer now than even a decade ago, which could masculinize populations and substantially change population demographics. These results illustrate the vulnerability of estuarine finfish populations to climate change and increased climate variability. Understanding how climate acts on southern flounder biology may help managers respond to and prevent fishery collapses.
Collapse
Affiliation(s)
- Kenneth A Erickson
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Joe West
- Louisiana Department of Wildlife and Fisheries, Baton Rouge, LA, USA
| | - Michael A Dance
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Troy M Farmer
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC, USA
| | - Joseph C Ballenger
- Marine Resources Research Institute, South Carolina Department of Natural Resources, Charleston, SC, USA
| | - Stephen R Midway
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
18
|
Fox N, Marshall J, Dankel DJ. Ocean Literacy and Surfing: Understanding How Interactions in Coastal Ecosystems Inform Blue Space User's Awareness of the Ocean. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5819. [PMID: 34071524 PMCID: PMC8198151 DOI: 10.3390/ijerph18115819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 11/23/2022]
Abstract
Intergovernmental policy is targeting public ocean literacy to help achieve the societal changes needed to reach a sustainable ocean agenda within a 10-year timeframe. To create a culture of care for the ocean, which is under threat from Anthropocentric pressures, informed ocean citizens are central to upholding meaningful actions and best practices. This research focuses on recreational ocean users, specifically surfers and how their blue space activities may inform understanding of ocean processes and human-ocean interconnections. The Ocean Literacy Principles were used to assess ocean awareness through surfing interactions. An online survey questionnaire was completed by 249 participants and reduced to a smaller sample focus group. Qualitative and quantitative data were triangulated to develop further understanding of surfer experiences, using the social-ecological systems framework to model surfing outcomes. The results found that surfers indeed receive ocean literacy benefits, specifically three out of the seven Ocean Literacy Principles and that ocean literacy is a direct benefit many surfers in the sample group receive. By identifying synergies between the Ocean Literacy Principles, variables within coastal ecosystems and user (surfer) interactions, this research offers novel insight into opportunities for integrating ocean sustainability strategies through blue space activity mechanisms and coastal community engagement.
Collapse
Affiliation(s)
- Natalie Fox
- Faculty of Science and Engineering, Anglia Ruskin University, East Road, Cambridge CB1 1PT, UK;
| | - Jamie Marshall
- School of Applied Sciences, Edinburgh Napier University, 9 Sighthill Court, Edinburgh EH11 4BN, UK;
| | - Dorothy Jane Dankel
- Department of Biological Sciences, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway
| |
Collapse
|
19
|
Impacts of hypoxic events surpass those of future ocean warming and acidification. Nat Ecol Evol 2021; 5:311-321. [PMID: 33432134 DOI: 10.1038/s41559-020-01370-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 12/01/2020] [Indexed: 01/28/2023]
Abstract
Over the past decades, three major challenges to marine life have emerged as a consequence of anthropogenic emissions: ocean warming, acidification and oxygen loss. While most experimental research has targeted the first two stressors, the last remains comparatively neglected. Here, we implemented sequential hierarchical mixed-model meta-analyses (721 control-treatment comparisons) to compare the impacts of oxygen conditions associated with the current and continuously intensifying hypoxic events (1-3.5 O2 mg l-1) with those experimentally yielded by ocean warming (+4 °C) and acidification (-0.4 units) conditions on the basis of IPCC projections (RCP 8.5) for 2100. In contrast to warming and acidification, hypoxic events elicited consistent negative effects relative to control biological performance-survival (-33%), abundance (-65%), development (-51%), metabolism (-33%), growth (-24%) and reproduction (-39%)-across the taxonomic groups (mollusks, crustaceans and fish), ontogenetic stages and climate regions studied. Our findings call for a refocus of global change experimental studies, integrating oxygen concentration drivers as a key factor of ocean change. Given potential combined effects, multistressor designs including gradual and extreme changes are further warranted to fully disclose the future impacts of ocean oxygen loss, warming and acidification.
Collapse
|
20
|
Pörtner HO. Climate impacts on organisms, ecosystems and human societies: integrating OCLTT into a wider context. J Exp Biol 2021; 224:224/Suppl_1/jeb238360. [PMID: 33627467 DOI: 10.1242/jeb.238360] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Physiological studies contribute to a cause and effect understanding of ecological patterns under climate change and identify the scope and limits of adaptation. Across most habitats, this requires analyzing organism responses to warming, which can be modified by other drivers such as acidification and oxygen loss in aquatic environments or excess humidity or drought on land. Experimental findings support the hypothesis that the width and temperature range of thermal performance curves relate to biogeographical range. Current warming causes range shifts, hypothesized to include constraints in aerobic power budget which in turn are elicited by limitations in oxygen supply capacity in relation to demand. Different metabolic scopes involved may set the borders of both the fundamental niche (at standard metabolic rate) and the realized niche (at routine rate). Relative scopes for aerobic performance also set the capacity of species to interact with others at the ecosystem level. Niche limits and widths are shifting and probably interdependent across life stages, with young adults being least thermally vulnerable. The principles of thermal tolerance and performance may also apply to endotherms including humans, their habitat and human society. Overall, phylogenetically based comparisons would need to consider the life cycle of species as well as organism functional properties across climate zones and time scales. This Review concludes with a perspective on how mechanism-based understanding allows scrutinizing often simplified modeling approaches projecting future climate impacts and risks for aquatic and terrestrial ecosystems. It also emphasizes the usefulness of a consensus-building process among experimentalists for better recognition in the climate debate.
Collapse
Affiliation(s)
- Hans-O Pörtner
- Integrative Ecophysiology section, Alfred Wegener Institute, Helmholtz Center for Marine and Polar Research, 27570 Bremetrhaven, Germany
| |
Collapse
|
21
|
Miatta M, Bates AE, Snelgrove PVR. Incorporating Biological Traits into Conservation Strategies. ANNUAL REVIEW OF MARINE SCIENCE 2021; 13:421-443. [PMID: 32857677 DOI: 10.1146/annurev-marine-032320-094121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Implementation of marine conservation strategies, such as increasing the numbers, extent, and effectiveness of protected areas (PAs), can help achieve conservation and restoration of ocean health and associated goods and services. Despite increasing recognition of the importance of including aspects of ecological functioning in PA design, the physical characteristics of habitats and simple measures of species diversity inform most PA designations. Marine and terrestrial ecologists have recently been using biological traits to assess community dynamics, functioning, and vulnerability to anthropogenic impacts. Here, we explore potential trait-based marine applications to advance PA design. We recommend strategies to integrate biological traits into (a) conservation objectives (e.g., by assessing and predicting impacts and vulnerability), (b) PA spatial planning (e.g., mapping ecosystem functions and functional diversity hot spots), and (c) time series monitoring protocols (e.g., using functional traits to detect recoveries). We conclude by emphasizing the need for pragmatic tools to improve the efficacy of spatial planning and monitoring efforts.
Collapse
Affiliation(s)
- Marta Miatta
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1C 5S7, Canada; , ,
| | - Amanda E Bates
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1C 5S7, Canada; , ,
| | - Paul V R Snelgrove
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1C 5S7, Canada; , ,
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland A1C 5S7, Canada
| |
Collapse
|
22
|
Ángeles-González LE, Lima FD, Caamal-Monsreal C, Díaz F, Rosas C. Exploring the effects of warming seas by using the optimal and pejus temperatures of the embryo of three Octopoda species in the Gulf of Mexico. J Therm Biol 2020; 94:102753. [PMID: 33292994 DOI: 10.1016/j.jtherbio.2020.102753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/10/2020] [Accepted: 10/05/2020] [Indexed: 11/27/2022]
Abstract
Using data related to thermal optimal and pejus of the embryos of Octopus americanus from Brazil and O. insularis and O. maya from Mexico, this study aimed to project the potential distribution areas in the Gulf of Mexico and predict distribution shifts under different Representative Concentration Pathway scenarios (RCP 6 and 8.5) for the years 2050 and 2100. The different thermal tolerances elicited different responses to current and future scenarios. In this sense, O. insularis and O. maya thermal niches stretch from the Caribbean to Florida. Nevertheless, O. insularis may inhabit warmer areas than O. maya. Surprisingly, no area was considered thermally habitable for O. americanus, which could have been associated with the use of data of populations thermally adapted to temperate conditions south of Brazil. According to models, a warming scenario would cause a restriction of the available thermal niche of O. maya, while O. insularis could expand under RCP 6 scenarios. This restriction was more substantial in the RCP 8.5 scenario. Nevertheless, under the RCP 8.5 scenario, the temperature in 2100 may negatively affect even O. insularis, the species most thermal tolerant. If our results are accurate, the fishing yield of O. insularis will increase in the future, replacing the heavily exploited O. maya in the coasts of the southern Gulf of Mexico. Regarding O. americanus, no inference might be made until thermal tolerances of locally adapted populations can be studied.
