1
|
Gendron WH, Fertan E, Roddick KM, Wong AA, Maliougina M, Hiani YE, Anini Y, Brown RE. Intranasal insulin treatment ameliorates spatial memory, muscular strength, and frailty deficits in 5xFAD mice. Physiol Behav 2024; 281:114583. [PMID: 38750806 DOI: 10.1016/j.physbeh.2024.114583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
The 5xFAD mouse model shows age-related weight loss as well as cognitive and motor deficits. Metabolic dysregulation, especially impaired insulin signaling, is also present in AD. This study examined whether intranasal delivery of insulin (INI) at low (0.875 U) or high (1.750 U) doses would ameliorate these deficits compared to saline in 10-month-old female 5xFAD and B6SJL wildtype (WT) mice. INI increased forelimb grip strength in the wire hang test in 5xFAD mice in a dose-dependent manner but did not improve the performance of 5xFAD mice on the balance beam. High INI doses reduced frailty scores in 5xFAD mice and improved spatial memory in both acquisition and reversal probe trials in the Morris water maze. INI increased swim speed in 5xFAD mice but had no effect on object recognition memory or working memory in the spontaneous alternation task, nor did it improve memory in the contextual or cued fear memory tasks. High doses of insulin increased the liver, spleen, and kidney weights and reduced brown adipose tissue weights. P-Akt signaling in the hippocampus was increased by insulin in a dose-dependent manner. Altogether, INI increased strength, reduced frailty scores, and improved visual spatial memory. Hypoglycemia was not present after INI, however alterations in tissue and organ weights were present. These results are novel and important as they indicate that intra-nasal insulin can reverse cognitive, motor and frailty deficits found in this mouse model of AD.
Collapse
Affiliation(s)
- William H Gendron
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Emre Fertan
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kyle M Roddick
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Aimée A Wong
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Maria Maliougina
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Yassine El Hiani
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Younes Anini
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Departments of Obstetrics and Gynecology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Richard E Brown
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
2
|
Guo X, Lei M, Ma G, Ouyang C, Yang X, Liu C, Chen Q, Liu X. Schisandrin A Alleviates Spatial Learning and Memory Impairment in Diabetic Rats by Inhibiting Inflammatory Response and Through Modulation of the PI3K/AKT Pathway. Mol Neurobiol 2024; 61:2514-2529. [PMID: 37910285 DOI: 10.1007/s12035-023-03725-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023]
Abstract
Clinical and epidemiological research shows that people with diabetes mellitus frequently experience diabetic cognitive impairment. Schisandrin A (SchA), one of the lignans found in the dried fruit of Schisandra chinensis, has a variety of pharmacological effects on immune system control, apoptosis suppression, anti-oxidation and anti-inflammation. The goal of the current investigation was to clarify the probable neuro-protective effects of SchA against streptozotocin-induced diabetes deficiencies of the spatial learning and memory in rats. The outcomes show that SchA therapy effectively improved impaired glucose tolerance, fasting blood glucose level and serum insulin level in diabetic rats. Additionally, in the Morris water maze test, diabetic rats showed deficits in spatial learning and memory that were ameliorated by SchA treatment. Moreover, giving diabetic rats SchA reduced damage to the hippocampus structure and increased the production of synaptic proteins. Further research revealed that SchA therapy reduced diabetic-induced hippocampus neuron damage and the generation of Aβ, as demonstrated by the upregulated phosphorylation levels of insulin signaling pathway connected proteins and by the decreased expression levels of inflammatory-related factors. Collectively, these results suggested that SchA could improve diabetes-related impairments in spatial learning and memory, presumably by reducing inflammatory responses and regulating the insulin signaling system.
Collapse
Affiliation(s)
- Xiying Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Min Lei
- Hubei Key Laboratory of Diabetes and Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Guandi Ma
- Hubei Key Laboratory of Diabetes and Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Changhan Ouyang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Xiaosong Yang
- Hubei Key Laboratory of Diabetes and Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Chao Liu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China.
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China.
| | - Xiufen Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China.
| |
Collapse
|
3
|
Zhang Q, Hu S, Jin Z, Wang S, Zhang B, Zhao L. Mechanism of traditional Chinese medicine in elderly diabetes mellitus and a systematic review of its clinical application. Front Pharmacol 2024; 15:1339148. [PMID: 38510656 PMCID: PMC10953506 DOI: 10.3389/fphar.2024.1339148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/31/2024] [Indexed: 03/22/2024] Open
Abstract
Objective: Affected by aging, the elderly diabetes patients have many pathological characteristics different from the young people, including more complications, vascular aging, cognitive impairment, osteoporosis, and sarcopenia. This article will explore their pathogenesis and the mechanism of Traditional Chinese medicine (TCM) intervention, and use the method of systematic review to evaluate the clinical application of TCM in elderly diabetes. Method: Searching for randomized controlled trials (RCTs) published from January 2000 to November 2023 in the following databases: Web of Science, Pubmed, Embase, Cochrane Library, Sinomed, China National Knowledge Internet, Wanfang and VIP. They were evaluated by three subgroups of Traditional Chinese Prescription, Traditional Chinese patent medicines and Traditional Chinese medicine extracts for their common prescriptions, drugs, adverse reactions and the quality of them. Results and Conclusion: TCM has the advantages of multi-target and synergistic treatment in the treatment of elderly diabetes. However, current clinical researches have shortcomings including the inclusion of age criteria and diagnosis of subjects are unclear, imprecise research design, non-standard intervention measures, and its safety needs further exploration. In the future, the diagnosis of elderly people with diabetes needs to be further clarified. Traditional Chinese patent medicines included in the pharmacopoeia can be used to conduct more rigorous RCTs, and then gradually standardize the traditional Chinese medicine prescriptions and traditional Chinese medicine extracts, providing higher level evidence for the treatment of elderly diabetes with traditional Chinese medicine.
Collapse
Affiliation(s)
- Qiqi Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Shiwan Hu
- Institute of Metabolic Diseases, Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zishan Jin
- Institute of Metabolic Diseases, Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Sicheng Wang
- Institute of Metabolic Diseases, Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Boxun Zhang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Jamshidnejad-Tosaramandani T, Kashanian S, Karimi I, Schiöth HB. Synthesis of a Rivastigmine and Insulin Combinational Mucoadhesive Nanoparticle for Intranasal Delivery. Polymers (Basel) 2024; 16:510. [PMID: 38399888 PMCID: PMC10891873 DOI: 10.3390/polym16040510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Efficient drug delivery remains a critical challenge for treating neurodegenerative diseases, such as Alzheimer's disease (AD). Using innovative nanomaterials, delivering current medications like acetylcholinesterase inhibitors to the brain through the intranasal route is a promising strategy for managing AD. Here, we developed a unique combinational drug delivery system based on N,N,N-trimethyl chitosan nanoparticles (NPs). These NPs encapsulate rivastigmine, the most potent acetylcholinesterase inhibitor, along with insulin, a complementary therapeutic agent. The spherical NPs exhibited a zeta potential of 17.6 mV, a size of 187.00 nm, and a polydispersity index (PDI) of 0.29. Our findings demonstrate significantly improved drug transport efficiency through sheep nasal mucosa using the NPs compared to drug solutions. The NPs exhibited transport efficiencies of 73.3% for rivastigmine and 96.9% for insulin, surpassing the efficiencies of the drug solutions, which showed transport efficiencies of 52% for rivastigmine and 21% for insulin ex vivo. These results highlight the potential of a new drug delivery system as a promising approach for enhancing nasal transport efficiency. These combinational mucoadhesive NPs offer a novel strategy for the simultaneous cerebral delivery of rivastigmine and insulin, which could prove helpful in developing effective treatments of AD and other neurodegenerative conditions.
Collapse
Affiliation(s)
- Tahereh Jamshidnejad-Tosaramandani
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah 6714414971, Iran;
- Laboratory for Computational Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah 6714414971, Iran;
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 62167 Uppsala, Sweden
| | - Soheila Kashanian
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah 6714414971, Iran;
- Faculty of Chemistry, Sensor and Biosensor Research Center (SBRC), Razi University, Kermanshah 6714414971, Iran
| | - Isaac Karimi
- Laboratory for Computational Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah 6714414971, Iran;
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 62167 Uppsala, Sweden
| |
Collapse
|
5
|
Smith K, Fan J, Marriner GA, Gerdes J, Kessler R, Zinn KR. Distribution of insulin in primate brain following nose-to-brain transport. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2024; 10:e12459. [PMID: 38469552 PMCID: PMC10925727 DOI: 10.1002/trc2.12459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/24/2024] [Accepted: 02/02/2024] [Indexed: 03/13/2024]
Abstract
Introduction Nose-to-brain (N2B) insulin delivery has potential for Alzheimer's disease (AD) therapy. However, clinical implementation has been challenging without methods to follow N2B delivery non-invasively. Positron emission tomography (PET) was applied to measure F-18-labeled insulin ([18F]FB-insulin) from intranasal dosing to brain uptake in non-human primates following N2B delivery. Methods [18F]FB-insulin was prepared by reacting A1,B29-di(tert-butyloxycarbonyl)insulin with [18F]-N-succinimidyl-4-fluorobenzoate. Three methods of N2B delivery for [18F]FB-insulin were compared - delivery as aerosol via tubing (rhesus macaque, n = 2), as aerosol via preplaced catheter (rhesus macaque, n = 3), and as solution via preplaced catheter (cynomolgus macaque, n = 3). Following dosing, dynamic PET imaging (120 min) quantified delivery efficiency to the nasal cavity and whole brain. Area under the time-activity curve was calculated for 46 regions of the cynomolgus macaque brain to determine regional [18F]FB-insulin levels. Results Liquid instillation of [18F]FB-insulin by catheter outperformed aerosol methods for delivery to the subject (39.89% injected dose vs 10.03% for aerosol via tubing, 0.17% for aerosol by catheter) and subsequently to brain (0.34% injected dose vs 0.00020% for aerosol via tubing, 0.05% for aerosol by catheter). [18F]FB-insulin was rapidly transferred across the cribriform plate to limbic and frontotemporal areas responsible for emotional and memory processing. [18F]FB-insulin half-life was longer in olfactory nerve projection sites with high insulin receptor density compared to the whole brain. Discussion The catheter-based liquid delivery approach combined with PET imaging successfully tracked the fate of N2B [18F]FB-insulin and is thought to be broadly applicable for assessments of other therapeutic agents. This method can be rapidly applied in humans to advance clinical evaluation of N2B insulin as an AD therapeutic. Highlights for [18F]FB-insulin passage across the cribriform plate was detected by PET.Intranasal [18F]FB-insulin reached the brain within 13 min.[18F]FB-insulin activity was highest in emotional and memory processing regions.Aerosol delivery was less efficient than liquid instillation by preplaced catheter.Insulin delivery to the cribriform plate was critical for arrival in the brain.
Collapse
Affiliation(s)
- Kylie Smith
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMichiganUSA
- Institute for Quantitative Health Science and Engineering, Michigan State UniversityEast LansingMichiganUSA
| | - Jinda Fan
- Institute for Quantitative Health Science and Engineering, Michigan State UniversityEast LansingMichiganUSA
- Department of ChemistryMichigan State UniversityEast LansingMichiganUSA
- Department of RadiologyMichigan State UniversityEast LansingMichiganUSA
| | | | - John Gerdes
- Department of Biomedical and Pharmaceutical SciencesUniversity of MontanaMissoulaMontanaUSA
| | - Robert Kessler
- Department of RadiologyMichigan State UniversityEast LansingMichiganUSA
| | - Kurt R. Zinn
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMichiganUSA
- Institute for Quantitative Health Science and Engineering, Michigan State UniversityEast LansingMichiganUSA
- Department of RadiologyMichigan State UniversityEast LansingMichiganUSA
- Department of Small Animal Clinical SciencesMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
6
|
Kim J, Jeon H, Yun Kim H, Kim Y. Failure, Success, and Future Direction of Alzheimer Drugs Targeting Amyloid-β Cascade: Pros and Cons of Chemical and Biological Modalities. Chembiochem 2023; 24:e202300328. [PMID: 37497809 DOI: 10.1002/cbic.202300328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 07/28/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia and has become a health concern worldwide urging for an effective therapeutic. The amyloid hypothesis, currently the most pursued basis of AD drug discovery, points the cause of AD to abnormal production and ineffective removal of pathogenic aggregated amyloid-β (Aβ). AD therapeutic research has been focused on targeting different species of Aβ in the amyloidogenic process to control Aβ content and recover cognitive decline. Among the different processes targeted, the clearance mechanism has been found to be the most effective, supported by the recent clinical approval of an Aβ-targeting immunotherapeutic drug which significantly slowed cognitive decline. Although the current AD drug discovery field is extensively researching immunotherapeutic drugs, there are numerous properties of immunotherapy in need of improvements that could be overcome by an equally performing chemical drug. Here, we review chemical and immunotherapy drug candidates, based on their mechanism of modulating the amyloid cascade, selected from the AlzForum database. Through this review, we aim to summarize and evaluate the prospect of Aβ-targeting chemical drugs.
