1
|
Lisboa MDO, Selenko AH, Hochuli AHD, Senegaglia AC, Fracaro L, Brofman PRS. The influence of fetal bovine serum concentration on stemness and neuronal differentiation markers in stem cells from human exfoliated deciduous teeth. Tissue Cell 2024; 91:102571. [PMID: 39353229 DOI: 10.1016/j.tice.2024.102571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/26/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Dental Stem Cells (DSCs) from discarded teeth are a non-invasive and ethically favorable source with the potential for neurogenesis due to their ectodermal origin. Stem cells from human exfoliated deciduous teeth (SHED) are particularly promising due to their high differentiation potential and relative immaturity compared to other Mesenchymal Stromal Cells (MSCs). Markers like CD56 and CD271 are critical in identifying MSC subpopulations for therapeutic applications because of their roles in neurodevelopment and maintaining stemness. This study investigates how fetal bovine serum (FBS) concentrations affect the expression of CD56 and CD271 in SHED, influencing their stemness and neuronal differentiation potential. SHEDs were isolated from various donors, cultured, and characterized for MSC traits using markers such as CD14, CD19, CD29, CD34, CD45, CD73, CD90, CD105, CD56, and CD271. Culturing SHED in different FBS conditions (standard 15 %, reduced 1 % and 5 %, and FBS-free) showed that lower FBS concentrations increase CD271 and CD56 expression while maintaining the standard MSC immunophenotype. Importantly, the enhanced expression of these markers can be induced even after SHEDs have been expanded in standard FBS concentrations. These findings suggest that FBS concentration can optimize SHED culture conditions, enhancing their suitability for regenerative medicine and tissue engineering applications.
Collapse
Affiliation(s)
- Mateus de Oliveira Lisboa
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil.
| | - Ana Helena Selenko
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil
| | - Agner Henrique Dorigo Hochuli
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil
| | - Alexandra Cristina Senegaglia
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil
| | - Letícia Fracaro
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil.
| | - Paulo Roberto Slud Brofman
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil
| |
Collapse
|
2
|
Wang X, Zheng Y, Cai H, Kou W, Yang C, Li S, Zhu B, Wu J, Zhang N, Feng T, Li X, Xiao F, Yu Z. α-Synuclein species in plasma neuron-derived extracellular vesicles as biomarkers for iRBD. Ann Clin Transl Neurol 2024. [PMID: 39291779 DOI: 10.1002/acn3.52200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/05/2024] [Accepted: 08/25/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVE Isolated REM sleep behavior disorder (iRBD) is considered as the strongest predictor of Parkinson's disease (PD). Reliable and accurate biomarkers for iRBD detection and the prediction of phenoconversion are in urgent need. This study aimed to investigate whether α-Synuclein (α-Syn) species in plasma neuron-derived extracellular vesicles (NDEVs) could differentiate between iRBD patients and healthy controls (HCs). METHODS Nanoscale flow cytometry was used to detect α-Syn-containing NDEVs in plasma. RESULTS A total of 54 iRBD patients and 53 HCs were recruited. The concentrations of total α-Syn, α-Syn aggregates, and phosphorylated α-Syn at Ser129 (pS129)-containing NDEVs in plasma of iRBD individuals were significantly higher than those in HCs (p < 0.0001 for all). In distinguishing between iRBD and HCs, the area under the receiver operating characteristic (ROC) curve (AUC) for an integrative model incorporating the levels of α-Syn, pS129, and α-Syn aggregate-containing NDEVs in plasma was 0.965. This model achieved a sensitivity of 94.3% and a specificity of 88.9%. In iRBD group, the concentrations of α-Syn aggregate-containing NDEVs exhibited a negative correlation with Sniffin' Sticks olfactory scores (r = -0.351, p = 0.039). Smokers with iRBD exhibited lower levels of α-Syn aggregates and pS129-containing NDEVs in plasma compared to nonsmokers (pα-Syn aggregates = 0.014; ppS129 = 0.003). INTERPRETATION The current study demonstrated that the levels of total α-Syn, α-Syn aggregates, and pS129-containing NDEVs in the plasma of individuals with iRBD were significantly higher compared to HCs. The levels of α-Syn species-containing NDEVs in plasma may serve as biomarkers for iRBD.
Collapse
Affiliation(s)
- Xuemei Wang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanchu Zheng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huihui Cai
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenyi Kou
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chen Yang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Siming Li
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bingxu Zhu
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiayi Wu
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ning Zhang
- Department of Neuropsychiatry and Behavioral Neurology and Clinical Psychology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaohong Li
- Department of Neurology, Affiliated Dalian Municipal Friendship Hospital of Dalian Medical University, Dalian, China
| | - Fulong Xiao
- Division of Sleep Medicine, Peking University People's Hospital, Beijing, China
| | - Zhenwei Yu
- Department of Pathophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Al-Beltagi M, Saeed NK, Bediwy AS, Bediwy EA, Elbeltagi R. Decoding the genetic landscape of autism: A comprehensive review. World J Clin Pediatr 2024; 13:98468. [PMID: 39350903 PMCID: PMC11438927 DOI: 10.5409/wjcp.v13.i3.98468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/30/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by heterogeneous symptoms and genetic underpinnings. Recent advancements in genetic and epigenetic research have provided insights into the intricate mechanisms contributing to ASD, influencing both diagnosis and therapeutic strategies. AIM To explore the genetic architecture of ASD, elucidate mechanistic insights into genetic mutations, and examine gene-environment interactions. METHODS A comprehensive systematic review was conducted, integrating findings from studies on genetic variations, epigenetic mechanisms (such as DNA methylation and histone modifications), and emerging technologies [including Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 and single-cell RNA sequencing]. Relevant articles were identified through systematic searches of databases such as PubMed and Google Scholar. RESULTS Genetic studies have identified numerous risk genes and mutations associated with ASD, yet many cases remain unexplained by known factors, suggesting undiscovered genetic components. Mechanistic insights into how these genetic mutations impact neural development and brain connectivity are still evolving. Epigenetic modifications, particularly DNA methylation and non-coding RNAs, also play significant roles in ASD pathogenesis. Emerging technologies like CRISPR-Cas9 and advanced bioinformatics are advancing our understanding by enabling precise genetic editing and analysis of complex genomic data. CONCLUSION Continued research into the genetic and epigenetic underpinnings of ASD is crucial for developing personalized and effective treatments. Collaborative efforts integrating multidisciplinary expertise and international collaborations are essential to address the complexity of ASD and translate genetic discoveries into clinical practice. Addressing unresolved questions and ethical considerations surrounding genetic research will pave the way for improved diagnostic tools and targeted therapies, ultimately enhancing outcomes for individuals affected by ASD.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Alghrabia, Tanta 31511, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Bahrain
- Medical Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Muharraq, Busaiteen 15503, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Alghrabia, Tanta 31527, Egypt
- Department of Pulmonology, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Eman A Bediwy
- Internal Medicine, Faculty of Medicine, Tanta University, Algharbia, Tanta 31527, Egypt
| | - Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland-Bahrain, Muharraq, Busiateen 15503, Bahrain
| |
Collapse
|
4
|
Bhattacharya S, Harris HL, Islam R, Bodas S, Polavaram N, Mishra J, Das D, Seshacharyulu P, Kalluchi A, Pal A, Kohli M, Lele SM, Muders M, Batra SK, Ghosh PM, Datta K, Rowley MJ, Dutta S. Understanding the function of Pax5 in development of docetaxel-resistant neuroendocrine-like prostate cancers. Cell Death Dis 2024; 15:617. [PMID: 39183332 PMCID: PMC11345443 DOI: 10.1038/s41419-024-06916-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/27/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024]
Abstract
Resistance to the current Androgen Receptor Signaling Inhibitor (ARSI) therapies has led to higher incidences of therapy-induced neuroendocrine-like prostate cancer (t-NEPC). This highly aggressive subtype with predominant small-cell-like characteristics is resistant to taxane chemotherapies and has a dismal overall survival. t-NEPCs are mostly treated with platinum-based drugs with a combination of etoposide or taxane and have less selectivity and high systemic toxicity, which often limit their clinical potential. During t-NEPC transformation, adenocarcinomas lose their luminal features and adopt neuro-basal characteristics. Whether the adaptive neuronal characteristics of t-NEPC are responsible for such taxane resistance remains unknown. Pathway analysis from patient gene-expression databases indicates that t-NEPC upregulates various neuronal pathways associated with enhanced cellular networks. To identify transcription factor(s) (TF) that could be important for promoting the gene expression for neuronal characters in t-NEPC, we performed ATAC-Seq, acetylated-histone ChIP-seq, and RNA-seq in our NE-like cell line models and analyzed the promoters of transcriptionally active and significantly enriched neuroendocrine-like (NE-like) cancer-specific genes. Our results indicate that Pax5 could be an important transcription factor for neuronal gene expression and specific to t-NEPC. Pathway analysis revealed that Pax5 expression is involved in axonal guidance, neurotransmitter regulation, and neuronal adhesion, which are critical for strong cellular communications. Further results suggest that depletion of Pax5 disrupts neurite-mediated cellular communication in NE-like cells and reduces surface growth factor receptor activation, thereby, sensitizing them to docetaxel therapies. Moreover, t-NEPC-specific hydroxymethylation of Pax5 promoter CpG islands favors Pbx1 binding to induce Pax5 expression. Based on our study, we concluded that continuous exposure to ARSI therapies leads to epigenetic modifications and Pax5 activation in t-NEPC, which promotes the expression of genes necessary to adopt taxane-resistant NE-like cancer. Thus, targeting the Pax5 axis can be beneficial for reverting their taxane sensitivity.
Collapse
MESH Headings
- Humans
- Male
- Docetaxel/pharmacology
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/drug therapy
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Cell Line, Tumor
- PAX5 Transcription Factor/metabolism
- PAX5 Transcription Factor/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Antineoplastic Agents/pharmacology
- Carcinoma, Neuroendocrine/metabolism
- Carcinoma, Neuroendocrine/drug therapy
- Carcinoma, Neuroendocrine/pathology
- Carcinoma, Neuroendocrine/genetics
- Promoter Regions, Genetic/genetics
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
Collapse
Affiliation(s)
- Sreyashi Bhattacharya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hannah L Harris
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ridwan Islam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sanika Bodas
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Navatha Polavaram
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Juhi Mishra
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Dipanwita Das
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Achyuth Kalluchi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Manish Kohli
- School of Medicine, Division of Oncology, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Subodh M Lele
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael Muders
- MVZ Pathology Bethesda, Heerstrasse 219, Duisburg, Germany
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paramita M Ghosh
- Department of Urological Surgery, University of California Davis, School of Medicine, Sacramento, CA, USA
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
5
|
Zhang S, Ma Z. trans-Interacting Plasma Membrane Proteins and Binding Partner Identification. J Proteome Res 2024; 23:3322-3331. [PMID: 38937710 DOI: 10.1021/acs.jproteome.4c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Plasma membrane proteins (PMPs) play critical roles in a myriad of physiological and disease conditions. A unique subset of PMPs functions through interacting with each other in trans at the interface between two contacting cells. These trans-interacting PMPs (tiPMPs) include adhesion molecules and ligands/receptors that facilitate cell-cell contact and direct communication between cells. Among the tiPMPs, a significant number have apparent extracellular binding domains but remain orphans with no known binding partners. Identification of their potential binding partners is therefore important for the understanding of processes such as organismal development and immune cell activation. While a number of methods have been developed for the identification of protein binding partners in general, very few are applicable to tiPMPs, which interact in a two-dimensional fashion with low intrinsic binding affinities. In this review, we present the significance of tiPMP interactions, the challenges of identifying binding partners for tiPMPs, and the landscape of method development. We describe current avidity-based screening approaches for identifying novel tiPMP binding partners and discuss their advantages and limitations. We conclude by highlighting the importance of developing novel methods of identifying new tiPMP interactions for deciphering the complex protein interactome and developing targeted therapeutics for diseases.