Collapse
Affiliation(s)
- Luis Enrique Ángeles-González
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, Coyoacán, Ciudad de México, 04510, Mexico; Laboratorio de Ecología Geográfica. Unidad de Conservación de la Biodiversidad, UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Yucatán, Mexico; Universidad Nacional Autónoma de México, Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Laboratorio de Ecofisiología Aplicada, Puerto de Abrigo Sisal, Yucatán, 97356, Mexico; Laboratorio Nacional de Resiliencia Costera (CONACYT-Fac. de Ciencias, UNAM), Puerto de Abrigo, 97356 Sisal, Yucatán, Mexico
| | - Françoise D Lima
- Laboratory of Systematics and Evolutionary Ichthyology, Department of Botany and Zoology, Federal University of Rio Grande do Norte, 59078-900, Natal-RN, Brazil
| | - Claudia Caamal-Monsreal
- Universidad Nacional Autónoma de México, Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Laboratorio de Ecofisiología Aplicada, Puerto de Abrigo Sisal, Yucatán, 97356, Mexico
| | - Fernando Díaz
- Laboratorio de Ecofisiología de Organismos Acuáticos, Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico
| | - Carlos Rosas
- Universidad Nacional Autónoma de México, Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Laboratorio de Ecofisiología Aplicada, Puerto de Abrigo Sisal, Yucatán, 97356, Mexico; Laboratorio Nacional de Resiliencia Costera (CONACYT-Fac. de Ciencias, UNAM), Puerto de Abrigo, 97356 Sisal, Yucatán, Mexico.
| |
Collapse
|
23
|
Leung JYS, McAfee D. Stress across life stages: Impacts, responses and consequences for marine organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134491. [PMID: 31629264 DOI: 10.1016/j.scitotenv.2019.134491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/10/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Population dynamics of marine organisms are strongly driven by their survival in early life stages. As life stages are tightly linked, environmental stress experienced by organisms in the early life stage can worsen their performance in the subsequent life stage (i.e. carry-over effect). However, stressful events can be ephemeral and hence organisms may be able to counter the harmful effects of transient stress. Here, we analysed the published data to examine the relative strength of carry-over effects on the juvenile growth of marine organisms, caused by different stressors (hypoxia, salinity, starvation, ocean acidification and stress-induced delayed metamorphosis) confronted in their larval stage. Based on 31 relevant published studies, we revealed that food limitation had the greatest negative carry-over effect on juvenile growth. In the laboratory, we tested the effects of short-term early starvation and hypoxia on the larval growth and development of a model organism, polychaete Hydroides elegans, and assessed whether the larvae can accommodate the early stress to maintain their performance as juveniles (settlement and juvenile growth). Results showed that early starvation for 3 days (∼50% of normal larval period) retarded larval growth and development, leading to subsequent reduced settlement rate and juvenile growth. When the starvation period decreased to 1 day, however, the larvae could recover from early starvation through compensatory growth and performed normal as juveniles (c.f. control). Early exposure to hypoxia for 3 days did not affect larval growth (body length) and juvenile growth (tube length), but caused malformation of larvae and reduced settlement rate. We conclude that the adverse effects of transient stress can be carried across life stages (e.g. larval to juvenile stage), but depend on the duration of stressful events relative to larval period. As carry-over effects are primarily driven by energy acquisition, how food availability varies over time and space is fundamental to the population dynamics of marine organisms.
Collapse
Affiliation(s)
- Jonathan Y S Leung
- Faculty of Materials and Energy, Southwest University, Chongqing 400715, China; School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia; Department of Biology and Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region.
| | - Dominic McAfee
- School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
24
|
Counihan KL, Bowen L, Ballachey B, Coletti H, Hollmen T, Pister B, Wilson TL. Physiological and gene transcription assays to assess responses of mussels to environmental changes. PeerJ 2019; 7:e7800. [PMID: 31592166 PMCID: PMC6779115 DOI: 10.7717/peerj.7800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/31/2019] [Indexed: 01/05/2023] Open
Abstract
Coastal regions worldwide face increasing management concerns due to natural and anthropogenic forces that have the potential to significantly degrade nearshore marine resources. The goal of our study was to develop and test a monitoring strategy for nearshore marine ecosystems in remote areas that are not readily accessible for sampling. Mussel species have been used extensively to assess ecosystem vulnerability to multiple, interacting stressors. We sampled bay mussels (Mytilus trossulus) in 2015 and 2016 from six intertidal sites in Lake Clark and Katmai National Parks and Preserves, in south-central Alaska. Reference ranges for physiological assays and gene transcription were determined for use in future assessment efforts. Both techniques identified differences among sites, suggesting influences of both large-scale and local environmental factors and underscoring the value of this combined approach to ecosystem health monitoring.
Collapse
Affiliation(s)
| | - Lizabeth Bowen
- US Geological Survey, Western Ecological Research Center, Davis, CA, United States of America
| | - Brenda Ballachey
- US Geological Survey, Alaska Science Center, Anchorage, AK, United States of America
| | - Heather Coletti
- Inventory and Monitoring Program, Southwest Alaska Network, National Park Service, Anchorage, AK, United States of America
| | - Tuula Hollmen
- College of Fisheries and Ocean Sciences, University of Alaska-Fairbanks and Alaska SeaLife Center, Seward, AK, United States of America
| | - Benjamin Pister
- Ocean Alaska Science and Learning Center, National Park Service, Anchorage, AK, United States of America
| | - Tammy L Wilson
- Inventory and Monitoring Program, Southwest Alaska Network, National Park Service, Anchorage, AK, United States of America.,Department of Natural Resource Management, South Dakota State University, Brookings, SD, United States of America
| |
Collapse
|
25
|
Piñeiro-Corbeira C, Barreiro R, Franco JN, Cremades J, Cunha J, Arenas F. Unexpected nutrient influence on the thermal ecophysiology of seaweeds that recently followed opposite abundance shifts. MARINE ENVIRONMENTAL RESEARCH 2019; 151:104747. [PMID: 31230707 DOI: 10.1016/j.marenvres.2019.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/11/2019] [Accepted: 06/16/2019] [Indexed: 06/09/2023]
Abstract
World's oceans are warming, and recent studies suggest that the Iberian upwelling system may be weakening. To understand the potential consequences of both trends, six intertidal seaweeds that recently followed opposite upward and downward abundance shifts in the Iberian upwelling region were exposed for six weeks to conditions simulating present and warmed scenarios, combined with nutrient treatments emulating the influence and absence of the upwelling. Unlike expectations, a high nutrient supply did not ameliorate the effects of warming. Instead, warming slowed down growth in four seaweeds and accelerated the photosynthesis of downward seaweeds only if nutrients were abundant. In a weakened upwelling scenario, nutrient limitation might more strongly influence the performance of both upward and downward seaweeds than warming. With a normally functioning upwelling, warming might be more detrimental to the performance of some downward seaweeds as they might would lose their ability to benefit from the extra nutrient input.
