1
|
Mack SJ, Single RM, Solberg OD, Thomson G, Erlich HA. Population Genetic Dissection of HLA-DPB1 Amino Acid Polymorphism to Infer Selection. Hum Immunol 2024; 85:111151. [PMID: 39413638 DOI: 10.1016/j.humimm.2024.111151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
Although allele frequency data for most HLA loci provide strong evidence for balancing selection at the allele level, the DPB1 locus is a notable exception, with allele frequencies compatible with neutral evolution (genetic drift) or directional selection in most populations. This discrepancy is especially interesting as evidence for balancing selection has been seen at the nucleotide and amino acid (AA) sequence levels for DPB1. We describe methods used to examine the global distribution of DPB1 alleles and their constituent AA sequences. These methods allow investigation of the influence of natural selection in shaping DPβ diversity in a hierarchical fashion for DPB1 alleles, all polymorphic DPB1 exon 2-encoded AA positions, as well as all pairs and trios of these AA positions. In addition, we describe how asymmetric linkage disequilibrium for all DPB1 exon 2-encoded AA pairs can be used to complement other methods. Application of these methods provides strong evidence for the operation of balancing selection on AA positions 56, 85-87, 36, 55 and 84 (listed in decreasing order of the strength of selection), but no evidence for balancing selection on DPB1 alleles.
Collapse
Affiliation(s)
- Steven J Mack
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, United States.
| | - Richard M Single
- Department of Mathematics and Statistics, University of Vermont, Burlington, VT, United States
| | - Owen D Solberg
- Bioinformatics and Biostatistics, Monogram Biosciences, South San Francisco, CA, United States
| | - Glenys Thomson
- Department of Integrative Biology, University of California, Berkeley, CA, United States
| | - Henry A Erlich
- Center for Genetics, Children's Hospital & Research Center Oakland, Oakland, CA, United States
| |
Collapse
|
2
|
Vaulin A, Karpulevich E, Kasianov A, Morozova I. Europeans and Americans of European origin show differences between their biological pathways related to the major histocompatibility complex. Sci Rep 2024; 14:21816. [PMID: 39294244 PMCID: PMC11410964 DOI: 10.1038/s41598-024-71803-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 08/30/2024] [Indexed: 09/20/2024] Open
Abstract
In this study, we analysed biological pathway diversity among Europeans and Northern Americans of European origin, the groups of people that share a common genetic ancestry but live in different geographic regions. We used a novel complex approach for analysing genomic data: we studied the total effects of multiple weak selection signals, accumulated from independent SNPs within a pathway. We found significant differences between immunity-related biological pathways from the two groups. All identified pathways included genes belonging to the major histocompatibility complex (MHC) system, which plays an important role in adaptive immune responses. We suggest that the ways of evolution were different for the MHC-I and MHC-II gene groups at least in Europeans and Americans of European origin. We hypothesise that the observed variability between the two populations was triggered by selection pressures due to the different pathogen landscapes and pathogen loads on the two continents. Our findings can be important for epidemic prevention and control, as well as for analysing processes related to allergies, organ transplantation, and autoimmune diseases.
Collapse
Affiliation(s)
- Andrey Vaulin
- Nanyang Technological University, Singapore, Singapore
| | - Evgeny Karpulevich
- Information Systems Department, Ivannikov Institute for System Programming of the Russian Academy of Sciences (ISP RAS), Moscow, Russia
| | - Artem Kasianov
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal.
- BIOPOLIS, Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal.
| | - Irina Morozova
- Institute for Globally Distributed Open Research and Education (IGDORE), Moscow, Russia.
| |
Collapse
|
3
|
Yang JS, Liu TY, Lu HF, Tsai SC, Liao WL, Chiu YJ, Wang YW, Tsai FJ. Genome‑wide association study and polygenic risk scores predict psoriasis and its shared phenotypes in Taiwan. Mol Med Rep 2024; 30:115. [PMID: 38757301 PMCID: PMC11106694 DOI: 10.3892/mmr.2024.13239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Psoriasis is a chronic inflammatory dermatological disease, and there is a lack of understanding of the genetic factors involved in psoriasis in Taiwan. To establish associations between genetic variations and psoriasis, a genome‑wide association study was performed in a cohort of 2,248 individuals with psoriasis and 67,440 individuals without psoriasis. Using the ingenuity pathway analysis software, biological networks were constructed. Human leukocyte antigen (HLA) diplotypes and haplotypes were analyzed using Attribute Bagging (HIBAG)‑R software and chi‑square analysis. The present study aimed to assess the potential risks associated with psoriasis using a polygenic risk score (PRS) analysis. The genetic association between single nucleotide polymorphisms (SNPs) in psoriasis and various human diseases was assessed by phenome‑wide association study. METAL software was used to analyze datasets from China Medical University Hospital (CMUH) and BioBank Japan (BBJ). The results of the present study revealed 8,585 SNPs with a significance threshold of P<5x10‑8, located within 153 genes strongly associated with the psoriasis phenotype, particularly on chromosomes 5 and 6. This specific genomic region has been identified by analyzing the biological networks associated with numerous pathways, including immune responses and inflammatory signaling. HLA genotype analysis indicated a strong association between HLA‑A*02:07 and HLA‑C*06:02 in a Taiwanese population. Based on our PRS analysis, the risk of psoriasis associated with the SNPs identified in the present study was quantified. These SNPs are associated with various dermatological, circulatory, endocrine, metabolic, musculoskeletal, hematopoietic and infectious diseases. The meta‑analysis results indicated successful replication of a study conducted on psoriasis in the BBJ. Several genetic loci are significantly associated with susceptibility to psoriasis in Taiwanese individuals. The present study contributes to our understanding of the genetic determinants that play a role in susceptibility to psoriasis. Furthermore, it provides valuable insights into the underlying etiology of psoriasis in the Taiwanese community.
Collapse
Affiliation(s)
- Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404327, Taiwan, R.O.C
| | - Ting-Yuan Liu
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan, R.O.C
| | - Hsing-Fang Lu
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan, R.O.C
| | - Shih-Chang Tsai
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan, R.O.C
| | - Wen-Ling Liao
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404333, Taiwan, R.O.C
- Center for Personalized Medicine, China Medical University Hospital, Taichung 404327, Taiwan, R.O.C
| | - Yu-Jen Chiu
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, R.O.C
| | - Yu-Wen Wang
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan, R.O.C
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404333, Taiwan, R.O.C
- Department of Pediatric Genetics, China Medical University Children's Hospital, Taichung 404327, Taiwan, R.O.C
- Department of Medical Genetics, China Medical University Hospital, Taichung 404327, Taiwan, R.O.C
| |
Collapse
|
4
|
Sanchez-Mazas A, Nunes JM. The most frequent HLA alleles around the world: A fundamental synopsis. Best Pract Res Clin Haematol 2024; 37:101559. [PMID: 39098805 DOI: 10.1016/j.beha.2024.101559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024]
Abstract
A comprehensive knowledge of human leukocyte antigen (HLA) molecular variation worldwide is essential in human population genetics research and disease association studies and is also indispensable for clinical applications such as allogeneic hematopoietic cell transplantation, where ensuring HLA compatibility between donors and recipients is paramount. Enormous progress has been made in this field thanks to several decades of HLA population studies allowing the development of helpful databases and bioinformatics tools. However, it is still difficult to appraise the global HLA population diversity in a synthetic way. We thus introduce here a novel approach, based on approximately 2000 data sets, to assess this complexity by providing a fundamental synopsis of the most frequent HLA alleles observed in different regions of the world. This new knowledge will be useful not only as a fundamental reference for basic research, but also as an efficient guide for clinicians working in the field of transplantation.
Collapse
Affiliation(s)
- Alicia Sanchez-Mazas
- Laboratory of Anthropology, Genetics and Peopling History (AGP), Department of Genetics and Evolution & Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva, 30 Quai Ernest-Ansermet, 1205, Geneva, Switzerland.
| | - José Manuel Nunes
- Laboratory of Anthropology, Genetics and Peopling History (AGP), Department of Genetics and Evolution & Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva, 30 Quai Ernest-Ansermet, 1205, Geneva, Switzerland.
| |
Collapse
|
5
|
Yang KL, Lin PY. Association of HLA-C*07:359 with HLA-A, -B, and -DRB1 alleles in Taiwanese. Tzu Chi Med J 2024; 36:166-174. [PMID: 38645783 PMCID: PMC11025586 DOI: 10.4103/tcmj.tcmj_288_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/03/2023] [Accepted: 12/26/2023] [Indexed: 04/23/2024] Open
Abstract
Objectives It is thought that Taiwanese indigenous people were the "first people" to populate Taiwan (Formosa) having been there for over 5000 years, preceding the Dutch colonization (from 1624 to 1662) and Spanish colonization (from 1626 to 1642). Taiwan's indigenes, represented by Austronesian language speakers, currently constitute approximately 2% of the total population in Taiwan. It is unknown whether they evolved from Taiwan's Paleolithic or Neolithic cultures, arrived during or after the Neolithic period from China or Southeast Asia or both. HLA studies on the Taiwanese indigenous population have found several intriguing genetic information showing one or two relatively frequently observed alleles and a small number of relatively less frequently observed ones. We report here a relatively frequently observed HLA-C*07:359 allele in the Taiwanese indigenous population, its linkage with HLA-B*39:01, and its probable associated HLA haplotype in two Taiwanese indigenous families. HLA-C*07:359 is a rarely observed allele in the HLA-C locus in the world populations. The objective of this study is to report the allele HLA-C*07:359 that is more frequently found in the Taiwanese population, especially in the Taiwanese indigenous people, to demonstrate that it has a close linkage with HLA-B*39:01 allele in the HLA-B locus and to show the plausible deduced HLA-A-C-B-DRB1-DQB1 haplotypes in association with HLA-C*07:359 in two families of Taiwanese indigenous unrelated individuals. Materials and Methods The samples were peripheral whole blood, with dipotassium ethylenediaminetetraacetic acid and/or acid citrate dextrose anticoagulation additives. The sequence-based typing method was employed to confirm the low incidence of the allele of HLA-C*07:359 observed in Taiwanese. Polymerase chain reaction was carried out to amplify exons 2, 3, and 4 of the HLA-A,-B,-C,-DRB1 and-DQB1 loci with group-specific primer sets. Amplicons were sequenced using the BigDye Terminator Cycle Sequencing Ready Reaction Kit in both directions according to the manufacturer's protocol. Results C*07:359 is an uncommon allele in the HLA-C locus in the world general population, according to our literature review. However, in this study, it is observed in the general Taiwanese population (frequency 0.41%), especially in the Taiwanese indigenous people at a frequency of 0.23%. In addition, we deduced two probable HLA haplotypes in association with C*07:359 in two indigenous families: A*24:02-C*07:359-B*39:01-DRB1*04:36 and A*24:02-C*07:359-B*39:01-DRB1*04:04. Conclusion The two deduced HLA haplotypes associated with the uncommon C*07:359 allele that we report here are valuable for HLA tissue typing laboratories for reference purposes and for stem cell transplantation donor search coordinators to determine the likelihood of finding compatible donors in unrelated bone marrow donor registries for patients bearing the uncommon HLA allele. Since C*07:359 was found mostly in the Taiwanese indigenous population, we think the allele and its haplotypes we report here are important in population and anthropological studies.
