1
|
Ajith Y, Adithya S, Athira KS, Beena V, Safeer MS, Mevin SM, Preena P, Nisha AR, Manju M, Arun G, Ajithkumar S. Effects of environmental factors on host-parasite interaction patterns in backyard-tethered goats of Kerala, India. Exp Parasitol 2024; 266:108846. [PMID: 39414115 DOI: 10.1016/j.exppara.2024.108846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/26/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024]
Abstract
The environment is the most important stratum in the epidemiological triad of a parasitic disease and any variations in the environmental factors may decide the dynamic occurrence and existence of different lifecycle stages of these parasites. The present study investigated the correlations between key biometeorological and demographical parameters with the incidence of different gastrointestinal parasites and hemoparasites among goats. Four hundred and thirty-two goats were screened for parasitic infection in a yearlong survey conducted from July 2022 to June 2023 in the Teaching Veterinary Clinical Complex, Mannuthy, Kerala, India. The weather parameters (Tmax, Tmin, RH, THI, and bright sunshine hours), air quality parameters [AQI, PM2.5, and PM10], and demographic parameters (gender and age) were recorded along with the test positivity of different categories of gastrointestinal parasites and hemoparasites in goats by routine fecal sample examination and blood smear examination, respectively. The infection level was ranked based on the severity of the infection. The mean and daily variations in biometeorological parameters were calculated and the data were statistically analyzed to figure out the pertinent correlations in host-parasite-environment interaction patterns. High levels of parasitic infections with significant month-wise variations and climate-correlated peak infection patterns were noticed. The incidence of parasites was negatively correlated to all parameters except humidity, indicating more severe parasitism during monsoon months. The significant variations in the host-parasite interaction dynamics point towards the need for detailed explorations concerning the lifecycle of each specific parasite with a focus on the possible environment-favourable and resistant lifecycle stages. Future studies may be designed from a biometeorological perspective to develop a crucial understanding of host-parasite-environment interactions in goats ensuring sustainable goat farming.
Collapse
Affiliation(s)
- Y Ajith
- Department of Veterinary Clinical Medicine, Ethics and Jurisprudence, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University (KVASU), Mannuthy, Thrissur, Kerala, India, 680651.
| | - Sasi Adithya
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, KVASU, Mannuthy, Thrissur, Kerala, India, 680651
| | - K S Athira
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, KVASU, Mannuthy, Thrissur, Kerala, India, 680651
| | - V Beena
- Centre for Animal Adaptation to Environment and Climate Change Studies (CAADECCS), KVASU, Mannuthy, Thrissur, Kerala, India, 680651
| | - M Saifudeen Safeer
- Department of Crop Management (Animal Husbandry/Biostatistics), Vanavarayar Institute of Agriculture, Pollachi, Tamil Nadu, India, 642103
| | - Sabu Mathews Mevin
- Department of Veterinary Clinical Medicine, Ethics and Jurisprudence, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University (KVASU), Mannuthy, Thrissur, Kerala, India, 680651
| | - P Preena
- Department of Epidemiology and Preventive Medicine, College of Veterinary and Animal Sciences, KVASU, Mannuthy, Thrissur, Kerala, India, 680651
| | - A R Nisha
- Department of Veterinary Pharmacology and Toxicology, CVAS, KVASU, Mannuthy, Thrissur, Kerala, India, 680651
| | - Mathew Manju
- Department of Veterinary Clinical Medicine, Ethics and Jurisprudence, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University (KVASU), Mannuthy, Thrissur, Kerala, India, 680651
| | - George Arun
- Department of Veterinary Clinical Medicine, Ethics and Jurisprudence, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University (KVASU), Mannuthy, Thrissur, Kerala, India, 680651
| | - S Ajithkumar
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, KVASU, Mannuthy, Thrissur, Kerala, India, 680651
| |
Collapse
|
2
|
Sandalinas F, MacDougall A, Filteau S, Hopkins H, Blake T, Luo H, Suchdev PS, Ruth L, Young MF, Joy EJM. Current or recent malaria infection is associated with elevated inflammation-adjusted ferritin concentrations in pre-school children: a secondary analysis of the BRINDA database. Br J Nutr 2024:1-11. [PMID: 39450524 DOI: 10.1017/s0007114524002319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Inflammation and infections such as malaria affect micronutrient biomarker concentrations and hence estimates of nutritional status. It is unknown whether correction for C-reactive protein (CRP) and α1-acid glycoprotein (AGP) fully captures the modification in ferritin concentrations during a malaria infection, or whether environmental and sociodemographic factors modify this association. Cross-sectional data from eight surveys in children aged 6-59 months (Cameroon, Cote d'Ivoire, Kenya, Liberia, Malawi, Nigeria and Zambia; n 6653) from the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anaemia (BRINDA) project were pooled. Ferritin was adjusted using the BRINDA adjustment method, with values < 12 μg/l indicating iron deficiency. The association between current or recent malaria infection, detected by microscopy or rapid test kit, and inflammation-adjusted ferritin was estimated using pooled multivariable linear regression. Age, sex, malaria endemicity profile (defined by the Plasmodium falciparum infection prevalence) and malaria diagnostic methods were examined as effect modifiers. Unweighted pooled malaria prevalence was 26·0 % (95 % CI 25·0, 27·1) and unweighted pooled iron deficiency was 41·9 % (95 % CI 40·7, 43·1). Current or recent malaria infection was associated with a 44 % (95 % CI 39·0, 52·0; P < 0·001) increase in inflammation-adjusted ferritin after adjusting for age and study identifier. In children, ferritin increased less with malaria infection as age and malaria endemicity increased. Adjustment for malaria increased the prevalence of iron deficiency, but the effect was small. Additional information would help elucidate the underlying mechanisms of the role of endemicity and age in the association between malaria and ferritin.
Collapse
Affiliation(s)
- Fanny Sandalinas
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, Keppel Street, LondonWC1E 7HT, UK
| | - Amy MacDougall
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, Keppel Street, LondonWC1E 7HT, UK
| | - Suzanne Filteau
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, Keppel Street, LondonWC1E 7HT, UK
| | - Heidi Hopkins
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, LondonWC1E 7HT, UK
| | - Tineka Blake
- School of Biosciences, University of Nottingham, NottinghamNG7 2RD, UK
| | - Hanqi Luo
- Hubert Department of Global Health, Emory University, 1518 Clifton Road NE, Atlanta, GA, USA
| | - Parminder S Suchdev
- Hubert Department of Global Health, Emory University, 1518 Clifton Road NE, Atlanta, GA, USA
- Centers for Disease Control and Prevention, 4770 Buford Highway NE, Atlanta, GA, USA
| | - Laird Ruth
- Centers for Disease Control and Prevention, 4770 Buford Highway NE, Atlanta, GA, USA
| | - Melissa F Young
- Hubert Department of Global Health, Emory University, 1518 Clifton Road NE, Atlanta, GA, USA
- Centers for Disease Control and Prevention, 4770 Buford Highway NE, Atlanta, GA, USA
| | - Edward J M Joy
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, Keppel Street, LondonWC1E 7HT, UK
| |
Collapse
|
3
|
Mortazavi SE, Lugaajju A, Danielsson L, Wu B, Norrgren H, Persson KEM. Dynamics of osteopontin levels and correlation with parasitemia in acute malaria in Uganda and Sweden. BMC Infect Dis 2024; 24:1164. [PMID: 39407132 PMCID: PMC11481768 DOI: 10.1186/s12879-024-10076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Malaria remains a significant public health concern, especially for the deadliest parasite, Plasmodium falciparum. During acute malaria, various cytokines, including osteopontin (OPN), regulate the immune response. OPN has been shown to be protective against malaria in mice. Nonetheless, its precise function and potential ability to control parasites during acute malaria in humans remain poorly understood. RESULTS Blood samples were collected from Swedish adults with imported malaria, Ugandan children and adults with symptomatic malaria (including follow-up after 42 days), Ugandans with non-malarial fever and healthy individuals from both Uganda and Sweden. Parasitemia was determined by microscopy. Malaria-negative samples were verified by LAMP. OPN and interferon-γ (IFN- γ) levels were measured using ELISA. In children, OPN levels were significantly higher during acute infection compared to levels after 42 days, whereas Ugandan adults showed no difference. Swedish adults with imported malaria had elevated OPN levels compared to both Swedish controls and Ugandan adults with malaria. Parasitemia was significantly correlated with both OPN and IFN-γ levels across the entire cohort. While a significant correlation between OPN and IFN-γ was evident overall, it remained statistically significant only in Ugandan adults when analyzed by subgroups. This suggests that OPN is not just a general marker of inflammation but may be regulated differently during the development of malaria immunity. CONCLUSIONS In acute malaria, elevated OPN levels showed a stronger correlation with lack of immunity than age. These findings underscore the potential importance of OPN in malaria, particularly in non-immune individuals.
Collapse
Affiliation(s)
- Susanne E Mortazavi
- Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Department of Infectious Diseases, Skåne University Hospital, Lund, Sweden.
| | - Allan Lugaajju
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Lena Danielsson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Bingyan Wu
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Hans Norrgren
- Department of Infectious Diseases, Skåne University Hospital, Lund, Sweden
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Kristina E M Persson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Chemistry and Pharmacology, Laboratory Medicine, Office for Medical Services, Region Skåne, Lund, Sweden
| |
Collapse
|
4
|
Mertens JE. The Influence of Climate Change on Vector-Borne Diseases in a Wilderness Medicine Context. Wilderness Environ Med 2024:10806032241283704. [PMID: 39399895 DOI: 10.1177/10806032241283704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The imminent climate crisis has been labeled as the biggest health threat humanity must deal with. Vector-borne disease distribution and transmission as well as the population at risk are influenced to a great degree by environmental and climactic factors affecting both the vectors themselves and the causative pathogens. Paired with an increase in worldwide travel, urbanization, and globalization, along with population displacements and migration, elucidating the effects of anthropogenic climate change on these illnesses is therefore of the essence to stave off potential negative sequelae. Outcomes on different vector-borne diseases will be diverse, but for many of them, these developments will result in a distribution shift or expansion with the possibility of (re-)introduction of vector and pathogen species in previously nonendemic areas. The consequence will be a growing likelihood for novel human, vector, and pathogen interactions with an increased risk for infection, morbidity, and mortality. Wilderness medicine professionals commonly work in close relationship to the natural environment and therefore will experience these alterations most strongly in their practice. Hence, this article attempts to bring awareness to the subject at hand in a wilderness medicine context, with a focus on malaria, the most burdensome of arthropod-borne diseases. For prevention of the potentially dire consequences on human health induced by climate change, concerted and intensified efforts to reduce the burning of fossil fuels and thus greenhouse gas emissions will be imperative on a global scale.
Collapse
Affiliation(s)
- Jonas E Mertens
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Akomolafe TO, Baruwa S, Okafor EE, Daniel-Ebune E, Ajibade T, Ubuane O, Morakinyo O, Diallo R. Factors influencing the acceptability of the test, treat and refer practice for malaria among caregivers of under 5 children at community pharmacies and drug shops in Nigeria. Malar J 2024; 23:304. [PMID: 39385134 PMCID: PMC11465916 DOI: 10.1186/s12936-024-05114-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 09/18/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Malaria affects children under the age of five and pregnant women, leading to high morbidity and mortality rates. In sub-Saharan Africa, Patent and Proprietary Medicine Vendors (PPMVs) have been identified as key players in the provision of malaria treatment due to their accessibility and availability in communities, but PPMVs are not usually tested before fever cases are treated as malaria or refer clients. The aim of this study was to explore the factors influencing caregivers' acceptance of the test, treatment and referral practices for malaria management provided by CPs and PPMVs in Kaduna and Lagos states, Nigeria. METHODS A cross-sectional quantitative telephone survey was conducted among 150 caregivers of children under five years old who received malaria services from trained CPs and PPMVs between May and July 2022. Descriptive and bivariate analyses were performed to identify factors significantly associated with the acceptability of malaria management services. All statistically significant factors from the bivariate analysis were explored using logistic regression models, and odds ratios (ORs) with confidence intervals (CIs) were calculated to predict acceptability. The 95% level was used to define statistically significant associations (p ≤ 0.05). RESULTS All caregivers were asked questions that aided in obtaining a diagnosis of malaria. More than two-thirds of the caregivers (68%) reported that the child was tested by a CP/PPMV. Among those treated (148), 89% reported that the child was administered artemisinin combination therapy (ACT) irrespective of whether the child tested positive or negative for malaria. At the bivariate level, acceptability was greater among caregivers of children aged 13 months and older than among caregivers of children aged 0-12 months (93% vs. 76%, p = 0.004). Caregivers of children who prescribed ACT had greater acceptance than did those not prescribing ACT (92% vs. 69%, p = 0.010). Multivariate analysis revealed that these relationships held. CONCLUSIONS The adoption of the test, treat, and refer practice as a standard approach by CPs and PPMVs could replace the widespread practice of prescribing medications without conducting tests. This shift has the potential to improve the quality of malaria management services and enhance patient outcomes.
Collapse
|
6
|
Garcia Castillo SS, Abanto Alvarez C, Rosas-Aguirre Á, Acosta C, Corder RM, Gómez J, Guzmán M, Speybroeck N, Llanos-Cuentas A, Castro MC, Rosanas-Urgell A, Ferreira MU, Vinetz JM, Gamboa D, Torres K. Recurrence patterns and evolution of submicroscopic and asymptomatic Plasmodium vivax infections in malaria-endemic areas of the Peruvian Amazon. PLoS Negl Trop Dis 2024; 18:e0012566. [PMID: 39480785 PMCID: PMC11527163 DOI: 10.1371/journal.pntd.0012566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND In the Peruvian Amazon, Plasmodium vivax malaria transmission is maintained due to the high frequency of recurrences. By understanding the recurrence rates of submicroscopic and asymptomatic cases, we can develop informed strategies to prevent transmission more efficiently and disrupt the silent transmission cycle. METHODS A three-year, population-based cohort study was conducted in two sites, Cahuide and Lupuna, within the Loreto region in Peru from 2013 to 2015. The study included 385 individuals and aimed to examine the temporal dynamics of malaria recurrences and their impact on transmission and control. RESULTS Individuals from Lupuna presented a higher risk of P. vivax infections compared to Cahuide, where most recurrences were asymptomatic and submicroscopic. It is estimated that a great proportion of these recurrences were due to relapses in both communities. The application of molecular diagnostic method proved to be significantly more effective, detecting 2.3 times more episodes during the follow-up (PCR, 1068; microscopy, 467). PCR identified recurrences significantly earlier, at 151 days after an initial infection, compared to microscopy, which detected them on average after 365 days. Community, occupation and previous malaria infections were factors associated with recurrences. Finally, potential infection evolution scenarios were described where one frequent scenario involved the transition from symptomatic to asymptomatic infections with a mean evolution time of 240 days. CONCLUSIONS This study explores the contrast in malaria recurrence risk among individuals from two endemic settings, a consequence of prolonged exposure to the parasite. Through the analysis of the evolution scenarios of P. vivax recurrences, it is possible to have a more complete vision of how the transmission pattern changes over time and is conditioned by different factors.
Collapse
Affiliation(s)
- Stefano S. Garcia Castillo
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Caroline Abanto Alvarez
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Ángel Rosas-Aguirre
- Research Institute of Health and Society (IRSS), Université Catholique de Louvain, Brussels, Belgium
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Carlos Acosta
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Rodrigo M. Corder
- Division of Epidemiology and Biostatistics, University of California, Berkeley School of Public Health, Berkeley, California, United States of America
- Department of Parasitology, Instituto of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Joaquín Gómez
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mitchel Guzmán
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Niko Speybroeck
- Research Institute of Health and Society (IRSS), Université Catholique de Louvain, Brussels, Belgium
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marcia C. Castro
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, United States of America
| | | | - Marcelo U. Ferreira
- Department of Parasitology, Instituto of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Lisbon, Portugal
| | - Joseph M. Vinetz
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Dionicia Gamboa
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Katherine Torres
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
7
|
Sambe BS, Sarr I, Diagne A, Diatta AS, Faye J, Diagne N, Diaw SOM, Mbodj AF, Sané R, Wotodjo AN, Diouf B, Thiam A, Diamanka A, Faye N, Sembène PM, Sarr FD, Dia I, Vigan-Womas I, Sokhna C, Toure-Balde A, Niang M. Persistent carriage of subpatent Plasmodium falciparum parasites associated with clinical malaria in a low transmission area in Senegal. Int J Infect Dis 2024; 147:107211. [PMID: 39151787 DOI: 10.1016/j.ijid.2024.107211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024] Open
Abstract
OBJECTIVES In low malaria transmission areas, the elimination of the disease has been hampered partly by the existence of a reservoir of subpatent Plasmodium falciparum infections within communities. This reservoir, often undetected, serves as a source of parasites and contributes to ongoing transmission and clinical malaria cases. METHODS This study, spanning a period of 9 years from June 2014 to December 2022, examined individual variations and long-term subpatent P. falciparum carriage in two matched cohorts of 44 individuals each living in Dielmo village in the Sudanian area of Senegal. Biannual blood samples, collected in June/July and December of each year, underwent P. falciparum diagnosis by quantitative polymerase chain reaction. QGIS and R analytical tools were used to map infections, assess the occurrence and clustering of subpatent and clinical P. falciparum infections, and determine the risk of infection in the vicinity of asymptomatic P. falciparum carriers. RESULTS The point frequency and long-term P. falciparum carriage were significantly higher among the quantitative polymerase chain reaction (qPCR) positive cohort compared to the negative cohort across the 16 cross-sectional surveys analyzed in this study (19.76% vs 10.99%, P-value <0.001). Asymptomatic carriage events in qPCR-positive group were 18.86 ± 1.72% and significantly greater (P-value = 0.001) than in the qPCR-negative group (11.32 ± 1.32%). The relative risk of P. falciparum infection or clinical malaria calculated with a 95% confidence interval significantly increased in the vicinity of infected individuals and was 1.44 (P-value = 0.53) and 2.64 (P-value = 0.04) when at least one individual in the direct (household) or indirect (block of households) vicinity is infected, respectively. The risk increased to 3.64 (P-value <0.001) if at least 1/5 of individuals in the indirect vicinity were P. falciparum-infected. CONCLUSIONS The study provides a detailed qualitative and quantitative analysis of the asymptomatic P. falciparum reservoir and its temporal and spatial dynamics within two subgroups of P. falciparum-infected and non-infected individuals in Dielmo village. It identified high-risk populations known as "hotpops" and hotspots that could be targeted by innovative interventions to accelerate the elimination of malaria in Dielmo village.