Collapse
Affiliation(s)
- Cristina Piñeiro-Corbeira
- BioCost Research Group, Facultad de Ciencias and Centro de Investigaciones Científicas Avanzadas (CICA), Universidad de A Coruña, 15071, A Coruña, Spain.
| | - Rodolfo Barreiro
- BioCost Research Group, Facultad de Ciencias and Centro de Investigaciones Científicas Avanzadas (CICA), Universidad de A Coruña, 15071, A Coruña, Spain
| | - João N Franco
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal
| | - Javier Cremades
- BioCost Research Group, Facultad de Ciencias and Centro de Investigaciones Científicas Avanzadas (CICA), Universidad de A Coruña, 15071, A Coruña, Spain
| | - Jacinto Cunha
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal
| | - Francisco Arenas
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal
| |
Collapse
|
26
|
Synergistic Effects of Climate Change and Marine Pollution: An Overlooked Interaction in Coastal and Estuarine Areas. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16152737. [PMID: 31370308 PMCID: PMC6696450 DOI: 10.3390/ijerph16152737] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/24/2019] [Accepted: 07/27/2019] [Indexed: 11/17/2022]
Abstract
Coastal areas have been increasingly affected by human activities, marine pollution and climate change are among the most important pressures affecting these environments. Human-induced pressures occur in a cumulative way and generate additive, antagonistic or synergistic effects. Knowledge on synergistic effects is crucial to coastal zone management, since they may imply a change in human uses of these systems, as well as dedicated action plans in order to reduce hazards and environmental risks. In this work, we provide an overview of the available literature on synergistic effects between climate change and chemical pollution, and discuss current knowledge, methodological approaches, and research gaps and needs. Interactions between these two pressures may be climate change dominant (climate change leads to an increase in contaminant exposure or toxicity) or contaminant-dominant (chemical exposure leads to an increase in climate change susceptibility), but the mechanistic drivers of such processes are not well known. Results from a few meta-analyses studies and reviews showed that synergistic interactions tend to be more frequent compared to additive and antagonistic ones. However, most of the studies are individual-based and assess the cumulative effects of a few contaminants individually in laboratory settings together with few climate variables, particularly temperature and pH. Nevertheless, a wide diversity of contaminants have already been individually tested, spanning from metals, persistent organic pollutants and, more recently, emergent pollutants. Population and community based approaches are less frequent but have generated very interesting and more holistic perspectives. Methodological approaches are quite diverse, from laboratory studies to mesocosm and field studies, or based on statistical or modelling tools, each with their own potential and limitations. More holistic comparisons integrating several pressures and their combinations and a multitude of habitats, taxa, life-stages, among others, are needed, as well as insights from meta-analyses and systematic reviews.
Collapse
|
27
|
Domenici P, Allan BJM, Lefrançois C, McCormick MI. The effect of climate change on the escape kinematics and performance of fishes: implications for future predator-prey interactions. CONSERVATION PHYSIOLOGY 2019; 7:coz078. [PMID: 31723432 PMCID: PMC6839432 DOI: 10.1093/conphys/coz078] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/27/2019] [Accepted: 10/18/2019] [Indexed: 05/21/2023]
Abstract
Climate change can have a pronounced impact on the physiology and behaviour of fishes. Notably, many climate change stressors, such as global warming, hypoxia and ocean acidification (OA), have been shown to alter the kinematics of predator-prey interactions in fishes, with potential effects at ecological levels. Here, we review the main effects of each of these stressors on fish escape responses using an integrative approach that encompasses behavioural and kinematic variables. Elevated temperature was shown to affect many components of the escape response, including escape latencies, kinematics and maximum swimming performance, while the main effect of hypoxia was on escape responsiveness and directionality. OA had a negative effect on the escape response of juvenile fish by decreasing their directionality, responsiveness and locomotor performance, although some studies show no effect of acidification. The few studies that have explored the effects of multiple stressors show that temperature tends to have a stronger effect on escape performance than OA. Overall, the effects of climate change on escape responses may occur through decreased muscle performance and/or an interference with brain and sensory functions. In all of these cases, since the escape response is a behaviour directly related to survival, these effects are likely to be fundamental drivers of changes in marine communities. The overall future impact of these stressors is discussed by including their potential effects on predator attack behaviour, thereby allowing the development of potential future scenarios for predator-prey interactions.
Collapse
Affiliation(s)
- Paolo Domenici
- CNR-IAS, Oristano, 09170 Italy
- Corresponding author: CNR-IAS, Oristano 09170, Italy.
| | - Bridie J M Allan
- Department of Marine Science, University of Otago, Dunedin 9054, New Zealand
| | | | - Mark I McCormick
- Department of Marine Biology and Aquaculture, ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
28
|
Larsen AK, Nymo IH, Sørensen KK, Seppola M, Rødven R, Jiménez de Bagüés MP, Al Dahouk S, Godfroid J. Concomitant Temperature Stress and Immune Activation may Increase Mortality Despite Efficient Clearance of an Intracellular Bacterial Infection in Atlantic Cod. Front Microbiol 2018; 9:2963. [PMID: 30564213 PMCID: PMC6289035 DOI: 10.3389/fmicb.2018.02963] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/16/2018] [Indexed: 11/13/2022] Open
Abstract
The environmental temperature has profound effects on biological systems of marine aquatic organisms and plays a critical role in species distribution and abundance. Particularly during the warmer seasons, variations in habitat temperature may introduce episodes of stressful temperatures which the organisms must adapt to and compensate for to maintain physiological homeostasis. The marine environment is changing and predicted raises in water temperatures will affect numerous marine species. Translocation of pathogens follow migration of species and alternations in physical environmental parameters may have influence upon the virulence of pathogens, as well as the hosts immune responses. While pathogenicity of many true pathogens is expected to increase following climate induced temperature stress, the impact from environmental stressors on the occurrence and severity of opportunistic infections is unknown. Here we describe how thermal stress in the cold-water species Atlantic cod influenced the fish immune responses against an opportunistic intracellular bacterium. Following experimental infection with Brucella pinnipedialis at normal water temperature (6°C) and sub-optimal temperature (15°C), cod cleared the intracellular bacteria more rapidly at the highest temperature. The overall immune response was faster and of higher amplitude at 15°C, however, a significant number of cod died at this temperature despite efficient clearance of infection. An increased growth rate not affected by infection was observed at 15°C, confirming multiple energy demanding processes taking place. Serum chemistry suggested that general homeostasis was influenced by both infection and increased water temperature, highlighting the cumulative stress responses (allostatic load) generated by simultaneous stressors. Our results suggest a trade-off between resistance and tolerance to survive infection at sub-optimal temperatures and raise questions concerning the impact of increased water temperatures on the energetic costs of immune system activation in aquatic ectotherms.
Collapse
Affiliation(s)
- Anett K Larsen
- Arctic Infection Biology, Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Ingebjørg H Nymo
- Arctic Infection Biology, Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Karen K Sørensen
- Department of Medical Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Marit Seppola
- Department of Medical Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Rolf Rødven
- Department of Research and Development, UiT - The Arctic University of Norway, Tromsø, Norway
| | - María Pilar Jiménez de Bagüés
- Unidad de Tecnología en Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria, Instituto Agroalimentario de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | | | - Jacques Godfroid
- Arctic Infection Biology, Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
29
|
Bautista-Chamizo E, Borrero-Santiago AR, De Orte MR, DelValls Á, Riba I. Effects of CO 2 enrichment on two microalgae species: A toxicity approach using consecutive generations. CHEMOSPHERE 2018; 213:84-91. [PMID: 30216816 DOI: 10.1016/j.chemosphere.2018.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/30/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
As a result of the increasing pressure provoked by anthropogenic activities, the world climate is changing and oceans health is in danger. One of the most important factors affecting the marine environment is the well-known process called ocean acidification. Also, there are other natural or anthropogenic processes that produce an enrichment of CO2 in the marine environment (CO2 leakages from Carbon Capture and Storage technologies (CCS), organic matter diagenesis, volcanic vents, etc). Most of the studies related to acidification of the marine environment by enrichment of CO2 have been focused on short-term experiments. To evaluate the effects related to CO2 enrichment, laboratory-scale experiments were performed using the marine microalgae Tetraselmis chuii and Phaeodactylum tricornutum. Three different pH values (two treatments - pH 7.4 and 6.0 - and a control - pH 8.0) were tested on the selected species across four consecutive generations. Seawater was collected and exposed to different scenarios of CO2 enrichment by means of CO2 injection. The results showed different effects depending on the species and the generation used. Effects on T. chuii were shown on cell density, chlorophyll-a and metabolic activity, however, a slight adaptation across generations was found in this last parameter. P. tricornutum was more sensitive to acidification conditions through generations, with practically total growth inhibition in the fourth one. The conclusions obtained in this work are useful to address the potential ecological risk related to acidification by enrichment of CO2 on the marine ecosystem by using consecutive generations of microalgae.