Collapse
Affiliation(s)
- JiMin Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Hanna Jeon
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Hye Yun Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - YoungSoo Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| |
Collapse
|
7
|
Sandri BJ, Ennis-Czerniak K, Kanajam P, Frey WH, Lock EF, Rao RB. Intranasal insulin treatment partially corrects the altered gene expression profile in the hippocampus of developing rats with perinatal iron deficiency. Am J Physiol Regul Integr Comp Physiol 2023; 325:R423-R432. [PMID: 37602386 PMCID: PMC10639019 DOI: 10.1152/ajpregu.00311.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/17/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023]
Abstract
Perinatal iron deficiency (FeD) targets the hippocampus and leads to long-term cognitive deficits. Intranasal insulin administration improves cognitive deficits in adult humans with Alzheimer's disease and type 2 diabetes and could provide benefits in FeD-induced hippocampal dysfunction. To objective was to assess the effects of intranasal insulin administration intranasal insulin administration on the hippocampal transcriptome in a developing rat model of perinatal FeD. Perinatal FeD was induced using low-iron diet from gestational day 3 until postnatal day (P) 7, followed by an iron sufficient (FeS) diet through P21. Intranasal insulin was administered at a dose of 0.3 IU twice daily from P8 to P21. Hippocampi were removed on P21 from FeS control, FeD control, FeS insulin, and FeD insulin groups. Total RNA was isolated and profiled using next-generation sequencing. Gene expression profiles were characterized using custom workflows and expression patterns examined using ingenuity pathways analysis (n = 7-9 per group). Select RNAseq results were confirmed via qPCR. Transcriptomic profiling revealed that mitochondrial biogenesis and flux, oxidative phosphorylation, quantity of neurons, CREB signaling in neurons, and RICTOR-based mTOR signaling were disrupted with FeD and positively affected by intranasal insulin treatment with the most benefit observed in the FeD insulin group. Both perinatal FeD and intranasal insulin administration altered gene expression profile in the developing hippocampus. Intranasal insulin treatment reversed the adverse effects of FeD on many molecular pathways and could be explored as an adjunct therapy in perinatal FeD.
Collapse
Affiliation(s)
- Brian J Sandri
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota, United States
| | - Kathleen Ennis-Czerniak
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States
| | - Priya Kanajam
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States
| | - William H Frey
- HealthPartners Center for Memory and Aging, HealthPartners Neurosciences, St. Paul, Minnesota, United States
| | - Eric F Lock
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States
| | - Raghavendra B Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
8
|
Guo X, Lei M, Zhao J, Wu M, Ren Z, Yang X, Ouyang C, Liu X, Liu C, Chen Q. Tirzepatide ameliorates spatial learning and memory impairment through modulation of aberrant insulin resistance and inflammation response in diabetic rats. Front Pharmacol 2023; 14:1146960. [PMID: 37701028 PMCID: PMC10493299 DOI: 10.3389/fphar.2023.1146960] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
Background: One of the typical symptoms of diabetes mellitus patients was memory impairment, which was followed by gradual cognitive deterioration and for which there is no efficient treatment. The anti-diabetic incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) were demonstrated to have highly neuroprotective benefits in animal models of AD. We wanted to find out how the GLP-1/GIP dual agonist tirzepatide affected diabetes's impairment of spatial learning memory. Methods: High fat diet and streptozotocin injection-induced diabetic rats were injected intraperitoneally with Tirzepatide (1.35 mg/kg) once a week. The protective effects were assessed using the Morris water maze test, immunofluorescence, and Western blot analysis. Golgi staining was adopted for quantified dendritic spines. Results: Tirzepatide significantly improved impaired glucose tolerance, fasting blood glucose level, and insulin level in diabetic rats. Then, tirzepatide dramatically alleviated spatial learning and memory impairment, inhibited Aβ accumulation, prevented structural damage, boosted the synthesis of synaptic proteins and increased dendritic spines formation in diabetic hippocampus. Furthermore, some aberrant changes in signal molecules concerning inflammation signaling pathways were normalized after tirzepatide treatment in diabetic rats. Finally, PI3K/Akt/GSK3β signaling pathway was restored by tirzepatide. Conclusion: Tirzepatide obviously exerts a protective effect against spatial learning and memory impairment, potentially through regulating abnormal insulin resistance and inflammatory responses.
Collapse
Affiliation(s)
- Xiying Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| | - Min Lei
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| | - Jiangyan Zhao
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| | - Min Wu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| | - Zhanhong Ren
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| | - Xiaosong Yang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| | - Changhan Ouyang
- Pharmacy College, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xiufen Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Medical Research Institute, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
9
|
Robison LS, Gannon OJ, Salinero AE, Abi-Ghanem C, Kelly RD, Riccio DA, Mansour FM, Zuloaga KL. Sex differences in metabolic phenotype and hypothalamic inflammation in the 3xTg-AD mouse model of Alzheimer's disease. Biol Sex Differ 2023; 14:51. [PMID: 37559092 PMCID: PMC10410820 DOI: 10.1186/s13293-023-00536-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is notably associated with cognitive decline resulting from impaired function of hippocampal and cortical areas; however, several other domains and corresponding brain regions are affected. One such brain region is the hypothalamus, shown to atrophy and develop amyloid and tau pathology in AD patients. The hypothalamus controls several functions necessary for survival, including energy and glucose homeostasis. Changes in appetite and body weight are common in AD, often seen several years prior to the onset of cognitive symptoms. Therefore, altered metabolic processes may serve as a biomarker for AD, as well as a target for treatment, considering they are likely both a result of pathological changes and contributor to disease progression. Previously, we reported sexually dimorphic metabolic disturbances in ~ 7-month-old 3xTg-AD mice, accompanied by differences in systemic and hypothalamic inflammation. METHODS In the current study, we investigated metabolic outcomes and hypothalamic inflammation in 3xTg-AD males and females at 3, 6, 9, and 12 months of age to determine when these sex differences emerge. RESULTS In agreement with our previous study, AD males displayed less weight gain and adiposity, as well as reduced blood glucose levels following a glucose challenge, compared to females. These trends were apparent by 6-9 months of age, coinciding with increased expression of inflammatory markers (Iba1, GFAP, TNF-α, and IL-1β) in the hypothalamus of AD males. CONCLUSIONS These findings provide additional evidence for sex-dependent effects of AD pathology on energy and glucose homeostasis, which may be linked to hypothalamic inflammation.
Collapse
Affiliation(s)
- Lisa S Robison
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.
- Department of Psychology and Neuroscience, Nova Southeastern University, 3300 S. University Drive, Fort Lauderdale, FL, 33328, USA.
| | - Olivia J Gannon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Abigail E Salinero
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Charly Abi-Ghanem
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Richard D Kelly
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - David A Riccio
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Febronia M Mansour
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Kristen L Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| |
Collapse
|
10
|
Wu S, Stogios N, Hahn M, Navagnanavel J, Emami Z, Chintoh A, Gerretsen P, Graff-Guerrero A, Rajji TK, Remington G, Agarwal SM. Outcomes and clinical implications of intranasal insulin on cognition in humans: A systematic review and meta-analysis. PLoS One 2023; 18:e0286887. [PMID: 37379265 DOI: 10.1371/journal.pone.0286887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Aberrant brain insulin signaling has been posited to lie at the crossroads of several metabolic and cognitive disorders. Intranasal insulin (INI) is a non-invasive approach that allows investigation and modulation of insulin signaling in the brain while limiting peripheral side effects. OBJECTIVES The objective of this systematic review and meta-analysis is to evaluate the effects of INI on cognition in diverse patient populations and healthy individuals. METHODS MEDLINE, EMBASE, PsycINFO, and Cochrane CENTRAL were systematically searched from 2000 to July 2021. Eligible studies were randomized controlled trials that studied the effects of INI on cognition. Two independent reviewers determined study eligibility and extracted relevant descriptive and outcome data. RESULTS Twenty-nine studies (pooled N = 1,726) in healthy individuals as well as those with Alzheimer's disease (AD)/mild cognitive impairment (MCI), mental health disorders, metabolic disorders, among others, were included in the quantitative meta-analysis. Patients with AD/MCI treated with INI were more likely to show an improvement in global cognition (SMD = 0.22, 95% CI: 0.05-0.38 p = <0.00001, N = 12 studies). Among studies with healthy individuals and other patient populations, no significant effects of INI were found for global cognition. CONCLUSIONS This review demonstrates that INI may be associated with pro-cognitive benefits for global cognition, specifically for individuals with AD/MCI. Further studies are required to better understand the neurobiological mechanisms and differences in etiology to dissect the intrinsic and extrinsic factors contributing to the treatment response of INI.
Collapse
Affiliation(s)
- Sally Wu
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Nicolette Stogios
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Margaret Hahn
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| | | | - Zahra Emami
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Araba Chintoh
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Philip Gerretsen
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Ariel Graff-Guerrero
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Tarek K Rajji
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Toronto Dementia Research Alliance, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Gary Remington
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Sri Mahavir Agarwal
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
11
|
Tang L, Wang Y, Gong X, Xiang J, Zhang Y, Xiang Q, Li J. Integrated transcriptome and metabolome analysis to investigate the mechanism of intranasal insulin treatment in a rat model of vascular dementia. Front Pharmacol 2023; 14:1182803. [PMID: 37256231 PMCID: PMC10225696 DOI: 10.3389/fphar.2023.1182803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/04/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction: Insulin has an effect on neurodegenerative diseases. However, the role and mechanism of insulin in vascular dementia (VD) and its underlying mechanism are unknown. In this study, we aimed to investigate the effects and mechanism of insulin on VD. Methods: Experimental rats were randomly assigned to control (CK), Sham, VD, and insulin (INS) + VD groups. Insulin was administered by intranasal spray. Cognitive function was evaluated using the Morris's water maze. Nissl's staining and immunohistochemical staining were used to assess morphological alterations. Apoptosis was evaluated using TUNEL-staining. Transcriptome and metabolome analyses were performed to identify differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs), respectively. Results: Insulin significantly improved cognitive and memory functions in VD model rats (p < 0.05). Compared with the VD group, the insulin + VD group exhibited significantly reduced the number of Nissl's bodies numbers, apoptosis level, GFAP-positive cell numbers, apoptosis rates, and p-tau and tau levels in the hippocampal CA1 region (p < 0.05). Transcriptomic analysis found 1,257 and 938 DEGs in the VD vs. CK and insulin + VD vs. VD comparisons, respectively. The DEGs were mainly enriched in calcium signaling, cAMP signaling, axon guidance, and glutamatergic synapse signaling pathways. In addition, metabolomic analysis identified 1 and 14 DEMs between groups in negative and positive modes, respectively. KEGG pathway analysis indicated that DEGs and DEMs were mostly enriched in metabolic pathway. Conclusion: Insulin could effectively improve cognitive function in VD model rats by downregulating tau and p-tau expression, inhibiting astrocyte inflammation and neuron apoptosis, and regulating genes involved in calcium signaling, cAMP signaling, axon guidance, and glutamatergic synapse pathways, as well as metabolites involved in metabolic pathway.