Collapse
Affiliation(s)
- Babacar Souleymane Sambe
- Institut Pasteur de Dakar, Pôle Immunophysiopathologie et Maladies Infectieuses, 36 avenue Pasteur, Dakar, Senegal
| | - Ibrahima Sarr
- Institut Pasteur de Dakar, Pôle Immunophysiopathologie et Maladies Infectieuses, 36 avenue Pasteur, Dakar, Senegal; Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar Fann, Senegal
| | - Aissatou Diagne
- Institut Pasteur de Dakar, Pôle Immunophysiopathologie et Maladies Infectieuses, 36 avenue Pasteur, Dakar, Senegal; Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar Fann, Senegal
| | - Arona Sabène Diatta
- Institut Pasteur de Dakar, Pôle Immunophysiopathologie et Maladies Infectieuses, 36 avenue Pasteur, Dakar, Senegal
| | - Joseph Faye
- Institut Pasteur de Dakar, Pôle Epidémiologie, Recherche Clinique et Science des données, Dakar, Senegal
| | | | - Serigne Ousmane Mbacké Diaw
- Institut Pasteur de Dakar, Pôle Immunophysiopathologie et Maladies Infectieuses, 36 avenue Pasteur, Dakar, Senegal
| | - Adja Fatou Mbodj
- Institut Pasteur de Dakar, Pôle Immunophysiopathologie et Maladies Infectieuses, 36 avenue Pasteur, Dakar, Senegal
| | - Rokhaya Sané
- Institut Pasteur de Dakar, Pôle Immunophysiopathologie et Maladies Infectieuses, 36 avenue Pasteur, Dakar, Senegal; Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar Fann, Senegal
| | | | - Babacar Diouf
- Institut Pasteur de Dakar, Pôle Immunophysiopathologie et Maladies Infectieuses, 36 avenue Pasteur, Dakar, Senegal
| | - Alassane Thiam
- Institut Pasteur de Dakar, Pôle Immunophysiopathologie et Maladies Infectieuses, 36 avenue Pasteur, Dakar, Senegal
| | - Arfang Diamanka
- Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar Fann, Senegal
| | - Ngor Faye
- Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar Fann, Senegal
| | - Papa Mbacké Sembène
- Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar Fann, Senegal
| | - Fatoumata Diene Sarr
- Institut Pasteur de Dakar, Pôle Epidémiologie, Recherche Clinique et Science des données, Dakar, Senegal
| | - Ibrahima Dia
- Institut Pasteur de Dakar, Pôle Zoologie Médicale, Dakar, Senegal
| | - Inès Vigan-Womas
- Institut Pasteur de Dakar, Pôle Immunophysiopathologie et Maladies Infectieuses, 36 avenue Pasteur, Dakar, Senegal
| | - Cheikh Sokhna
- EMR - MINES, Campus International IRD-UCAD de Hann, Dakar, Senegal
| | - Aissatou Toure-Balde
- Institut Pasteur de Dakar, Pôle Immunophysiopathologie et Maladies Infectieuses, 36 avenue Pasteur, Dakar, Senegal
| | - Makhtar Niang
- Institut Pasteur de Dakar, Pôle Immunophysiopathologie et Maladies Infectieuses, 36 avenue Pasteur, Dakar, Senegal.
| |
Collapse
|
8
|
Yadav N, Kalata AC, Reynolds RA, Raappana A, Sather DN, Murphy SC. Identifying Plasmodium P36 and P52 antigens for co-administration with circumsporozoite protein to enhance vaccine efficacy. RESEARCH SQUARE 2024:rs.3.rs-4909396. [PMID: 39399676 PMCID: PMC11469399 DOI: 10.21203/rs.3.rs-4909396/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Vaccines targeting the complex pre-erythrocytic stage of Plasmodium parasites may benefit from inclusion of multiple antigens. However, discerning protective effects can be difficult because newer candidates may not be as protective as leading antigens like the circumsporozoite protein (CSP) in the conventional pre-clinical mouse model. We developed a modified mouse model challenge strategy that maximizes the contribution of T cells induced by novel candidate antigens at the sporozoite challenge time point and used this approach to test Plasmodium P36 and P52 vaccine candidates alone and in concert with non-protective doses of CSP. Co-administration of P36 and/or P52 with CSP achieved 80-100% sterile protection in mice, compared to only 7-30% protection for each individual antigen. P36 and P52 vaccination induced murine CD4+ and CD8+ T cell responses, but not antibody responses. This study adds P36 and P52 as promising vaccine antigens that may enhance protection achieved by CSP vaccination.
Collapse
Affiliation(s)
- Naveen Yadav
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States of America
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, United States of America
| | - Anya C. Kalata
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States of America
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, United States of America
| | - Rebekah A. Reynolds
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States of America
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, United States of America
| | - Andrew Raappana
- Seattle Children’s Research Institute, Seattle, WA, United States of America
| | - D. Noah Sather
- Seattle Children’s Research Institute, Seattle, WA, United States of America
| | - Sean C. Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States of America
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, United States of America
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
- Seattle Children’s Research Institute, Seattle, WA, United States of America
| |
Collapse
|
9
|
Boyle MJ, Engwerda CR, Jagannathan P. The impact of Plasmodium-driven immunoregulatory networks on immunity to malaria. Nat Rev Immunol 2024; 24:637-653. [PMID: 38862638 DOI: 10.1038/s41577-024-01041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/13/2024]
Abstract
Malaria, caused by infection with Plasmodium parasites, drives multiple regulatory responses across the immune landscape. These regulatory responses help to protect against inflammatory disease but may in some situations hamper the acquisition of adaptive immune responses that clear parasites. In addition, the regulatory responses that occur during Plasmodium infection may negatively affect malaria vaccine efficacy in the most at-risk populations. Here, we discuss the specific cellular mechanisms of immunoregulatory networks that develop during malaria, with a focus on knowledge gained from human studies and studies that involve the main malaria parasite to affect humans, Plasmodium falciparum. Leveraging this knowledge may lead to the development of new therapeutic approaches to increase protective immunity to malaria during infection or after vaccination.
Collapse
Affiliation(s)
- Michelle J Boyle
- Life Sciences Division, Burnet Institute, Melbourne, Victoria, Australia.
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | | | - Prasanna Jagannathan
- Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Sattler JM, Keiber L, Abdelrahim A, Zheng X, Jäcklin M, Zechel L, Moreau CA, Steinbrück S, Fischer M, Janse CJ, Hoffmann A, Hentzschel F, Frischknecht F. Experimental vaccination by single dose sporozoite injection of blood-stage attenuated malaria parasites. EMBO Mol Med 2024; 16:2060-2079. [PMID: 39103697 PMCID: PMC11392930 DOI: 10.1038/s44321-024-00101-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Malaria vaccination approaches using live Plasmodium parasites are currently explored, with either attenuated mosquito-derived sporozoites or attenuated blood-stage parasites. Both approaches would profit from the availability of attenuated and avirulent parasites with a reduced blood-stage multiplication rate. Here we screened gene-deletion mutants of the rodent parasite P. berghei and the human parasite P. falciparum for slow growth. Furthermore, we tested the P. berghei mutants for avirulence and resolving blood-stage infections, while preserving sporozoite formation and liver infection. Targeting 51 genes yielded 18 P. berghei gene-deletion mutants with several mutants causing mild infections. Infections with the two most attenuated mutants either by blood stages or by sporozoites were cleared by the immune response. Immunization of mice led to protection from disease after challenge with wild-type sporozoites. Two of six generated P. falciparum gene-deletion mutants showed a slow growth rate. Slow-growing, avirulent P. falciparum mutants will constitute valuable tools to inform on the induction of immune responses and will aid in developing new as well as safeguarding existing attenuated parasite vaccines.
Collapse
Affiliation(s)
- Julia M Sattler
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Lukas Keiber
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Aiman Abdelrahim
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Xinyu Zheng
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Martin Jäcklin
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Luisa Zechel
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Catherine A Moreau
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
| | - Smilla Steinbrück
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Manuel Fischer
- Department of Neuroradiology, Heidelberg University Medical School, 69120, Heidelberg, Germany
| | - Chris J Janse
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Angelika Hoffmann
- Department of Neuroradiology, Heidelberg University Medical School, 69120, Heidelberg, Germany
- Department of Neuroradiology, University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, 3010, Bern, Switzerland
| | - Franziska Hentzschel
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany.
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
11
|
Tapela K, Prah DA, Tetteh B, Nuokpem F, Dosoo D, Coker A, Kumi-Ansah F, Amoako E, Assah KO, Kilba C, Nyakoe N, Quansah D, Languon S, Anyigba CA, Ansah F, Agyeman S, Owusu IA, Schneider K, Ampofo WK, Mutungi JK, Amegatcher G, Aniweh Y, Awandare GA, Quashie PK, Bediako Y. Cellular immune response to SARS-CoV-2 and clinical presentation in individuals exposed to endemic malaria. Cell Rep 2024; 43:114533. [PMID: 39052480 PMCID: PMC11372439 DOI: 10.1016/j.celrep.2024.114533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/17/2023] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Ghana and other parts of West Africa have experienced lower COVID-19 mortality rates than other regions. This phenomenon has been hypothesized to be associated with previous exposure to infections such as malaria. This study investigated the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the influence of previous malaria exposure. Blood samples were collected from individuals with asymptomatic or symptomatic COVID-19 (n = 217). A variety of assays were used to characterize the SARS-CoV-2-specific immune response, and malaria exposure was quantified using Plasmodium falciparum ELISA. The study found evidence of attenuated immune responses to COVID-19 among asymptomatic individuals, with elevated proportions of non-classical monocytes and greater memory B cell activation. Symptomatic patients displayed higher P. falciparum-specific T cell recall immune responses, whereas asymptomatic individuals demonstrated elevated P. falciparum antibody levels. Summarily, this study suggests that P. falciparum exposure-associated immune modulation may contribute to reduced severity of SARS-CoV-2 infection among people living in malaria-endemic regions.
Collapse
Affiliation(s)
- Kesego Tapela
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Diana Ahu Prah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Becky Tetteh
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Franklin Nuokpem
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Daniel Dosoo
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Amin Coker
- Accident and Emergency Unit, The Greater Accra Regional Hospital, Accra, Ghana
| | | | - Emmanuella Amoako
- Department of Pediatrics, Cape Coast Teaching Hospital, Cape Coast, Ghana; Yemaachi Biotech Inc., 222 Swaniker St., Accra, Ghana
| | - Kissi Ohene Assah
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Charlyne Kilba
- Department of Internal Medicine, Surgery, Pediatrics, and Emergency Medicine, Greater Accra Regional Hospital, Accra, Ghana
| | - Nancy Nyakoe
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Darius Quansah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana; Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Sylvester Languon
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Claudia Adzo Anyigba
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Felix Ansah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Seth Agyeman
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana; Yemaachi Biotech Inc., 222 Swaniker St., Accra, Ghana
| | - Irene Amoakoh Owusu
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Kristan Schneider
- Department of Mathematics, Hochschule Mittweida, University of Applied Sciences, Mittweida, Germany
| | - William K Ampofo
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Joe Kimanthi Mutungi
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Gloria Amegatcher
- Department of Medical Laboratory Science, School of Biomedical and Allied Sciences, University of Ghana, Accra, Ghana
| | - Yaw Aniweh
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; The Francis Crick Institute, 1 Midland Rd., London NW1 1AT, UK
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Peter K Quashie
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; The Francis Crick Institute, 1 Midland Rd., London NW1 1AT, UK.
| | - Yaw Bediako
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Yemaachi Biotech Inc., 222 Swaniker St., Accra, Ghana; The Francis Crick Institute, 1 Midland Rd., London NW1 1AT, UK.
| |
Collapse
|
12
|
Zhan Q, He Q, Tiedje KE, Day KP, Pascual M. Hyper-diverse antigenic variation and resilience to transmission-reducing intervention in falciparum malaria. Nat Commun 2024; 15:7343. [PMID: 39187488 PMCID: PMC11347654 DOI: 10.1038/s41467-024-51468-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024] Open
Abstract
Intervention efforts against falciparum malaria in high-transmission regions remain challenging, with rapid resurgence typically following their relaxation. Such resilience co-occurs with incomplete immunity and a large transmission reservoir from high asymptomatic prevalence. Incomplete immunity relates to the large antigenic variation of the parasite, with the major surface antigen of the blood stage of infection encoded by the multigene and recombinant family known as var. With a stochastic agent-based model, we investigate the existence of a sharp transition in resurgence ability with intervention intensity and identify molecular indicators informative of its proximity. Their application to survey data with deep sampling of var sequences from individual isolates in northern Ghana suggests that the transmission system was brought close to transition by intervention with indoor residual spraying. These results indicate that sustaining and intensifying intervention would have pushed malaria dynamics to a slow-rebound regime with an increased probability of local parasite extinction.
Collapse
Affiliation(s)
- Qi Zhan
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Qixin He
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Kathryn E Tiedje
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Karen P Day
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Mercedes Pascual
- Department of Biology, New York University, New York, NY, 10003, USA.
- Department of Environmental Studies, New York University, New York, NY, 10003, USA.
- Santa Fe Institute, Santa Fe, NM, 87501, USA.
| |
Collapse
|
13
|
Fila-Fila GPU, Koukouikila-Koussounda F, Niama FR, Bissombolo Madingou LP, Demboux JE, Mandiangou AF, Vembe Mahounga S, Doniama AJ, Dossou-Yovo LR, Casimiro PN, Issamou Mayengue P. Quality Control of Microscopic Diagnosis of Malaria in Healthcare Facilities and Submicroscopic Infections in Mossendjo, the Department of Niari, the Republic of the Congo. Pathogens 2024; 13:709. [PMID: 39204309 PMCID: PMC11357559 DOI: 10.3390/pathogens13080709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 09/04/2024] Open
Abstract
The control and management of malaria are linked to the quality of diagnosis. We sought to estimate the performance of routine microscopy for malaria diagnosis and assess the prevalence of submicroscopic Plasmodium (P.) falciparum infection among febrile patients in two healthcare facilities in Mossendjo, the Republic of the Congo. A cross-sectional study was conducted between January and December 2022. A total of 650 and 234 patients with signs of uncomplicated malaria were enrolled at the Centre de Sante Intégré (CSIMSJ) and Hôpital de Base (HBMSJ), respectively. Two thick blood smears were performed for each patient, one analyzed by routine microscopists and the other by an expert. The msp-1 and msp-2 genes were genotyped to detect submicroscopic P. falciparum infection. At the CSIMSJ, the sensitivity was 49.5% and the specificity was 88.6%. The positive and negative predictive values were 77.7% and 68.7%, respectively. At the HBMSJ, the sensitivity was 32.9% and the specificity was 79.4%. The positive and negative predictive values were 44.8% and 69.5%, respectively. P. falciparum was the only species detected by routine microscopists, while experts identified some cases with P. malariae and P. ovale. The proportion of submicroscopic infections was 35.75%. Children under 5 years old had higher rates of parasitemia. However, submicroscopic infections were more pronounced in the adult group. The performance of routine malaria microscopists at Mossendjo was inaccurate at both sites. With the large proportion of submicroscopic infection, malaria management at Mossendjo requires the improvement of microscopists' skills and the concomitant use of RDTs.
Collapse
Affiliation(s)
- Grâce Petula Urielle Fila-Fila
- Département de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville P.O. Box 69, Congo; (G.P.U.F.-F.); (F.K.-K.); (F.R.N.); (L.P.B.M.); (J.E.D.); (A.F.M.); (S.V.M.); (A.J.D.); (P.N.C.)
- Laboratoire National de Santé Publique, Brazzaville P.O. Box 120, Congo;
| | - Felix Koukouikila-Koussounda
- Département de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville P.O. Box 69, Congo; (G.P.U.F.-F.); (F.K.-K.); (F.R.N.); (L.P.B.M.); (J.E.D.); (A.F.M.); (S.V.M.); (A.J.D.); (P.N.C.)
- Laboratoire National de Santé Publique, Brazzaville P.O. Box 120, Congo;
| | - Fabien Roch Niama
- Département de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville P.O. Box 69, Congo; (G.P.U.F.-F.); (F.K.-K.); (F.R.N.); (L.P.B.M.); (J.E.D.); (A.F.M.); (S.V.M.); (A.J.D.); (P.N.C.)