Collapse
Affiliation(s)
- Esther Bautista-Chamizo
- Departamento de Química-Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, Spain.
| | - Ana R Borrero-Santiago
- Department of Chemistry, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Manoela R De Orte
- Departamento de Ciencias do Mar, Universidade Federal de São Paulo, Santos, SP, Brazil.
| | - Ángel DelValls
- Departamento de Química-Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, Spain.
| | - Inmaculada Riba
- Departamento de Química-Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, Spain.
| |
Collapse
|
30
|
Rodríguez A, Clemente S, Brito A, Hernández JC. Effects of ocean acidification on algae growth and feeding rates of juvenile sea urchins. MARINE ENVIRONMENTAL RESEARCH 2018; 140:382-389. [PMID: 30032994 DOI: 10.1016/j.marenvres.2018.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/29/2018] [Accepted: 07/08/2018] [Indexed: 06/08/2023]
Abstract
The recent decrease in seawater pH has stimulated a great deal of research on the effects of ocean acidification on various organisms. Most of these studies have mainly focused on the direct effects of acidification on organisms. However, the effects on ecological interactions have been poorly studied. In this paper we have focused on determining the effects of acidification on feeding rates of two species of sea urchins, Paracentrotus lividus and Diadema africanum through laboratory experiments. Nine algae species were reared under two pH treatmens (ph = 8.1 vs. pH = 7.6) for 10 days. We evaluated possible changes in calcification rates, growth and internal structure. Then these algae were offered to juvenile sea urchins for 7 days, evaluating the consumption rates of juvenile sea urchins under these different pH conditions. The algae reared in the control treatment showed higher growth rates and concentration of calcium carbonate, however no internal structural changes were observed in any algae. Juvenile Paracentrotus lividus showed higher consumption rates on algae previously subjected to pH 7.6 than on algae reared under control conditions and between algae species in low pH.The algae most consumed were C. liebetruthii, C. abies-marina and C. elongata by P. lividus juveniles from low pH treatment. However in D. africanum the feeding rates were similar between treatments. This study demonstrated the negative effects of low pH on various species of algae in growth, and indirectly the increase in herbivory rates of juvenile sea urchins on algae reared under low pH.
Collapse
Affiliation(s)
- Adriana Rodríguez
- Dpto. Biología Animal, Edafología y Geología. UD Ciencias Marinas, Facultad de Ciencias (Sección Biología), Universidad de La Laguna.Avda, Astrofísico Francisco Sánchez s/n, La Laguna, 38206, Tenerife, Canary Islands, Spain.
| | - Sabrina Clemente
- Dpto. Biología Animal, Edafología y Geología. UD Ciencias Marinas, Facultad de Ciencias (Sección Biología), Universidad de La Laguna.Avda, Astrofísico Francisco Sánchez s/n, La Laguna, 38206, Tenerife, Canary Islands, Spain
| | - Alberto Brito
- Dpto. Biología Animal, Edafología y Geología. UD Ciencias Marinas, Facultad de Ciencias (Sección Biología), Universidad de La Laguna.Avda, Astrofísico Francisco Sánchez s/n, La Laguna, 38206, Tenerife, Canary Islands, Spain
| | - José Carlos Hernández
- Dpto. Biología Animal, Edafología y Geología. UD Ciencias Marinas, Facultad de Ciencias (Sección Biología), Universidad de La Laguna.Avda, Astrofísico Francisco Sánchez s/n, La Laguna, 38206, Tenerife, Canary Islands, Spain
| |
Collapse
|
31
|
Harvey BJ, Nash KL, Blanchard JL, Edwards DP. Ecosystem-based management of coral reefs under climate change. Ecol Evol 2018; 8:6354-6368. [PMID: 29988420 PMCID: PMC6024134 DOI: 10.1002/ece3.4146] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 03/06/2018] [Accepted: 03/24/2018] [Indexed: 12/25/2022] Open
Abstract
Coral reefs provide food and livelihoods for hundreds of millions of people as well as harbour some of the highest regions of biodiversity in the ocean. However, overexploitation, land-use change and other local anthropogenic threats to coral reefs have left many degraded. Additionally, coral reefs are faced with the dual emerging threats of ocean warming and acidification due to rising CO 2 emissions, with dire predictions that they will not survive the century. This review evaluates the impacts of climate change on coral reef organisms, communities and ecosystems, focusing on the interactions between climate change factors and local anthropogenic stressors. It then explores the shortcomings of existing management and the move towards ecosystem-based management and resilience thinking, before highlighting the need for climate change-ready marine protected areas (MPAs), reduction in local anthropogenic stressors, novel approaches such as human-assisted evolution and the importance of sustainable socialecological systems. It concludes that designation of climate change-ready MPAs, integrated with other management strategies involving stakeholders and participation at multiple scales such as marine spatial planning, will be required to maximise coral reef resilience under climate change. However, efforts to reduce carbon emissions are critical if the long-term efficacy of local management actions is to be maintained and coral reefs are to survive.
Collapse
Affiliation(s)
- Bethany J. Harvey
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | - Kirsty L. Nash
- Centre for Marine SocioecologyHobartTASAustralia
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTASAustralia
| | - Julia L. Blanchard
- Centre for Marine SocioecologyHobartTASAustralia
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTASAustralia
| | - David P. Edwards
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
32
|
Teagle H, Smale DA. Climate-driven substitution of habitat-forming species leads to reduced biodiversity within a temperate marine community. DIVERS DISTRIB 2018. [DOI: 10.1111/ddi.12775] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Harry Teagle
- The Laboratory; Marine Biological Association of the United Kingdom; Plymouth UK
- University of Southampton; Southampton UK
| | - Dan A. Smale
- The Laboratory; Marine Biological Association of the United Kingdom; Plymouth UK
| |
Collapse
|
33
|
Laroche O, Wood SA, Tremblay LA, Ellis JI, Lear G, Pochon X. A cross-taxa study using environmental DNA/RNA metabarcoding to measure biological impacts of offshore oil and gas drilling and production operations. MARINE POLLUTION BULLETIN 2018; 127:97-107. [PMID: 29475721 DOI: 10.1016/j.marpolbul.2017.11.042] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 06/08/2023]
Abstract
Standardized ecosystem-based monitoring surveys are critical for providing information on marine ecosystem health. Environmental DNA/RNA (eDNA/eRNA) metabarcoding may facilitate such surveys by quickly and effectively characterizing multi-trophic levels. In this study, we assessed the suitability of eDNA/eRNA metabarcoding to evaluate changes in benthic assemblages of bacteria, Foraminifera and other eukaryotes along transects at three offshore oil and gas (O&G) drilling and production sites, and compared these to morphologically characterized macro-faunal assemblages. Bacterial communities were the most responsive to O&G activities, followed by Foraminifera, and macro-fauna (the latter assessed by morphology). The molecular approach enabled detection of hydrocarbon degrading taxa such as the bacteria Alcanivorax and Microbulbifer at petroleum impacted stations. Most identified indicator taxa, notably among macro-fauna, were highly specific to site conditions. Based on our results we suggest that eDNA/eRNA metabarcoding can be used as a stand-alone method for biodiversity assessment or as a complement to morphology-based monitoring approaches.
