1
|
Li Y, Liu X, Sun X, Li H, Wang S, Tian W, Xiang C, Zhang X, Zheng J, Wang H, Zhang L, Cao L, Wong CCL, Liu Z. Gut dysbiosis impairs intestinal renewal and lipid absorption in Scarb2 deficiency-associated neurodegeneration. Protein Cell 2024; 15:818-839. [PMID: 38635907 PMCID: PMC11528516 DOI: 10.1093/procel/pwae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/05/2024] [Indexed: 04/20/2024] Open
Abstract
Scavenger receptor class B, member 2 (SCARB2) is linked to Gaucher disease and Parkinson's disease. Deficiency in the SCARB2 gene causes progressive myoclonus epilepsy (PME), a rare group of inherited neurodegenerative diseases characterized by myoclonus. We found that Scarb2 deficiency in mice leads to age-dependent dietary lipid malabsorption, accompanied with vitamin E deficiency. Our investigation revealed that Scarb2 deficiency is associated with gut dysbiosis and an altered bile acid pool, leading to hyperactivation of FXR in intestine. Hyperactivation of FXR impairs epithelium renewal and lipid absorption. Patients with SCARB2 mutations have a severe reduction in their vitamin E levels and cannot absorb dietary vitamin E. Finally, inhibiting FXR or supplementing vitamin E ameliorates the neuromotor impairment and neuropathy in Scarb2 knockout mice. These data indicate that gastrointestinal dysfunction is associated with SCARB2 deficiency-related neurodegeneration, and SCARB2-associated neurodegeneration can be improved by addressing the nutrition deficits and gastrointestinal issues.
Collapse
Affiliation(s)
- Yinghui Li
- Institute for Immunology and School of Basic Medicine, Tsinghua University, Beijing 100084, China
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingchen Liu
- Institute for Immunology and School of Basic Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xue Sun
- First School of Clinical Medicine, Peking University First Hospital, Peking University, Beijing 100034, China
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Hui Li
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shige Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Wotu Tian
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Chen Xiang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuyuan Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiajia Zheng
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Haifang Wang
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Liguo Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Cao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Catherine C L Wong
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Peking University, Beijing 100084, China
| | - Zhihua Liu
- Institute for Immunology and School of Basic Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Dai H, Shan Z, Shi L, Duan Y, An Y, He C, Lyu Y, Zhao Y, Wang M, Du Y, Xie J, Yang Y, Zhao B. Mulberry leaf polysaccharides ameliorate glucose and lipid metabolism disorders via the gut microbiota-bile acids metabolic pathway. Int J Biol Macromol 2024; 282:136876. [PMID: 39490871 DOI: 10.1016/j.ijbiomac.2024.136876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Mulberry leaf polysaccharides (MLP) are integral components of Mulberry leaves that confer hypoglycemic and hypolipidemic properties. This study investigated the efficacy of MLP in treating Type 2 Diabetes Mellitus (T2DM) and the underlying mechanisms related to gut microbiota-bile acids metabolism in T2DM rats. The findings revealed that MLP apparently reduced fasting blood glucose and lipid levels, ameliorated disorders in glucose and lipid metabolism, and mitigated insulin resistance. MLP enhanced the abundance of Prevotella, Ruminococcus, and Lactobacillus, thereby rectifying the gut microbiota dysbiosis in rats, which effectively restored gut microbiota homeostasis and composition. Furthermore, the data demonstrated that MLP modulated bile acid metabolism, as evidenced by reduced serum cholesterol levels, enhanced mRNA expression of hepatic cholesterol 7α- hydroxylase (Cyp7a1) and cholesterol 12α- hydroxylase (Cyp8b1), and ileal G protein-coupled bile acid receptor (Tgr5), while suppressing hepatic and ileal farnesoid X receptor (Fxr) mRNA expression in T2DM rats. Additionally, MLP upregulated the protein expression of hepatic CYP7A1 and CYP8B1, and ileal TGR5, while inhibiting FXR protein levels in the liver and ileum of T2DM rats. These results suggest that MLP can rectify disorders in glucose and lipid metabolism via the gut microbiota-bile acids metabolic pathway.
Collapse
Affiliation(s)
- Hongyu Dai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Operations and Management Department, Ya'an People's Hospital, Ya'an 625099, China
| | - Ziyi Shan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lu Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Central Laboratories, Qingdao Municipal Hospital, Qingdao 266011, China
| | - Yuhui Duan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yongcheng An
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Changhao He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yinglan Lyu
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yige Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Menglu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuhang Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiamei Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
3
|
Duan X, Nie Y, Xie X, Zhang Q, Zhu C, Zhu H, Chen R, Xu J, Zhang J, Yang C, Yu Q, Cai K, Wang Y, Tian W. Sex differences and testosterone interfere with the structure of the gut microbiota through the bile acid signaling pathway. Front Microbiol 2024; 15:1421608. [PMID: 39493843 PMCID: PMC11527610 DOI: 10.3389/fmicb.2024.1421608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
Background The gut microbiome has a significant impact on human wellness, contributing to the emergence and progression of a range of health issues including inflammatory and autoimmune conditions, metabolic disorders, cardiovascular problems, and psychiatric disorders. Notably, clinical observations have revealed that these illnesses can display differences in incidence and presentation between genders. The present study aimed to evaluate whether the composition of gut microbiota is associated with sex-specific differences and to elucidate the mechanism. Methods 16S-rRNA-sequencing technology, hormone analysis, gut microbiota transplantation, gonadectomy, and hormone treatment were employed to investigate the correlation between the gut microbiome and sex or sex hormones. Meanwhile, genes and proteins involved bile acid signaling pathway were analyzed both in the liver and ileum tissues. Results The composition and diversity of the microbiota from the jejunum and feces and the level of sex hormones in the serum differed between the sexes in young and middle-aged Sprague Dawley (SD) rats. However, no similar phenomenon was found in geriatric rats. Interestingly, whether in young, middle-aged, or old rats, the composition of the microbiota and bacterial diversity differed between the jejunum and feces in rats. Gut microbiota transplantation, gonadectomy, and hormone replacement also suggested that hormones, particularly testosterone (T), influenced the composition of the gut microbiota in rats. Meanwhile, the mRNA and protein level of genes involved bile acid signaling pathway (specifically SHP, FXR, CYP7A1, and ASBT) exhibited gender-specific differences, and T may play a significant role in mediating the expression of this pathway. Conclusion Sex-specific differences in the structure of the gut microbiota are mediated by T through the bile acid signaling pathway, pointing to potential targets for disease prevention and management techniques by indicating that sex differences and T levels may alter the composition of the gut microbiota via the bile acid signaling pathway.
Collapse
Affiliation(s)
- Xueqing Duan
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Yinli Nie
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Xin Xie
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Qi Zhang
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Chen Zhu
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Han Zhu
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Rui Chen
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Jun Xu
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Jinqiang Zhang
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Changfu Yang
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Qi Yu
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Kun Cai
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| | - Yong Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Weiyi Tian
- School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Gui Yang, China
| |
Collapse
|
4
|
Hung CT, Ma C, Panda SK, Trsan T, Hodel M, Frein J, Foster A, Sun S, Wu HT, Kern J, Mishra R, Jain U, Ho YC, Colonna M, Stappenbeck TS, Liu TC. Western diet reduces small intestinal intraepithelial lymphocytes via FXR-Interferon pathway. Mucosal Immunol 2024; 17:1019-1028. [PMID: 38992433 DOI: 10.1016/j.mucimm.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
The prevalence of obesity in the United States has continued to increase over the past several decades. Understanding how diet-induced obesity modulates mucosal immunity is of clinical relevance. We previously showed that consumption of a high fat, high sugar "Western" diet (WD) reduces the density and function of small intestinal Paneth cells, a small intestinal epithelial cell type with innate immune function. We hypothesized that obesity could also result in repressed gut adaptive immunity. Using small intestinal intraepithelial lymphocytes (IEL) as a readout, we found that in non-inflammatory bowel disease (IBD) subjects, high body mass index correlated with reduced IEL density. We recapitulated this in wild type (WT) mice fed with WD. A 4-week WD consumption was able to reduce IEL but not splenic, blood, or bone marrow lymphocytes, and the effect was reversible after another 2 weeks of standard diet (SD) washout. Importantly, WD-associated IEL reduction was not dependent on the presence of gut microbiota, as WD-fed germ-free mice also showed IEL reduction. We further found that WD-mediated Farnesoid X Receptor (FXR) activation in the gut triggered IEL reduction, and this was partially mediated by intestinal phagocytes. Activated FXR signaling stimulated phagocytes to secrete type I IFN, and inhibition of either FXR or type I IFN signaling within the phagocytes prevented WD-mediated IEL loss. Therefore, WD consumption represses both innate and adaptive immunity in the gut. These findings have significant clinical implications in the understanding of how diet modulates mucosal immunity.
Collapse
Affiliation(s)
- Chen-Ting Hung
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Changqing Ma
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Santosh K Panda
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Tihana Trsan
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Miki Hodel
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Jennifer Frein
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Amanda Foster
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Shengxiang Sun
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Hung-Ting Wu
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Justin Kern
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Richa Mishra
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Umang Jain
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Ya-Chi Ho
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519, United States
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Thaddeus S Stappenbeck
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Ta-Chiang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, United States.
| |
Collapse
|
5
|
Wang Z, Wang X, Fu L, Xu S, Wang X, Liao Q, Zhuang T, Liu L, Zhang H, Li W, Xiong A, Gu L, Wang Z, Wang R, Tao F, Yang L, Ding L. Shengmai San formula alleviates high-fat diet-induced obesity in mice through gut microbiota-derived bile acid promotion of M2 macrophage polarization and thermogenesis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155938. [PMID: 39163753 DOI: 10.1016/j.phymed.2024.155938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/20/2024] [Accepted: 08/03/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND Shengmai San Formula (SMS) is a traditional Chinese medicine (TCM) that has been used to treat wasting-thirst regarded as diabetes mellitus, which occurs disproportionately in obese patients. Therefore, we investigated whether SMS could be used to treat obesity, and explored possible mechanisms by which it might improve glucose and fat metabolism. METHODS To investigate the effects of SMS on a high-fat diet (HFD)-induced obesity (DIO) model, we studied glucose metabolism via glucose tolerance testing (GTT) and insulin tolerance testing (ITT). Browning of white adipose tissue (WAT) was evaluated using H&E staining, along with browning-related gene and protein expression. Changes in bile acid (BA) levels in serum, liver, ileum, and inguinal white adipose tissue were detected by Ultra performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). In addition, antimicrobial mixture (ABX) and fecal microbial transplantation (FMT) experiments were used to verify the role of gut flora in the effects produced by SMS on HFD-induced obesity model. RESULTS SMS ameliorated diet-induced dyslipidemia in a dose-dependent manner and reduced glucose intolerance and insulin resistance in DIO mice, helping to restore energy metabolism homeostasis. SMS significantly altered the structure of intestinal microbiome composition, decreasing the abundance of Lactobacillus carrying bile salt hydrolase (BSH) enzymes and thereby increasing the level of conjugated BAs in the blood, ileum, and iWAT. Increased TCA content promoted the secretion of Slit3 from M2 macrophages in iWAT, which activates the protein kinase A/calmodulin-dependent protein kinase II (PKA/CaMKII) signaling pathway in sympathetic neurons via the roundabouts receptor 1(ROBO1). This pathway promotes the synthesis and release of norepinephrine (NE), inducing cyclic adenosine monophosphate (cAMP) release in adipose tissue that activates the cyclic adenosine monophosphate/protein kinase A/phosphorylated hormone-sensitive lipase (cAMP/PKA/pHSL) pathway and enhances WAT browning. ABX treatment eliminated SMS effects on glucose and lipid metabolism in DIO mice, whereas glucose and lipid metabolism in obese mice improved following SMS-FMT and increased the level of serum bile acids. CONCLUSION SMS affects intestinal flora and bile acid composition in vivo and increased TCA promotes M2 macrophage polarization and Slit3 release in adipose tissue. This induces NE release and increases WAT browning in obese mice, which may be a mechanism by which SMS could be used to treat obesity.