Collapse
Affiliation(s)
- Shenyu Zhang
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Zhengyu Ma
- Nemours Children's Hospital, Wilmington, Delaware 19803, United States
| |
Collapse
|
6
|
Bai SY, Zeng DY, Ouyang M, Zeng Y, Tan W, Xu L. Synaptic cell adhesion molecules contribute to the pathogenesis and progression of fragile X syndrome. Front Cell Neurosci 2024; 18:1393536. [PMID: 39022311 PMCID: PMC11252757 DOI: 10.3389/fncel.2024.1393536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and a monogenic cause of autism spectrum disorders. Deficiencies in the fragile X messenger ribonucleoprotein, encoded by the FMR1 gene, lead to various anatomical and pathophysiological abnormalities and behavioral deficits, such as spine dysmorphogenesis and learning and memory impairments. Synaptic cell adhesion molecules (CAMs) play crucial roles in synapse formation and neural signal transmission by promoting the formation of new synaptic contacts, accurately organizing presynaptic and postsynaptic protein complexes, and ensuring the accuracy of signal transmission. Recent studies have implicated synaptic CAMs such as the immunoglobulin superfamily, N-cadherin, leucine-rich repeat proteins, and neuroligin-1 in the pathogenesis of FXS and found that they contribute to defects in dendritic spines and synaptic plasticity in FXS animal models. This review systematically summarizes the biological associations between nine representative synaptic CAMs and FMRP, as well as the functional consequences of the interaction, to provide new insights into the mechanisms of abnormal synaptic development in FXS.
Collapse
Affiliation(s)
- Shu-Yuan Bai
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - De-Yang Zeng
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - Ming Ouyang
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - Yan Zeng
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - Wei Tan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - Lang Xu
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Salemi M, Schillaci FA, Lanza G, Marchese G, Salluzzo MG, Cordella A, Caniglia S, Bruccheri MG, Truda A, Greco D, Ferri R, Romano C. Transcriptome Study in Sicilian Patients with Autism Spectrum Disorder. Biomedicines 2024; 12:1402. [PMID: 39061976 PMCID: PMC11274004 DOI: 10.3390/biomedicines12071402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
ASD is a complex condition primarily rooted in genetics, although influenced by environmental, prenatal, and perinatal risk factors, ultimately leading to genetic and epigenetic alterations. These mechanisms may manifest as inflammatory, oxidative stress, hypoxic, or ischemic damage. To elucidate potential variances in gene expression in ASD, a transcriptome analysis of peripheral blood mononuclear cells was conducted via RNA-seq on 12 ASD patients and 13 healthy controls, all of Sicilian ancestry to minimize environmental confounds. A total of 733 different statistically significant genes were identified between the two cohorts. Gene Set Enrichment Analysis (GSEA) and Gene Ontology (GO) terms were employed to explore the pathways influenced by differentially expressed mRNAs. GSEA revealed GO pathways strongly associated with ASD, namely the GO Biological Process term "Response to Oxygen-Containing Compound". Additionally, the GO Cellular Component pathway "Mitochondrion" stood out among other pathways, with differentially expressed genes predominantly affiliated with this specific pathway, implicating the involvement of different mitochondrial functions in ASD. Among the differentially expressed genes, FPR2 was particularly highlighted, belonging to three GO pathways. FPR2 can modulate pro-inflammatory responses, with its intracellular cascades triggering the activation of several kinases, thus suggesting its potential utility as a biomarker of pro-inflammatory processes in ASD.
Collapse
Affiliation(s)
- Michele Salemi
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.A.S.); (G.L.); (M.G.S.); (S.C.); (M.G.B.); (D.G.); (R.F.); (C.R.)
| | - Francesca A. Schillaci
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.A.S.); (G.L.); (M.G.S.); (S.C.); (M.G.B.); (D.G.); (R.F.); (C.R.)
| | - Giuseppe Lanza
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.A.S.); (G.L.); (M.G.S.); (S.C.); (M.G.B.); (D.G.); (R.F.); (C.R.)
- Department of Surgery and Medical—Surgical Specialties, University of Catania, 95124 Catania, Italy
| | - Giovanna Marchese
- Genomix4Life S.r.l., 84081 Baronissi, Italy; (G.M.); (A.C.); (A.T.)
- Genome Research Center for Health—CRGS, 84081 Baronissi, Italy
| | - Maria Grazia Salluzzo
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.A.S.); (G.L.); (M.G.S.); (S.C.); (M.G.B.); (D.G.); (R.F.); (C.R.)
| | - Angela Cordella
- Genomix4Life S.r.l., 84081 Baronissi, Italy; (G.M.); (A.C.); (A.T.)
- Genome Research Center for Health—CRGS, 84081 Baronissi, Italy
| | - Salvatore Caniglia
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.A.S.); (G.L.); (M.G.S.); (S.C.); (M.G.B.); (D.G.); (R.F.); (C.R.)
| | - Maria Grazia Bruccheri
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.A.S.); (G.L.); (M.G.S.); (S.C.); (M.G.B.); (D.G.); (R.F.); (C.R.)
| | - Anna Truda
- Genomix4Life S.r.l., 84081 Baronissi, Italy; (G.M.); (A.C.); (A.T.)
- Genome Research Center for Health—CRGS, 84081 Baronissi, Italy
| | - Donatella Greco
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.A.S.); (G.L.); (M.G.S.); (S.C.); (M.G.B.); (D.G.); (R.F.); (C.R.)
| | - Raffaele Ferri
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.A.S.); (G.L.); (M.G.S.); (S.C.); (M.G.B.); (D.G.); (R.F.); (C.R.)
| | - Corrado Romano
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.A.S.); (G.L.); (M.G.S.); (S.C.); (M.G.B.); (D.G.); (R.F.); (C.R.)
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy
| |
Collapse
|
8
|
Gui Y, Kim Y, Brenna S, Wilmes M, Zaghen G, Goulbourne CN, Kuchenbecker-Pöls L, Siebels B, Voß H, Gocke A, Schlüter H, Schweizer M, Altmeppen HC, Magnus T, Levy E, Puig B. Cystatin C loaded in brain-derived extracellular vesicles rescues synapses after ischemic insult in vitro and in vivo. Cell Mol Life Sci 2024; 81:224. [PMID: 38769196 PMCID: PMC11106054 DOI: 10.1007/s00018-024-05266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/12/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Synaptic loss is an early event in the penumbra area after an ischemic stroke. Promoting synaptic preservation in this area would likely improve functional neurological recovery. We aimed to detect proteins involved in endogenous protection mechanisms of synapses in the penumbra after stroke and to analyse potential beneficial effects of these candidates for a prospective stroke treatment. For this, we performed Liquid Chromatography coupled to Mass Spectrometry (LC-MS)-based proteomics of synaptosomes isolated from the ipsilateral hemispheres of mice subjected to experimental stroke at different time points (24 h, 4 and 7 days) and compared them to sham-operated mice. Proteomic analyses indicated that, among the differentially expressed proteins between the two groups, cystatin C (CysC) was significantly increased at 24 h and 4 days following stroke, before returning to steady-state levels at 7 days, thus indicating a potential transient and intrinsic rescue mechanism attempt of neurons. When CysC was applied to primary neuronal cultures subjected to an in vitro model of ischemic damage, this treatment significantly improved the preservation of synaptic structures. Notably, similar effects were observed when CysC was loaded into brain-derived extracellular vesicles (BDEVs). Finally, when CysC contained in BDEVs was administered intracerebroventricularly to stroked mice, it significantly increased the expression of synaptic markers such as SNAP25, Homer-1, and NCAM in the penumbra area compared to the group supplied with empty BDEVs. Thus, we show that CysC-loaded BDEVs promote synaptic protection after ischemic damage in vitro and in vivo, opening the possibility of a therapeutic use in stroke patients.
Collapse
Affiliation(s)
- Yuqi Gui
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI) Group, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße, 52, 20246, Hamburg, Germany
- Department of Intensive Care Unit, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yohan Kim
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, 10962, USA
- Departments of Psychiatry, Biochemistry and Molecular Pharmacology, and the Neuroscience Institute, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Santra Brenna
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI) Group, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße, 52, 20246, Hamburg, Germany
| | - Maximilian Wilmes
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI) Group, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße, 52, 20246, Hamburg, Germany
| | - Giorgio Zaghen
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, 10962, USA
- Departments of Psychiatry, Biochemistry and Molecular Pharmacology, and the Neuroscience Institute, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Chris N Goulbourne
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, 10962, USA
| | - Lennart Kuchenbecker-Pöls
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI) Group, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße, 52, 20246, Hamburg, Germany
| | - Bente Siebels
- Section for Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hannah Voß
- Section for Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonia Gocke
- Section for Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Hartmut Schlüter
- Section for Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michaela Schweizer
- Morphology and Electron Microscopy Core Facility, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI) Group, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße, 52, 20246, Hamburg, Germany
| | - Efrat Levy
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, 10962, USA
- Departments of Psychiatry, Biochemistry and Molecular Pharmacology, and the Neuroscience Institute, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Berta Puig
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI) Group, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße, 52, 20246, Hamburg, Germany.
| |
Collapse
|
9
|
Bamford RA, Zuko A, Eve M, Sprengers JJ, Post H, Taggenbrock RLRE, Fäβler D, Mehr A, Jones OJR, Kudzinskas A, Gandawijaya J, Müller UC, Kas MJH, Burbach JPH, Oguro-Ando A. CNTN4 modulates neural elongation through interplay with APP. Open Biol 2024; 14:240018. [PMID: 38745463 PMCID: PMC11293442 DOI: 10.1098/rsob.240018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 05/16/2024] Open
Abstract
The neuronal cell adhesion molecule contactin-4 (CNTN4) is genetically associated with autism spectrum disorder (ASD) and other psychiatric disorders. Cntn4-deficient mouse models have previously shown that CNTN4 plays important roles in axon guidance and synaptic plasticity in the hippocampus. However, the pathogenesis and functional role of CNTN4 in the cortex has not yet been investigated. Our study found a reduction in cortical thickness in the motor cortex of Cntn4 -/- mice, but cortical cell migration and differentiation were unaffected. Significant morphological changes were observed in neurons in the M1 region of the motor cortex, indicating that CNTN4 is also involved in the morphology and spine density of neurons in the motor cortex. Furthermore, mass spectrometry analysis identified an interaction partner for CNTN4, confirming an interaction between CNTN4 and amyloid-precursor protein (APP). Knockout human cells for CNTN4 and/or APP revealed a relationship between CNTN4 and APP. This study demonstrates that CNTN4 contributes to cortical development and that binding and interplay with APP controls neural elongation. This is an important finding for understanding the physiological function of APP, a key protein for Alzheimer's disease. The binding between CNTN4 and APP, which is involved in neurodevelopment, is essential for healthy nerve outgrowth.
Collapse
Affiliation(s)
- Rosemary A. Bamford
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Amila Zuko
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Madeline Eve
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Jan J. Sprengers
- Department of Translational Neuroscience, UMC Utrecht Brain Center, UMC Utrecht, Utrecht3508 AB, The Netherlands
| | - Harm Post
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht, Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Renske L. R. E. Taggenbrock
- Department of Translational Neuroscience, UMC Utrecht Brain Center, UMC Utrecht, Utrecht3508 AB, The Netherlands
| | - Dominique Fäβler
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Functional Genomics, University of Heidelberg, Heidelberg69120, Germany
| | - Annika Mehr
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Functional Genomics, University of Heidelberg, Heidelberg69120, Germany
| | - Owen J. R. Jones
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Aurimas Kudzinskas
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Josan Gandawijaya
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Ulrike C. Müller
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Functional Genomics, University of Heidelberg, Heidelberg69120, Germany
| | - Martien J. H. Kas
- Department of Translational Neuroscience, UMC Utrecht Brain Center, UMC Utrecht, Utrecht3508 AB, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - J. Peter H. Burbach
- Department of Translational Neuroscience, UMC Utrecht Brain Center, UMC Utrecht, Utrecht3508 AB, The Netherlands
| | - Asami Oguro-Ando
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- Research Institute for Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
10
|
Martinez AL, Shannon MJ, Sloan T, Mace EM. CD56/NCAM mediates cell migration of human NK cells by promoting integrin-mediated adhesion turnover. Mol Biol Cell 2024; 35:ar64. [PMID: 38507235 PMCID: PMC11151098 DOI: 10.1091/mbc.e23-12-0463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024] Open
Abstract
Natural killer (NK) cells patrol tissue to mediate lysis of virally infected and tumorigenic cells. Human NK cells are typically identified by their expression of neural cell adhesion molecule (NCAM, CD56), yet despite its ubiquitous expression on NK cells, CD56 remains a poorly understood protein on immune cells. CD56 has been previously demonstrated to play roles in NK cell cytotoxic function and cell migration. Specifically, CD56-deficient NK cells have impaired cell migration on stromal cells and CD56 is localized to the uropod of NK cells migrating on stroma. Here, we show that CD56 is required for NK cell migration on ICAM-1 and is required for the establishment of persistent cell polarity and unidirectional actin flow. The intracellular domain of CD56 (NCAM-140) is required for its function and the loss of CD56 leads to enlarged actin foci and sequestration of phosphorylated Pyk2 accompanied by increased size and frequency of activated LFA-1 clusters. Together, these data identify a role for CD56 in regulating human NK cell migration through modulation of actin dynamics and integrin turnover.