- Laboratoire National de Santé Publique, Brazzaville P.O. Box 120, Congo;
| | - Lauriate Prudencie Bissombolo Madingou
- Département de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville P.O. Box 69, Congo; (G.P.U.F.-F.); (F.K.-K.); (F.R.N.); (L.P.B.M.); (J.E.D.); (A.F.M.); (S.V.M.); (A.J.D.); (P.N.C.)
- Laboratoire National de Santé Publique, Brazzaville P.O. Box 120, Congo;
| | - Jordy Exaucé Demboux
- Département de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville P.O. Box 69, Congo; (G.P.U.F.-F.); (F.K.-K.); (F.R.N.); (L.P.B.M.); (J.E.D.); (A.F.M.); (S.V.M.); (A.J.D.); (P.N.C.)
- Laboratoire National de Santé Publique, Brazzaville P.O. Box 120, Congo;
| | - Aldi Fred Mandiangou
- Département de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville P.O. Box 69, Congo; (G.P.U.F.-F.); (F.K.-K.); (F.R.N.); (L.P.B.M.); (J.E.D.); (A.F.M.); (S.V.M.); (A.J.D.); (P.N.C.)
- Laboratoire National de Santé Publique, Brazzaville P.O. Box 120, Congo;
| | - Stéphane Vembe Mahounga
- Département de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville P.O. Box 69, Congo; (G.P.U.F.-F.); (F.K.-K.); (F.R.N.); (L.P.B.M.); (J.E.D.); (A.F.M.); (S.V.M.); (A.J.D.); (P.N.C.)
- Laboratoire National de Santé Publique, Brazzaville P.O. Box 120, Congo;
| | - Ahmed Jordy Doniama
- Département de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville P.O. Box 69, Congo; (G.P.U.F.-F.); (F.K.-K.); (F.R.N.); (L.P.B.M.); (J.E.D.); (A.F.M.); (S.V.M.); (A.J.D.); (P.N.C.)
- Laboratoire National de Santé Publique, Brazzaville P.O. Box 120, Congo;
| | - Louis Régis Dossou-Yovo
- Laboratoire National de Santé Publique, Brazzaville P.O. Box 120, Congo;
- Ecole Normale Supérieure, Université Marien Ngouabi, Brazzaville P.O. Box 69, Congo
| | - Prisca Nadine Casimiro
- Département de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville P.O. Box 69, Congo; (G.P.U.F.-F.); (F.K.-K.); (F.R.N.); (L.P.B.M.); (J.E.D.); (A.F.M.); (S.V.M.); (A.J.D.); (P.N.C.)
| | - Pembe Issamou Mayengue
- Département de Biologie Cellulaire et Moléculaire, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville P.O. Box 69, Congo; (G.P.U.F.-F.); (F.K.-K.); (F.R.N.); (L.P.B.M.); (J.E.D.); (A.F.M.); (S.V.M.); (A.J.D.); (P.N.C.)
- Laboratoire National de Santé Publique, Brazzaville P.O. Box 120, Congo;
- Institut National de Recherche en Sciences de l’Ingénieur, Innovation et Technologie, Cité Scientifique de Brazzaville, Route de l’Auberge de Gascogne, Brazzaville P.O. Box 181, Congo
| |
Collapse
|
14
|
Rapp T, Amagai K, Sinai C, Basham C, Loya M, Ngasala S, Said H, Muller MS, Chhetri SB, Yang G, François R, Odas M, Mathias D, Juliano JJ, Lin FC, Ngasala B, Lin JT. Microheterogeneity of Transmission Shapes Submicroscopic Malaria Carriage in Coastal Tanzania. J Infect Dis 2024; 230:485-496. [PMID: 38781438 PMCID: PMC11326843 DOI: 10.1093/infdis/jiae276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/14/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Asymptomatic carriage of malaria parasites persists even as malaria transmission declines. Low-density infections are often submicroscopic, not detected with rapid diagnostic tests (RDTs) or microscopy but detectable by polymerase chain reaction (PCR). METHODS To characterize submicroscopic Plasmodium falciparum carriage in an area of declining malaria transmission, asymptomatic persons >5 years of age in rural Bagamoyo District, Tanzania, were screened using RDT, microscopy, and PCR. We investigated the size of the submicroscopic reservoir of infection across villages, determined factors associated with submicroscopic carriage, and assessed the natural history of submicroscopic malaria over 4 weeks. RESULTS Among 6076 participants, P. falciparum prevalences by RDT, microscopy, and PCR were 9%, 9%, and 28%, respectively, with roughly two-thirds of PCR-positive individuals harboring submicroscopic infection. Adult status, female sex, dry season months, screened windows, and bed net use were associated with submicroscopic carriage. Among 15 villages encompassing 80% of participants, the proportion of submicroscopic carriers increased with decreasing village-level malaria prevalence. Over 4 weeks, 23% of submicroscopic carriers (61 of 266) became RDT positive, with half exhibiting symptoms, while half (133 of 266) were no longer parasitemic at the end of 4 weeks. Progression to RDT-positive patent malaria occurred more frequently in villages with higher malaria prevalence. CONCLUSIONS Microheterogeneity in transmission observed at the village level appears to affect both the size of the submicroscopic reservoir and the likelihood of submicroscopic carriers developing patent malaria in coastal Tanzania.
Collapse
Affiliation(s)
- Tyler Rapp
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Kano Amagai
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Cyrus Sinai
- Department of Geography, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Christopher Basham
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Mwajabu Loya
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Sifa Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Hamza Said
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Meredith S Muller
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Srijana B Chhetri
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Guozheng Yang
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Ruthly François
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Melic Odas
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Derrick Mathias
- Florida Medical Entomology Laboratory, Institute of Food & Agricultural Sciences, University of Florida, Vero Beach, Florida, USA
| | - Jonathan J Juliano
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Feng-Chang Lin
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Billy Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Jessica T Lin
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
15
|
Aninagyei E, Asmah RH, Duedu KO, Deku JG, Tanson KS, Mireku Y, Gbadago F, Acheampong DO. The use of the WHO criteria to detect severe malaria among patients clinically diagnosed with uncomplicated malaria. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003158. [PMID: 39146283 PMCID: PMC11326616 DOI: 10.1371/journal.pgph.0003158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024]
Abstract
The World Health Organization (WHO) strict defining criteria were used to identify severe malaria among Ghanaian patients clinically diagnosed as uncomplicated malaria. From each study participant, blood haemoglobin (Hb) and plasma bilirubin levels were estimated using automated analyzers. According to the WHO, the criteria for diagnosing severe malaria among children (< 12 years) was assessed using Hb < 5 g/dL and among other patients ≥ 12 years, Hb < 7 g/dL with parasitemia > 10,000/μL, plasma bilirubin > 50 μmol/L amidst parasitemia > 100,000/μL and P. falciparum hyperparasitaemia (> 500,000 parasites/μL). Patients initially diagnosed with asymptomatic malaria (n = 347) were recruited. The parasitemia range was 540-863,402 parasite/μL. Overall, 86.2% of the patients had uncomplicated malaria while 13.8% of the patients were diagnosed with severe malaria of various origins. In children < 12 years, 10.8% (17/157) had Hb < 5g/dL with parasitaemia < 10,000 parasites/μL and in other patients (≥ 12 years), 6.3% (12/190) of them recorded Hb < 7g/dL with parasitaemia < 10,000 parasites/μL. Furthermore, 13.8% (48/347) had serum bilirubin levels > 50 μmol/L with parasitemia > 100,000/μL. In all the patients with hyperbilirubinemia, Hb levels fell below either 5g/dL or 7g/dL, for patients less than and 12 years or more, respectively. Finally, 1.7% (6/347) of the patients with malaria had parasite counts (> 500,000 parasites/μL). Irrespective of the etiology, patients diagnosed with severe malaria presented with pallor, vomiting, diarrhea, chills, fever and nausea, concurrently. Without comprehensive laboratory evaluation, patients with severe malaria could be misdiagnosed. Therefore, healthcare facilities need adequate human and logistical resources to be able to diagnose severe malaria for appropriate management to avert any untoward outcomes.
Collapse
Affiliation(s)
- Enoch Aninagyei
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Volta Region, Ghana
| | - Richard Harry Asmah
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Volta Region, Ghana
| | - Kwabena Obeng Duedu
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Volta Region, Ghana
- College of Life Sciences, Birmingham City University, City South Campus, Birmingham, United Kingdom
| | - John Gameli Deku
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Volta Region, Ghana
| | - Kelvin Senyo Tanson
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Volta Region, Ghana
| | - Yobo Mireku
- Laboratory Department, Ghana Health Service, Enyiresi Government Hospital, Enyiresi, Eastern Region, Ghana
| | - Fred Gbadago
- Laboratory Department, Ghana Health Service, Suhum Government Hospital, Suhum, Eastern Region, Ghana
| | - Desmond Omane Acheampong
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Central Region, Ghana
| |
Collapse
|
16
|
Nawa M, Mupeyo-Mudala C, Banda-Tembo S, Adetokunboh O. The effects of modern housing on malaria transmission in different endemic zones: a systematic review and meta-analysis. Malar J 2024; 23:235. [PMID: 39113048 PMCID: PMC11308589 DOI: 10.1186/s12936-024-05059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 07/27/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Modern housing has been shown to reduce the risk of malaria infections compared to traditional houses; however, it is unclear if the effects differ in different malaria transmission settings. This study evaluated the effects of modern housing on malaria among different endemic areas. METHODS Electronic databases, clinical trial registries and grey literature were searched for randomized controlled trials, cohort studies, case-control studies, and cross-sectional surveys on housing done between 1987 and 2022. Forest plots were done, and the quality of evidence was assessed using the Grading of Recommendations, Assessments, Development and Evaluation Framework. RESULTS Twenty-one studies were included; thirteen were cross-sectional, four were case-control and four were cohort studies. Cohort studies showed an adjusted risk ratio of 0.68 (95% CI 0.48-0.96), and cross-sectional studies indicated an adjusted odds ratio (aOR) of 0.79 (95%CI 0.75-0.83). By endemic transmission regions, the adjusted odds ratio in the high endemic settings was 0.80 (95%CI 0.76-085); in the moderate transmission regions, aOR = 0.76 (95%CI 0.67-0.85) and in the low transmission settings, aOR = 0.67 (95%CI 0.48-0.85). CONCLUSIONS The evidence from observational studies suggests that there are no differences in the protective effects of modern houses compared to traditional houses on malaria by endemicity level. This implies that good quality modern housing protects against malaria regardless of the malaria transmission settings.
Collapse
Affiliation(s)
- Mukumbuta Nawa
- Division of Epidemiology and Biostatistics, Stellenbosch University, Stellenbosch, Western Cape, South Africa.
- Department of Epidemiology and Biostatistics, Levy Mwanawasa Medical University, Lusaka, Zambia.
| | - Catherine Mupeyo-Mudala
- Department of Epidemiology and Biostatistics, Levy Mwanawasa Medical University, Lusaka, Zambia
| | - Sylvia Banda-Tembo
- Department of Epidemiology and Biostatistics, Levy Mwanawasa Medical University, Lusaka, Zambia
| | - Olatunji Adetokunboh
- Division of Epidemiology and Biostatistics, Stellenbosch University, Stellenbosch, Western Cape, South Africa
- DSI-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, Stellenbosch, Western Cape, South Africa
| |
Collapse
|
17
|
Riedmiller I, Fougeroux C, Jensen RW, Kana IH, Sander AF, Theander TG, Lavstsen T, Turner L. Mosaic and cocktail capsid-virus-like particle vaccines for induction of antibodies against the EPCR-binding CIDRα1 domain of PfEMP1. PLoS One 2024; 19:e0302243. [PMID: 39046960 PMCID: PMC11268589 DOI: 10.1371/journal.pone.0302243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
The sequestration of Plasmodium falciparum-infected erythrocytes to the host endothelium is central to the pathogenesis of malaria. The sequestration is mediated by the parasite´s diverse Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) variants, which bind select human receptors on the endothelium. Severe malaria is associated with PfEMP1 binding human endothelial protein C receptor (EPCR) via their CIDRα1 domains. Antibodies binding and inhibiting across the sequence diverse CIDRα1 domains are likely important in acquired immunity against severe malaria. In this study, we explored if immunization with AP205 bacteriophage capsid-virus-like particles (cVLPs) presenting a mosaic of diverse CIDRα1 protein variants would stimulate broadly reactive and inhibitory antibody responses in mice. Three different mosaic cVLP vaccines each composed of five CIDRα1 protein variants with varying degrees of sequence conservation of residues at and near the EPCR binding site, were tested. All mosaic cVLP vaccines induced functional antibodies comparable to those induced by matched cocktails of cVLPs decorated with the single CIDRα1 variant. No broadly reactive responses were observed. However, the vaccines did induce some cross-reactivity and inhibition within the CIDRα1 subclasses included in the vaccines, demonstrating potential use of the cVLP vaccine platform for the design of multivalent vaccines.
Collapse
Affiliation(s)
- Ilary Riedmiller
- Department of Immunology and Microbiology, Centre for translational Medicine and Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Rasmus W. Jensen
- Department of Immunology and Microbiology, Centre for translational Medicine and Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ikhlaq H. Kana
- Department of Immunology and Microbiology, Centre for translational Medicine and Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Thor G. Theander
- Department of Immunology and Microbiology, Centre for translational Medicine and Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Lavstsen
- Department of Immunology and Microbiology, Centre for translational Medicine and Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Louise Turner
- Department of Immunology and Microbiology, Centre for translational Medicine and Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Legesse G, Tafesse W, Kenea D, Subussa BW, Alemayehu GS, Kebede T, Golassa L, Ali MM, Hailu A. Asymptomatic malaria and predictors among migrant farmworkers East Shewa zone Oromia Ethiopia. Sci Rep 2024; 14:16187. [PMID: 39003288 PMCID: PMC11246495 DOI: 10.1038/s41598-024-65470-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/20/2024] [Indexed: 07/15/2024] Open
Abstract
Asymptomatic malaria can impact existing malaria control and elimination efforts around the world, particularly in Africa, where the majority of malaria cases and death occurs. This is a cross-sectional study aimed to determine the prevalence and predictors of asymptomatic malaria among migrant farmworkers from June to July 2020 in the Upper Awash Agro-industry, East Shewa zone, Oromia Regional State, Ethiopia. A total of 254 migrant farmworkers without signs and symptoms of malaria were enrolled. Data on socio-demographic characteristics and malaria prevention practices were obtained through a structured questionnaire. Venous blood samples were collected and diagnosed using microscopy, rapid diagnostic tests, and polymerase chain reaction (PCR). Data were coded, entered, and analyzed using SPSS version-21 statistical software. Multivariable logistic regression was used to assess associated factors. A p < 0.05 was considered statistically significant. The overall prevalence of asymptomatic malaria among farmworkers in this study was 5.1% [95% CI 1.6, 6.7]. The proportions of Plasmodium falciparum was 90.0% (9/10) while it was 10.0% (1/10) for Plasmodium vivax. Out of the microscopy and/or RDT-confirmed malaria cases, (n = 9; 100%) were confirmed to be P. falciparum by nested PCR, while (n = 3/122; 2.46%) were found to be P. falciparum among 50% negative cases with the microscopy and/or RDT. The gametocyte stage was detected in 40% of microscopically positive cases out of which 44.4% belongs to P. falciparum. Home area/origin of migrant laborers [AOR = 6.08, (95% CI 1.08, 34.66)], family history of malaria [AOR = 8.15, (95% CI 1.43, 46.44)], and outdoor sleeping [AOR = 10.14, (95% CI 1.15, 89.14)] were significantly associated with asymptomatic malaria. In conclusion, asymptomatic malaria was detected among farmworkers in the study area and it was significantly associated with outdoor sleeping, home area, and family history of malaria. Prevention tools and control strategies, particularly focusing on migrant farmworkers, should be considered to support the ongoing malaria control and elimination effort in Ethiopia.