Collapse
Affiliation(s)
- Zixuan Wang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Xu Wang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Lihong Fu
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Shuyang Xu
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Xunjiang Wang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Qi Liao
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Tongxi Zhuang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Longchan Liu
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Haoyue Zhang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Wei Li
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Aizhen Xiong
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Lihua Gu
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Rufeng Wang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China.
| | - Feng Tao
- Endocrinology department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| | - Li Yang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China.
| | - Lili Ding
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China.
| |
Collapse
|
6
|
Ni N, Yang LP, Lin X, Hong YL, Shen L. Studies on the mechanism of energy metabolism via AMPK/PGC-1α signaling pathway induced by compatibility of Ligusticum chuanxiong Hort and Gastrodia. Phytother Res 2024; 38:4835-4854. [PMID: 36250265 DOI: 10.1002/ptr.7623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/25/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022]
Abstract
AMP-activated protein kinase (AMPK) regulates overall energy consumption and energy intake through cytokines. Ligusticum striatum DC (CX) combined with Gastrodia elata Blume (TM) has been used for migraine treatment for millennia. When used alone in clinical practice, CX causes symptoms of thirst, irritability, and yellow urine and has influenced the levels of cytokines such as AMP that activate the AMPK pathway of energy metabolism. However, relationships between this compatibility prescription, integral biological energy metabolism, and the AMPK pathway remain unclear. Studies were performed by treating normal rats with physiological saline, CX extract, CX coupled TM extract, and TM extracts separately for 4 weeks. Food intake, water intake, urine output, stool output, and body weight were monitored once a week by the metabolic cage method. Values of FBG, BUN, TP, TC and TG in blood samples were detected approaching the whole blood automatic detector from 1 to 4 weeks. Na+-K+-ATPase, Ca2+-Mg2+-ATPase, cAMP, and cGMP activity were determined by the enzyme-linked immunosorbent assay (ELISA); the biological samples that were obtained at 1, 2, 3, and 4 weeks after drug administration were tested by GC-TOF-MS. Then real-time PCR and Western Blot were applied to detect changes in expression of some substances involved in energy metabolism. The results demonstrated that administering CX alone increased energy input, mobility, and respiratory exchange ratio, accelerated energy consumption, and caused inflammatory infiltration in the liver. CX coupled with TM led to lower energy metabolism and liver damage in comparison with CX used alone. Moreover, CX-treated rats harbored higher levels of differential metabolites (including pyrophosphate, oxaloacetic acid, and galactinol). Glycerophospholipid metabolism and the citrate cycle are closely related to the differential metabolites above. In addition, CX-induced unbalanced energy metabolism depends on cAMP activation mediated by the AMPK/PGC-1α pathway in rats. Our findings suggest that CX-induced energy metabolism imbalance was corrected after coupling with TM by mediating the AMPK/PGC-1α pathway.
Collapse
Affiliation(s)
- Ni Ni
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu-Ping Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Lin
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan-Long Hong
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Lockwood MB, Sung C, Alvernaz SA, Lee JR, Chin JL, Nayebpour M, Bernabé BP, Tussing-Humphreys LM, Li H, Spaggiari M, Martinino A, Park CG, Chlipala GE, Doorenbos AZ, Green SJ. The Gut Microbiome and Symptom Burden After Kidney Transplantation: An Overview and Research Opportunities. Biol Res Nurs 2024; 26:636-656. [PMID: 38836469 DOI: 10.1177/10998004241256031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Many kidney transplant recipients continue to experience high symptom burden despite restoration of kidney function. High symptom burden is a significant driver of quality of life. In the post-transplant setting, high symptom burden has been linked to negative outcomes including medication non-adherence, allograft rejection, graft loss, and even mortality. Symbiotic bacteria (microbiota) in the human gastrointestinal tract critically interact with the immune, endocrine, and neurological systems to maintain homeostasis of the host. The gut microbiome has been proposed as an underlying mechanism mediating symptoms in several chronic medical conditions including irritable bowel syndrome, chronic fatigue syndrome, fibromyalgia, and psychoneurological disorders via the gut-brain-microbiota axis, a bidirectional signaling pathway between the enteric and central nervous system. Post-transplant exposure to antibiotics, antivirals, and immunosuppressant medications results in significant alterations in gut microbiota community composition and function, which in turn alter these commensal microorganisms' protective effects. This overview will discuss the current state of the science on the effects of the gut microbiome on symptom burden in kidney transplantation and future directions to guide this field of study.
Collapse
Affiliation(s)
- Mark B Lockwood
- Department of Biobehavioral Nursing Science, University of Illinois Chicago College of Nursing, Chicago, IL, USA
| | - Choa Sung
- Post-Doctoral Fellow, Department of Biobehavioral Nursing Science, University of Illinois Chicago College of Nursing, Chicago, IL, USA
| | - Suzanne A Alvernaz
- Graduate Student, Department of Biomedical Engineering, University of Illinois ChicagoColleges of Engineering and Medicine, Chicago, IL, USA
| | - John R Lee
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jennifer L Chin
- Medical Student, Touro College of Osteopathic Medicine, Middletown, NY, USA
| | - Mehdi Nayebpour
- Virginia BioAnalytics LLC, Washington, District of Columbia, USA
| | - Beatriz Peñalver Bernabé
- Graduate Student, Department of Biomedical Engineering, University of Illinois ChicagoColleges of Engineering and Medicine, Chicago, IL, USA
| | - Lisa M Tussing-Humphreys
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Hongjin Li
- Department of Biobehavioral Nursing Science, University of Illinois Chicago College of Nursing, Chicago, IL, USA
| | - Mario Spaggiari
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Alessandro Martinino
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Chang G Park
- Department of Population Health Nursing Science, Office of Research Facilitation, University of Illinois Chicago, Chicago, IL, USA
| | - George E Chlipala
- Research Core Facility, Research Resources Center, University of Illinois Chicago, Chicago, IL, USA
| | - Ardith Z Doorenbos
- Department of Biobehavioral Nursing Science, University of Illinois ChicagoCollege of Nursing, Chicago, IL, USA
| | - Stefan J Green
- Department of Internal Medicine, Division of Infectious Diseases, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
8
|
Zheng M, Zhai Y, Yu Y, Shen J, Chu S, Focaccia E, Tian W, Wang S, Liu X, Yuan X, Wang Y, Li L, Feng B, Li Z, Guo X, Qiu J, Zhang C, Hou J, Sun Y, Yang X, Zuo X, Heikenwalder M, Li Y, Yuan D, Li S. TNF compromises intestinal bile-acid tolerance dictating colitis progression and limited infliximab response. Cell Metab 2024; 36:2086-2103.e9. [PMID: 38971153 DOI: 10.1016/j.cmet.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/28/2024] [Accepted: 06/07/2024] [Indexed: 07/08/2024]
Abstract
The intestine constantly encounters and adapts to the external environment shaped by diverse dietary nutrients. However, whether and how gut adaptability to dietary challenges is compromised in ulcerative colitis is incompletely understood. Here, we show that a transient high-fat diet exacerbates colitis owing to inflammation-compromised bile acid tolerance. Mechanistically, excessive tumor necrosis factor (TNF) produced at the onset of colitis interferes with bile-acid detoxification through the receptor-interacting serine/threonine-protein kinase 1/extracellular signal-regulated kinase pathway in intestinal epithelial cells, leading to bile acid overload in the endoplasmic reticulum and consequent apoptosis. In line with the synergy of bile acids and TNF in promoting gut epithelial damage, high intestinal bile acids correlate with poor infliximab response, and bile acid clearance improves infliximab efficacy in experimental colitis. This study identifies bile acids as an "opportunistic pathogenic factor" in the gut that would represent a promising target and stratification criterion for ulcerative colitis prevention/therapy.
Collapse
Affiliation(s)
- Mengqi Zheng
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China
| | - Yunjiao Zhai
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| | - Yanbo Yu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Jing Shen
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| | - Shuzheng Chu
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| | - Enrico Focaccia
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wenyu Tian
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| | - Sui Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xuesong Liu
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| | - Xi Yuan
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| | - Yue Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Bingcheng Feng
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Zhen Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiaohuan Guo
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Cuijuan Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, China; Department of Pathology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Jiajie Hou
- Cancer Centre, Faculty of Health Sciences University of Macau, Macau SAR, China; MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Yiyuan Sun
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiaoyun Yang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; The M3 Research Center, Medical faculty, University Tübingen, Ottfried-Müller Strasse 37, Tübingen, Germany.
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan 250012, China.
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China.
| | - Shiyang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Advanced Medical Research Institute, Shandong University, Jinan 250012, China; Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan 250012, China.
| |
Collapse
|
9
|
Dekker Nitert M, Ovadia C. Microbial metabolites as a way to provide crosstalk between gut and liver. Obstet Med 2024; 17:168-174. [PMID: 39262911 PMCID: PMC11384814 DOI: 10.1177/1753495x241258383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/04/2024] [Indexed: 09/13/2024] Open
Abstract
Bile acid metabolism is partially regulated through the activity of the gut microbiota. Primary bile acids can be deconjugated and modified by bacteria expressing bile salt hydrolase and other enzymes, changing bile acid recycling by changing the interactions between enterocytes and hepatocytes. The modified bile acids can also activate signalling in cells regulating metabolism including colonic L-cells, skeletal muscle cells and brown adipocytes. In pregnancy, both bile acid metabolism and gut microbiota composition are altered. In women with intrahepatic cholestasis of pregnancy, the changes in bile acid metabolism are exacerbated and there is some evidence that the gut microbiota composition is also altered. Here we review the crosstalk between the liver and the gut especially in women with intrahepatic cholestasis of pregnancy, with a focus on the role of the gut microbiota in this crosstalk.
Collapse
Affiliation(s)
- Marloes Dekker Nitert
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Caroline Ovadia
- Department of Women and Children's Health, King's College London, London, UK
| |
Collapse
|
10
|
Xu Y, He C, Fan J, Zhou Y, Cheng C, Meng R, Cui Y, Li W, Gamazon ER, Zhou D. A multi-modal framework improves prediction of tissue-specific gene expression from a surrogate tissue. EBioMedicine 2024; 107:105305. [PMID: 39180788 PMCID: PMC11388271 DOI: 10.1016/j.ebiom.2024.105305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Tissue-specific analysis of the transcriptome is critical to elucidating the molecular basis of complex traits, but central tissues are often not accessible. We propose a methodology, Multi-mOdal-based framework to bridge the Transcriptome between PEripheral and Central tissues (MOTPEC). METHODS Multi-modal regulatory elements in peripheral blood are incorporated as features for gene expression prediction in 48 central tissues. To demonstrate the utility, we apply it to the identification of BMI-associated genes and compare the tissue-specific results with those derived directly from surrogate blood. FINDINGS MOTPEC models demonstrate superior performance compared with both baseline models in blood and existing models across the 48 central tissues. We identify a set of BMI-associated genes using the central tissue MOTPEC-predicted transcriptome data. The MOTPEC-based differential gene expression (DGE) analysis of BMI in the central tissues (including brain caudate basal ganglia and visceral omentum adipose tissue) identifies 378 genes overlapping the results from a TWAS of BMI, while only 162 overlapping genes are identified using gene expression in blood. Cellular perturbation analysis further supports the utility of MOTPEC for identifying trait-associated gene sets and narrowing the effect size divergence between peripheral blood and central tissues. INTERPRETATION The MOTPEC framework improves the gene expression prediction accuracy for central tissues and enhances the identification of tissue-specific trait-associated genes. FUNDING This research is supported by the National Natural Science Foundation of China 82204118 (D.Z.), the seed funding of the Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province (2020E10004), the National Institutes of Health (NIH) Genomic Innovator Award R35HG010718 (E.R.G.), NIH/NHGRI R01HG011138 (E.R.G.), NIH/NIA R56AG068026 (E.R.G.), NIH Office of the Director U24OD035523 (E.R.G.), and NIH/NIGMS R01GM140287 (E.R.G.).
Collapse
Affiliation(s)
- Yue Xu
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Chunfeng He
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiayao Fan
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yuan Zhou
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Chunxiao Cheng
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Ran Meng
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ya Cui
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Eric R Gamazon
- Vanderbit Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Data Science Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Dan Zhou
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
He S, Li L, Yao Y, Su J, Lei S, Zhang Y, Zeng H. Bile acid and its bidirectional interactions with gut microbiota: a review. Crit Rev Microbiol 2024; 50:684-701. [PMID: 37766478 DOI: 10.1080/1040841x.2023.2262020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Bile acids (BAs) are an important metabolite produced by cholesterol catabolism. It serves important roles in glucose and lipid metabolism and host-microbe interaction. Recent research has shown that different gut-microbiota can secrete different metabolic-enzymes to mediate the deconjugation, dehydroxylation and epimerization of BAs. In addition, microbes mediate BAs transformation and exert physiological functions in metabolic diseases may have a potentially close relationship with diet. Therefore, elaborating the pathways by which gut microbes mediate the transformation of BAs through enzymatic reactions involved are principal to understand the mechanism of effects between dietary patterns, gut microbes and BAs, and to provide theoretical knowledge for the development of functional foods to regulate metabolic diseases. In the present review, we summarized works on the physiological function of BAs, as well as the classification and composition of BAs in different animal models and its organs. In addition, we mainly focus on the bidirectional interactions of gut microbes with BAs transformation, and discuss the effects of diet on microbial transformation of BAs. Finally, we raised the question of further in-depth investigation of the food-gut microbial-BAs relationship, which might contribute to the improvement of metabolic diseases through dietary interventions in the future.