Collapse
Affiliation(s)
- Olivier Laroche
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 349, Warkworth 0941, New Zealand.
| | - Susanna A Wood
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; Environmental Research Institute, The University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Louis A Tremblay
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 349, Warkworth 0941, New Zealand
| | - Joanne I Ellis
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Centre, Thuwal 23955-6900, Saudi Arabia
| | - Gavin Lear
- School of Biological Sciences, University of Auckland, Private Bag 349, Warkworth 0941, New Zealand
| | - Xavier Pochon
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; Institute of Marine Science, University of Auckland, Private Bag 349, Warkworth 0941, New Zealand
| |
Collapse
|
34
|
Gardner J, Manno C, Bakker DCE, Peck VL, Tarling GA. Southern Ocean pteropods at risk from ocean warming and acidification. MARINE BIOLOGY 2017; 165:8. [PMID: 29170568 PMCID: PMC5681611 DOI: 10.1007/s00227-017-3261-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/23/2017] [Indexed: 06/01/2023]
Abstract
Early life stages of marine calcifiers are particularly vulnerable to climate change. In the Southern Ocean aragonite undersaturation events and areas of rapid warming already occur and are predicted to increase in extent. Here, we present the first study to successfully hatch the polar pteropod Limacina helicina antarctica and observe the potential impact of exposure to increased temperature and aragonite undersaturation resulting from ocean acidification (OA) on the early life stage survival and shell morphology. High larval mortality (up to 39%) was observed in individuals exposed to perturbed conditions. Warming and OA induced extensive shell malformation and dissolution, respectively, increasing shell fragility. Furthermore, shell growth decreased, with variation between treatments and exposure time. Our results demonstrate that short-term exposure through passing through hotspots of OA and warming poses a serious threat to pteropod recruitment and long-term population viability.
Collapse
Affiliation(s)
- Jessie Gardner
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
- Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Clara Manno
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
- Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Dorothee C. E. Bakker
- Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Victoria L. Peck
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | - Geraint A. Tarling
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
- Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
35
|
McCormick LR, Levin LA. Physiological and ecological implications of ocean deoxygenation for vision in marine organisms. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2016.0322. [PMID: 28784712 PMCID: PMC5559417 DOI: 10.1098/rsta.2016.0322] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/18/2017] [Indexed: 05/04/2023]
Abstract
Climate change has induced ocean deoxygenation and exacerbated eutrophication-driven hypoxia in recent decades, affecting the physiology, behaviour and ecology of marine organisms. The high oxygen demand of visual tissues and the known inhibitory effects of hypoxia on human vision raise the questions if and how ocean deoxygenation alters vision in marine organisms. This is particularly important given the rapid loss of oxygen and strong vertical gradients in oxygen concentration in many areas of the ocean. This review evaluates the potential effects of low oxygen (hypoxia) on visual function in marine animals and their implications for marine biota under current and future ocean deoxygenation based on evidence from terrestrial and a few marine organisms. Evolutionary history shows radiation of eye designs during a period of increasing ocean oxygenation. Physiological effects of hypoxia on photoreceptor function and light sensitivity, in combination with morphological changes that may occur throughout ontogeny, have the potential to alter visual behaviour and, subsequently, the ecology of marine organisms, particularly for fish, cephalopods and arthropods with 'fast' vision. Visual responses to hypoxia, including greater light requirements, offer an alternative hypothesis for observed habitat compression and shoaling vertical distributions in visual marine species subject to ocean deoxygenation, which merits further investigation.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.
Collapse
Affiliation(s)
- Lillian R McCormick
- Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA
| | - Lisa A Levin
- Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA
| |
Collapse
|
36
|
Acanthoecid choanoflagellates from the Atlantic Arctic Region - a baseline study. Heliyon 2017; 3:e00345. [PMID: 28795157 PMCID: PMC5541139 DOI: 10.1016/j.heliyon.2017.e00345] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/15/2017] [Accepted: 06/28/2017] [Indexed: 11/20/2022] Open
Abstract
The examination and statistical analysis of loricate choanoflagellate material collected from Greenland waters during the period 1988-1998 represents a de facto baseline study of heterotrophic nanoflagellates from the Atlantic Arctic Region. The geographic sites sampled are Disko Bay (West Greenland) and the high-arctic North-East Water (NEW) and North Water (NOW) polynya. The analyses encompass close to 50 taxa. Some of these are described as new species, i.e. Acanthocorbis glacialis, A. reticulata and Diaphanoeca dilatanda. Two distinct clusters of species that are separated in time and space occur at all three sampling sites. A PCA analysis of NEW and NOW data points to that one community is linked to e.g. an early season high nutrient and low phytoplankton biomass scenario, whereas the other is predominant when nutrient levels are exhausted and the phytoplankton biomass high or declining. The material additionally allows for a comprehensive examination of e.g. the Cosmoeca ventricosa morphological variability encountered, as well as puts on record bimodal size variability within a number of species.
Collapse
|
37
|
Dang H, Chen CTA. Ecological Energetic Perspectives on Responses of Nitrogen-Transforming Chemolithoautotrophic Microbiota to Changes in the Marine Environment. Front Microbiol 2017; 8:1246. [PMID: 28769878 PMCID: PMC5509916 DOI: 10.3389/fmicb.2017.01246] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 06/20/2017] [Indexed: 11/15/2022] Open
Abstract
Transformation and mobilization of bioessential elements in the biosphere, lithosphere, atmosphere, and hydrosphere constitute the Earth’s biogeochemical cycles, which are driven mainly by microorganisms through their energy and material metabolic processes. Without microbial energy harvesting from sources of light and inorganic chemical bonds for autotrophic fixation of inorganic carbon, there would not be sustainable ecosystems in the vast ocean. Although ecological energetics (eco-energetics) has been emphasized as a core aspect of ecosystem analyses and microorganisms largely control the flow of matter and energy in marine ecosystems, marine microbial communities are rarely studied from the eco-energetic perspective. The diverse bioenergetic pathways and eco-energetic strategies of the microorganisms are essentially the outcome of biosphere-geosphere interactions over evolutionary times. The biogeochemical cycles are intimately interconnected with energy fluxes across the biosphere and the capacity of the ocean to fix inorganic carbon is generally constrained by the availability of nutrients and energy. The understanding of how microbial eco-energetic processes influence the structure and function of marine ecosystems and how they interact with the changing environment is thus fundamental to a mechanistic and predictive understanding of the marine carbon and nitrogen cycles and the trends in global change. By using major groups of chemolithoautotrophic microorganisms that participate in the marine nitrogen cycle as examples, this article examines their eco-energetic strategies, contributions to carbon cycling, and putative responses to and impacts on the various global change processes associated with global warming, ocean acidification, eutrophication, deoxygenation, and pollution. We conclude that knowledge gaps remain despite decades of tremendous research efforts. The advent of new techniques may bring the dawn to scientific breakthroughs that necessitate the multidisciplinary combination of eco-energetic, biogeochemical and “omics” studies in this field.
Collapse
Affiliation(s)
- Hongyue Dang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen UniversityXiamen, China
| | - Chen-Tung A Chen
- Department of Oceanography, National Sun Yat-sen UniversityKaohsiung, Taiwan
| |
Collapse
|
38
|
Sperling EA, Frieder CA, Levin LA. Biodiversity response to natural gradients of multiple stressors on continental margins. Proc Biol Sci 2017; 283:rspb.2016.0637. [PMID: 27122565 DOI: 10.1098/rspb.2016.0637] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/06/2016] [Indexed: 12/13/2022] Open
Abstract
Sharp increases in atmospheric CO2 are resulting in ocean warming, acidification and deoxygenation that threaten marine organisms on continental margins and their ecological functions and resulting ecosystem services. The relative influence of these stressors on biodiversity remains unclear, as well as the threshold levels for change and when secondary stressors become important. One strategy to interpret adaptation potential and predict future faunal change is to examine ecological shifts along natural gradients in the modern ocean. Here, we assess the explanatory power of temperature, oxygen and the carbonate system for macrofaunal diversity and evenness along continental upwelling margins using variance partitioning techniques. Oxygen levels have the strongest explanatory capacity for variation in species diversity. Sharp drops in diversity are seen as O2 levels decline through the 0.5-0.15 ml l(-1) (approx. 22-6 µM; approx. 21-5 matm) range, and as temperature increases through the 7-10°C range. pCO2 is the best explanatory variable in the Arabian Sea, but explains little of the variance in diversity in the eastern Pacific Ocean. By contrast, very little variation in evenness is explained by these three global change variables. The identification of sharp thresholds in ecological response are used here to predict areas of the seafloor where diversity is most at risk to future marine global change, noting that the existence of clear regional differences cautions against applying global thresholds.