Collapse
Affiliation(s)
- Liang Tang
- Department of Basic Biology, Changsha Medical College, Changsha, China
- Center for Neuroscience and Behavior, Changsha Medical College, Changsha, China
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical College, Changsha, China
| | - Yan Wang
- Department of Basic Biology, Changsha Medical College, Changsha, China
| | - Xujing Gong
- Department of Basic Biology, Changsha Medical College, Changsha, China
| | - Ju Xiang
- Department of Basic Biology, Changsha Medical College, Changsha, China
- Center for Neuroscience and Behavior, Changsha Medical College, Changsha, China
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical College, Changsha, China
- School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, China
| | - Yan Zhang
- Department of Basic Biology, Changsha Medical College, Changsha, China
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical College, Changsha, China
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Qin Xiang
- Department of Basic Biology, Changsha Medical College, Changsha, China
- Center for Neuroscience and Behavior, Changsha Medical College, Changsha, China
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical College, Changsha, China
| | - Jianming Li
- Department of Basic Biology, Changsha Medical College, Changsha, China
- Center for Neuroscience and Behavior, Changsha Medical College, Changsha, China
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical College, Changsha, China
| |
Collapse
|
12
|
Kerr NR, Kelty TJ, Mao X, Childs TE, Kline DD, Rector RS, Booth FW. Selective breeding for physical inactivity produces cognitive deficits via altered hippocampal mitochondrial and synaptic function. Front Aging Neurosci 2023; 15:1147420. [PMID: 37077501 PMCID: PMC10106691 DOI: 10.3389/fnagi.2023.1147420] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
Physical inactivity is the 4th leading cause of death globally and has been shown to significantly increase the risk for developing Alzheimer's Disease (AD). Recent work has demonstrated that exercise prior to breeding produces heritable benefits to the brains of offspring, suggesting that the physical activity status of previous generations could play an important role in one's brain health and their subsequent risk for neurodegenerative diseases. Thus, our study aimed to test the hypothesis that selective breeding for physical inactivity, or for high physical activity, preference produces heritable deficits and enhancements to brain health, respectively. To evaluate this hypothesis, male and female sedentary Low Voluntary Runners (LVR), wild type (WT), and High Voluntary Runner (HVR) rats underwent cognitive behavioral testing, analysis of hippocampal neurogenesis and mitochondrial respiration, and molecular analysis of the dentate gyrus. These analyses revealed that selecting for physical inactivity preference has produced major detriments to cognition, brain mitochondrial respiration, and neurogenesis in female LVR while female HVR display enhancements in brain glucose metabolism and hippocampal size. On the contrary, male LVR and HVR showed very few differences in these parameters relative to WT. Overall, we provide evidence that selective breeding for physical inactivity has a heritable and detrimental effect on brain health and that the female brain appears to be more susceptible to these effects. This emphasizes the importance of remaining physically active as chronic intergenerational physical inactivity likely increases susceptibility to neurodegenerative diseases for both the inactive individual and their offspring.
Collapse
Affiliation(s)
- Nathan R. Kerr
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - Taylor J. Kelty
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Xuansong Mao
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - Thomas E. Childs
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - David D. Kline
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - R. Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Research Service, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, MO, United States
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO, United States
| | - Frank W. Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
13
|
Al-Kuraishy HM, Al-Gareeb AI, Alsayegh AA, Hakami ZH, Khamjan NA, Saad HM, Batiha GES, De Waard M. A Potential Link Between Visceral Obesity and Risk of Alzheimer's Disease. Neurochem Res 2023; 48:745-766. [PMID: 36409447 DOI: 10.1007/s11064-022-03817-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia characterized by the deposition of amyloid beta (Aβ) plaques and tau-neurofibrillary tangles in the brain. Visceral obesity (VO) is usually associated with low-grade inflammation due to higher expression of pro-inflammatory cytokines by adipose tissue. The objective of the present review was to evaluate the potential link between VO and the development of AD. Tissue hypoxia in obesity promotes tissue injury, production of adipocytokines, and release of pro-inflammatory cytokines leading to an oxidative-inflammatory loop with induction of insulin resistance. Importantly, brain insulin signaling is involved in the pathogenesis of AD and lower cognitive function. Obesity and enlargement of visceral adipose tissue are associated with the deposition of Aβ. All of this is consonant with VO increasing the risk of AD through the dysregulation of adipocytokines which affect the development of AD. The activated nuclear factor kappa B (NF-κB) pathway in VO might be a potential link in the development of AD. Likewise, the higher concentration of advanced glycation end-products in VO could be implicated in the pathogenesis of AD. Taken together, different inflammatory signaling pathways are activated in VO that all have a negative impact on the cognitive function and progression of AD except hypoxia-inducible factor 1 which has beneficial and neuroprotective effects in mitigating the progression of AD. In addition, VO-mediated hypoadiponectinemia and leptin resistance may promote the progression of Aβ formation and tau phosphorylation with the development of AD. In conclusion, VO-induced AD is mainly mediated through the induction of oxidative stress, inflammatory changes, leptin resistance, and hypoadiponectinemia that collectively trigger Aβ formation and neuroinflammation. Thus, early recognition of VO by visceral adiposity index with appropriate management could be a preventive measure against the development of AD in patients with VO.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Abdulrahman A Alsayegh
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan, 82817, Saudi Arabia
| | - Zaki H Hakami
- Medical Laboratory Technology Department Applied Medical Sciences College, Jazan University, Jazan, 82817, Saudi Arabia
| | - Nizar A Khamjan
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, 38120, Saint-Egrève, France.,L'institut du thorax, INSERM, CNRS, UNIV NANTES, 44007, Nantes, France.,LabEx «Ion Channels, Science & Therapeutics», Université de Nice Sophia-Antipolis, 06560, Valbonne, France
| |
Collapse
|
14
|
Rawat U, Choudhary A, Mittal P, Verma A. The hidden obstacles to intranasal insulin delivery: A narrative review. JOURNAL OF DIABETOLOGY 2023. [DOI: 10.4103/jod.jod_108_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023] Open
|
15
|
Hamzé R, Delangre E, Tolu S, Moreau M, Janel N, Bailbé D, Movassat J. Type 2 Diabetes Mellitus and Alzheimer's Disease: Shared Molecular Mechanisms and Potential Common Therapeutic Targets. Int J Mol Sci 2022; 23:ijms232315287. [PMID: 36499613 PMCID: PMC9739879 DOI: 10.3390/ijms232315287] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The global prevalence of diabetes mellitus and Alzheimer's disease is increasing alarmingly with the aging of the population. Numerous epidemiological data suggest that there is a strong association between type 2 diabetes and an increased risk of dementia. These diseases are both degenerative and progressive and share common risk factors. The amyloid cascade plays a key role in the pathophysiology of Alzheimer's disease. The accumulation of amyloid beta peptides gradually leads to the hyperphosphorylation of tau proteins, which then form neurofibrillary tangles, resulting in neurodegeneration and cerebral atrophy. In Alzheimer's disease, apart from these processes, the alteration of glucose metabolism and insulin signaling in the brain seems to induce early neuronal loss and the impairment of synaptic plasticity, years before the clinical manifestation of the disease. The large amount of evidence on the existence of insulin resistance in the brain during Alzheimer's disease has led to the description of this disease as "type 3 diabetes". Available animal models have been valuable in the understanding of the relationships between type 2 diabetes and Alzheimer's disease, but to date, the mechanistical links are poorly understood. In this non-exhaustive review, we describe the main molecular mechanisms that may link these two diseases, with an emphasis on impaired insulin and IGF-1 signaling. We also focus on GSK3β and DYRK1A, markers of Alzheimer's disease, which are also closely associated with pancreatic β-cell dysfunction and type 2 diabetes, and thus may represent common therapeutic targets for both diseases.
Collapse
Affiliation(s)
- Rim Hamzé
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Etienne Delangre
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Stefania Tolu
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Manon Moreau
- Team Degenerative Process, Stress and Aging, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Nathalie Janel
- Team Degenerative Process, Stress and Aging, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Danielle Bailbé
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Jamileh Movassat
- Team Biology and Pathology of the Endocrine Pancreas, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
- Correspondence: ; Tel.: +33-1-57-27-77-82; Fax: +33-1-57-27-77-91
| |
Collapse
|
16
|
Catania M, Colombo L, Sorrentino S, Cagnotto A, Lucchetti J, Barbagallo MC, Vannetiello I, Vecchi ER, Favagrossa M, Costanza M, Giaccone G, Salmona M, Tagliavini F, Di Fede G. A novel bio-inspired strategy to prevent amyloidogenesis and synaptic damage in Alzheimer's disease. Mol Psychiatry 2022; 27:5227-5234. [PMID: 36028569 PMCID: PMC9763104 DOI: 10.1038/s41380-022-01745-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 01/19/2023]
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative disorder that affects millions of people worldwide. AD pathogenesis is intricate. It primarily involves two main molecular players-amyloid-β (Aβ) and tau-which actually have an intrinsic trend to generate molecular assemblies that are toxic to neurons. Incomplete knowledge of the molecular mechanisms inducing the onset and sustaining the progression of the disease, as well as the lack of valid models to fully recapitulate the pathogenesis of human disease, have until now hampered the development of a successful therapy for AD. The overall experience with clinical trials with a number of potential drugs-including the recent outcomes of studies with monoclonal antibodies against Aβ-seems to indicate that Aβ-targeting is not effective if it is not accompanied by an efficient challenge of Aβ neurotoxic properties. We took advantage from the discovery of a naturally-occurring variant of Aβ (AβA2V) that has anti-amyloidogenic properties, and designed a novel bio-inspired strategy for AD based on the intranasal delivery of a six-mer peptide (Aβ1-6A2V) retaining the anti-amyloidogenic abilities of the full-length AβA2V variant. This approach turned out to be effective in preventing the aggregation of wild type Aβ and averting the synaptic damage associated with amyloidogenesis in a mouse model of AD. The results of our preclinical studies inspired by a protective model already existing in nature, that is the human heterozygous AβA2V carriers which seem to be protected from AD, open the way to an unprecedented and promising approach for the prevention of the disease in humans.
Collapse
Affiliation(s)
- Marcella Catania
- Neurology V - Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Laura Colombo
- Department of Molecular Biochemistry and Pharmacology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Stefano Sorrentino
- Neurology V - Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Alfredo Cagnotto
- Department of Molecular Biochemistry and Pharmacology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Jacopo Lucchetti
- Department of Molecular Biochemistry and Pharmacology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Maria Chiara Barbagallo
- Neurology V - Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Ilaria Vannetiello
- Neurology V - Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Elena Rita Vecchi
- Neurology V - Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Monica Favagrossa
- Department of Molecular Biochemistry and Pharmacology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Massimo Costanza
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Giorgio Giaccone
- Neurology V - Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Fabrizio Tagliavini
- Neurology V - Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Giuseppe Di Fede
- Neurology V - Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy.
| |
Collapse
|
17
|
Qeva E, Sollazzo C, Bilotta F. Insulin signaling in the central nervous system, a possible pathophysiological mechanism of anesthesia-induced delayed neurocognitive recovery/postoperative neurocognitive disorder: a narrative review. Expert Rev Neurother 2022; 22:839-847. [PMID: 36332201 DOI: 10.1080/14737175.2022.2144234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Impairment in neurocognitive functions ranges between delayed neurocognitive recovery (DNR) and postoperative neurocognitive disorders (pNCD). Incidence varies from 11% after noncardiac surgery to 60% after cardiac surgery. AREAS COVERED Insulin receptors (IRs) signaling pathway in the central nervous system (CNS) could be a possible pathophysiological mechanism of anesthesia-induced DNR/pNCD and perioperative intranasal insulin administration could be a preventive approach. This hypothesis is supported by the following evidence: effects of IRs-CNS signaling pathway on neuromodulation; higher incidence of DNR/pNCD in patients with insulin resistance; neurotoxicity of IRs signaling pathways after anesthetic exposure; improvement of neurocognitive impairment after insulin exposure. This narrative review was conducted after a literature search of PubMed, EMBASE and SCOPUS online medical data performed in May 2022. EXPERT OPINION Perioperative intranasal insulin is shown to be protective and future studies should address: the role of insulin as a neuromodulator; its integration into neuroprotection approaches; patient populations that might benefit from this approach; a well-defined protocol of intranasal insulin administration in a perioperative background and other disciplines; and possible collateral effects.