Collapse
Affiliation(s)
- Amera L. Martinez
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10024
| | - Michael J. Shannon
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10024
| | | | - Emily M. Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10024
| |
Collapse
|
11
|
Granato V, Congiu L, Jakovcevski I, Kleene R, Schwindenhammer B, Fernandes L, Freitag S, Schachner M, Loers G. Mice Mutated in the First Fibronectin Domain of Adhesion Molecule L1 Show Brain Malformations and Behavioral Abnormalities. Biomolecules 2024; 14:468. [PMID: 38672483 PMCID: PMC11048097 DOI: 10.3390/biom14040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The X-chromosome-linked cell adhesion molecule L1 (L1CAM), a glycoprotein mainly expressed by neurons in the central and peripheral nervous systems, has been implicated in many neural processes, including neuronal migration and survival, neuritogenesis, synapse formation, synaptic plasticity and regeneration. L1 consists of extracellular, transmembrane and cytoplasmic domains. Proteolytic cleavage of L1's extracellular and transmembrane domains by different proteases generates several L1 fragments with different functions. We found that myelin basic protein (MBP) cleaves L1's extracellular domain, leading to enhanced neuritogenesis and neuronal survival in vitro. To investigate in vivo the importance of the MBP-generated 70 kDa fragment (L1-70), we generated mice with an arginine to alanine substitution at position 687 (L1/687), thereby disrupting L1's MBP cleavage site and obliterating L1-70. Young adult L1/687 males showed normal anxiety and circadian rhythm activities but enhanced locomotion, while females showed altered social interactions. Older L1/687 males were impaired in motor coordination. Furthermore, L1/687 male and female mice had a larger hippocampus, with more neurons in the dentate gyrus and more proliferating cells in the subgranular layer, while the thickness of the corpus callosum and the size of lateral ventricles were normal. In summary, subtle mutant morphological changes result in subtle behavioral changes.
Collapse
Affiliation(s)
- Viviana Granato
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany; (V.G.); (L.C.); (R.K.); (S.F.)
| | - Ludovica Congiu
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany; (V.G.); (L.C.); (R.K.); (S.F.)
| | - Igor Jakovcevski
- Institut für Anatomie und Klinische Morphologie, Universität Witten/Herdecke, 58455 Witten, Germany; (I.J.); (B.S.)
- Department of Neuroanatomy and Molecular Brain Research, Institute of Anatomy, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany; (V.G.); (L.C.); (R.K.); (S.F.)
| | - Benjamin Schwindenhammer
- Institut für Anatomie und Klinische Morphologie, Universität Witten/Herdecke, 58455 Witten, Germany; (I.J.); (B.S.)
- Department of Neuroanatomy and Molecular Brain Research, Institute of Anatomy, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Luciana Fernandes
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany; (V.G.); (L.C.); (R.K.); (S.F.)
| | - Sandra Freitag
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany; (V.G.); (L.C.); (R.K.); (S.F.)
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany; (V.G.); (L.C.); (R.K.); (S.F.)
| |
Collapse
|
12
|
Zhu YJ, Deng CY, Fan L, Wang YQ, Zhou H, Xu HT. Combinatorial expression of γ-protocadherins regulates synaptic connectivity in the mouse neocortex. eLife 2024; 12:RP89532. [PMID: 38470230 DOI: 10.7554/elife.89532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
In the process of synaptic formation, neurons must not only adhere to specific principles when selecting synaptic partners but also possess mechanisms to avoid undesirable connections. Yet, the strategies employed to prevent unwarranted associations have remained largely unknown. In our study, we have identified the pivotal role of combinatorial clustered protocadherin gamma (γ-PCDH) expression in orchestrating synaptic connectivity in the mouse neocortex. Through 5' end single-cell sequencing, we unveiled the intricate combinatorial expression patterns of γ-PCDH variable isoforms within neocortical neurons. Furthermore, our whole-cell patch-clamp recordings demonstrated that as the similarity in this combinatorial pattern among neurons increased, their synaptic connectivity decreased. Our findings elucidate a sophisticated molecular mechanism governing the construction of neural networks in the mouse neocortex.
Collapse
Affiliation(s)
- Yi-Jun Zhu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cai-Yun Deng
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Liu Fan
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Ya-Qian Wang
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Hui Zhou
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Hua-Tai Xu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| |
Collapse
|
13
|
Wang M, Fan J, Shao Z. Cellular and Molecular Mechanisms Underlying Synaptic Subcellular Specificity. Brain Sci 2024; 14:155. [PMID: 38391729 PMCID: PMC10886843 DOI: 10.3390/brainsci14020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 02/24/2024] Open
Abstract
Chemical synapses are essential for neuronal information storage and relay. The synaptic signal received or sent from spatially distinct subcellular compartments often generates different outcomes due to the distance or physical property difference. Therefore, the final output of postsynaptic neurons is determined not only by the type and intensity of synaptic inputs but also by the synaptic subcellular location. How synaptic subcellular specificity is determined has long been the focus of study in the neurodevelopment field. Genetic studies from invertebrates such as Caenorhabditis elegans (C. elegans) have uncovered important molecular and cellular mechanisms required for subcellular specificity. Interestingly, similar molecular mechanisms were found in the mammalian cerebellum, hippocampus, and cerebral cortex. This review summarizes the comprehensive advances in the cellular and molecular mechanisms underlying synaptic subcellular specificity, focusing on studies from C. elegans and rodents.
Collapse
Affiliation(s)
- Mengqing Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, 131 Dong An Rd, Research Building B4017, Shanghai 200032, China
| | - Jiale Fan
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, 131 Dong An Rd, Research Building B4017, Shanghai 200032, China
| | - Zhiyong Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, 131 Dong An Rd, Research Building B4017, Shanghai 200032, China
| |
Collapse
|
14
|
Wang H, Huo R, He K, Cheng L, Zhang S, Yu M, Zhao W, Li H, Xue J. Perineural invasion in colorectal cancer: mechanisms of action and clinical relevance. Cell Oncol (Dordr) 2024; 47:1-17. [PMID: 37610689 PMCID: PMC10899381 DOI: 10.1007/s13402-023-00857-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND In recent years, the significance of the nervous system in the tumor microenvironment has gained increasing attention. The bidirectional communication between nerves and cancer cells plays a critical role in tumor initiation and progression. Perineural invasion (PNI) occurs when tumor cells invade the nerve sheath and/or encircle more than 33% of the nerve circumference. PNI is a common feature in various malignancies and is associated with tumor invasion, metastasis, cancer-related pain, and unfavorable clinical outcomes. The colon and rectum are highly innervated organs, and accumulating studies support PNI as a histopathologic feature of colorectal cancer (CRC). Therefore, it is essential to investigate the role of nerves in CRC and comprehend the mechanisms of PNI to impede tumor progression and improve patient survival. CONCLUSION This review elucidates the clinical significance of PNI, summarizes the underlying cellular and molecular mechanisms, introduces various experimental models suitable for studying PNI, and discusses the therapeutic potential of targeting this phenomenon. By delving into the intricate interactions between nerves and tumor cells, we hope this review can provide valuable insights for the future development of CRC treatments.
Collapse
Affiliation(s)
- Hao Wang
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China
| | - Ruixue Huo
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China
| | - Kexin He
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China
| | - Li Cheng
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China
| | - Shan Zhang
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Minhao Yu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200217, P.R. China
| | - Wei Zhao
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China.
| | - Hui Li
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China.
| | - Junli Xue
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China.
| |
Collapse
|
15
|
Barman B, Thakur MK. Neuropsin promotes hippocampal synaptogenesis by regulating the expression and cleavage of L1CAM. J Cell Sci 2024; 137:jcs261422. [PMID: 38206094 DOI: 10.1242/jcs.261422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
During early postnatal brain development, the formation of proper synaptic connections between neurons is crucial for the development of functional neural networks. Recent studies have established the involvement of protease-mediated modulations of extracellular components in both synapse formation and elimination. The secretory serine protease neuropsin (also known as kallikrein-8) cleaves a few transmembrane or extracellular matrix proteins in a neural activity-dependent manner and regulates neural plasticity. However, neuropsin-dependent proteolysis of extracellular components and the involvement of these components in mouse brain development are poorly understood. We have observed that during hippocampus development, expression of neuropsin and levels of full-length or cleaved fragments of the neuropsin substrate protein L1 cell adhesion molecule (L1CAM) positively correlate with synaptogenesis. Our subcellular fractionation studies show that the expression of neuropsin and its proteolytic activity on L1CAM are enriched at developing hippocampal synapses. Activation of neuropsin expression upregulates the transcription and cleavage of L1CAM. Furthermore, blocking of neuropsin activity, as well as knockdown of L1CAM expression, significantly downregulates in vitro hippocampal synaptogenesis. Taken together, these findings provide evidence for the involvement of neuropsin activity-dependent regulation of L1CAM expression and cleavage in hippocampal synaptogenesis.
Collapse
Affiliation(s)
- Bhabotosh Barman
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Mahendra Kumar Thakur
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
16
|
Shiner A, Sperandio RC, Naimi M, Emmenegger U. Prostate Cancer Liver Metastasis: An Ominous Metastatic Site in Need of Distinct Management Strategies. J Clin Med 2024; 13:734. [PMID: 38337427 PMCID: PMC10856097 DOI: 10.3390/jcm13030734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Prostate cancer liver metastasis (PCLM), seen in upwards of 25% of metastatic castration-resistant PC (mCRPC) patients, is the most lethal site of mCRPC with a median overall survival of 10-14 months. Despite its ominous prognosis and anticipated rise in incidence due to longer survival with contemporary therapy, PCLM is understudied. This review aims to summarize the existing literature regarding the risk factors associated with the development of PCLM, and to identify areas warranting further research. A literature search was conducted through Ovid MEDLINE from 2000 to March 2023. Relevant subject headings and text words were used to capture the following concepts: "Prostatic Neoplasms", "Liver Neoplasms", and "Neoplasm Metastasis". Citation searching identified additional manuscripts. Forty-one studies were retained for detailed analysis. The clinical risk factors for visceral/liver metastasis included <70 years, ≥T3 tumor, N1 nodal stage, de novo metastasis, PSA >20 ng/mL, and a Gleason score >8. Additional risk factors comprised elevated serum AST, LDH or ALP, decreased Hb, genetic markers like RB1 and PTEN loss, PIK3CB and MYC amplification, as well as numerous PC treatments either acting directly or indirectly through inducing liver injury. Further research regarding predictive factors, early detection strategies, and targeted therapies for PCLM are critical for improving patient outcomes.
Collapse
Affiliation(s)
- Audrey Shiner
- Division of Medical Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (A.S.); (R.C.S.); (M.N.)
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rubens Copia Sperandio
- Division of Medical Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (A.S.); (R.C.S.); (M.N.)
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mahdi Naimi
- Division of Medical Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (A.S.); (R.C.S.); (M.N.)
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Urban Emmenegger
- Division of Medical Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (A.S.); (R.C.S.); (M.N.)
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
17
|
He L, Guo H, Wang H, Zhu K, Li D, Zhang C, Ai Y, Yang JJ. Rbfox1 regulates alternative splicing of Nrcam in primary sensory neurons to mediate peripheral nerve injury-induced neuropathic pain. Neurotherapeutics 2024; 21:e00309. [PMID: 38241164 PMCID: PMC10903086 DOI: 10.1016/j.neurot.2023.e00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 01/21/2024] Open
Abstract
The primary sensory neurons of the dorsal root ganglia (DRG) are subject to transcriptional alterations following peripheral nerve injury. These alterations are believed to play a pivotal role in the genesis of neuropathic pain. Alternative RNA splicing is a process that generates multiple transcript variants from a single gene, significantly contributing to the complexity of the transcriptome. However, little is known about the functional significance and control of alternative RNA splicing in injured DRG after spinal nerve ligation (SNL). In our study, we conducted a comprehensive transcriptome profiling and bioinformatic analysis to approach and identified a neuron-specific isoform of an RNA splicing regulator, RNA-binding Fox1 (Rbfox1, also known as A2BP1), as a crucial regulator of alternative RNA splicing in injured DRG after SNL. Notably, Rbfox1 expression is markedly reduced in injured DRG following peripheral nerve injury. Restoring this reduction effectively mitigates nociceptive hypersensitivity. Conversely, mimicking the downregulation of Rbfox1 expression generates neuropathic pain symptoms. Mechanistically, we uncovered that Rbfox1 may be a key factor influencing alternative RNA splicing of neuron-glial related cell adhesion molecule (NrCAM), a key neuronal cell adhesion molecule. In injured DRG after SNL, the downregulation of Rbfox1amplifies the insertion of exon 10 in Nrcam transcripts, leading to an increase in long Nrcam variants (L-Nrcam) and a corresponding decrease in short Nrcam variants (S-Nrcam) within injured DRG. In summary, our study supports the essential role of Rbfox1 in neuropathic pain within DRG, probably via the regulation of Nrcam splicing. These findings suggest that Rbfox1 could be a potential target for neuropathic pain therapy.