Collapse
Affiliation(s)
- Kuo-Liang Yang
- Laboratory of Immunogenetics, Tzu Chi Cord Blood Bank, and Buddhist Tzu Chi Bone Marrow Donor Registry, Buddhist Tzu Chi Stem Cells Centre, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Py-Yu Lin
- Laboratory of Immunogenetics, Tzu Chi Cord Blood Bank, and Buddhist Tzu Chi Bone Marrow Donor Registry, Buddhist Tzu Chi Stem Cells Centre, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
6
|
Tizu M, Calenic B, Maruntelu I, Caragea AM, Talangescu A, Ursu L, Rotarescu C, Surugiu M, Constantinescu AE, Constantinescu I. Immunogenetic Background of Chronic Lymphoproliferative Disorders in Romanian Patients-Case Control Study. Med Sci (Basel) 2024; 12:14. [PMID: 38535155 PMCID: PMC10972167 DOI: 10.3390/medsci12010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/06/2024] [Accepted: 02/18/2024] [Indexed: 08/25/2024] Open
Abstract
BACKGROUND AND OBJECTIVES The implications of the genetic component in the initiation and development of chronic lymphoproliferative disorders have been the subject of intense research efforts. Some of the most important genes involved in the occurrence and evolution of these pathologies are the HLA genes. The aim of this study is to analyze, for the first time, possible associations between chronic lymphoproliferative diseases and certain HLA alleles in the Romanian population. MATERIALS AND METHODS This study included 38 patients with chronic lymphoproliferative disorders, diagnosed between 2021 and 2022 at Fundeni Clinical Institute, Bucharest, Romania, and 50 healthy controls. HLA class I and class II genes (HLA-A/B/C, HLA-DQB1/DPB1/DRB1) were investigated by doing high resolution genotyping using sequence specific primers (SSP). RESULTS Several HLA alleles were strongly associated with chronic lymphoproliferative disorders. The most important finding was that the HLA-C*02:02 (p = 0.002, OR = 1.101), and HLA-C*12:02 (p = 0.002, OR = 1.101) have a predisposing role in the development of chronic lymphoproliferative disorders. Moreover, we identified that HLA-A*11:01 (p = 0.01, OR = 0.16), HLA-B*35:02 (p = 0.037, OR = 0.94), HLA-B*81:01 (p = 0.037, OR = 0.94), HLA-C*07:02 (p = 0.036, OR = 0.34), HLA-DRB1*11:01 (p = 0.021, OR = 0.19), and HLA-DRB1*13:02 (p = 0.037, OR = 0.94), alleles have protective roles. CONCLUSIONS Our study indicates that HLA-C*02:02 and HLA-C*12:02 are positively associated with chronic lymphoproliferative disorders for our Romanian patients while HLA-DRB1*11:01, HLA-DRB1*13:02, and HLA-B*35:02 alleles have a protective role against these diseases.
Collapse
Affiliation(s)
- Maria Tizu
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Avenue, 022328 Bucharest, Romania; (B.C.); (C.R.)
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 258 Fundeni Avenue, 022328 Bucharest, Romania (A.T.)
| | - Bogdan Calenic
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Avenue, 022328 Bucharest, Romania; (B.C.); (C.R.)
| | - Ion Maruntelu
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 258 Fundeni Avenue, 022328 Bucharest, Romania (A.T.)
| | - Andreea Mirela Caragea
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Avenue, 022328 Bucharest, Romania; (B.C.); (C.R.)
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 258 Fundeni Avenue, 022328 Bucharest, Romania (A.T.)
| | - Adriana Talangescu
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 258 Fundeni Avenue, 022328 Bucharest, Romania (A.T.)
| | - Larisa Ursu
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Avenue, 022328 Bucharest, Romania; (B.C.); (C.R.)
| | - Corina Rotarescu
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Avenue, 022328 Bucharest, Romania; (B.C.); (C.R.)
| | - Mariana Surugiu
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Avenue, 022328 Bucharest, Romania; (B.C.); (C.R.)
| | - Alexandra Elena Constantinescu
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Avenue, 022328 Bucharest, Romania; (B.C.); (C.R.)
| | - Ileana Constantinescu
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 258 Fundeni Avenue, 022328 Bucharest, Romania; (B.C.); (C.R.)
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 258 Fundeni Avenue, 022328 Bucharest, Romania (A.T.)
- Academy of Romanian Scientists (AOSR), 3 Ilfov Street, Sector 5, 022328 Bucharest, Romania
| |
Collapse
|
7
|
He R, Zeng Y, Wang C, Chen L, Cai G, Chen Y, Wang Y, Ye Q, Chen X. Associative role of HLA-DRB1 as a protective factor for susceptibility and progression of Parkinson's disease: a Chinese cross-sectional and longitudinal study. Front Aging Neurosci 2024; 16:1361492. [PMID: 38586829 PMCID: PMC10995924 DOI: 10.3389/fnagi.2024.1361492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/13/2024] [Indexed: 04/09/2024] Open
Abstract
Background Previous genome-wide association studies investigating the relationship between the HLA-DRB1 and the risk of Parkinson's disease (PD) have shown limited racial diversity and have not explored clinical heterogeneity extensively. Methods The study consisted of three parts: a case-control study, a cross-sectional study, and a longitudinal cohort study. The case-control study included 477 PD patients and 477 healthy controls to explore the relationship between rs660895 and PD susceptibility. The cross-sectional study utilized baseline data from 429 PD patients to examine the correlation between rs660895 and PD features. The longitudinal study included 388 PD patients who completed a 3-year follow-up to investigate the effects of rs660895 on PD progression. Results In the case-control study, HLA-DRB1 rs660895-G allele was associated with a decreased risk of PD in allele model (adjusted OR=0.72, p = 0.003) and dominant model (AG + GG vs. AA: adjusted OR = 0.67, p = 0.003). In the cross-sectional analysis, there was no association between rs660895 and the onset age, motor phenotype, or initial motor symptoms. In the longitudinal analysis, PD patients with the G allele exhibited a slower progression of motor symptoms (MDS-UPDRS-III total score: β = -5.42, p < 0.001, interaction ptime × genotype < 0.001) and non-motor symptoms (NMSS score: β = -4.78, p = 0.030, interaction ptime × genotype < 0.001). Conclusion Our findings support HLA-DRB1 rs660895-G allele is a protective genetic factor for PD risk in Chinese population. Furthermore, we also provide new evidence for the protective effect of rs660895-G allele in PD progression.
Collapse
Affiliation(s)
- Raoli He
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Yuqi Zeng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Chaodong Wang
- Department of Neurology, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Lina Chen
- Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Guoen Cai
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Ying Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Yingqing Wang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Qinyong Ye
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Xiaochun Chen
- Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Afolabi H, Zhang BM, O'Shaughnessy M, Chertow GM, Lafayette R, Charu V. The Association of Class I and II Human Leukocyte Antigen Serotypes With End-Stage Kidney Disease Due to Membranoproliferative Glomerulonephritis and Dense Deposit Disease. Am J Kidney Dis 2024; 83:79-89. [PMID: 37739026 PMCID: PMC11421569 DOI: 10.1053/j.ajkd.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 09/24/2023]
Abstract
RATIONALE & OBJECTIVE Membranoproliferative glomerulonephritis (MPGN), encompassing several distinct diseases, is a rare but significant cause of kidney failure in the United States. The potential etiologies of MPGN are unclear, but prior studies have suggested dysregulation of the alternative complement pathway and, recently, autoimmunity as potential mechanisms driving MPGN pathogenesis. In this study, we examined HLA associations with end-stage kidney disease (ESKD) due to MPGN and dense deposit disease (DDD) in a large racially and ethnically diverse US-based cohort. STUDY DESIGN Case-control study. SETTING & PARTICIPANTS Using US Renal Data System (USRDS) and United Network for Organ Sharing (UNOS) data, we identified 3,424 patients with kidney failure due to MPGN and 263 due to DDD. We matched patients to kidney donor controls on designated race and ethnicity in a 1:15 ratio. EXPOSURE 58 class I and II HLA serotypes. OUTCOME Case-control status. ANALYTICAL APPROACH For each disease cohort, univariable and multivariable logistic regression analyses were used to investigate associations between the disease and 58 HLA serotypes. In subgroup analyses, we investigated HLA associations in White and Black patients. We also studied antiglomerular basement membrane (anti-GBM) nephritis as a positive-control outcome. We applied a Bonferroni correction to account for multiple comparisons. RESULTS Eighteen serotypes were significantly associated with the odds of having MPGN in univariable analyses, with DR17 having the strongest association (odds ratio [OR], 1.55 [95% CI, 1.44-1.68], P=4.33e-28). No significant associations were found between any HLA serotype and DDD. Designated race-specific analyses showed comparable findings. We recapitulated known HLA associations in anti-GBM nephritis. LIMITATIONS Reliance on HLA serotypes (rather than genotype), lack of biopsy-confirmed diagnoses. CONCLUSIONS HLA-DR17 is associated with ESKD due to MPGN in a racially and ethnically diverse cohort. The strength of association was similar in White and Black patients, suggesting a role in the pathogenesis of MPGN. No HLA associations were observed in patients with DDD. PLAIN-LANGUAGE SUMMARY Prior studies have suggested dysregulation of the alternative complement pathway as a potential etiology of membranoproliferative glomerulonephritis (MPGN), but recent evidence from a British White population has implicated an autoimmune mechanism in MPGN pathogenesis. We investigated HLA associations between MPGN and dense deposit disease (DDD) in a large racially and ethnically diverse cohort of patients. We found that HLA-DR17 is associated with end-stage kidney disease (ESKD) due to MPGN in both White and Black patients. By contrast, no significant HLA associations with ESKD due to DDD were identified. These results suggest a role for autoimmunity in some cases of MPGN and highlight differences in the disease etiology of MPGN compared with DDD.