Collapse
Affiliation(s)
- Ega Qeva
- Department of Anesthesia and Intensive Care Medicine, "Sapienza" University of Rome, 'Policlinico Umberto I' Hospital, 00161 Rome, Italy.,Department of Anesthesia, Intensive Care and Emergency, University of Turin, 'Città Della Salute e Della Scienza' Hospital, 10126 Turin, Italy
| | - Camilla Sollazzo
- Department of Anesthesia and Intensive Care Medicine, "Sapienza" University of Rome, 'Policlinico Umberto I' Hospital, 00161 Rome, Italy
| | - Federico Bilotta
- Department of Anesthesia and Intensive Care Medicine, "Sapienza" University of Rome, 'Policlinico Umberto I' Hospital, 00161 Rome, Italy
| |
Collapse
|
18
|
Long C, Han X, Yang Y, Li T, Zhou Q, Chen Q. Efficacy of intranasal insulin in improving cognition in mild cognitive impairment or dementia: a systematic review and meta-analysis. Front Aging Neurosci 2022; 14:963933. [PMID: 36172480 PMCID: PMC9512636 DOI: 10.3389/fnagi.2022.963933] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Background Insulin regulates many aspects of brain function related to mild cognitive impairment (MCI) or dementia, which can be delivered to the brain center via intranasal (IN) devices. Some small, single-site studies indicated that intranasal insulin can enhance memory in patients with MCI or dementia. The pathophysiology of Alzheimer's disease (AD) and diabetes mellitus (DM) overlap, making insulin an attractive therapy for people suffering from MCI or dementia. Objective The goal of the study is to evaluate the effectiveness of IN insulin on cognition in patients with MCI or dementia. Methods We searched the electronic database for randomized controlled trials (RCTs) that verified the effects of insulin on patients with MCI or dementia.16 studies (899 patients) were identified. Results The pooled standard mean difference (SMD) showed no significant difference between IN insulin and placebo groups; however, statistical results suggested a difference between study groups in the effects of ADCS-ADL; AD patients with APOE4 (-) also showed improved performance in verbal memory; other cognitions did not improve significantly. Conclusion In view of IN insulin's promising potential, more researches should be conducted at a larger dose after proper selection of insulin types and patients. Systematic review registration http://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022353546.
Collapse
Affiliation(s)
- Cong Long
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuke Han
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunjiao Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tongyi Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Qiu Chen
| |
Collapse
|
19
|
Insulin receptor activation by proinsulin preserves synapses and vision in retinitis pigmentosa. Cell Death Dis 2022; 13:383. [PMID: 35444190 PMCID: PMC9021205 DOI: 10.1038/s41419-022-04839-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022]
Abstract
Synaptic loss, neuronal death, and circuit remodeling are common features of central nervous system neurodegenerative disorders. Retinitis pigmentosa (RP), the leading cause of inherited blindness, is a group of retinal dystrophies characterized by photoreceptor dysfunction and death. The insulin receptor, a key controller of metabolism, also regulates neuronal survival and synaptic formation, maintenance, and activity. Indeed, deficient insulin receptor signaling has been implicated in several brain neurodegenerative pathologies. We present evidence linking impaired insulin receptor signaling with RP. We describe a selective decrease in the levels of the insulin receptor and its downstream effector phospho-S6 in retinal horizontal cell terminals in the rd10 mouse model of RP, as well as aberrant synapses between rod photoreceptors and the postsynaptic terminals of horizontal and bipolar cells. A gene therapy strategy to induce sustained proinsulin, the insulin precursor, production restored retinal insulin receptor signaling, by increasing S6 phosphorylation, without peripheral metabolic consequences. Moreover, proinsulin preserved photoreceptor synaptic connectivity and prolonged visual function in electroretinogram and optomotor tests. These findings point to a disease-modifying role of insulin receptor and support the therapeutic potential of proinsulin in retinitis pigmentosa.
Collapse
|
20
|
Reinke C, Buchmann N, Fink A, Tegeler C, Demuth I, Doblhammer G. Diabetes duration and the risk of dementia: a cohort study based on German health claims data. Age Ageing 2022; 51:6454655. [PMID: 34923587 PMCID: PMC8753043 DOI: 10.1093/ageing/afab231] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/14/2021] [Indexed: 01/21/2023] Open
Abstract
Objective Diabetes is a risk factor for dementia but little is known about the impact of diabetes duration on the risk of dementia. We investigated the effect of type 2 diabetes duration on the risk of dementia. Design Prospective cohort study using health claims data representative for the older German population. The data contain information about diagnoses and medical prescriptions from the in- and outpatient sector. Methods We performed piecewise exponential models with a linear and a quadratic term for time since first type 2 diabetes diagnosis to predict the dementia risk in a sample of 13,761 subjects (2,558 dementia cases) older than 65 years. We controlled for severity of diabetes using the Adopted Diabetes Complications Severity Index. Results We found a U-shaped dementia risk over time. After type 2 diabetes diagnosis the dementia risk decreased (26% after 1 year) and reached a minimum at 4.75 years, followed by an increase through the end of follow-up. The pattern was consistent over different treatment groups, with the strongest U-shape for insulin treatment and for those with diabetes complications at the time of diabetes diagnosis. Conclusions We identified a non-linear association of type 2 diabetes duration and the risk of dementia. Physicians should closely monitor cognitive function in diabetic patients beyond the first few years after diagnosis, because the later increase in dementia occurred in all treatment groups.
Collapse
Affiliation(s)
- Constantin Reinke
- Institute for Sociology and Demography, University of Rostock, 18057 Rostock, Germany
| | - Nikolaus Buchmann
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolic Diseases (including Division of Lipid Metabolism), Biology of Aging working group, 13353 Berlin, Germany
| | - Anne Fink
- German Center for Neurodegenerative Diseases, 53127 Bonn, Germany
| | - Christina Tegeler
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolic Diseases (including Division of Lipid Metabolism), Biology of Aging working group, 13353 Berlin, Germany
- MSB Medical School Berlin, Department of Psychology, 14197 Berlin, Germany
| | - Ilja Demuth
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolic Diseases (including Division of Lipid Metabolism), Biology of Aging working group, 13353 Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Gabriele Doblhammer
- Institute for Sociology and Demography, University of Rostock, 18057 Rostock, Germany
- German Center for Neurodegenerative Diseases, 53127 Bonn, Germany
| |
Collapse
|
21
|
Frank CJ, McNay EC. Breakdown of the blood-brain barrier: A mediator of increased Alzheimer's risk in patients with metabolic disorders? J Neuroendocrinol 2022; 34:e13074. [PMID: 34904299 PMCID: PMC8791015 DOI: 10.1111/jne.13074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 01/03/2023]
Abstract
Metabolic disorders (MDs), including type 1 and 2 diabetes and chronic obesity, are among the faster growing diseases globally and are a primary risk factor for Alzheimer's disease (AD). The term "type-3 diabetes" has been proposed for AD due to the interrelated cellular, metabolic, and immune features shared by diabetes, insulin resistance (IR), and the cognitive impairment and neurodegeneration found in AD. Patients with MDs and/or AD commonly exhibit altered glucose homeostasis and IR; systemic chronic inflammation encompassing all of the periphery, blood-brain barrier (BBB), and central nervous system; pathological vascular remodeling; and increased BBB permeability that allows transfusion of neurotoxic molecules from the blood to the brain. This review summarizes the components of the BBB, mechanisms through which MDs alter BBB permeability via immune and metabolic pathways, the contribution of BBB dysfunction to the manifestation and progression of AD, and current avenues of therapeutic research that address BBB permeability. In addition, issues with the translational applicability of current animal models of AD regarding BBB dysfunction and proposals for future directions of research that address the relationship between MDs, BBB dysfunction, and AD are discussed.
Collapse
Affiliation(s)
- Corey J Frank
- Behavioral Neuroscience, University at Albany, SUNY, Albany, NY, USA
| | - Ewan C McNay
- Behavioral Neuroscience, University at Albany, SUNY, Albany, NY, USA
| |
Collapse
|
22
|
Kumar M, Bansal N. A Revisit to Etiopathogenesis and Therapeutic Strategies in Alzheimer's Disease. Curr Drug Targets 2021; 23:486-512. [PMID: 34792002 DOI: 10.2174/1389450122666211118125233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/05/2021] [Accepted: 09/13/2021] [Indexed: 11/22/2022]
Abstract
Dementia is a cluster of brain abnormalities that trigger progressive memory deficits and other cognitive abilities such as skills, language, or executive function. Alzheimer's disease (AD) is the foremost type of age-associated dementia that involves progressive neurodegeneration accompanied by profound cognitive deficits in advanced stages that severely hamper social or occupational abilities with or without the involvement of any other psychiatric condition. The last two decades witnessed a sharp increase (~123%) in mortality due to AD type dementia, typically owing to a very low disclosure rate (~45%) and hence, the prophylactic, as well as the therapeutic cure of AD, has been a huge challenge. Although understanding of AD pathogenesis has witnessed a remarkable growth (e.g., tauopathy, oxidative stress, lipid transport, glucose uptake, apoptosis, synaptic dysfunction, inflammation, and immune system), still a dearth of an effective therapeutic agent in the management of AD prompts the quest for newer pharmacological targets in the purview of its growing epidemiological status. Most of the current therapeutic strategies focus on modulation of a single target, e.g., inhibition of acetylcholinesterase, glutamate excitotoxicity (memantine), or nootropics (piracetam), even though AD is a multifaceted neurological disorder. There is an impedance urgency to find not only symptomatic but effective disease-modifying therapies. The present review focuses on the risk / protective factors and pathogenic mechanisms involved in AD. In addition to the existing symptomatic therapeutic approach, a diverse array of possible targets linked to pathogenic cascades have been re-investigated to envisage the pharmacotherapeutic strategies in AD.
Collapse
Affiliation(s)
- Manish Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Nitin Bansal
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University (CBLU), Bhiwani, Haryana 127021. India
| |
Collapse
|
23
|
Madhu P, Mukhopadhyay S. Distinct types of amyloid-β oligomers displaying diverse neurotoxicity mechanisms in Alzheimer's disease. J Cell Biochem 2021; 122:1594-1608. [PMID: 34494298 DOI: 10.1002/jcb.30141] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 11/09/2022]
Abstract
Soluble oligomers of amyloid-β (Aβ) are recognized as key pernicious species in Alzheimer's disease (AD) that cause synaptic dysfunction and memory impairments. Numerous studies have identified various types of Aβ oligomers having heterogeneous peptide length, size distribution, structure, appearance, and toxicity. Here, we review the characteristics of soluble Aβ oligomers based on their morphology, size, and structural reactivity toward the conformation-specific antibodies and then describe their formation, localization, and cellular effects in AD brains, in vivo and in vitro. We also summarize the mechanistic pathways by which these soluble Aβ oligomers cause proteasomal impairment, calcium dyshomeostasis, inhibition of long-term potentiation, apoptosis, mitochondrial damage, and cognitive decline. These cellular events include three distinct molecular mechanisms: (i) high-affinity binding with the receptors for Aβ oligomers such as N-methyl- d-aspartate receptors, cellular prion protein, nerve growth factor, insulin receptors, and frizzled receptors; (ii) the interaction of Aβ oligomers with the lipid membranes; (iii) intraneuronal accumulation of Aβ by α7-nicotinic acetylcholine receptors, apolipoprotein E, and receptor for advanced glycation end products. These studies indicate that there is a pressing need to carefully examine the role of size, appearance, and the conformation of oligomers in identifying the specific mechanism of neurotoxicity that may uncover potential targets for designing AD therapeutics.
