1
|
Spinedi E, Docena GH. Physiopathological Roles of White Adiposity and Gut Functions in Neuroinflammation. Int J Mol Sci 2024; 25:11741. [PMID: 39519291 PMCID: PMC11546880 DOI: 10.3390/ijms252111741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
White adipose tissue (WAT) and the gut are involved in the development of neuroinflammation when an organism detects any kind of injury, thereby triggering metainflammation. In fact, the autonomous nervous system innervates both tissues, although the complex role played by the integrated sympathetic, parasympathetic, and enteric nervous system functions have not been fully elucidated. Our aims were to investigate the participation of inflamed WAT and the gut in neuroinflammation. Firstly, we conducted an analysis into how inflamed peripheral WAT plays a key role in the triggering of metainflammation. Indeed, this included the impact of the development of local insulin resistance and its metabolic consequences, a serious hypothalamic dysfunction that promotes neurodegeneration. Then, we analyzed the gut-brain axis dysfunction involved in neuroinflammation by examining cell interactions, soluble factors, the sensing of microbes, and the role of dysbiosis-related mechanisms (intestinal microbiota and mucosal barriers) affecting brain functions. Finally, we targeted the physiological crosstalk between cells of the brain-WAT-gut axis that restores normal tissue homeostasis after injury. We concluded the following: because any injury can result not only in overall insulin resistance and dysbiosis, which in turn can impact upon the brain, but that a high-risk of the development of neuroinflammation-induced neurodegenerative disorder can also be triggered. Thus, it is imperative to avoid early metainflammation by applying appropriate preventive (e.g., lifestyle and diet) or pharmacological treatments to cope with allostasis and thus promote health homeostasis.
Collapse
Affiliation(s)
- Eduardo Spinedi
- Centro de Endocrinología Experimental y Aplicada (CENEXA-UNLP-CONICET-CICPBA), University of La Plata Medical School, La Plata 1900, Argentina
| | - Guillermo Horacio Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP-UNLP-CONICET-CICPBA), School of Sciences, University of La Plata, La Plata 1900, Argentina
| |
Collapse
|
2
|
Appenroth D, Cázarez-Márquez F. Seasonal food intake and energy balance: Neuronal and non-neuronal control mechanisms. Neuropharmacology 2024; 257:110050. [PMID: 38914372 DOI: 10.1016/j.neuropharm.2024.110050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/05/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Animals inhabiting temperate and high latitudes undergo drastic seasonal changes in energy storage, facilitated by changes in food intake and body mass. Those seasonal changes in the animal's biology are not mere consequences of environmental energy availability but are anticipatory responses to the energetic requirements of the upcoming season and are actively timed by tracking the annual progression in photoperiod. In this review, we discuss how photoperiod is used to control energy balance seasonally and how this is distinct from energy homeostasis. Most notably, we suggest that photoperiodic control of food intake and body mass does not originate from the arcuate nucleus, as for homeostatic appetite control, but is rather to be found in hypothalamic tanycytes. Tanycytes are specialized ependymal cells lining the third ventricle, which can sense metabolites from the cerebrospinal fluid (e.g. glucose) and can control access of circulating signals to the brain. They are also essential in conveying time-of-year information by integrating photoperiod and altering hypothalamic thyroid metabolism, a feature that is conserved in seasonal vertebrates and connects to seasonal breeding and metabolism. We also discuss how homeostatic feedback signals are handled during times of rapid energetic transitions. Studies on leptin in seasonal mammals suggest a seasonal shift in central sensitivity and blood-brain transport, which might be facilitated by tanycytes. This article is part of the Special Issue on "Food intake and feeding states".
Collapse
Affiliation(s)
- Daniel Appenroth
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology & Physiology, Arctic & Marine Biology, BFE, UiT - Arctic University of Norway, Tromsø, Norway.
| | - Fernando Cázarez-Márquez
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology & Physiology, Arctic & Marine Biology, BFE, UiT - Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
3
|
Linsky JMJ, Dunlop RA, Noad MJ, McMichael LA. Blubber gene expression and cortisol concentrations reveal changing physiological stress in a Southern ocean sentinel species. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106596. [PMID: 38905865 DOI: 10.1016/j.marenvres.2024.106596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024]
Abstract
The health of migratory eastern Australian humpback whales (Megaptera novaeangliae) can reflect the condition of their remote polar foraging environments. This study used gene expression (LEP, LEPR, ADIQ, AhR, TNF-α, HSP-70), blubber hormone concentrations (cortisol, testosterone), and photogrammetric body condition to assess this sentinel species during a period of unprecedented changes to anthropogenic activity and natural processes. The results revealed higher cortisol concentrations in 2020 compared to 2021, suggesting a decline in physiological stress between years. Additionally, metabolic transcripts LEPR, and AhR, which is also linked to xenobiotic metabolism, were upregulated during the 2020 southbound migration. These differences suggest that one or more environmental stressors were reduced between 2020 and 2021, with upregulated AhR possibly indicating a Southern Ocean pollutant declined between the years. This research confirms a Southern Ocean-wide decrease in whale stress during the study period and informs efforts to identify key stressors on Antarctic marine ecosystems.
Collapse
Affiliation(s)
- Jacob M J Linsky
- School of the Environment, The University of Queensland, St Lucia, Queensland, 4072, Australia.
| | - Rebecca A Dunlop
- School of the Environment, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Michael J Noad
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, 4343, Australia; Centre for Marine Science, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Lee A McMichael
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, 4343, Australia
| |
Collapse
|
4
|
Linsky JMJ, Dunlop RA, McMichael LA. A novel RT-qPCR health assay reveals differential expression of stress and immunoregulatory genes between the seasonal migrations of humpback whales (Megaptera novaeangliae). Mol Ecol 2024; 33:e17209. [PMID: 38018561 DOI: 10.1111/mec.17209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023]
Abstract
Health information is essential for the conservation management of whale species. However, assessing the health of free-ranging whales is challenging as samples are primarily limited to skin and blubber tissue. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) offers a method to measure health from blubber RNA, providing insights into energetic status, stress and immune activity. To identify changes in health, natural differences in baseline gene expression linked to an individual's sex, reproductive status and life-history stage must first be quantified. This study aimed to establish baseline gene expression indices of health in migrating humpback whales (Megaptera novaeangliae). To do this, we developed an assay to quantify seven health-related gene transcripts (Leptin, Leptin Receptor, Adiponectin, Aryl Hydrocarbon Receptor, Tumour Necrosis Factor-α, Interleukin-6, Heat Shock Protein-70) and used Bayesian mixed effect models to assess differential baseline expression based on sex, lactation status and migration stage (northbound to and southbound from the annual breeding grounds). Results showed no significant contribution of sex to differential baseline expression. However, lactating individuals exhibited downregulated AhR and HSP-70 compared to non-lactating conspecifics. Additionally, southbound individuals demonstrated significantly upregulated HSP-70 and downregulated TNF-alpha, suggesting a relationship between these inflammation-linked transcripts and migratory fasting. Our results suggest that baseline differences due to migratory stage and lactation status should be considered in health applications of this assay. Future monitoring efforts can use our baseline measurements to better understand how gene expression is tied to population-level impacts, such as reduced prey availability or migratory stressors.
Collapse
Affiliation(s)
- Jacob M J Linsky
- School of the Environment, The University of Queensland, St Lucia, Queensland, Australia
| | - Rebecca A Dunlop
- School of the Environment, The University of Queensland, St Lucia, Queensland, Australia
| | - Lee A McMichael
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| |
Collapse
|
5
|
Shaheen N, Shaheen A, Diab RA, Saad AM, Abdelwahab OA, Soliman S, Hefnawy MT, Ramadan A, Meshref M, Nashwan AJ. Association of serum leptin and ghrelin levels with smoking status on body weight: a systematic review and meta-analysis. Front Psychiatry 2023; 14:1296764. [PMID: 38111614 PMCID: PMC10725976 DOI: 10.3389/fpsyt.2023.1296764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
Background and aims Smoking cigarettes is a major global health problem that affects appetite and weight. The aim of this systematic review was to determine how smoking affected plasma leptin and ghrelin levels. Methods A comprehensive search of PubMed, Scopus, Web of Science, and Ovid was conducted using a well-established methodology to gather all related publications. Results A total of 40 studies were included in the analysis of 11,336 patients. The overall effect showed a with a mean difference (MD) of -1.92[95%CI; -2.63: -1.20] and p = 0.00001. Subgroup analysis by study design revealed significant differences as well, but with high heterogeneity within the subgroups (I2 of 82.3%). Subgroup by sex showed that there was a significant difference in mean difference between the smoking and non-smoking groups for males (MD = -5.75[95% CI; -8.73: -2.77], p = 0.0002) but not for females (MD = -3.04[95% CI; -6.6:0.54], p = 0.10). Healthy, pregnant, diabetic and CVD subgroups found significant differences in the healthy (MD = -1.74[95% CI; -03.13: -0.35], p = 0.01) and diabetic (MD = -7.69[95% CI, -1.64: -0.73], p = 0.03). subgroups, but not in the pregnant or cardiovascular disease subgroups. On the other hand, the meta-analysis found no statistically significant difference in Ghrelin serum concentration between smokers and non-smokers (MD = 0.52[95% CI, -0.60:1.63], p = 0.36) and observed heterogeneity in the studies (I2 = 68%). Conclusion This study demonstrates a correlation between smoking and serum leptin/ghrelin levels, which explains smoking's effect on body weight. Systematic review registration https://www.crd.york.ac.uk/ prospero/display_record.php, identifier (Record ID=326680).
Collapse
Affiliation(s)
- Nour Shaheen
- Alexandria Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ahmed Shaheen
- Alexandria Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Rehab Adel Diab
- Faculty of Medicine, Al-Azhar University, Medical Research Group of Egypt, Cairo, Egypt
| | | | - Omar Ahmed Abdelwahab
- Faculty of Medicine, Al-Azhar University, Medical Research Group of Egypt, Cairo, Egypt
| | - Sama Soliman
- Faculty of Medicine, The Pavlov First State Medical University of St. Petersburg, St. Petersburg, Russia
| | - Mahmoud Tarek Hefnawy
- Faculty of Medicine, Zagazig University, Medical Research Group of Egypt, Cairo, Egypt
| | - Alaa Ramadan
- Faculty of Medicine, South Valley University, Qena, Egypt
| | - Mostafa Meshref
- Neurology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | |
Collapse
|
6
|
Sun Y, Sun B, Han X, Shan A, Ma Q. Leucine Supplementation Ameliorates Early-Life Programming of Obesity in Rats. Diabetes 2023; 72:1409-1423. [PMID: 37196349 DOI: 10.2337/db22-0862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/06/2023] [Indexed: 05/19/2023]
Abstract
The advanced cessation of lactation elevates the risk of programmed obesity and obesity-related metabolic disorders in adulthood. This study used multiomic analysis to investigate the mechanism behind this phenomenon and the effects of leucine supplementation on ameliorating programmed obesity development. Wistar/SD rat offspring were subjected to early weaning (EW) at day 17 (EWWIS and EWSD groups) or normal weaning at day 21 (CWIS and CSD groups). Half of the rats from the EWSD group were selected to create a new group with 2-month leucine supplementation at day 150. The results showed that EW impaired lipid metabolic gene expression and increased insulin, neuropeptide Y, and feed intake, inducing obesity in adulthood. Six lipid metabolism-related genes (Acot1, Acot2, Acot4, Scd, Abcg8, and Cyp8b1) were influenced by EW during the entire experimental period. Additionally, adult early-weaned rats exhibited cholesterol and fatty acid β-oxidation disorders, liver taurine reduction, cholestasis, and insulin and leptin resistance. Leucine supplementation partly alleviated these metabolic disorders and increased liver L-carnitine, retarding programmed obesity development. This study provides new insights into the mechanism of programmed obesity development and the potential benefits of leucine supplementation, which may offer suggestions for life planning and programmed obesity prevention. ARTICLE HIGHLIGHTS Early-weaned adult rats showed excess lipid accumulation and metabolic defects. Early weaning disrupts lipid metabolism and secretion of neuropeptide Y and insulin. The altered lipid metabolic gene expression in this study is vital in programming. Leucine mitigates metabolic disorders and hampers programmed obesity development.