Collapse
Affiliation(s)
- Halimat Afolabi
- Department of Pathology, Department of Medicine, School of Medicine, Stanford University, Stanford, California
| | - Bing M Zhang
- Department of Pathology, Department of Medicine, School of Medicine, Stanford University, Stanford, California
| | | | - Glenn M Chertow
- Division of Nephrology, Department of Medicine, School of Medicine, Stanford University, Stanford, California
| | - Richard Lafayette
- Division of Nephrology, Department of Medicine, School of Medicine, Stanford University, Stanford, California
| | - Vivek Charu
- Department of Pathology, Department of Medicine, School of Medicine, Stanford University, Stanford, California; Department of Medicine and Quantitative Sciences Unit, Department of Medicine, School of Medicine, Stanford University, Stanford, California.
| |
Collapse
|
9
|
Lemieux W, Richard L, Nunes JM, Sanchez-Mazas A, Renaud C, Sapir-Pichhadze R, Lewin A. A registry-based population study of the HLA in Québec, Canada. HLA 2023; 102:671-689. [PMID: 37439270 DOI: 10.1111/tan.15154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/15/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
As part of the worldwide effort to better characterize HLA diversity in populations, we have studied the population of Québec in Canada. This province has been defined by a complex history with multiple founder effects and migration patterns. We analyzed the typing data of 3806 individuals registered in Héma-Québec's Registry, which covered most administrative regions in Québec. Typing information was resolved at the second field level of resolution by next-generation sequencing (NGS) or by Sanger sequencing. We used the HLA-net.eu GENE[RATE] tools to estimate allele and two-locus haplotype frequencies for HLA-A, -B, -C, -DRB1, -DQB1, and -DPB1, as well as Hardy-Weinberg equilibrium (HWE), selective neutrality, and linkage disequilibrium. The chord genetic distance was also calculated between administrative regions and was visualized using non-metric multidimensional scaling (NMDS) analysis. While most individual regions were in HWE, HWE was rejected for the province considered as a whole. Some regions exhibited signatures of selection, mostly toward an excess of heterozygotes. Allele and haplotype frequencies revealed outlier regions that strongly differed from the other regions. NMDS plots also showed differences between regions. The administrative regions of the province of Québec displayed heterogeneity in their HLA profiles. This heterogeneity was attributable to differing allele and haplotype specificities by region. In particular, regions 02-Saguenay-Lac-Saint-Jean and 01-Bas-St-Laurent diverged from the rest of the regions. The urban regions 06-Montréal and 13-Laval were very diversified in their HLA profiles. Together, these results will help optimize donor recruitment strategies in Québec.
Collapse
Affiliation(s)
- William Lemieux
- Medical Affairs & Innovation, Héma-Québec, Montréal, Quebec, Canada
- Centre for Outcomes Research and Evaluation (CORE), Research Institute of McGill University Health Centre, Montréal, Quebec, Canada
| | - Lucie Richard
- Transfusion Medicine/Reference Laboratory, Héma-Québec, Montréal, Quebec, Canada
| | - José Manuel Nunes
- Laboratory of Anthropology, Genetics and Peopling history, Department of Genetics and Evolution, University of Geneva and Institute of Genetics and Genomics in Geneva (IGE3), Geneva, Switzerland
| | - Alicia Sanchez-Mazas
- Laboratory of Anthropology, Genetics and Peopling history, Department of Genetics and Evolution, University of Geneva and Institute of Genetics and Genomics in Geneva (IGE3), Geneva, Switzerland
| | - Christian Renaud
- Medical Affairs & Innovation, Héma-Québec, Montréal, Quebec, Canada
| | - Ruth Sapir-Pichhadze
- Centre for Outcomes Research and Evaluation (CORE), Research Institute of McGill University Health Centre, Montréal, Quebec, Canada
- Division of Nephrology and the Multi-Organ Transplant Program, Royal Victoria Hospital, McGill University Health Centre, Montréal, Quebec, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Quebec, Canada
| | - Antoine Lewin
- Medical Affairs & Innovation, Héma-Québec, Montréal, Quebec, Canada
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
10
|
Ansari MA, Chauhan W, Shoaib S, Alyahya SA, Ali M, Ashraf H, Alomary MN, Al-Suhaimi EA. Emerging therapeutic options in the management of diabetes: recent trends, challenges and future directions. Int J Obes (Lond) 2023; 47:1179-1199. [PMID: 37696926 DOI: 10.1038/s41366-023-01369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/04/2023] [Accepted: 08/17/2023] [Indexed: 09/13/2023]
Abstract
Diabetes is a serious health issue that causes a progressive dysregulation of carbohydrate metabolism due to insufficient insulin hormone, leading to consistently high blood glucose levels. According to the epidemiological data, the prevalence of diabetes has been increasing globally, affecting millions of individuals. It is a long-term condition that increases the risk of various diseases caused by damage to small and large blood vessels. There are two main subtypes of diabetes: type 1 and type 2, with type 2 being the most prevalent. Genetic and molecular studies have identified several genetic variants and metabolic pathways that contribute to the development and progression of diabetes. Current treatments include gene therapy, stem cell therapy, statin therapy, and other drugs. Moreover, recent advancements in therapeutics have also focused on developing novel drugs targeting these pathways, including incretin mimetics, SGLT2 inhibitors, and GLP-1 receptor agonists, which have shown promising results in improving glycemic control and reducing the risk of complications. However, these treatments are often expensive, inaccessible to patients in underdeveloped countries, and can have severe side effects. Peptides, such as glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), are being explored as a potential therapy for diabetes. These peptides are postprandial glucose-dependent pancreatic beta-cell insulin secretagogues and have received much attention as a possible treatment option. Despite these advances, diabetes remains a major health challenge, and further research is needed to develop effective treatments and prevent its complications. This review covers various aspects of diabetes, including epidemiology, genetic and molecular basis, and recent advancements in therapeutics including herbal and synthetic peptides.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Waseem Chauhan
- Department of Hematology, Duke University, Durham, NC, 27710, USA
| | - Shoaib Shoaib
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Sami A Alyahya
- Wellness and Preventive Medicine Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Mubashshir Ali
- USF Health Byrd Alzheimer's Center and Neuroscience Institute, Department of Molecular Medicine, Tampa, FL, USA
| | - Hamid Ashraf
- Rajiv Gandhi Center for Diabetes and Endocrinology, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia.
| | - Ebtesam A Al-Suhaimi
- King Abdulaziz & his Companions Foundation for Giftedness & Creativity, Riyadh, Saudi Arabia.
| |
Collapse
|
11
|
Bravo-Perez C, Guarnera L, Williams ND, Visconte V. Paroxysmal Nocturnal Hemoglobinuria: Biology and Treatment. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1612. [PMID: 37763731 PMCID: PMC10535188 DOI: 10.3390/medicina59091612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is a nonmalignant clonal hematopoietic disorder characterized by the lack of glycosylphosphatidylinositol-anchored proteins (GPI-APs) as a consequence of somatic mutations in the phosphatidylinositol glycan anchor biosynthesis class A (PIGA) gene. Clinical manifestations of PNH are intravascular hemolysis, thrombophilia, and bone marrow failure. Treatment of PNH mainly relies on the use of complement-targeted therapy (C5 inhibitors), with the newest agents being explored against other factors involved in the complement cascade to alleviate unresolved intravascular hemolysis and extravascular hemolysis. This review summarizes the biology and current treatment strategies for PNH with the aim of reaching a general audience with an interest in hematologic disorders.
Collapse
Affiliation(s)
- Carlos Bravo-Perez
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44114, USA; (C.B.-P.); (L.G.); (N.D.W.)
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, IMIB-Pascual Parrilla, CIBERER—Instituto de Salud Carlos III, University of Murcia, 30005 Murcia, Spain
| | - Luca Guarnera
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44114, USA; (C.B.-P.); (L.G.); (N.D.W.)
- Hematology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Nakisha D. Williams
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44114, USA; (C.B.-P.); (L.G.); (N.D.W.)
| | - Valeria Visconte
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44114, USA; (C.B.-P.); (L.G.); (N.D.W.)
| |
Collapse
|
12
|
Rojas M, Herrán M, Ramírez-Santana C, Leung PSC, Anaya JM, Ridgway WM, Gershwin ME. Molecular mimicry and autoimmunity in the time of COVID-19. J Autoimmun 2023; 139:103070. [PMID: 37390745 PMCID: PMC10258587 DOI: 10.1016/j.jaut.2023.103070] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/26/2023] [Accepted: 06/03/2023] [Indexed: 07/02/2023]
Abstract
Infectious diseases are commonly implicated as potential initiators of autoimmune diseases (ADs) and represent the most commonly known factor in the development of autoimmunity in susceptible individuals. Epidemiological data and animal studies on multiple ADs suggest that molecular mimicry is one of the likely mechanisms for the loss of peripheral tolerance and the development of clinical disease. Besides molecular mimicry, other mechanisms such as defects in central tolerance, nonspecific bystander activation, epitope-determinant spreading, and/or constant antigenic stimuli, may also contribute for breach of tolerance and to the development of ADs. Linear peptide homology is not the only mechanism by which molecular mimicry is established. Peptide modeling (i.e., 3D structure), molecular docking analyses, and affinity estimation for HLAs are emerging as critical strategies when studying the links of molecular mimicry in the development of autoimmunity. In the current pandemic, several reports have confirmed an influence of SARS-CoV-2 on subsequent autoimmunity. Bioinformatic and experimental evidence support the potential role of molecular mimicry. Peptide dimensional analysis requires more research and will be increasingly important for designing and distributing vaccines and better understanding the role of environmental factors related to autoimmunity.
Collapse
Affiliation(s)
- Manuel Rojas
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA; Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia.
| | - María Herrán
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Juan-Manuel Anaya
- Health Research and Innovation Center at Coosalud, Cartagena, 130001, Colombia
| | - William M Ridgway
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
13
|
Mumphrey MB, Hosseini N, Parolia A, Geng J, Zou W, Raghavan M, Chinnaiyan A, Cieslik M. Distinct mutational processes shape selection of MHC class I and class II mutations across primary and metastatic tumors. Cell Rep 2023; 42:112965. [PMID: 37597185 DOI: 10.1016/j.celrep.2023.112965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/15/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023] Open
Abstract
Disruption of antigen presentation via loss of major histocompatibility complex (MHC) expression is a strategy whereby cancer cells escape immune surveillance and develop resistance to immunotherapy. Here, we develop the personalized genomics algorithm Hapster and accurately call somatic mutations within the MHC genes of 10,001 primary and 2,199 metastatic tumors, creating a catalog of 1,663 non-synonymous mutations that provide key insights into MHC mutagenesis. We find that MHC class I genes are among the most frequently mutated genes in both primary and metastatic tumors, while MHC class II mutations are more restricted. Recurrent deleterious mutations are found within haplotype- and cancer-type-specific hotspots associated with distinct mutational processes. Functional classification of MHC residues reveals significant positive selection for mutations disruptive to the B2M, peptide, and T cell binding interfaces, as well as to MHC chaperones.