Collapse
Affiliation(s)
- Shuqi He
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lanxin Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yingning Yao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinhan Su
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Suzhen Lei
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
12
|
Alrehaili BD. Unravelling the therapeutic landscape of bile acid-based therapies in gastrointestinal disorders. Saudi J Gastroenterol 2024; 30:283-293. [PMID: 38708898 PMCID: PMC11534188 DOI: 10.4103/sjg.sjg_53_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
ABSTRACT Bile acids serve as endogenous ligands for nuclear and cell membrane receptors and play a crucial role in bile acid and lipid metabolism. These detergent-like compounds promote bile flow and aid in the absorption of dietary fats and fat-soluble vitamins in the intestine. Synthesized in the liver as end products of cholesterol catabolism, bile acids exhibit a chemical structure comprising a nucleus and a side chain featuring a carboxyl group, with diverse steric arrangements and potential polar substituents. Critical interactions occur between bile acid species and various nuclear and cell membrane receptors, including the farnesoid X receptor and G-protein-coupled bile acid receptor 1. This research aimed to review the literature on bile acids and their roles in treating different diseases. Currently, numerous investigations are concentrating on specific bile acid species that target nuclear receptors in the gastrointestinal system, aiming to improve the treatment of conditions such as nonalcoholic fatty liver disease. Given the global attention this topic has garnered from research groups, it is considered relatively new, thus anticipating some gaps or incomplete data. Bile acid species have a significant therapeutic promise, especially in their ability to activate or inhibit nuclear receptors, such as farnesoid X receptor. This research provides to offer essential information for scientists and medical practitioners interested in discovering new studies that underscore the importance of bile acids in ameliorating and impeding the progression of disorders. Furthermore, it opens avenues for previously overlooked bile acid-based therapies.
Collapse
Affiliation(s)
- Bandar D. Alrehaili
- Pharmacology and Toxicology Department, Pharmacy College, Taibah University, Medina, Saudi Arabia
| |
Collapse
|
13
|
Wang Y, Lv B, Liu N, Tao S, Dou J, Li J, Deng R, Yang X, Jiang G. The mechanism of bile acid metabolism regulating lipid metabolism and inflammatory response in T2DM through the gut-liver axis. Heliyon 2024; 10:e35421. [PMID: 39229512 PMCID: PMC11369409 DOI: 10.1016/j.heliyon.2024.e35421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/27/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Aims The main objective of this study was to analyze the changes of intestinal microflora and how bile acid metabolic pathways affect lipid metabolism in T2DM through the gut-liver axis. Methods Firstly, 16S rRNA sequencing, metabolomics and transcriptomic sequencing were performed on plasma and feces of clinical subjects to determine the changes of intestinal flora and its metabolites. Finally, T2DM mice model was verified in vivo. Results T2DM patients have significant intestinal flora metabolism disorders. The differential fecal metabolites were mainly enriched in primary bile acid biosynthesis and cholesterol metabolism pathways in T2DM patients. After verification, the changes in gut microbiota and metabolites in T2DM patients (including up-regulated bacteria associated with BA metabolism, such as lactobacillus and bifidobacterial, and down-regulated bacteria capable of producing SCFAs such as Faecalibacterium, Bacteroides, Romboutsia and Roseburia); and the changes in the flora and metabolites that result in impairment of intestinal barrier function and changes of protein expression in the blood, intestine and liver of T2DM patients (including FGFR4↑, TRPM5↑ and CYP27A1↓, which are related to BA and lipid metabolism homeostasis, and TLR6↑, MYD88↑ and NF-κB↑, which are related to inflammatory response). These aspects together contribute to the development of further disorders of glucolipid metabolism and systemic inflammation in T2DM patients. Conclusions Changes in intestinal flora and its metabolites may affect lipid metabolism and systemic inflammatory response in T2DM patients through the gut-liver axis mediated by bile acids.
Collapse
Affiliation(s)
- Yan Wang
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Bohan Lv
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Nannan Liu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Siyu Tao
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Jinfang Dou
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Li
- Department of Endocrinology, Beijing He ping li Hospital, Beijing, China
| | - Ruxue Deng
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiuyan Yang
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Guangjian Jiang
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Xinjiang, China
| |
Collapse
|
14
|
Ma J, Li M, Bao Y, Huang W, He X, Hong Y, Wei W, Liu Z, Gao X, Yang Y, Cui Z, Wang W, Wang J, Zhu W, Zheng N, Pan L, Wang D, Ke Z, Zhou B, Sheng L, Li H. Gut microbiota-brain bile acid axis orchestrates aging-related neuroinflammation and behavior impairment in mice. Pharmacol Res 2024; 208:107361. [PMID: 39159729 DOI: 10.1016/j.phrs.2024.107361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Emerging evidence shows that disrupted gut microbiota-bile acid (BA) axis is critically involved in the development of neurodegenerative diseases. However, the alterations in spatial distribution of BAs among different brain regions that command important functions during aging and their exact roles in aging-related neurodegenerative diseases are poorly understood. Here, we analyzed the BA profiles in cerebral cortex, hippocampus, and hypothalamus of young and natural aging mice of both sexes. The results showed that aging altered brain BA profiles sex- and region- dependently, in which TβMCA was consistently elevated in aging mice of both sexes, particularly in the hippocampus and hypothalamus. Furthermore, we found that aging accumulated-TβMCA stimulated microglia inflammation in vitro and shortened the lifespan of C. elegans, as well as behavioral impairment and neuroinflammation in mice. In addition, metagenomic analysis suggested that the accumulation of brain TβMCA during aging was partially attributed to reduction in BSH-carrying bacteria. Finally, rejuvenation of gut microbiota by co-housing aged mice with young mice restored brain BA homeostasis and improved neurological dysfunctions in natural aging mice. In conclusion, our current study highlighted the potential of improving aging-related neuro-impairment by targeting gut microbiota-brain BA axis.
Collapse
Affiliation(s)
- Junli Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mingxiao Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiyang Bao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenjin Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaofang He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Hong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenjing Wei
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zekun Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinxin Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yang Yang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengyu Cui
- Department of Traditional Chinese Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Wantao Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jie Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Weize Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ningning Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lingyun Pan
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Deheng Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zunji Ke
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ben Zhou
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lili Sheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Houkai Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
15
|
Ye Z, Zhao Y, Cui Y, Xu B, Wang F, Zhao D, Dong G, Wang Z, Wu R. Ling-gui-zhu-gan promotes adipocytes browning via targeting the miR-27b/PRDM16 pathway in 3T3-L1 cells. Front Pharmacol 2024; 15:1386794. [PMID: 39206264 PMCID: PMC11349548 DOI: 10.3389/fphar.2024.1386794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction: Obesity, a global epidemic, is caused by an imbalance between energy intake and expenditure. The induction of white adipose browning to increase heat production has emerged as a potential effective strategy to address obesity. Ling-gui-zhu-gan (LGZG), a traditional Chinese medicine formula, has been proved to achieve promising results to combat obesity and related metabolic diseases, yet the mechanisms remain largely unexplored. This study aimed to elucidate the anti-obesity properties and the mechanisms of LGZG by investigating its browning effect on 3T3-L1 adipocytes. Methods: LGZG-containing serum obtained by oral administration of LGZG to animals was added to 3T3-L1 adipocytes to simulate in vivo conditions. Results: The results showed that 49 compounds were identified in LGZG-containing serum by UHPLC-Q-Orbitrap HRMS, including compounds such as atractylenolides and polyporenic acid C, etc. LGZG-containing serum alleviated the lipid accumulation and decreased both intracellular and extracellular triglyceride contents in a dose-dependent manner. This reduction is accompanied by enhanced mitochondrial respiratory and heat production function. Mechanistically, LGZG-containing serum led to a decrease in miR-27b expression and an increase in the mRNA and protein levels of browning-related markers, including UCP1, PRDM16, PGC-1α, PPARγ, CTBP1, and CTBP2. Further investigation using miR-27b mimic transfection confirmed that miR-27b/PRDM16 pathway might be a potential mechanism by which LGZG-containing serum promotes browning of 3T3-L1 adipocytes. Discussion: These results underscore the therapeutic potential of LGZG in addressing obesity and its associated metabolic disorders through the promotion of adipose browning.
Collapse
Affiliation(s)
- Zimengwei Ye
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yanjing Cui
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bingrui Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fan Wang
- Department of Endocrinology, Guang’anmen Hospital South Campus, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dandan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Guangtong Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhufeng Wang
- Department of Endocrinology, Guang’anmen Hospital South Campus, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Wu
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Endocrinology, Guang’anmen Hospital South Campus, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Hsiao YC, Yang Y, Liu CW, Peng J, Feng J, Zhao H, Teitelbaum T, Lu K. Multiomics to Characterize the Molecular Events Underlying Impaired Glucose Tolerance in FXR-Knockout Mice. J Proteome Res 2024; 23:3332-3341. [PMID: 38967328 DOI: 10.1021/acs.jproteome.3c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The prevalence of different metabolic syndromes has grown globally, and the farnesoid X receptor (FXR), a metabolic homeostat for glucose, lipid, and bile acid metabolisms, may serve an important role in the progression of metabolic disorders. Glucose intolerance by FXR deficiency was previously reported and observed in our study, but the underlying biology remained unclear. To investigate the ambiguity, we collected the nontargeted profiles of the fecal metaproteome, serum metabolome, and liver proteome in Fxr-null (Fxr-/-) and wild-type (WT) mice with LC-HRMS. FXR deficiency showed a global impact on the different molecular levels we monitored, suggesting its serious disruption in the gut microbiota, hepatic metabolism, and circulating biomolecules. The network and enrichment analyses of the dysregulated metabolites and proteins suggested the perturbation of carbohydrate and lipid metabolism by FXR deficiency. Fxr-/- mice presented lower levels of hepatic proteins involved in glycogenesis. The impairment of glycogenesis by an FXR deficiency may leave glucose to accumulate in the circulation, which may deteriorate glucose tolerance. Lipid metabolism was dysregulated by FXR deficiency in a structural-dependent manner. Fatty acid β-oxidations were alleviated, but cholesterol metabolism was promoted by an FXR deficiency. Together, we explored the molecular events associated with glucose intolerance by impaired FXR with integrated novel multiomic data.
Collapse
Affiliation(s)
- Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Yifei Yang
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jingya Peng
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jiahao Feng
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Haoduo Zhao
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Taylor Teitelbaum
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
17
|
Luo Z, Zhou W, Xie T, Xu W, Shi C, Xiao Z, Si Y, Ma Y, Ren Q, Di L, Shan J. The role of botanical triterpenoids and steroids in bile acid metabolism, transport, and signaling: Pharmacological and toxicological implications. Acta Pharm Sin B 2024; 14:3385-3415. [PMID: 39220868 PMCID: PMC11365449 DOI: 10.1016/j.apsb.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 09/04/2024] Open
Abstract
Bile acids (BAs) are synthesized by the host liver from cholesterol and are delivered to the intestine, where they undergo further metabolism by gut microbes and circulate between the liver and intestines through various transporters. They serve to emulsify dietary lipids and act as signaling molecules, regulating the host's metabolism and immune homeostasis through specific receptors. Therefore, disruptions in BA metabolism, transport, and signaling are closely associated with cholestasis, metabolic disorders, autoimmune diseases, and others. Botanical triterpenoids and steroids share structural similarities with BAs, and they have been found to modulate BA metabolism, transport, and signaling, potentially exerting pharmacological or toxicological effects. Here, we have updated the research progress on BA, with a particular emphasis on new-found microbial BAs. Additionally, the latest advancements in targeting BA metabolism and signaling for disease treatment are highlighted. Subsequently, the roles of botanical triterpenoids in BA metabolism, transport, and signaling are examined, analyzing their potential pharmacological, toxicological, or drug interaction effects through these mechanisms. Finally, a research paradigm is proposed that utilizes the gut microbiota as a link to interpret the role of these important natural products in BA signaling.