Collapse
Affiliation(s)
- Yuchen Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Bo Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xuesong Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Qingquan Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
7
|
Cha JJ, Park BY, Yoon SG, Park HJ, Yoo JA, Ghee JY, Cha DR, Seong JY, Kang YS. Spexin-based galanin receptor 2 agonist improves renal injury in mice with type 2 diabetes. Anim Cells Syst (Seoul) 2023; 27:187-196. [PMID: 37789932 PMCID: PMC10543361 DOI: 10.1080/19768354.2023.2263067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
The spexin-based GALR2 agonist (NS200) is a novel drug, which has shown antidepressant and anxiolytic action in a recent experimental study. In this study, we investigated the effects of NS200 on renal injury in an animal model of type 2 diabetes. Eight-week-old diabetic db/db mice were administered NS200 for 12 weeks. NS200 was intraperitoneally administered at a dose of 1.0 mg/kg/day. Metabolic parameters and structural and molecular changes in the kidneys were compared among the three groups: non-diabetic db/m control, db/db mice, and NS200-treated db/db mice. In db/db mice, NS200 administration did not impact the body weight, food and water intake, urinary volume, fasting blood glucose level, or HbA1c levels. Insulin and glucose tolerance were also unaffected by NS200 treatment. However, NS200 improved urinary albumin excretion and glomerulosclerosis in diabetic kidneys. Activation of TGFβ1 and insulin signaling pathways, such as PI3 K /AKT/ERK, were inhibited by NS200. In conclusion, a spexin-based GALR2 agonist attenuated diabetic nephropathy by alleviating renal fibrosis in mice with type 2 diabetes. Spexin-based GALR2 agonists have considerable potential as novel treatment agents in diabetic nephropathy.
Collapse
Affiliation(s)
- Jin Joo Cha
- Department of Nephrology, Korea University Ansan Hospital, Gyeonggi-do, Republic of Korea
| | - Boo Yeon Park
- Department of Nephrology, Korea University Ansan Hospital, Gyeonggi-do, Republic of Korea
| | - Sung Gi Yoon
- Department of Nephrology, Korea University Ansan Hospital, Gyeonggi-do, Republic of Korea
| | - Hye Jin Park
- Department of Nephrology, Korea University Ansan Hospital, Gyeonggi-do, Republic of Korea
| | - Ji Ae Yoo
- Department of Nephrology, Korea University Ansan Hospital, Gyeonggi-do, Republic of Korea
| | - Jung Yeon Ghee
- Department of Nephrology, Korea University Ansan Hospital, Gyeonggi-do, Republic of Korea
| | - Dae Ryong Cha
- Department of Nephrology, Korea University Ansan Hospital, Gyeonggi-do, Republic of Korea
| | - Jae Young Seong
- Graduate School of Biomedical Science, Korea University College of Medicine, Seoul, Republic of Korea
| | - Young Sun Kang
- Department of Nephrology, Korea University Ansan Hospital, Gyeonggi-do, Republic of Korea
| |
Collapse
|
8
|
Iwasa T, Noguchi H, Aoki H, Tamura K, Maeda T, Takeda A, Uchishiba M, Arakaki R, Minato S, Kamada S, Yamamoto S, Imaizumi J, Kagawa T, Yoshida A, Fukui R, Daizumoto K, Kon M, Shinohara N, Yoshida K, Yamamoto Y. Effects of undernutrition and low energy availability on reproductive functions and their underlying neuroendocrine mechanisms. Endocr J 2022; 69:1363-1372. [PMID: 36372440 DOI: 10.1507/endocrj.ej22-0426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It has been well established that undernutrition and low energy availability disturb female reproductive functions in humans and many animal species. These reproductive dysfunctions are mainly caused by alterations of some hypothalamic factors, and consequent reduction of gonadotrophin-releasing hormone (GnRH) secretion. Evidence from literature suggests that increased activity of orexigenic factors and decreased activity of anorexigenic/satiety-related factors in undernourished conditions attenuate GnRH secretion in an integrated manner. Likewise, the activity of kisspeptin neurons, which is a potent stimulator of GnRH, is also reduced in undernourished conditions. In addition, it has been suggested that gonadotrophin-inhibitory hormone, which has anti-GnRH and gonadotrophic effects, may be involved in reproductive dysfunctions under several kinds of stress conditions. It should be remembered that these alterations, i.e., promotion of feeding behavior and temporary suppression of reproductive functions, are induced to prioritize the survival of individual over that of species, and that improvements in metabolic and nutritional conditions should be considered with the highest priority.
Collapse
Affiliation(s)
- Takeshi Iwasa
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Hiroki Noguchi
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Hidenori Aoki
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Kou Tamura
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Takaaki Maeda
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Asuka Takeda
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Maimi Uchishiba
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Ryosuke Arakaki
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Saki Minato
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Shuhei Kamada
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Shota Yamamoto
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-0808, Japan
| | - Junki Imaizumi
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Tomohiro Kagawa
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Atsuko Yoshida
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Rijin Fukui
- Department of Obstetrics & Gynecology, Tokushima Municipal Hospital, Tokushima 770-0812, Japan
| | - Kei Daizumoto
- Department of Urology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Masafumi Kon
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-0808, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo 060-0808, Japan
| | - Kanako Yoshida
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Yuri Yamamoto
- Department of Obstetrics and Gynecology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| |
Collapse
|
9
|
Obesity-Related Genes Expression in Testes and Sperm Parameters Respond to GLP-1 and Caloric Restriction. Biomedicines 2022; 10:biomedicines10102609. [PMID: 36289871 PMCID: PMC9599882 DOI: 10.3390/biomedicines10102609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/25/2022] Open
Abstract
Aim: Calorie restriction (CR) diets and glucagon-Like Peptide-1 (GLP-1) analogs are known to alter energy homeostasis with the potential to affect the expression of obesity-related genes (ORGs). We hypothesized that CR and GLP-1 administration can alter ORGs expression in spermatozoa and testes, as well as the sperm parameters implicated in male fertility. Materials and Methods: Six-week-old adult male Wistar rats (n = 16) were divided into three groups, submitted either to CR (n = 6, fed with 30% less chow diet than the control rats), GLP-1 administration (n = 5, 3.5 pmol/min/kg intraperitoneal) for 28 days, or used as controls (n = 5, fed ad libitum). Selected ORGs expression, namely the fat mass and obesity-associated (FTO), melanocortin-4 receptor (MC4R), glucosamine-6-phosphate deaminase 2 (GNPDA2), and transmembrane protein 18 (TMEM18) were evaluated in testes and spermatozoa by a quantitative polymerase chain reaction (qPCR). Results: CR resulted in lower body weight gain and insulin resistance, but a higher percentage of sperm head defects. GLP-1 administration, despite showing no influence on body weight or glucose homeostasis, resulted in a lower percentage of sperm head defects. CR and GLP-1 administration were associated with a higher expression of all ORGs in the testes. Under CR conditions, the genes FTO and TMEM18 expression in the testes and the MC4R and TMEM18 transcripts abundance in sperm were positively correlated with the spermatozoa oxidative status. The abundance of FTO and TMEM18 in the spermatozoa of rats under CR were positively correlated with sperm concentration, while the testes’ TMEM18 expression was also positively correlated with sperm vitality and negatively correlated with insulin resistance. Testes GNPDA2 expression was negatively correlated with sperm head defects. Conclusions: CR and GLP-1 administration results in higher ORGs expression in testes, and these were correlated with several alterations in sperm fertility parameters.
Collapse
|
10
|
Aymen J, Delnatte P, Beaufrère H, Chalil D, Steckel KE, Gourlie S, Stark KD, McAdie M. Comparison of blood leptin and vitamin E and blood and adipose fatty acid compositions in wild and captive populations of critically endangered Vancouver Island marmots (Marmota vancouverensis). Zoo Biol 2022; 42:308-321. [PMID: 36176181 DOI: 10.1002/zoo.21739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022]
Abstract
Vancouver Island marmots (Marmota vancouverensis) (VIMs) are a critically endangered species of fat-storing hibernators, endemic to Vancouver Island, British Columbia, Canada. In addition to in-situ conservation efforts, a captive breeding program has been ongoing since 1997. The captive diet is mostly pellet-based and rich in n-6 polyunsaturated fatty acids (PUFAs). In captivity, overall length of hibernation is shortened, and marmots have higher adipose tissue reserves compared to their wild-born counterparts, which may be a risk factor for cardiovascular disease, the leading cause of mortality in captive marmots. To investigate differences in lipid metabolism between wild and captive populations of VIMs, blood vitamin E, fatty acid (FA) profiles and leptin, and white adipose tissue (WAT) FA profiles were compared during the active season (May to September 2019). Gas chromatography, high-performance liquid chromatography, and multiplex kits were used to obtain FA profiles, α-tocopherol, and leptin values, respectively. In both plasma and WAT, the concentration of the sum of all FA in the total lipids was significantly increased in captive VIMs. The n-6/n-3 ratio, saturated FAs, and n-6 PUFAS were higher in captive marmots, whereas n-3 PUFAs and the HUFA score were higher in wild marmots. Serum concentrations of α-tocopherol were greater by an average of 45% in captive marmots, whereas leptin concentrations did not differ. Results from this study may be applied to improve the diet and implement weight management to possibly enhance the quality of hibernation and decrease the risk of cardiovascular and metabolic diseases of captive VIMs.
Collapse
Affiliation(s)
- Jessica Aymen
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.,Toronto Zoo, Scarborough, Ontario, Canada
| | | | - Hugues Beaufrère
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Dan Chalil
- Department of Kinesiology and Health Studies, University of Waterloo, Waterloo, Ontario, Canada
| | - Klaudia E Steckel
- Department of Kinesiology and Health Studies, University of Waterloo, Waterloo, Ontario, Canada
| | | | - Ken D Stark
- Department of Kinesiology and Health Studies, University of Waterloo, Waterloo, Ontario, Canada
| | - Malcolm McAdie
- Marmot Recovery Foundation, Nanaimo, British Columbia, Canada
| |
Collapse
|
11
|
Sargeant JA, King JA, Yates T, Redman EL, Bodicoat DH, Chatterjee S, Edwardson CL, Gray LJ, Poulin B, Waheed G, Waller HL, Webb DR, Willis SA, Wilding JPH, Khunti K, Stensel DJ, Davies MJ. The effects of empagliflozin, dietary energy restriction, or both on appetite-regulatory gut peptides in individuals with type 2 diabetes and overweight or obesity: The SEESAW randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab 2022; 24:1509-1521. [PMID: 35441435 PMCID: PMC9541107 DOI: 10.1111/dom.14721] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 11/28/2022]
Abstract
AIM To assess the impact of the sodium-glucose co-transporter-2 (SGLT2) inhibitor empagliflozin (25 mg once-daily), dietary energy restriction, or both combined, on circulating appetite-regulatory peptides in people with type 2 diabetes (T2D) and overweight or obesity. MATERIALS AND METHODS In a double-blind, placebo-controlled trial, 68 adults (aged 30-75 years) with T2D (drug naïve or on metformin monotherapy; HbA1c 6.0%-10.0% [42-86 mmol/mol]) and body mass index of 25 kg/m2 or higher were randomized to (a) placebo only, (b) placebo plus diet, (c) empagliflozin only or (d) empagliflozin plus diet for 24 weeks. Dietary energy restriction matched the estimated energy deficit elicited by SGLT2 inhibitor therapy through urinary glucose excretion (~360 kcal/day). The primary outcome was change in postprandial circulating total peptide-YY (PYY) during a 3-hour mixed-meal tolerance test from baseline to 24 weeks. Postprandial total glucagon-like peptide-1 (GLP-1), acylated ghrelin and subjective appetite perceptions formed secondary outcomes, along with other key components of energy balance. RESULTS The mean weight loss in each group at 24 weeks was 0.44, 1.91, 2.22 and 5.74 kg, respectively. The change from baseline to 24 weeks in postprandial total PYY was similar between experimental groups and placebo only (mean difference [95% CI]: -8.6 [-28.6 to 11.4], 13.4 [-6.1 to 33.0] and 1.0 [-18.0 to 19.9] pg/ml in placebo-plus diet, empagliflozin-only and empagliflozin-plus-diet groups, respectively [all P ≥ .18]). Similarly, there was no consistent pattern of difference between groups for postprandial total GLP-1, acylated ghrelin and subjective appetite perceptions. CONCLUSIONS In people with T2D and overweight or obesity, changes in postprandial appetite-regulatory gut peptides may not underpin the less than predicted weight loss observed with empagliflozin therapy. CLINICAL TRIALS REGISTRATION NCT02798744, www. CLINICALTRIALS gov; 2015-001594-40, www.EudraCT.ema.europa.eu; ISRCTN82062639, www.ISRCTN.org.