Collapse
Affiliation(s)
- Michael B Mumphrey
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Noshad Hosseini
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Abhijit Parolia
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jie Geng
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Weiping Zou
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI 48109, USA; University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Malini Raghavan
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Arul Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, Ann Arbor, MI 48109, USA; University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Marcin Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
14
|
Alam R, Samad A, Ahammad F, Nur SM, Alsaiari AA, Imon RR, Talukder MEK, Nain Z, Rahman MM, Mohammad F, Karpiński TM. In silico formulation of a next-generation multiepitope vaccine for use as a prophylactic candidate against Crimean-Congo hemorrhagic fever. BMC Med 2023; 21:36. [PMID: 36726141 PMCID: PMC9891764 DOI: 10.1186/s12916-023-02750-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Crimean-Congo hemorrhagic fever (CCHF) is a widespread disease transmitted to humans and livestock animals through the bite of infected ticks or close contact with infected persons' blood, organs, or other bodily fluids. The virus is responsible for severe viral hemorrhagic fever outbreaks, with a case fatality rate of up to 40%. Despite having the highest fatality rate of the virus, a suitable treatment option or vaccination has not been developed yet. Therefore, this study aimed to formulate a multiepitope vaccine against CCHF through computational vaccine design approaches. METHODS The glycoprotein, nucleoprotein, and RNA-dependent RNA polymerase of CCHF were utilized to determine immunodominant T- and B-cell epitopes. Subsequently, an integrative computational vaccinology approach was used to formulate a multi-epitopes vaccine candidate against the virus. RESULTS After rigorous assessment, a multiepitope vaccine was constructed, which was antigenic, immunogenic, and non-allergenic with desired physicochemical properties. Molecular dynamics (MD) simulations of the vaccine-receptor complex show strong stability of the vaccine candidates to the targeted immune receptor. Additionally, the immune simulation of the vaccine candidates found that the vaccine could trigger real-life-like immune responses upon administration to humans. CONCLUSIONS Finally, we concluded that the formulated multiepitope vaccine candidates would provide excellent prophylactic properties against CCHF.
Collapse
Affiliation(s)
- Rahat Alam
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.,Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, 7408, Bangladesh
| | - Abdus Samad
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.,Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, 7408, Bangladesh
| | - Foysal Ahammad
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, 7408, Bangladesh.,Division of Biological and Biomedical Sciences (BBS), College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), 34110, Doha, Qatar
| | - Suza Mohammad Nur
- Department of Biochemistry, School of Medicine Case, Western Reserve University, Cleveland, OH, 44106, USA
| | - Ahad Amer Alsaiari
- College of Applied Medical Science, Clinical Laboratories Science Department, Taif University, Taif, 21944, Saudi Arabia
| | - Raihan Rahman Imon
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.,Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, 7408, Bangladesh
| | - Md Enamul Kabir Talukder
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.,Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, 7408, Bangladesh
| | - Zulkar Nain
- School of Biomedical Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Md Mashiar Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Farhan Mohammad
- Division of Biological and Biomedical Sciences (BBS), College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), 34110, Doha, Qatar.
| | - Tomasz M Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Rokietnicka 10, 60-806, Poznań, Poland.
| |
Collapse
|
15
|
Arrieta-Bolaños E, Hernández-Zaragoza DI, Barquera R. An HLA map of the world: A comparison of HLA frequencies in 200 worldwide populations reveals diverse patterns for class I and class II. Front Genet 2023; 14:866407. [PMID: 37035735 PMCID: PMC10076764 DOI: 10.3389/fgene.2023.866407] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
HLA frequencies show widespread variation across human populations. Demographic factors as well as selection are thought to have shaped HLA variation across continents. In this study, a worldwide comparison of HLA class I and class II diversity was carried out. Multidimensional scaling techniques were applied to 50 HLA-A and HLA-B (class I) as well as 13 HLA-DRB1 (class II) first-field frequencies in 200 populations from all continents. Our results confirm a strong effect of geography on the distribution of HLA class I allele groups, with principal coordinates analysis closely resembling geographical location of populations, especially those of Africa-Eurasia. Conversely, class II frequencies stratify populations along a continuum of differentiation less clearly correlated to actual geographic location. Double clustering analysis revealed finer intra-continental sub-clusters (e.g., Northern and Western Europe vs. South East Europe, North Africa and Southwest Asia; South and East Africa vs. West Africa), and HLA allele group patterns characteristic of these clusters. Ancient (Austronesian expansion) and more recent (Romani people in Europe) migrations, as well as extreme differentiation (Taiwan indigenous peoples, Native Americans), and interregional gene flow (Sámi, Egyptians) are also reflected by the results. Barrier analysis comparing DST and geographic location identified genetic discontinuities caused by natural barriers or human behavior explaining inter and intra-continental HLA borders for class I and class II. Overall, a progressive reduction in HLA diversity from African to Oceanian and Native American populations is noted. This analysis of HLA frequencies in a unique set of worldwide populations confirms previous findings on the remarkable similarity of class I frequencies to geography, but also shows a more complex development for class II, with implications for both human evolutionary studies and biomedical research.
Collapse
Affiliation(s)
- Esteban Arrieta-Bolaños
- Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Heidelberg, Germany
- *Correspondence: Esteban Arrieta-Bolaños,
| | | | - Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology (MPI-EVA), Leipzig, Germany
| |
Collapse
|
16
|
James LM, Leuthold AC, Georgopoulos AP. Human Leukocyte Antigen (HLA) Modulates the Dependence on Age of the Variability of Synchronous Neural Interactions. Neurosci Insights 2023; 18:26331055231159658. [PMID: 36969700 PMCID: PMC10037734 DOI: 10.1177/26331055231159658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/08/2023] [Indexed: 03/29/2023] Open
Abstract
Recent evidence documented a protective effect of Class II human leukocyte antigen (HLA) DRB1*13 on brain health across the lifespan including evidence of reduced neural network variability relative to non-carriers. Here, in an extension of those findings, we evaluated the influence of a large number of Class I and Class II HLA alleles on aging-related changes in neural network variability. Cognitively healthy women (N = 178) ranging in age from 28 to 99 years old underwent a magnetoencephalography scan from which neural network variability was calculated and provided a blood sample from which HLA and apolipoprotein E (ApoE) genotype were determined. The primary analyses assessed the dependence of network variability on age in carriers of a specific HLA allele compared to non-carriers. Effects were considered protective if there was a significant increase of network variability with age in the absence of a given HLA allele but not in its presence, and were considered to confer susceptibility if the converse was documented; HLA alleles that did not influence the dependence of network variability on age in their presence or absence were considered neutral. Of 50 alleles investigated, 22 were found to be protective, 7 were found to confer susceptibility, and 21 were neutral. The frequencies of those 50 alleles were not associated significantly with ApoE genotype. The findings, which document the influence of HLA on age-related brain changes and highlight the role of HLA in healthy brain function, are discussed in terms of the role of HLA in the human immune response to foreign antigens.
Collapse
Affiliation(s)
- Lisa M James
- The HLA Research Group, Brain Sciences
Center, Department of Veterans Affairs Health Care System, Minneapolis, MN,
USA
- Department of Neuroscience, University
of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of
Minnesota Medical School, Minneapolis, MN, USA
- Center for Cognitive Sciences,
University of Minnesota, Minneapolis, MN, USA
- Lisa M James, Department of Neuroscience,
University of Minnesota Medical School, Brain Sciences Center (11B), Minneapolis
VAHCS, 1 Veterans Drive, Minneapolis, MN 55417, USA.
| | - Arthur C Leuthold
- The HLA Research Group, Brain Sciences
Center, Department of Veterans Affairs Health Care System, Minneapolis, MN,
USA
- Department of Neuroscience, University
of Minnesota Medical School, Minneapolis, MN, USA
| | - Apostolos P Georgopoulos
- The HLA Research Group, Brain Sciences
Center, Department of Veterans Affairs Health Care System, Minneapolis, MN,
USA
- Department of Neuroscience, University
of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of
Minnesota Medical School, Minneapolis, MN, USA
- Center for Cognitive Sciences,
University of Minnesota, Minneapolis, MN, USA
- Department of Neurology, University of
Minnesota, Minneapolis, MN, USA
| |
Collapse
|
17
|
Immunogenetics of posttraumatic stress disorder (PTSD) in women veterans. Brain Behav Immun Health 2022; 26:100567. [DOI: 10.1016/j.bbih.2022.100567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
|
18
|
Hermawan A, Damai FI, Martin L, Chrisdianto M, Julianto NM, Pramanda IT, Gustiananda M. Immunoinformatics Analysis of Citrullinated Antigen as Potential Multi-peptide Lung Cancer Vaccine Candidates for Indonesian Population. Int J Pept Res Ther 2022; 28:162. [PMID: 36406283 PMCID: PMC9648882 DOI: 10.1007/s10989-022-10467-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2022] [Indexed: 11/12/2022]
Abstract
Non-small-cell lung cancer (NSCLC) is the most common lung cancer which has the highest mortality rate in Indonesia. One of the trends in treating cancer is by utilizing peptide vaccines, an immunotherapeutic approach that aims to stimulate the cell-mediated adaptive immune system to recognize cancer-associated peptides. Currently, no peptide vaccines are available in the market for NSCLC treatment. Therefore, this project aims to develop a multi-epitope peptide-based vaccine for NSCLC utilizing citrullinated peptides. Citrullination is a post-translational modification that occurs in cancer cells during autophagy that functions to induce immune responses towards modified self-epitopes such as tumor cells, through activation of PAD enzymes within the APC and target cells. It was found that introducing a common citrullinated neo-antigen peptide such as vimentin and enolase to the immune system could stimulate a higher specific CD4+ T cell response against NSCLC. Moreover, carcinoembryonic antigen (CEA), an antigen that is highly expressed in cancer cells, is also added to increase the vaccine’s specificity and to mobilize both CD4+ and CD8+ T cells. These antigens bind strongly to the MHC Class II alleles such as HLA-DRB1*07:01 and HLA-DRB*11:01, which are predominant alleles in Indonesian populations. Through in silico approach, the peptides generated from CEA, citrullinated vimentin and enolase, were analyzed for their MHC binding strength, immunogenicity, ability to induce IFNγ response, and population coverage. It is expected that the immunodominant antigens presentation is able to induce a potent immune response in NSCLC patients in Indonesia, resulting in tumor eradication.
Collapse
Affiliation(s)
- Angelika Hermawan
- Biomedicine Department, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | - Fedric Intan Damai
- Biotechnology Department, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | - Leon Martin
- Biotechnology Department, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | - Matthew Chrisdianto
- Biotechnology Department, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | | | - Ihsan Tria Pramanda
- Biotechnology Department, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | - Marsia Gustiananda
- Biomedicine Department, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| |
Collapse
|
19
|
Rao V, Chandra N. In-silico study of influence of HLA heterogeneity on CTL responses across ethnicities to SARS-CoV-2. Hum Immunol 2022; 83:797-802. [PMID: 36229378 PMCID: PMC9550298 DOI: 10.1016/j.humimm.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/12/2022] [Accepted: 09/29/2022] [Indexed: 11/04/2022]
Abstract
Differences in outcome to COVID-19 infection in different individuals is largely attributed to genetic heterogeneity leading to differential immune responses across individuals and populations. HLA is one such genetic factor that varies across individuals leading to differences in how T-cell responses are triggered against SARS-CoV-2, directly influencing disease susceptibility. HLA alleles that influence COVID-19 outcome, by virtue of epitope binding and presentation, have been identified in cohorts worldwide. However, the heterogeneity in HLA distribution across ethnic groups limits the generality of such association. In this study, we address this limitation by comparing the recognition of CTL epitopes across HLA genotypes and ethnic groups. Using HLA allele frequency data for ethnic groups from Allele Frequency Net Database (AFND), we construct synthetic populations for each ethnic group and show that CTL epitope strength varies across HLA genotypes and populations. We also observe that HLA genotypes, in certain cases, can have high CTL epitope strengths in the absence of top-responsive HLA alleles. Finally, we show that the theoretical estimate of responsiveness and hence protection offered by a HLA allele is bound to vary across ethnic groups, due to the influence of other HLA alleles within the HLA genotype on CTL epitope recognition. This emphasizes the need for studying HLA-disease associations at the genotype level rather than at a single allele level.