Collapse
Affiliation(s)
- Long He
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Haoyu Guo
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China; Department of Laboratory Animal Resources, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Hongwei Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Kuicheng Zhu
- Department of Laboratory Animal Resources, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Da Li
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Chaofan Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Yanqiu Ai
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
18
|
Aktas B, Ozgun A, Kilickap BD, Garipcan B. Cell adhesion molecule immobilized gold surfaces for enhanced neuron-electrode interfaces. J Biomed Mater Res B Appl Biomater 2024; 112:e35310. [PMID: 37950592 DOI: 10.1002/jbm.b.35310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/24/2023] [Accepted: 07/31/2023] [Indexed: 11/12/2023]
Abstract
To provide a long-term solution for increasing the biocompatibility of neuroprosthetics, approaches to reduce the side effects of invasive neuro-implantable devices are still in need of improvement. Physical, chemical, and bioactive design aspects of the biomaterials are proven to be important for providing proper cell-to-cell, cell-to-material interactions. Particularly, modification of implant surfaces with bioactive cues, especially cell adhesion molecules (CAMs) that capitalize on native neural adhesion mechanisms, are promising candidates in favor of providing efficient interfaces. Within this concept, this study utilized specific CAMs, namely N-Cadherin (Neural cadherin, N-Cad) and neural cell adhesion molecule (NCAM), to enhance neuron-electrode contact by mimicking the cell-to-ECM interactions for improving the survival of cells and promoting neurite outgrowth. For this purpose, representative gold electrode surfaces were modified with N-Cadherin, NCAM, and the mixture (1:1) of these molecules. Modifications were characterized, and the effect of surface modification on both differentiated and undifferentiated neuroblastoma SH-SY5Y cell lines were compared. The findings demonstrated the successful modification of these molecules which subsequently exhibited biocompatible properties as evidenced by the cell viability results. In cell culture experiments, the CAMs displayed promising results in promoting neurite outgrowth compared to conventional poly-l-lysine coated surfaces, especially NCAM and N-Cad/NCAM modified surfaces clearly showed significant improvement. Overall, this optimized approach is expected to provide an insight into the action mechanisms of cells against the local environment and advance processes for the fabrication of alternative neural interfaces.
Collapse
Affiliation(s)
- Bengu Aktas
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| | - Alp Ozgun
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Bora Garipcan
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| |
Collapse
|
19
|
Dutta S, Bhattacharya S, Harris H, Islam R, Bodas S, Polavaram N, Mishra J, Das D, Seshacharyulu P, Kalluchi A, Pal A, Kohli M, Lele S, Muders M, Batra S, Ghosh P, Datta K, Rowley M. Understanding the role of Pax5 in development of taxane-resistant neuroendocrine like prostate cancers. RESEARCH SQUARE 2023:rs.3.rs-3464475. [PMID: 38168280 PMCID: PMC10760218 DOI: 10.21203/rs.3.rs-3464475/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Resistance to the current Androgen Receptor Signaling Inhibitor (ARSI) therapies has led to higher incidences of therapy-induced neuroendocrine-like prostate cancer (t-NEPC). This highly aggressive subtype with predominant small cell-like characteristics is resistant to taxane chemotherapies and has a dismal overall survival. t-NEPCs are mostly treated with platinum-based drugs with a combination of etoposide or taxane and have less selectivity and high systemic toxicity, which often limit their clinical potential. During t-NEPC transformation, adenocarcinomas lose their luminal features and adopt neuro-basal characteristics. Whether the adaptive neuronal characteristics of t-NEPC are responsible for such taxane resistance remains unknown. Pathway analysis from patient gene-expression databases indicates that t-NEPC upregulates various neuronal pathways associated with enhanced cellular networks. To identify transcription factor(s) (TF) that could be important for promoting the gene expression for neuronal characters in t-NEPC, we performed ATAC-Seq, acetylated-histone ChIP-seq, and RNA-seq in our NE-like cell line models and analyzed the promoters of transcriptionally active and significantly enriched neuroendocrine-like (NE-like) cancer-specific genes. Our results indicate that Pax5 could be an important transcription factor for neuronal gene expression and specific to t-NEPC. Pathway analysis revealed that Pax5 expression is involved in axonal guidance, neurotransmitter regulation, and neuronal adhesion, which are critical for strong cellular communications. Further results suggest that depletion of Pax5 disrupts cellular interaction in NE-like cells and reduces surface growth factor receptor activation, thereby, sensitizing them to taxane therapies. Moreover, t-NEPC specific hydroxymethylation of Pax5 promoter CpG islands favors Pbx1 binding to induce Pax5 expression. Based on our study, we concluded that continuous exposure to ARSI therapies leads to epigenetic modifications and Pax5 activation in t-NEPC, which promotes the expression of genes necessary to adopt taxane-resistant NE-like cancer. Thus, targeting the Pax5 axis can be beneficial for reverting their taxane sensitivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Michael Muders
- Rudolf Becker Laboratory for Prostate Cancer Research, Center of Pathology, University of Bonn Medical Center
| | - Surinder Batra
- University of Nebraska Medical Center, Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases
| | | | | | | |
Collapse
|
20
|
Martinez AL, Shannon MJ, Sloan T, Mace EM. CD56/NCAM mediates cell migration of human NK cells by promoting integrin-mediated adhesion turnover. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.567714. [PMID: 38045340 PMCID: PMC10690223 DOI: 10.1101/2023.11.21.567714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Natural killer (NK) cells patrol tissue to mediate lysis of virally infected and tumorigenic cells. Human NK cells are typically identified by their expression of neural cell adhesion molecule (NCAM, CD56), yet, despite its ubiquitous expression on NK cells, CD56 remains a poorly understand protein on immune cells. CD56 has been previously demonstrated to play roles in NK cell cytotoxic function and cell migration. Specifically, CD56-deficient NK cells have impaired cell migration on stromal cells and CD56 is localized to the uropod of NK cells migrating on stroma. Here, we show that CD56 is required for NK cell migration on ICAM-1 and is required for the establishment of persistent cell polarity and unidirectional actin flow. The intracellular domain of CD56 (NCAM-140) is required for its function, and the loss of CD56 leads to enlarged actin foci and sequestration of phosphorylated Pyk2, accompanied by increased size and frequency of activated LFA-1 clusters. Together, these data identify a role for CD56 in regulating human NK cell migration through modulation of actin dynamics and integrin turnover.
Collapse
Affiliation(s)
- Amera L Martinez
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| | - Michael J Shannon
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| | | | - Emily M Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| |
Collapse
|
21
|
Wang Y, Chen R, Han M, Liu S, Xie Q, Hao C. A Case of NCAM1-Positive Lupus Nephritis with NCAM1 Antibody Titers Responsive to Rituximab. Nephron Clin Pract 2023; 148:312-318. [PMID: 37778328 DOI: 10.1159/000534037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/11/2023] [Indexed: 10/03/2023] Open
Abstract
Neural cell adhesion molecule 1 (NCAM1) is a recently identified new antigen of membranous nephropathy (MN) mostly secondary to systemic lupus erythematosus with a low positive rate of 6.6%, and its corresponding antibody was detected in patients' sera. Here, we reported a case of NCAM1-positive lupus nephritis (class V+III) developed from MN. The patient was refractory to multiple immunosuppressive regimens but achieved remission after the application of rituximab as an add-on therapy and showed a reduction of anti-NCAM1 antibody and proteinuria.
Collapse
Affiliation(s)
- Yifeng Wang
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, China,
| | - Ruiying Chen
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Han
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaojun Liu
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qionghong Xie
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - ChuanMing Hao
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Salluzzo M, Vianello C, Abdullatef S, Rimondini R, Piccoli G, Carboni L. The Role of IgLON Cell Adhesion Molecules in Neurodegenerative Diseases. Genes (Basel) 2023; 14:1886. [PMID: 37895235 PMCID: PMC10606101 DOI: 10.3390/genes14101886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
In the brain, cell adhesion molecules (CAMs) are critical for neurite outgrowth, axonal fasciculation, neuronal survival and migration, and synapse formation and maintenance. Among CAMs, the IgLON family comprises five members: Opioid Binding Protein/Cell Adhesion Molecule Like (OPCML or OBCAM), Limbic System Associated Membrane Protein (LSAMP), neurotrimin (NTM), Neuronal Growth Regulator 1 (NEGR1), and IgLON5. IgLONs exhibit three N-terminal C2 immunoglobulin domains; several glycosylation sites; and a glycosylphosphatidylinositol anchoring to the membrane. Interactions as homo- or heterodimers in cis and in trans, as well as binding to other molecules, appear critical for their functions. Shedding by metalloproteases generates soluble factors interacting with cellular receptors and activating signal transduction. The aim of this review was to analyse the available data implicating a role for IgLONs in neuropsychiatric disorders. Starting from the identification of a pathological role for antibodies against IgLON5 in an autoimmune neurodegenerative disease with a poorly understood mechanism of action, accumulating evidence links IgLONs to neuropsychiatric disorders, albeit with still undefined mechanisms which will require future thorough investigations.
Collapse
Affiliation(s)
- Marco Salluzzo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Clara Vianello
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (C.V.); (R.R.)
| | - Sandra Abdullatef
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy; (S.A.); (G.P.)
| | - Roberto Rimondini
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (C.V.); (R.R.)
| | - Giovanni Piccoli
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy; (S.A.); (G.P.)
| | - Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
23
|
Tschang M, Kumar S, Young W, Schachner M, Theis T. Small Organic Compounds Mimicking the Effector Domain of Myristoylated Alanine-Rich C-Kinase Substrate Stimulate Female-Specific Neurite Outgrowth. Int J Mol Sci 2023; 24:14271. [PMID: 37762575 PMCID: PMC10532424 DOI: 10.3390/ijms241814271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Myristoylated alanine-rich C-kinase substrate (MARCKS) is a critical member of a signaling cascade that influences disease-relevant neural functions such as neural growth and plasticity. The effector domain (ED) of MARCKS interacts with the extracellular glycan polysialic acid (PSA) through the cell membrane to stimulate neurite outgrowth in cell culture. We have shown that a synthetic ED peptide improves functional recovery after spinal cord injury in female but not male mice. However, peptides themselves are unstable in therapeutic applications, so we investigated more pharmacologically relevant small organic compounds that mimic the ED peptide to maximize therapeutic potential. Using competition ELISAs, we screened small organic compound libraries to identify molecules that structurally and functionally mimic the ED peptide of MARCKS. Since we had shown sex-specific effects of MARCKS on spinal cord injury recovery, we assayed neuronal viability as well as neurite outgrowth from cultured cerebellar granule cells of female and male mice separately. We found that epigallocatechin, amiodarone, sertraline, tegaserod, and nonyloxytryptamine bind to a monoclonal antibody against the ED peptide, and compounds stimulate neurite outgrowth in cultured cerebellar granule cells of female mice only. Therefore, a search for compounds that act in males appears warranted.
Collapse
Affiliation(s)
- Monica Tschang
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA; (M.T.); (W.Y.)
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08844, USA;
| | - Wise Young
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA; (M.T.); (W.Y.)
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA; (M.T.); (W.Y.)
| | - Thomas Theis
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA; (M.T.); (W.Y.)
| |
Collapse
|
24
|
Sah S, Keable R, Pfundstein G, Clemens KJ, Begg D, Schachner M, Leshchyns'ka I, Sytnyk V. Deficiency in the neural cell adhesion molecule 2 (NCAM2) reduces axonal levels of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), affects axonal organization in the hippocampus, and leads to behavioral deficits. Cereb Cortex 2023; 33:10047-10065. [PMID: 37522285 DOI: 10.1093/cercor/bhad264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/25/2023] [Accepted: 01/26/2023] [Indexed: 08/01/2023] Open
Abstract
The neural cell adhesion molecule 2 (NCAM2) regulates axonal organization in the central nervous system via mechanisms that have remained poorly understood. We now show that NCAM2 increases axonal levels of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), a protease that regulates axonal guidance. In brains of NCAM2-deficient mice, BACE1 levels are reduced in hippocampal mossy fiber projections, and the infrapyramidal bundle of these projections is shortened. This abnormal axonal organization correlates with impaired short-term spatial memory and cognitive flexibility in NCAM2-deficient male and female mice. Self-grooming, rearing, digging and olfactory acuity are increased in NCAM2-deficient male mice, when compared with littermate wild-type mice of the same sex. NCAM2-deficient female mice also show increased self-grooming, but are reduced in rearing, and do not differ from female wild-type mice in olfactory acuity and digging behavior. Our results indicate that errors in axonal guidance and organization caused by impaired BACE1 function can underlie the manifestation of neurodevelopmental disorders, including autism as found in humans with deletions of the NCAM2 gene.