Collapse
Affiliation(s)
- Jack A. Sargeant
- Diabetes Research CentreUniversity of LeicesterLeicesterUK
- National Institute for Health Research (NIHR) Leicester Biomedical Research CentreLeicesterUK
| | - James A. King
- National Institute for Health Research (NIHR) Leicester Biomedical Research CentreLeicesterUK
- School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
| | - Thomas Yates
- Diabetes Research CentreUniversity of LeicesterLeicesterUK
- National Institute for Health Research (NIHR) Leicester Biomedical Research CentreLeicesterUK
| | - Emma L. Redman
- Diabetes Research CentreUniversity of LeicesterLeicesterUK
- National Institute for Health Research (NIHR) Leicester Biomedical Research CentreLeicesterUK
- Leicester Diabetes CentreUniversity Hospitals of Leicester NHS TrustLeicesterUK
| | | | | | - Charlotte L. Edwardson
- Diabetes Research CentreUniversity of LeicesterLeicesterUK
- National Institute for Health Research (NIHR) Leicester Biomedical Research CentreLeicesterUK
| | - Laura J. Gray
- Department of Health SciencesUniversity of LeicesterLeicesterUK
| | - Benoit Poulin
- Diabetes Research CentreUniversity of LeicesterLeicesterUK
- National Institute for Health Research (NIHR) Leicester Biomedical Research CentreLeicesterUK
| | - Ghazala Waheed
- Diabetes Research CentreUniversity of LeicesterLeicesterUK
- National Institute for Health Research (NIHR) Leicester Biomedical Research CentreLeicesterUK
| | - Helen L. Waller
- Diabetes Research CentreUniversity of LeicesterLeicesterUK
- National Institute for Health Research (NIHR) Leicester Biomedical Research CentreLeicesterUK
| | - David R. Webb
- Diabetes Research CentreUniversity of LeicesterLeicesterUK
- National Institute for Health Research (NIHR) Leicester Biomedical Research CentreLeicesterUK
- Leicester Diabetes CentreUniversity Hospitals of Leicester NHS TrustLeicesterUK
| | - Scott A. Willis
- National Institute for Health Research (NIHR) Leicester Biomedical Research CentreLeicesterUK
- School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
| | - John P. H. Wilding
- Department of Cardiovascular and Metabolic MedicineUniversity of LiverpoolLiverpoolUK
| | - Kamlesh Khunti
- Diabetes Research CentreUniversity of LeicesterLeicesterUK
- Leicester Diabetes CentreUniversity Hospitals of Leicester NHS TrustLeicesterUK
- NIHR Applied Research Collaboration East MidlandsLeicesterUK
| | - David J. Stensel
- National Institute for Health Research (NIHR) Leicester Biomedical Research CentreLeicesterUK
- School of Sport, Exercise and Health SciencesLoughborough UniversityLeicestershireUK
- Faculty of Sport SciencesWaseda UniversityTokorozawaJapan
| | - Melanie J. Davies
- Diabetes Research CentreUniversity of LeicesterLeicesterUK
- National Institute for Health Research (NIHR) Leicester Biomedical Research CentreLeicesterUK
- Leicester Diabetes CentreUniversity Hospitals of Leicester NHS TrustLeicesterUK
| |
Collapse
|
12
|
Vohra MS, Benchoula K, Serpell CJ, Hwa WE. AgRP/NPY and POMC neurons in the arcuate nucleus and their potential role in treatment of obesity. Eur J Pharmacol 2022; 915:174611. [PMID: 34798121 DOI: 10.1016/j.ejphar.2021.174611] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023]
Abstract
Obesity is a major health crisis affecting over a third of the global population. This multifactorial disease is regulated via interoceptive neural circuits in the brain, whose alteration results in excessive body weight. Certain central neuronal populations in the brain are recognised as crucial nodes in energy homeostasis; in particular, the hypothalamic arcuate nucleus (ARC) region contains two peptide microcircuits that control energy balance with antagonistic functions: agouti-related peptide/neuropeptide-Y (AgRP/NPY) signals hunger and stimulates food intake; and pro-opiomelanocortin (POMC) signals satiety and reduces food intake. These neuronal peptides levels react to energy status and integrate signals from peripheral ghrelin, leptin, and insulin to regulate feeding and energy expenditure. To manage obesity comprehensively, it is crucial to understand cellular and molecular mechanisms of information processing in ARC neurons, since these regulate energy homeostasis. Importantly, a specific strategy focusing on ARC circuits needs to be devised to assist in treating obese patients and maintaining weight loss with minimal or no side effects. The aim of this review is to elucidate the recent developments in the study of AgRP-, NPY- and POMC-producing neurons, specific to their role in controlling metabolism. The impact of ghrelin, leptin, and insulin signalling via action of these neurons is also surveyed, since they also impact energy balance through this route. Lastly, we present key proteins, targeted genes, compounds, drugs, and therapies that actively work via these neurons and could potentially be used as therapeutic targets for treating obesity conditions.
Collapse
Affiliation(s)
- Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Christopher J Serpell
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
13
|
Iwasa T, Yamamoto Y, Noguchi H, Takeda A, Minato S, Kamada S, Imaizumi J, Kagawa T, Yoshida A, Kawakita T, Yoshida K. Neuroendocrine mechanisms of reproductive dysfunctions in undernourished condition. J Obstet Gynaecol Res 2022; 48:568-575. [PMID: 34979587 DOI: 10.1111/jog.15144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 11/28/2022]
Abstract
It is well known that undernourished conditions disturb female reproductive functions in many species, including humans. These alterations are mainly caused by a reduction in gonadotrophin-releasing hormone (GnRH) secretion from the hypothalamus. Evidence from the literature suggests that some hypothalamic factors play pivotal roles in the coordination of reproductive functions and energy homeostasis in response to environmental cues and internal nutritional status. Generally, anorexigenic/satiety-related factors, such as leptin, alpha-melanocyte-stimulating hormone, and proopiomelanocortin, promote GnRH secretion, whereas orexigenic factors, such as neuropeptide Y, agouti-related protein, orexin, and ghrelin, attenuate GnRH secretion. Conversely, gonadotrophin-inhibitory hormone, which exerts anti-GnRH and gonadotrophic effects, promotes feeding behavior in many species. In addition, the activity of kisspeptin, which is a potent stimulator of GnRH, is reduced by undernourished conditions. Under normal nutritional conditions, these factors are coordinated to maintain both feeding behavior and reproductive functions. However, in undernourished conditions their activity levels are markedly altered to promote feeding behavior and temporarily suppress reproductive functions, in order to prioritize the survival of the individual over that of the species.
Collapse
Affiliation(s)
- Takeshi Iwasa
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yuri Yamamoto
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hiroki Noguchi
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Asuka Takeda
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Saki Minato
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Shuhei Kamada
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Junki Imaizumi
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Tomohiro Kagawa
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Atsuko Yoshida
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Takako Kawakita
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kanako Yoshida
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
14
|
Iwasa T, Minato S, Imaizumi J, Yoshida A, Kawakita T, Yoshida K, Yamamoto Y. Effects of low energy availability on female reproductive function. Reprod Med Biol 2021; 21:e12414. [PMID: 34934398 PMCID: PMC8656184 DOI: 10.1002/rmb2.12414] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/03/2021] [Indexed: 01/15/2023] Open
Abstract
Background It is known that metabolic and nutritional disturbances induce reproductive dysfunction in females. The main cause of these alterations is reduced gonadotrophin‐releasing hormone (GnRH) secretion from the hypothalamus, and the underlying mechanisms have gradually been elucidated. Methods The present review summarizes current knowledge about the effects of nutrition/metabolism on reproductive functions, especially focusing on the GnRH regulation system. Main findings Various central and peripheral factors are involved in the regulation of GnRH secretion, and alterations in their activity combine to affect GnRH neurons. Satiety‐related factors, i.e., leptin, insulin, and alpha‐melanocyte‐stimulating hormone, directly and indirectly stimulate GnRH secretion, whereas orexigenic factors, i.e., neuropeptide Y, Agouti‐related protein, orexin, and ghrelin, attenuate GnRH secretion. In addition, kisspeptin, which is a potent positive regulator of GnRH, expression is reduced by metabolic and nutritional disturbances. Conclusion These neuroendocrine systems may be defensive mechanisms, which help organisms to survive adverse conditions by temporarily suppressing reproduction.
Collapse
Affiliation(s)
- Takeshi Iwasa
- Department of Obstetrics and Gynecology Graduate School of Biomedical Sciences Tokushima University Tokushima Japan
| | - Saki Minato
- Department of Obstetrics and Gynecology Graduate School of Biomedical Sciences Tokushima University Tokushima Japan
| | - Junki Imaizumi
- Department of Obstetrics and Gynecology Graduate School of Biomedical Sciences Tokushima University Tokushima Japan
| | - Atsuko Yoshida
- Department of Obstetrics and Gynecology Graduate School of Biomedical Sciences Tokushima University Tokushima Japan
| | - Takako Kawakita
- Department of Obstetrics and Gynecology Graduate School of Biomedical Sciences Tokushima University Tokushima Japan
| | - Kanako Yoshida
- Department of Obstetrics and Gynecology Graduate School of Biomedical Sciences Tokushima University Tokushima Japan
| | - Yuri Yamamoto
- Department of Obstetrics and Gynecology Graduate School of Biomedical Sciences Tokushima University Tokushima Japan
| |
Collapse
|
15
|
Leptin-Activity Modulators and Their Potential Pharmaceutical Applications. Biomolecules 2021; 11:biom11071045. [PMID: 34356668 PMCID: PMC8301849 DOI: 10.3390/biom11071045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Leptin, a multifunctional hormone primarily, but not exclusively, secreted in adipose tissue, is implicated in a wide range of biological functions that control different processes, such as the regulation of body weight and energy expenditure, reproductive function, immune response, and bone metabolism. In addition, leptin can exert angiogenic and mitogenic actions in peripheral organs. Leptin biological activities are greatly related to its interaction with the leptin receptor. Both leptin excess and leptin deficiency, as well as leptin resistance, are correlated with different human pathologies, such as autoimmune diseases and cancers, making leptin and leptin receptor important drug targets. The development of leptin signaling modulators represents a promising strategy for the treatment of cancers and other leptin-related diseases. In the present manuscript, we provide an update review about leptin-activity modulators, comprising leptin mutants, peptide-based leptin modulators, as well as leptin and leptin receptor specific monoclonal antibodies and nanobodies.
Collapse
|
16
|
The Function of Gastrointestinal Hormones in Obesity-Implications for the Regulation of Energy Intake. Nutrients 2021; 13:nu13061839. [PMID: 34072172 PMCID: PMC8226753 DOI: 10.3390/nu13061839] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
The global burden of obesity and the challenges of prevention prompted researchers to investigate the mechanisms that control food intake. Food ingestion triggers several physiological responses in the digestive system, including the release of gastrointestinal hormones from enteroendocrine cells that are involved in appetite signalling. Disturbed regulation of gut hormone release may affect energy homeostasis and contribute to obesity. In this review, we summarize the changes that occur in the gut hormone balance during the pre- and postprandial state in obesity and the alterations in the diurnal dynamics of their plasma levels. We further discuss how obesity may affect nutrient sensors on enteroendocrine cells that sense the luminal content and provoke alterations in their secretory profile. Gastric bypass surgery elicits one of the most favorable metabolic outcomes in obese patients. We summarize the effect of different strategies to induce weight loss on gut enteroendocrine function. Although the mechanisms underlying obesity are not fully understood, restoring the gut hormone balance in obesity by targeting nutrient sensors or by combination therapy with gut peptide mimetics represents a novel strategy to ameliorate obesity.