Collapse
Affiliation(s)
- Priyanka Madhu
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER), Mohali, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER), Mohali, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, India.,Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, India
| |
Collapse
|
24
|
Holm MM. Insulin as a potent bidirectional regulator of GABAergic signalling in the hippocampus of an Alzheimer's disease mouse model. Acta Physiol (Oxf) 2021; 232:e13660. [PMID: 33830635 DOI: 10.1111/apha.13660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Mai Marie Holm
- Department of Biomedicine Aarhus University Aarhus Denmark
| |
Collapse
|
25
|
Amini Y, Saif N, Greer C, Hristov H, Isaacson R. The Role of Nutrition in Individualized Alzheimer's Risk Reduction. Curr Nutr Rep 2021; 9:55-63. [PMID: 32277428 DOI: 10.1007/s13668-020-00311-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Decades of research suggests nutritional interventions can be an effective tool for reducing risk of Alzheimer's disease (AD), especially as part of an individualized clinical management plan. This review aims to emphasize new findings examining how specific dietary changes may delay or possibly prevent AD onset, and highlight how interventions can be adopted in clinical practice based on emerging principles of precision medicine. RECENT FINDINGS Specific dietary patterns and varied nutrient combinations can have a protective effect on brain health, promote cognitive function, and mediate the comorbidity of chronic conditions associated with increased AD risk. Individuals at risk for AD may see a greater impact of evidence-based dietary changes when initiated earlier in the AD spectrum. Depending on individual clinical profiles, incorporation of nutrition strategies is an essential component of an AD risk reduction plan in clinical practice.
Collapse
Affiliation(s)
- Yasmin Amini
- Department of Neurology, Weill Cornell Medicine & New York-Presbyterian, 428 East 72th St, Suite 500, New York, NY, 10021, USA
- Department of Sociomedical Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Nabeel Saif
- Department of Neurology, Weill Cornell Medicine & New York-Presbyterian, 428 East 72th St, Suite 500, New York, NY, 10021, USA
| | - Christine Greer
- Department of Neurology, Weill Cornell Medicine & New York-Presbyterian, 428 East 72th St, Suite 500, New York, NY, 10021, USA
| | - Hollie Hristov
- Department of Neurology, Weill Cornell Medicine & New York-Presbyterian, 428 East 72th St, Suite 500, New York, NY, 10021, USA
| | - Richard Isaacson
- Department of Neurology, Weill Cornell Medicine & New York-Presbyterian, 428 East 72th St, Suite 500, New York, NY, 10021, USA.
| |
Collapse
|
26
|
Khatri DK, Kadbhane A, Patel M, Nene S, Atmakuri S, Srivastava S, Singh SB. Gauging the role and impact of drug interactions and repurposing in neurodegenerative disorders. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100022. [PMID: 34909657 PMCID: PMC8663985 DOI: 10.1016/j.crphar.2021.100022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/23/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (ND) are of vast origin which are characterized by gradual progressive loss of neurons in the brain region. ND can be classified according to the clinical symptoms present (e.g. Cognitive decline, hyperkinetic, and hypokinetic movements disorder) or by the pathological protein deposited (e.g., Amyloid, tau, Alpha-synuclein, TDP-43). Alzheimer's disease preceded by Parkinson's is the most prevalent form of ND world-wide. Multiple factors like aging, genetic mutations, environmental factors, gut microbiota, blood-brain barrier microvascular complication, etc. may increase the predisposition towards ND. Genetic mutation is a major contributor in increasing the susceptibility towards ND, the concept of one disease-one gene is obsolete and now multiple genes are considered to be involved in causing one particular disease. Also, the involvement of multiple pathological mechanisms like oxidative stress, neuroinflammation, mitochondrial dysfunction, etc. contributes to the complexity and makes them difficult to be treated by traditional mono-targeted ligands. In this aspect, the Poly-pharmacological drug approach which targets multiple pathological pathways at the same time provides the best way to treat such complex networked CNS diseases. In this review, we have provided an overview of ND and their pathological origin, along with a brief description of various genes associated with multiple diseases like Alzheimer's, Parkinson's, Multiple sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), Huntington's and a comprehensive detail about the Poly-pharmacology approach (MTDLs and Fixed-dose combinations) along with their merits over the traditional single-targeted drug is provided. This review also provides insights into current repurposing strategies along with its regulatory considerations.
Collapse
Affiliation(s)
- Dharmendra Kumar Khatri
- Corresponding authors. Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| | | | | | | | | | | | - Shashi Bala Singh
- Corresponding authors. Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
27
|
Xiao QY, Ye TY, Wang XL, Han L, Wang TX, Qi DM, Cheng XR, Wang SQ. A network pharmacology-based study on key pharmacological pathways and targets of Qi Fu Yin acting on Alzheimer's disease. Exp Gerontol 2021; 149:111336. [PMID: 33785395 DOI: 10.1016/j.exger.2021.111336] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/03/2021] [Accepted: 03/25/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a central nervous system (CNS) disease characterized by progressive cognitive dysfunction and memory loss. Qi Fu Yin is mainly used to treat dementia, particularly AD, in the clinic, but its comprehensive mechanisms are not known. OBJECTIVE In this research, we aimed to investigate the mechanisms of Qi Fu Yin in AD by network pharmacology and molecular docking. METHODS First, the chemical constituents in Qi Fu Yin were obtained from five databases and classified according to their structure. Targets of chemical constituents and AD-related targets were also collected from the databases. Then, overlapping genes between Qi Fu Yin and AD were identified by intersection analysis. MetaCore was used to gather enrichment information. Combination synergy analysis was performed by Cytoscape. After ligand-receptor docking, the binding affinity was verified by ADP-Glo™ kinase assay and fluorescence resonance energy transfer (FRET) assay. RESULTS We found 12 classes with 977 components in Qi Fu Yin. A total of 511 compounds and 577 potential target proteins in Qi Fu Yin were found to be related to AD. The pathways of Qi Fu Yin in AD included oxidative stress and immune response. There was the best binding affinity between 11 pairs of genes and compounds. Furthermore, CDK5 was inhibited by nepetin with an IC50 of 3.172 μM and kaempferol with an IC50 of 2.659 μM. Ceanothic acid and 18 beta-glycyrrhetinic acid inhibited GSK3β, and the IC50 values were 8.732 μM and 8.06 μM, respectively. CONCLUSION Qi Fu Yin might alleviate Tau hyperphosphorylation by nepetin, kaempferol, ceanothic acid and 18 beta-glycyrrhetinic acid.
Collapse
Affiliation(s)
- Qiu-Yue Xiao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tian-Yuan Ye
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiao-Long Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lu Han
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | | | - Dong-Mei Qi
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiao-Rui Cheng
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Sheng-Qi Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
28
|
Intranasal Insulin Administration to Prevent Delayed Neurocognitive Recovery and Postoperative Neurocognitive Disorder: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052681. [PMID: 33799976 PMCID: PMC7967645 DOI: 10.3390/ijerph18052681] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 11/29/2022]
Abstract
Delayed neurocognitive recovery and postoperative neurocognitive disorders are major complications of surgery, hospitalization, and anesthesia that are receiving increasing attention. Their incidence is reported to be 10–80% after cardiac surgery and 10–26% after non-cardiac surgery. Some of the risk factors include advanced age, level of education, history of diabetes mellitus, malnutrition, perioperative hyperglycemia, depth of anesthesia, blood pressure fluctuation during surgery, chronic respiratory diseases, etc. Scientific evidence suggests a causal association between anesthesia and delayed neurocognitive recovery or postoperative neurocognitive disorders, and various pathophysiological mechanisms have been proposed: mitochondrial dysfunction, neuroinflammation, increase in tau protein phosphorylation, accumulation of amyloid-β protein, etc. Insulin receptors in the central nervous system have a non-metabolic role and act through a neuromodulator-like action, while an interaction between anesthetics and central nervous system insulin receptors might contribute to anesthesia-induced delayed neurocognitive recovery or postoperative neurocognitive disorders. Acute or chronic intranasal insulin administration, which has no influence on the blood glucose concentration, appears to improve working memory, verbal fluency, attention, recognition of objects, etc., in animal models, cognitively healthy humans, and memory-impaired patients by restoring the insulin receptor signaling pathway, attenuating anesthesia-induced tau protein hyperphosphorylation, etc. The aim of this review is to report preclinical and clinical evidence of the implication of intranasal insulin for preventing changes in the brain molecular pattern and/or neurobehavioral impairment, which influence anesthesia-induced delayed neurocognitive recovery or postoperative neurocognitive disorders.
Collapse
|
29
|
Bagaméry F, Varga K, Kecsmár K, Vincze I, Szökő É, Tábi T. The Impact of Differentiation on Cytotoxicity and Insulin Sensitivity in Streptozotocin Treated SH-SY5Y Cells. Neurochem Res 2021; 46:1350-1358. [PMID: 33616807 PMCID: PMC8084777 DOI: 10.1007/s11064-021-03269-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 11/29/2022]
Abstract
Recently neuronal insulin resistance was suggested playing a role in Alzheimer’s disease. Streptozotocin (STZ) is commonly used to induce impairment in insulin metabolism. In our previous work on undifferentiated SH-SY5Y cells the compound exerted cytotoxicity without altering insulin sensitivity. Nevertheless, differentiation of the cells to a more mature neuron-like phenotype may considerably affect the significance of insulin signaling and its sensitivity to STZ. We aimed at studying the influence of STZ treatment on insulin signaling in SH-SY5Y cells differentiated by retinoic acid (RA). Cytotoxicity of STZ or low serum (LS) condition and protective effect of insulin were compared in RA differentiated SH-SY5Y cells. The effect of insulin and an incretin analogue, exendin-4 on insulin signaling was also examined by assessing glycogen synthase kinase-3 (GSK-3) phosphorylation. STZ was found less cytotoxic in the differentiated cells compared to our previous results in undifferentiated SH-SY5Y cells. The cytoprotective concentration of insulin was similar in the STZ and LS groups. However, the right-shifted concentration–response curve of insulin induced GSK-3 phosphorylation in STZ-treated differentiated cells is suggestive of the development of insulin resistance that was further confirmed by the insulin potentiating effect of exendin-4. Differentiation reduced the sensitivity of SH-SY5Y cells for the non-specific cytotoxicity of STZ and enhanced the relative significance of development of insulin resistance. The differentiated cells thus serve as a better model for studying the role of insulin signaling in neuronal survival. However, direct cytotoxicity of STZ also contributes to the cell death.
Collapse
Affiliation(s)
- Fruzsina Bagaméry
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Kamilla Varga
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Kitti Kecsmár
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - István Vincze
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Éva Szökő
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Tamás Tábi
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary.
| |
Collapse
|
30
|
Schönthal AH, Peereboom DM, Wagle N, Lai R, Mathew AJ, Hurth KM, Simmon VF, Howard SP, Taylor LP, Chow F, da Fonseca CO, Chen TC. Phase I trial of intranasal NEO100, highly purified perillyl alcohol, in adult patients with recurrent glioblastoma. Neurooncol Adv 2021; 3:vdab005. [PMID: 33604574 PMCID: PMC7879254 DOI: 10.1093/noajnl/vdab005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Better treatments for glioblastoma (GBM) patients, in particular in the recurrent setting, are urgently needed. Clinical trials performed in Brazil indicated that intranasal delivery of perillyl alcohol (POH) might be effective in this patient group. NEO100, a highly purified version of POH, was current good manufacturing practice (cGMP) manufactured to evaluate the safety and efficacy of this novel approach in a Phase I/IIa clinical trial in the United States. Methods A total of 12 patients with recurrent GBM were enrolled into Phase I of this trial. NEO100 was administered by intranasal delivery using a nebulizer and nasal mask. Dosing was 4 times a day, every day. Four cohorts of 3 patients received the following dosages: 96 mg/dose (384 mg/day), 144 mg/dose (576 mg/day), 192 mg/dose (768 mg/day), and 288 mg/dose (1152 mg/day). Completion of 28 days of treatment was recorded as 1 cycle. Adverse events were documented, and radiographic response via Response Assessment in Neuro-Oncology (RANO) criteria was evaluated every 2 months. Progression-free and overall survival were determined after 6 and 12 months, respectively (progression-free survival-6 [PFS-6], overall survival-12 [OS-12]). Results Intranasal NEO100 was well tolerated at all dose levels and no severe adverse events were reported. PFS-6 was 33%, OS-12 was 55%, and median OS was 15 months. Four patients (33%), all of them with isocitrate dehydrogenase 1 (IDH1)-mutant tumors, survived >24 months. Conclusion Intranasal glioma therapy with NEO100 was well tolerated. It correlated with improved survival when compared to historical controls, pointing to the possibility that this novel intranasal approach could become useful for the treatment of recurrent GBM.