Collapse
Affiliation(s)
- Erik A Sperling
- Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA
| | - Christina A Frieder
- Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA
| | - Lisa A Levin
- Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA
| |
Collapse
|
39
|
Provost EJ, Kelaher BP, Dworjanyn SA, Russell BD, Connell SD, Ghedini G, Gillanders BM, Figueira W, Coleman MA. Climate-driven disparities among ecological interactions threaten kelp forest persistence. GLOBAL CHANGE BIOLOGY 2017; 23:353-361. [PMID: 27392308 DOI: 10.1111/gcb.13414] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/18/2016] [Accepted: 06/23/2016] [Indexed: 06/06/2023]
Abstract
The combination of ocean warming and acidification brings an uncertain future to kelp forests that occupy the warmest parts of their range. These forests are not only subject to the direct negative effects of ocean climate change, but also to a combination of unknown indirect effects associated with changing ecological landscapes. Here, we used mesocosm experiments to test the direct effects of ocean warming and acidification on kelp biomass and photosynthetic health, as well as climate-driven disparities in indirect effects involving key consumers (urchins and rock lobsters) and competitors (algal turf). Elevated water temperature directly reduced kelp biomass, while their turf-forming competitors expanded in response to ocean acidification and declining kelp canopy. Elevated temperatures also increased growth of urchins and, concurrently, the rate at which they thinned kelp canopy. Rock lobsters, which are renowned for keeping urchin populations in check, indirectly intensified negative pressures on kelp by reducing their consumption of urchins in response to elevated temperature. Overall, these results suggest that kelp forests situated towards the low-latitude margins of their distribution will need to adapt to ocean warming in order to persist in the future. What is less certain is how such adaptation in kelps can occur in the face of intensifying consumptive (via ocean warming) and competitive (via ocean acidification) pressures that affect key ecological interactions associated with their persistence. If such indirect effects counter adaptation to changing climate, they may erode the stability of kelp forests and increase the probability of regime shifts from complex habitat-forming species to more simple habitats dominated by algal turfs.
Collapse
Affiliation(s)
- Euan J Provost
- National Marine Science Centre & Centre for Coastal Biogeochemistry Research, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | - Brendan P Kelaher
- National Marine Science Centre & Centre for Coastal Biogeochemistry Research, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | - Symon A Dworjanyn
- National Marine Science Centre & Centre for Coastal Biogeochemistry Research, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | - Bayden D Russell
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Southern Seas Ecology Laboratories, School of Biological Sciences & Environment Institute, University of Adelaide, Adelaide, SA, Australia
| | - Sean D Connell
- Southern Seas Ecology Laboratories, School of Biological Sciences & Environment Institute, University of Adelaide, Adelaide, SA, Australia
| | - Giulia Ghedini
- Southern Seas Ecology Laboratories, School of Biological Sciences & Environment Institute, University of Adelaide, Adelaide, SA, Australia
| | - Bronwyn M Gillanders
- Southern Seas Ecology Laboratories, School of Biological Sciences & Environment Institute, University of Adelaide, Adelaide, SA, Australia
| | - WillIAM Figueira
- Marine Ecology Laboratories, School of Biological Sciences, University of Sydney, Sydney, NSW, Australia
| | - Melinda A Coleman
- National Marine Science Centre & Centre for Coastal Biogeochemistry Research, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
- Department of Primary Industries, New South Wales Fisheries, PO Box 4321, Coffs Harbour, NSW, Australia
| |
Collapse
|
40
|
Madeira C, Madeira D, Diniz MS, Cabral HN, Vinagre C. Comparing biomarker responses during thermal acclimation: A lethal vs non-lethal approach in a tropical reef clownfish. Comp Biochem Physiol A Mol Integr Physiol 2016; 204:104-112. [PMID: 27894882 DOI: 10.1016/j.cbpa.2016.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
Knowledge of thermal stress biology for most tropical fish species in reef ecosystems under climate change is still quite limited. Thus, the objective of this study was to measure the time-course changes of thermal stress biomarkers in the commercially exploited coral reef fish Amphiprion ocellaris, during a laboratory simulated event of increased temperature. Heat shock protein 70kDa (Hsp70) and total ubiquitin (Ub) were determined in the muscle (lethal method) and in the fin (non-lethal alternative method) under two temperature treatments (control - 26°C and elevated temperature - 30°C) throughout one month with weekly samplings. Results suggest that biomarker basal levels are tissue-specific and influence the degree of response under temperature exposure. Responses were highly inducible in the muscle but not in fin tissue, indicating that the latter is not reliable for monitoring purposes. Thermal stress was observed in the muscle after one week of exposure (both biomarkers increased significantly) and Ub levels then decreased, suggesting the animals were able to acclimate by maintaining high levels of Hsp70 and through an effective protein turnover. In addition, the results show that mortality rates did not differ between treatments. This indicates that A. ocellaris is capable of displaying a plastic response to elevated temperature by adjusting the protein quality control system to protect cell functions, without decreasing survival. Thus, this coral reef fish species presents a significant acclimation potential under ocean warming scenarios of +4°C. Monitoring of thermal stress through a non-lethal method, fin-clipping, although desirable proved to be inadequate for this species.
Collapse
Affiliation(s)
- Carolina Madeira
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Diana Madeira
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Mário S Diniz
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Henrique N Cabral
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Catarina Vinagre
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
41
|
Bjärnmark NA, Yarra T, Churcher AM, Felix RC, Clark MS, Power DM. Transcriptomics provides insight into Mytilus galloprovincialis (Mollusca: Bivalvia) mantle function and its role in biomineralisation. Mar Genomics 2016; 27:37-45. [PMID: 27037218 DOI: 10.1016/j.margen.2016.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/03/2016] [Accepted: 03/11/2016] [Indexed: 01/13/2023]
Abstract
The mantle is an organ common to all molluscs and is at the forefront of the biomineralisation process. The present study used the Mediterranean mussel (Mytilus galloprovincialis) as a model species to investigate the structural and functional role of the mantle in shell formation. The transcriptomes of three regions of the mantle edge (umbo to posterior edge) were sequenced using Illumina technology which yielded a total of 61,674,325 reads after adapter trimming and filtering. The raw reads assembled into 179,879 transcripts with an N50 value of 1086bp. A total of 1363 transcripts (321, 223 and 816 in regions 1, 2 and 3, respectively) that differed in abundance in the three mantle regions were identified and putative function was assigned to 54% using BLAST sequence similarity searches (cut-off less than 1e(-10)). Morphological differences detected by histology of the three mantle regions was linked to functional heterogeneity by selecting the top five most abundant Pfam domains in the annotated 1363 differentially abundant transcripts across the three mantle regions. Calcium binding domains dominated region two (middle segment of the mantle edge). Candidate biomineralisation genes were mined and tested by qPCR. This revealed that Flp-like, a penicillin binding protein potentially involved in shell matrix maintenance of the Pacific oyster (Crassostrea gigas), had significantly higher expression in the posterior end of the mantle edge (region one). Our findings are intriguing as they indicate that the mantle edge appears to be a heterogeneous tissue, displaying structural and functional bias.
Collapse
Affiliation(s)
- Nadège A Bjärnmark
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal.
| | - T Yarra
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK; University of Edinburgh, Institute of Evolutionary Biology, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - A M Churcher
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| | - R C Felix
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| | - M S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - D M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal.
| |
Collapse
|
42
|
Piñeiro-Corbeira C, Barreiro R, Cremades J. Decadal changes in the distribution of common intertidal seaweeds in Galicia (NW Iberia). MARINE ENVIRONMENTAL RESEARCH 2016; 113:106-115. [PMID: 26707882 DOI: 10.1016/j.marenvres.2015.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/20/2015] [Accepted: 11/28/2015] [Indexed: 06/05/2023]
Abstract
Seaweed assemblages in Atlantic Europe are been distorted by global change, but the intricate coastal profile of the area suggests that susceptibility may differ between regions. In particular, NW Iberia is an important omission because no study has systematically assessed long-term changes in a large number of species. Using intertidal surveys for 33 common perennial seaweeds, we show that the average number of species per site declined significantly from 1998-99 to 2014 in NW Iberia. The largest drops in site occupancy were detected in kelps, fucoids, and carrageenan-producing Rhodophyta. Parallel analyses revealed significant upward trends in SST, air temperature, and strong waves; meanwhile, nutrients decreased slightly except in areas affected by local inputs. Similar changes reported for subtidal assemblages in other parts of Atlantic Europe suggest that the drivers may be ubiquitous. Nonetheless, a more proper assessment of both global and local impacts, will require further surveys, and the regular monitoring of intertidal perennial seaweeds appears as a cost-effective alternative to discriminate genuine long-term trends from transitory fluctuations.