Collapse
|
17
|
Benite-Ribeiro SA, Rodrigues VADL, Machado MRF. Food intake in early life and epigenetic modifications of pro-opiomelanocortin expression in arcuate nucleus. Mol Biol Rep 2021; 48:3773-3784. [PMID: 33877530 DOI: 10.1007/s11033-021-06340-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
The prevalence of obesity is increasing in nowadays societies and, despite being a multifactorial disease, it has a significant correlation with food intake. The control of food intake is performed by neurons of the arcuate nucleus of the hypothalamus (ARC), which secret orexigenic and anorexigenic neuropeptides, such as proopiomelanocortin (POMC), under stimulation of, e.g., ghrelin, insulin, and leptin. Insulin, uses inositol 1,4,5-trisphosphate/serine-threonine kinase (IP3/Akt) pathways and stimulates the exclusion of (Forkhead box protein O1) FOXO1 from the nucleus and thereby does the inactivation of the inhibition of POMC expression, while Leptin stimulates signal transducer and activator of transcription 3 (STAT3) phosphorylation and POMC expression. Epigenetic modifications of the synthesis of these neuropeptides can lead to an increased caloric intake, which, in turn, is an important risk factor for obesity and its comorbidities. Epigenetic modifications are reversible, so the search for epigenetic targets has significant scientific and therapeutic appeal. In this review, we synthesize the effect of food intake on the epigenetic modifications of Neuropeptide Y and Pro-opiomelanocortin of ARC and its relationships with obesity development and comorbidities. We found that there is no consensus on the methylation of neuropeptides when the evaluations are carried out in different promoters. Based on reports carried on in the early life in laboratory animals, which is the timeline that the vast majority of author used to study this topic, chronic inflammation, defects in insulin and leptin signaling may be linked to changes occurring in the phosphoinositide 3-kinase/Akt (PI3K/Akt) and/or STAT3/SOCS3 (cytokine signaling 3) pathways. In its turn, the epigenetic modifications related to increased food intake and reduced energy expenditure may be associated with PI3K/Akt and STAT3/SOCS3 signaling disruption and Pro-opiomelanocortin expression.
Collapse
Affiliation(s)
- Sandra Aparecida Benite-Ribeiro
- Ciências Biológicas, Federal University of Jataí (UFJ), Rodovia 364, Km 195, nº 3800, Jataí, Goiás, CEP 75801-615, Brasil.
- Pós-Graduação de Ciências Aplicadas À Saúde, Federal University of Jataí (UFJ), Rodovia 364, Km 195, nº 3800, Jataí, Goiás, CEP 75801-615, Brasil.
- Pós-Graduação em Biociência Animal, Federal University of Jataí (UFJ), Rodovia 364, Km 195, nº 3800, Jataí, Goiás, CEP 75801-615, Brasil.
| | - Valkíria Alves de Lima Rodrigues
- Pós-Graduação de Ciências Aplicadas À Saúde, Federal University of Jataí (UFJ), Rodovia 364, Km 195, nº 3800, Jataí, Goiás, CEP 75801-615, Brasil
| | - Mônica Rodrigues Ferreira Machado
- Pós-Graduação em Biociência Animal, Federal University of Jataí (UFJ), Rodovia 364, Km 195, nº 3800, Jataí, Goiás, CEP 75801-615, Brasil
| |
Collapse
|
18
|
Sergi D, Williams LM. Potential relationship between dietary long-chain saturated fatty acids and hypothalamic dysfunction in obesity. Nutr Rev 2020; 78:261-277. [PMID: 31532491 DOI: 10.1093/nutrit/nuz056] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Diet-induced hypothalamic inflammation, which leads to hypothalamic dysfunction and a loss of regulation of energy balance, is emerging as a potential driver of obesity. Excessive intake of long-chain saturated fatty acids is held to be the causative dietary component in hypothalamic inflammation. This review summarizes current evidence on the role of long-chain saturated fatty acids in promoting hypothalamic inflammation and the related induction of central insulin and leptin insensitivity. Particularly, the present review focuses on the molecular mechanisms linking long-chain saturated fatty acids and hypothalamic inflammation, emphasizing the metabolic fate of fatty acids and the resulting lipotoxicity, which is a key driver of hypothalamic dysfunction. In conclusion, long-chain saturated fatty acids are key nutrients that promote hypothalamic inflammation and dysfunction by fostering the build-up of lipotoxic lipid species, such as ceramide. Furthermore, when long-chain saturated fatty acids are consumed in combination with high levels of refined carbohydrates, the proinflammatory effects are exacerbated via a mechanism that relies on the formation of advanced glycation end products.
Collapse
Affiliation(s)
- Domenico Sergi
- Nutrition and Health Substantiation Group, Nutrition and Health Program, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, South Australia, Australia
| | - Lynda M Williams
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| |
Collapse
|
19
|
Mohr SM, Bagriantsev SN, Gracheva EO. Cellular, Molecular, and Physiological Adaptations of Hibernation: The Solution to Environmental Challenges. Annu Rev Cell Dev Biol 2020; 36:315-338. [PMID: 32897760 DOI: 10.1146/annurev-cellbio-012820-095945] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Thriving in times of resource scarcity requires an incredible flexibility of behavioral, physiological, cellular, and molecular functions that must change within a relatively short time. Hibernation is a collection of physiological strategies that allows animals to inhabit inhospitable environments, where they experience extreme thermal challenges and scarcity of food and water. Many different kinds of animals employ hibernation, and there is a spectrum of hibernation phenotypes. Here, we focus on obligatory mammalian hibernators to identify the unique challenges they face and the adaptations that allow hibernators to overcome them. This includes the cellular and molecular strategies used to combat low environmental and body temperatures and lack of food and water. We discuss metabolic, neuronal, and hormonal cues that regulate hibernation and how they are thought to be coordinated by internal clocks. Last, we touch on questions that are left to be addressed in the field of hibernation research. Studies from the last century and more recent work reveal that hibernation is not simply a passive reduction in body temperature and vital parameters but rather an active process seasonally regulated at the molecular, cellular, and organismal levels.
Collapse
Affiliation(s)
- Sarah M Mohr
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA; .,Department of Neuroscience and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06510, USA;
| | - Sviatoslav N Bagriantsev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA;
| | - Elena O Gracheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA; .,Department of Neuroscience and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06510, USA;
| |
Collapse
|
20
|
Nabil M, El Demellawy MA, Mahmoud MF, Mahmoud AAA. Prolonged overnutrition with fructose or fat induces metabolic derangements in rats by disrupting the crosstalk between the hypothalamus and periphery: Possible amelioration with fenofibrate. Eur J Pharmacol 2020; 879:173136. [PMID: 32360834 DOI: 10.1016/j.ejphar.2020.173136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 11/15/2022]
Abstract
Metabolic Syndrome (MetS) increases the risk of developing type 2 diabetes mellitus and cardiovascular complications. The crosstalk between the hypothalamus and periphery is vital for regulating food intake and energy homeostasis. However, it is impaired during MetS. The present study aimed to compare the distinct central and peripheral metabolic derangements induced by a high-fructose drink or high-fat diet, as well as the possible intervention by fenofibrate. Rats were divided into five groups: standard chow diet (SCD) group, high-fructose group (FR), high-fat group (HF), FR plus fenofibrate group (FR-F), and HF plus fenofibrate group (HF-F). FR and HF groups showed hyperglycemia, hyperinsulinemia, hypertriglyceridemia, hyperleptinemia, steatosis, and adipocyte hypertrophy. This was associated with elevated circulating levels of proinflammatory cytokines and free fatty acids (FFAs). The latter mediators are involved in the hypothalamic inflammation and dysregulation of signaling cascades that control food intake and glucose homeostasis. The effects were more pronounced in the HF group than FR group, which were matched with the observed higher levels of plasma FFAs and cytokines. Fenofibrate administration improved not only the peripheral metabolic disturbances, but also the central disturbances associated with insulin resistance induced by FR or HF diet. This study sheds light on the pivotal role of the hypothalamus in diet-induced MetS. Furthermore, the study suggests the utmost importance of developing a standardized model of metabolic syndrome in place of the great diversity between available models, which can induce different effects and negatively impact the validity of prospective studies.
Collapse
Affiliation(s)
- Mohamed Nabil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt; Pharmaceutical and Fermentation Industries Development Center (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, 21934, Egypt
| | - Maha A El Demellawy
- Department of Medical Biotechnology, Genetic Engineering & Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, 21934, Egypt
| | - Mona F Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Amr A A Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
21
|
Kansra AR, Lakkunarajah S, Jay MS. Childhood and Adolescent Obesity: A Review. Front Pediatr 2020; 8:581461. [PMID: 33511092 PMCID: PMC7835259 DOI: 10.3389/fped.2020.581461] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is a complex condition that interweaves biological, developmental, environmental, behavioral, and genetic factors; it is a significant public health problem. The most common cause of obesity throughout childhood and adolescence is an inequity in energy balance; that is, excess caloric intake without appropriate caloric expenditure. Adiposity rebound (AR) in early childhood is a risk factor for obesity in adolescence and adulthood. The increasing prevalence of childhood and adolescent obesity is associated with a rise in comorbidities previously identified in the adult population, such as Type 2 Diabetes Mellitus, Hypertension, Non-alcoholic Fatty Liver disease (NAFLD), Obstructive Sleep Apnea (OSA), and Dyslipidemia. Due to the lack of a single treatment option to address obesity, clinicians have generally relied on counseling dietary changes and exercise. Due to psychosocial issues that may accompany adolescence regarding body habitus, this approach can have negative results. Teens can develop unhealthy eating habits that result in Bulimia Nervosa (BN), Binge- Eating Disorder (BED), or Night eating syndrome (NES). Others can develop Anorexia Nervosa (AN) as they attempt to restrict their diet and overshoot their goal of "being healthy." To date, lifestyle interventions have shown only modest effects on weight loss. Emerging findings from basic science as well as interventional drug trials utilizing GLP-1 agonists have demonstrated success in effective weight loss in obese adults, adolescents, and pediatric patients. However, there is limited data on the efficacy and safety of other weight-loss medications in children and adolescents. Nearly 6% of adolescents in the United States are severely obese and bariatric surgery as a treatment consideration will be discussed. In summary, this paper will overview the pathophysiology, clinical, and psychological implications, and treatment options available for obese pediatric and adolescent patients.
Collapse
Affiliation(s)
- Alvina R Kansra
- Division of Endocrinology, Diabetes and Metabolism, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sinduja Lakkunarajah
- Division of Adolescent Medicine, Department of Pediatrics, Medical College of Wisconsin Affiliated Hospitals, Milwaukee, WI, United States
| | - M Susan Jay
- Division of Adolescent Medicine, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
22
|
Energy Homeostasis and Obesity: The Therapeutic Role of Anorexigenic and Orexigenic Peptide. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-018-9740-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Allahyari S, Chaji M, Mamuie M. Investigation changes in production, some blood hormones, and metabolites, serum and colostrum IgG of calves of Holstein cows fed with two levels of zinc supplement in transitional period. JOURNAL OF APPLIED ANIMAL RESEARCH 2019. [DOI: 10.1080/09712119.2019.1653301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sina Allahyari
- Department of Animal Science, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Ahvaz, Iran
| | - Morteza Chaji
- Department of Animal Science, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Ahvaz, Iran
| | - Morteza Mamuie
- Department of Animal Science, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Ahvaz, Iran
| |
Collapse
|
24
|
Murayama S, Yamamoto K, Fujita S, Takei H, Inui T, Ogiso B, Kobayashi M. Extracellular glucose-dependent IPSC enhancement by leptin in fast-spiking to pyramidal neuron connections via JAK2-PI3K pathway in the rat insular cortex. Neuropharmacology 2019; 149:133-148. [PMID: 30772375 DOI: 10.1016/j.neuropharm.2019.02.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/07/2019] [Accepted: 02/13/2019] [Indexed: 01/29/2023]
Abstract
Leptin is produced in the adipocytes and plays a pivotal role in regulation of energy balance by controlling appetite and metabolism. Leptin receptors are widely distributed in the brain, especially in the hypothalamus, hippocampus, and neocortex. The insular cortex (IC) processes gustatory and visceral information, which functionally correlate to feeding behavior. However, it is still an open issue whether and how leptin modulates IC neural activities. Our paired whole-cell patch-clamp recordings using IC slice preparations demonstrated that unitary inhibitory postsynaptic currents (uIPSCs) but not uEPSCs were potentiated by leptin in the connections between pyramidal (PNs) and fast-spiking neurons (FSNs). The leptin-induced increase in uIPSC amplitude was accompanied by a decrease in paired-pulse ratio. Under application of inhibitors of JAK2-PI3K but not MAPK pathway, leptin did not change uIPSC amplitude. Variance-mean analysis revealed that leptin increased the release probability but not the quantal size and the number of release site. These electrophysiological findings suggest that the leptin-induced uIPSC increase is mediated by activation of JAK2-PI3K pathway in presynaptic FSNs. An in vivo optical imaging revealed that leptin application decreased excitatory propagation in IC induced by electrical stimulation of IC. These leptin-induced effects were not observed under the low energy states: low glucose concentration (2.5 mM) in vitro and one-day-fasting condition in vivo. However, leptin enhanced uIPSCs under application of low glucose with an AMPK inhibitor. These results suggest that leptin suppresses IC excitation by facilitating GABA release in FSN→PN connections, which may not occur under a hunger state.