Collapse
Affiliation(s)
- Vishal Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore, India; Center for BioSystems Science and Engineering (BSSE), Indian Institute of Science, Bangalore, India.
| |
Collapse
|
20
|
Galym A, Akhmetova N, Zhaksybek M, Safina S, Boldyreva MN, Rakhimbekova FK, Idrissova ZR. Clinical and Genetic Analysis in Pediatric Patients with Multiple Sclerosis and Related Conditions: Focus on DR Genes of the Major Histocompatibility Complex. Open Neurol J 2022. [DOI: 10.2174/1874205x-v16-e2207200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Introduction:
There are several diseases recognized as variants of MS: post-infectious acute disseminated encephalitis, multiple sclerosis (MS), Rasmussen leukoencephalitis and Schilder's leukoencephalitis and related, but separate neuroimmune condition – Neuromyelitis Devic’s. In Kazakhstan diagnosis of such diseases was rare and immune modified treatment was only admitted after the age of 18. Clinical and immunogenetic study of MS spectrum diseases in Kazakhstan would allow to justify early targeted treatment.
Objective:
The aim of the study was to investigate genes of the main complex of human histocompatibility (MHC) associated with diseases of MS spectrum in Kazakhstani population.
Methods:
Complex clinical, neuroimaging and immunogenetic studies were performed in 34 children (24 girls, 10 boys) aged 4 to 18 years. 21 children were diagnosed with MS (11 Kazakh origin and 10 – Russian; 4 boys, 17 girls), 7 with leucoencephalitis (all Kazakh, 5 boys, 2 girls) and 6 with Devic neuromyelitis optica (all Kazakh, 1 boy, 5 girls). Genotyping of HLA DRB1, DQA1, DQB1 genes was performed for all patients.
Results:
MS group was characterized by classical relapsing-remitting MS. Predominant haplotype as a linkage complex was DRB1*15:01~DQA1*01:02~DQB1*06:02 in 20 (47.6%) of 42 DR-alleles, in 16 (76.2%) patients. MS relative risk (RR) was 13,36 for ethnic Kazakhs and RR=5,55 in Russians.
Leukoencephalitis had 7 children, with 28.6% mortality rate. The haplotype DRB1*15:01~DQA1*01:02~DQB1*06:02 as a linkage complex was detected 3 patients (4 alleles), RR=5,88.
Devic’s neuromyelitis optica (NMO) clinical course was characterized by fast and prolonged progression. There was predominance of DRB1*14 allele with RR=3,38.
Conclusion:
Summarizing, in the Kazakh population the haplotype DRB1*15:01∼DQA1*01:02∼DQB1*06:02 as a linkage complex was associated with prediction to MS and leukoencephalitis, but not to Devic’s NMO. Our study highlights the importance of awareness of MS and related disorders diagnosis which allows to implement early admission of disease-modified treatment in pediatric MS in Kazakhstan.
Collapse
|
21
|
Zhou Y, Tremmel R, Schaeffeler E, Schwab M, Lauschke VM. Challenges and opportunities associated with rare-variant pharmacogenomics. Trends Pharmacol Sci 2022; 43:852-865. [PMID: 36008164 DOI: 10.1016/j.tips.2022.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 12/26/2022]
Abstract
Recent advances in next-generation sequencing (NGS) have resulted in the identification of tens of thousands of rare pharmacogenetic variations with unknown functional effects. However, although such pharmacogenetic variations have been estimated to account for a considerable amount of the heritable variability in drug response and toxicity, accurate interpretation at the level of the individual patient remains challenging. We discuss emerging strategies and concepts to close this translational gap. We illustrate how massively parallel experimental assays, artificial intelligence (AI), and machine learning can synergize with population-scale biobank projects to facilitate the interpretation of NGS data to individualize clinical decision-making and personalized medicine.
Collapse
Affiliation(s)
- Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Roman Tremmel
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tübingen, Tübingen, Germany
| | - Elke Schaeffeler
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC2180) Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany
| | - Matthias Schwab
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; Cluster of Excellence iFIT (EXC2180) Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany; Department of Clinical Pharmacology, and Department of Biochemistry and Pharmacy, University of Tübingen, Tübingen, Germany
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden; Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tübingen, Tübingen, Germany.
| |
Collapse
|
22
|
Herzig AF, Clerget-Darpoux F, Génin E. The False Dawn of Polygenic Risk Scores for Human Disease Prediction. J Pers Med 2022; 12:jpm12081266. [PMID: 36013215 PMCID: PMC9409868 DOI: 10.3390/jpm12081266] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Polygenic risk scores (PRSs) are being constructed for many diseases and are presented today as a promising avenue in the field of human genetics. These scores aim at predicting the risk of developing a disease by leveraging the many genome-wide association studies (GWAS) conducted during the two last decades. Important investments are being made to improve score estimates by increasing GWAS sample sizes, by developing more sophisticated methods, and by proposing different corrections for potential biases. PRSs have entered the market with direct-to-consumer companies proposing to compute them from saliva samples and even recently to help parents select the healthiest embryos. In this paper, we recall how PRSs arose and question the credit they are given by revisiting underlying assumptions in light of the history of human genetics and by comparing them with estimated breeding values (EBVs) used for selection in livestock.
Collapse
Affiliation(s)
- Anthony F. Herzig
- Inserm, Université de Brest, EFS, CHU Brest, UMR 1078, GGB, F-29200 Brest, France;
| | - Françoise Clerget-Darpoux
- Université Paris Cité, Inserm, Institut Imagine, Laboratoire Embryologie et Génétique des Malformations, F-75015 Paris, France
- Correspondence: (F.C.-D.); (E.G.)
| | - Emmanuelle Génin
- Inserm, Université de Brest, EFS, CHU Brest, UMR 1078, GGB, F-29200 Brest, France;
- Correspondence: (F.C.-D.); (E.G.)
| |
Collapse
|
23
|
Long Q, Yuan Y, Li M. RNA-SSNV: A Reliable Somatic Single Nucleotide Variant Identification Framework for Bulk RNA-Seq Data. Front Genet 2022; 13:865313. [PMID: 35846154 PMCID: PMC9279659 DOI: 10.3389/fgene.2022.865313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
The usage of expressed somatic mutations may have a unique advantage in identifying active cancer driver mutations. However, accurately calling mutations from RNA-seq data is difficult due to confounding factors such as RNA-editing, reverse transcription, and gap alignment. In the present study, we proposed a framework (named RNA-SSNV, https://github.com/pmglab/RNA-SSNV) to call somatic single nucleotide variants (SSNV) from tumor bulk RNA-seq data. Based on a comprehensive multi-filtering strategy and a machine-learning classification model trained with comprehensively curated features, RNA-SSNV achieved the best precision–recall rate (0.880–0.884) in a testing dataset and robustly retained 0.94 AUC for the precision–recall curve in three validation adult-based TCGA (The Cancer Genome Atlas) datasets. We further showed that the somatic mutations called by RNA-SSNV tended to have a higher functional impact and therapeutic power in known driver genes. Furthermore, VAF (variant allele fraction) analysis revealed that subclonal harboring expressed mutations had evolutional selection advantage and RNA had higher detection power to rescue DNA-omitted mutations. In sum, RNA-SSNV will be a useful approach to accurately call expressed somatic mutations for a more insightful analysis of cancer drive genes and carcinogenic mechanisms.
Collapse
Affiliation(s)
- Qihan Long
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Center for Precision Medicine, Sun Yat-Sen University, Guangzhou, China
- Center for Disease Genome Research, Sun Yat-Sen University, Guangzhou, China
| | - Yangyang Yuan
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Center for Precision Medicine, Sun Yat-Sen University, Guangzhou, China
- Center for Disease Genome Research, Sun Yat-Sen University, Guangzhou, China
| | - Miaoxin Li
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Center for Precision Medicine, Sun Yat-Sen University, Guangzhou, China
- Center for Disease Genome Research, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China
- *Correspondence: Miaoxin Li,
| |
Collapse
|
24
|
Tshabalala M, Mellet J, Vather K, Nelson D, Mohamed F, Christoffels A, Pepper MS. High Resolution HLA ∼A, ∼B, ∼C, ∼DRB1, ∼DQA1, and ∼DQB1 Diversity in South African Populations. Front Genet 2022; 13:711944. [PMID: 35309124 PMCID: PMC8931603 DOI: 10.3389/fgene.2022.711944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/17/2022] [Indexed: 01/10/2023] Open
Abstract
Background: Lack of HLA data in southern African populations hampers disease association studies and our understanding of genetic diversity in these populations. We aimed to determine HLA diversity in South African populations using high resolution HLA ∼A, ∼B, ∼C, ∼DRB1, ∼DQA1 and ∼DQB1 data, from 3005 previously typed individuals. Methods: We determined allele and haplotype frequencies, deviations from Hardy-Weinberg equilibrium (HWE), linkage disequilibrium (LD) and neutrality test. South African HLA class I data was additionally compared to other global populations using non-metrical multidimensional scaling (NMDS), genetic distances and principal component analysis (PCA). Results: All loci strongly (p < 0.0001) deviated from HWE, coupled with excessive heterozygosity in most loci. Two of the three most frequent alleles, HLA ∼DQA1*05:02 (0.2584) and HLA ∼C*17:01 (0.1488) were previously reported in South African populations at lower frequencies. NMDS showed genetic distinctness of South African populations. Phylogenetic analysis and PCA clustered our current dataset with previous South African studies. Additionally, South Africans seem to be related to other sub-Saharan populations using HLA class I allele frequencies. Discussion and Conclusion: Despite the retrospective nature of the study, data missingness, the imbalance of sample sizes for each locus and haplotype pairs, and induced methodological difficulties, this study provides a unique and large HLA dataset of South Africans, which might be a useful resource to support anthropological studies, disease association studies, population based vaccine development and donor recruitment programs. We additionally provide simulated high resolution HLA class I data to augment the mixed resolution typing results generated from this study.