Collapse
Affiliation(s)
- Axel H Schönthal
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - David M Peereboom
- Department of Medical Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Naveed Wagle
- Department of Oncology, Providence St. Johns Medical Center, Santa Monica, California, USA
| | - Rose Lai
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Anna J Mathew
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Kyle M Hurth
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | - Steven P Howard
- Department of Radiation Oncology, University of Wisconsin, Madison, Wisconsin, USA
| | - Lynne P Taylor
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Frances Chow
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Clovis O da Fonseca
- NeOnc Technologies, Inc., Los Angeles, California, USA.,Department of General and Specialized Surgery, Antonio Pedro University Hospital, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Thomas C Chen
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,NeOnc Technologies, Inc., Los Angeles, California, USA.,Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
31
|
Zangerolamo L, Vettorazzi JF, Solon C, Bronczek GA, Engel DF, Kurauti MA, Soares GM, Rodrigues KS, Velloso LA, Boschero AC, Carneiro EM, Barbosa HCL. The bile acid TUDCA improves glucose metabolism in streptozotocin-induced Alzheimer's disease mice model. Mol Cell Endocrinol 2021; 521:111116. [PMID: 33321116 DOI: 10.1016/j.mce.2020.111116] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/24/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and the major cause of dementia. According to predictions of the World Health Organization, more than 150 million people worldwide will suffer from dementia by 2050. An increasing number of studies have associated AD with type 2 diabetes mellitus (T2DM), since most of the features found in T2DM are also observed in AD, such as insulin resistance and glucose intolerance. In this sense, some bile acids have emerged as new therapeutic targets to treat AD and metabolic disorders. The taurine conjugated bile acid, tauroursodeoxycholic (TUDCA), reduces amyloid oligomer accumulation and improves cognition in APP/PS1 mice model of AD, and also improves glucose-insulin homeostasis in obese and type 2 diabetic mice. Herein, we investigated the effect of TUDCA upon glucose metabolism in streptozotocin-induced AD mice model (Stz). The Stz mice that received 300 mg/kg TUDCA during 10 days (Stz + TUDCA), showed improvement in glucose tolerance and insulin sensitivity, reduced fasted and fed glycemia, increased islet mass and β-cell area, as well as increased glucose-stimulated insulin secretion, compared with Stz mice that received only PBS. Stz + TUDCA mice also displayed lower neuroinflammation, reduced protein content of amyloid oligomer in the hippocampus, improved memory test and increased protein content of insulin receptor β-subunit in the hippocampus. In conclusion, TUDCA treatment enhanced glucose homeostasis in the streptozotocin-induced Alzheimer's disease mice model, pointing this bile acid as a good strategy to counteract glucose homeostasis disturbance in AD pathology.
Collapse
Affiliation(s)
- Lucas Zangerolamo
- Obesity and Comorbidities Research Center, Department of Structural and Functional Biology, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | | | - Carina Solon
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Gabriela A Bronczek
- Obesity and Comorbidities Research Center, Department of Structural and Functional Biology, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Daiane F Engel
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Mirian A Kurauti
- Department of Physiological Sciences, State University of Maringa, UEM, Maringa, Parana, Brazil
| | - Gabriela M Soares
- Obesity and Comorbidities Research Center, Department of Structural and Functional Biology, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Karina S Rodrigues
- Obesity and Comorbidities Research Center, Department of Structural and Functional Biology, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Antonio C Boschero
- Obesity and Comorbidities Research Center, Department of Structural and Functional Biology, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Everardo M Carneiro
- Obesity and Comorbidities Research Center, Department of Structural and Functional Biology, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Helena C L Barbosa
- Obesity and Comorbidities Research Center, Department of Structural and Functional Biology, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil.
| |
Collapse
|
32
|
Yu J, Liao X, Zhong Y, Wu Y, Lai X, Jiao H, Yan M, Zhang Y, Ma C, Wang S. The Candidate Schizophrenia Risk Gene Tmem108 Regulates Glucose Metabolism Homeostasis. Front Endocrinol (Lausanne) 2021; 12:770145. [PMID: 34690937 PMCID: PMC8531597 DOI: 10.3389/fendo.2021.770145] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/23/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Schizophrenia (SCZ) is a severe psychiatric disease affected by genetic factors and environmental contributors, and premorbid abnormality of glucose metabolism is one of the SCZ characteristics supposed to contribute to the disease's pathological process. Transmembrane protein 108 (Tmem108) is a susceptible gene associated with multiple psychiatric diseases, including SCZ. Moreover, Tmem108 mutant mice exhibit SCZ-like behaviors in the measurement of sensorimotor gating. However, it is unknown whether Tmem108 regulates glucose metabolism homeostasis while it involves SCZ pathophysiological process. RESULTS In this research, we found that Tmem108 mutant mice exhibited glucose intolerance, insulin resistance, and disturbed metabolic homeostasis. Food and oxygen consumption decreased, and urine production increased, accompanied by weak fatigue resistance in the mutant mice. Simultaneously, the glucose metabolic pathway was enhanced, and lipid metabolism decreased in the mutant mice, consistent with the elevated respiratory exchange ratio (RER). Furthermore, metformin attenuated plasma glucose levels and improved sensorimotor gating in Tmem108 mutant mice. CONCLUSIONS Hyperglycemia occurs more often in SCZ patients than in control, implying that these two diseases share common biological mechanisms, here we demonstrate that the Tmem108 mutant may represent such a comorbid mechanism.
Collapse
Affiliation(s)
- Jianbo Yu
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang, China
| | - Xufeng Liao
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang, China
| | - Yanzi Zhong
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang, China
- Department of Biology, Senior Middle School of Yongfeng, Ji’an, China
| | - Yongqiang Wu
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang, China
| | - Xinsheng Lai
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Huifeng Jiao
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Min Yan
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Yu Zhang
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang, China
| | - Chaolin Ma
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
- *Correspondence: Chaolin Ma, ; Shunqi Wang,
| | - Shunqi Wang
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
- *Correspondence: Chaolin Ma, ; Shunqi Wang,
| |
Collapse
|
33
|
Ponnusankar S, Som S, Antony J, Dhanabal SP. Vernonia anthelmintica (L.) willd extract alleviates cognitive deficits and neurodegeneration induced by infusion of amyloid beta (1–42) in rats. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_518_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
34
|
Ren J, Jiang F, Wang M, Hu H, Zhang B, Chen L, Dai F. Increased cross-linking micelle retention in the brain of Alzheimer's disease mice by elevated asparagine endopeptidase protease responsive aggregation. Biomater Sci 2020; 8:6533-6544. [PMID: 33111725 DOI: 10.1039/d0bm01439g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Current forms of medication for Alzheimer's disease (AD) provide a symptomatic benefit limited to those with early onset, but there is no single drug available for later stage patients. Given the recent failures of AD drugs in clinical trials, an intensive treatment strategy based on drug combination that is approved is attractive. At present, the greatest difficulty lies in the low accumulation of drugs in the brain. All hydrophilic drugs are limited by the physical and biochemical barriers within the blood-brain barrier and lipophilic drugs are often transported back into the blood by efflux pumps located in the blood-brain barrier. Here, we select elevated asparagine endopeptidase (AEP) as a target to trigger in situ cross-linking of small sized particles to form large sized drug clusters to block the efflux of the brain. Subsequently, responsive cross-linking micelles (RCMs) loaded with the acetylcholinesterase inhibitor, donepezil (DON), the microtubule therapeutic agent, Paclitaxel (PTX), and the glucose metabolism disorder regulator, insulin (INS) are investigated, with a focus on high levels of drug accumulation in the brain in AD. These smart multi-drug delivery RCMs provide a powerful system for AD treatment and can be adapted for other central nervous system (CNS) disorders.
Collapse
Affiliation(s)
- Jian Ren
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
| | | | | | | | | | | | | |
Collapse
|
35
|
Curtis D, Bandyopadhyay S. Mini-review: Role of the PI3K/Akt pathway and tyrosine phosphatases in Alzheimer's disease susceptibility. Ann Hum Genet 2020; 85:1-6. [PMID: 33258115 DOI: 10.1111/ahg.12410] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/15/2020] [Indexed: 12/27/2022]
Abstract
A variety of findings from in vitro experiments and animal models support the hypothesis that one contribution to pathogenesis in Alzheimer's disease (AD) is enhanced phosphorylation of tau protein, which may be triggered by amyloid β (Aβ) and mediated by impaired activity of the PI3K/Akt signaling pathway. A number of tyrosine phosphatases act to reduce PI3K/Akt activity, and inhibition of tyrosine phosphatases is protective against Aβ toxicity in cell cultures and whole animals. Results from analysis of exome sequenced late onset AD cases and controls similarly show that rare coding variants predicted to damage PI3K functioning increase AD risk, whereas those which are predicted to damage genes for tyrosine phosphatase genes are protective. Taken together, these results support the proposition that tyrosine phosphatase antagonists might be trialed as therapeutic agents to protect against the development of AD.
Collapse
Affiliation(s)
- David Curtis
- UCL Genetics Institute, UCL, London, UK.,Centre for Psychiatry, Queen Mary University of London, London, UK
| | | |
Collapse
|
36
|
Hegde V, Dhurandhar NV, Reddy PH. Hyperinsulinemia or Insulin Resistance: What Impacts the Progression of Alzheimer's Disease? J Alzheimers Dis 2020; 72:S71-S79. [PMID: 31744006 DOI: 10.3233/jad-190808] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes mellitus (T2D), which is often accompanied by hyperinsulinemia and insulin resistance, is associated with an increased risk for developing mild cognitive impairment and Alzheimer's disease (AD); however, the underlying mechanisms for this association are still unclear. Recent findings have shown that hyperinsulinemia and insulin resistance can coexist or be independent events. This makes it imperative to determine the contribution of these individual conditions in impacting AD. This literature review highlights the recent developments of hyperinsulinemia and insulin resistance involvement in the progression and pathogenesis of AD.
Collapse
Affiliation(s)
- Vijay Hegde
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences Texas Tech University, Lubbock, TX, USA
| | - Nikhil V Dhurandhar
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences Texas Tech University, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Internal Medicine, Cell Biology and Biochemistry, Neuroscience/Pharmacology and Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
37
|
Ettcheto M, Busquets O, Espinosa-Jiménez T, Verdaguer E, Auladell C, Camins A. A Chronological Review of Potential Disease-Modifying Therapeutic Strategies for Alzheimer's Disease. Curr Pharm Des 2020; 26:1286-1299. [PMID: 32066356 DOI: 10.2174/1381612826666200211121416] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/18/2019] [Indexed: 01/28/2023]
Abstract
Late-onset Alzheimer's disease (LOAD) is a neurodegenerative disorder that has become a worldwide health problem. This pathology has been classically characterized for its affectation on cognitive function and the presence of depositions of extracellular amyloid β-protein (Aβ) and intracellular neurofibrillary tangles (NFT) composed of hyperphosphorylated Tau protein. To this day, no effective treatment has been developed. Multiple strategies have been proposed over the years with the aim of finding new therapeutic approaches, such as the sequestration of Aβ in plasma or the administration of anti-inflammatory drugs. Also, given the significant role of the insulin receptor in the brain in the proper maintenance of cognitive function, drugs focused on the amelioration of insulin resistance have been proposed as potentially useful and effective in the treatment of AD. In the present review, taking into account the molecular complexity of the disease, it has been proposed that the most appropriate therapeutic strategy is a combinatory treatment of several drugs that will regulate a wide spectrum of the described altered pathological pathways.