Collapse
Affiliation(s)
- Shota Murayama
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Department of Endodontics, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Kiyofumi Yamamoto
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Satoshi Fujita
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Hiroki Takei
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Department of Pedodontics, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Tadashi Inui
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Bunnai Ogiso
- Department of Endodontics, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan; Molecular Dynamics Imaging Unit, RIKEN Centre for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
25
|
Balland E, Chen W, Tiganis T, Cowley MA. Persistent Leptin Signaling in the Arcuate Nucleus Impairs Hypothalamic Insulin Signaling and Glucose Homeostasis in Obese Mice. Neuroendocrinology 2019; 109:374-390. [PMID: 30995667 DOI: 10.1159/000500201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/02/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Obesity is associated with reduced physiological responses to leptin and insulin, leading to the concept of obesity-associated hormonal resistance. OBJECTIVES Here, we demonstrate that contrary to expectations, leptin signaling not only remains functional but also is constantly activated in the arcuate nucleus of the hypothalamus (ARH) neurons of obese mice. This state of persistent response to endogenous leptin underpins the lack of response to exogenous leptin. METHODS AND RESULTS The study of combined leptin and insulin signaling demonstrates that there is a common pool of ARH neurons responding to both hormones. More importantly, we show that the constant activation of leptin receptor neurons in the ARH prevents insulin signaling in these neurons, leading to impaired glucose tolerance. Accordingly, antagonising leptin signaling in diet-induced obese (DIO) mice restores insulin signaling in the ARH and improves glucose homeostasis. Direct inhibition of PTP1B in the CNS restores arcuate insulin signaling similarly to leptin inhibition; this effect is likely to be mediated by AgRP neurons since PTP1B deletion specifically in AgRP neurons restores glucose and insulin tolerance in DIO mice. CONCLUSIONS Finally, our results suggest that the constant activation of arcuate leptin signaling in DIO mice increases PTP1B expression, which exerts an inhibitory effect on insulin signaling leading to impaired glucose homeostasis.
Collapse
Affiliation(s)
- Eglantine Balland
- Department of Physiology, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia,
| | - Weiyi Chen
- Department of Physiology, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Tony Tiganis
- Department of Biochemistry and Molecular Biology , Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Michael A Cowley
- Department of Physiology, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
26
|
Benomar Y, Taouis M. Molecular Mechanisms Underlying Obesity-Induced Hypothalamic Inflammation and Insulin Resistance: Pivotal Role of Resistin/TLR4 Pathways. Front Endocrinol (Lausanne) 2019; 10:140. [PMID: 30906281 PMCID: PMC6418006 DOI: 10.3389/fendo.2019.00140] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/15/2019] [Indexed: 12/16/2022] Open
Abstract
Low-grade inflammation and insulin resistance are among the clinical features of obesity that are thought to promote the progressive onset of type 2 diabetes. However, the underlying mechanisms linking these disorders remain not fully understood. Recent reports pointed out hypothalamic inflammation as a major step in the onset of obesity-induced insulin resistance. In light of the increasing prevalence of obesity and T2D, two worldwide public health concerns, deciphering mechanisms implicated in hypothalamic inflammation constitutes a major challenge in the field of insulin-resistance/obesity. Several clinical and experimental studies have identified resistin as a key hormone linking insulin-resistance to obesity, notably through the activation of Toll Like Receptor (TLR) 4 signaling pathways. In this review, we present an overview of the molecular mechanisms underlying obesity-induced hypothalamic inflammation and insulin resistance with peculiar focus on the role of resistin/TLR4 signaling pathway.
Collapse
|
27
|
Rad SK, Arya A, Karimian H, Madhavan P, Rizwan F, Koshy S, Prabhu G. Mechanism involved in insulin resistance via accumulation of β-amyloid and neurofibrillary tangles: link between type 2 diabetes and Alzheimer's disease. Drug Des Devel Ther 2018; 12:3999-4021. [PMID: 30538427 PMCID: PMC6255119 DOI: 10.2147/dddt.s173970] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The pathophysiological link between type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) has been suggested in several reports. Few findings suggest that T2DM has strong link in the development process of AD, and the complete mechanism is yet to be revealed. Formation of amyloid plaques (APs) and neurofibrillary tangles (NFTs) are two central hallmarks in the AD. APs are the dense composites of β-amyloid protein (Aβ) which accumulates around the nerve cells. Moreover, NFTs are the twisted fibers containing hyperphosphorylated tau proteins present in certain residues of Aβ that build up inside the brain cells. Certain factors contribute to the aetiogenesis of AD by regulating insulin signaling pathway in the brain and accelerating the formation of neurotoxic Aβ and NFTs via various mechanisms, including GSK3β, JNK, CamKII, CDK5, CK1, MARK4, PLK2, Syk, DYRK1A, PPP, and P70S6K. Progression to AD could be influenced by insulin signaling pathway that is affected due to T2DM. Interestingly, NFTs and APs lead to the impairment of several crucial cascades, such as synaptogenesis, neurotrophy, and apoptosis, which are regulated by insulin, cholesterol, and glucose metabolism. The investigation of the molecular cascades through insulin functions in brain contributes to probe and perceive progressions of diabetes to AD. This review elaborates the molecular insights that would help to further understand the potential mechanisms linking T2DM and AD.
Collapse
Affiliation(s)
- Sima Kianpour Rad
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Aditya Arya
- Department of Pharmacology and Therapeutics, School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia,
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia,
- Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPharm), Bukit Gambir, Gelugor, Pulau Pinang, Malaysia,
| | - Hamed Karimian
- Department of Pharmacology and Therapeutics, School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia,
| | - Priya Madhavan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Farzana Rizwan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Shajan Koshy
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Girish Prabhu
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
28
|
Evans MC, Kumar NS, Inglis MA, Anderson GM. Leptin and insulin do not exert redundant control of metabolic or emotive function via dopamine neurons. Horm Behav 2018; 106:93-104. [PMID: 30292429 DOI: 10.1016/j.yhbeh.2018.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 11/16/2022]
Abstract
Leptin and insulin's hunger-suppressing and activity-promoting actions on hypothalamic neurons are well characterized, yet the mechanisms by which they modulate the midbrain dopamine system to influence energy balance remain less clear. A subset of midbrain dopamine neurons express receptors for leptin (Lepr) and insulin (Insr). Leptin-dopamine signaling reduces running reward and homecage activity. However, dopamine-specific deletion of Lepr does not affect body weight or food intake in mice. We hypothesized insulin-dopamine signaling might compensate for disrupted leptin-dopamine signaling. To investigate the degree to which insulin and leptin exert overlapping (i.e. redundant) versus discrete control over dopamine neurons, we generated transgenic male and female mice exhibiting dopamine-specific deletion of either Lepr (Lepr KO), Insr (Insr KO) or both Lepr and Insr (Dbl KO) and assessed their feeding behavior, voluntary activity, and energy expenditure compared to control mice. No differences in body weight, daily food intake, energy expenditure or hyperphagic feeding of palatable chow were observed between Lepr, Insr or Dbl KO mice and control mice. However, consistent with previous findings, Lepr KO (but not Insr or Dbl KO) male mice exhibited significantly increased running wheel activity compared to controls. These data demonstrate that insulin and leptin do not exert redundant control of dopamine neuron-mediated modulation of energy balance. Furthermore, our results indicate neither leptin nor insulin plays a critical role in the modulation of dopamine neurons regarding hedonic feeding behavior or anxiety-related behavior.
Collapse
Affiliation(s)
- Maggie C Evans
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin, New Zealand.
| | - Nivesh S Kumar
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Megan A Inglis
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Greg M Anderson
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| |
Collapse
|
29
|
Effects of Low Energy Availability on Reproductive Functions and Their Underlying Neuroendocrine Mechanisms. J Clin Med 2018; 7:jcm7070166. [PMID: 29976877 PMCID: PMC6068835 DOI: 10.3390/jcm7070166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 12/14/2022] Open
Abstract
It is known that metabolic disturbances suppress reproductive functions in females. The mechanisms underlying metabolic and nutritional effects on reproductive functions have been established based on a large body of clinical and experimental data. From the 1980s to 1990s, it was revealed that disrupted gonadotropin-releasing hormone (GnRH) secretion is the main cause of reproductive impairments in metabolic and nutritional disorders. From the late 1990s to early 2000s, it was demonstrated that, in addition to their primary functions, some appetite- or metabolism-regulating factors affect GnRH secretion. Furthermore, in the early 2000s, kisspeptin, which is a potent positive regulator of GnRH secretion, was newly discovered, and it has been revealed that kisspeptin integrates the effects of metabolic status on GnRH neurons. Recent studies have shown that kisspeptin mediates at least some of the effects of appetite- and metabolism-regulating factors on GnRH neurons. Thus, kisspeptin might be a useful clinical target for treatments aimed at restoring reproductive functions in individuals with metabolic or nutritional disturbances, such as those who exercise excessively, experience marked weight loss, or suffer from eating disorders. This paper presents a review of what is currently known about the effects of metabolic status on reproductive functions and their underlying mechanisms by summarizing the available evidence.
Collapse
|
30
|
Protein-restriction diet during the suckling phase programs rat metabolism against obesity and insulin resistance exacerbation induced by a high-fat diet in adulthood. J Nutr Biochem 2018; 57:153-161. [DOI: 10.1016/j.jnutbio.2018.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 02/09/2018] [Accepted: 03/07/2018] [Indexed: 01/13/2023]
|
31
|
Pinhel MADS, Nicoletti CF, Noronha NY, de Oliveira BAP, Cortes-Oliveira C, Salgado W, da Silva WA, Souza DRS, Marchini JS, Nonino CB. Mammalian target of rapamycin complex 2 signaling in obese women changes after bariatric surgery. Nutrition 2018; 54:94-99. [PMID: 29778908 DOI: 10.1016/j.nut.2018.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/29/2018] [Accepted: 02/09/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVES After bariatric surgery, modifications to signaling pathway networks including those of the metabolic regulator called mammalian or mechanistic target of rapamycin (mTOR) may lead to molecular alterations related to energy source availability, systemic nutrients, and catabolic and anabolic cellular processes. This study aimed to identify gene expression changes with regard to the mTOR complex 2 subunit signaling pathway in obese patients before and after bariatric surgery. METHODS The experimental group included 13 obese women who were examined before (preoperative) and 6 mo after (postoperative) Roux-en-Y gastric bypass (RYGB) surgery. The control group included nine apparently eutrophic women matched by age and without any other metabolic diseases (i.e., no diabetes and no liver or kidney diseases). Peripheral blood mononuclear cell samples were collected for RNA extraction and subsequent microarray analysis. RESULTS After this methodological procedure, we identified 47 000 differentially expressed genes. A subsequent bioinformatic analysis showed that three diferentially expressed genes (rapamycin-insensitive companion of mTOR [RICTOR], phosphoinositide-3-kinase regulatory subunit 1 [PIK3 R1], and hypoxia inducible factor 1 alpha subunit 1A [HIF1 A]) participated in the mTOR signaling pathway. Real-time quantitative polymerase chain reaction revealed that RICTOR, PIK3 R1, and HIF1 A were upregulated 6 mo after RYGB surgery (P <0.05). In addition, patients in the experimental group lost weight significantly and presented significant improvement in biochemical/metabolic variables. CONCLUSIONS The weight loss that was induced by RYGB surgery alters the mTOR signaling pathway and specifically the mTOR complex 2 subunit. The increased expression of genes that act in this pathway such as RICTOR, PIK3 R1, and HIF1 A reflects the induced weight loss and improved metabolic indicators (e.g., insulin resistance and lipolysis) that are evidenced in this study.