Collapse
Affiliation(s)
- Zichen Luo
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tong Xie
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weichen Xu
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chen Shi
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zihan Xiao
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Si
- Jiangsu CM Clinical Medicine Innovation Center for Obstetrics, Gynecology, and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Yan Ma
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qingling Ren
- Jiangsu CM Clinical Medicine Innovation Center for Obstetrics, Gynecology, and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Liuqing Di
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Shan
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
18
|
Ding C, Wang Z, Dou X, Yang Q, Ning Y, Kao S, Sang X, Hao M, Wang K, Peng M, Zhang S, Han X, Cao G. Farnesoid X receptor: From Structure to Function and Its Pharmacology in Liver Fibrosis. Aging Dis 2024; 15:1508-1536. [PMID: 37815898 PMCID: PMC11272191 DOI: 10.14336/ad.2023.0830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/30/2023] [Indexed: 10/12/2023] Open
Abstract
The farnesoid X receptor (FXR), a ligand-activated transcription factor, plays a crucial role in regulating bile acid metabolism within the enterohepatic circulation. Beyond its involvement in metabolic disorders and immune imbalances affecting various tissues, FXR is implicated in microbiota modulation, gut-to-brain communication, and liver disease. The liver, as a pivotal metabolic and detoxification organ, is susceptible to damage from factors such as alcohol, viruses, drugs, and high-fat diets. Chronic or recurrent liver injury can culminate in liver fibrosis, which, if left untreated, may progress to cirrhosis and even liver cancer, posing significant health risks. However, therapeutic options for liver fibrosis remain limited in terms of FDA-approved drugs. Recent insights into the structure of FXR, coupled with animal and clinical investigations, have shed light on its potential pharmacological role in hepatic fibrosis. Progress has been achieved in both fundamental research and clinical applications. This review critically examines recent advancements in FXR research, highlighting challenges and potential mechanisms underlying its role in liver fibrosis treatment.
Collapse
Affiliation(s)
- Chuan Ding
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| | - Zeping Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xinyue Dou
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yan Ning
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Shi Kao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Mengyun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Shuosheng Zhang
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China.
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| |
Collapse
|
19
|
Wang Y, Xu H, Zhou X, Chen W, Zhou H. Dysregulated bile acid homeostasis: unveiling its role in metabolic diseases. MEDICAL REVIEW (2021) 2024; 4:262-283. [PMID: 39135605 PMCID: PMC11317083 DOI: 10.1515/mr-2024-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/13/2024] [Indexed: 08/15/2024]
Abstract
Maintaining bile acid homeostasis is essential for metabolic health. Bile acid homeostasis encompasses a complex interplay between biosynthesis, conjugation, secretion, and reabsorption. Beyond their vital role in digestion and absorption of lipid-soluble nutrients, bile acids are pivotal in systemic metabolic regulation. Recent studies have linked bile acid dysregulation to the pathogenesis of metabolic diseases, including obesity, type 2 diabetes mellitus (T2DM), and metabolic dysfunction-associated steatotic liver disease (MASLD). Bile acids are essential signaling molecules that regulate many critical biological processes, including lipid metabolism, energy expenditure, insulin sensitivity, and glucose metabolism. Disruption in bile acid homeostasis contributes to metabolic disease via altered bile acid feedback mechanisms, hormonal dysregulation, interactions with the gut microbiota, and changes in the expression and function of bile acid transporters and receptors. This review summarized the essential molecular pathways and regulatory mechanisms through which bile acid dysregulation contributes to the pathogenesis and progression of obesity, T2DM, and MASLD. We aim to underscore the significance of bile acids as potential diagnostic markers and therapeutic agents in the context of metabolic diseases, providing insights into their application in translational medicine.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond Veterans Affairs Medical Center, Richmond, VA, USA
- School of Pharmaceutical Science, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Huangru Xu
- School of Life Science, Nanjing University, Nanjing, Jiangsu, China
| | - Xiqiao Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Weidong Chen
- School of Pharmaceutical Science, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond Veterans Affairs Medical Center, Richmond, VA, USA
| |
Collapse
|
20
|
Yuan M, Zhang Z, Liu T, Feng H, Liu Y, Chen K. The Role of Nondigestible Oligosaccharides in Alleviating Human Chronic Diseases by Regulating the Gut Microbiota: A Review. Foods 2024; 13:2157. [PMID: 38998662 PMCID: PMC11241040 DOI: 10.3390/foods13132157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024] Open
Abstract
The gut has been a focus of chronic disease research. The gut microbiota produces metabolites that act as signaling molecules and substrates, closely influencing host health. Nondigestible oligosaccharides (NDOs), as a common dietary fiber, play an important role in regulating the structure and function of the gut microbiota. Their mechanism of action is mainly attributed to providing a carbon source as specific probiotics, producing related metabolites, and regulating the gut microbial community. However, due to the selective utilization of oligosaccharides, some factors, such as the type and structure of oligosaccharides, have different impacts on the composition of microbial populations and the production of metabolites in the colon ecosystem. This review systematically describes the key factors influencing the selective utilization of oligosaccharides by microorganisms and elaborates how oligosaccharides affect the host's immune system, inflammation levels, and energy metabolism by regulating microbial diversity and metabolic function, which in turn affects the onset and progress of chronic diseases, especially diabetes, obesity, depression, intestinal inflammatory diseases, and constipation. In this review, we re-examine the interaction mechanisms between the gut microbiota and its associated metabolites and diseases, and we explore new strategies for promoting human health and combating chronic diseases through dietary interventions.
Collapse
Affiliation(s)
- Meiyu Yuan
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (M.Y.); (Z.Z.)
| | - Zhongwei Zhang
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (M.Y.); (Z.Z.)
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330019, China;
| | - Tongying Liu
- Jiangxi Maternel and Child Health Hospital, Nanchang 330108, China;
| | - Hua Feng
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330019, China;
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (M.Y.); (Z.Z.)
- Chongqing Research Institute of Nanchang University, Chongqing 402660, China
| | - Kai Chen
- Shangrao Innovation Institute of Agricultural Technology, College of Life Science, Shangrao Normal University, Shangrao 334001, China
| |
Collapse
|
21
|
Guan L, Zhang L, Gong D, Li P, Zhu S, Tang J, Du M, Zhang M, Zou Y. Genipin improves obesity through promoting bile secretion and changing bile acids composition in diet-induced obese rats. J Pharm Pharmacol 2024; 76:897-907. [PMID: 38727186 DOI: 10.1093/jpp/rgae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/23/2024] [Indexed: 07/06/2024]
Abstract
OBJECTIVES Bile acids (BAs), as signaling molecules to regulate metabolism, have received considerable attention. Genipin is an iridoid compound extracted from Fructus Gradeniae, which has been shown to relieve adiposity and metabolic syndrome. Here, we investigated the mechanism of genipin counteracting obesity and its relationship with BAs signals in diet-induced obese (DIO) rats. METHODS The DIO rats were received intraperitoneal injections of genipin for 10 days. The body weight, visceral fat, lipid metabolism in the liver, thermogenic genes expressions in brown fat, BAs metabolism and signals, and key enzymes for BAs synthesis were determined. KEY FINDINGS Genipin inhibited fat synthesis and promoted lipolysis in the liver, and upregulated thermogenic gene expressions in brown adipose tissue of DIO rats. Genipin increased bile flow rate and upregulated the expressions of aquaporin 8 and the transporters of BAs in liver. Furthermore, genipin changed BAs composition by promoting alternative pathways and inhibiting classical pathways for BAs synthesis and upregulated the expressions of bile acid receptors synchronously. CONCLUSIONS These results suggest that genipin ameliorate obesity through BAs-mediated signaling pathways.
Collapse
Affiliation(s)
- Lili Guan
- Department of Physiology, Dalian Medical University, Dalian, Liaoning Province 116044, China
| | - Lei Zhang
- Department of Physiology, Dalian Medical University, Dalian, Liaoning Province 116044, China
| | - Dezheng Gong
- Department of Physiology, Dalian Medical University, Dalian, Liaoning Province 116044, China
| | - Pengcheng Li
- Department of Physiology, Dalian Medical University, Dalian, Liaoning Province 116044, China
| | - Shengnan Zhu
- Department of Physiology, Dalian Medical University, Dalian, Liaoning Province 116044, China
| | - Jiulan Tang
- Department of Physiology, Dalian Medical University, Dalian, Liaoning Province 116044, China
| | - Man Du
- Department of Physiology, Dalian Medical University, Dalian, Liaoning Province 116044, China
| | - Maokun Zhang
- Department of Physiology, Dalian Medical University, Dalian, Liaoning Province 116044, China
| | - Yuan Zou
- Department of Physiology, Dalian Medical University, Dalian, Liaoning Province 116044, China
| |
Collapse
|
22
|
Wang R, Liao Y, Deng Y, Shuang R. Unraveling the Health Benefits and Mechanisms of Time-Restricted Feeding: Beyond Caloric Restriction. Nutr Rev 2024:nuae074. [PMID: 38954563 DOI: 10.1093/nutrit/nuae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Time-restricted feeding (TRF) is a lifestyle intervention that aims to maintain a consistent daily cycle of feeding and fasting to support robust circadian rhythms. Recently, it has gained scientific, medical, and public attention due to its potential to enhance body composition, extend lifespan, and improve overall health, as well as induce autophagy and alleviate symptoms of diseases like cardiovascular diseases, type 2 diabetes, neurodegenerative diseases, cancer, and ischemic injury. However, there is still considerable debate on the primary factors that contribute to the health benefits of TRF. Despite not imposing strict limitations on calorie intake, TRF consistently led to reductions in calorie intake. Therefore, while some studies suggest that the health benefits of TRF are primarily due to caloric restriction (CR), others argue that the key advantages of TRF arise not only from CR but also from factors like the duration of fasting, the timing of the feeding period, and alignment with circadian rhythms. To elucidate the roles and mechanisms of TRF beyond CR, this review incorporates TRF studies that did not use CR, as well as TRF studies with equivalent energy intake to CR, which addresses the previous lack of comprehensive research on TRF without CR and provides a framework for future research directions.
Collapse
Affiliation(s)
- Ruhan Wang
- Department of Nutrition Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 43000, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 43000, China
| | - Yan Deng
- Department of Nutrition Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 43000, China
| | - Rong Shuang
- Department of Nutrition Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 43000, China
| |
Collapse
|
23
|
Zhao J, Duan L, Li J, Yao C, Wang G, Mi J, Yu Y, Ding L, Zhao Y, Yan G, Li J, Zhao Z, Wang X, Li M. New insights into the interplay between autophagy, gut microbiota and insulin resistance in metabolic syndrome. Biomed Pharmacother 2024; 176:116807. [PMID: 38795644 DOI: 10.1016/j.biopha.2024.116807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
Metabolic syndrome (MetS) is a widespread and multifactorial disorder, and the study of its pathogenesis and treatment remains challenging. Autophagy, an intracellular degradation system that maintains cellular renewal and homeostasis, is essential for maintaining antimicrobial defense, preserving epithelial barrier integrity, promoting mucosal immune response, maintaining intestinal homeostasis, and regulating gut microbiota and microbial metabolites. Dysfunctional autophagy is implicated in the pathological mechanisms of MetS, involving insulin resistance (IR), chronic inflammation, oxidative stress, and endoplasmic reticulum (ER) stress, with IR being a predominant feature. The study of autophagy represents a valuable field of research with significant clinical implications for identifying autophagy-related signals, pathways, mechanisms, and treatment options for MetS. Given the multifactorial etiology and various potential risk factors, it is imperative to explore the interplay between autophagy and gut microbiota in MetS more thoroughly. This will facilitate the elucidation of new mechanisms underlying the crosstalk among autophagy, gut microbiota, and MetS, thereby providing new insights into the diagnosis and treatment of MetS.
Collapse
Affiliation(s)
- Jinyue Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Liyun Duan
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jiarui Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Chensi Yao
- Molecular Biology Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Guoqiang Wang
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Jia Mi
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Yongjiang Yu
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Lu Ding
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Yunyun Zhao
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Guanchi Yan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Jing Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Zhixuan Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Xiuge Wang
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China.
| | - Min Li
- Molecular Biology Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
24
|
Gioiello A, Rosatelli E, Cerra B. Patented Farnesoid X receptor modulators: a review (2019 - present). Expert Opin Ther Pat 2024; 34:547-564. [PMID: 38308658 DOI: 10.1080/13543776.2024.2314296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
INTRODUCTION The Farnesoid X receptor (FXR) is a key transcription factor that is involved in the bile acid signaling network. The modulation of the FXR activity influences glucose and lipid homeostasis, reduces obesity and insulin resistance, as well as it regulates the pathogenesis of inflammatory and metabolic disorders. FXR ligands have therefore emerged in drug discovery as promising therapeutic agents for the prevention and treatment of gastrointestinal and liver diseases, including cancer. AREAS COVERED Recent advances in the field of FXR modulators are reviewed, with a particular attention on patent applications filed in the past 5 years related to both the discovery and development of FXR targeting drugs. EXPERT OPINION FXR agonists have proven their efficacy and safety in humans and have shown a significant potential as clinical agents to treat metabolic and inflammatory associated conditions. However, several challenges, including adverse events such as pruritus, remain to be solved. Current studies aim to gain insights into the pathophysiological mechanisms by which FXR regulates metabolism and inflammation in terms of tissue/organ/isoform-specificity, post-translational modifications and coregulatory proteins, on the route of novel, improved FXR modulators.