Collapse
Affiliation(s)
- Gudeta Legesse
- Department of Medical Laboratory Science, College of Health Science, Arsi University, Asella, Ethiopia.
| | - Weynshet Tafesse
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Wachamo University Hossana, Hosaina, Ethiopia
| | - Dagaga Kenea
- Department of Medical Laboratory Science, College of Health Science, Arsi University, Asella, Ethiopia
| | - Bereket Wake Subussa
- Department of Medical Laboratory Science, College of Health Science, Arsi University, Asella, Ethiopia
| | | | - Tadesse Kebede
- Department of Microbiology, Immunology, and Parasitology, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Musa Mohammed Ali
- School of Medical Laboratory Science, College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia
| | - Asrat Hailu
- Department of Microbiology, Immunology, and Parasitology, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
19
|
Anyona SB, Cheng Q, Wasena SA, Osata SW, Guo Y, Raballah E, Hurwitz I, Onyango CO, Ouma C, Seidenberg PD, McMahon BH, Lambert CG, Schneider KA, Perkins DJ. Entire expressed peripheral blood transcriptome in pediatric severe malarial anemia. Nat Commun 2024; 15:5037. [PMID: 38866743 PMCID: PMC11169501 DOI: 10.1038/s41467-024-48259-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/25/2024] [Indexed: 06/14/2024] Open
Abstract
This study on severe malarial anemia (SMA: Hb < 6.0 g/dL), a leading global cause of childhood morbidity and mortality, compares the entire expressed whole blood host transcriptome between Kenyan children (3-48 mos.) with non-SMA (Hb ≥ 6.0 g/dL, n = 39) and SMA (n = 18). Differential expression analyses reveal 1403 up-regulated and 279 down-regulated transcripts in SMA, signifying impairments in host inflammasome activation, cell death, and innate immune and cellular stress responses. Immune cell profiling shows decreased memory responses, antigen presentation, and immediate pathogen clearance, suggesting an immature/improperly regulated immune response in SMA. Module repertoire analysis of blood-specific gene signatures identifies up-regulation of erythroid genes, enhanced neutrophil activation, and impaired inflammatory responses in SMA. Enrichment analyses converge on disruptions in cellular homeostasis and regulatory pathways for the ubiquitin-proteasome system, autophagy, and heme metabolism. Pathway analyses highlight activation in response to hypoxic conditions [Hypoxia Inducible Factor (HIF)-1 target and Reactive Oxygen Species (ROS) signaling] as a central theme in SMA. These signaling pathways are also top-ranking in protein abundance measures and a Ugandan SMA cohort with available transcriptomic data. Targeted RNA-Seq validation shows strong concordance with our entire expressed transcriptome data. These findings identify key molecular themes in SMA pathogenesis, offering potential targets for new malaria therapies.
Collapse
Affiliation(s)
- Samuel B Anyona
- Department of Medical Biochemistry, School of Medicine, Maseno University, Maseno, 40105, Kenya.
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, 40100, Kenya.
| | - Qiuying Cheng
- Department of Internal Medicine, Center for Global Health, University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - Sharley A Wasena
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, 40100, Kenya
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, 40105, Kenya
| | - Shamim W Osata
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, 40100, Kenya
| | - Yan Guo
- Department of Public Health Sciences, University of Miami, Miami, 33136, USA
| | - Evans Raballah
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, 40100, Kenya
- Department of Medical Laboratory Sciences, School of Public Health, Biomedical Sciences and Technology, Masinde Muliro University of Science and Technology, Kakamega, 50100, Kenya
| | - Ivy Hurwitz
- Department of Internal Medicine, Center for Global Health, University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - Clinton O Onyango
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, 40100, Kenya
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, 40105, Kenya
| | - Collins Ouma
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, 40100, Kenya
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, 40105, Kenya
| | - Philip D Seidenberg
- Department of Emergency Medicine, School of Medicine, University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - Benjamin H McMahon
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Christophe G Lambert
- Department of Internal Medicine, Division of Translational Informatics, University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - Kristan A Schneider
- Department of Internal Medicine, Division of Translational Informatics, University of New Mexico, Albuquerque, NM, 87131-0001, USA
- Department Applied Computer and Bio-Sciences, University of Applied Sciences Mittweida, Mittweida, 09648, Germany
| | - Douglas J Perkins
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, 40100, Kenya.
- Department of Internal Medicine, Center for Global Health, University of New Mexico, Albuquerque, NM, 87131-0001, USA.
| |
Collapse
|
20
|
Pêgo AC, Lima IS, Martins AC, Sá-Pereira I, Martins G, Gozzelino R. Infection vs. Reinfection: The Immunomodulation of Erythropoiesis. Int J Mol Sci 2024; 25:6153. [PMID: 38892340 PMCID: PMC11172545 DOI: 10.3390/ijms25116153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Severe malarial anemia (SMA) increases the morbidity and mortality of Plasmodium, the causative agent of malaria. SMA is mainly developed by children and pregnant women in response to the infection. It is characterized by ineffective erythropoiesis caused by impaired erythropoietin (EPO) signaling. To gain new insights into the pathogenesis of SMA, we investigated the relationship between the immune system and erythropoiesis, conducting comparative analyses in a mouse model of malaria. Red blood cell (RBC) production was evaluated in infected and reinfected animals to mimic endemic occurrences. Higher levels of circulating EPO were observed in response to (re)infection. Despite no major differences in bone marrow erythropoiesis, compensatory mechanisms of splenic RBC production were significantly reduced in reinfected mice. Concomitantly, a pronounced immune response activation was observed in erythropoietic organs of reinfected animals in relation to single-infected mice. Aged mice were also used to mimic the occurrence of malaria in the elderly. The increase in symptom severity was correlated with the enhanced activation of the immune system, which significantly impaired erythropoiesis. Immunocompromised mice further support the existence of an immune-shaping regulation of RBC production. Overall, our data reveal the strict correlation between erythropoiesis and immune cells, which ultimately dictates the severity of SMA.
Collapse
Affiliation(s)
| | | | | | | | | | - Raffaella Gozzelino
- NOVA Medical School Research, NOVA University of Lisbon, 1150-082 Lisbon, Portugal
| |
Collapse
|
21
|
Paul KMM, Simpson SV, Nundu SS, Arima H, Yamamoto T. Genetic diversity of glutamate-rich protein (GLURP) in Plasmodium falciparum isolates from school-age children in Kinshasa, DRC. Parasitol Int 2024; 100:102866. [PMID: 38350548 DOI: 10.1016/j.parint.2024.102866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
Malaria infections in school-age children further make it difficult to control the disease's spread. Moreover, the genetic diversity of glutamate-rich protein, potentially a candidate for vaccine development, has not yet been investigated in the Democratic Republic of Congo. Therefore, we aimed to assess the genetic diversity of the immunodominant C-terminal repetitive region (R2) of Plasmodium falciparum glutamate-rich protein gene (pfglurp) among school-age children living in Kinshasa, DRC. We conducted nested PCR targeting R2 of pfglurp and the amplicon were directly sequenced. We summarized the prevalence of mutations of bases and amino acids and indicated the amino acid repeat sequence in the R2 region by the unit code. We then statistically analyzed whether there was a relationship between the number of mutations in the pfglurp gene and attributes. In 221 samples, haplotype 1 was the most common (n = 137, 61.99%), with the same sequence as the 3D7 strain. Regarding the number of base mutations, it was higher in urban areas than rural areas (p = 0.0363). When genetic neutrality was tested using data from 171 samples of the single strain, Tajima's D was -1.857 (p = 0.0059). In addition, FST as the genetic distance between all attributes was very small and no significant difference was observed. This study clarified the genetic mutation status and relevant patient attributes among School-age children in the DRC. We found that urban areas are more likely to harbour pfglurp mutations. Future research needs to clarify the reason and mechanism involved.
Collapse
Affiliation(s)
- Kambale Mathe Mowa Paul
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan; Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, Nagasaki, Japan
| | - Shirley V Simpson
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan; Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, Nagasaki, Japan
| | - Sabin S Nundu
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of Congo
| | - Hiroaki Arima
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.
| | - Taro Yamamoto
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan; Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
22
|
Wistuba-Hamprecht J, Reuter B, Fendel R, Hoffman SL, Campo JJ, Felgner PL, Kremsner PG, Mordmüller B, Pfeifer N. Machine learning prediction of malaria vaccine efficacy based on antibody profiles. PLoS Comput Biol 2024; 20:e1012131. [PMID: 38848436 PMCID: PMC11189177 DOI: 10.1371/journal.pcbi.1012131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 06/20/2024] [Accepted: 05/02/2024] [Indexed: 06/09/2024] Open
Abstract
Immunization through repeated direct venous inoculation of Plasmodium falciparum (Pf) sporozoites (PfSPZ) under chloroquine chemoprophylaxis, using the PfSPZ Chemoprophylaxis Vaccine (PfSPZ-CVac), induces high-level protection against controlled human malaria infection (CHMI). Humoral and cellular immunity contribute to vaccine efficacy but only limited information about the implicated Pf-specific antigens is available. Here, we examined Pf-specific antibody profiles, measured by protein arrays representing the full Pf proteome, of 40 placebo- and PfSPZ-immunized malaria-naïve volunteers from an earlier published PfSPZ-CVac dose-escalation trial. For this purpose, we both utilized and adapted supervised machine learning methods to identify predictive antibody profiles at two different time points: after immunization and before CHMI. We developed an adapted multitask support vector machine (SVM) approach and compared it to standard methods, i.e. single-task SVM, regularized logistic regression and random forests. Our results show, that the multitask SVM approach improved the classification performance to discriminate the protection status based on the underlying antibody-profiles while combining time- and dose-dependent data in the prediction model. Additionally, we developed the new fEature diStance exPlainabilitY (ESPY) method to quantify the impact of single antigens on the non-linear multitask SVM model and make it more interpretable. In conclusion, our multitask SVM model outperforms the studied standard approaches in regard of classification performance. Moreover, with our new explanation method ESPY, we were able to interpret the impact of Pf-specific antigen antibody responses that predict sterile protective immunity against CHMI after immunization. The identified Pf-specific antigens may contribute to a better understanding of immunity against human malaria and may foster vaccine development.
Collapse
Affiliation(s)
- Jacqueline Wistuba-Hamprecht
- Department of Computer Science, University of Tübingen, Tübingen, Germany
- Institute for Biomedical Informatics, University of Tübingen, Tübingen, Germany
| | - Bernhard Reuter
- Department of Computer Science, University of Tübingen, Tübingen, Germany
- Institute for Biomedical Informatics, University of Tübingen, Tübingen, Germany
| | - Rolf Fendel
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, partner site Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | | | - Joseph J. Campo
- Antigen Discovery Inc., Irvine, California, United States of America
| | - Philip L. Felgner
- Department of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Peter G. Kremsner
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, partner site Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nico Pfeifer
- Department of Computer Science, University of Tübingen, Tübingen, Germany
- Institute for Biomedical Informatics, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, partner site Tübingen, Tübingen, Germany
| |
Collapse
|
23
|
Zhan Q, Tiedje KE, Day KP, Pascual M. From multiplicity of infection to force of infection for sparsely sampled Plasmodium falciparum populations at high transmission. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.12.24302148. [PMID: 38853963 PMCID: PMC11160831 DOI: 10.1101/2024.02.12.24302148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
High multiplicity of infection or MOI, the number of genetically distinct parasite strains co-infecting a single human host, characterizes infectious diseases including falciparum malaria at high transmission. It accompanies high asymptomatic Plasmodium falciparum prevalence despite high exposure, creating a large transmission reservoir challenging intervention. High MOI and asymptomatic prevalence are enabled by immune evasion of the parasite achieved via vast antigenic diversity. Force of infection or FOI, the number of new infections acquired by an individual host over a given time interval, is the dynamic sister quantity of MOI, and a key epidemiological parameter for monitoring the impact of antimalarial interventions and assessing vaccine or drug efficacy in clinical trials. FOI remains difficult, expensive, and labor-intensive to accurately measure, especially in high-transmission regions, whether directly via cohort studies or indirectly via the fitting of epidemiological models to repeated cross-sectional surveys. We propose here the application of queuing theory to obtain FOI on the basis of MOI, in the form of either a two-moment approximation method or Little's law. We illustrate these methods with MOI estimates obtained under sparse sampling schemes with the recently proposed " v a r coding" method, based on sequences of the v a r multigene family encoding for the major variant surface antigen of the blood stage of malaria infection. The methods are evaluated with simulation output from a stochastic agent-based model, and are applied to an interrupted time-series study from Bongo District in northern Ghana before and immediately after a three-round transient indoor residual spraying (IRS) intervention. We incorporate into the sampling of the simulation output, limitations representative of those encountered in the collection of field data, including under-sampling of v a r genes, missing data, and usage of antimalarial drug treatment. We address these limitations in MOI estimates with a Bayesian framework and an imputation bootstrap approach. We demonstrate that both proposed methods give good and consistent FOI estimates across various simulated scenarios. Their application to the field surveys shows a pronounced reduction in annual FOI during intervention, of more than 70%. The proposed approach should be applicable to the many geographical locations where cohort or cross-sectional studies with regular and frequent sampling are lacking but single-time-point surveys under sparse sampling schemes are available, and for MOI estimates obtained in different ways. They should also be relevant to other pathogens of humans, wildlife and livestock whose immune evasion strategies are based on large antigenic variation resulting in high multiplicity of infection.
Collapse
Affiliation(s)
- Qi Zhan
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Kathryn E. Tiedje
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Karen P. Day
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Mercedes Pascual
- Department of Biology, New York University, New York, NY, USA
- Department of Environmental Studies, New York University, New York, NY, USA
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
24
|
Kusi KA, Amoah LE, Acquah FK, Ennuson NA, Frempong AF, Ofori EA, Akyea-Mensah K, Kyei-Baafour E, Osei F, Frimpong A, Singh SK, Theisen M, Remarque EJ, Faber BW, Belmonte M, Ganeshan H, Huang J, Villasante E, Sedegah M. Plasmodium falciparum AMA1 and CSP antigen diversity in parasite isolates from southern Ghana. Front Cell Infect Microbiol 2024; 14:1375249. [PMID: 38808064 PMCID: PMC11132687 DOI: 10.3389/fcimb.2024.1375249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/19/2024] [Indexed: 05/30/2024] Open
Abstract
Introduction Diversity in malarial antigens is an immune evasion mechanism that gives malaria parasites an edge over the host. Immune responses against one variant of a polymorphic antigen are usually not fully effective against other variants due to altered epitopes. This study aimed to evaluate diversity in the Plasmodium falciparum antigens apical membrane antigen 1 (PfAMA1) and circumsporozoite protein (PfCSP) from circulating parasites in a malaria-endemic community in southern Ghana and to determine the effects of polymorphisms on antibody response specificity. Methods The study involved 300 subjects, whose P. falciparum infection status was determined by microscopy and PCR. Diversity within the two antigens was evaluated by msp2 gene typing and molecular gene sequencing, while the host plasma levels of antibodies against PfAMA1, PfCSP, and two synthetic 24mer peptides from the conserved central repeat region of PfCSP, were measured by ELISA. Results Of the 300 subjects, 171 (57%) had P. falciparum infection, with 165 of the 171 (96.5%) being positive for either or both of the msp2 allelic families. Gene sequencing of DNA from 55 clonally infected samples identified a total of 56 non-synonymous single nucleotide polymorphisms (SNPs) for the Pfama1 gene and these resulted in 44 polymorphic positions, including two novel positions (363 and 365). Sequencing of the Pfcsp gene from 69 clonal DNA samples identified 50 non-synonymous SNPs that resulted in 42 polymorphic positions, with half (21) of these polymorphic positions being novel. Of the measured antibodies, only anti-PfCSP antibodies varied considerably between PCR parasite-positive and parasite-negative persons. Discussion These data confirm the presence of a considerable amount of unique, previously unreported amino acid changes, especially within PfCSP. Drivers for this diversity in the Pfcsp gene do not immediately seem apparent, as immune pressure will be expected to drive a similar level of diversity in the Pfama1 gene.
Collapse
Affiliation(s)
- Kwadwo A. Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Linda E. Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Festus Kojo Acquah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Nana Aba Ennuson
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Abena F. Frempong
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Ebenezer A. Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Kwadwo Akyea-Mensah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Eric Kyei-Baafour
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Frank Osei
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Augustina Frimpong
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Susheel K. Singh
- Center for Medical Parasitology at the Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Congenital Diseases, Statens Serum Institut, Copenhagen, Denmark
| | - Michael Theisen
- Center for Medical Parasitology at the Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Congenital Diseases, Statens Serum Institut, Copenhagen, Denmark
| | - Edmond J. Remarque
- Department of Parasitology, Biomedical Primate Research Center, Rijswijk, Netherlands
| | - Bart W. Faber
- Department of Parasitology, Biomedical Primate Research Center, Rijswijk, Netherlands
| | - Maria Belmonte
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Malaria Department, Naval Medical Research Command, Silver Spring, MD, United States
| | - Harini Ganeshan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Malaria Department, Naval Medical Research Command, Silver Spring, MD, United States
| | - Jun Huang
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Malaria Department, Naval Medical Research Command, Silver Spring, MD, United States
| | - Eileen Villasante
- Malaria Department, Naval Medical Research Command, Silver Spring, MD, United States
| | - Martha Sedegah
- Malaria Department, Naval Medical Research Command, Silver Spring, MD, United States
| |
Collapse
|
25
|
Aninagyei E, Deku JG, Yemofio KT, Quainoo E, Ntiri KA, Yaro E, Essandoh P, Agbogli HK, Asmah RH. Comparative evaluation of the diagnostic accuracies of four different malaria rapid diagnostic test kits available in Ghana. PLoS One 2024; 19:e0302840. [PMID: 38713676 PMCID: PMC11075830 DOI: 10.1371/journal.pone.0302840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/14/2024] [Indexed: 05/09/2024] Open
Abstract
Malaria rapid diagnostic test (mRDT) kit is one of the techniques for diagnosing malaria. Due to its inherent advantages over the microscopy technique, several brands of the kit have flooded malaria endemic countries, without prior in-country evaluation. Two of such mRDT kits are Oscar (India) and Standard Q (Korea Republic). In this study, the performance of Oscar and Standard Q mRDT kits were compared to First Response (India) and CareStart (USA) mRDTs, which have been evaluated and deployed for use approved by the Ministry of Health (MOH). In this comparative study, whole blood samples were collected from patients suspected of malaria. Plasmodium falciparum was detected in each sample using nested polymerase chain reaction (nPCR), microscopy and the four mRDTs. The sensitivities, specificities, accuracies, positive and negative predictive values and accuracies of the mRDTs were determined using nPCR as a reference technique. Kappa statistic was used to determine the level of agreement among the techniques. Two hundred (200) blood samples were analyzed in this study. The overall detection rates of P. falciparum by microscopy, First Response, CareStart, Oscar-PfHRP2, Standard Q mRDT kits and nPCR were 31.5%, 34.5%, 33.5%, 32%, 31% and 43% (x2 = 6.1, p = 0.046), respectively. The accuracies of CareStart and First Response were comparable (90.5% vs. 89.5%). Further, comparing their sensitivities, Oscar-PfHRP2 was 74.4% (95% confidence interval (CI): 63.9-83.2) while that of Standard Q was 72.1% (95% CI: 61.4-81.2), with comparable accuracies (Oscar-PfHRP2-89% and Standard Q -88%). Apart from First Response that was 98.3% specific, the others were 100% specific. Kappa test revealed perfect diagnostic agreement (κ = 0.90-0.98) among the four mRDTs. That notwithstanding, Oscar-PfHRP2 agreed better with CareStart (κ = 0.94) and First Response (κ = 0.92) compared to the agreement between Standard Q and, CareStart (κ = 0.92) and First Response (κ = 0.90). Taken together, the diagnostic performance of the four mRDT kits were statistically similar. That notwithstanding, new mRDT kits should be evaluated prior to deployment for use.