Collapse
Affiliation(s)
- Marcela Augusta de Souza Pinhel
- Department of Internal Medicine, Ribeirao Preto Medical School of University of Sao Paulo, Sao Paulo, Brazil; Department of Biochemistry and Molecular Biology, Sao Jose do Rio Preto Medical School, Sao Paulo, Brazil
| | - Carolina Ferreira Nicoletti
- Department of Internal Medicine, Ribeirao Preto Medical School of University of Sao Paulo, Sao Paulo, Brazil
| | - Natalia Yumi Noronha
- Department of Internal Medicine, Ribeirao Preto Medical School of University of Sao Paulo, Sao Paulo, Brazil
| | | | - Cristiana Cortes-Oliveira
- Department of Internal Medicine, Ribeirao Preto Medical School of University of Sao Paulo, Sao Paulo, Brazil
| | - Wilson Salgado
- Department of Surgery and Anatomy, Ribeirao Preto Medical School of University of Sao Paulo, Sao Paulo, Brazil
| | - Wilson Araujo da Silva
- Department of Genetics, Ribeirao Preto Medical School of University of Sao Paulo, Sao Paulo, Brazil
| | - Doroteia Rossi Silva Souza
- Department of Biochemistry and Molecular Biology, Sao Jose do Rio Preto Medical School, Sao Paulo, Brazil
| | - Julio Sergio Marchini
- Department of Internal Medicine, Ribeirao Preto Medical School of University of Sao Paulo, Sao Paulo, Brazil
| | - Carla Barbosa Nonino
- Department of Internal Medicine, Ribeirao Preto Medical School of University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
32
|
Central and peripheral effects of physical exercise without weight reduction in obese and lean mice. Biosci Rep 2018; 38:BSR20171033. [PMID: 29371411 PMCID: PMC5835714 DOI: 10.1042/bsr20171033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/26/2017] [Accepted: 01/15/2018] [Indexed: 11/26/2022] Open
Abstract
To investigate the central (hypothalamic) and peripheral effects of exercise without body weight change in diet-induced obesity (DIO). Twelve-week-old male C57Bl/6 mice received a control (C) or a high-fat diet (H). Half of them had free access to running wheels for 5 days/week for 10 weeks (CE) and HE, respectively). Hypothalamic expression of genes related to energy homeostasis, and leptin (Stat3 and p-Stat3) and insulin (Akt and p-Akt) signaling were evaluated. Glucose and leptin tolerance, peripheral insulin sensitivity, and plasma insulin, leptin and adiponectin were determined. Perigonadal and retroperitoneal fat depots were increased by diet but reduced by exercise despite lack of effect of exercise on body weight. Blood glucose during intraperitoneal glucose tolerance test (ipGTT) was higher and glucose decay during intraperitoneal insulin tolerance test (ipITT) was lower in H and HE compared with C and CE. Exercise increased liver p-Akt expression and reduced fast glycemia. High-fat diet increased plasma insulin and leptin. Exercise had no effect on insulin but decreased leptin and increased adiponectin. Leptin inhibited food intake in all groups. Hypothalamic total and p-Stat3 and Akt were similar amongst the groups despite higher plasma levels of leptin and insulin in H and HE mice. High-fat diet modulated gene expression favoring a positive energy balance. Exercise only marginally changed the gene expression. Exercise induced positive changes (decreased fast glycemia and fat depots; increased liver insulin signaling and adiponectin concentration) without weight loss. Thus, despite reducing body weight could bring additional benefits, the effects of exercise must not be overlooked when weight reduction is not achieved.
Collapse
|
33
|
Kinyua AW, Ko CM, Doan KV, Yang DJ, Huynh MKQ, Moh SH, Choi YH, Kim KW. 4-hydroxy-3-methoxycinnamic acid regulates orexigenic peptides and hepatic glucose homeostasis through phosphorylation of FoxO1. Exp Mol Med 2018; 50:e437. [PMID: 29391540 PMCID: PMC5903816 DOI: 10.1038/emm.2017.253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/05/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022] Open
Abstract
4-hydroxy-3-methoxycinnamic acid (ferulic acid, FA) is known to have numerous beneficial health effects, including anti-obesity and anti-hyperglycemic properties. However, the molecular networks that modulate the beneficial FA-induced metabolic effects have not been well elucidated. In this study, we explored the molecular mechanisms mediating the beneficial metabolic effects of FA. In mice, FA protected against high-fat diet-induced weight gain, reduced food intake and exhibited an overall improved metabolic phenotype. The food intake suppression by FA was accompanied by a specific reduction in hypothalamic orexigenic neuropeptides, including agouti-related protein and neuropeptide Y, with no significant changes in the anorexigenic peptides pro-opiomelanocortin and cocaine and amphetamine-regulated transcript. FA treatment also inhibited fat accumulation in the liver and white adipose tissue and suppressed the expression of gluconeogenic genes, including phosphoenolpyruvate carboxylase and glucose-6-phosphatase. Furthermore, we show that FA phosphorylated and inactivated the transcription factor FoxO1, which positively regulates the expression of gluconeogenic and orexigenic genes, providing evidence that FA might exert its beneficial metabolic effects through inhibition of FoxO1 function in the periphery and the hypothalamus.
Collapse
Affiliation(s)
- Ann W Kinyua
- Departments of Pharmacology and Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
| | - Chang Mann Ko
- Departments of Pharmacology and Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
| | - Khanh V Doan
- Departments of Pharmacology and Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
| | - Dong Joo Yang
- Departments of Pharmacology and Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
| | - My Khanh Q Huynh
- Departments of Pharmacology and Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
| | - Sang Hyun Moh
- Anti-aging Research Institute of BIO-FD&C Co. Ltd., Incheon, Republic of Korea
| | - Yun-Hee Choi
- Anti-aging Research Institute of BIO-FD&C Co. Ltd., Incheon, Republic of Korea
| | - Ki Woo Kim
- Departments of Pharmacology and Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
34
|
Seebacher F. The evolution of metabolic regulation in animals. Comp Biochem Physiol B Biochem Mol Biol 2017; 224:195-203. [PMID: 29128642 DOI: 10.1016/j.cbpb.2017.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 12/13/2022]
Abstract
Energy metabolism is determined by a suite of regulatory mechanism, and their increasing complexity over evolutionary time provides the key to understanding the emergence of different metabolic phenotypes. Energy metabolism is at the core of biological processes because all organisms must maintain energy balance against thermodynamic gradients. Energy metabolism is regulated by a bewildering array of interacting molecular mechanisms, and much of what is known about metabolic regulation comes from the medical literature. However, ecology and evolutionary research would gain considerably by incorporating regulatory mechanisms more explicitly in research on topics such as the evolution of endothermy, metabolic plasticity, and energy balance. The purpose of this brief review is to summarise the main regulatory pathways of energy metabolism in animals and their evolutionary origins to make these complex interactions more accessible to researchers from a broad range of backgrounds. Some of the principal regulators of energy balance, such as the AMP-stimulated protein kinase, have an ancient prokaryotic origin. Most regulatory pathways (e.g. thyroid hormone, insulin, adipokines), however, are eukaryotic in origin and diversified substantially in metazoans and vertebrates. Diversification in vertebrates is at least partly due to genome duplications early in this lineage. The interaction between regulatory mechanisms permitted an increasingly sophisticated fine-tuning of energy balance and metabolism. Hence, regulatory complexity increased over evolutionary time, and taxa differ in their potential range of metabolic phenotypes. Choice of model organism therefore becomes important, and bacteria or even invertebrates are not good models for more derived vertebrates. Different metabolic phenotypes and their evolution, such as endothermy and metabolic plasticity, should be interpreted against this regulatory background.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
35
|
Loucks EB, Huang YT, Agha G, Chu S, Eaton CB, Gilman SE, Buka SL, Kelsey KT. Epigenetic Mediators Between Childhood Socioeconomic Disadvantage and Mid-Life Body Mass Index: The New England Family Study. Psychosom Med 2017; 78:1053-1065. [PMID: 27768648 PMCID: PMC7380568 DOI: 10.1097/psy.0000000000000411] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Childhood socioeconomic disadvantage is associated with adulthood obesity risk; however, epigenetic mechanisms are poorly understood. This work's objective was to evaluate whether associations of childhood socioeconomic disadvantage with adulthood body mass index (BMI) are mediated by DNA methylation. METHODS Participants were 141 men and women from the New England Family Study, prospectively followed prenatally through a mean age of 47 years. Epigenomewide DNA methylation was evaluated in peripheral blood and adipose tissue obtained at adulthood, using the Infinium HumanMethylation450K BeadChip. Childhood socioeconomic status (SES) at age 7 years was assessed directly from parents' reports. Offspring adiposity was directly assessed using BMI at a mean age of 47 years. Associations of SES, DNA methylation, and BMI were estimated using least square estimators. Statistical mediation analyses were performed using joint significance test and bootstrapping. RESULTS Of CpG sites significant at the 25% false discovery rate level in epigenomewide methylation BMI analyses, 91 sites in men and 71 sites in women were additionally significant for SES-methylation associations (p < .001) in adipose tissue. Many involved genes biologically relevant for development of obesity, including fatty acid synthase, transmembrane protein 88, signal transducer and activator of transcription 3, and neuritin 1. There was no evidence of epigenetic mediation in peripheral blood leukocytes. CONCLUSIONS DNA methylation at specific genes may be mediators of associations between childhood socioeconomic disadvantage and mid-life BMI in adipose tissue. Findings motivate continued efforts to study if and how childhood socioeconomic disadvantage is biologically embedded at the level of the epigenome in regions etiologically relevant for adiposity.
Collapse
Affiliation(s)
- Eric B. Loucks
- Brown University School of Public Health, Department of Epidemiology, Providence, RI, USA
| | - Yen-Tsung Huang
- Brown University School of Public Health, Department of Epidemiology, Providence, RI, USA
| | - Golareh Agha
- Harvard T.H. Chan School of Public Health, Department of Environmental Health, Boston, MA, USA
| | - Su Chu
- Brown University School of Public Health, Department of Epidemiology, Providence, RI, USA
| | - Charles B. Eaton
- Brown University School of Public Health, Department of Epidemiology, Providence, RI, USA
- Brown University Warren Alpert Medical School, Department of Family Medicine, Providence, RI, USA
| | - Stephen E. Gilman
- Health Behavior Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rockville, MD, USA
- Department of Social & Behavioral Sciences and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Stephen L. Buka
- Brown University School of Public Health, Department of Epidemiology, Providence, RI, USA
| | - Karl T. Kelsey
- Brown University School of Public Health, Department of Epidemiology, Providence, RI, USA
| |
Collapse
|
36
|
LPS-Induced Low-Grade Inflammation Increases Hypothalamic JNK Expression and Causes Central Insulin Resistance Irrespective of Body Weight Changes. Int J Mol Sci 2017; 18:ijms18071431. [PMID: 28677618 PMCID: PMC5535922 DOI: 10.3390/ijms18071431] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 01/26/2023] Open
Abstract
Metabolic endotoxemia contributes to low-grade inflammation in obesity, which causes insulin resistance due to the activation of intracellular proinflammatory pathways, such as the c-Jun N-terminal Kinase (JNK) cascade in the hypothalamus and other tissues. However, it remains unclear whether the proinflammatory process precedes insulin resistance or it appears because of the development of obesity. Hypothalamic low-grade inflammation was induced by prolonged lipopolysaccharide (LPS) exposure to investigate if central insulin resistance is induced by an inflammatory stimulus regardless of obesity. Male Wistar rats were treated with single (1 LPS) or repeated injections (6 LPS) of LPS (100 μg/kg, IP) to evaluate the phosphorylation of the insulin receptor substrate-1 (IRS1), Protein kinase B (AKT), and JNK in the hypothalamus. Single LPS increased the expression of pIRS1, pAKT, and pJNK, whereas the repeated LPS treatment failed to recruit pIRS1 and pAKT. The 6 LPS treated rats showed increased total JNK and pJNK. The 6 LPS rats became unresponsive to the hypophagic effect induced by central insulin administration (12 μM/5 μL, ICV). Prolonged exposure to LPS (24 h) impaired the insulin-induced AKT phosphorylation and the translocation of the transcription factor forkhead box protein O1 (FoxO1) from the nucleus to the cytoplasm of the cultured hypothalamic GT1-7 cells. Central administration of the JNK inhibitor (20 μM/5 μL, ICV) restored the ability of insulin to phosphorylate IRS1 and AKT in 6 LPS rats. The present data suggest that an increased JNK activity in the hypothalamus underlies the development of insulin resistance during prolonged exposure to endotoxins. Our study reveals that weight gain is not mandatory for the development of hypothalamic insulin resistance and the blockade of proinflammatory pathways could be useful for restoring the insulin signaling during prolonged low-grade inflammation as seen in obesity.