Collapse
Affiliation(s)
- Cristina Piñeiro-Corbeira
- BioCost Research Group, Facultad de Ciencias and Centro de Investigaciones Científicas Avanzadas (CICA), Universidad de A Coruña, 15071 A Coruña, Spain.
| | - Rodolfo Barreiro
- BioCost Research Group, Facultad de Ciencias and Centro de Investigaciones Científicas Avanzadas (CICA), Universidad de A Coruña, 15071 A Coruña, Spain
| | - Javier Cremades
- BioCost Research Group, Facultad de Ciencias and Centro de Investigaciones Científicas Avanzadas (CICA), Universidad de A Coruña, 15071 A Coruña, Spain
| |
Collapse
|
43
|
Siña M, Wood RC, Saldarriaga E, Lawler J, Zunt J, Garcia P, Cárcamo C. Understanding Perceptions of Climate Change, Priorities, and Decision-Making among Municipalities in Lima, Peru to Better Inform Adaptation and Mitigation Planning. PLoS One 2016; 11:e0147201. [PMID: 26808087 PMCID: PMC4725729 DOI: 10.1371/journal.pone.0147201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/30/2015] [Indexed: 11/18/2022] Open
Abstract
Climate change poses multiple risks to the population of Lima, the largest city and capital of Peru, located on the Pacific coast in a desert ecosystem. These risks include increased water scarcity, increased heat, and the introduction and emergence of vector-borne and other climate sensitive diseases. To respond to these threats, it is necessary for the government, at every level, to adopt more mitigation and adaptation strategies. Here, focus groups were conducted with representatives from five Lima municipalities to determine priorities, perception of climate change, and decision-making processes for implementing projects within each municipality. These factors can affect the ability and desire of a community to implement climate change adaptation and mitigation strategies. The results show that climate change and other environmental factors are of relatively low priority, whereas public safety and water and sanitation services are of highest concern. Perhaps most importantly, climate change is not well understood among the municipalities. Participants had trouble distinguishing climate change from other environmental issues and did not fully understand its causes and effects. Greater understanding of what climate change is and why it is important is necessary for it to become a priority for the municipalities. Different aspects of increased climate change awareness seem to be connected to having experienced extreme weather events, whether related or not to climate change, and to higher socioeconomic status.
Collapse
Affiliation(s)
- Mariella Siña
- School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Rachel C. Wood
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Enrique Saldarriaga
- School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joshua Lawler
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, United States of America
| | - Joseph Zunt
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Patricia Garcia
- School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - César Cárcamo
- School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
44
|
Franco L, Romero D, García-Navarro JA, Teles M, Tvarijonaviciute A. Esterase activity (EA), total oxidant status (TOS) and total antioxidant capacity (TAC) in gills of Mytilus galloprovincialis exposed to pollutants: Analytical validation and effects evaluation by single and mixed heavy metal exposure. MARINE POLLUTION BULLETIN 2016; 102:30-35. [PMID: 26705576 DOI: 10.1016/j.marpolbul.2015.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/03/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
The aims of the present study were to optimize and validate methods for esterase activity (EA), total oxidant status (TOS) and total antioxidant capacity (TAC) determination in mussel' gills, and to establish the relationships between these biomarkers and Pb, Cd and Cu pollution, in single form and ternary mixture. Two different buffers for sample homogenization, the need of ultracentrifugation, and analytical validation were evaluated. Coefficients of variation, when buffer without additives and ultracentrifugation were used, were <15%, and recovery were 97%-109% in all cases. The EA response tends to decrease with treatments, TOS decreased significantly in Cd and ternary groups, while TAC tended to increase in treatments with Pb, Cd and ternary groups. In conclusion, the methods for EA, TOS and TAC measurements in gills of mussel were precise and accurate and could be interesting resources in biomonitoring programmes.
Collapse
Affiliation(s)
- Lorena Franco
- Área de Toxicología, Facultad de Veterinaria, Universidad de Murcia, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", Espinardo, E-30071 Murcia, Spain
| | - Diego Romero
- Área de Toxicología, Facultad de Veterinaria, Universidad de Murcia, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", Espinardo, E-30071 Murcia, Spain
| | - José A García-Navarro
- Área de Toxicología, Facultad de Veterinaria, Universidad de Murcia, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", Espinardo, E-30071 Murcia, Spain
| | - Mariana Teles
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universidad Autónoma de Barcelona, Campus d'excel·lència "UAB-CEI". Bellaterra, Barcelona E-08193, Spain
| | - Asta Tvarijonaviciute
- Departament de Medicina i Cirugia Animals, Universidad Autónoma de Barcelona, Campus d'excel·lència "UAB-CEI". Bellaterra, Barcelona E-08193, Spain.
| |
Collapse
|
45
|
Microbial Surface Colonization and Biofilm Development in Marine Environments. Microbiol Mol Biol Rev 2015; 80:91-138. [PMID: 26700108 DOI: 10.1128/mmbr.00037-15] [Citation(s) in RCA: 496] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration.
Collapse
|
46
|
Schobben M, Stebbins A, Ghaderi A, Strauss H, Korn D, Korte C. Eutrophication, microbial-sulfate reduction and mass extinctions. Commun Integr Biol 2015; 9:e1115162. [PMID: 27066181 PMCID: PMC4802792 DOI: 10.1080/19420889.2015.1115162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 10/27/2022] Open
Abstract
In post-Cambrian time, life on Earth experienced 5 major extinction events, likely instigated by adverse environmental conditions. Biodiversity loss among marine taxa, for at least 3 of these mass extinction events (Late Devonian, end-Permian and end-Triassic), has been connected with widespread oxygen-depleted and sulfide-bearing marine water. Furthermore, geochemical and sedimentary evidence suggest that these events correlate with rather abrupt climate warming and possibly increased terrestrial weathering. This suggests that biodiversity loss may be triggered by mechanisms intrinsic to the Earth system, notably, the biogeochemical sulfur and carbon cycle. This climate warming feedback produces large-scale eutrophication on the continental shelf, which, in turn, expands oxygen minimum zones by increased respiration, which can turn to a sulfidic state by increased microbial-sulfate reduction due to increased availability of organic matter. A plankton community turnover from a high-diversity eukaryote to high-biomass bacterial dominated food web is the catalyst proposed in this anoxia-extinction scenario and stands in stark contrast to the postulated productivity collapse suggested for the end-Cretaceous mass extinction. This cascade of events is relevant for the future ocean under predicted greenhouse driven climate change. The exacerbation of anoxic "dead" zones is already progressing in modern oceanic environments, and this is likely to increase due to climate induced continental weathering and resulting eutrophication of the oceans.
Collapse
Affiliation(s)
- Martin Schobben
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung , Berlin, Germany
| | - Alan Stebbins
- School for the Environment, University of Massachusetts Boston , Boston, MA, USA
| | - Abbas Ghaderi
- Department of Geology, Ferdowsi University of Mashhad , Mashhad, Iran
| | - Harald Strauss
- Institut für Geologie und Paläontologie, Westfälische Wilhelms-Universität Münster , Münster, Germany
| | - Dieter Korn
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung , Berlin, Germany
| | - Christoph Korte
- Department of Geosciences and Natural Resource Management, University of Copenhagen , Copenhagen, Denmark
| |
Collapse
|
47
|
Nannini M, De Marchi L, Lombardi C, Ragazzola F. Effects of thermal stress on the growth of an intertidal population of Ellisolandia elongata (Rhodophyta) from N-W Mediterranean Sea. MARINE ENVIRONMENTAL RESEARCH 2015; 112:11-19. [PMID: 26004519 DOI: 10.1016/j.marenvres.2015.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 06/04/2023]
Abstract
Coralline algae are calcareous algae able to build biogenic structures, thus playing a key-role as marine biodiversity promoters and calcium carbonate producers. The aim was to estimate the growth of Ellisolandia elongata under thermal stress. E. elongata were cultured for 2, 4 and 6 months under "natural" temperature (Tc) and increased temperature (Ti = Tc + 3 °C). In order to determine a possible culturing effect, growth in the field was also measured. For the first time, Alizarin Red S dye was used in high energy shallow water environments. Thallus linear extension was higher in the cultured specimens (Tc and Ti) compared to the field specimens. The carbonate mass in the field was higher than in Ti and Tc after 2, 4 months but decreased after 6 months. Partly unknown in situ environmental factors could have affected growth and calcification rates in the field while thermal adaptation could explain growth rates in the culturing experiment.