Collapse
Affiliation(s)
- Antimo Gioiello
- Laboratory of Medicinal and Advanced Synthetic Chemistry (Lab MASC), Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Bruno Cerra
- Laboratory of Medicinal and Advanced Synthetic Chemistry (Lab MASC), Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
25
|
Long J, Xu Y, Zhang X, Wu B, Wang C. Role of FXR in the development of NAFLD and intervention strategies of small molecules. Arch Biochem Biophys 2024; 757:110024. [PMID: 38703803 DOI: 10.1016/j.abb.2024.110024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) remains a prevailing etiological agent behind hepatocyte diseases like chronic liver disease. The spectrum of processes involved in NAFLD stages includes hepatic steatosis, non-alcoholic fatty liver, and non-alcoholic steatohepatitis (NASH). Without intervention, the progression of NASH can further deteriorate into cirrhosis and ultimately, hepatocellular carcinoma. The cardinal features that characterize NAFLD are insulin resistance, lipogenesis, oxidative stress and inflammation, extracellular matrix deposition and fibrosis. Due to its complex pathogenesis, existing pharmaceutical agents fail to take a curative or ameliorative effect on NAFLD. Consequently, it is imperative to identify novel therapeutic targets and strategies for NAFLD, ideally to improve the aforementioned key features in patients. As an enterohepatic regulator of bile acid homeostasis, lipid metabolism, and inflammation, FarnesoidX receptor (FXR) is an important pharmacological target for the treatment of NAFLD. Manipulating FXR to regulate lipid metabolic signaling pathways is a potential mechanism to mitigate NAFLD. Therefore, elucidating the modulatory character of FXR in regulating lipid metabolism in NAFLD has the potential to yield groundbreaking perspectives for drug design. This review details recent advances in the regulation of lipid depletion in hepatocytes and investigates the pivotal function of FXR in the progress of NAFLD.
Collapse
Affiliation(s)
- Jiachan Long
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yuanhang Xu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xuerong Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bingxing Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Caiyan Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
26
|
Li XJ, Fang C, Zhao RH, Zou L, Miao H, Zhao YY. Bile acid metabolism in health and ageing-related diseases. Biochem Pharmacol 2024; 225:116313. [PMID: 38788963 DOI: 10.1016/j.bcp.2024.116313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Bile acids (BAs) have surpassed their traditional roles as lipid solubilizers and regulators of BA homeostasis to emerge as important signalling molecules. Recent research has revealed a connection between microbial dysbiosis and metabolism disruption of BAs, which in turn impacts ageing-related diseases. The human BAs pool is primarily composed of primary BAs and their conjugates, with a smaller proportion consisting of secondary BAs. These different BAs exert complex effects on health and ageing-related diseases through several key nuclear receptors, such as farnesoid X receptor and Takeda G protein-coupled receptor 5. However, the underlying molecular mechanisms of these effects are still debated. Therefore, the modulation of signalling pathways by regulating synthesis and composition of BAs represents an interesting and novel direction for potential therapies of ageing-related diseases. This review provides an overview of synthesis and transportion of BAs in the healthy body, emphasizing its dependence on microbial community metabolic capacity. Additionally, the review also explores how ageing and ageing-related diseases affect metabolism and composition of BAs. Understanding BA metabolism network and the impact of their nuclear receptors, such as farnesoid X receptor and G protein-coupled receptor 5 agonists, paves the way for developing therapeutic agents for targeting BA metabolism in various ageing-related diseases, such as metabolic disorder, hepatic injury, cardiovascular disease, renal damage and neurodegenerative disease.
Collapse
Affiliation(s)
- Xiao-Jun Li
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China; Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, No.13, Shi Liu Gang Road, Haizhu District, Guangzhou, Guangdong 510315, China
| | - Chu Fang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Rui-Hua Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, Sichuan 610106, China
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China; National Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China.
| |
Collapse
|
27
|
Rodrigues Moro C, Abreu EDL, Kanaan SHH, Márquez A, Uranga-Ocio JA, Rossoni LV, Vassallo DV, Miguel-Castro M, Wiggers GA. Egg white hydrolysate protects white adipose tissue against metabolic insult in deoxycorticosterone acetate-salt rats. Br J Nutr 2024; 131:1827-1840. [PMID: 38410884 DOI: 10.1017/s0007114524000552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The purpose of this study was to investigate the effect of an egg white hydrolysate (EWH) to protect white adipose tissue damage from cardiometabolic changes induced by severe hypertension. Male Wistar rats were uninephrectomised and divided: SHAM (weekly subcutaneous vehicle (mineral oil + propylene glycol, 1:1)), SHAM + EWH (subcutaneous vehicle plus EWH via gavage, 1 g/kg per day), DOCA (deoxycorticosterone acetate diluted in vehicle subcutaneously weekly in subsequent doses of 20 mg/kg -1st week, 12 mg/kg - 2–3th week, and 6 mg/kg -4–8th week, respectively, plus 1 % NaCl and 0·2 % KCl in drinking water), and DOCA + EWH. Body weight gain, food and water intake, glucose and lipid metabolism were evaluated. Oxidative stress was assessed by biochemical assay and immunofluorescence for NOX-1, nuclear factor kappa B (NFκB), and caspase-3 in retroperitoneal white adipose tissue (rtWAT). Proinflammatory cytokines (IL-6 and 1β), CD163+ macrophage infiltration, and immunohistochemistry for TNFα and uncoupling protein-1 were evaluated, as well as histological analysis on rtWAT. Glutathione peroxidase and reductase were also determined in plasma. EWH showed hypocholesterolemic, antioxidant, anti-inflammatory, and anti-apoptotic properties in the arterial hypertension DOCA-salt model. The results demonstrated the presence of functional changes in adipose tissue function by a decrease in macrophage infiltration and in the fluorescence intensity of NFκB, NOX-1, and caspase-3. A reduction of proinflammatory cytokines and restoration of antioxidant enzymatic activity and mitochondrial oxidative damage by reducing uncoupling protein-1 fluorescence intensity were also observed. EWH could be used as a potential alternative therapeutic strategy in the treatment of cardiometabolic complications associated with malignant secondary arterial hypertension.
Collapse
Affiliation(s)
- Camila Rodrigues Moro
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| | - Edina da Luz Abreu
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| | - Samia Hassan Husein Kanaan
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| | - Antonio Márquez
- Department of Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Avda. de Atenas s/n, 28032 Alcorcón, Spain and High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), URJC, Alcorcón, Spain
| | - Jose Antonio Uranga-Ocio
- Department of Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Avda. de Atenas s/n, 28032 Alcorcón, Spain and High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), URJC, Alcorcón, Spain
| | - Luciana Venturini Rossoni
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, nº 2415, São Paulo, Brazil
| | - Dalton Valentim Vassallo
- Cardiac Electromechanical and Vascular Reactivity Laboratory, Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468, Vitória, Espírito Santo, Brazil
| | - Marta Miguel-Castro
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM.), C/Nicolás Cabrera, 9, Campus Universitario de Cantoblanco, Madrid, Spain
| | - Giulia Alessandra Wiggers
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| |
Collapse
|
28
|
Wei M, Tu W, Huang G. Regulating bile acids signaling for NAFLD: molecular insights and novel therapeutic interventions. Front Microbiol 2024; 15:1341938. [PMID: 38887706 PMCID: PMC11180741 DOI: 10.3389/fmicb.2024.1341938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) emerges as the most predominant cause of liver disease, tightly linked to metabolic dysfunction. Bile acids (BAs), initially synthesized from cholesterol in the liver, undergo further metabolism by gut bacteria. Increasingly acknowledged as critical modulators of metabolic processes, BAs have been implicated as important signaling molecules. In this review, we will focus on the mechanism of BAs signaling involved in glucose homeostasis, lipid metabolism, energy expenditure, and immune regulation and summarize their roles in the pathogenesis of NAFLD. Furthermore, gut microbiota dysbiosis plays a key role in the development of NAFLD, and the interactions between BAs and intestinal microbiota is elucidated. In addition, we also discuss potential therapeutic strategies for NAFLD, including drugs targeting BA receptors, modulation of intestinal microbiota, and metabolic surgery.
Collapse
Affiliation(s)
- Meilin Wei
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Tu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Genhua Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
29
|
Tao Y, Peng F, Wang L, Sun J, Ding Y, Xiong S, Tenzin U, MiMa, Nhamdriel T, Fan G. Ji-Ni-De-Xie ameliorates type 2 diabetes mellitus by modulating the bile acids metabolism and FXR/FGF15 signaling pathway. Front Pharmacol 2024; 15:1383896. [PMID: 38835663 PMCID: PMC11148236 DOI: 10.3389/fphar.2024.1383896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction: Ji-Ni-De-Xie (JNDX) is a traditional herbal preparation in China. It is widely used to treat type 2 diabetes mellitus (T2DM) in traditional Tibetan medicine system. However, its antidiabetic mechanisms have not been elucidated. The aim of this study is to elucidate the underlying mechanism of JNDX on bile acids (BAs) metabolism and FXR/FGF15 signaling pathway in T2DM rats. Methods: High-performance liquid chromatography-triple quadrupole mass spectrometry (HPLC-QQQ-MS) and UPLC-Q-Exactive Orbitrap MS technology were used to identify the constituents in JNDX. High-fat diet (HFD) combined with streptozotocin (45 mg∙kg-1) (STZ) was used to establish a T2DM rat model, and the levels of fasting blood-glucose (FBG), glycosylated serum protein (GSP), homeostasis model assessment of insulin resistance (HOMA-IR), LPS, TNF-α, IL-1β, IL-6, TG, TC, LDL-C, HDL-C, and insulin sensitivity index (ISI) were measured to evaluate the anti-diabetic activity of JNDX. In addition, metagenomic analysis was performed to detect changes in gut microbiota. The metabolic profile of BAs was analyzed by HPLC-QQQ-MS. Moreover, the protein and mRNA expressions of FXR and FGF15 in the colon and the protein expressions of FGF15 and CYP7A1 in the liver of T2DM rats were measured by western blot and RT-qPCR. Results: A total of 12 constituents were identified by HPLC-QQQ-MS in JNDX. Furthermore, 45 chemical components in serum were identified from JNDX via UPLC-Q-Exactive Orbitrap MS technology, including 22 prototype components and 23 metabolites. Using a T2DM rat model, we found that JNDX (0.083, 0.165 and 0.33 g/kg) reduced the levels of FBG, GSP, HOMA-IR, LPS, TNF-α, IL-1β, IL-6, TG, TC, and LDL-C, and increased ISI and HDL-C levels in T2DM rats. Metagenomic results demonstrated that JNDX treatment effectively improved gut microbiota dysbiosis, including altering some bacteria (e.g., Streptococcus and Bacteroides) associated with BAs metabolism. Additionally, JNDX improved BAs disorder in T2DM rats, especially significantly increasing cholic acid (CA) levels and decreasing ursodeoxycholic acid (UDCA) levels. Moreover, the protein and mRNA expressions of FXR and FGF15 of T2DM rats were significantly increased, while the expression of CYP7A1 protein in the liver was markedly inhibited by JNDX. Discussion: JNDX can effectively improve insulin resistance, hyperglycemia, hyperlipidemia, and inflammation in T2DM rats. The mechanism is related to its regulation of BAs metabolism and activation of FXR/FGF15 signaling pathway.
Collapse
Affiliation(s)
- Yiwen Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lijie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayi Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yin Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuangfeng Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ugen Tenzin
- Dege County Tibetan Hospital (Institute of Tibetan Medicine), Dege, China
| | - MiMa
- Department of Tibetan Medicine, University of Tibetan Medicine, Lhasa, China
| | - Tsedien Nhamdriel
- Department of Tibetan Medicine, University of Tibetan Medicine, Lhasa, China
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, China
| |
Collapse
|
30
|
Tzeng HT, Lee WC. Impact of Transgenerational Nutrition on Nonalcoholic Fatty Liver Disease Development: Interplay between Gut Microbiota, Epigenetics and Immunity. Nutrients 2024; 16:1388. [PMID: 38732634 PMCID: PMC11085251 DOI: 10.3390/nu16091388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the most prevalent pediatric liver disorder, primarily attributed to dietary shifts in recent years. NAFLD is characterized by the accumulation of lipid species in hepatocytes, leading to liver inflammation that can progress to steatohepatitis, fibrosis, and cirrhosis. Risk factors contributing to NAFLD encompass genetic variations and metabolic disorders such as obesity, diabetes, and insulin resistance. Moreover, transgenerational influences, resulting in an imbalance of gut microbial composition, epigenetic modifications, and dysregulated hepatic immune responses in offspring, play a pivotal role in pediatric NAFLD development. Maternal nutrition shapes the profile of microbiota-derived metabolites in offspring, exerting significant influence on immune system regulation and the development of metabolic syndrome in offspring. In this review, we summarize recent evidence elucidating the intricate interplay between gut microbiota, epigenetics, and immunity in fetuses exposed to maternal nutrition, and its impact on the onset of NAFLD in offspring. Furthermore, potential therapeutic strategies targeting this network are also discussed.