Collapse
Affiliation(s)
- Mqondisi Tshabalala
- Department of Immunology, Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Juanita Mellet
- Department of Immunology, Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Kuben Vather
- South African National Blood Service (SANBS), Roodepoort, South Africa
| | - Derrick Nelson
- South African National Blood Service (SANBS), Roodepoort, South Africa
| | - Fathima Mohamed
- South African National Blood Service (SANBS), Roodepoort, South Africa
| | - Alan Christoffels
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| | - Michael S. Pepper
- Department of Immunology, Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- *Correspondence: Michael S. Pepper,
| |
Collapse
|
25
|
Turner TR, Hayward DR, Gymer AW, Barker DJ, Leen G, Cambridge CA, Macpherson HL, Georgiou X, Cooper MA, Lucas JAM, Nadeem D, Robinson J, Mayor NP, Marsh SGE. Widespread non‐coding polymorphism in
HLA
class
II
genes of International
HLA
and Immunogenetics Workshop cell lines. HLA 2022; 99:328-356. [DOI: 10.1111/tan.14571] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Thomas R. Turner
- Anthony Nolan Research Institute, Royal Free Hospital London UK
- UCL Cancer Institute, Royal Free Campus London UK
| | | | - Arthur W. Gymer
- Anthony Nolan Research Institute, Royal Free Hospital London UK
| | | | - Gayle Leen
- Anthony Nolan Research Institute, Royal Free Hospital London UK
- UCL Cancer Institute, Royal Free Campus London UK
| | | | | | - Xenia Georgiou
- Anthony Nolan Research Institute, Royal Free Hospital London UK
| | | | | | - Daud Nadeem
- Anthony Nolan Research Institute, Royal Free Hospital London UK
| | - James Robinson
- Anthony Nolan Research Institute, Royal Free Hospital London UK
- UCL Cancer Institute, Royal Free Campus London UK
| | - Neema P. Mayor
- Anthony Nolan Research Institute, Royal Free Hospital London UK
- UCL Cancer Institute, Royal Free Campus London UK
| | - Steven G. E. Marsh
- Anthony Nolan Research Institute, Royal Free Hospital London UK
- UCL Cancer Institute, Royal Free Campus London UK
| |
Collapse
|
26
|
Dholakia D, Kalra A, Misir BR, Kanga U, Mukerji M. HLA-SPREAD: a natural language processing based resource for curating HLA association from PubMed abstracts. BMC Genomics 2022; 23:10. [PMID: 34991484 PMCID: PMC8740486 DOI: 10.1186/s12864-021-08239-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
Extreme complexity in the Human Leukocyte Antigens (HLA) system and its nomenclature makes it difficult to interpret and integrate relevant information for HLA associations with diseases, Adverse Drug Reactions (ADR) and Transplantation. PubMed search displays ~ 146,000 studies on HLA reported from diverse locations. Currently, IPD-IMGT/HLA (Robinson et al., Nucleic Acids Research 48:D948-D955, 2019) database houses data on 28,320 HLA alleles. We developed an automated pipeline with a unified graphical user interface HLA-SPREAD that provides a structured information on SNPs, Populations, REsources, ADRs and Diseases information. Information on HLA was extracted from ~ 28 million PubMed abstracts extracted using Natural Language Processing (NLP). Python scripts were used to mine and curate information on diseases, filter false positives and categorize to 24 tree hierarchical groups and named Entity Recognition (NER) algorithms followed by semantic analysis to infer HLA association(s). This resource from 109 countries and 40 ethnic groups provides interesting insights on: markers associated with allelic/haplotypic association in autoimmune, cancer, viral and skin diseases, transplantation outcome and ADRs for hypersensitivity. Summary information on clinically relevant biomarkers related to HLA disease associations with mapped susceptible/risk alleles are readily retrievable from HLASPREAD. The resource is available at URL http://hla-spread.igib.res.in/ . This resource is first of its kind that can help uncover novel patterns in HLA gene-disease associations.
Collapse
Affiliation(s)
- Dhwani Dholakia
- Institute of Genomics and Integrative Biology-Council of Scientific and Industrial Research, New Delhi, 110025, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| | - Ankit Kalra
- Netaji Subhas University of Technology, New Delhi, 110078, India
| | - Bishnu Raman Misir
- Centre of Excellence for Applied Development of Ayurveda, Prakriti and Genomics, CSIR- IGIB, Delhi, 110007, India
| | - Uma Kanga
- All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Mitali Mukerji
- Institute of Genomics and Integrative Biology-Council of Scientific and Industrial Research, New Delhi, 110025, India.
- Centre of Excellence for Applied Development of Ayurveda, Prakriti and Genomics, CSIR- IGIB, Delhi, 110007, India.
- Present Address: Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India.
| |
Collapse
|
27
|
Shireman JM, Ammanuel S, Eickhoff JC, Dey M. Sexual dimorphism of the immune system predicts clinical outcomes in glioblastoma immunotherapy: A systematic review and meta-analysis. Neurooncol Adv 2022; 4:vdac082. [PMID: 35821678 PMCID: PMC9268746 DOI: 10.1093/noajnl/vdac082] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Biological differences based on sex have been documented throughout the scientific literature. Glioblastoma (GBM), the most common primary malignant brain tumor in adults, has a male sex incidence bias, however, no clinical trial data examining differential effects of treatment between sexes currently exists. Method We analyzed genomic data, as well as clinical trials, to delineate the effect of sex on the immune system and GBM outcome following immunotherapy. Results We found that in general females possess enriched immunological signatures on gene set enrichment analysis, which also stratified patient survival when delineated by sex. Female GBM patients treated with immunotherapy had a statistically significant survival advantage at the 1-year compared to males (relative risk [RR] = 1.15; P = .0241). This effect was even more pronounced in vaccine-based immunotherapy (RR = 1.29; P = .0158). Conclusions Our study shows a meaningful difference in the immunobiology between males and females that also influences the overall response to immunotherapy in the setting of GBM.
Collapse
Affiliation(s)
- Jack M Shireman
- Department of Neurosurgery, University of Wisconsin School of Medicine and Public Health, UW Carbone Cancer Center, Madison, Wisconsin, USA
| | - Simon Ammanuel
- Department of Neurosurgery, University of Wisconsin School of Medicine and Public Health, UW Carbone Cancer Center, Madison, Wisconsin, USA
| | - Jens C Eickhoff
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Mahua Dey
- Department of Neurosurgery, University of Wisconsin School of Medicine and Public Health, UW Carbone Cancer Center, Madison, Wisconsin, USA
| |
Collapse
|
28
|
Chawla S, Chawla S. Comparative Analysis of Susceptibility and Severity of COVID-19 in Countries from the Eastern and the Western World Till March '21. Microbiol Insights 2021; 14:11786361211041367. [PMID: 34483666 PMCID: PMC8411631 DOI: 10.1177/11786361211041367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 07/27/2021] [Indexed: 11/24/2022] Open
Abstract
Majority of the world’s human population today is affected by Covid-19. The
disease has not only exhibited differences in susceptibility among people of
different countries, but also the mortality rate. In general, Western world has
been reporting a greater number of infected cases than eastern countries. Even
the mortality rates are quite high there. The aim of this study was to analyse
the data available on the infectivity and mortality rates of Covid-19 in
different countries till March’21 and then reviewed the literature to find
reasons for the differences in susceptibility and severity in eastern and
western countries. The reasons for the observed differences may be: (i) Eastern
countries followed stricter modalities and got grace period to create better
healthcare facilities to tackle COVID-19. This probably also slowed the
transmission of virus and its evolution, (ii) Vaccination policies in the east
may have provided some immunity due to cross reactivity, (iii) Frequent exposure
to infections at young age in eastern countries might be helping in better
immunity, (iv) Mutations in viral genome may be geography based and (v) Genetic
differences in the immune system of the hosts with respect to ACE receptors and
MHC may be playing an important role. In this article, an attempt has been made
to put forth and discuss these plausible reasons along with suitable evidences.
These findings may help in future research on the diagnosis, treatment and
prevention of Covid-19.
Collapse
Affiliation(s)
- Shashi Chawla
- Department of Microbiology, Gargi College, New Delhi, India
| | | |
Collapse
|
29
|
Hakim A, Hasan MM, Hasan M, Lokman SM, Azim KF, Raihan T, Chowdhury PA, Azad AK. Major Insights in Dynamics of Host Response to SARS-CoV-2: Impacts and Challenges. Front Microbiol 2021; 12:637554. [PMID: 34512561 PMCID: PMC8424194 DOI: 10.3389/fmicb.2021.637554] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/28/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19), a pandemic declared by the World Health Organization on March 11, 2020, is caused by the infection of highly transmissible species of a novel coronavirus called severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). As of July 25, 2021, there are 194,372,584 cases and 4,167,937 deaths with high variability in clinical manifestations, disease burden, and post-disease complications among different people around the globe. Overall, COVID-19 is manifested as mild to moderate in almost 90% of the cases and only the rest 10% of the cases need hospitalization. However, patients with older age and those having different comorbidities have made worst the pandemic scenario. The variability of pathological consequences and clinical manifestations of COVID-19 is associated with differential host-SARS-CoV-2 interactions, which are influenced by the factors that originated from the SARS-CoV-2 and the host. These factors usually include the genomic attributes and virulent factors of the SARS-CoV-2, the burden of coinfection with other viruses and bacteria, age and gender of the individuals, different comorbidities, immune suppressions/deficiency, genotypes of major histocompatibility complex, and blood group antigens and antibodies. We herein retrieved and reviewed literatures from PubMed, Scopus, and Google relevant to clinical complications and pathogenesis of COVID-19 among people of different age, sex, and geographical locations; genomic characteristics of SARS-CoV-2 including its variants, host response under different variables, and comorbidities to summarize the dynamics of the host response to SARS-CoV-2 infection; and host response toward approved vaccines and treatment strategies against COVID-19. After reviewing a large number of published articles covering different aspects of host response to SARS-CoV-2, it is clear that one aspect from one region is not working with the scenario same to others, as studies have been done separately with a very small number of cases from a particular area/region of a country. Importantly, to combat such a pandemic as COVID-19, a conclusive understanding of the disease dynamics is required. This review emphasizes on the identification of the factors influencing the dynamics of host responses to SARS-CoV-2 and offers a future perspective to explore the molecular insights of COVID-19.