Collapse
Affiliation(s)
- Saroj Sah
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Ryan Keable
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Grant Pfundstein
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Kelly J Clemens
- School of Psychology, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Denovan Begg
- School of Psychology, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, United States
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
25
|
Saha A, Gavert N, Brabletz T, Ben-Ze’ev A. An Increase in Mucin2 Expression Is Required for Colon Cancer Progression Mediated by L1. Int J Mol Sci 2023; 24:13418. [PMID: 37686224 PMCID: PMC10488000 DOI: 10.3390/ijms241713418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
An induction in the expression of the cell adhesion receptor L1, a Wnt target gene, is a characteristic feature of Wnt/β-catenin activation in colon cancer cells at later stages of the disease. We investigated the proteins secreted following L1 expression in colon cancer cells and identified Mucin2 among the most abundant secreted proteins. We found that suppressing Mucin2 expression in L1-expressing colon cancer cells inhibits cell proliferation, motility, tumorigenesis, and liver metastasis. We detected several signaling pathways involved in Mucin2 induction in L1-expressing cells. In human colon cancer tissue, Mucin2 expression was significantly reduced or lost in the adenocarcinoma tissue, while in the mucinous subtype of colon cancer tissue, Mucin2 expression was increased. An increased signature of L1/Mucin2 expression reduced the survival rate of human colon cancer patients. Thus, induction of Mucin2 expression by L1 is required during mucinous colon cancer progression and can serve as a marker for diagnosis and a target for therapy.
Collapse
Affiliation(s)
- Arka Saha
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.S.); (N.G.)
| | - Nancy Gavert
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.S.); (N.G.)
| | - Thomas Brabletz
- Department of Experimental Medicine I, Nikolaus-Feibiger-Center for Molecular Medicine, University of Erlangen-Nuernberg, 91054 Erlangen, Germany;
| | - Avri Ben-Ze’ev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.S.); (N.G.)
| |
Collapse
|
26
|
Qiao X, Liu C, Wang W, Yang C, Li M, Yi Q, Kong N, Qiu L, Liu X, Wang L, Song L. A neural cell adhesion molecule from oyster Crassostrea gigas: Molecular identification and immune functional characterization. Int J Biol Macromol 2023; 247:125756. [PMID: 37429340 DOI: 10.1016/j.ijbiomac.2023.125756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Neural cell adhesion molecules (NCAMs) are large cell-surface glycoproteins playing important roles in cell-cell and cell-extracellular matrix interactions in nervous system. Recent study identified a homologue of NCAM (CgNCAM) from the Pacific oyster Crassostrea gigas. Its ORF was of 2634 bp which encodes a protein (877 amino acids) consisting of five immunoglobulin domains and two fibronectin type III domains. CgNCAM transcripts were broadly distributed in oyster tissues especially in mantle, labial palp and haemolymph. CgNCAM showed up-regulated expression in haemocytes of oysters after Vibrio splendidus and Staphylococcus aureus stimulation. The recombinant CgNCAM protein (rCgNCAM) was able to bind manose, lipopolysaccharide and glucan, as well as different microbes including Gram-negative bacteria and fungi. rCgNCAM displayed bacterial agglutination and hemagglutination activity. CgNCAM improved the phagocytosis of haemocytes towards V. splendidus by regulating the expression of CgIntegrin, CgRho J and CgMAPKK. Moreover, CgNCAM was involved in the extracellular trap establishment of haemocytes after V. splendidus stimulation. The results collectively indicated that CgNCAM acted as a recognition receptor executing multiple immune functions to recognize and eliminate invading microorganisms in innate immunity of oysters.
Collapse
Affiliation(s)
- Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Conghui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Chuanyan Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Meijia Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Ning Kong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiyang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
27
|
Loers G, Kleene R, Granato V, Bork U, Schachner M. Interaction of L1CAM with LC3 Is Required for L1-Dependent Neurite Outgrowth and Neuronal Survival. Int J Mol Sci 2023; 24:12531. [PMID: 37569906 PMCID: PMC10419456 DOI: 10.3390/ijms241512531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
The neural cell adhesion molecule L1 (also called L1CAM or CD171) functions not only in cell migration, but also in cell survival, differentiation, myelination, neurite outgrowth, and signaling during nervous system development and in adults. The proteolytic cleavage of L1 in its extracellular domain generates soluble fragments which are shed into the extracellular space and transmembrane fragments that are internalized into the cell and transported to various organelles to regulate cellular functions. To identify novel intracellular interaction partners of L1, we searched for protein-protein interaction motifs and found two potential microtubule-associated protein 1 light-chain 3 (LC3)-interacting region (LIR) motifs within L1, one in its extracellular domain and one in its intracellular domain. By ELISA, immunoprecipitation, and proximity ligation assay using L1 mutant mice lacking the 70 kDa L1 fragment (L1-70), we showed that L1-70 interacts with LC3 via the extracellular LIR motif in the fourth fibronectin type III domain, but not by the motif in the intracellular domain. The disruption of the L1-LC3 interaction reduces L1-mediated neurite outgrowth and neuronal survival.
Collapse
Affiliation(s)
- Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Viviana Granato
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Ute Bork
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Melitta Schachner
- Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| |
Collapse
|
28
|
Deng Z, Chen M, Zhao Z, Xiao W, Liu T, Peng Q, Wu Z, Xu S, Shi W, Jian D, Wang B, Liu F, Tang Y, Huang Y, Zhang Y, Wang Q, Sun L, Xie H, Zhang G, Li J. Whole genome sequencing identifies genetic variants associated with neurogenic inflammation in rosacea. Nat Commun 2023; 14:3958. [PMID: 37402769 DOI: 10.1038/s41467-023-39761-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/28/2023] [Indexed: 07/06/2023] Open
Abstract
Rosacea is a chronic inflammatory skin disorder with high incidence rate. Although genetic predisposition to rosacea is suggested by existing evidence, the genetic basis remains largely unknown. Here we present the integrated results of whole genome sequencing (WGS) in 3 large rosacea families and whole exome sequencing (WES) in 49 additional validation families. We identify single rare deleterious variants of LRRC4, SH3PXD2A and SLC26A8 in large families, respectively. The relevance of SH3PXD2A, SLC26A8 and LRR family genes in rosacea predisposition is underscored by presence of additional variants in independent families. Gene ontology analysis suggests that these genes encode proteins taking part in neural synaptic processes and cell adhesion. In vitro functional analysis shows that mutations in LRRC4, SH3PXD2A and SLC26A8 induce the production of vasoactive neuropeptides in human neural cells. In a mouse model recapitulating a recurrent Lrrc4 mutation from human patients, we find rosacea-like skin inflammation, underpinned by excessive vasoactive intestinal peptide (VIP) release by peripheral neurons. These findings strongly support familial inheritance and neurogenic inflammation in rosacea development and provide mechanistic insight into the etiopathogenesis of the condition.
Collapse
Affiliation(s)
- Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhixiang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenqin Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tangxiele Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qinqin Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Wu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - San Xu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Shi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dan Jian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ben Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fangfen Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Tang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yingxue Huang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Wang
- Hunan Binsis Biotechnology Co., Ltd, Changsha, Hunan, China
| | - Lunquan Sun
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guohong Zhang
- Department of Pathology, Shantou University Medical College, Shantou, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
29
|
Davleeva MA, Garifulin RR, Bashirov FV, Izmailov AA, Nurullin LF, Salafutdinov II, Gatina DZ, Shcherbinin DN, Lysenko AA, Tutykhina IL, Shmarov MM, Islamov RR. Molecular and cellular changes in the post-traumatic spinal cord remodeling after autoinfusion of a genetically-enriched leucoconcentrate in a mini-pig model. Neural Regen Res 2023; 18:1505-1511. [PMID: 36571355 PMCID: PMC10075125 DOI: 10.4103/1673-5374.360241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Post-traumatic spinal cord remodeling includes both degenerating and regenerating processes, which affect the potency of the functional recovery after spinal cord injury (SCI). Gene therapy for spinal cord injury is proposed as a promising therapeutic strategy to induce positive changes in remodeling of the affected neural tissue. In our previous studies for delivering the therapeutic genes at the site of spinal cord injury, we developed a new approach using an autologous leucoconcentrate transduced ex vivo with chimeric adenoviruses (Ad5/35) carrying recombinant cDNA. In the present study, the efficacy of the intravenous infusion of an autologous genetically-enriched leucoconcentrate simultaneously producing recombinant vascular endothelial growth factor (VEGF), glial cell line-derived neurotrophic factor (GDNF), and neural cell adhesion molecule (NCAM) was evaluated with regard to the molecular and cellular changes in remodeling of the spinal cord tissue at the site of damage in a model of mini-pigs with moderate spinal cord injury. Experimental animals were randomly divided into two groups of 4 pigs each: the therapeutic (infused with the leucoconcentrate simultaneously transduced with a combination of the three chimeric adenoviral vectors Ad5/35-VEGF165, Ad5/35-GDNF, and Ad5/35-NCAM1) and control groups (infused with intact leucoconcentrate). The morphometric and immunofluorescence analysis of the spinal cord regeneration in the rostral and caudal segments according to the epicenter of the injury in the treated animals compared to the control mini-pigs showed: (1) higher sparing of the grey matter and increased survivability of the spinal cord cells (lower number of Caspase-3-positive cells and decreased expression of Hsp27); (2) recovery of synaptophysin expression; (3) prevention of astrogliosis (lower area of glial fibrillary acidic protein-positive astrocytes and ionized calcium binding adaptor molecule 1-positive microglial cells); (4) higher growth rates of regenerating βIII-tubulin-positive axons accompanied by a higher number of oligodendrocyte transcription factor 2-positive oligodendroglial cells in the lateral corticospinal tract region. These results revealed the efficacy of intravenous infusion of the autologous genetically-enriched leucoconcentrate producing recombinant VEGF, GDNF, and NCAM in the acute phase of spinal cord injury on the positive changes in the post-traumatic remodeling nervous tissue at the site of direct injury. Our data provide a solid platform for a new ex vivo gene therapy for spinal cord injury and will facilitate further translation of regenerative therapies in clinical neurology.
Collapse
Affiliation(s)
| | | | | | | | - Leniz Faritovich Nurullin
- Department of Histology, Cytology and Embryology, Kazan State Medical University; Kazan Institute of Biochemistry and Biophysics, Federal Research Center of Kazan Scientific Center of Russian Academy of Sciences, Kazan, Russia
| | - Ilnur Ildusovich Salafutdinov
- Department of Histology, Cytology and Embryology, Kazan State Medical University; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | | | - Dmitrij Nikolaevich Shcherbinin
- The National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrei Aleksandrovich Lysenko
- The National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Irina Leonidovna Tutykhina
- The National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Maksim Mikhailovich Shmarov
- The National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, Moscow, Russia
| | | |
Collapse
|
30
|
Garifulin R, Davleeva M, Izmailov A, Fadeev F, Markosyan V, Shevchenko R, Minyazeva I, Minekayev T, Lavrov I, Islamov R. Evaluation of the Autologous Genetically Enriched Leucoconcentrate on the Lumbar Spinal Cord Morpho-Functional Recovery in a Mini Pig with Thoracic Spine Contusion Injury. Biomedicines 2023; 11:biomedicines11051331. [PMID: 37239001 DOI: 10.3390/biomedicines11051331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Pathological changes associated with spinal cord injury (SCI) can be observed distant, rostral, or caudal to the epicenter of injury. These remote areas represent important therapeutic targets for post-traumatic spinal cord repair. The present study aimed to investigate the following in relation to SCI: distant changes in the spinal cord, peripheral nerve, and muscles. METHODS The changes in the spinal cord, the tibial nerve, and the hind limb muscles were evaluated in control SCI animals and after intravenous infusion of autologous leucoconcentrate enriched with genes encoding neuroprotective factors (VEGF, GDNF, and NCAM), which previously demonstrated a positive effect on post-traumatic restoration. RESULTS Two months after thoracic contusion in the treated mini pigs, a positive remodeling of the macro- and microglial cells, expression of PSD95 and Chat in the lumbar spinal cord, and preservation of the number and morphological characteristics of the myelinated fibers in the tibial nerve were observed and were aligned with hind limb motor recovery and reduced soleus muscle atrophy. CONCLUSION Here, we show the positive effect of autologous genetically enriched leucoconcentrate-producing recombinant neuroprotective factors on targets distant to the primary lesion site in mini pigs with SCI. These findings open new perspectives for the therapy of SCI.