Collapse
Affiliation(s)
- Hong-Tai Tzeng
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Wei-Chia Lee
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33332, Taiwan
| |
Collapse
|
31
|
Morrison A, Elgendy B. Tailoring FXR Modulators for Intestinal Specificity: Recent Progress and Insights. Molecules 2024; 29:2022. [PMID: 38731514 PMCID: PMC11085346 DOI: 10.3390/molecules29092022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
While FXR has shown promise in regulating bile acid synthesis and maintaining glucose and lipid homeostasis, undesired side effects have been observed in clinical trials. To address this issue, the development of intestinally restricted FXR modulators has gained attention as a new avenue for drug design with the potential for safer systematic effects. Our review examines all currently known intestinally restricted FXR ligands and provides insights into the steps taken to enhance intestinal selectivity.
Collapse
Affiliation(s)
- Amanda Morrison
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, MO 63110, USA;
| | - Bahaa Elgendy
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, MO 63110, USA;
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
32
|
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:97. [PMID: 38664391 PMCID: PMC11045871 DOI: 10.1038/s41392-024-01811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.
Collapse
Affiliation(s)
- Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
33
|
Chen J, Wang R, Xiong F, Sun H, Kemper B, Li W, Kemper J. Hammerhead-type FXR agonists induce an enhancer RNA Fincor that ameliorates nonalcoholic steatohepatitis in mice. eLife 2024; 13:RP91438. [PMID: 38619504 PMCID: PMC11018349 DOI: 10.7554/elife.91438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
The nuclear receptor, farnesoid X receptor (FXR/NR1H4), is increasingly recognized as a promising drug target for metabolic diseases, including nonalcoholic steatohepatitis (NASH). Protein-coding genes regulated by FXR are well known, but whether FXR also acts through regulation of long non-coding RNAs (lncRNAs), which vastly outnumber protein-coding genes, remains unknown. Utilizing RNA-seq and global run-on sequencing (GRO-seq) analyses in mouse liver, we found that FXR activation affects the expression of many RNA transcripts from chromatin regions bearing enhancer features. Among these we discovered a previously unannotated liver-enriched enhancer-derived lncRNA (eRNA), termed FXR-induced non-coding RNA (Fincor). We show that Fincor is specifically induced by the hammerhead-type FXR agonists, including GW4064 and tropifexor. CRISPR/Cas9-mediated liver-specific knockdown of Fincor in dietary NASH mice reduced the beneficial effects of tropifexor, an FXR agonist currently in clinical trials for NASH and primary biliary cholangitis (PBC), indicating that amelioration of liver fibrosis and inflammation in NASH treatment by tropifexor is mediated in part by Fincor. Overall, our findings highlight that pharmacological activation of FXR by hammerhead-type agonists induces a novel eRNA, Fincor, contributing to the amelioration of NASH in mice. Fincor may represent a new drug target for addressing metabolic disorders, including NASH.
Collapse
Affiliation(s)
- Jinjing Chen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Ruoyu Wang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science CenterHoustonUnited States
| | - Feng Xiong
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science CenterHoustonUnited States
| | - Hao Sun
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Byron Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science CenterHoustonUnited States
| | - Jongsook Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| |
Collapse
|
34
|
Li S, Zhuge A, Chen H, Han S, Shen J, Wang K, Xia J, Xia H, Jiang S, Wu Y, Li L. Sedanolide alleviates DSS-induced colitis by modulating the intestinal FXR-SMPD3 pathway in mice. J Adv Res 2024:S2090-1232(24)00128-0. [PMID: 38582300 DOI: 10.1016/j.jare.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024] Open
Abstract
INTRODUCTION Inflammatory bowel disease (IBD) is a global disease with limited therapy. It is reported that sedanolide exerts anti-oxidative and anti-inflammatory effects as a natural phthalide, but its effects on IBD remain unclear. OBJECTIVES In this study, we investigated the impacts of sedanolide on dextran sodium sulfate (DSS)-induced colitis in mice. METHODS The mice were administered sedanolide or vehicle followed by DSS administration, after which colitis symptoms, inflammation levels, and intestinal barrier function were evaluated. Transcriptome analysis, 16S rRNA sequencing, and targeted metabolomics analysis of bile acids and lipids were performed. RESULTS Sedanolide protected mice from DSS-induced colitis, suppressed the inflammation, restored the weakened epithelial barrier, and modified the gut microbiota by decreasing bile salt hydrolase (BSH)-expressing bacteria. The downregulation of BSH activity by sedanolide increased the ratio of conjugated/unconjugated bile acids (BAs), thereby inhibiting the intestinal farnesoid X receptor (FXR) pathway. The roles of the FXR pathway and gut microbiota were verified using an intestinal FXR-specific agonist (fexaramine) and germ-free mice, respectively. Furthermore, we identified the key effector ceramide, which is regulated by sphingomyelin phosphodiesterase 3 (SMPD3). The protective effects of ceramide (d18:1/16:0) against inflammation and the gut barrier were demonstrated in vitro using the human cell line Caco-2. CONCLUSION Sedanolide could reshape the intestinal flora and influence BA composition, thus inhibiting the FXR-SMPD3 pathway to stimulate the synthesis of ceramide, which ultimately alleviated DSS-induced colitis in mice. Overall, our research revealed the protective effects of sedanolide against DSS-induced colitis in mice, which indicated that sedanolide may be a clinical treatment for colitis. Additionally, the key lipid ceramide (d18:1/16:0) was shown to mediate the protective effects of sedanolide, providing new insight into the associations between colitis and lipid metabolites.
Collapse
Affiliation(s)
- Shengjie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Aoxiang Zhuge
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hui Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shengyi Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jian Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Kaicen Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiafeng Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - He Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shiman Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Youhe Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, China.
| |
Collapse
|
35
|
Moon AN, Briand F, Breyner N, Song DK, Madsen MR, Kim H, Choi K, Lee Y, Namkung W. Improvement of NASH and liver fibrosis through modulation of the gut-liver axis by a novel intestinal FXR agonist. Biomed Pharmacother 2024; 173:116331. [PMID: 38428307 DOI: 10.1016/j.biopha.2024.116331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024] Open
Abstract
Farnesoid X receptor (FXR) plays a pivotal role in the regulation of bile acid homeostasis and is involved in the pathogenesis of nonalcoholic steatohepatitis (NASH). Although FXR agonists effectively alleviate pathological features of NASH, adverse effects such as disturbance of cholesterol homeostasis and occurrence of pruritus remain to be addressed. Here, we identified a novel FXR agonist, ID119031166 (ID166), and explored the pharmacological benefits of ID166 in the treatment of NASH. ID166, a potent and selective non-bile acid FXR agonist, exhibits preferential distribution in the intestine and shows no agonist activity against potential itch receptors including Mas-related G protein-coupled receptor X4 (MRGPRX4). Interestingly, ID166 significantly attenuated total nonalcoholic fatty liver disease (NAFLD) activity and liver fibrosis in a free choice diet-induced NASH hamster model. In addition, ID166 drastically modulated the relative abundance of five gut microbes and reduced the increase in plasma total bile acid levels to normal levels in NASH hamsters. Moreover, long-term treatment with ID166 significantly improved key histological features of NASH and liver fibrosis in a diet-induced NASH mouse model. In the NASH mouse livers, RNA-seq analysis revealed that ID166 reduced the gene expression changes associated with both NASH and liver fibrosis. Notably, ID166 exhibited no substantial effects on scratching behavior and serum IL-31 levels in mice. Our findings suggest that ID166, a novel FXR agonist with improved pharmacological properties, provides a preclinical basis to optimize clinical benefits for NASH drug development.
Collapse
Affiliation(s)
- An-Na Moon
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, South Korea; iLeadBMS Co., Ltd., 614 Dongtangiheung-ro, Hwaseong-si 18469, South Korea
| | - François Briand
- Physiogenex, 280 rue de l'Hers, ZAC de la Masquère, Escalquens 31750, France
| | - Natalia Breyner
- Physiogenex, 280 rue de l'Hers, ZAC de la Masquère, Escalquens 31750, France
| | - Dong-Keun Song
- iLeadBMS Co., Ltd., 614 Dongtangiheung-ro, Hwaseong-si 18469, South Korea
| | | | - Hongbin Kim
- KINS, Korean Institute of Nonclinical Study, 172 Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13505, South Korea
| | - Keonwoo Choi
- KINS, Korean Institute of Nonclinical Study, 172 Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13505, South Korea
| | - Yoonsuk Lee
- iLeadBMS Co., Ltd., 614 Dongtangiheung-ro, Hwaseong-si 18469, South Korea.
| | - Wan Namkung
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, South Korea.
| |
Collapse
|
36
|
Ghesmati Z, Rashid M, Fayezi S, Gieseler F, Alizadeh E, Darabi M. An update on the secretory functions of brown, white, and beige adipose tissue: Towards therapeutic applications. Rev Endocr Metab Disord 2024; 25:279-308. [PMID: 38051471 PMCID: PMC10942928 DOI: 10.1007/s11154-023-09850-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Adipose tissue, including white adipose tissue (WAT), brown adipose tissue (BAT), and beige adipose tissue, is vital in modulating whole-body energy metabolism. While WAT primarily stores energy, BAT dissipates energy as heat for thermoregulation. Beige adipose tissue is a hybrid form of adipose tissue that shares characteristics with WAT and BAT. Dysregulation of adipose tissue metabolism is linked to various disorders, including obesity, type 2 diabetes, cardiovascular diseases, cancer, and infertility. Both brown and beige adipocytes secrete multiple molecules, such as batokines, packaged in extracellular vesicles or as soluble signaling molecules that play autocrine, paracrine, and endocrine roles. A greater understanding of the adipocyte secretome is essential for identifying novel molecular targets in treating metabolic disorders. Additionally, microRNAs show crucial roles in regulating adipose tissue differentiation and function, highlighting their potential as biomarkers for metabolic disorders. The browning of WAT has emerged as a promising therapeutic approach in treating obesity and associated metabolic disorders. Many browning agents have been identified, and nanotechnology-based drug delivery systems have been developed to enhance their efficacy. This review scrutinizes the characteristics of and differences between white, brown, and beige adipose tissues, the molecular mechanisms involved in the development of the adipocytes, the significant roles of batokines, and regulatory microRNAs active in different adipose tissues. Finally, the potential of WAT browning in treating obesity and atherosclerosis, the relationship of BAT with cancer and fertility disorders, and the crosstalk between adipose tissue with circadian system and circadian disorders are also investigated.
Collapse
Affiliation(s)
- Zeinab Ghesmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Rashid
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Fayezi
- Department of Gynecologic Endocrinology and Fertility Disorders, Women's Hospital, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
| | - Frank Gieseler
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Darabi
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany.
| |
Collapse
|
37
|
Yu J, Zhao C, Zhao P, Mu M, Li X, Zheng J, Sun X. FXR controls duodenogastric reflux-induced gastric inflammation through negatively regulating ER stress-associated TNXIP/NLPR3 inflammasome. iScience 2024; 27:109118. [PMID: 38439955 PMCID: PMC10909759 DOI: 10.1016/j.isci.2024.109118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/15/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024] Open
Abstract
Duodenogastric reflux (DGR) is closely associated with gastric inflammation and tumorigenesis; however, the precise mechanism is unclear. Hence, we aim to clarify this molecular mechanism and design an effective therapeutic strategy based on it. The present study found that DGR induced TXNIP/NLRP3 inflammasome activation and triggered pyroptosis in gastric mucosa in vitro and in vivo, in which endoplasmic reticulum (ER) stress via PERK/eIF2α/CHOP signaling was involved. Mechanistically, farnesoid X receptor (FXR) antagonized the DGR-induced PERK/eIF2α/CHOP pathway and reduced TXNIP and NLRP3 expression. Moreover, FXR suppressed NLRP3 inflammasome activation by physically interacting with NLRP3 and caspase-1. Administration of the FXR agonist OCA protected the gastric mucosa from DGR-induced barrier disruption and mucosal inflammation. In conclusion, our study demonstrates the involvement of TXNIP/NLRP3 inflammasome-mediated pyroptosis in DGR-induced gastric inflammation. FXR antagonizes gastric barrier disruption and mucosal inflammation induced by DGR. Restoration of FXR activity may be a therapeutic strategy for DGR-associated gastric tumorigenesis.