Collapse
Affiliation(s)
- Enoch Aninagyei
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - John Gameli Deku
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Keren Trishia Yemofio
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Ekua Quainoo
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Kofi Adjei Ntiri
- Ghana Health Service, Amamorley Health Center, Ga North Municipality, Greater Accra Region, Ghana
| | - Evelyn Yaro
- Ghana Health Service, Ga North Municipal Health Directorate, Ofankor-Accra, Ghana
| | - Priscilla Essandoh
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Hubert Kwame Agbogli
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Richard Harry Asmah
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| |
Collapse
|
26
|
McQuillan MA, Verhulst S, Hansen MEB, Beggs W, Meskel DW, Belay G, Nyambo T, Mpoloka SW, Mokone GG, Fokunang C, Njamnshi AK, Chanock SJ, Aviv A, Tishkoff SA. Association between telomere length and Plasmodium falciparum malaria endemicity in sub-Saharan Africans. Am J Hum Genet 2024; 111:927-938. [PMID: 38701745 PMCID: PMC11080607 DOI: 10.1016/j.ajhg.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
Leukocyte telomere length (LTL) varies significantly across human populations, with individuals of African ancestry having longer LTL than non-Africans. However, the genetic and environmental drivers of LTL variation in Africans remain largely unknown. We report here on the relationship between LTL, genetics, and a variety of environmental and climatic factors in ethnically diverse African adults (n = 1,818) originating from Botswana, Tanzania, Ethiopia, and Cameroon. We observe significant variation in LTL among populations, finding that the San hunter-gatherers from Botswana have the longest leukocyte telomeres and that the Fulani pastoralists from Cameroon have the shortest telomeres. Genetic factors explain ∼50% of LTL variation among individuals. Moreover, we observe a significant negative association between Plasmodium falciparum malaria endemicity and LTL while adjusting for age, sex, and genetics. Within Africa, adults from populations indigenous to areas with high malaria exposure have shorter LTL than those in populations indigenous to areas with low malaria exposure. Finally, we explore to what degree the genetic architecture underlying LTL in Africa covaries with malaria exposure.
Collapse
Affiliation(s)
- Michael A McQuillan
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Matthew E B Hansen
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William Beggs
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dawit Wolde Meskel
- Department of Microbial Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gurja Belay
- Department of Microbial Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Thomas Nyambo
- Department of Biochemistry, Kampala International University in Tanzania (KIUT), Dares Salaam, Tanzania
| | - Sununguko Wata Mpoloka
- Department of Biological Sciences, Faculty of Science, University of Botswana, Gaborone, Botswana
| | - Gaonyadiwe George Mokone
- Department of Biomedical Sciences, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| | - Charles Fokunang
- Department of Pharmacotoxicology and Pharmacokinetics, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon
| | - Alfred K Njamnshi
- Brain Research Africa Initiative (BRAIN), Neuroscience Lab, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Department of Neurology, Central Hospital Yaoundé, Yaoundé, Cameroon
| | - Stephen J Chanock
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Abraham Aviv
- The Center of Human Development and Aging, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Sarah A Tishkoff
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Global Genomics and Health Equity, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Obeagu EI. Role of cytokines in immunomodulation during malaria clearance. Ann Med Surg (Lond) 2024; 86:2873-2882. [PMID: 38694310 PMCID: PMC11060309 DOI: 10.1097/ms9.0000000000002019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/22/2024] [Indexed: 05/04/2024] Open
Abstract
Malaria remains a significant global health challenge, demanding a deeper understanding of host immune responses for effective clearance of the parasitic infection. Cytokines, as crucial mediators of the immune system, orchestrate a complex interplay during the various stages of malaria infection. Throughout the course of the disease, an intricate balance of pro-inflammatory and anti-inflammatory cytokines dictate the immune response's outcome, influencing parasitic clearance and disease severity. During the initial stages, interleukins such as interleukin-12 (IL-12), interferon-gamma (IFN-γ), and tumour necrosis factor-alpha (TNF-α) play pivotal roles in activating innate immune cells, initiating the anti-parasitic response. Simultaneously, regulatory cytokines like interleukin-10 (IL-10) and transforming growth factor-beta (TGF-β) modulate this immune activation, preventing excessive inflammation and tissue damage. As the infection progresses, a delicate shift occurs, characterized by a transition to adaptive immunity, guided by cytokines like interleukin-4 (IL-4), interleukin-5 (IL-5), and interleukin-13 (IL-13), promoting antibody production and T-cell responses. Notably, the resolution of malaria infection crucially relies on a fine-tuned balance of cytokine networks. Dysregulation or imbalances in these mediators often result in immune hyperactivation, contributing to severe manifestations and prolonged infection. Understanding the multi-faceted roles of cytokines in malaria clearance offers promising avenues for therapeutic interventions. Targeting cytokine pathways to restore immune equilibrium or bolster protective responses could potentially enhance treatment strategies and vaccine development. In conclusion, the pivotal role of cytokines in immunomodulation during malaria clearance underscores their significance as potential targets for therapeutic interventions, offering promising prospects in the global fight against this infectious disease.
Collapse
|
28
|
Mitchell RA, Ubillos I, Requena P, Campo JJ, Ome-Kaius M, Hanieh S, Umbers A, Samol P, Barrios D, Jiménez A, Bardají A, Mueller I, Menéndez C, Rogerson S, Dobaño C, Moncunill G. Chronic malaria exposure is associated with inhibitory markers on T cells that correlate with atypical memory and marginal zone-like B cells. Clin Exp Immunol 2024; 216:172-191. [PMID: 38387476 PMCID: PMC11036110 DOI: 10.1093/cei/uxae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/05/2023] [Accepted: 02/22/2024] [Indexed: 02/24/2024] Open
Abstract
Chronic immune activation from persistent malaria infections can induce immunophenotypic changes associated with T-cell exhaustion. However, associations between T and B cells during chronic exposure remain undefined. We analyzed peripheral blood mononuclear cells from malaria-exposed pregnant women from Papua New Guinea and Spanish malaria-naïve individuals using flow cytometry to profile T-cell exhaustion markers phenotypically. T-cell lineage (CD3, CD4, and CD8), inhibitory (PD1, TIM3, LAG3, CTLA4, and 2B4), and senescence (CD28-) markers were assessed. Dimensionality reduction methods revealed increased PD1, TIM3, and LAG3 expression in malaria-exposed individuals. Manual gating confirmed significantly higher frequencies of PD1+CD4+ and CD4+, CD8+, and double-negative (DN) T cells expressing TIM3 in malaria-exposed individuals. Increased frequencies of T cells co-expressing multiple markers were also found in malaria-exposed individuals. T-cell data were analyzed with B-cell populations from a previous study where we reported an alteration of B-cell subsets, including increased frequencies of atypical memory B cells (aMBC) and reduction in marginal zone (MZ-like) B cells during malaria exposure. Frequencies of aMBC subsets and MZ-like B cells expressing CD95+ had significant positive correlations with CD28+PD1+TIM3+CD4+ and DN T cells and CD28+TIM3+2B4+CD8+ T cells. Frequencies of aMBC, known to associate with malaria anemia, were inversely correlated with hemoglobin levels in malaria-exposed women. Similarly, inverse correlations with hemoglobin levels were found for TIM3+CD8+ and CD28+PD1+TIM3+CD4+ T cells. Our findings provide further insights into the effects of chronic malaria exposure on circulating B- and T-cell populations, which could impact immunity and responses to vaccination.
Collapse
Affiliation(s)
- Robert A Mitchell
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Itziar Ubillos
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Pilar Requena
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Joseph J Campo
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Antigen Discovery Inc., Irvine, CA, USA
| | - Maria Ome-Kaius
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Sarah Hanieh
- University of Melbourne, Melbourne, VIC, Australia
| | - Alexandra Umbers
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Paula Samol
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Diana Barrios
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Alfons Jiménez
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Azucena Bardají
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Ivo Mueller
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Clara Menéndez
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | | | - Carlota Dobaño
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| |
Collapse
|
29
|
Ngu L, Fotso HO, Nyebe I, Tchadji JC, Ambada G, Ndah A, Atechi B, Lissom A, Atabonkeng PE, Chukwuma G, Efezeuh V, Gyu PC, Esimone C, Nguedia JCA, Akum EA, Okeke M, Titanji VPK, Mbacham W, Bopda-Waffo A, Wapimewah GN. Immunoglobulin G (IgG) specific responses to recombinant Qβ displayed MSP3 and UB05 in plasma of asymptomatic Plasmodium falciparum-infected children living in two different agro-ecological settings of Cameroon. Pan Afr Med J 2024; 47:175. [PMID: 39036016 PMCID: PMC11260061 DOI: 10.11604/pamj.2024.47.175.38169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/25/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction in areas with intense perennial malaria transmission, limited data is available on the impact of environmental conditions especially rainfall on naturally acquired immunity against promising malaria vaccine candidates. For this reason, we have compared IgG antibody responses specific to Plasmodium spp. derived MSP3 and UB05 vaccine candidates, in plasma of children living in two areas of Cameroon differing in rainfall conditions. Methods data about children less than 5 years old was collected during the years 2017 and 2018. Next malaria asymptomatic P. falciparum (Pf) infected children were selected following malaria test confirmation. MSP3 and UB05 specific IgG antibody responses were measured in participant´s plasma using enzyme-linked immunosorbent assay (ELISA). Results interestingly, IgG antibody responses specific to UB05 were significantly higher (p<0.0001) in Pf-negative children when compared to their asymptomatic Pf-infected counterparts living in monomodal rainfall areas. In contrast, a significantly higher (p<0.0001) IgG response to MSP3 was observed instead in asymptomatic Pf-infected children in the same population. In addition, IgG responses specific to UB05 remained significantly higher in bimodal when compared to monomodal rainfall areas irrespective of children´s Pf infection status (p<0.0055 for Pf-positive and p<0.0001 for negative children). On the contrary, IgG antibody responses specific to MSP3 were significantly higher in bimodal relative to monomodal rainfall areas (P<0.0001) just for Pf-negative children. Conclusion thus IgG antibody responses specific to UBO5 are a better correlate of naturally acquired immunity against malaria in Pf-negative Cameroonian children especially in monomodal rainfall areas.
Collapse
Affiliation(s)
- Loveline Ngu
- Laboratory of Vaccinology/Biobanking, Chantal Biya International Reference Center for Research on the Prevention and Management of HIV/AIDS, Yaounde, Cameroon
- Department of Biochemistry, Faculty of Sciences, University of Yaounde I, Yaounde, Cameroon
| | - Herve Ouambo Fotso
- Laboratory of Vaccinology/Biobanking, Chantal Biya International Reference Center for Research on the Prevention and Management of HIV/AIDS, Yaounde, Cameroon
- Pan African Center for Clinical and Translational Sciences (PANECTS), Yaounde, Cameroon
| | - Inès Nyebe
- Laboratory of Vaccinology/Biobanking, Chantal Biya International Reference Center for Research on the Prevention and Management of HIV/AIDS, Yaounde, Cameroon
- Pan African Center for Clinical and Translational Sciences (PANECTS), Yaounde, Cameroon
- Department of Microbiology, Faculty of Sciences, University of Yaounde I, Yaounde, Cameroon
| | - Jules Colince Tchadji
- Laboratory of Vaccinology/Biobanking, Chantal Biya International Reference Center for Research on the Prevention and Management of HIV/AIDS, Yaounde, Cameroon
- Department of Animal Biology and Physiology, Faculty Of Sciences, University of Yaounde I, Yaoundé, Cameroon
| | - Georgia Ambada
- Laboratory of Vaccinology/Biobanking, Chantal Biya International Reference Center for Research on the Prevention and Management of HIV/AIDS, Yaounde, Cameroon
- Department of Animal Biology and Physiology, Faculty Of Sciences, University of Yaounde I, Yaoundé, Cameroon
| | - Akeleke Ndah
- Pan African Center for Clinical and Translational Sciences (PANECTS), Yaounde, Cameroon
| | - Bloomfield Atechi
- Pan African Center for Clinical and Translational Sciences (PANECTS), Yaounde, Cameroon
| | - Abel Lissom
- Laboratory of Vaccinology/Biobanking, Chantal Biya International Reference Center for Research on the Prevention and Management of HIV/AIDS, Yaounde, Cameroon
- Department of Biological Sciences, Faculty of Sciences, University of Bamenda, Bamenda, Cameroon
| | | | - George Chukwuma
- Department of Medical Laboratory Science, College of Health Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Vitalis Efezeuh
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | - Park Chae Gyu
- Laboratory of Immunology, Brain Korea 21 PLUS Project for Medical Science, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Charles Esimone
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria
| | | | - Eric Achidi Akum
- Department of Medical Laboratory Sciences, University of Buea, Buea, Cameroon
| | - Malachy Okeke
- Department of Natural and Environmental Sciences, Biomedical Science Concentration, School of Arts and Sciences, American University of Nigeria, 98 Lamido Zubairu Way, Yola, Nigeria
| | | | - Wilfred Mbacham
- Department of Biochemistry, Faculty of Sciences, University of Yaounde I, Yaounde, Cameroon
| | - Alain Bopda-Waffo
- Pan African Center for Clinical and Translational Sciences (PANECTS), Yaounde, Cameroon
- Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS1017Q Lab MS1015, Indianapolis, IN, United States of America
| | - Godwin Nchinda Wapimewah
- Laboratory of Vaccinology/Biobanking, Chantal Biya International Reference Center for Research on the Prevention and Management of HIV/AIDS, Yaounde, Cameroon
- Pan African Center for Clinical and Translational Sciences (PANECTS), Yaounde, Cameroon
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
30
|
Ogwang R, Murugu L, Nkumama IN, Nyamako L, Kai O, Mwai K, Murungi L, Idro R, Bejon P, Tuju J, Kinyanjui SM, Osier FHA. Bi-isotype immunoglobulins enhance antibody-mediated neutrophil activity against Plasmodium falciparum parasites. Front Immunol 2024; 15:1360220. [PMID: 38650925 PMCID: PMC11033408 DOI: 10.3389/fimmu.2024.1360220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Background Malaria remains a major global health priority, and monoclonal antibodies (mAbs) are emerging as potential new tools to support efforts to control the disease. Recent data suggest that Fc-dependent mechanisms of immunity are important mediators of protection against the blood stages of the infection, but few studies have investigated this in the context of mAbs. We aimed to isolate mAbs agnostic to cognate antigens that target whole merozoites and simultaneously induce potent neutrophil activity measured by the level of reactive oxygen species (ROS) production using an antibody-dependent respiratory burst (ADRB) assay. Methods We used samples from semi-immune adults living in coastal Kenya to isolate mAbs that induce merozoite-specific ADRB activity. We then tested whether modifying the expressed IgG1 isotype to an IgG-IgA Fc region chimera would enhance the level of ADRB activity. Results We isolated a panel of nine mAbs with specificity to whole merozoites. mAb J31 induced ADRB activity in a dose-dependent fashion. Compared to IgG1, our modified antibody IgG-IgA bi-isotype induced higher ADRB activity across all concentrations tested. Further, we observed a negative hook effect at high IgG1 mAb concentrations (i.e., >200 µg/mL), but this was reversed by Fc modification. We identified MSP3.5 as the potential cognate target of mAb J31. Conclusions We demonstrate an approach to engineer mAbs with enhanced ADRB potency against blood-stage parasites.
Collapse
Affiliation(s)
- Rodney Ogwang
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Lewis Murugu
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Biological Sciences, Pwani University, Kilifi, Kenya
| | - Irene N. Nkumama
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Lydia Nyamako
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Oscar Kai
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kennedy Mwai
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Linda Murungi
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Richard Idro
- College of Health Sciences, Makerere University, Kampala, Uganda
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Philip Bejon
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - James Tuju
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Biological Sciences, Pwani University, Kilifi, Kenya
| | - Sam Muchina Kinyanjui
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Faith H. A. Osier
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
31
|
Velev V, Atanassova M, Aksentieva Y, Ahmet FM, Yordanova R, Harizanov R. Co-infection with plasmodium falciparum and COVID-19 with lethal outcome. First clinical case from Bulgaria. Oxf Med Case Reports 2024; 2024:omae048. [PMID: 38680770 PMCID: PMC11049575 DOI: 10.1093/omcr/omae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
The symptoms of COVID-19 include febrility and mainly catarrhal symptoms. In severe cases, patients present with progression to lower respiratory tract and acute respiratory distress (ARDS) and multi-organ dysfunction. Malaria caused by P. falciparum is a severe, endemic parasitosis, mainly in Africa. In some cases, it can be complicated with ARDS. We present a case of a patient who returned from Nigeria with respiratory symptoms, in which both COVID-19 infection and tropical malaria were proven; with a fatal outcome.