Collapse
Affiliation(s)
- Ravil Garifulin
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Maria Davleeva
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Andrei Izmailov
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Filip Fadeev
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Vage Markosyan
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Roman Shevchenko
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Irina Minyazeva
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Tagir Minekayev
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Igor Lavrov
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Rustem Islamov
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| |
Collapse
|
31
|
Liu X, Ding XF, Wen B, Ma TF, Qin-Wang, Li ZJ, Zhang YS, Gao JZ, Chen ZZ. Genome-wide identification and skin expression of immunoglobulin superfamily in discus fish (Symphysodon aequifasciatus) reveal common genes associated with vertebrate lactation. Gene 2023; 862:147260. [PMID: 36775217 DOI: 10.1016/j.gene.2023.147260] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/12/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023]
Abstract
Discus Symphysodon spp. employs an unusual parental care behavior where fry feed on parental skin mucus after hatching. Studies on discus immunoglobulin superfamily (IgSF) especially during parental care are scarce. Here, a total of 518 IgSF members were identified based on discus genome and clustered into 12 groups, unevenly distributing on 30 linkage groups. A total of 92 pairs of tandem duplication and 40 pairs of segmental duplication that underwent purifying selection were identified. IgSF genes expressed differentially in discus skin during different care stages and between male and female parents. Specifically, the transcription of btn1a1, similar with mammalian lactation, increased after spawning, reached a peak when fry started biting on parents' skin mucus, and then decreased. The expression of btn2a1 and other immune members, e.g., nect4, fcl5 and cd22, were up-regulated when fry stopped biting on mucus. These results suggest the expression differentiation of IgSF genes in skin of discus fish during parental care.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Xiang-Fei Ding
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Wen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Teng-Fei Ma
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Qin-Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Zhong-Jun Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yan-Shen Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jian-Zhong Gao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zai-Zhong Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
32
|
Congiu L, Granato V, Jakovcevski I, Kleene R, Fernandes L, Freitag S, Kneussel M, Schachner M, Loers G. Mice Mutated in the Third Fibronectin Domain of L1 Show Enhanced Hippocampal Neuronal Cell Death, Astrogliosis and Alterations in Behavior. Biomolecules 2023; 13:776. [PMID: 37238646 PMCID: PMC10216033 DOI: 10.3390/biom13050776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Adhesion molecules play major roles in cell proliferation, migration, survival, neurite outgrowth and synapse formation during nervous system development and in adulthood. The neural cell adhesion molecule L1 contributes to these functions during development and in synapse formation and synaptic plasticity after trauma in adulthood. Mutations of L1 in humans result in L1 syndrome, which is associated with mild-to-severe brain malformations and mental disabilities. Furthermore, mutations in the extracellular domain were shown to cause a severe phenotype more often than mutations in the intracellular domain. To explore the outcome of a mutation in the extracellular domain, we generated mice with disruption of the dibasic sequences RK and KR that localize to position 858RKHSKR863 in the third fibronectin type III domain of murine L1. These mice exhibit alterations in exploratory behavior and enhanced marble burying activity. Mutant mice display higher numbers of caspase 3-positive neurons, a reduced number of principle neurons in the hippocampus, and an enhanced number of glial cells. Experiments suggest that disruption of the dibasic sequence in L1 results in subtle impairments in brain structure and functions leading to obsessive-like behavior in males and reduced anxiety in females.
Collapse
Affiliation(s)
- Ludovica Congiu
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany (R.K.); (S.F.); (M.K.)
| | - Viviana Granato
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany (R.K.); (S.F.); (M.K.)
| | - Igor Jakovcevski
- Institut für Anatomie und Klinische Morphologie, Universität Witten/Herdecke, 58455 Witten, Germany;
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany (R.K.); (S.F.); (M.K.)
| | - Luciana Fernandes
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany (R.K.); (S.F.); (M.K.)
| | - Sandra Freitag
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany (R.K.); (S.F.); (M.K.)
| | - Matthias Kneussel
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany (R.K.); (S.F.); (M.K.)
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany (R.K.); (S.F.); (M.K.)
| |
Collapse
|
33
|
Murphy KE, Wade SD, Sperringer JE, Mohan V, Duncan BW, Zhang EY, Pak Y, Lutz D, Schachner M, Maness PF. The L1 cell adhesion molecule constrains dendritic spine density in pyramidal neurons of the mouse cerebral cortex. Front Neuroanat 2023; 17:1111525. [PMID: 37007644 PMCID: PMC10062527 DOI: 10.3389/fnana.2023.1111525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
A novel function for the L1 cell adhesion molecule, which binds the actin adaptor protein Ankyrin was identified in constraining dendritic spine density on pyramidal neurons in the mouse neocortex. In an L1-null mouse mutant increased spine density was observed on apical but not basal dendrites of pyramidal neurons in diverse cortical areas (prefrontal cortex layer 2/3, motor cortex layer 5, visual cortex layer 4. The Ankyrin binding motif (FIGQY) in the L1 cytoplasmic domain was critical for spine regulation, as demonstrated by increased spine density and altered spine morphology in the prefrontal cortex of a mouse knock-in mutant (L1YH) harboring a tyrosine (Y) to histidine (H) mutation in the FIGQY motif, which disrupted L1-Ankyrin association. This mutation is a known variant in the human L1 syndrome of intellectual disability. L1 was localized by immunofluorescence staining to spine heads and dendrites of cortical pyramidal neurons. L1 coimmunoprecipitated with Ankyrin B (220 kDa isoform) from lysates of wild type but not L1YH forebrain. This study provides insight into the molecular mechanism of spine regulation and underscores the potential for this adhesion molecule to regulate cognitive and other L1-related functions that are abnormal in the L1 syndrome.
Collapse
Affiliation(s)
- Kelsey E. Murphy
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC, United States
- Carolina Institute of Developmental Disabilities, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC, United States
| | - Sarah D. Wade
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC, United States
- Carolina Institute of Developmental Disabilities, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC, United States
| | - Justin E. Sperringer
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC, United States
- Carolina Institute of Developmental Disabilities, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC, United States
| | - Vishwa Mohan
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC, United States
- Carolina Institute of Developmental Disabilities, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC, United States
| | - Bryce W. Duncan
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC, United States
- Carolina Institute of Developmental Disabilities, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC, United States
| | - Erin Y. Zhang
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC, United States
- Carolina Institute of Developmental Disabilities, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC, United States
| | - Yubin Pak
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC, United States
- Carolina Institute of Developmental Disabilities, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC, United States
| | - David Lutz
- Division of Neuroanatomy and Molecular Brain Research, Ruhr University-Bochum, Bochum, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscatawy, NJ, United States
| | - Patricia F. Maness
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC, United States
- Carolina Institute of Developmental Disabilities, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Patricia F. Maness
| |
Collapse
|
34
|
Wang X, Sela-Donenfeld D, Wang Y. Axonal and presynaptic FMRP: Localization, signal, and functional implications. Hear Res 2023; 430:108720. [PMID: 36809742 PMCID: PMC9998378 DOI: 10.1016/j.heares.2023.108720] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/22/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Fragile X mental retardation protein (FMRP) binds a selected set of mRNAs and proteins to guide neural circuit assembly and regulate synaptic plasticity. Loss of FMRP is responsible for Fragile X syndrome, a neuropsychiatric disorder characterized with auditory processing problems and social difficulty. FMRP actions in synaptic formation, maturation, and plasticity are site-specific among the four compartments of a synapse: presynaptic and postsynaptic neurons, astrocytes, and extracellular matrix. This review summarizes advancements in understanding FMRP localization, signals, and functional roles in axons and presynaptic terminals.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yuan Wang
- Department of Biomedical Sciences, Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL 32306, USA.
| |
Collapse
|
35
|
Cell Adhesion Molecules in Schizophrenia Patients with Metabolic Syndrome. Metabolites 2023; 13:metabo13030376. [PMID: 36984816 PMCID: PMC10058418 DOI: 10.3390/metabo13030376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Metabolic syndrome (MetS) is a common comorbidity of schizophrenia and significantly shortens life expectancy of the patients. Intercellular (ICAM), vascular (VCAM), and neural (NCAM) cell adhesion molecules (CAMs) mediate neuroinflammatory processes, and their soluble forms (e.g., sICAM) in plasma are present in parallel with their cell-bound forms. In this study, their serum levels were examined in 211 white Siberian patients with paranoid schizophrenia (82 patients with and 129 without MetS according to the 2005 International Diabetes Federation criteria). Serum levels of CAMs were determined with Magpix and Luminex 200 (Luminex, Austin, TX, USA) using xMAP Technology. The level of sICAM-1 was significantly higher and that of sVCAM-1 significantly lower in patients with MetS compared to patients without MetS. Levels of NCAM did not differ between the groups. More pronounced Spearman’s correlations between CAMs, age, duration of schizophrenia, and body–mass index were observed among patients without MetS than among patients with MetS. Our results are consistent with MetS’s being associated with endothelial dysfunction along with other components of inflammation. Through these endothelial components of peripheral inflammatory processes, MetS might induce intracerebral neuroinflammatory changes, but further investigation is needed to confirm this.
Collapse
|
36
|
The Interactions of the 70 kDa Fragment of Cell Adhesion Molecule L1 with Topoisomerase 1, Peroxisome Proliferator-Activated Receptor γ and NADH Dehydrogenase (Ubiquinone) Flavoprotein 2 Are Involved in Gene Expression and Neuronal L1-Dependent Functions. Int J Mol Sci 2023; 24:ijms24032097. [PMID: 36768419 PMCID: PMC9916828 DOI: 10.3390/ijms24032097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
The cell adhesion molecule L1 is essential not only for neural development, but also for synaptic functions and regeneration after trauma in adulthood. Abnormalities in L1 functions cause developmental and degenerative disorders. L1's functions critically depend on proteolysis which underlies dynamic cell interactions and signal transduction. We showed that a 70 kDa fragment (L1-70) supports mitochondrial functions and gene transcription. To gain further insights into L1-70's functions, we investigated several binding partners. Here we show that L1-70 interacts with topoisomerase 1 (TOP1), peroxisome proliferator-activated receptor γ (PPARγ) and NADH dehydrogenase (ubiquinone) flavoprotein 2 (NDUFV2). TOP1, PPARγ and NDUFV2 siRNAs reduced L1-dependent neurite outgrowth, and the topoisomerase inhibitors topotecan and irinotecan inhibited L1-dependent neurite outgrowth, neuronal survival and migration. In cultured neurons, L1 siRNA reduces the expression levels of the long autism genes neurexin-1 (Nrxn1) and neuroligin-1 (Nlgn1) and of the mitochondrially encoded gene NADH:ubiquinone oxidoreductase core subunit 2 (ND2). In mutant mice lacking L1-70, Nrxn1 and Nlgn1, but not ND2, mRNA levels are reduced. Since L1-70's interactions with TOP1, PPARγ and NDUFV2 contribute to the expression of two essential long autism genes and regulate important neuronal functions, we propose that L1 may not only ameliorate neurological problems, but also psychiatric dysfunctions.
Collapse
|
37
|
Li L, Ji J, Song F, Hu J. Intercellular Receptor-ligand Binding: Effect of Protein-membrane Interaction. J Mol Biol 2023; 435:167787. [PMID: 35952805 DOI: 10.1016/j.jmb.2022.167787] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 02/04/2023]
Abstract
Gaining insights into the intercellular receptor-ligand binding is of great importance for understanding numerous physiological and pathological processes, and stimulating new strategies in drug design and discovery. In contrast to the in vitro protein interaction in solution, the anchored receptor and ligand molecules interact with membrane in situ, which affects the intercellular receptor-ligand binding. Here, we review theoretical, simulation and experimental works regarding the regulatory effects of protein-membrane interactions on intercellular receptor-ligand binding mainly from the following aspects: membrane fluctuations, membrane curvature, glycocalyx, and lipid raft. In addition, we discuss biomedical significances and possible research directions to advance the field and highlight the importance of understanding of coupling effects of these factors in pharmaceutical development.