Collapse
Affiliation(s)
- Junhui Yu
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Chenye Zhao
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Pengwei Zhao
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Mingchao Mu
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Xiaopeng Li
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Jianbao Zheng
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Xuejun Sun
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| |
Collapse
|
38
|
Wang J, Yang N, Xu Y. Natural Products in the Modulation of Farnesoid X Receptor Against Nonalcoholic Fatty Liver Disease. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:291-314. [PMID: 38480498 DOI: 10.1142/s0192415x24500137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global health concern with a high prevalence and increasing economic burden, but official medicine remains unavailable. Farnesoid X receptor (FXR), a nuclear receptor member, is one of the most promising drug targets for NAFLD therapy that plays a crucial role in modulating bile acid, glucose, and lipid homeostasis, as well as inhibits hepatic inflammation and fibrosis. However, the rejection of the FXR agonist, obecholic acid, by the Food and Drug Administration for treating hepatic fibrosis raises a question about the functions of FXR in NAFLD progression and the therapeutic strategy to be used. Natural products, such as FXR modulators, have become the focus of attention for NAFLD therapy with fewer adverse reactions. The anti-NAFLD mechanisms seem to act as FXR agonists and antagonists or are involved in the FXR signaling pathway activation, indicating a promising target of FXR therapeutic prospects using natural products. This review discusses the effective mechanisms of FXR in NAFLD alleviation, and summarizes currently available natural products such as silymarin, glycyrrhizin, cycloastragenol, berberine, and gypenosides, for targeting FXR, which can facilitate development of naturally targeted drug by medicinal specialists for effective treatment of NAFLD.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmacy, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, P. R. China
| | - Na Yang
- Department of Pharmacy, Nanjing Drum Tower Hospital Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, P. R. China
| | - Yu Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cailun Road 1200, Shanghai 201203, P. R. China
| |
Collapse
|
39
|
Xu N, He Y, Zhang C, Zhang Y, Cheng S, Deng L, Zhong Y, Liao B, Wei Y, Feng J. TGR5 signalling in heart and brain injuries: focus on metabolic and ischaemic mechanisms. Neurobiol Dis 2024; 192:106428. [PMID: 38307367 DOI: 10.1016/j.nbd.2024.106428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/04/2024] Open
Abstract
The heart and brain are the core organs of the circulation and central nervous system, respectively, and play an important role in maintaining normal physiological functions. Early neuronal and cardiac damage affects organ function. The relationship between the heart and brain is being continuously investigated. Evidence-based medicine has revealed the concept of the "heart- brain axis," which may provide new therapeutic strategies for certain diseases. Takeda protein-coupled receptor 5 (TGR5) is a metabolic regulator involved in energy homeostasis, bile acid homeostasis, and glucose and lipid metabolism. Inflammation is critical for the development and regeneration of the heart and brain during metabolic diseases. Herein, we discuss the role of TGR5 as a metabolic regulator of heart and brain development and injury to facilitate new therapeutic strategies for metabolic and ischemic diseases of the heart and brain.
Collapse
Affiliation(s)
- Nan Xu
- Department of Cardiology, The First People's Hospital of Neijiang, Neijiang, China
| | - Yufeng He
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Chunyu Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yongqiang Zhang
- Department of Cardiology, Hejiang County People's Hospital, Luzhou, China
| | - Shengjie Cheng
- Department of Cardiology, The First People's Hospital of Neijiang, Neijiang, China
| | - Li Deng
- Department of Rheumatology, The Afliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
| | - Yan Wei
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| |
Collapse
|
40
|
Chen J, Wang R, Xiong F, Sun H, Kemper B, Li W, Kemper JK. Hammerhead-type FXR agonists induce an eRNA FincoR that ameliorates nonalcoholic steatohepatitis in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.20.567833. [PMID: 38045226 PMCID: PMC10690184 DOI: 10.1101/2023.11.20.567833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The nuclear receptor, Farnesoid X Receptor (FXR/NR1H4), is increasingly recognized as a promising drug target for metabolic diseases, including nonalcoholic steatohepatitis (NASH). Protein coding genes regulated by FXR are well known, but whether FXR also acts through regulation of long non-coding RNAs (lncRNAs), which vastly outnumber protein-coding genes, remains unknown. Utilizing RNA-seq and GRO-seq analyses in mouse liver, we found that FXR activation affects the expression of many RNA transcripts from chromatin regions bearing enhancer features. Among these we discovered a previously unannotated liver-enriched enhancer-derived lncRNA (eRNA), termed FincoR. We show that FincoR is specifically induced by the hammerhead-type FXR agonists, including GW4064 and tropifexor. CRISPR/Cas9-mediated liver-specific knockdown of FincoR in dietary NASH mice reduced the beneficial effects of tropifexor, an FXR agonist currently in clinical trials for NASH and primary biliary cholangitis (PBC), indicating that that amelioration of liver fibrosis and inflammation in NASH treatment by tropifexor is mediated in part by FincoR. Overall, our findings highlight that pharmacological activation of FXR by hammerhead-type agonists induces a novel eRNA, FincoR, contributing to the amelioration of NASH in mice. FincoR may represent a new drug target for addressing metabolic disorders, including NASH.
Collapse
Affiliation(s)
- Jinjing Chen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ruoyu Wang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Feng Xiong
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Hao Sun
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Byron Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
41
|
Petito-da-Silva TI, Villardi FM, Penna-de-Carvalho A, Mandarim-de-Lacerda CA, Souza-Mello V, Barbosa-da-Silva S. An Intestinal FXR Agonist Mitigates Dysbiosis, Intestinal Tight Junctions, and Inflammation in High-Fat Diet-Fed Mice. Mol Nutr Food Res 2024; 68:e2300148. [PMID: 38085111 DOI: 10.1002/mnfr.202300148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/23/2023] [Indexed: 03/01/2024]
Abstract
SCOPE To analyze the effects of fexaramine (FEX), as an intestinal FXR agonist, on the modulation of the intestinal microbiota and ileum of mice fed a high-fat (HF) diet. METHODS AND RESULTS Three-month-old C57Bl/6 male mice are divided into two groups and received a control (C, 10% of energy from lipids) or HF (50% of energy from lipids) diet for 12 weeks. They are subdivided into the C, C + FEX, HF, and HF + FEX groups. FEX is administered (FEX-5 mg kg-1 ) via orogastric gavage for three weeks. Body mass (BM), glucose metabolism, qPCR 16S rRNA gene expression, and ileum gene expression, bile acids (BAs), tight junctions (TJs), and incretin are analyzed. FEX reduces BM and glucose intolerance, reduces plasma lipid concentrations and the Firmicutes/Bacteroidetes ratio, increases the Lactobacillus sp. and Prevotella sp. abundance, and reduces the Escherichia coli abundance. Consequently, the ileal gene expression of Fxr-Fgf15, Tgr5-Glp1, and Cldn-Ocldn-Zo1 is increased, and Tlr4-Il6-Il1beta is decreased. CONCLUSION FEX stimulates intestinal FXR and improves dysbiosis, intestinal TJs, and the release of incretins, mitigating glucose intolerance and BM increases induced by an HF diet. However, FEX results in glucose intolerance, insulin resistance, and reduces intestinal TJs in a control group, thus demonstrating limitations to this dietary model.
Collapse
Affiliation(s)
- Tamiris Ingrid Petito-da-Silva
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Missiba Villardi
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aline Penna-de-Carvalho
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sandra Barbosa-da-Silva
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
42
|
Yu Cai Lim M, Kiat Ho H. Pharmacological modulation of cholesterol 7α-hydroxylase (CYP7A1) as a therapeutic strategy for hypercholesterolemia. Biochem Pharmacol 2024; 220:115985. [PMID: 38154545 DOI: 10.1016/j.bcp.2023.115985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023]
Abstract
Despite the availability of many therapeutic options, the prevalence of hypercholesterolemia remains high. There exists a significant unmet medical need for novel drugs and/or treatment combinations to effectively combat hypercholesterolemia while minimizing adverse reactions. The modulation of cholesterol 7α-hydroxylase (CYP7A1) expression via perturbation of the farnesoid X receptor (FXR) - dependent pathways, primarily FXR/small heterodimer partner (SHP) and FXR/ fibroblast growth factor (FGF)-19/ fibroblast growth factor receptor (FGFR)-4 pathways, presents as a potential option to lower cholesterol levels. This paper provides a comprehensive review of the important role that CYP7A1 plays in cholesterol homeostasis and how its expression can be exploited to assert differential control of bile acid synthesis and cholesterol metabolism. Additionally, the paper also summarizes the current therapeutic options for hypercholesterolemia, and positions modulators of CYP7A1 expression, namely FGFR4 inhibitors and FXR antagonists, as emerging and distinct pharmacological agents to complement and diversify the treatment regime. Their mechanistic and clinical considerations are also extensively described to interrogate the benefits and risks associated with using FXR-mediating agents, either singularly or in combination with recognised agents such as statins to target hypercholesterolemia.
Collapse
Affiliation(s)
- Megan Yu Cai Lim
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Han Kiat Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
43
|
Dong X, Qi M, Cai C, Zhu Y, Li Y, Coulter S, Sun F, Liddle C, Uboha NV, Halberg R, Xu W, Marker P, Fu T. Farnesoid X receptor mediates macrophage-intrinsic responses to suppress colitis-induced colon cancer progression. JCI Insight 2024; 9:e170428. [PMID: 38258906 PMCID: PMC10906220 DOI: 10.1172/jci.insight.170428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Bile acids (BAs) affect the intestinal environment by ensuring barrier integrity, maintaining microbiota balance, regulating epithelium turnover, and modulating the immune system. As a master regulator of BA homeostasis, farnesoid X receptor (FXR) is severely compromised in patients with inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CAC). At the front line, gut macrophages react to the microbiota and metabolites that breach the epithelium. We aim to study the role of the BA/FXR axis in macrophages. This study demonstrates that inflammation-induced epithelial abnormalities compromised FXR signaling and altered BAs' profile in a mouse CAC model. Further, gut macrophage-intrinsic FXR sensed aberrant BAs, leading to pro-inflammatory cytokines' secretion, which promoted intestinal stem cell proliferation. Mechanistically, activation of FXR ameliorated intestinal inflammation and inhibited colitis-associated tumor growth, by regulating gut macrophages' recruitment, polarization, and crosstalk with Th17 cells. However, deletion of FXR in bone marrow or gut macrophages escalated the intestinal inflammation. In summary, our study reveals a distinctive regulatory role of FXR in gut macrophages, suggesting its potential as a therapeutic target for addressing IBD and CAC.
Collapse
Affiliation(s)
- Xingchen Dong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Carbone Cancer Center (UWCCC), University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Ming Qi
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Carbone Cancer Center (UWCCC), University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Chunmiao Cai
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Carbone Cancer Center (UWCCC), University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Yu Zhu
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, California, USA
| | - Yuwenbin Li
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Sally Coulter
- Storr Liver Centre, The Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | - Fei Sun
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Carbone Cancer Center (UWCCC), University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Christopher Liddle
- Storr Liver Centre, The Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| | | | - Richard Halberg
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Paul Marker
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Carbone Cancer Center (UWCCC), University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Ting Fu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Carbone Cancer Center (UWCCC), University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
44
|
Groenen C, Nguyen TA, Paulusma C, van de Graaf S. Bile salt signaling and bile salt-based therapies in cardiometabolic disease. Clin Sci (Lond) 2024; 138:1-21. [PMID: 38180064 PMCID: PMC10767275 DOI: 10.1042/cs20230934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024]
Abstract
Bile salts have an established role in the emulsification and intestinal absorption of dietary lipids, and their homeostasis is tightly controlled by various transporters and regulators in the enterohepatic circulation. Notably, emerging evidence points toward bile salts as major modulators of cardiometabolic disease (CMD), an umbrella disease of disorders affecting the heart and blood vessels that is caused by systemic metabolic diseases such as Type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated steatotic liver disease (MASLD), the latter encompassing also metabolic dysfunction-associated steatohepatitis (MASH). The underlying mechanisms of protective effects of bile salts are their hormonal properties, enabling them to exert versatile metabolic effects by activating various bile salt-responsive signaling receptors with the nuclear farnesoid X receptor (FXR) and the Takeda G-protein-coupled receptor 5 (TGR5) as most extensively investigated. Activation of FXR and TGR5 is involved in the regulation of glucose, lipid and energy metabolism, and inflammation. Bile salt-based therapies directly targeting FXR and TGR5 signaling have been evaluated for their therapeutic potential in CMD. More recently, therapeutics targeting bile salt transporters thereby modulating bile salt localization, dynamics, and signaling, have been developed and evaluated in CMD. Here, we discuss the current knowledge on the contribution of bile salt signaling in the pathogenesis of CMD and the potential of bile salt-based therapies for the treatment of CMD.