Collapse
Affiliation(s)
- Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Sciences, University Rovira i Virgili, Reus, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Oriol Busquets
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Sciences, University Rovira i Virgili, Reus, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Triana Espinosa-Jiménez
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Ester Verdaguer
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Carme Auladell
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
38
|
Willmann C, Brockmann K, Wagner R, Kullmann S, Preissl H, Schnauder G, Maetzler W, Gasser T, Berg D, Eschweiler GW, Metzger F, Fallgatter AJ, Häring HU, Fritsche A, Heni M. Insulin sensitivity predicts cognitive decline in individuals with prediabetes. BMJ Open Diabetes Res Care 2020; 8:8/2/e001741. [PMID: 33203727 PMCID: PMC7674089 DOI: 10.1136/bmjdrc-2020-001741] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Epidemiological studies indicate an association between type 2 diabetes and cognitive dysfunction that appear to start already in the prediabetic state. Although cross-sectional studies have linked insulin resistance to impaired cognition, the potential predictive value of insulin resistance has not yet been sufficiently studied longitudinally without confounding by overt diabetes (and its pharmacological treatment). RESEARCH DESIGN AND METHODS We investigated longitudinal data from participants of the 'Tübinger Evaluation of Risk Factors for Early Detection of Neurodegeneration' Study. Subjects underwent a neurocognitive assessment battery (CERAD Plus battery; Consortium to Establish a Registry for Alzheimer's Disease) at baseline and followed every 2 years (median follow-up 4.0 Q1-3: 2.2-4.3 years). Subjects within a pre-diabetic glycated hemoglobin range of 5.6%-6.5% underwent 5-point 75 g oral glucose tolerance tests (OGTTs) with assessment of insulin sensitivity and insulin secretion (n=175). Subjects with newly diagnosed diabetes mellitus or with major depressivity (Beck Depression Inventory >20) were excluded (n=15). Data were analyzed by mixed models using sex, age and glycemic trait as fixed effects. Subject and time since first measurement were used as random effects. RESULTS Insulin sensitivity was positively associated with the CERAD sum score (higher is better) in a time-dependent manner (p=0.0057). This result is mainly driven by a steeper decrease in the memory domain associated with lower insulin sensitivity (p=0.029). The interaction between age and insulin sensitivity was independent of glycemia (p=0.02). There was also no association between insulin secretion and cognition. CONCLUSIONS Insulin resistance rather than sole elevation of blood glucose predicts cognitive decline, specifically in the memory domain, in persons with prediabetes. Treatments of diabetes that improve insulin sensitivity might therefore have the potential to postpone or even prevent cognitive decline in patients with diabetes.
Collapse
Affiliation(s)
- Caroline Willmann
- Department of Internal Medicine IV, University Hospital of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Helmholtz Center Munich, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Neuherberg, Germany
| | - Kathrin Brockmann
- Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Robert Wagner
- Department of Internal Medicine IV, University Hospital of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Helmholtz Center Munich, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Neuherberg, Germany
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Helmholtz Center Munich, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Neuherberg, Germany
| | - Hubert Preissl
- Department of Internal Medicine IV, University Hospital of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Helmholtz Center Munich, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Centre at Helmholtz Zentrum München, German Research Centre for Environmental Health (GmbH), Neuherberg, Germany
- Department of Pharmacy and Biochemistry, Institute of Pharmaceutical Sciences, University of Tübingen, Tübingen, Germany
| | - Günter Schnauder
- Department of Internal Medicine IV, University Hospital of Tübingen, Tübingen, Germany
| | - Walter Maetzler
- Department of Neurology, Christian-Albrechts University, Kiel, Germany
| | - Thomas Gasser
- Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Daniela Berg
- Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, Center of Neurology, University of Tübingen, Tübingen, Germany
- Department of Neurology, Christian-Albrechts University, Kiel, Germany
| | - Gerhard W Eschweiler
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
- Geriatric Center at the University Hospital of Tübingen, Tübingen, Germany
| | - Florian Metzger
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
- Geriatric Center at the University Hospital of Tübingen, Tübingen, Germany
- Department of Psychiatry and Psychotherapy, Vitos Hospital Haina, Haina, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
- Geriatric Center at the University Hospital of Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- Department of Internal Medicine IV, University Hospital of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Helmholtz Center Munich, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Neuherberg, Germany
| | - Andreas Fritsche
- Department of Internal Medicine IV, University Hospital of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Helmholtz Center Munich, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Neuherberg, Germany
| | - Martin Heni
- Department of Internal Medicine IV, University Hospital of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Helmholtz Center Munich, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Neuherberg, Germany
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
39
|
Nassar SZ, Badae NM, Issa YA. Effect of amylin on memory and central insulin resistance in a rat model of Alzheimer's disease. Arch Physiol Biochem 2020; 126:326-334. [PMID: 30449203 DOI: 10.1080/13813455.2018.1534244] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Context: Alzheimer's disease is strongly associated with brain insulin signalling.Objective: Investigating the effect of amylin as a novel treatment in streptozotocin (STZ) rat model of AD.Materials and methods: Alzheimer's disease (AD) was induced in albino rats by intracerebroventricular injection of STZ (3 mg/kg). Rats received either amylin analogue (Pramlintide 200 μg/kg/day) or Metformin (30 mg/kg/day) for 5 weeks.Results: Both Pramlintide and Metformin improve learning and memory through enhancing insulin signalling (p-IR and p-PI3K) which lead to lowering level of CSF glucose, phosphorylated tau proteins, and amyloid-β peptide (Aβ) in hippocampus.Conclusions: Insulin sensitisers as Metformin and Pramlintide can improve learning and memory and decrease the pathological changes in STZ induced rat model of AD. However, Pramlintide is superior to Metformin in some memory tests which related to its action as an amylin analogue. Amylin improves learning and memory through an independent effect other than insulin sensitisation.
Collapse
Affiliation(s)
- Seham Zakaria Nassar
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Noha Mohamed Badae
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Yasmine Amr Issa
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
40
|
Mustapic M, Tran J, Craft S, Kapogiannis D. Extracellular Vesicle Biomarkers Track Cognitive Changes Following Intranasal Insulin in Alzheimer's Disease. J Alzheimers Dis 2020; 69:489-498. [PMID: 30958348 DOI: 10.3233/jad-180578] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Insulin resistance is implicated in Alzheimer's disease (AD), whereas intranasal insulin is an experimental treatment in clinical trials. We previously proposed insulin signaling mediators in plasma neuronal-enriched extracellular vesicles (EVs) as biomarkers of brain insulin resistance. OBJECTIVE We sought to demonstrate the capacity of neuronal-enriched EV biomarkers to demonstrate target engagement in response to intranasal insulin and their ability to track treatment-associated cognitive changes in AD. METHODS We isolated neuronal-enriched EVs from plasma samples of participants with amnestic mild cognitive impairment or probable AD involved in a 4-month duration placebo-controlled clinical trial of 20 or 40 IU intranasal insulin. We measured insulin signaling mediators as biomarkers and examined treatment-associated changes and their relationship with cognitive performance (ADAS-Cog). RESULTS There were no EV biomarker changes from baseline in any of the treatment groups. In participants treated with 20 IU insulin, EV biomarkers of insulin resistance (pS312-IRS-1, pY-IRS-1) showed strong positive correlations with ADAS-Cog changes, especially in ApoE ɛ4 non-carriers. CONCLUSION Neuronal EV biomarkers of insulin resistance (pS312-IRS-1, pY-IRS-1) were associated with cognitive changes in response to low dose intranasal insulin suggesting engagement of the insulin cascade in neurons of origin.
Collapse
Affiliation(s)
- Maja Mustapic
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Joyce Tran
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Suzanne Craft
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| |
Collapse
|
41
|
Cellular Signaling and Anti-Apoptotic Effects of Prolactin-Releasing Peptide and Its Analog on SH-SY5Y Cells. Int J Mol Sci 2020; 21:ijms21176343. [PMID: 32882929 PMCID: PMC7503370 DOI: 10.3390/ijms21176343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 02/06/2023] Open
Abstract
Prolactin-releasing peptide (PrRP), a natural ligand for the GPR10 receptor, is a neuropeptide with anorexigenic and antidiabetic properties. Due to its role in the regulation of food intake, PrRP is a potential drug for obesity treatment and associated type 2 diabetes mellitus (T2DM). Recently, the neuroprotective effects of lipidized PrRP analogs have been proven. In this study, we focused on the molecular mechanisms of action of natural PrRP31 and its lipidized analog palm11-PrRP31 in the human neuroblastoma cell line SH-SY5Y to describe their cellular signaling and possible anti-apoptotic properties. PrRP31 significantly upregulated the phosphoinositide-3 kinase-protein kinase B/Akt (PI3K-PKB/Akt) and extracellular signal-regulated kinase/cAMP response element-binding protein (ERK-CREB) signaling pathways that promote metabolic cell survival and growth. In addition, we proved via protein kinase inhibitors that activation of signaling pathways is mediated specifically by PrRP31 and its palmitoylated analog. Furthermore, the potential neuroprotective properties were studied through activation of anti-apoptotic pathways of PrRP31 and palm11-PrRP31 using the SH-SY5Y cell line and rat primary neuronal culture stressed with toxic methylglyoxal (MG). The results indicate increased viability of the cells treated with PrRP and palm11-PrRP31 and a reduced degree of apoptosis induced by MG, suggesting their potential use in the treatment of neurological disorders.
Collapse
|
42
|
Frazier HN, Ghoweri AO, Anderson KL, Lin RL, Popa GJ, Mendenhall MD, Reagan LP, Craven RJ, Thibault O. Elevating Insulin Signaling Using a Constitutively Active Insulin Receptor Increases Glucose Metabolism and Expression of GLUT3 in Hippocampal Neurons. Front Neurosci 2020; 14:668. [PMID: 32733189 PMCID: PMC7358706 DOI: 10.3389/fnins.2020.00668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/02/2020] [Indexed: 12/31/2022] Open
Abstract
Insulin signaling is an integral component of healthy brain function, with evidence of positive insulin-mediated alterations in synaptic integrity, cerebral blood flow, inflammation, and memory. However, the specific pathways targeted by this peptide remain unclear. Previously, our lab used a molecular approach to characterize the impact of insulin signaling on voltage-gated calcium channels and has also shown that acute insulin administration reduces calcium-induced calcium release in hippocampal neurons. Here, we explore the relationship between insulin receptor signaling and glucose metabolism using similar methods. Mixed, primary hippocampal cultures were infected with either a control lentivirus or one containing a constitutively active human insulin receptor (IRβ). 2-NBDG imaging was used to obtain indirect measures of glucose uptake and utilization. Other outcome measures include Western immunoblots of GLUT3 and GLUT4 on total membrane and cytosolic subcellular fractions. Glucose imaging data indicate that neurons expressing IRβ show significant elevations in uptake and rates of utilization compared to controls. As expected, astrocytes did not respond to the IRβ treatment. Quantification of Western immunoblots show that IRβ is associated with significant elevations in GLUT3 expression, particularly in the total membrane subcellular fraction, but did not alter GLUT4 expression in either fraction. Our work suggests that insulin plays a significant role in mediating neuronal glucose metabolism, potentially through an upregulation in the expression of GLUT3. This provides further evidence for a potential therapeutic mechanism underlying the beneficial impact of intranasal insulin in the clinic.
Collapse
Affiliation(s)
- Hilaree N Frazier
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Adam O Ghoweri
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Katie L Anderson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Ruei-Lung Lin
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Gabriel J Popa
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Michael D Mendenhall
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Rolf J Craven
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Olivier Thibault
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|
43
|
β-amyloid and tau drive early Alzheimer's disease decline while glucose hypometabolism drives late decline. Commun Biol 2020; 3:352. [PMID: 32632135 PMCID: PMC7338410 DOI: 10.1038/s42003-020-1079-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 06/15/2020] [Indexed: 12/31/2022] Open
Abstract
Clinical trials focusing on therapeutic candidates that modify β-amyloid (Aβ) have repeatedly failed to treat Alzheimer’s disease (AD), suggesting that Aβ may not be the optimal target for treating AD. The evaluation of Aβ, tau, and neurodegenerative (A/T/N) biomarkers has been proposed for classifying AD. However, it remains unclear whether disturbances in each arm of the A/T/N framework contribute equally throughout the progression of AD. Here, using the random forest machine learning method to analyze participants in the Alzheimer’s Disease Neuroimaging Initiative dataset, we show that A/T/N biomarkers show varying importance in predicting AD development, with elevated biomarkers of Aβ and tau better predicting early dementia status, and biomarkers of neurodegeneration, especially glucose hypometabolism, better predicting later dementia status. Our results suggest that AD treatments may also need to be disease stage-oriented with Aβ and tau as targets in early AD and glucose metabolism as a target in later AD. Here the authors analyze the Alzheimer’s Disease Neuroimaging Initiative dataset using random forest machine learning methods and determine that Aβ and tau biomarkers are better predictors of early dementia status, while glucose hypometabolism is a better predictor of later dementia status. These results suggest the need for stage-oriented Alzheimer’s disease treatments.