Collapse
Affiliation(s)
- Long Li
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, 210023 Nanjing, China; State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, 100190 Beijing, China
| | - Jing Ji
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Fan Song
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, 100190 Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jinglei Hu
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, 210023 Nanjing, China.
| |
Collapse
|
38
|
Extracellular matrix and synapse formation. Biosci Rep 2023; 43:232259. [PMID: 36503961 PMCID: PMC9829651 DOI: 10.1042/bsr20212411] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/08/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
The extracellular matrix (ECM) is a complex molecular network distributed throughout the extracellular space of different tissues as well as the neuronal system. Previous studies have identified various ECM components that play important roles in neuronal maturation and signal transduction. ECM components are reported to be involved in neurogenesis, neuronal migration, and axonal growth by interacting or binding to specific receptors. In addition, the ECM is found to regulate synapse formation, the stability of the synaptic structure, and synaptic plasticity. Here, we mainly reviewed the effects of various ECM components on synapse formation and briefly described the related diseases caused by the abnormality of several ECM components.
Collapse
|
39
|
Kleene R, Loers G, Schachner M. The KDET Motif in the Intracellular Domain of the Cell Adhesion Molecule L1 Interacts with Several Nuclear, Cytoplasmic, and Mitochondrial Proteins Essential for Neuronal Functions. Int J Mol Sci 2023; 24:932. [PMID: 36674445 PMCID: PMC9866381 DOI: 10.3390/ijms24020932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Abnormal functions of the cell adhesion molecule L1 are linked to several neural diseases. Proteolytic L1 fragments were reported to interact with nuclear and mitochondrial proteins to regulate events in the developing and the adult nervous system. Recently, we identified a 55 kDa L1 fragment (L1-55) that interacts with methyl CpG binding protein 2 (MeCP2) and heterochromatin protein 1 (HP1) via the KDET motif. We now show that L1-55 also interacts with histone H1.4 (HistH1e) via this motif. Moreover, we show that this motif binds to NADH dehydrogenase ubiquinone flavoprotein 2 (NDUFV2), splicing factor proline/glutamine-rich (SFPQ), the non-POU domain containing octamer-binding protein (NonO), paraspeckle component 1 (PSPC1), WD-repeat protein 5 (WDR5), heat shock cognate protein 71 kDa (Hsc70), and synaptotagmin 1 (SYT1). Furthermore, applications of HistH1e, NDUFV2, SFPQ, NonO, PSPC1, WDR5, Hsc70, or SYT1 siRNAs or a cell-penetrating KDET-carrying peptide decrease L1-dependent neurite outgrowth and the survival of cultured neurons. These findings indicate that L1's KDET motif binds to an unexpectedly large number of molecules that are essential for nervous system-related functions, such as neurite outgrowth and neuronal survival. In summary, L1 interacts with cytoplasmic, nuclear and mitochondrial proteins to regulate development and, in adults, the formation, maintenance, and flexibility of neural functions.
Collapse
Affiliation(s)
- Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| |
Collapse
|
40
|
Muralidharan N, Murugan A, Raj PA, Jothi M. Restoration of functional PAX3 transcriptional factor enhanced neuronal differentiation in PAX3b isoform-depleted neuroblastoma cells. Cell Tissue Res 2023; 391:55-65. [PMID: 36378335 DOI: 10.1007/s00441-022-03710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Reexpressed PAX3 transcription factor is believed to be responsible for the differentiation defects observed in neuroblastoma. Although the importance of PAX3 in neuronal differentiation is documented how it is involved in the defective differentiation remains unexplored particularly with its isoforms. Here, first we have analyzed PAX3 expression, its functional status, and its correlation with the neuronal marker expression in SH-SY5Y and its parental SK-N-SH cells. We have found that SH-SY5Y cells which expressed more PAX3 showed increased expression of neuronal marker genes (TUBB, MAP2, NEFL, NEUROG2, SYP) and reported PAX3 target genes (MET, TGFA, and NCAM1) than the SK-N-SH cells that had low PAX3 level. Retinoic acid treatment is unable to induce neuronal differentiation in cells (SK-N-SH) with low PAX3 level/activity. Moreover, ectopic expression of PAX3 in SK-N-SH cells neither induces neuronal marker genes nor its target genes. PAX3 isoform expression analysis revealed the expression of PAX3b isoform that contains only paired domain in SK-N-SH cells, whereas in SH-SY5Y cells, we could also observe PAX3c isoform that contains all functional domains. Further, PAX3b depletion in SK-N-SH cells is not induced PAX3 target genes, and the cells remain poorly differentiated. Interestingly, ectopic PAX3 expression in PAX3b-depleted SK-N-SH cells enhanced neuronal outgrowth along with neuronal marker gene induction. Collectively, these results showed that the PAX3b isoform may be responsible for the differentiation defect observed in SK-N-SH cells and restoration of functional PAX3 in the absence of PAX3b can induce neurogenesis in these cells.
Collapse
Affiliation(s)
- Narenkumar Muralidharan
- Laboratory of Molecular Therapeutics, Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, Karnataka, India
| | - Abinayaselvi Murugan
- Laboratory of Molecular Therapeutics, Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, Karnataka, India
| | - Prabhuraj Andiperumal Raj
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, Karnataka, India
| | - Mathivanan Jothi
- Laboratory of Molecular Therapeutics, Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, Karnataka, India.
| |
Collapse
|
41
|
Cortés E, Pak JS, Özkan E. Structure and evolution of neuronal wiring receptors and ligands. Dev Dyn 2023; 252:27-60. [PMID: 35727136 PMCID: PMC10084454 DOI: 10.1002/dvdy.512] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/04/2023] Open
Abstract
One of the fundamental properties of a neuronal circuit is the map of its connections. The cellular and developmental processes that allow for the growth of axons and dendrites, selection of synaptic targets, and formation of functional synapses use neuronal surface receptors and their interactions with other surface receptors, secreted ligands, and matrix molecules. Spatiotemporal regulation of the expression of these receptors and cues allows for specificity in the developmental pathways that wire stereotyped circuits. The families of molecules controlling axon guidance and synapse formation are generally conserved across animals, with some important exceptions, which have consequences for neuronal connectivity. Here, we summarize the distribution of such molecules across multiple taxa, with a focus on model organisms, evolutionary processes that led to the multitude of such molecules, and functional consequences for the diversification or loss of these receptors.
Collapse
Affiliation(s)
- Elena Cortés
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Joseph S Pak
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
42
|
Glavonic E, Mitic M, Francija E, Petrovic Z, Adzic M. Sex-specific role of hippocampal NMDA-Erk-mTOR signaling in fear extinction of adolescent mice. Brain Res Bull 2023; 192:156-167. [PMID: 36410566 DOI: 10.1016/j.brainresbull.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/26/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
Abstract
Adolescence is a key phase of development for perturbations in fear extinction, with inability to adequately manage fear a potent factor for developing psychiatric disorders in adulthood. However, while behavioral correlates of adolescent fear regulation are established to a degree, molecular mediators of extinction learning in adolescence remain largely unknown. In this study, we observed fear acquisition and fear extinction (across 4 and 7 days) of adolescent and adult mice of both sexes and investigated how hippocampal levels of different plasticity markers relate to extinction learning. While fear was acquired evenly in males and females of both ages, fear extinction was found to be impaired in adolescent males. We also observed lower levels of GluA1, GLUN2A and GLUN2B subunits in male adolescents following fear acquisition, with an increase in their expression, as well as the activity of Erk-mTOR pathway over subsequent extinction sessions, which was paralleled with improved extinction learning. On the other hand, we detected no changes in plasticity-related proteins after fear acquisition in females, with alterations in GluA1, GluA4 and GLUN2B levels across fear extinction sessions. Additionally, we did not discern any pattern regarding the Erk-mTOR activity in female mice associated with their extinction performance. Overall, our research identifies sex-specific synaptic properties in the hippocampus that underlie developmentally regulated differences in fear extinction learning. We also point out hippocampal NMDA-Erk-mTOR signaling as the driving force behind successful fear extinction in male adolescents, highlighting this pathway as a potential therapeutic target for fear-related disorders in the adolescent population.
Collapse
Affiliation(s)
- Emilija Glavonic
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Milos Mitic
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ester Francija
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zorica Petrovic
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Miroslav Adzic
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
43
|
Short MI, Fohner AE, Skjellegrind HK, Beiser A, Gonzales MM, Satizabal CL, Austin TR, Longstreth W, Bis JC, Lopez O, Hveem K, Selbæk G, Larson MG, Yang Q, Aparicio HJ, McGrath ER, Gerszten RE, DeCarli CS, Psaty BM, Vasan RS, Zare H, Seshadri S. Proteome Network Analysis Identifies Potential Biomarkers for Brain Aging. J Alzheimers Dis 2023; 96:1767-1780. [PMID: 38007645 PMCID: PMC10741337 DOI: 10.3233/jad-230145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Alzheimer's disease and related dementias (ADRD) involve biological processes that begin years to decades before onset of clinical symptoms. The plasma proteome can offer insight into brain aging and risk of incident dementia among cognitively healthy adults. OBJECTIVE To identify biomarkers and biological pathways associated with neuroimaging measures and incident dementia in two large community-based cohorts by applying a correlation-based network analysis to the plasma proteome. METHODS Weighted co-expression network analysis of 1,305 plasma proteins identified four modules of co-expressed proteins, which were related to MRI brain volumes and risk of incident dementia over a median 20-year follow-up in Framingham Heart Study (FHS) Offspring cohort participants (n = 1,861). Analyses were replicated in the Cardiovascular Health Study (CHS) (n = 2,117, mean 6-year follow-up). RESULTS Two proteomic modules, one related to protein clearance and synaptic maintenance (M2) and a second to inflammation (M4), were associated with total brain volume in FHS (M2: p = 0.014; M4: p = 4.2×10-5). These modules were not significantly associated with hippocampal volume, white matter hyperintensities, or incident all-cause or AD dementia. Associations with TCBV did not replicate in CHS, an older cohort with a greater burden of comorbidities. CONCLUSIONS Proteome networks implicate an early role for biological pathways involving inflammation and synaptic function in preclinical brain atrophy, with implications for clinical dementia.
Collapse
Affiliation(s)
- Meghan I. Short
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, USA
- Department of Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - Alison E. Fohner
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Håvard K. Skjellegrind
- HUNT Research Centre, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Levanger, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Alexa Beiser
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Mitzi M. Gonzales
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Neurology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Claudia L. Satizabal
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
- Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, USA
| | - Thomas R. Austin
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - W.T. Longstreth
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Oscar Lopez
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kristian Hveem
- HUNT Research Centre, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Levanger, Norway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Geir Selbæk
- Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Martin G. Larson
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Hugo J. Aparicio
- Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Emer R. McGrath
- Framingham Heart Study, Framingham, MA, USA
- School of Medicine, National University of Ireland Galway, Galway, Ireland
- HRB Clinical Research Facility, National University of Ireland Galway, Galway, Ireland
| | - Robert E. Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Charles S. DeCarli
- Department of Neurology, School of Medicine and Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California, Davis, Sacramento, CA, USA
| | - Bruce M. Psaty
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Ramachandran S. Vasan
- Framingham Heart Study, Framingham, MA, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Boston University Center for Computing and Data Science, Boston, MA, USA
| | - Habil Zare
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
- Framingham Heart Study, Framingham, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
44
|
Han M, Liang C, Liu Y, He X, Chu M. Integrated Transcriptome Analysis Reveals the Crucial mRNAs and miRNAs Related to Fecundity in the Hypothalamus of Yunshang Black Goats during the Luteal Phase. Animals (Basel) 2022; 12:ani12233397. [PMID: 36496918 PMCID: PMC9738480 DOI: 10.3390/ani12233397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
A normal estrus cycle is essential for the breeding of goats, and the luteal phase accounts for most of the estrus cycle. The corpus luteum (CL) formed during the luteal phase is a transient endocrine gland that is crucial for the reproductive cycle and pregnancy maintenance, and is controlled by many regulatory factors. However, the molecular mechanism of the hypothalamus effect on the reproductive performance of different litter sizes during the luteal phase of goats has not been elucidated. In this study, RNA-sequencing was used to analyze the mRNA and miRNA expression profiles of the hypothalamic tissues with the high-fecundity goats during the luteal phase (LP-HF) and low-fecundity goats during the luteal phase (LP-LF). The RNA-seq results found that there were 1963 differentially expressed genes (DEGs) (890 up-regulated and 1073 down-regulated). The miRNA-seq identified 57 differentially expressed miRNAs (DEMs), including 11 up-regulated and 46 down-regulated, of which 199 DEGs were predicted to be potential target genes of DEMs. Meanwhile, the functional enrichment analysis identified several mRNA-miRNA pairs involved in the regulation of the hypothalamic activity, such as the common target gene MEA1 of novel-miR-972, novel-miR-125 and novel-miR-403, which can play a certain role as a related gene of the reproductive development in the hypothalamic-pituitary-gonadal (HPG) axis and its regulated network, by regulating the androgen secretion. While another target gene ADIPOR2 of the novel-miR-403, is distributed in the hypothalamus and affects the reproductive system through a central role on the HPG axis and a peripheral role in the gonadal tissue. An annotation analysis of the DE miRNA-mRNA pairs identified targets related to biological processes, such as anion binding (GO:0043168) and small molecule binding (GO: 0036094). Subsequently, the KEGG(Kyoto Encyclopedia of Genes and Genomes) pathways were performed to analyze the miRNA-mRNA pairs with negatively correlated miRNAs. We found that the GnRH signaling pathway (ko04912), the estrogen signaling pathway (ko04915), the Fc gamma R-mediated phagocytosis (ko04666), and the IL-17 signaling pathway (ko04657), etc., were directly and indirectly associated with the reproductive process. These targeting interactions may be closely related to the reproductive performance of goats. The results of this study provide a reference for further research on the molecular regulation mechanism for the high fertility in goats.