Collapse
Affiliation(s)
- Claire C.J. Groenen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| | - Thuc-Anh Nguyen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| | - Coen C. Paulusma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| | - Stan F.J. van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| |
Collapse
|
45
|
Yoon H, Rutter JC, Li YD, Ebert BL. Induced protein degradation for therapeutics: past, present, and future. J Clin Invest 2024; 134:e175265. [PMID: 38165043 PMCID: PMC10760958 DOI: 10.1172/jci175265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
The concept of induced protein degradation by small molecules has emerged as a promising therapeutic strategy that is particularly effective in targeting proteins previously considered "undruggable." Thalidomide analogs, employed in the treatment of multiple myeloma, stand as prime examples. These compounds serve as molecular glues, redirecting the CRBN E3 ubiquitin ligase to degrade myeloma-dependency factors, IKZF1 and IKZF3. The clinical success of thalidomide analogs demonstrates the therapeutic potential of induced protein degradation. Beyond molecular glue degraders, several additional modalities to trigger protein degradation have been developed and are currently under clinical evaluation. These include heterobifunctional degraders, polymerization-induced degradation, ligand-dependent degradation of nuclear hormone receptors, disruption of protein interactions, and various other strategies. In this Review, we will provide a concise overview of various degradation modalities, their clinical applications, and potential future directions in the field of protein degradation.
Collapse
Affiliation(s)
- Hojong Yoon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Justine C. Rutter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Yen-Der Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Benjamin L. Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| |
Collapse
|
46
|
Patel N, Dinesh S, Sharma S. From Gut to Glucose: A Comprehensive Review on Functional Foods and Dietary Interventions for Diabetes Management. Curr Diabetes Rev 2024; 20:e111023222081. [PMID: 37861021 DOI: 10.2174/0115733998266653231005072450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/17/2023] [Accepted: 08/25/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND In the realm of diabetes research, considerable attention has been directed toward elucidating the intricate interplay between the gastrointestinal tract and glucose regulation. The gastrointestinal tract, once exclusively considered for its role in digestion and nutrient assimilation, is presently acknowledged as a multifaceted ecosystem with regulatory supremacy over metabolic homeostasis and glucose metabolism. Recent studies indicate that alterations in the composition and functionality of the gut microbiota could potentially influence the regulation of glucose levels and glucose homeostasis in the body. Dysbiosis, characterized by perturbations in the equilibrium of gut microbial constituents, has been irrevocably linked to an augmented risk of diabetes mellitus (DM). Moreover, research has revealed the potential influence of the gut microbiota on important factors, like inflammation and insulin sensitivity, which are key contributors to the onset and progression of diabetes. The key protagonists implicated in the regulation of glucose encompass the gut bacteria, gut barrier integrity, and the gut-brain axis. A viable approach to enhance glycemic control while concurrently mitigating the burden of comorbidities associated with diabetes resides in the strategic manipulation of the gut environment through adapted dietary practices. OBJECTIVE This review aimed to provide a deep understanding of the complex relationship between gut health, glucose metabolism, and diabetes treatment. CONCLUSION This study has presented an exhaustive overview of dietary therapies and functional foods that have undergone extensive research to explore their potential advantages in the management of diabetes. It looks into the role of gut health in glucose regulation, discusses the impact of different dietary elements on the course of diabetes, and evaluates how well functional foods can help with glycemic control. Furthermore, it investigates the mechanistic aspects of these therapies, including their influence on insulin sensitivity, β-cell activity, and inflammation. It deliberates on the limitations and potential prospects associated with integrating functional foods into personalized approaches to diabetes care.
Collapse
Affiliation(s)
- Nirali Patel
- Department of Bioinformatics, BioNome, Bengaluru 560043, India
| | - Susha Dinesh
- Department of Bioinformatics, BioNome, Bengaluru 560043, India
| | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bengaluru 560043, India
| |
Collapse
|
47
|
Gao C, Wei J, Lu C, Wang L, Dong D, Sun M. A new perspective in intestinal microecology: lifting the veil of exercise regulation of cardiometabolic diseases. Gut Microbes 2024; 16:2404141. [PMID: 39305272 PMCID: PMC11418258 DOI: 10.1080/19490976.2024.2404141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Cardiometabolic diseases (CMDs), encompassing cardiovascular and metabolic dysfunctions, characterized by insulin resistance, dyslipidemia, hepatic steatosis, and inflammation, have been identified with boosting morbidity and mortality due to the dearth of efficacious therapeutic interventions. In recent years, studies have shown that variations in gut microbiota and its own metabolites can influence the occurrence of CMDs. Intriguingly, the composition and function of the gut microbiota are susceptible to exercise patterns, thus affecting inflammatory, immune, and metabolic responses within the host. In this review, we introduce the key mechanisms of intestinal microecology involved in the onset and development of CMDs, discuss the relationship between exercise and intestinal microecology, and then analyze the role of intestinal microecology in the beneficial effects of exercise on CMDs, aiming at elucidating the gut-heart axis mechanisms of exercise mediated protective effect on CMDs, building avenues for the application of exercise in the management of CMDs.
Collapse
Affiliation(s)
- Can Gao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| | - Jinwen Wei
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| | - Changxu Lu
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| | - Lijie Wang
- Department of Cardiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, P. R. China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, P. R. China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| |
Collapse
|
48
|
Zhang M, Xiao B, Chen X, Ou B, Wang S. Physical exercise plays a role in rebalancing the bile acids of enterohepatic axis in non-alcoholic fatty liver disease. Acta Physiol (Oxf) 2024; 240:e14065. [PMID: 38037846 DOI: 10.1111/apha.14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/09/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered as one of the most common diseases of lipid metabolism disorders, which is closely related to bile acids disorders and gut microbiota disorders. Bile acids are synthesized from cholesterol in the liver, and processed by gut microbiota in intestinal tract, and participate in metabolic regulation through the enterohepatic circulation. Bile acids not only promote the consumption and absorption of intestinal fat but also play an important role in biological metabolic signaling network, affecting fat metabolism and glucose metabolism. Studies have demonstrated that exercise plays an important role in regulating the composition and function of bile acid pool in enterohepatic axis, which maintains the homeostasis of the enterohepatic circulation and the health of the host gut microbiota. Exercise has been recommended by several health guidelines as the first-line intervention for patients with NAFLD. Can exercise alter bile acids through the microbiota in the enterohepatic axis? If so, regulating bile acids through exercise may be a promising treatment strategy for NAFLD. However, the specific mechanisms underlying this potential connection are largely unknown. Therefore, in this review, we tried to review the relationship among NAFLD, physical exercise, bile acids, and gut microbiota through the existing data and literature, highlighting the role of physical exercise in rebalancing bile acid and microbial dysbiosis.
Collapse
Affiliation(s)
- Minyu Zhang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Biyang Xiao
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Xiaoqi Chen
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Bingming Ou
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Songtao Wang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| |
Collapse
|
49
|
Dai M, Peng W, Lin L, Wu ZE, Zhang T, Zhao Q, Cheng Y, Lin Q, Zhang B, Liu A, Rao Q, Huang J, Zhao J, Gonzalez FJ, Li F. Celastrol as an intestinal FXR inhibitor triggers tripolide-induced intestinal bleeding: Underlying mechanism of gastrointestinal injury induced by Tripterygium wilfordii. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155054. [PMID: 37738906 DOI: 10.1016/j.phymed.2023.155054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Tripterygium wilfordii has been widely used for the treatment of rheumatoid arthritis, which is frequently accompanied by severe gastrointestinal damage. The molecular mechanism underlying the gastrointestinal injury of Tripterygium wilfordii are yet to be elucidated. METHODS Transmission electron microscopy, and pathological and biochemical analyses were applied to assess intestinal bleeding. Metabolic changes in the serum and intestine were determined by metabolomics. In vivo (time-dependent effect and dose-response) and in vitro (double luciferase reporter gene system, DRATs, molecular docking, HepG2 cells and small intestinal organoids) studies were used to identify the inhibitory role of celastrol on intestinal farnesoid X receptor (FXR) signaling. Fxr-knockout mice and FXR inhibitors and agonists were used to evaluate the role of FXR in the intestinal bleeding induced by Tripterygium wilfordii. RESULTS Co-treatment with triptolide + celastrol (from Tripterygium wilfordii) induced intestinal bleeding in mice. Metabolomic analysis indicated that celastrol suppressed intestinal FXR signaling, and further molecular studies revealed that celastrol was a novel intestinal FXR antagonist. In Fxr-knockout mice or the wild-type mice pre-treated with pharmacological inhibitors of FXR, triptolide alone could activate the duodenal JNK pathway and induce intestinal bleeding, which recapitulated the pathogenic features obtained by co-treatment with triptolide and celastrol. Lastly, intestinal bleeding induced by co-treatment with triptolide and celastrol could be effectively attenuated by the FXR or gut-restricted FXR agonist through downregulation of the duodenal JNK pathway. CONCLUSIONS The synergistic effect between triptolide and celastrol contributed to the gastrointestinal injury induced by Tripterygium wilfordii via dysregulation of the FXR-JNK axis, suggesting that celastrol should be included in the quality standards system for evaluation of Tripterygium wilfordii preparations. Determining the mechanism of the FXR-JNK axis in intestinal bleeding could aid in the identification of additional therapeutic targets for the treatment of gastrointestinal hemorrhage diseases. This study also provides a new standard for the quality assessment of Tripterygium wilfordii used in the treatment of gastrointestinal disorders.
Collapse
Affiliation(s)
- Manyun Dai
- Department of Integrated Traditional Chinese and Western Medicine, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; School of Public Health, Ningbo University Health Science Center, Ningbo 315211, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wan Peng
- Department of Integrated Traditional Chinese and Western Medicine, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lisha Lin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zhanxuan E Wu
- Department of Integrated Traditional Chinese and Western Medicine, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ting Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Qi Zhao
- Department of Integrated Traditional Chinese and Western Medicine, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Cheng
- Department of Integrated Traditional Chinese and Western Medicine, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiuxia Lin
- Department of Integrated Traditional Chinese and Western Medicine, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Binbin Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Aiming Liu
- School of Public Health, Ningbo University Health Science Center, Ningbo 315211, China
| | - Qianru Rao
- Department of Integrated Traditional Chinese and Western Medicine, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianfeng Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jinhua Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| | - Frank J Gonzalez
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Fei Li
- Department of Integrated Traditional Chinese and Western Medicine, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
50
|
Xiang D, Yang J, Liu L, Yu H, Gong X, Liu D. The regulation of tissue-specific farnesoid X receptor on genes and diseases involved in bile acid homeostasis. Biomed Pharmacother 2023; 168:115606. [PMID: 37812893 DOI: 10.1016/j.biopha.2023.115606] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
Bile acids (BAs) facilitate the absorption of dietary lipids and vitamins and have also been identified as signaling molecules involved in regulating their own metabolism, glucose and lipid metabolism, as well as immunity. Disturbances in BA homeostasis are associated with various enterohepatic and metabolic diseases, such as cholestasis, nonalcoholic steatohepatitis, inflammatory bowel disease, and obesity. As a key regulator, the nuclear orphan receptor farnesoid X receptor (FXR, NR1H4) precisely regulates BA homeostasis by transcriptional regulation of genes involved in BA synthesis, metabolism, and enterohepatic circulation. FXR is widely regarded as the most potential therapeutic target. Obeticholic acid is the only FXR agonist approved to treat patients with primary biliary cholangitis, but its non-specific activation of systemic FXR also causes high-frequency side effects. In recent years, developing tissue-specific FXR-targeting drugs has become a research highlight. This article provides a comprehensive overview of the role of tissue-specific intestine/liver FXR in regulating genes involved in BA homeostasis and briefly discusses tissue-specific FXR as a therapeutic target for treating diseases. These findings provide the basis for the development of tissue-specific FXR modulators for the treatment of enterohepatic and metabolic diseases associated with BA dysfunction.
Collapse
Affiliation(s)
- Dong Xiang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jinyu Yang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lu Liu
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hengyi Yu
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuepeng Gong
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|