Collapse
|
44
|
Madhusudhanan J, Suresh G, Devanathan V. Neurodegeneration in type 2 diabetes: Alzheimer's as a case study. Brain Behav 2020; 10:e01577. [PMID: 32170854 PMCID: PMC7218246 DOI: 10.1002/brb3.1577] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/04/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Rigorous research in the last few years has shown that in addition to the classical mechanism of neurodegeneration, certain unconventional mechanisms may also lead to neurodegenerative disease. One of them is a widely studied metabolic disorder: type 2 diabetes mellitus (T2DM). We now have a clear understanding of glucose-mediated neurodegeneration, mostly from studies in Alzheimer's disease (AD) models. AD is recognized to be significantly associated with hyperglycemia, even earning the term "type 3 diabetes." Here, we review first the pathophysiology of AD, both from the perspective of classical protein accumulation, as well as the newer T2DM-dependent mechanisms supported by findings from patients with T2DM. Secondly, we review the different pathways through which neurodegeneration is aggravated in hyperglycemic conditions taking AD as a case study. Finally, some of the current advances in AD management as a result of recent research developments in metabolic disorders-driven neurodegeneration are also discussed. METHODS Relevant literatures found from PubMed search were reviewed. RESULTS Apart from the known causes of AD, type 2 diabetes opens a new window to the AD pathology in several ways. It is a bidirectional interaction, of which, the molecular and signaling mechanisms are recently studied. This is our attempt to connect all of them to draw a complete mechanistic explanation for the neurodegeneration in T2DM. Refer to Figure 3. CONCLUSION The perspective of AD as a classical neurodegenerative disease is changing, and it is now being looked at from a zoomed-out perspective. The correlation between T2DM and AD is something observed and studied extensively. It is promising to know that there are certain advances in AD management following these studies.
Collapse
Affiliation(s)
- Jalaja Madhusudhanan
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Gowthaman Suresh
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Vasudharani Devanathan
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| |
Collapse
|
45
|
Abstract
The insulin-like growth factors (IGFs; IGF1/IGF2), known for their regulation of cell and organismal growth and development, are evolutionarily conserved ligands with equivalent peptides present in flies (
D. melanogaster), worms (
C. elegans) among others. Two receptor tyrosine kinases, the IGF1 receptor and the insulin receptor mediate the actions of these ligands with a family of IGF binding proteins serving as selective inhibitors of IGF1/2. This treatise reviews recent findings on IGF signaling in cancer biology and central nervous system function. This includes overexpression of IGF1 receptors in enhancing tumorigenesis, acquired resistance and contributions to metastasis in multiple cancer types. There is accumulating evidence that insulin resistance, a hallmark of type 2 diabetes, occurs in the central nervous system, independent of systemic insulin resistance and characterized by reduced insulin and IGF1 receptor signaling, and may contribute to dementias including Alzheimer’s Disease and cognitive impairment. Controversy over the role(s) of IGF signaling in cancer and whether its inhibition would be of benefit, still persist and extend to IGF1’s role in longevity and central nervous system function.
Collapse
Affiliation(s)
- Steven A Rosenzweig
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
46
|
Garcia-Serrano AM, Duarte JMN. Brain Metabolism Alterations in Type 2 Diabetes: What Did We Learn From Diet-Induced Diabetes Models? Front Neurosci 2020; 14:229. [PMID: 32265637 PMCID: PMC7101159 DOI: 10.3389/fnins.2020.00229] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/02/2020] [Indexed: 12/27/2022] Open
Abstract
Type 2 diabetes (T2D) is a metabolic disease with impact on brain function through mechanisms that include glucose toxicity, vascular damage and blood–brain barrier (BBB) impairments, mitochondrial dysfunction, oxidative stress, brain insulin resistance, synaptic failure, neuroinflammation, and gliosis. Rodent models have been developed for investigating T2D, and have contributed to our understanding of mechanisms involved in T2D-induced brain dysfunction. Namely, mice or rats exposed to diabetogenic diets that are rich in fat and/or sugar have been widely used since they develop memory impairment, especially in tasks that depend on hippocampal processing. Here we summarize main findings on brain energy metabolism alterations underlying dysfunction of neuronal and glial cells promoted by diet-induced metabolic syndrome that progresses to a T2D phenotype.
Collapse
Affiliation(s)
- Alba M Garcia-Serrano
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - João M N Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
47
|
Dubey SK, Lakshmi KK, Krishna KV, Agrawal M, Singhvi G, Saha RN, Saraf S, Saraf S, Shukla R, Alexander A. Insulin mediated novel therapies for the treatment of Alzheimer's disease. Life Sci 2020; 249:117540. [PMID: 32165212 DOI: 10.1016/j.lfs.2020.117540] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease, a progressive neurodegenerative disorder, is one of the leading causes of death in the USA, along with cancer and cardiac disorders. AD is characterized by various neurological factors like amyloid plaques, tau hyperphosphorylation, mitochondrial dysfunction, acetylcholine deficiency, etc. Together, impaired insulin signaling in the brain is also observed as essential factor to be considered in AD pathophysiology. Hence, currently researchers focused on studying the effect of brain insulin metabolism and relation of diabetes with AD. Based on the investigations, AD is also considered as type 3 or brain diabetes. Besides the traditional view of correlating AD with aging, a better understanding of various pathological factors and effects of other physical ailments is necessary to develop a promising therapeutic approach. There is a vast scope of studying the relation of systemic insulin level, insulin signaling, its neuroprotective potency and effect of diabetes on AD progression. The present work describes worldwide status of AD and its relation with diabetes mellitus and insulin metabolism; pathophysiology of AD; different metabolic pathways associating insulin metabolism with AD; insulin receptor and signaling in the brain; glucose metabolism; insulin resistance; and various preclinical and clinical studies reported insulin-based therapies to treat AD via systemic route and through direct intranasal delivery to the brain.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India.
| | - K K Lakshmi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Kowthavarapu Venkata Krishna
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Mukta Agrawal
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490 024, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Ranendra Narayana Saha
- Department of Biotechnology, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Dubai Campus, Dubai, United Arab Emirates
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-R), New Transit Campus, Bijnor Road, Sarojini Nagar, Lucknow 226002, India
| | - Amit Alexander
- National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, NH 37, NITS Mirza, Kamrup-781125, Guwahati, Assam, India.
| |
Collapse
|
48
|
The Bewildering Effect of AMPK Activators in Alzheimer's Disease: Review of the Current Evidence. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9895121. [PMID: 32149150 PMCID: PMC7049408 DOI: 10.1155/2020/9895121] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/14/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease is a multifactorial neurodegenerative disease characterized by progressive cognitive dysfunction. It is the most common form of dementia. The pathologic hallmarks of the disease include extracellular amyloid plaque, intracellular neurofibrillary tangles, and oxidative stress, to mention some of them. Despite remarkable progress in the understanding of the pathogenesis of the disease, drugs for cure or disease-modifying therapy remain somewhere in the distance. From recent time, the signaling molecule AMPK is gaining enormous attention in the AD drug research. AMPK is a master regulator of cellular energy metabolism, and recent pieces of evidence show that perturbation of its function is highly ascribed in the pathology of AD. Several drugs are known to activate AMPK, but their effect in AD remains to be controversial. In this review, the current shreds of evidence on the effect of AMPK activators in Aβ accumulation, tau aggregation, and oxidative stress are addressed. Positive and negative effects are reported with regard to Aβ and tauopathy but only positive in oxidative stress. We also tried to dissect the molecular interplays where the bewildering effects arise from.
Collapse
|
49
|
Bagaméry F, Varga K, Kecsmár K, Vincze I, Szökő É, Tábi T. Lack of insulin resistance in response to streptozotocin treatment in neuronal SH-SY5Y cell line. J Neural Transm (Vienna) 2019; 127:71-80. [PMID: 31858268 PMCID: PMC6942577 DOI: 10.1007/s00702-019-02118-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/08/2019] [Indexed: 12/20/2022]
Abstract
Recently, it is suggested that brain insulin resistance may contribute to the development of Alzheimer’s disease; therefore, there is a high interest in its investigation. Streptozotocin (STZ) is often used to induce dysregulation of glucose and insulin metabolism in animal and cell culture models. Alteration in insulin sensitivity however, has not yet been assessed in neuronal cells after STZ treatment. We aimed at studying the concentration dependence of the protective effect of insulin on STZ-induced damage using SH-SY5Y cell line. Cells were treated with STZ and cell viability was assessed by resazurin reduction and lactate dehydrogenase release assays. Low serum (LS) medium was used as control damage. The effect of various concentrations (30, 100, 300, 1000 nM) of insulin was studied on cell viability and glycogen synthase kinase-3 (GSK-3) phosphorylation, an indicator of insulin signaling. STZ induced dose- and time-dependent cytotoxicity, its 1 mM concentration exerted a low, gradually developing damage. The cytoprotective effect of insulin was demonstrated in both STZ and LS groups. Its maximal effect was lower in the STZ-treated cells; however, its effective concentration remained largely unaltered. Insulin-induced GSK-3 phosphorylation was similar in the STZ- and LS-treated cells suggesting unchanged insulin signaling. Our present results indicate that STZ does not induce significant impairment in insulin sensitivity in SH-SY5Y cells, thus in this cell line it is not a good tool for studying the role of insulin resistance in neurodegeneration and to examine protective agents acting by improving insulin signaling.
Collapse
Affiliation(s)
- Fruzsina Bagaméry
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Kamilla Varga
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Kitti Kecsmár
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - István Vincze
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Éva Szökő
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Tamás Tábi
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary.
| |
Collapse
|
50
|
Bianchi VE, Herrera PF, Laura R. Effect of nutrition on neurodegenerative diseases. A systematic review. Nutr Neurosci 2019; 24:810-834. [PMID: 31684843 DOI: 10.1080/1028415x.2019.1681088] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases are characterized by the progressive functional loss of neurons in the brain, causing cognitive impairment and motoneuron disability. Although multifactorial interactions are evident, nutrition plays an essential role in the pathogenesis and evolution of these diseases. A systematic literature search was performed, and the prevalence of studies evaluated the effect of the Mediterranean diet (MeDiet), nutritional support, EPA and DHA, and vitamins on memory and cognition impairment. The data showed that malnutrition and low body mass index (BMI) is correlated with the higher development of dementia and mortality. MeDiet, nutritional support, and calorie-controlled diets play a protective effect against cognitive decline, Alzheimer's disease (AD), Parkinson disease (PD) while malnutrition and insulin resistance represent significant risk factors. Malnutrition activates also the gut-microbiota-brain axis dysfunction that exacerbate neurogenerative process. Omega-3 and -6, and the vitamins supplementation seem to be less effective in protecting neuron degeneration. Insulin activity is a prevalent factor contributing to brain health while malnutrition correlated with the higher development of dementia and mortality.
Collapse
Affiliation(s)
| | - Pomares Fredy Herrera
- Director del Centro de Telemedicina, Grupo de investigación en Atención Primaria en salud/Telesalud, Doctorado en Medicina /Neurociencias, University of Cartagena, Colombia
| | - Rizzi Laura
- Molecular Biology, School of Medicine and Surgery, University of Milano-Bicocca, Monza Brianza, Italy
| |
Collapse
|