Collapse
Affiliation(s)
- Miaoceng Han
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: ; Tel.: +86-010-62819850
| |
Collapse
|
45
|
Duregotti E, Reumiller CM, Mayr U, Hasman M, Schmidt LE, Burnap SA, Theofilatos K, Barallobre-Barreiro J, Beran A, Grandoch M, Viviano A, Jahangiri M, Mayr M. Reduced secretion of neuronal growth regulator 1 contributes to impaired adipose-neuronal crosstalk in obesity. Nat Commun 2022; 13:7269. [PMID: 36433953 PMCID: PMC9700863 DOI: 10.1038/s41467-022-34846-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
While the endocrine function of white adipose tissue has been extensively explored, comparatively little is known about the secretory activity of less-investigated fat depots. Here, we use proteomics to compare the secretory profiles of male murine perivascular depots with those of canonical white and brown fat. Perivascular secretomes show enrichment for neuronal cell-adhesion molecules, reflecting a higher content of intra-parenchymal sympathetic projections compared to other adipose depots. The sympathetic innervation is reduced in the perivascular fat of obese (ob/ob) male mice, as well as in the epicardial fat of patients with obesity. Degeneration of sympathetic neurites is observed in presence of conditioned media of fat explants from ob/ob mice, that show reduced secretion of neuronal growth regulator 1. Supplementation of neuronal growth regulator 1 reverses this neurodegenerative effect, unveiling a neurotrophic role for this protein previously identified as a locus associated with human obesity. As sympathetic stimulation triggers energy-consuming processes in adipose tissue, an impaired adipose-neuronal crosstalk is likely to contribute to the disrupted metabolic homeostasis characterising obesity.
Collapse
Affiliation(s)
- Elisa Duregotti
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Christina M Reumiller
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Ursula Mayr
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Maria Hasman
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Lukas E Schmidt
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Sean A Burnap
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Konstantinos Theofilatos
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Javier Barallobre-Barreiro
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Arne Beran
- Institute of Translational Pharmacology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Maria Grandoch
- Institute of Translational Pharmacology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Alessandro Viviano
- Department of Cardiothoracic Surgery, St. George's Hospital, University of London, London, UK
- Department of Cardiothoracic Surgery, Hammersmith Hospital, Imperial College London, London, UK
| | - Marjan Jahangiri
- Department of Cardiothoracic Surgery, St. George's Hospital, University of London, London, UK
| | - Manuel Mayr
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK.
| |
Collapse
|
46
|
Fekete CD, Nishiyama A. Presentation and integration of multiple signals that modulate oligodendrocyte lineage progression and myelination. Front Cell Neurosci 2022; 16:1041853. [PMID: 36451655 PMCID: PMC9701731 DOI: 10.3389/fncel.2022.1041853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/17/2022] [Indexed: 11/15/2022] Open
Abstract
Myelination is critical for fast saltatory conduction of action potentials. Recent studies have revealed that myelin is not a static structure as previously considered but continues to be made and remodeled throughout adulthood in tune with the network requirement. Synthesis of new myelin requires turning on the switch in oligodendrocytes (OL) to initiate the myelination program that includes synthesis and transport of macromolecules needed for myelin production as well as the metabolic and other cellular functions needed to support this process. A significant amount of information is available regarding the individual intrinsic and extrinsic signals that promote OL commitment, expansion, terminal differentiation, and myelination. However, it is less clear how these signals are made available to OL lineage cells when needed, and how multiple signals are integrated to generate the correct amount of myelin that is needed in a given neural network state. Here we review the pleiotropic effects of some of the extracellular signals that affect myelination and discuss the cellular processes used by the source cells that contribute to the variation in the temporal and spatial availability of the signals, and how the recipient OL lineage cells might integrate the multiple signals presented to them in a manner dialed to the strength of the input.
Collapse
Affiliation(s)
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
47
|
Chataigner LMP, Gogou C, den Boer MA, Frias CP, Thies-Weesie DME, Granneman JCM, Heck AJR, Meijer DH, Janssen BJC. Structural insights into the contactin 1 - neurofascin 155 adhesion complex. Nat Commun 2022; 13:6607. [PMID: 36329006 PMCID: PMC9633819 DOI: 10.1038/s41467-022-34302-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Cell-surface expressed contactin 1 and neurofascin 155 control wiring of the nervous system and interact across cells to form and maintain paranodal myelin-axon junctions. The molecular mechanism of contactin 1 - neurofascin 155 adhesion complex formation is unresolved. Crystallographic structures of complexed and individual contactin 1 and neurofascin 155 binding regions presented here, provide a rich picture of how competing and complementary interfaces, post-translational glycosylation, splice differences and structural plasticity enable formation of diverse adhesion sites. Structural, biophysical, and cell-clustering analysis reveal how conserved Ig1-2 interfaces form competing heterophilic contactin 1 - neurofascin 155 and homophilic neurofascin 155 complexes whereas contactin 1 forms low-affinity clusters through interfaces on Ig3-6. The structures explain how the heterophilic Ig1-Ig4 horseshoe's in the contactin 1 - neurofascin 155 complex define the 7.4 nm paranodal spacing and how the remaining six domains enable bridging of distinct intercellular distances.
Collapse
Affiliation(s)
- Lucas M. P. Chataigner
- grid.5477.10000000120346234Structural Biochemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Christos Gogou
- grid.5292.c0000 0001 2097 4740Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Maurits A. den Boer
- grid.5477.10000000120346234Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands ,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Cátia P. Frias
- grid.5292.c0000 0001 2097 4740Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Dominique M. E. Thies-Weesie
- grid.5477.10000000120346234Van’t Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute of Nanomaterials Science, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Joke C. M. Granneman
- grid.5477.10000000120346234Structural Biochemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Albert J. R. Heck
- grid.5477.10000000120346234Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands ,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Dimphna H. Meijer
- grid.5292.c0000 0001 2097 4740Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Bert J. C. Janssen
- grid.5477.10000000120346234Structural Biochemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
48
|
Keable R, Hu S, Pfundstein G, Kozlova I, Su F, Du X, Yang H, Gunnersen J, Schachner M, Leshchyns'ka I, Sytnyk V. The BACE1-generated C-terminal fragment of the neural cell adhesion molecule 2 (NCAM2) promotes BACE1 targeting to Rab11-positive endosomes. Cell Mol Life Sci 2022; 79:555. [PMID: 36251052 PMCID: PMC9576659 DOI: 10.1007/s00018-022-04575-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 11/08/2022]
Abstract
Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), also known as β-secretase, is an aspartic protease. The sorting of this enzyme into Rab11-positive recycling endosomes regulates the BACE1-mediated cleavage of its substrates, however, the mechanisms underlying this targeting remain poorly understood. The neural cell adhesion molecule 2 (NCAM2) is a substrate of BACE1. We show that BACE1 cleaves NCAM2 in cultured hippocampal neurons and NCAM2-transfected CHO cells. The C-terminal fragment of NCAM2 that comprises the intracellular domain and a small portion of NCAM2’s extracellular domain, associates with BACE1. This association is not affected in cells with inhibited endocytosis, indicating that the interaction of NCAM2 and BACE1 precedes the targeting of BACE1 from the cell surface to endosomes. In neurons and CHO cells, this fragment and BACE1 co-localize in Rab11-positive endosomes. Overexpression of full-length NCAM2 or a recombinant NCAM2 fragment containing the transmembrane and intracellular domains but lacking the extracellular domain leads to an increase in BACE1 levels in these organelles. In NCAM2-deficient neurons, the levels of BACE1 are increased at the cell surface and reduced in intracellular organelles. These effects are correlated with increased levels of the soluble extracellular domain of BACE1 in the brains of NCAM2-deficient mice, suggesting increased shedding of BACE1 from the cell surface. Of note, shedding of the extracellular domain of Sez6, a protein cleaved exclusively by BACE1, is reduced in NCAM2-deficient animals. These results indicate that the BACE1-generated fragment of NCAM2 regulates BACE1 activity by promoting the targeting of BACE1 to Rab11-positive endosomes.
Collapse
Affiliation(s)
- Ryan Keable
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shangfeng Hu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Grant Pfundstein
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Irina Kozlova
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Feifei Su
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ximing Du
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jenny Gunnersen
- Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Melitta Schachner
- Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, 08554, USA
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
49
|
Keshri N, Nandeesha H, Rajappa M, Menon V. Relationship Between Neural Cell Adhesion Molecule-1 and Cognitive Functioning in Schizophrenia Spectrum Disorder. Indian J Clin Biochem 2022; 37:494-498. [PMID: 36262784 PMCID: PMC9573831 DOI: 10.1007/s12291-020-00937-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022]
Abstract
Abnormal synaptic plasticity leads to cognitive impairment in schizophrenia. Markers of synaptic plasticity are known to be altered in schizophrenia, but there are limited data available about neural cell adhesion molecule-1 (NCAM-1) levels and its association with cognitive functions in schizophrenia. The objective of the study was to analyze NCAM-1 levels and its association with various cognitive domains in schizophrenia. One hundred and seventy-six schizophrenia cases and 176 controls were recruited for the study. Serum NCAM-1 levels were analysed in both the groups. Cognitive examination was performed using Addenbrooke cognitive examination-III (ACE-III) and disease severity was assessed using Positive and negative symptoms scale (PANSS). Serum NCAM-1 levels were elevated in schizophrenia cases (p = 0.006) compared to controls. NCAM-1 was positively associated with attention (r = 0.196, p = 0.009), language (r = 0.192, p = 0.011), visuospatial abilities (r = 0.207, p = 0.006) and total ACE-III score (r = 0.189, p = 0.012). We conclude that elevated levels of NCAM-1 are associated with better cognitive functioning in schizophrenia.
Collapse
Affiliation(s)
- Neha Keshri
- Department of Biochemistry and Psychiatry, JIPMER, Puducherry, 605006 India
| | | | - Medha Rajappa
- Department of Biochemistry and Psychiatry, JIPMER, Puducherry, 605006 India
| | - Vikas Menon
- Department of Biochemistry and Psychiatry, JIPMER, Puducherry, 605006 India
| |
Collapse
|
50
|
Stoyanova II, Lutz D. Functional Diversity of Neuronal Cell Adhesion and Recognition Molecule L1CAM through Proteolytic Cleavage. Cells 2022; 11:cells11193085. [PMID: 36231047 PMCID: PMC9562852 DOI: 10.3390/cells11193085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
The neuronal cell adhesion and recognition molecule L1 does not only 'keep cells together' by way of homophilic and heterophilic interactions, but can also promote cell motility when cleaved into fragments by several proteases. It has largely been thought that such fragments are signs of degradation. Now, it is clear that proteolysis contributes to the pronounced functional diversity of L1, which we have reviewed in this work. L1 fragments generated at the plasma membrane are released into the extracellular space, whereas other membrane-bound fragments are internalised and enter the nucleus, thus conveying extracellular signals to the cell interior. Post-translational modifications on L1 determine the sequence of cleavage by proteases and the subcellular localisation of the generated fragments. Inside the neuronal cells, L1 fragments interact with various binding partners to facilitate morphogenic events, as well as regenerative processes. The stimulation of L1 proteolysis via injection of L1 peptides or proteases active on L1 or L1 mimetics is a promising tool for therapy of injured nervous systems. The collective findings gathered over the years not only shed light on the great functional diversity of L1 and its fragments, but also provide novel mechanistic insights into the adhesion molecule proteolysis that is active in the developing and diseased nervous system.
Collapse
Affiliation(s)
- Irina I. Stoyanova
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University, 9002 Varna, Bulgaria
- Department of Brain Ischemia Mechanisms, Research Institute, Medical University, 9002 Varna, Bulgaria
- Correspondence: (I.I.S.); (D.L.)
| | - David Lutz
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum,
44801 Bochum, Germany
- Correspondence: (I.I.S.); (D.L.)
| |
Collapse
|