Collapse
Affiliation(s)
- Valeri Velev
- University Hospital “Prof. Iv. Kirov”, Department of Infectious Diseases, Parasitology and Tropical Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Maria Atanassova
- Intensive Care Unit, University Hospital “St. Anna”, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Yana Aksentieva
- Infectious Disease Unit, University Hospital “St. Anna”, Sofia, 1000 Sofia, Bulgaria
| | - Fatme Melbahtin Ahmet
- Intensive Care Unit, University Hospital “St. Anna”, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Ralica Yordanova
- University Hospital “Prof. Iv. Kirov”, Department of Infectious Diseases, Parasitology and Tropical Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Rumen Harizanov
- Depatment of Parasitology and Tropical Medicine, National Centre of Infectious and Parasitic Diseases, Sofia, Bulgaria
| |
Collapse
|
32
|
Sánchez KL, Baird JK, Nielsen A, Nurillah A, Agustina F, Komara, Fadilah F, Prameswari W, Nugraha RTP, Saputra S, Nurkanto A, Dharmayanthi AB, Pratama R, Exploitasia I, Greenwood AD. Naturally acquired immunity to Plasmodium pitheci in Bornean orangutans ( Pongo pygmaeus). Parasitology 2024; 151:380-389. [PMID: 38361461 PMCID: PMC11044065 DOI: 10.1017/s0031182024000155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
Naturally acquired immunity to the different types of malaria in humans occurs in areas of endemic transmission and results in asymptomatic infection of peripheral blood. The current study examined the possibility of naturally acquired immunity in Bornean orangutans, Pongo pygmaeus, exposed to endemic Plasmodium pitheci malaria. A total of 2140 peripheral blood samples were collected between January 2017 and December 2022 from a cohort of 135 orangutans housed at a natural forested Rescue and Rehabilitation Centre in West Kalimantan, Indonesia. Each individual was observed for an average of 4.3 years during the study period. Blood samples were examined by microscopy and polymerase chain reaction for the presence of plasmodial parasites. Infection rates and parasitaemia levels were measured among age groups and all 20 documented clinical malaria cases were reviewed to estimate the incidence of illness and risk ratios among age groups. A case group of all 17 individuals that had experienced clinical malaria and a control group of 34 individuals having an event of >2000 parasites μL−1 blood but with no outward or clinical sign of illness were studied. Immature orangutans had higher-grade and more frequent parasitaemia events, but mature individuals were more likely to suffer from clinical malaria than juveniles. The case orangutans having patent clinical malaria were 256 times more likely to have had no parasitaemia event in the prior year relative to asymptomatic control orangutans. The findings are consistent with rapidly acquired immunity to P. pitheci illness among orangutans that wanes without re-exposure to the pathogen.
Collapse
Affiliation(s)
- Karmele Llano Sánchez
- IAR Indonesia Foundation, Yayasan Inisiasi Alam Rehabilitasi Indonesia (YIARI), Sinarwangi, Bogor, West Java, Indonesia
- International Animal Rescue, Uckfield, UK
- School of Veterinary Medicine, Freie Universität, Berlin, Germany
| | - John Kevin Baird
- Oxford University Clinical Research Unit-Indonesia, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Aileen Nielsen
- Center for Law and Economics, ETH Zurich, Zurich, Switzerland
| | - Andini Nurillah
- IAR Indonesia Foundation, Yayasan Inisiasi Alam Rehabilitasi Indonesia (YIARI), Sinarwangi, Bogor, West Java, Indonesia
| | - Fitria Agustina
- IAR Indonesia Foundation, Yayasan Inisiasi Alam Rehabilitasi Indonesia (YIARI), Sinarwangi, Bogor, West Java, Indonesia
| | - Komara
- IAR Indonesia Foundation, Yayasan Inisiasi Alam Rehabilitasi Indonesia (YIARI), Sinarwangi, Bogor, West Java, Indonesia
| | - Fina Fadilah
- IAR Indonesia Foundation, Yayasan Inisiasi Alam Rehabilitasi Indonesia (YIARI), Sinarwangi, Bogor, West Java, Indonesia
| | - Wendi Prameswari
- IAR Indonesia Foundation, Yayasan Inisiasi Alam Rehabilitasi Indonesia (YIARI), Sinarwangi, Bogor, West Java, Indonesia
| | | | - Sugiyono Saputra
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Jakarta, Indonesia
| | - Arif Nurkanto
- Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Jakarta, Indonesia
| | - Anik Budhi Dharmayanthi
- Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Jakarta, Indonesia
| | - Rahadian Pratama
- Center for Biomedical Research, Research Organization for Health, National Research and Innovation Agency (BRIN), Jakarta, Indonesia
| | - Indra Exploitasia
- Biodiversity Conservation Directorate of the General Director of Natural Resources and Ecosystem Conservation, Ministry of Environment and Forestry of the Republic of Indonesia, Jakarta, Indonesia
| | - Alex D. Greenwood
- School of Veterinary Medicine, Freie Universität, Berlin, Germany
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| |
Collapse
|
33
|
Kane F, Toure M, Sogoba N, Traore B, Keita M, Konate D, Diawara SI, Sanogo D, Keita S, Sanogo I, Doumbia CO, Keïta B, Traoré AS, Sissoko I, Coulibaly H, Thiam SM, Barry A, Shaffer JG, Diakite M, Doumbia S. Modeling clinical malaria episodes in different ecological settings in Mali, 2018-2022. IJID REGIONS 2024; 10:24-30. [PMID: 38076024 PMCID: PMC10698665 DOI: 10.1016/j.ijregi.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 02/12/2024]
Abstract
Objectives Following the scaling-up of malaria control strategies in Mali, understanding the changes in age-specific prevalence of infection and risk factors associated with remains necessary to determine new priorities to progress toward disease elimination. This study aimed to estimate the risk of clinical malaria using longitudinal data across three different transmission settings in Mali. Methods Cohort-based longitudinal studies were performed from April 2018 to December 2022. Incidence of malaria was measured through community health center-based passive case detection. Generalized estimation equation model was used to assess risk factors for clinical malaria. Results A total of 21,453 clinical presentations were reported from 4500 participants, mainly from July to November. Data shows a significant association between malaria episodes, sex, age group, season, and year. Women had lower risk, the risk of clinical episode increased with age up to 14 years then declined, and in both sites, the dry-season risk of clinical episode was significantly lower compared to the rainy season. Conclusion Determining factors associated with the occurrence of clinical malaria across different ecological settings across the country could help in the development of new strategies aiming to accelerate malaria elimination in an area where malaria transmission remains intense.
Collapse
Affiliation(s)
- Fousseyni Kane
- West African International Center for Excellence in Malaria Research, Techniques and Technologies of Bamako, Bamako, Mali
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mahamoudou Toure
- West African International Center for Excellence in Malaria Research, Techniques and Technologies of Bamako, Bamako, Mali
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Nafomon Sogoba
- West African International Center for Excellence in Malaria Research, Techniques and Technologies of Bamako, Bamako, Mali
- Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Bourama Traore
- West African International Center for Excellence in Malaria Research, Techniques and Technologies of Bamako, Bamako, Mali
- Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Moussa Keita
- West African International Center for Excellence in Malaria Research, Techniques and Technologies of Bamako, Bamako, Mali
- Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Drissa Konate
- West African International Center for Excellence in Malaria Research, Techniques and Technologies of Bamako, Bamako, Mali
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Sory Ibrahim Diawara
- West African International Center for Excellence in Malaria Research, Techniques and Technologies of Bamako, Bamako, Mali
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Daouda Sanogo
- West African International Center for Excellence in Malaria Research, Techniques and Technologies of Bamako, Bamako, Mali
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Soumba Keita
- West African International Center for Excellence in Malaria Research, Techniques and Technologies of Bamako, Bamako, Mali
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Ibrahim Sanogo
- West African International Center for Excellence in Malaria Research, Techniques and Technologies of Bamako, Bamako, Mali
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Cheick Oumar Doumbia
- West African International Center for Excellence in Malaria Research, Techniques and Technologies of Bamako, Bamako, Mali
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Bourama Keïta
- West African International Center for Excellence in Malaria Research, Techniques and Technologies of Bamako, Bamako, Mali
- Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Amadou Sekou Traoré
- West African International Center for Excellence in Malaria Research, Techniques and Technologies of Bamako, Bamako, Mali
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Ibrahim Sissoko
- West African International Center for Excellence in Malaria Research, Techniques and Technologies of Bamako, Bamako, Mali
- Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Hamady Coulibaly
- West African International Center for Excellence in Malaria Research, Techniques and Technologies of Bamako, Bamako, Mali
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Sidibé M'Baye Thiam
- West African International Center for Excellence in Malaria Research, Techniques and Technologies of Bamako, Bamako, Mali
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Alyssa Barry
- Institute for Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, Australia
| | - Jeffey G. Shaffer
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| | - Mahamadou Diakite
- West African International Center for Excellence in Malaria Research, Techniques and Technologies of Bamako, Bamako, Mali
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Seydou Doumbia
- West African International Center for Excellence in Malaria Research, Techniques and Technologies of Bamako, Bamako, Mali
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| |
Collapse
|
34
|
Anwar MN, Smith L, Devine A, Mehra S, Walker CR, Ivory E, Conway E, Mueller I, McCaw JM, Flegg JA, Hickson RI. Mathematical models of Plasmodium vivax transmission: A scoping review. PLoS Comput Biol 2024; 20:e1011931. [PMID: 38483975 DOI: 10.1371/journal.pcbi.1011931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/26/2024] [Accepted: 02/19/2024] [Indexed: 03/27/2024] Open
Abstract
Plasmodium vivax is one of the most geographically widespread malaria parasites in the world, primarily found across South-East Asia, Latin America, and parts of Africa. One of the significant characteristics of the P. vivax parasite is its ability to remain dormant in the human liver as hypnozoites and subsequently reactivate after the initial infection (i.e. relapse infections). Mathematical modelling approaches have been widely applied to understand P. vivax dynamics and predict the impact of intervention outcomes. Models that capture P. vivax dynamics differ from those that capture P. falciparum dynamics, as they must account for relapses caused by the activation of hypnozoites. In this article, we provide a scoping review of mathematical models that capture P. vivax transmission dynamics published between January 1988 and May 2023. The primary objective of this work is to provide a comprehensive summary of the mathematical models and techniques used to model P. vivax dynamics. In doing so, we aim to assist researchers working on mathematical epidemiology, disease transmission, and other aspects of P. vivax malaria by highlighting best practices in currently published models and highlighting where further model development is required. We categorise P. vivax models according to whether a deterministic or agent-based approach was used. We provide an overview of the different strategies used to incorporate the parasite's biology, use of multiple scales (within-host and population-level), superinfection, immunity, and treatment interventions. In most of the published literature, the rationale for different modelling approaches was driven by the research question at hand. Some models focus on the parasites' complicated biology, while others incorporate simplified assumptions to avoid model complexity. Overall, the existing literature on mathematical models for P. vivax encompasses various aspects of the parasite's dynamics. We recommend that future research should focus on refining how key aspects of P. vivax dynamics are modelled, including spatial heterogeneity in exposure risk and heterogeneity in susceptibility to infection, the accumulation of hypnozoite variation, the interaction between P. falciparum and P. vivax, acquisition of immunity, and recovery under superinfection.
Collapse
Affiliation(s)
- Md Nurul Anwar
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
- Department of Mathematics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Lauren Smith
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Angela Devine
- Division of Global and Tropical Health, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- Health Economics Unit, Centre for Health Policy, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Somya Mehra
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
| | - Camelia R Walker
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
| | - Elizabeth Ivory
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
| | - Eamon Conway
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Ivo Mueller
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - James M McCaw
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Jennifer A Flegg
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
| | - Roslyn I Hickson
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
- Commonwealth Scientific and Industrial Research Organisation, Townsville, Australia
| |
Collapse
|
35
|
Obaldía N, Da Silva Filho JL, Núñez M, Glass KA, Oulton T, Achcar F, Wirjanata G, Duraisingh M, Felgner P, Tetteh KK, Bozdech Z, Otto TD, Marti M. Sterile protection against P. vivax malaria by repeated blood stage infection in the Aotus monkey model. Life Sci Alliance 2024; 7:e202302524. [PMID: 38158220 PMCID: PMC10756917 DOI: 10.26508/lsa.202302524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
The malaria parasite Plasmodium vivax remains a major global public health challenge, and no vaccine is approved for use in humans. Here, we assessed whether P. vivax strain-transcendent immunity can be achieved by repeated infection in Aotus monkeys. Sterile immunity was achieved after two homologous infections, whereas subsequent heterologous challenge provided only partial protection. IgG levels based on P. vivax lysate ELISA and protein microarray increased with repeated infections and correlated with the level of homologous protection. Parasite transcriptional profiles provided no evidence of major antigenic switching upon homologous or heterologous challenge. However, we observed significant sequence diversity and transcriptional differences in the P. vivax core gene repertoire between the two strains used in the study, suggesting that partial protection upon heterologous challenge is due to molecular differences between strains rather than immune evasion by antigenic switching. Our study demonstrates that sterile immunity against P. vivax can be achieved by repeated homologous blood stage infection in Aotus monkeys, thus providing a benchmark to test the efficacy of candidate blood stage P. vivax malaria vaccines.
Collapse
Affiliation(s)
- Nicanor Obaldía
- Departamento de Investigaciones en Parasitologia, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá City, Republic of Panamá
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA
- https://ror.org/00vtgdb53 Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Joao Luiz Da Silva Filho
- https://ror.org/00vtgdb53 Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- https://ror.org/02crff812 Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Marlon Núñez
- Departamento de Investigaciones en Parasitologia, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá City, Republic of Panamá
| | - Katherine A Glass
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Tate Oulton
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Fiona Achcar
- https://ror.org/00vtgdb53 Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- https://ror.org/02crff812 Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Grennady Wirjanata
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Manoj Duraisingh
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Philip Felgner
- Institute for Immunology, University of California, Irvine, CA, USA
| | - Kevin Ka Tetteh
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Thomas D Otto
- https://ror.org/00vtgdb53 Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Matthias Marti
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA
- https://ror.org/00vtgdb53 Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- https://ror.org/02crff812 Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
36
|
Yang Q, Zhou L, Tan Z, Zhu Y, Mo L, Fang C, Li J, Chen C, Luo Y, Wei H, Yin W, Huang J. TLR7 enhancing follicular helper T (Tfh) cells response in C57BL/6 mice infected with Plasmodium yoelii NSM TLR7 mediated Tfh cells in P. yoelii infected mice. Immunology 2024; 171:413-427. [PMID: 38150744 DOI: 10.1111/imm.13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/26/2023] [Indexed: 12/29/2023] Open
Abstract
Toll-like receptors (TLRs) play an important role in inducing innate and acquired immune responses against infection. However, the effect of Toll-like receptor 7 (TLR7) on follicular helper T (Tfh) cells in mice infected with Plasmodium is still not clear. The results showed that the splenic CD4+ CXCR5+ PD-1+ Tfh cells were accumulated after Plasmodium yoelii NSM infection, the content of splenic Tfh cells was correlated to parasitemia and/or the red blood cells (RBCs) counts in the blood. Moreover, the expression of TLR7 was found higher than TLR2, TLR3 and TLR4 in splenic Tfh cells of the WT mice. TLR7 agonist R848 and the lysate of red blood cells of infected mice (iRBCs) could induce the activation and differentiation of splenic Tfh cells. Knockout of TLR7 leads to a decrease in the proportion of Tfh cells, down-regulated expression of functional molecules CD40L, IFN-γ, IL-21 and IL-10 in Tfh cells; decreased the proportion of plasma cells and antibody production and reduces the expression of STAT3 and Ikzf2 in Tfh cells. Administration of R848 could inhibit parasitemia, enhance splenic Tfh cell activation and increase STAT3 and Ikzf2 expression in Tfh cells. In summary, this study shows that TLR7 could regulate the function of Tfh cells, affecting the immune response in the spleen of Plasmodium yoelii NSM-infected mice.