Collapse
|
37
|
Ferré S. Hormones and Neuropeptide Receptor Heteromers in the Ventral Tegmental Area. Targets for the Treatment of Loss of Control of Food Intake and Substance Use Disorders. ACTA ACUST UNITED AC 2017; 4:167-183. [PMID: 28580231 PMCID: PMC5432584 DOI: 10.1007/s40501-017-0109-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Hormones and neuropeptides represent biological correlates of internal homeostatic signals detected and integrated in the hypothalamus, which establishes a robust functional connection with the ventral tegmental area (VTA). The hypothalamus-VTA connection determines the ability of these signals to influence central dopaminergic neurotransmission and, therefore, their ability to increase responsiveness to their reward-associated stimuli and to establish appropriate associative learning. The hypothalamus also provides the main source of the multiple neuropeptides that are released in the VTA. With volume transmission of neuropeptides and hormones, extrasynaptic receptors within the VTA provide a fine-tune mechanism, which depends on the ability of molecularly different G protein-coupled receptors (GPCRs) to form heteromers. GPCR heteromer is defined as a macromolecular complex composed of at least two different receptor units (protomers) with biochemical properties that are demonstrably different from those of its individual components. GPCR heteromers can provide unique allosteric properties to specific ligands, which provides new avenues for drug development. We have identified specific GPCR heteromers in the VTA that integrate orexin and CRF neurotransmission and opioid and galanin neurotransmission, which play a very significant role in the modulation of dopaminergic neuronal activity and which can constitute targets for the treatment of loss of control of food intake and substance use disorders.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Triad Technology Building, 333 Cassell Drive, Baltimore, MD 21224 USA
| |
Collapse
|
38
|
Evans MC, Anderson GM. Neuroendocrine integration of nutritional signals on reproduction. J Mol Endocrinol 2017; 58:R107-R128. [PMID: 28057770 DOI: 10.1530/jme-16-0212] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 12/28/2022]
Abstract
Reproductive function in mammals is energetically costly and therefore tightly regulated by nutritional status. To enable this integration of metabolic and reproductive function, information regarding peripheral nutritional status must be relayed centrally to the gonadotropin-releasing hormone (GNRH) neurons that drive reproductive function. The metabolically relevant hormones leptin, insulin and ghrelin have been identified as key mediators of this 'metabolic control of fertility'. However, the neural circuitry through which they act to exert their control over GNRH drive remains incompletely understood. With the advent of Cre-LoxP technology, it has become possible to perform targeted gene-deletion and gene-rescue experiments and thus test the functional requirement and sufficiency, respectively, of discrete hormone-neuron signaling pathways in the metabolic control of reproductive function. This review discusses the findings from these investigations, and attempts to put them in context with what is known from clinical situations and wild-type animal models. What emerges from this discussion is clear evidence that the integration of nutritional signals on reproduction is complex and highly redundant, and therefore, surprisingly difficult to perturb. Consequently, the deletion of individual hormone-neuron signaling pathways often fails to cause reproductive phenotypes, despite strong evidence that the targeted pathway plays a role under normal physiological conditions. Although transgenic studies rarely reveal a critical role for discrete signaling pathways, they nevertheless prove to be a good strategy for identifying whether a targeted pathway is absolutely required, critically involved, sufficient or dispensable in the metabolic control of fertility.
Collapse
Affiliation(s)
- Maggie C Evans
- Centre for Neuroendocrinology and Department of AnatomyUniversity of Otago School of Medical Sciences, Dunedin, New Zealand
| | - Greg M Anderson
- Centre for Neuroendocrinology and Department of AnatomyUniversity of Otago School of Medical Sciences, Dunedin, New Zealand
| |
Collapse
|
39
|
Wauman J, Zabeau L, Tavernier J. The Leptin Receptor Complex: Heavier Than Expected? Front Endocrinol (Lausanne) 2017; 8:30. [PMID: 28270795 PMCID: PMC5318964 DOI: 10.3389/fendo.2017.00030] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/01/2017] [Indexed: 12/31/2022] Open
Abstract
Under normal physiological conditions, leptin and the leptin receptor (ObR) regulate the body weight by balancing food intake and energy expenditure. However, this adipocyte-derived hormone also directs peripheral processes, including immunity, reproduction, and bone metabolism. Leptin, therefore, can act as a metabolic switch connecting the body's nutritional status to high energy consuming processes. We provide an extensive overview of current structural insights on the leptin-ObR interface and ObR activation, coupling to signaling pathways and their negative regulation, and leptin functioning under normal and pathophysiological conditions (obesity, autoimmunity, cancer, … ). We also discuss possible cross-talk with other receptor systems on the receptor (extracellular) and signaling cascade (intracellular) levels.
Collapse
Affiliation(s)
- Joris Wauman
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Medical Biotechnology Center, VIB, Ghent, Belgium
| | - Lennart Zabeau
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Medical Biotechnology Center, VIB, Ghent, Belgium
| | - Jan Tavernier
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Medical Biotechnology Center, VIB, Ghent, Belgium
- *Correspondence: Jan Tavernier,
| |
Collapse
|
40
|
van de Pol I, Flik G, Gorissen M. Comparative Physiology of Energy Metabolism: Fishing for Endocrine Signals in the Early Vertebrate Pool. Front Endocrinol (Lausanne) 2017; 8:36. [PMID: 28303116 PMCID: PMC5332387 DOI: 10.3389/fendo.2017.00036] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/10/2017] [Indexed: 01/23/2023] Open
Abstract
Energy is the common currency of life. To guarantee a homeostatic supply of energy, multiple neuro-endocrine systems have evolved in vertebrates; systems that regulate food intake, metabolism, and distribution of energy. Even subtle (lasting) dysregulation of the delicate balance of energy intake and expenditure may result in severe pathologies. Feeding-related pathologies have fueled research on mammals, including of course the human species. The mechanisms regulating food intake and body mass are well-characterized in these vertebrates. The majority of animal life is ectothermic, only birds and mammals are endotherms. What can we learn from a (comparative) study on energy homeostasis in teleostean fishes, ectotherms, with a very different energy budget and expenditure? We present several adaptation strategies in fish. In recent years, the components that regulate food intake in fishes have been identified. Although there is homology of the major genetic machinery with mammals (i.e., there is a vertebrate blueprint), in many cases this does not imply analogy. Although both mammals and fish must gain their energy from food, the expenditure of the energy obtained is different. Mammals need to spend vast amounts of energy to maintain body temperature; fishes seem to utilize a broader metabolic range to their advantage. In this review, we briefly discuss ecto- and endothermy and their consequences for energy balance. Next, we argue that the evolution of endothermy and its (dis-)advantages may explain very different strategies in endocrine regulation of energy homeostasis among vertebrates. We follow a comparative and evolutionary line of thought: we discuss similarities and differences between fish and mammals. Moreover, given the extraordinary radiation of teleostean fishes (with an estimated number of 33,400 contemporary species, or over 50% of vertebrate life forms), we also compare strategies in energy homeostasis between teleostean species. We present recent developments in the field of (neuro)endocrine regulation of energy balance in teleosts, with a focus on leptin.
Collapse
Affiliation(s)
- Iris van de Pol
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Gert Flik
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
- *Correspondence: Gert Flik,
| | - Marnix Gorissen
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
41
|
Abstract
The world is experiencing an epidemic of obesity and its concomitant health problems. One implication is that the normally robust negative feedback system that controls energy homeostasis must be responding to different inputs than in the past. In this review we discuss the influence of gender on the efficacy of adiposity hormones as they interact with food intake control systems in the brain. Specifically, the levels of insulin and leptin in the blood are correlated with body fat, insulin being related mainly to visceral fat and leptin to subcutaneous fat. Since females carry more fat subcutaneously and males carry more fat viscerally, leptin correlates better with total body fat in females and insulin correlates better in males. High visceral fat and plasma insulin are also risk factors for the complications of obesity, including type-2 diabetes, cardiovascular problems, and certain cancers, and these are more prevalent in males. Consistent with these systemic differences, the brains of females are more sensitive to the catabolic actions of low doses of leptin whereas the brains of males are more sensitive to the catabolic action of low doses of insulin. The implications of this are discussed.
Collapse
Affiliation(s)
- Stephen C Woods
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio 45267, USA.
| | | | | |
Collapse
|
42
|
Thon M, Hosoi T, Ozawa K. Possible Integrative Actions of Leptin and Insulin Signaling in the Hypothalamus Targeting Energy Homeostasis. Front Endocrinol (Lausanne) 2016; 7:138. [PMID: 27812350 PMCID: PMC5071376 DOI: 10.3389/fendo.2016.00138] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/07/2016] [Indexed: 12/17/2022] Open
Abstract
Obesity has emerged as one of the most burdensome conditions in modern society. In this context, understanding the mechanisms controlling food intake is critical. At present, the adipocyte-derived hormone leptin and the pancreatic β-cell-derived hormone insulin are considered the principal anorexigenic hormones. Although leptin and insulin signal transduction pathways are distinct, their regulation of body weight maintenance is concerted. Resistance to the central actions of leptin or insulin is linked to the emergence of obesity and diabetes mellitus. A growing body of evidence suggests a convergence of leptin and insulin intracellular signaling at the insulin-receptor-substrate-phosphatidylinositol-3-kinase level. Moreover, numerous factors mediating the pathophysiology of leptin resistance, a hallmark of obesity, such as endoplasmic reticulum stress, protein tyrosine phosphatase 1B, and suppressor of cytokine signaling 3 also contribute to insulin resistance. Recent studies have also indicated that insulin potentiates leptin-induced signaling. Thus, a greater understanding of the overlapping functions of leptin and insulin in the central nervous system is vital to understand the associated physiological and pathophysiological states. This mini-review focuses on the cross talk and integrative signaling of leptin and insulin in the regulation of energy homeostasis in the brain.
Collapse
Affiliation(s)
- Mina Thon
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Toru Hosoi
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Koichiro Ozawa
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
43
|
Sohn JW, Oh Y, Kim KW, Lee S, Williams KW, Elmquist JK. Leptin and insulin engage specific PI3K subunits in hypothalamic SF1 neurons. Mol Metab 2016; 5:669-679. [PMID: 27656404 PMCID: PMC5021675 DOI: 10.1016/j.molmet.2016.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 11/21/2022] Open
Abstract
Objective The ventromedial hypothalamic nucleus (VMH) regulates energy balance and glucose homeostasis. Leptin and insulin exert metabolic effects via their cognate receptors expressed by the steroidogenic factor 1 (SF1) neurons within the VMH. However, detailed cellular mechanisms involved in the regulation of these neurons by leptin and insulin remain to be identified. Methods We utilized genetically-modified mouse models and performed patch-clamp electrophysiology experiments to resolve this issue. Results We identified distinct populations of leptin-activated and leptin-inhibited SF1 neurons. In contrast, insulin uniformly inhibited SF1 neurons. Notably, we found that leptin-activated, leptin-inhibited, and insulin-inhibited SF1 neurons are distinct subpopulations within the VMH. Leptin depolarization of SF1 neuron also required the PI3K p110β catalytic subunit. This effect was mediated by the putative transient receptor potential C (TRPC) channel. On the other hand, hyperpolarizing responses of SF1 neurons by leptin and insulin required either of the p110α or p110β catalytic subunits, and were mediated by the putative ATP-sensitive K+ (KATP) channel. Conclusions Our results demonstrate that specific PI3K catalytic subunits are responsible for the acute effects of leptin and insulin on VMH SF1 neurons, and provide insights into the cellular mechanisms of leptin and insulin action on VMH SF1 neurons that regulate energy balance and glucose homeostasis. Leptin recruits p110β/TRPC channels to depolarize/activate SF1 neurons. Leptin recruits p110α/p110β/KATP channels to hyperpolarize/inhibit SF1 neurons. Insulin recruits p110α/p110β/KATP channels to hyperpolarize/inhibit SF1 neurons. Acute leptin and insulin responses are segregated to distinct subsets of VMH SF1 neurons.
Collapse
Affiliation(s)
- Jong-Woo Sohn
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
| | - Youjin Oh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Ki Woo Kim
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Pharmacology, Yonsei University Wonju College of Medicine, Wonju, 26426, South Korea
| | - Syann Lee
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kevin W Williams
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Joel K Elmquist
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
44
|
Evans MC, Rizwan MZ, Anderson GM. Insulin Does Not Target CamkIIα Neurones to Critically Regulate the Neuroendocrine Reproductive Axis in Mice. J Neuroendocrinol 2015; 27:899-910. [PMID: 26485112 DOI: 10.1111/jne.12330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 10/05/2015] [Accepted: 10/14/2015] [Indexed: 11/28/2022]
Abstract
Insulin signalling in the brain plays an important role in the central regulation of energy homeostasis and fertility, such that mice exhibiting widespread deletion of insulin receptors (InsR) throughout the brain and peripheral nervous system display diet sensitive obesity and hypothalamic hypogonadism. However, the specific cell types mediating the central effects of insulin on fertility remain largely unidentified. To date, the targeted deletion of InsR from individual neuronal populations implicated in the metabolic control of fertility has failed to recapitulate the hypogonadic and subfertile phenotype observed in brain-specific InsR knockout mice. Because insulin and leptin share similar roles as centrally-acting metabolic regulators of fertility, we used the Cre-loxP system to generate mice with a selective inactivation of the Insr gene from the same widespread neuronal population previously shown to mediate the central effects of leptin on fertility by crossing Insr-flox mice with calcium/calmodulin-dependent protein kinase type IIα (CamkIIα)-Cre mice. Multiple reproductive and metabolic parameters were then compared between male and female Insr-flox/Cre-positive (CamK-IRKO) and Insr-flox/Cre-negative control mice. Consistent with brain-specific InsR knockout mice, CamK-IRKO mice exhibited a mild but significant obesogenic phenotype. Unexpectedly, CamK-IRKO mice exhibited normal reproductive maturation and function compared to controls. No differences in the age of puberty onset, oestrous cyclicity or fecundity were observed between CamK-IRKO and control mice. We conclude that the central effects of insulin on the neuroendocrine reproductive axis are not critically mediated via the same neuronal populations targeted by leptin.