Collapse
Affiliation(s)
- Al Hakim
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md. Mahbub Hasan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, London, United Kingdom
| | - Mahmudul Hasan
- Department of Pharmaceutical and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Syed Mohammad Lokman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Kazi Faizul Azim
- Department of Microbial Biotechnology, Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Topu Raihan
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | | - Abul Kalam Azad
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
30
|
Analysis of HLA gene polymorphisms in East Africans reveals evidence of gene flow in two Semitic populations from Sudan. Eur J Hum Genet 2021; 29:1259-1271. [PMID: 33753913 PMCID: PMC8384866 DOI: 10.1038/s41431-021-00845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/28/2020] [Accepted: 02/25/2021] [Indexed: 02/02/2023] Open
Abstract
Sudan, a northeastern African country, is characterized by high levels of cultural, linguistic, and genetic diversity, which is believed to be affected by continuous migration from neighboring countries. Consistent with such demographic effect, genome-wide SNP data revealed a shared ancestral component among Sudanese Afro-Asiatic speaking groups and non-African populations, mainly from West Asia. Although this component is shared among all Afro-Asiatic speaking groups, the extent of this sharing in Semitic groups, such as Sudanese Arab, is still unknown. Using genotypes of six polymorphic human leukocyte antigen (HLA) genes (i.e., HLA-A, -C, -B, -DRB1, -DQB1, and -DPB1), we examined the genetic structure of eight East African ethnic groups with origins in Sudan, South Sudan, and Ethiopia. We identified informative HLA alleles using principal component analysis, which revealed that the two Semitic groups (Gaalien and Shokrya) constituted a distinct cluster from the other Afro-Asiatic speaking groups in this study. The HLA alleles that distinguished Semitic Arabs co-exist in the same extended HLA haplotype, and those alleles are in strong linkage disequilibrium. Interestingly, we find the four-locus haplotype "C*12:02-B*52:01-DRB1*15:02-DQB1*06:01" exclusively in non-African populations and it is widely spread across Asia. The identification of this haplotype suggests a gene flow from Asia, and likely these haplotypes were brought to Africa through back migration from the Near East. These findings will be of interest to biomedical and anthropological studies that examine the demographic history of northeast Africa.
Collapse
|
31
|
Sarri CA, Giannoulis T, Moutou KA, Mamuris Z. HLA class II peptide-binding-region analysis reveals funneling of polymorphism in action. Immunol Lett 2021; 238:75-95. [PMID: 34329645 DOI: 10.1016/j.imlet.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/05/2021] [Accepted: 07/17/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND HLA-class II proteins hold important roles in key physiological processes. The purpose of this study was to compile all class II alleles reported in human population and investigate patterns in pocket variants and their combinations, focusing on the peptide-binding region (PBR). METHODS For this purpose, all protein sequences of DPA1, DQA1, DPB1, DQB1 and DRB1 were selected and filtered, in order to have full PBR sequences. Proportional representation was used for pocket variants while population data were also used. RESULTS All pocket variants and PBR sequences were retrieved and analyzed based on the preference of amino acids and their properties in all pocket positions. The observed number of pocket variants combinations was much lower than the possible inferred, suggesting that PBR formation is under strict funneling. Also, although class II proteins are very polymorphic, in the majority of the reported alleles in all populations, a significantly less polymorphic pocket core was found. CONCLUSIONS Pocket variability of five HLA class II proteins was studied revealing favorable properties of each protein. The actual PBR sequences of HLA class II proteins appear to be governed by restrictions that lead to the establishment of only a fraction of the possible combinations and the polymorphism recorded is the result of intense funneling based on function.
Collapse
Affiliation(s)
- Constantina A Sarri
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece
| | - Themistoklis Giannoulis
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece; Department of Animal Science, University of Thessaly, Trikallon 224, 43100 Karditsa, Greece
| | - Katerina A Moutou
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece
| | - Zissis Mamuris
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece.
| |
Collapse
|
32
|
Di D, Nunes JM, Jiang W, Sanchez-Mazas A. Like Wings of a Bird: Functional Divergence and Complementarity between HLA-A and HLA-B Molecules. Mol Biol Evol 2021; 38:1580-1594. [PMID: 33320202 PMCID: PMC8355449 DOI: 10.1093/molbev/msaa325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human leukocyte antigen (HLA) genes are among the most polymorphic of our genome, as a likely consequence of balancing selection related to their central role in adaptive immunity. HLA-A and HLA-B genes were recently suggested to evolve through a model of joint divergent asymmetric selection conferring all human populations, including those with severe loss of diversity, an equivalent immune potential. However, the mechanisms by which these two genes might undergo joint evolution while displaying very distinct allelic profiles in populations are still unknown. To address this issue, we carried out extensive data analyses (among which factorial correspondence analysis and linear modeling) on 2,909 common and rare HLA-A, HLA-B, and HLA-C alleles and 200,000 simulated pathogenic peptides by taking into account sequence variation, predicted peptide-binding affinity and HLA allele frequencies in 123 populations worldwide. Our results show that HLA-A and HLA-B (but not HLA-C) molecules maintain considerable functional divergence in almost all populations, which likely plays an instrumental role in their immune defense. We also provide robust evidence of functional complementarity between HLA-A and HLA-B molecules, which display asymmetric relationships in terms of amino acid diversity at both inter- and intraprotein levels and in terms of promiscuous or fastidious peptide-binding specificities. Like two wings of a flying bird, the functional complementarity of HLA-A and HLA-B is a perfect example, in our genome, of duplicated genes sharing their capacity of assuming common vital functions while being submitted to complex and sometimes distinct environmental pressures.
Collapse
Affiliation(s)
- Da Di
- Laboratory of Anthropology, Genetics and Peopling History (AGP Lab), Department of Genetics and Evolution-Anthropology Unit, University of Geneva, Geneva, Switzerland
| | - Jose Manuel Nunes
- Laboratory of Anthropology, Genetics and Peopling History (AGP Lab), Department of Genetics and Evolution-Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva Medical Centre (CMU), Geneva, Switzerland
| | - Wei Jiang
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alicia Sanchez-Mazas
- Laboratory of Anthropology, Genetics and Peopling History (AGP Lab), Department of Genetics and Evolution-Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva Medical Centre (CMU), Geneva, Switzerland
| |
Collapse
|
33
|
Kang M, Ahn B, Youk S, Cho HS, Choi M, Hong K, Do JT, Song H, Jiang H, Kennedy LJ, Park C. High Allelic Diversity of Dog Leukocyte Antigen Class II in East Asian Dogs: Identification of New Alleles and Haplotypes. J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09560-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Iacontini EGR, Rampim GF, Terapin CF, de Lima MG, de Freitas Dutra V. Identification of the novel HLA-A*68:250 allele in a volunteer bone marrow donor from Sao Paulo, Brazil. HLA 2021; 97:541-543. [PMID: 33709624 DOI: 10.1111/tan.14253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/30/2022]
Abstract
The allele HLA-A*68:250 differs from HLA-A*68:27:01 by three nucleotides.
Collapse
Affiliation(s)
| | | | | | | | - Valéria de Freitas Dutra
- Histocompatibility Laboratory/"Santa Casa de Misericórdia de São Paulo" Blood Center, São Paulo, Brazil
| |
Collapse
|
35
|
Seshasubramanian V, SathishKannan AD, Naganathan C, Narayan S, Periathiruvadi S. Molecular analysis of HLA Class I and Class II genes in five different South Indian linguistic groups. HLA 2021; 97:399-419. [PMID: 33583139 DOI: 10.1111/tan.14219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/16/2021] [Accepted: 02/08/2021] [Indexed: 11/30/2022]
Abstract
South Indians are a heterogeneous population who speak different languages and differ in their life style and physical appearance. Major population movements, social structure and caste endogamy have influenced the genetic structure of Indian populations. The human leukocyte antigen (HLA) system of populations is highly informative because of the high level of polymorphisms. Knowledge of allele and haplotype frequencies of the HLA system is important in the search for unrelated bone marrow donors. We investigated the distribution of HLA A, B, C, DRB1 and DQB1 loci in five linguistic groups from South India. HLA-A*01:01:01~B*57:01:01:01~C*06:02:01~DRB1*07:01:01~DQB1*03:03:02 was the common haplotype with highest frequency in all the five populations studied. A few relevant haplotypes were identified as most common haplotypes in each linguistic group. Comparison of HLA-A, -B and -DRB1 allele distribution in these five linguistic groups with the other Asian population showed that the South Indian populations were closely related to Sri Lankan populations. A large South Indian donor registry might serve as good source of donors for patients from Sri Lanka and vice versa.
Collapse
Affiliation(s)
| | | | | | - Saranya Narayan
- JEENOMICS (NGS HLA laboratory), Jeevan Stem Cell Foundation, Chennai, India
| | | |
Collapse
|
36
|
Jekarl DW, Lee GD, Yoo JB, Kim JR, Yu H, Yoo J, Lim J, Kim M, Kim Y. HLA-A, -B, -C, -DRB1 allele and haplotype frequencies of the Korean population and performance characteristics of HLA typing by next-generation sequencing. HLA 2021; 97:188-197. [PMID: 33314756 DOI: 10.1111/tan.14167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/06/2020] [Accepted: 12/07/2020] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Human leukocyte antigen (HLA) identification at the allelic level is important for haematopoietic stem cell transplantation (HSCT). Next-generation sequencing (NGS) resolves ambiguous alleles by determining the phase of the polymorphisms. The aim of this study was to validate the software for HLA-SBT (sequence-based typing), assess Korean allele frequency, and characterise the performance of NGS-HLA typing. METHODS From the 2009 to 2016 registry, 1293 unrelated healthy donors with a complete dataset of previously characterised HLA-A, -B, -C, and -DRB1 loci were selected and assessed for frequency, haplotype inference, and relative linkage disequilibrium. For performance characteristics of NGS-HLA, alleles included in 1293 cases and ambiguous or alleles assigned as new by SBT-HLA software, or unassigned alleles were included. A total of 91 and 41 quality control samples resulted in 1056 alleles (132 samples × 4 loci × 2 diploid) for analysis. The GenDx NGSgo kit was used for NGS-HLA typing using the Illumina MiSeq platform. RESULTS A panel of 132 samples covered 231 alleles, including 53 HLA-A, 80 HLA-B, 43 HLA-C, and 55 HLA-DRB1 by HLA-SBT typing. Comparison of SBT-HLA and NGS-HLA typing showed 99.7% (1053/1056) concordance and discrepant cases were resolved by manual evaluation. Typing by NGS resulted in 67 HLA-A, 112 HLA-B, 71 HLA-C, and 72 HLA-DRB1 alleles. A total of 132 ambiguous, 4 new, and 1 unassigned alleles by HLA-SBT were resolved by NGS-HLA typing. CONCLUSIONS NGS-HLA typing provided robust and conclusive results without ambiguities, and its implementation could support HSCT in clinical settings.