Collapse
Affiliation(s)
- Quan Yang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Lu Zhou
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhengrong Tan
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yiqiang Zhu
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Lengshan Mo
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Chao Fang
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jiajie Li
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Chen Chen
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Ying Luo
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Haixia Wei
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Weiguo Yin
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Jun Huang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
37
|
Mutemi DD, Tuju J, Ogwang R, Nyamako L, Wambui KM, Cruz IR, Villner P, Yman V, Kinyanjui SM, Rooth I, Ngasala B, Färnert A, Osier FHA. Antibody-Dependent Respiratory Burst against Plasmodium falciparum Merozoites in Individuals Living in an Area with Declining Malaria Transmission. Vaccines (Basel) 2024; 12:203. [PMID: 38400186 PMCID: PMC10892224 DOI: 10.3390/vaccines12020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Malaria transmission intensity affects the development of naturally acquired immunity to malaria. An absolute correlate measure of protection against malaria is lacking. However, antibody-mediated functions against Plasmodium falciparum correlate with protection against malaria. In children, antibody-mediated functions against P. falciparum decline with reduced exposure. It is unclear whether adults maintain antibody-mediated functions as malaria transmission declines. This study assessed antibody-dependent respiratory burst (ADRB) in individuals from an area with declining malaria transmission. In an age-matched analysis, we compare ADRB activity during high versus low malaria transmission periods. Age significantly predicted higher ADRB activity in the high (p < 0.001) and low (p < 0.001) malaria transmission periods. ADRB activity was higher during the high compared to the low malaria transmission period in older children and adults. Only older adults during the high malaria transmission period had their median ADRB activity above the ADRB cut-off. Ongoing P. falciparum infection influenced ADRB activity during the low (p = 0.01) but not the high (p = 0.29) malaria transmission period. These findings propose that naturally acquired immunity to P. falciparum is affected in children and adults as malaria transmission declines, implying that vaccines will be necessary to induce and maintain protection against malaria.
Collapse
Affiliation(s)
- Doreen D. Mutemi
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam 11102, Tanzania
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi 80108, Kenya
| | - James Tuju
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi 80108, Kenya
| | - Rodney Ogwang
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi 80108, Kenya
| | - Lydia Nyamako
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi 80108, Kenya
| | - Kennedy M. Wambui
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi 80108, Kenya
- Epidemiology and Biostatistics Division, School of Public Health, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Ivette R. Cruz
- Division of Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Pär Villner
- Division of Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Victor Yman
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Infectious Diseases, Södersjukhuset, 118 61 Stockholm, Sweden
| | - Samson M. Kinyanjui
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi 80108, Kenya
- Pwani University Bioscience Research Centre, Pwani University, Kilifi 80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK
- School of Business Studies, Strathmore University, Nairobi 0200, Kenya
| | - Ingegerd Rooth
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, 171 77 Stockholm, Sweden
- Nyamisati Malaria Research Group, Pwani 61621, Tanzania
| | - Billy Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam 11102, Tanzania
- Department of Women’s and Children’s Health, International Maternal and Child Health, Uppsala University, 751 05 Uppsala, Sweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Faith H. A. Osier
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi 80108, Kenya
- Centre of Infectious Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
38
|
Nebie I, Palacpac NMQ, Bougouma EC, Diarra A, Ouédraogo A, D’Alessio F, Houard S, Tiono AB, Cousens S, Horii T, Sirima SB. Persistence of Anti-SE36 Antibodies Induced by the Malaria Vaccine Candidate BK-SE36/CpG in 5-10-Year-Old Burkinabe Children Naturally Exposed to Malaria. Vaccines (Basel) 2024; 12:166. [PMID: 38400149 PMCID: PMC10892924 DOI: 10.3390/vaccines12020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Information on the dynamics and decline/persistence of antibody titres is important in vaccine development. A recent vaccine trial in malaria-exposed, healthy African adults and children living in a malaria hyperendemic and seasonal area (Ouagadougou, Burkina Faso) was the first study in which BK-SE36/CpG was administered to different age groups. In 5- to 10-year-old children, the risk of malaria infection was markedly lower in the BK-SE36/CpG arm compared to the control arm. We report here data on antibody titres measured in this age-group after the high malaria transmission season of 2021 (three years after the first vaccine dose was administered). At Year 3, 83% of children had detectable anti-SE36 total IgG antibodies. Geometric mean antibody titres and the proportion of children with detectable anti-SE36 antibodies were markedly higher in the BK-SE36/CpG arm than the control (rabies) arm. The information obtained in this study will guide investigators on future vaccine/booster schedules for this promising blood-stage malaria vaccine candidate.
Collapse
Affiliation(s)
- Issa Nebie
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| | - Nirianne Marie Q. Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Osaka, Japan;
| | - Edith Christiane Bougouma
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| | - Amidou Diarra
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| | - Alphonse Ouédraogo
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| | - Flavia D’Alessio
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115 Heidelberg, Germany; (F.D.); (S.H.)
| | - Sophie Houard
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Voßstraße 2, 69115 Heidelberg, Germany; (F.D.); (S.H.)
| | - Alfred B. Tiono
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| | - Simon Cousens
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK;
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Osaka, Japan;
| | - Sodiomon B. Sirima
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou 10248, Burkina Faso; (I.N.); (E.C.B.); (A.D.); (A.O.); (A.B.T.)
| |
Collapse
|
39
|
Zhan Q, He Q, Tiedje KE, Day KP, Pascual M. Hyper-diverse antigenic variation and resilience to transmission-reducing intervention in falciparum malaria. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.01.24301818. [PMID: 38370729 PMCID: PMC10871444 DOI: 10.1101/2024.02.01.24301818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Intervention against falciparum malaria in high transmission regions remains challenging, with relaxation of control efforts typically followed by rapid resurgence. Resilience to intervention co-occurs with incomplete immunity, whereby children eventually become protected from severe disease but not infection and a large transmission reservoir results from high asymptomatic prevalence across all ages. Incomplete immunity relates to the vast antigenic variation of the parasite, with the major surface antigen of the blood stage of infection encoded by the multigene family known as var. Recent deep sampling of var sequences from individual isolates in northern Ghana showed that parasite population structure exhibited persistent features of high-transmission regions despite the considerable decrease in prevalence during transient intervention with indoor residual spraying (IRS). We ask whether despite such apparent limited impact, the transmission system had been brought close to a transition in both prevalence and resurgence ability. With a stochastic agent-based model, we investigate the existence of such a transition to pre-elimination with intervention intensity, and of molecular indicators informative of its approach. We show that resurgence ability decreases sharply and nonlinearly across a narrow region of intervention intensities in model simulations, and identify informative molecular indicators based on var gene sequences. Their application to the survey data indicates that the transmission system in northern Ghana was brought close to transition by IRS. These results suggest that sustaining and intensifying intervention would have pushed malaria dynamics to a slow-rebound regime with an increased probability of local parasite extinction.
Collapse
Affiliation(s)
- Qi Zhan
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago; Chicago, IL, 60637, USA
| | - Qixin He
- Department of Biological Sciences, Purdue University; West Lafayette, IN, 47907, USA
| | - Kathryn E Tiedje
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne; Melbourne, Australia
| | - Karen P Day
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne; Melbourne, Australia
| | - Mercedes Pascual
- Department of Biology, New York University; New York, NY, 10012, USA
- Department of Environmental Studies, New York University; New York, NY, 10012, USA
- Santa Fe Institute; Santa Fe, NM, 87501, USA
| |
Collapse
|
40
|
Mawuli MA, Amoah LE, Cui L, Quashie NB, Afrane YA. Effectiveness of artemether-lumefantrine for treating uncomplicated malaria in low- and high-transmission areas of Ghana. Malar J 2024; 23:40. [PMID: 38317164 PMCID: PMC10845584 DOI: 10.1186/s12936-024-04850-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Artemisinin-based combination therapy (ACT) has been effective in the supervised treatment of uncomplicated malaria in Ghana. Since ACT usage is primarily unsupervised, this study aimed to determine the effectiveness of artemether-lumefantrine (AL) for treating malaria patients in two transmission settings in Ghana. METHODS Eighty-four individuals with uncomplicated Plasmodium falciparum malaria were recruited from Lekma Hospital (LH) in Accra (low-transmission area; N = 28), southern Ghana, and King's Medical Centre (KMC) in Kumbungu (high-transmission area; N = 56), northern Ghana. Participants were followed up for 28 days after unsupervised treatment with AL. The presence of asexual parasites was determined by microscopic examination of Giemsa-stained blood smears. Plasmodium species identification was confirmed using species-specific primers targeting the 18S rRNA gene. Parasite recrudescence or reinfection was determined by genotyping the Pfmsp 1 and Pfmsp 2 genes. RESULTS After AL treatment, 3.6% (2/56) of the patients from KMC were parasitaemic on day 3 compared to none from the LH patients. One patient from KMC with delayed parasite clearance on day 3 remained parasite-positive by microscopy on day 7 but was parasite-free by day 14. While none of the patients from LH experienced parasite recurrence during the 28-day follow-up, three and two patients from KMC had recurrent parasitaemia on days 21 and 28, respectively. Percentage reduction in parasite densities from day 1, 2, and 3 for participants from the KMC was 63.2%, 89.5%, and 84.5%. Parasite densities for participants from the LH reduced from 98.2%, 99.8% on day 1, and 2 to 100% on day 3. The 28-day cumulative incidence rate of treatment failure for KMC was 12.8% (95% confidence interval: 1.9-23.7%), while the per-protocol effectiveness of AL in KMC was 89.47%. All recurrent cases were assigned to recrudescence after parasite genotyping by Pfmsp 1 and Pfmsp 2. CONCLUSION While AL is efficacious in treating uncomplicated malaria in Ghana, when taken under unsupervised conditions, it showed an 89.4% PCR-corrected cure rate in northern Ghana, which is slightly below the WHO-defined threshold.
Collapse
Affiliation(s)
- Mawusi Adepa Mawuli
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana.
- Department of Pathology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Korle-Bu, Accra, Ghana.
| | - Linda Eva Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Liwang Cui
- Department of Internal Medicine, University of South Florida, 3720 Spectrum Blvd, Tampa, FL, 33612, USA
| | - Neils Ben Quashie
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
- Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Yaw Asare Afrane
- Department of Medical Microbiology, University of Ghana Medical School College of Health Sciences, University of Ghana, Korle-Bu, Accra, Ghana
| |
Collapse
|
41
|
Watson FN, Shears MJ, Kalata AC, Duncombe CJ, Seilie AM, Chavtur C, Conrad E, Cruz Talavera I, Raappana A, Sather DN, Chakravarty S, Sim BKL, Hoffman SL, Tsuji M, Murphy SC. Ultra-low volume intradermal administration of radiation-attenuated sporozoites with the glycolipid adjuvant 7DW8-5 completely protects mice against malaria. Sci Rep 2024; 14:2881. [PMID: 38311678 PMCID: PMC10838921 DOI: 10.1038/s41598-024-53118-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/28/2024] [Indexed: 02/06/2024] Open
Abstract
Radiation-attenuated sporozoite (RAS) vaccines can completely prevent blood stage Plasmodium infection by inducing liver-resident memory CD8+ T cells to target parasites in the liver. Such T cells can be induced by 'Prime-and-trap' vaccination, which here combines DNA priming against the P. yoelii circumsporozoite protein (CSP) with a subsequent intravenous (IV) dose of liver-homing RAS to "trap" the activated and expanding T cells in the liver. Prime-and-trap confers durable protection in mice, and efforts are underway to translate this vaccine strategy to the clinic. However, it is unclear whether the RAS trapping dose must be strictly administered by the IV route. Here we show that intradermal (ID) RAS administration can be as effective as IV administration if RAS are co-administrated with the glycolipid adjuvant 7DW8-5 in an ultra-low inoculation volume. In mice, the co-administration of RAS and 7DW8-5 in ultra-low ID volumes (2.5 µL) was completely protective and dose sparing compared to standard volumes (10-50 µL) and induced protective levels of CSP-specific CD8+ T cells in the liver. Our finding that adjuvants and ultra-low volumes are required for ID RAS efficacy may explain why prior reports about higher volumes of unadjuvanted ID RAS proved less effective than IV RAS. The ID route may offer significant translational advantages over the IV route and could improve sporozoite vaccine development.
Collapse
Affiliation(s)
- Felicia N Watson
- Graduate Program in Pathobiology, Department of Global Health, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, WA, 98109, USA
| | - Melanie J Shears
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, WA, 98109, USA
| | - Anya C Kalata
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, WA, 98109, USA
| | - Caroline J Duncombe
- Graduate Program in Pathobiology, Department of Global Health, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, WA, 98109, USA
| | - A Mariko Seilie
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, WA, 98109, USA
| | - Chris Chavtur
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, WA, 98109, USA
| | - Ethan Conrad
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, WA, 98109, USA
| | - Irene Cruz Talavera
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, WA, 98109, USA
| | - Andrew Raappana
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98109, USA
| | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98109, USA
| | - Sumana Chakravarty
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - B Kim Lee Sim
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Stephen L Hoffman
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Sean C Murphy
- Graduate Program in Pathobiology, Department of Global Health, University of Washington, Seattle, WA, 98109, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, WA, 98109, USA.
- Department of Microbiology, University of Washington, Seattle, WA, 98109, USA.
- Washington National Primate Research Center, University of Washington, Seattle, WA, 98109, USA.
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA, 98105, USA.
| |
Collapse
|
42
|
Lopez-Perez M, Jain A, Davies DH, Vásquez-Jiménez JM, Herrera SM, Oñate J, Felgner PL, Herrera S, Arévalo-Herrera M. Profiling the antibody response of humans protected by immunization with Plasmodium vivax radiation-attenuated sporozoites. Sci Rep 2024; 14:2790. [PMID: 38307966 PMCID: PMC10837454 DOI: 10.1038/s41598-024-53175-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/29/2024] [Indexed: 02/04/2024] Open
Abstract
Malaria sterile immunity has been reproducibly induced by immunization with Plasmodium radiation-attenuated sporozoites (RAS). Analyses of sera from RAS-immunized individuals allowed the identification of P. falciparum antigens, such as the circumsporozoite protein (CSP), the basis for the RTS, S and R21Matrix-M vaccines. Similar advances in P. vivax (Pv) vaccination have been elusive. We previously reported 42% (5/12) of sterile protection in malaria-unexposed, Duffy-positive (Fy +) volunteers immunized with PvRAS followed by a controlled human malaria infection (CHMI). Using a custom protein microarray displaying 515 Pv antigens, we found a significantly higher reactivity to PvCSP and one hypothetical protein (PVX_089630) in volunteers protected against P. vivax infection. In mock-vaccinated Fy + volunteers, a strong antibody response to CHMI was also observed. Although the Fy- volunteers immunized with non-irradiated Pv-infected mosquitoes (live sporozoites) did not develop malaria after CHMI, they recognized a high number of antigens, indicating the temporary presence of asexual parasites in peripheral blood. Together, our findings contribute to the understanding of the antibody response to P. vivax infection and allow the identification of novel parasite antigens as vaccine candidates.Trial registration: ClinicalTrials.gov number: NCT01082341.
Collapse
Affiliation(s)
- Mary Lopez-Perez
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia
| | - Aarti Jain
- Department Physiology & Biophysics, Vaccine R&D Center, University of California Irvine, Irvine, CA, USA
| | - D Huw Davies
- Department Physiology & Biophysics, Vaccine R&D Center, University of California Irvine, Irvine, CA, USA
| | | | | | | | - Philip L Felgner
- Department Physiology & Biophysics, Vaccine R&D Center, University of California Irvine, Irvine, CA, USA
| | - Sócrates Herrera
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia
- Caucaseco Scientific Research Center, Cali, Colombia
| | - Myriam Arévalo-Herrera
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia.
- Caucaseco Scientific Research Center, Cali, Colombia.
| |
Collapse
|
43
|
Kotepui KU, Mueangson O, Mala W, Mahittikorn A, Wangdi K, Kotepui M. Status of Blood Levels of Superoxide Dismutase in Patients with Malaria: A Systematic Review and Meta-Analysis. Antioxid Redox Signal 2024; 40:222-235. [PMID: 37125449 DOI: 10.1089/ars.2023.0273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Aims: The evidence of superoxide dismutase (SOD) in the pathogenesis of malaria is inconsistent. This study aimed to synthesize the evidence of blood levels of SOD in patients with malaria and determine the association of blood levels of SOD with the severity of malaria. Results: A total of 1874 articles were retrieved from database searches and 28 studies were included in the review. The blood levels of SOD were lower in individuals with malaria compared with those without malaria infection (p < 0.01, Cohen's d: -2.06, 95% CI: -2.99 to -1.14), I2: 98.96%, 2181 malaria cases/1186 uninfected cases). There were no differences in blood levels of SOD between severe and nonsevere malaria patients (p = 0.09, Cohen's d: -1.57, 95% CI: -3.39 to 0.26), I2: 96.02%, 69 severe malaria cases/256 nonsevere malaria cases). Innovation and Conclusion: The blood levels of SOD were lower in malaria patients compared with those without malaria infection. Further studies will be required to determine the extent to which SOD might prevent Plasmodium infections during pregnancy. Antioxid. Redox Signal. 40, 222-235.