Collapse
Affiliation(s)
- M C Evans
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | - M Z Rizwan
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | - G M Anderson
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Medical Sciences, Dunedin, New Zealand
| |
Collapse
|
45
|
Dornellas APS, Watanabe RLH, Pimentel GD, Boldarine VT, Nascimento CMO, Oyama LM, Ghebremeskel K, Wang Y, Bueno AA, Ribeiro EB. Deleterious effects of lard-enriched diet on tissues fatty acids composition and hypothalamic insulin actions. Prostaglandins Leukot Essent Fatty Acids 2015; 102-103:21-9. [PMID: 26525379 DOI: 10.1016/j.plefa.2015.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 08/28/2015] [Accepted: 10/01/2015] [Indexed: 01/14/2023]
Abstract
Altered tissue fatty acid (FA) composition may affect mechanisms involved in the control of energy homeostasis, including central insulin actions. In rats fed either standard chow or a lard-enriched chow (high in saturated/low in polyunsaturated FA, HS-LP) for eight weeks, we examined the FA composition of blood, hypothalamus, liver, and retroperitoneal, epididymal and mesenteric adipose tissues. Insulin-induced hypophagia and hypothalamic signaling were evaluated after intracerebroventricular insulin injection. HS-LP feeding increased saturated FA content in adipose tissues and serum while it decreased polyunsaturated FA content of adipose tissues, serum, and liver. Hypothalamic C20:5n-3 and C20:3n-6 contents increased while monounsaturated FA content decreased. HS-LP rats showed hyperglycemia, impaired insulin-induced hypophagia and hypothalamic insulin signaling. The results showed that, upon HS-LP feeding, peripheral tissues underwent potentially deleterious alterations in their FA composition, whist the hypothalamus was relatively preserved. However, hypothalamic insulin signaling and hypophagia were drastically impaired. These findings suggest that impairment of hypothalamic insulin actions by HS-LP feeding was not related to tissue FA composition.
Collapse
Affiliation(s)
- A P S Dornellas
- Department of Physiology, Division of Nutrition Physiology, Sao Paulo Federal University, Sao Paulo, Brazil
| | - R L H Watanabe
- Department of Physiology, Division of Nutrition Physiology, Sao Paulo Federal University, Sao Paulo, Brazil
| | - G D Pimentel
- Department of Physiology, Division of Nutrition Physiology, Sao Paulo Federal University, Sao Paulo, Brazil
| | - V T Boldarine
- Department of Physiology, Division of Nutrition Physiology, Sao Paulo Federal University, Sao Paulo, Brazil
| | - C M O Nascimento
- Department of Physiology, Division of Nutrition Physiology, Sao Paulo Federal University, Sao Paulo, Brazil
| | - L M Oyama
- Department of Physiology, Division of Nutrition Physiology, Sao Paulo Federal University, Sao Paulo, Brazil
| | - K Ghebremeskel
- Lipidomics and Nutrition Research Centre, Faculty of Life Sciences and Computing, London Metropolitan University, London, United Kingdom
| | - Y Wang
- Department of Medicine, Division of Infectious Diseases, Section of Paediatrics, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - A A Bueno
- Institute of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - E B Ribeiro
- Department of Physiology, Division of Nutrition Physiology, Sao Paulo Federal University, Sao Paulo, Brazil.
| |
Collapse
|
46
|
Sánchez JC, Rivera RA, Muñoz LV. TRPV4 Channels in Human White Adipocytes: Electrophysiological Characterization and Regulation by Insulin. J Cell Physiol 2015; 231:954-63. [PMID: 26381274 DOI: 10.1002/jcp.25187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 09/03/2015] [Indexed: 02/05/2023]
Abstract
Intracellular calcium homeostasis in adipocytes is important for the regulation of several functions and is involved in pathological changes in obesity and other associated diseases. Transient Receptor Potential Vanilloid 4 (TRPV4) channels are an important route for calcium entry that operates in a variety of cells and intervenes in a number of functions. In this study, the expression and operation of TRPV4 channels in human cultured adipocytes was evaluated using RT-PCR, Western blotting, the whole-cell patch-clamp technique and fluorescence measurements to characterize these channels and determine intracellular calcium responses. Both the hypoosmolarity and 4alpha-phorbol-didecanoate (4αPDD), a specific TRPV4 agonist, induced a similar HC-067047-sensitive current, which was predominantly inward, and an intracellular Ca(2+) concentration increase, which was exclusively dependent on extracellular calcium, and membrane depolarization. The current had a reverse potential of +31 ± 6 mV and exhibited preferential permeability to Ca(2+) . Insulin, which regulates metabolic homeostasis in adipocytes, attenuated the TRPV4-mediated effects. These results confirm the function of TRPV4 in human cultured adipocytes and its regulation by insulin. J. Cell. Physiol. 231: 954-963, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Julio C Sánchez
- Facultad Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Ricardo A Rivera
- Facultad Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Laura V Muñoz
- Facultad Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| |
Collapse
|
47
|
Differential effects of leptin on adiponectin expression with weight gain versus obesity. Int J Obes (Lond) 2015; 40:266-74. [PMID: 26374448 PMCID: PMC4747836 DOI: 10.1038/ijo.2015.181] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 08/12/2015] [Accepted: 08/19/2015] [Indexed: 12/15/2022]
Abstract
Background/Objective Adiponectin exerts beneficial effects by reducing inflammation, and improving lipid metabolism and insulin-sensitivity. Although adiponectin is lower in obese individuals, whether weight gain reduces adiponectin expression in humans is controversial. We sought to investigate the role of weight gain, and consequent changes in leptin, on altering adiponectin expression in humans. Methods/Results Forty four normal-weight healthy subjects were recruited (mean age 29 years; 14 women) and randomized to either gain 5% of body weight by 8-weeks of overfeeding (n=34) or maintain weight (n=10). Modest weight gain of 3.8 ± 1.2 kg resulted in increased adiponectin (p=0.03) while weight maintenance resulted in no changes in adiponectin. Further, changes in adiponectin correlated positively with changes in leptin (p=0.0085). In-vitro experiments using differentiated human white preadipocytes showed that leptin increased adiponectin mRNA and protein expression, while a leptin-antagonist had opposite effects. To understand the role of leptin in established obesity, we compared adipose tissue samples obtained from normal weight versus obese subjects. We noted, first, that leptin activated cellular signaling pathways and increased adiponectin mRNA in adipose tissue from normal-weight participants, but did not do so in adipose tissue from obese participants; and second, that obese subjects had increased caveolin-1 expression, which attenuates leptin-dependent increases in adiponectin. Conclusions Modest weight gain in healthy individuals is associated with increases in adiponectin, which correlate positively with changes in leptin. In-vitro, leptin induces adiponectin expression which is attenuated by increased caveolin-1 expression. Additionally, adipose tissue from obese subjects shows increased caveolin-1 expression, and impaired leptin signaling. This leptin signal impairment may prevent concordant increases in adiponectin in obese subjects despite their high levels of leptin. Therefore, impaired leptin signaling may contribute to low adiponectin expression in obesity and may provide a target for increasing adiponectin expression, hence improving insulin sensitivity and cardio-metabolic profile in obesity.
Collapse
|
48
|
van Opstal AM, Westerink AM, Teeuwisse WM, van der Geest MAM, van Furth EF, van der Grond J. Hypothalamic BOLD response to glucose intake and hypothalamic volume are similar in anorexia nervosa and healthy control subjects. Front Neurosci 2015; 9:159. [PMID: 25999808 PMCID: PMC4419717 DOI: 10.3389/fnins.2015.00159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/19/2015] [Indexed: 11/13/2022] Open
Abstract
Background: Inconsistent findings about the neurobiology of Anorexia Nervosa (AN) hinder the development of effective treatments for this severe mental disorder. Therefore, the need arises for elucidation of neurobiological factors involved in the pathophysiology of AN. The hypothalamus plays a key role in the neurobiological processes that govern food intake and energy homeostasis, processes that are disturbed in anorexia nervosa (AN). The present study will assess the hypothalamic response to energy intake and the hypothalamic structure in patients with AN and healthy controls. Methods: Ten women aged 18–30 years diagnosed with AN and 11 healthy, lean (BMI < 23 kg/m2) women in the same age range were recruited. We used functional magnetic resonance imaging (MRI) to determine function of the hypothalamus in response to glucose. Structural MRI was used to determine differences in hypothalamic volume and local gray matter volume using manual segmentation and voxel-based morphometry. Results: No differences were found in hypothalamic volume and neuronal activity in response to a glucose load between the patients and controls. Whole brain structural analysis showed a significant decrease in gray matter volume in the cingulate cortex in the AN patients, bilaterally. Conclusions: We argue that in spite of various known changes in the hypothalamus the direct hypothalamic response to glucose intake is similar in AN patients and healthy controls.
Collapse
Affiliation(s)
- Anna M van Opstal
- Department of Radiology, Leiden University Medical Center Leiden, Netherlands
| | - Anna M Westerink
- Department of Radiology, Leiden University Medical Center Leiden, Netherlands
| | - Wouter M Teeuwisse
- Department of Radiology, Leiden University Medical Center Leiden, Netherlands
| | | | - Eric F van Furth
- Center for Eating Disorders Ursula, Rivierduinen Leiden, Netherlands ; Department of Psychiatry, Leiden University Medical Center Leiden, Netherlands
| | | |
Collapse
|
49
|
Tulloch AJ, Murray S, Vaicekonyte R, Avena NM. Neural responses to macronutrients: hedonic and homeostatic mechanisms. Gastroenterology 2015; 148:1205-18. [PMID: 25644095 DOI: 10.1053/j.gastro.2014.12.058] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/16/2014] [Accepted: 12/22/2014] [Indexed: 01/15/2023]
Abstract
The brain responds to macronutrients via intricate mechanisms. We review how the brain's neural systems implicated in homeostatic control of feeding and hedonic responses are influenced by the ingestion of specific types of food. We discuss how these neural systems are dysregulated in preclinical models of obesity. Findings from these studies can increase our understanding of overeating and, perhaps in some cases, the development of obesity. In addition, a greater understanding of the neural circuits affected by the consumption of specific macronutrients, and by obesity, might lead to new treatments and strategies for preventing unhealthy weight gain.
Collapse
Affiliation(s)
- Alastair J Tulloch
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York
| | - Susan Murray
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York
| | - Regina Vaicekonyte
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York
| | - Nicole M Avena
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York.
| |
Collapse
|
50
|
Manna P, Jain SK. Phosphatidylinositol-3,4,5-triphosphate and cellular signaling: implications for obesity and diabetes. Cell Physiol Biochem 2015; 35:1253-75. [PMID: 25721445 DOI: 10.1159/000373949] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2015] [Indexed: 12/26/2022] Open
Abstract
Phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)P₃) is one of the most important phosphoinositides and is capable of activating a wide range of proteins through its interaction with their specific binding domains. Localization and activation of these effector proteins regulate a number of cellular functions, including cell survival, proliferation, cytoskeletal rearrangement, intracellular vesicle trafficking, and cell metabolism. Phosphoinositides have been investigated as an important agonist-dependent second messenger in the regulation of diverse physiological events depending upon the phosphorylation status of their inositol group. Dysregulation in formation as well as metabolism of phosphoinositides is associated with various pathophysiological disorders such as inflammation, allergy, cardiovascular diseases, cancer, and metabolic diseases. Recent studies have demonstrated that the impaired metabolism of PtdIns(3,4,5)P₃ is a prime mediator of insulin resistance associated with various metabolic diseases including obesity and diabetes. This review examines the current status of the role of PtdIns(3,4,5)P₃ signaling in the regulation of various cellular functions and the implications of dysregulated PtdIns(3,4,5)P₃ signaling in obesity, diabetes, and their associated complications.
Collapse
Affiliation(s)
- Prasenjit Manna
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | |
Collapse
|