Collapse
Affiliation(s)
- Matteo Nannini
- Environment Research Centre ENEA Via Santa Teresa, 19032 Pozzuolo di Lerici, La Spezia, Italy; Department of Biology, University of Pisa, Via Derna 1, 56126 Pisa, Italy; Association For-Mare for Applied Ecological Sciences, Via Lovati 33, 27100 Pavia, Italy.
| | - Lucia De Marchi
- Association For-Mare for Applied Ecological Sciences, Via Lovati 33, 27100 Pavia, Italy; Istituto di Scienze Marine-Consiglio Nazionale delle Ricerche (CNR-ISMAR), Pozzuolo di Lerici, 19032 Lerici, La Spezia, Italy
| | - Chiara Lombardi
- Environment Research Centre ENEA Via Santa Teresa, 19032 Pozzuolo di Lerici, La Spezia, Italy
| | - Federica Ragazzola
- Department of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
| |
Collapse
|
48
|
Saupe EE, Hendricks JR, Portell RW, Dowsett HJ, Haywood A, Hunter SJ, Lieberman BS. Macroevolutionary consequences of profound climate change on niche evolution in marine molluscs over the past three million years. Proc Biol Sci 2015; 281:rspb.2014.1995. [PMID: 25297868 DOI: 10.1098/rspb.2014.1995] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In order to predict the fate of biodiversity in a rapidly changing world, we must first understand how species adapt to new environmental conditions. The long-term evolutionary dynamics of species' physiological tolerances to differing climatic regimes remain obscure. Here, we unite palaeontological and neontological data to analyse whether species' environmental tolerances remain stable across 3 Myr of profound climatic changes using 10 phylogenetically, ecologically and developmentally diverse mollusc species from the Atlantic and Gulf Coastal Plains, USA. We additionally investigate whether these species' upper and lower thermal tolerances are constrained across this interval. We find that these species' environmental preferences are stable across the duration of their lifetimes, even when faced with significant environmental perturbations. The results suggest that species will respond to current and future warming either by altering distributions to track suitable habitat or, if the pace of change is too rapid, by going extinct. Our findings also support methods that project species' present-day environmental requirements to future climatic landscapes to assess conservation risks.
Collapse
Affiliation(s)
- E E Saupe
- Biodiversity Institute and Department of Geology, University of Kansas, 1475 Jayhawk Boulevard, Room 120 Lindley Hall, Lawrence, KS 66045, USA Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, CT 06511, USA
| | - J R Hendricks
- Department of Geology, San José State University, Duncan Hall 321, San José, CA 95192, USA Paleontological Research Institution, 1259 Trumansburg Road, Ithaca, NY 14850, USA
| | - R W Portell
- Division of Invertebrate Paleontology, Florida Museum of Natural History, University of Florida, 1659 Museum Road, PO Box 117800, Gainesville, FL 32611, USA
| | - H J Dowsett
- US Geological Survey, 926A National Center, Reston, VA 20192, USA
| | - A Haywood
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
| | - S J Hunter
- Sellwood Group for Palaeo-Climatology, School of Earth and Environment, Room 9.127, Earth and Environment Building, University of Leeds, West Yorkshire LS2 9JT, UK
| | - B S Lieberman
- Biodiversity Institute and Department of Ecology & Evolutionary Biology, University of Kansas, 1345 Jayhawk Boulevard, Dyche Hall, Lawrence, KS 66045, USA
| |
Collapse
|
49
|
Chu JWF, Tunnicliffe V. Oxygen limitations on marine animal distributions and the collapse of epibenthic community structure during shoaling hypoxia. GLOBAL CHANGE BIOLOGY 2015; 21:2989-3004. [PMID: 25689932 DOI: 10.1111/gcb.12898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 05/19/2023]
Abstract
Deoxygenation in the global ocean is predicted to induce ecosystem-wide changes. Analysis of multidecadal oxygen time-series projects the northeast Pacific to be a current and future hot spot of oxygen loss. However, the response of marine communities to deoxygenation is unresolved due to the lack of applicable data on component species. We repeated the same benthic transect (n = 10, between 45 and 190 m depths) over 8 years in a seasonally hypoxic fjord using remotely operated vehicles equipped with oxygen sensors to establish the lower oxygen levels at which 26 common epibenthic species can occur in the wild. By timing our surveys to shoaling hypoxia events, we show that fish and crustacean populations persist even in severe hypoxia (<0.5 mL L(-1) ) with no mortality effects but that migration of mobile species occurs. Consequently, the immediate response to hypoxia expansion is the collapse of community structure; normally partitioned distributions of resident species coalesced and localized densities increased. After oxygen renewal and formation of steep oxygen gradients, former ranges re-established. High frequency data from the nearby VENUS subsea observatory show the average oxygen level at our site declined by ~0.05 mL L(-1) year(-1) over the period of our study. The increased annual duration of the hypoxic (<1.4 mL L(-1) ) and severely hypoxic periods appears to reflect the oxygen dynamics demonstrated in offshore source waters and the adjacent Strait of Georgia. Should the current trajectory of oxygen loss continue, community homogenization and reduced suitable habitat may become the dominant state of epibenthic systems in the northeast Pacific. In situ oxygen occurrences were not congruent with lethal and sublethal hypoxia thresholds calculated across the literature for major taxonomic groups indicating that research biases toward laboratory studies on Atlantic species are not globally applicable. Region-specific hypoxia thresholds are necessary to predict future impacts of deoxygenation on marine biodiversity.
Collapse
Affiliation(s)
- Jackson W F Chu
- Department of Biology, University of Victoria, PO Box 3080, Victoria, BC, V8W 2Y2, Canada
| | - Verena Tunnicliffe
- Department of Biology, University of Victoria, PO Box 3080, Victoria, BC, V8W 2Y2, Canada
- School of Earth & Ocean Sciences, University of Victoria, PO Box 3080, Victoria, BC, V8W 2Y2, Canada
| |
Collapse
|
50
|
Altieri AH, Gedan KB. Climate change and dead zones. GLOBAL CHANGE BIOLOGY 2015; 21:1395-406. [PMID: 25385668 DOI: 10.1111/gcb.12754] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 05/18/2023]
Abstract
Estuaries and coastal seas provide valuable ecosystem services but are particularly vulnerable to the co-occurring threats of climate change and oxygen-depleted dead zones. We analyzed the severity of climate change predicted for existing dead zones, and found that 94% of dead zones are in regions that will experience at least a 2 °C temperature increase by the end of the century. We then reviewed how climate change will exacerbate hypoxic conditions through oceanographic, ecological, and physiological processes. We found evidence that suggests numerous climate variables including temperature, ocean acidification, sea-level rise, precipitation, wind, and storm patterns will affect dead zones, and that each of those factors has the potential to act through multiple pathways on both oxygen availability and ecological responses to hypoxia. Given the variety and strength of the mechanisms by which climate change exacerbates hypoxia, and the rates at which climate is changing, we posit that climate change variables are contributing to the dead zone epidemic by acting synergistically with one another and with recognized anthropogenic triggers of hypoxia including eutrophication. This suggests that a multidisciplinary, integrated approach that considers the full range of climate variables is needed to track and potentially reverse the spread of dead zones.
Collapse
Affiliation(s)
- Andrew H Altieri
- Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092, Ancon, Republic of Panama
| | | |
Collapse
|