Collapse
Affiliation(s)
| | - Onchuma Mueangson
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Wanida Mala
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Aongart Mahittikorn
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kinley Wangdi
- Department of Global Health, National Centre for Epidemiology and Population Health, College of Health and Medicine, Australian National University, Canberra, Australia
| | - Manas Kotepui
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
44
|
Kimenyi KM, Akinyi MY, Mwikali K, Gilmore T, Mwangi S, Omer E, Gichuki B, Wambua J, Njunge J, Obiero G, Bejon P, Langhorne J, Abdi A, Ochola-Oyier LI. Distinct transcriptomic signatures define febrile malaria depending on initial infective states, asymptomatic or uninfected. BMC Infect Dis 2024; 24:140. [PMID: 38287287 PMCID: PMC10823747 DOI: 10.1186/s12879-024-08973-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/01/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Cumulative malaria parasite exposure in endemic regions often results in the acquisition of partial immunity and asymptomatic infections. There is limited information on how host-parasite interactions mediate the maintenance of chronic symptomless infections that sustain malaria transmission. METHODS Here, we determined the gene expression profiles of the parasite population and the corresponding host peripheral blood mononuclear cells (PBMCs) from 21 children (< 15 years). We compared children who were defined as uninfected, asymptomatic and those with febrile malaria. RESULTS Children with asymptomatic infections had a parasite transcriptional profile characterized by a bias toward trophozoite stage (~ 12 h-post invasion) parasites and low parasite levels, while early ring stage parasites were characteristic of febrile malaria. The host response of asymptomatic children was characterized by downregulated transcription of genes associated with inflammatory responses, compared with children with febrile malaria,. Interestingly, the host responses during febrile infections that followed an asymptomatic infection featured stronger inflammatory responses, whereas the febrile host responses from previously uninfected children featured increased humoral immune responses. CONCLUSIONS The priming effect of prior asymptomatic infection may explain the blunted acquisition of antibody responses seen to malaria antigens following natural exposure or vaccination in malaria endemic areas.
Collapse
Affiliation(s)
- Kelvin M Kimenyi
- KEMRI‑Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | | | - Kioko Mwikali
- KEMRI‑Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Shaban Mwangi
- KEMRI‑Wellcome Trust Research Programme, Kilifi, Kenya
| | - Elisha Omer
- KEMRI‑Wellcome Trust Research Programme, Kilifi, Kenya
| | | | | | - James Njunge
- KEMRI‑Wellcome Trust Research Programme, Kilifi, Kenya
| | - George Obiero
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Philip Bejon
- KEMRI‑Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
45
|
Reyes RA, Raghavan SSR, Hurlburt NK, Introini V, Kana IH, Jensen RW, Martinez-Scholze E, Gestal-Mato M, Bau CB, Fernández-Quintero ML, Loeffler JR, Ferguson JA, Lee WH, Martin GM, Theander TG, Ssewanyana I, Feeney ME, Greenhouse B, Bol S, Ward AB, Bernabeu M, Pancera M, Turner L, Bunnik EM, Lavstsen T. Broadly inhibitory antibodies against severe malaria virulence proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577124. [PMID: 38328068 PMCID: PMC10849712 DOI: 10.1101/2024.01.25.577124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Plasmodium falciparum pathology is driven by the accumulation of parasite-infected erythrocytes in microvessels. This process is mediated by the parasite's polymorphic erythrocyte membrane protein 1 (PfEMP1) adhesion proteins. A subset of PfEMP1 variants that bind human endothelial protein C receptor (EPCR) through their CIDRα1 domains is responsible for severe malaria pathogenesis. A longstanding question is whether individual antibodies can recognize the large repertoire of circulating PfEMP1 variants. Here, we describe two broadly reactive and binding-inhibitory human monoclonal antibodies against CIDRα1. The antibodies isolated from two different individuals exhibited a similar and consistent EPCR-binding inhibition of 34 CIDRα1 domains, representing five of the six subclasses of CIDRα1. Both antibodies inhibited EPCR binding of both recombinant full-length and native PfEMP1 proteins as well as parasite sequestration in bioengineered 3D brain microvessels under physiologically relevant flow conditions. Structural analyses of the two antibodies in complex with two different CIDRα1 antigen variants reveal similar binding mechanisms that depend on interactions with three highly conserved amino acid residues of the EPCR-binding site in CIDRα1. These broadly reactive antibodies likely represent a common mechanism of acquired immunity to severe malaria and offer novel insights for the design of a vaccine or treatment targeting severe malaria.
Collapse
Affiliation(s)
- Raphael A. Reyes
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Sai Sundar Rajan Raghavan
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicholas K. Hurlburt
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Viola Introini
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona 08003, Spain
| | - Ikhlaq Hussain Kana
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Rasmus W. Jensen
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Elizabeth Martinez-Scholze
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Maria Gestal-Mato
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona 08003, Spain
| | | | | | - Johannes R. Loeffler
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James Alexander Ferguson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Greg Michael Martin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Thor G. Theander
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | | | - Margaret E. Feeney
- Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94110, USA
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Sebastiaan Bol
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Maria Bernabeu
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona 08003, Spain
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Louise Turner
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Evelien M. Bunnik
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Thomas Lavstsen
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| |
Collapse
|
46
|
Aninagyei E, Puopelle DM, Tukwarlba I, Ghartey-Kwansah G, Attoh J, Adzakpah G, Acheampong DO. Molecular speciation of Plasmodium and multiplicity of P. falciparum infection in the Central region of Ghana. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002718. [PMID: 38236793 PMCID: PMC10796036 DOI: 10.1371/journal.pgph.0002718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/29/2023] [Indexed: 01/22/2024]
Abstract
Malaria is endemic in the Central region of Ghana, however, the ecological and the seasonal variations of Plasmodium population structure and the intensity of malaria transmission in multiple sites in the region have not been explored. In this cross-sectional study, five districts in the region were involved. The districts were Agona Swedru, Assin Central and Gomoa East (representing the forest zone) and Abura-Asebu-Kwamankese and Cape Coast representing the coastal zone. Systematically, blood samples were collected from patients with malaria. The malaria status was screened with a rapid diagnostic test (RDT) kit (CareStart manufactured by Access Bio in Somerset, USA) and the positive ones confirmed microscopically. Approximately, 200 μL of blood was used to prepare four dried blood spots of 50μL from each microscopy positive sample. The Plasmodium genome was sequenced at the Malaria Genome Laboratory (MGL) of Wellcome Sanger Institute (WSI), Hinxton, UK. The single nucleotide polymorphisms (SNPs) in the parasite mitochondria (PfMIT:270) core genome aided the species identification of Plasmodium. Subsequently, the complexity of infection (COI) was determined using the complexity of infection likelihood (COIL) computational analysis. In all, 566 microscopy positive samples were sequenced. Of this number, Plasmodium genome was detected in 522 (92.2%). However, whole genome sequencing was successful in 409/522 (72.3%) samples. In total, 516/522 (98.8%) of the samples contained P. falciparum mono-infection while the rest (1.2%) were either P. falciparum/P. ovale (Pf/Po) (n = 4, 0.8%) or P. falciparum/P. malariae/P. vivax (Pf/Pm/Pv) mixed-infection (n = 2, 0.4%). All the four Pf/Po infections were identified in samples from the Assin Central municipality whilst the two Pf/Pm/Pv triple infections were identified in Abura-Asebu-Kwamankese district and Cape Coast metropolis. Analysis of the 409 successfully sequenced genome yielded between 1-6 P. falciparum clones per individual infection. The overall mean COI was 1.78±0.92 (95% CI: 1.55-2.00). Among the study districts, the differences in the mean COI between ecological zones (p = 0.0681) and seasons (p = 0.8034) were not significant. However, regression analysis indicated that the transmission of malaria was more than twice among study participants aged 15-19 years (OR = 2.16, p = 0.017) and almost twice among participants aged over 60 years (OR = 1.91, p = 0.021) compared to participants between 20-59 years. Between genders, mean COI was similar except in Gomoa East where females recorded higher values. In conclusion, the study reported, for the first time, P. vivax in Ghana. Additionally, intense malaria transmission was found to be higher in the 15-19 and > 60 years, compared to other age groups. Therefore, active surveillance for P. vivax in Ghana and enhanced malaria control measures in the 15-19 year group years and those over 60 years are recommended.
Collapse
Affiliation(s)
- Enoch Aninagyei
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Dakorah Mavis Puopelle
- Department of Biomedical Sciences, School of Allied Health Science, University of Cape Coast, Cape Coast, Ghana
| | - Isaac Tukwarlba
- Department of Biomedical Sciences, School of Allied Health Science, University of Cape Coast, Cape Coast, Ghana
| | - George Ghartey-Kwansah
- Department of Biomedical Sciences, School of Allied Health Science, University of Cape Coast, Cape Coast, Ghana
| | - Juliana Attoh
- Department of Biomedical Sciences, School of Allied Health Science, University of Cape Coast, Cape Coast, Ghana
| | - Godwin Adzakpah
- Department of Health Information Management, School of Allied Health Science, University of Cape Coast, Cape Coast, Ghana
| | - Desmond Omane Acheampong
- Department of Biomedical Sciences, School of Allied Health Science, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
47
|
Samayoa-Reyes G, Weigel C, Koech E, Waomba K, Jackson C, Onditi IA, Sabourin KR, Kenney S, Baiocchi RA, Oakes CC, Ogolla S, Rochford R. Effect of Malaria Infection on Epstein-Barr Virus Persistence in Kenyan Children. J Infect Dis 2024; 229:73-82. [PMID: 37433031 PMCID: PMC10786253 DOI: 10.1093/infdis/jiad264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND The 2 cofactors in the etiology of Burkitt lymphoma (BL) are Epstein-Barr virus (EBV) and repeated Plasmodium falciparum malaria infections. This study evaluated EBV loads in mucosal and systemic compartments of children with malaria and controls. Age was analyzed as a covariate because immunity to malaria in endemic regions is age dependent. METHODS Children (2-10 years) with clinical malaria from Western Kenya and community controls without malaria were enrolled. Saliva and blood samples were collected, EBV viral load was assessed by quantitative polymerase chain reaction, and EpiTYPER MassARRAY was used to assess methylation of 3 different EBV genes. RESULTS Regardless of the compartment, we detected EBV more frequently in malaria cases compared to controls, although the difference was not significant. When EBV was detected, there were no differences in viral load between cases and controls. However, EBV methylation was significantly lower in the malaria group compared to controls in both plasma and saliva (P < .05), indicating increased EBV lytic replication. In younger children before development of immunity to malaria, there was a significant effect of malaria on EBV load in peripheral blood mononuclear cells (P = .04). CONCLUSIONS These data suggest that malaria can directly modulate EBV persistence in children, increasing their risk for BL.
Collapse
Affiliation(s)
- Gabriela Samayoa-Reyes
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Christoph Weigel
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio, USA
| | - Emmily Koech
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Kevin Waomba
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Conner Jackson
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado-Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ian A Onditi
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Katherine R Sabourin
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Shannon Kenney
- Department of Oncology, McArdle Laboratory, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Robert A Baiocchi
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio, USA
| | - Christopher C Oakes
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio, USA
| | - Sidney Ogolla
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
48
|
Trape JF, Diagne N, Diene-Sarr F, Faye J, Dieye-Ba F, Bassène H, Badiane A, Bouganali C, Tall A, Ndiaye R, Doucouré S, Wotodjo AN, Vigan-Womas I, Guillotte-Blisnick M, Talla C, Niang M, Touré-Baldé A, Perraut R, Roussilhon C, Druilhe P, Rogier C, Mercereau-Puijalon O, Loucoubar C, Sokhna C. One hundred malaria attacks since birth. A longitudinal study of African children and young adults exposed to high malaria transmission. EClinicalMedicine 2024; 67:102379. [PMID: 38188691 PMCID: PMC10770423 DOI: 10.1016/j.eclinm.2023.102379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Background Despite significant progress in malaria control over the past twenty years, malaria remains a leading cause of child morbidity and mortality in Tropical Africa. As most patients do not consult any health facility much uncertainty persists about the true burden of the disease and the range of individual differences in susceptibility to malaria. Methods Over a 25-years period, from 1990 to 2015, the inhabitants of Dielmo village, Senegal, an area of intense malaria transmission, have been monitored daily for their presence in the village and the occurrence of diseases. In case of fever thick blood films were systematically examined through microscopy for malaria parasites and patients received prompt diagnosis and treatment. Findings We analysed data collected in 111 children and young adults monitored for at least 10 years (mean 17.3 years, maximum 25 years) enrolled either at birth (95 persons) or during the two first years of life. A total of 11,599 episodes of fever were documented, including 5268 malaria attacks. The maximum number of malaria attacks in a single person was 112. Three other persons suffered one hundred or more malaria attacks during follow-up. The minimum number of malaria attacks in a single person was 11. The mean numbers of malaria attacks in children reaching their 4th, 7th, and 10th birthdays were 23.0, 37.7, and 43.6 attacks since birth, respectively. Sixteen children (14.4%) suffered ten or more malaria attacks each year at ages 1-3 years, and six children (5.4%) each year at age 4-6 years. Interpretation Long-term close monitoring shows that in highly endemic areas the malaria burden is higher than expected. Susceptibility to the disease may vary up to 10-fold, and for most children childhood is an endless history of malaria fever episodes. No other parasitic, bacterial or viral infection in human populations has such an impact on health. Funding The Pasteur Institutes of Dakar and Paris, the Institut de Recherche pour le Développement, and the French Ministry of Cooperation provided funding.
Collapse
Affiliation(s)
| | - Nafissatou Diagne
- Institut de Recherche pour le Développement, VITROME, Dakar, Senegal
| | | | - Joseph Faye
- Institut Pasteur de Dakar, Epidemiology Unit, Dakar, Senegal
| | - Fambaye Dieye-Ba
- Institut de Recherche pour le Développement, VITROME, Dakar, Senegal
| | - Hubert Bassène
- Institut de Recherche pour le Développement, VITROME, Dakar, Senegal
| | | | - Charles Bouganali
- Institut de Recherche pour le Développement, VITROME, Dakar, Senegal
| | - Adama Tall
- Institut Pasteur de Dakar, Epidemiology Unit, Dakar, Senegal
| | | | | | | | - Inès Vigan-Womas
- Institut Pasteur de Dakar, Immunology Unit, Dakar, Senegal
- Institut Pasteur, Department of Parasitology and Insect Vectors, Paris, France
| | | | - Cheikh Talla
- Institut Pasteur de Dakar, Epidemiology Unit, Dakar, Senegal
| | - Makhtar Niang
- Institut Pasteur de Dakar, Immunology Unit, Dakar, Senegal
| | | | - Ronald Perraut
- Institut Pasteur de Dakar, Immunology Unit, Dakar, Senegal
- Institut Pasteur, Department of Parasitology and Insect Vectors, Paris, France
| | - Christian Roussilhon
- Institut Pasteur de Dakar, Immunology Unit, Dakar, Senegal
- Institut Pasteur, Bio-medical Parasitology, Paris, France
| | - Pierre Druilhe
- Institut Pasteur, Bio-medical Parasitology, Paris, France
| | - Christophe Rogier
- Institut Pasteur de Dakar, Epidemiology Unit, Dakar, Senegal
- Primum Vitare, Paris, France
| | | | | | - Cheikh Sokhna
- Institut de Recherche pour le Développement, VITROME, Dakar, Senegal
| |
Collapse
|
49
|
Drummond W, Rees K, Ladd-Wilson S, Mace KE, Blackall D, Sutton M. Delayed Plasmodium falciparum Malaria in Pregnant Patient with Sickle Cell Trait 11 Years after Exposure, Oregon, USA. Emerg Infect Dis 2024; 30:151-154. [PMID: 38147068 PMCID: PMC10756375 DOI: 10.3201/eid3001.231231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023] Open
Abstract
Delayed Plasmodium falciparum malaria in immigrants from disease-endemic countries is rare. Such cases pose a challenge for public health because mosquitoborne transmission must be rigorously investigated. We report a case of delayed P. falciparum malaria in a pregnant woman with sickle cell trait 11 years after immigration to the United States.
Collapse
|
50
|
Alves SAS, Teixeira DE, Peruchetti DB, Silva LS, Brandão LFP, Caruso-Neves C, Pinheiro AAS. Bradykinin produced during Plasmodium falciparum erythrocytic cycle drives monocyte adhesion to human brain microvascular endothelial cells. Brain Res 2024; 1822:148669. [PMID: 37951562 DOI: 10.1016/j.brainres.2023.148669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Cerebral malaria (CM) pathogenesis is described as a multistep mechanism. In this context, monocytes have been implicated in CM pathogenesis by increasing the sequestration of infected red blood cells to the brain microvasculature. In disease, endothelial activation is followed by reduced monocyte rolling and increased adhesion. Nowadays, an important challenge is to identify potential pro-inflammatory stimuli that can modulate monocytes behavior. Our group have demonstrated that bradykinin (BK), a pro-inflammatory peptide involved in CM, is generated during the erythrocytic cycle of P. falciparum and is detected in culture supernatant (conditioned medium). Herein we investigated the role of BK in the adhesion of monocytes to endothelial cells of blood brain barrier (BBB). To address this issue human monocytic cell line (THP-1) and human brain microvascular endothelial cells (hBMECs) were used. It was observed that 20% conditioned medium from P. falciparum infected erythrocytes (Pf-iRBC sup) increased the adhesion of THP-1 cells to hBMECs. This effect was mediated by BK through the activation of B2 and B1 receptors and involves the increase in ICAM-1 expression in THP-1 cells. Additionally, it was observed that angiotensin-converting enzyme (ACE) inhibitor, captopril, enhanced the effect of both BK and Pf-iRBC sup on THP-1 adhesion. Together these data show that BK, generated during the erythrocytic cycle of P. falciparum, could play an important role in adhesion of monocytes in endothelial cells lining the BBB.
Collapse
Affiliation(s)
- Sarah A S Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas E Teixeira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo B Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro S Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Felipe P Brandão
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-Regenera, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCTIC, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAUDE/FAPERJ, Rio de Janeiro, Brazil
| | - Ana Acacia S Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAUDE/FAPERJ, Rio de Janeiro, Brazil.
| |
Collapse
|