Collapse
Affiliation(s)
- Dong Wook Jekarl
- Department of Laboratory Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Laboratory Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea Seoul, Republic of Korea
| | - Gun Dong Lee
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea Seoul, Republic of Korea
| | - Jae Bin Yoo
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea Seoul, Republic of Korea
| | - Jung Rok Kim
- Department of Laboratory Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Haein Yu
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea Seoul, Republic of Korea
| | - Jaeeun Yoo
- Department of Laboratory Medicine, College of Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jihyang Lim
- Department of Laboratory Medicine, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Laboratory Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea Seoul, Republic of Korea.,Catholic Genetic Laboratory Center, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yonggoo Kim
- Department of Laboratory Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Laboratory Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea Seoul, Republic of Korea.,Catholic Genetic Laboratory Center, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
37
|
Fok JA, Mayer C. Genetic-Code-Expansion Strategies for Vaccine Development. Chembiochem 2020; 21:3291-3300. [PMID: 32608153 PMCID: PMC7361271 DOI: 10.1002/cbic.202000343] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/29/2020] [Indexed: 12/16/2022]
Abstract
By providing long-term protection against infectious diseases, vaccinations have significantly reduced death and morbidity worldwide. In the 21st century, (bio)technological advances have paved the way for developing prophylactic vaccines that are safer and more effective as well as enabling the use of vaccines as therapeutics to treat human diseases. Here, we provide a focused review of the utility of genetic code expansion as an emerging tool for the development of vaccines. Specifically, we discuss how the incorporation of immunogenic noncanonical amino acids can aid in eliciting immune responses against adverse self-proteins and highlight the potential of an expanded genetic code for the construction of replication-incompetent viruses. We close the review by discussing the future prospects and remaining challenges for the application of these approaches in the development of both prophylactic and therapeutic vaccines in the near future.
Collapse
Affiliation(s)
- Jelle A. Fok
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49474 AGGroningen (TheNetherlands
| | - Clemens Mayer
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49474 AGGroningen (TheNetherlands
| |
Collapse
|
38
|
Leen G, Stein JE, Robinson J, Maldonado Torres H, Marsh SGE. The HLA diversity of the Anthony Nolan register. HLA 2020; 97:15-29. [PMID: 33128327 PMCID: PMC7756289 DOI: 10.1111/tan.14127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/15/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022]
Abstract
While the success of allogeneic stem cell transplantation depends on a high degree of HLA compatibility between donor and patient, finding a suitable donor remains challenging due to the hyperpolymorphic nature of HLA genes. We calculated high-resolution allele, haplotype and phenotype frequencies for HLA-A, -C, -B, -DRB1 and -DQB1 for 10 subpopulations of the Anthony Nolan (AN) register using an in-house expectation-maximisation (EM) algorithm run on mixed resolution HLA data, covering 676 155 individuals. Sample sizes range from 599 410 for British/Irish North West European (BINWE) individuals, the largest subpopulation in the United Kingdom to 1105 for the British Bangladeshi population. Calculation of genetic distance between the subpopulations based on haplotype frequencies shows three broad clusters, each following a major continental group: European, African and Asian. We further analysed the HLA haplotype and phenotype diversity of each subpopulation, and found that 35.52% of BINWE individuals ranging to 98.34% of Middle Eastern individuals on the register had a unique phenotype within their subpopulation. These analyses and the allele, haplotype and phenotype frequency data of the subpopulation on the AN register are a valuable resource in understanding the HLA diversity in the United Kingdom and can be used to improve the accuracy of match likelihoods and to inform future donor recruitment strategies.
Collapse
Affiliation(s)
- Gayle Leen
- Anthony Nolan Research Institute, Royal Free Campus, London, UK.,UCL Cancer Institute, Royal Free Campus, London, UK
| | - Jeremy E Stein
- Anthony Nolan Research Institute, Royal Free Campus, London, UK
| | - James Robinson
- Anthony Nolan Research Institute, Royal Free Campus, London, UK.,UCL Cancer Institute, Royal Free Campus, London, UK
| | - Hazael Maldonado Torres
- Anthony Nolan Research Institute, Royal Free Campus, London, UK.,UCL Cancer Institute, Royal Free Campus, London, UK
| | - Steven G E Marsh
- Anthony Nolan Research Institute, Royal Free Campus, London, UK.,UCL Cancer Institute, Royal Free Campus, London, UK
| |
Collapse
|
39
|
Nunes K, Aguiar VRC, Silva M, Sena AC, de Oliveira DCM, Dinardo CL, Kehdy FSG, Tarazona-Santos E, Rocha VG, Carneiro-Proietti ABF, Loureiro P, Flor-Park MV, Maximo C, Kelly S, Custer B, Weir BS, Sabino EC, Porto LC, Meyer D. How Ancestry Influences the Chances of Finding Unrelated Donors: An Investigation in Admixed Brazilians. Front Immunol 2020; 11:584950. [PMID: 33240273 PMCID: PMC7677137 DOI: 10.3389/fimmu.2020.584950] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
A match of HLA loci between patients and donors is critical for successful hematopoietic stem cell transplantation. However, the extreme polymorphism of HLA loci - an outcome of millions of years of natural selection - reduces the chances that two individuals will carry identical combinations of multilocus HLA genotypes. Further, HLA variability is not homogeneously distributed throughout the world: African populations on average have greater variability than non-Africans, reducing the chances that two unrelated African individuals are HLA identical. Here, we explore how self-identification (often equated with "ethnicity" or "race") and genetic ancestry are related to the chances of finding HLA compatible donors in a large sample from Brazil, a highly admixed country. We query REDOME, Brazil's Bone Marrow Registry, and investigate how different criteria for identifying ancestry influence the chances of finding a match. We find that individuals who self-identify as "Black" and "Mixed" on average have lower chances of finding matches than those who self-identify as "White" (up to 57% reduction). We next show that an individual's African genetic ancestry, estimated using molecular markers and quantified as the proportion of an individual's genome that traces its ancestry to Africa, is strongly associated with reduced chances of finding a match (up to 60% reduction). Finally, we document that the strongest reduction in chances of finding a match is associated with having an MHC region of exclusively African ancestry (up to 75% reduction). We apply our findings to a specific condition, for which there is a clinical indication for transplantation: sickle-cell disease. We show that the increased African ancestry in patients with this disease leads to reduced chances of finding a match, when compared to the remainder of the sample, without the condition. Our results underscore the influence of ancestry on chances of finding compatible HLA matches, and indicate that efforts guided to increasing the African component of registries are necessary.
Collapse
Affiliation(s)
- Kelly Nunes
- Laboratory of Evolutionary Genetics, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Vitor R. C. Aguiar
- Laboratory of Evolutionary Genetics, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Márcio Silva
- Instituto de Matemática e Estatística, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre C. Sena
- Instituto de Matemática e Estatística, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielli C. M. de Oliveira
- Registro Nacional de Doadores Voluntários de Medula Óssea—REDOME, Instituto Nacional do Câncer, Ministério da Saúde, Rio de Janeiro, Brazil
| | | | | | - Eduardo Tarazona-Santos
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanderson G. Rocha
- Fundação Pró Sangue, Hemocentro de São Paulo, São Paulo, Brazil
- Serviço de Hematologia, Hemoterapia e Terapia Celular, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Paula Loureiro
- Fundação Hemominas, Belo Horizonte, Brazil
- Fundação de Hematologia e Hemoterapia de Pernambuco, HEMOPE, Recife, Brazil
| | - Miriam V. Flor-Park
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Instituto da Criança, São Paulo, Brazil
| | | | - Shannon Kelly
- Epidemiology, Vitalant Research Institute, San Francisco, CA, United States
- University of California San Francisco Benioff Children’s Hospital Oakland, Oakland, CA, United States
| | - Brian Custer
- Epidemiology, Vitalant Research Institute, San Francisco, CA, United States
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Bruce S. Weir
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Ester C. Sabino
- Instituto de Medicina Tropical, Departamento de Moléstias Infecciosas e Parasitárias da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luís Cristóvão Porto
- Laboratório de Histocompatibilidade e Criopreservação, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo Meyer
- Laboratory of Evolutionary Genetics, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
40
|
Single RM, Meyer D, Nunes K, Francisco RS, Hünemeier T, Maiers M, Hurley CK, Bedoya G, Gallo C, Hurtado AM, Llop E, Petzl-Erler ML, Poletti G, Rothhammer F, Tsuneto L, Klitz W, Ruiz-Linares A. Demographic history and selection at HLA loci in Native Americans. PLoS One 2020; 15:e0241282. [PMID: 33147239 PMCID: PMC7641399 DOI: 10.1371/journal.pone.0241282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 10/12/2020] [Indexed: 12/22/2022] Open
Abstract
The American continent was the last to be occupied by modern humans, and native populations bear the marks of recent expansions, bottlenecks, natural selection, and population substructure. Here we investigate how this demographic history has shaped genetic variation at the strongly selected HLA loci. In order to disentangle the relative contributions of selection and demography process, we assembled a dataset with genome-wide microsatellites and HLA-A, -B, -C, and -DRB1 typing data for a set of 424 Native American individuals. We find that demographic history explains a sizeable fraction of HLA variation, both within and among populations. A striking feature of HLA variation in the Americas is the existence of alleles which are present in the continent but either absent or very rare elsewhere in the world. We show that this feature is consistent with demographic history (i.e., the combination of changes in population size associated with bottlenecks and subsequent population expansions). However, signatures of selection at HLA loci are still visible, with significant evidence selection at deeper timescales for most loci and populations, as well as population differentiation at HLA loci exceeding that seen at neutral markers.
Collapse
Affiliation(s)
- Richard M. Single
- Department of Mathematics and Statistics, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| | - Diogo Meyer
- Departmento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, Brazil
| | - Kelly Nunes
- Departmento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, Brazil
| | | | - Tábita Hünemeier
- Departmento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, Brazil
| | - Martin Maiers
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota, United States of America
| | - Carolyn K. Hurley
- CW Bill Young Marrow Donor Recruitment and Research Program, Georgetown University, Washington, DC, United States of America
| | - Gabriel Bedoya
- Instituto de Biología, Universidad de Antioquia Medellín, Medellín, Colombia
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Ana Magdalena Hurtado
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, United States of America
| | - Elena Llop
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | - Giovanni Poletti
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Francisco Rothhammer
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto de Alta Investigación, Tarapacá University, Arica, Chile
| | - Luiza Tsuneto
- Department of Basic Health Sciences, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - William Klitz
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| | - Andrés Ruiz-Linares
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
- CNRS, EFS, ADES, D Aix-Marseille University, Marseille, France
| |
Collapse
|
41
|
Vangenot C, Nunes JM, Doxiadis GM, Poloni ES, Bontrop RE, de Groot NG, Sanchez-Mazas A. Similar patterns of genetic diversity and linkage disequilibrium in Western chimpanzees (Pan troglodytes verus) and humans indicate highly conserved mechanisms of MHC molecular evolution. BMC Evol Biol 2020; 20:119. [PMID: 32933484 PMCID: PMC7491122 DOI: 10.1186/s12862-020-01669-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 08/06/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Many species are threatened with extinction as their population sizes decrease with changing environments or face novel pathogenic threats. A reduction of genetic diversity at major histocompatibility complex (MHC) genes may have dramatic effects on populations' survival, as these genes play a key role in adaptive immunity. This might be the case for chimpanzees, the MHC genes of which reveal signatures of an ancient selective sweep likely due to a viral epidemic that reduced their population size a few million years ago. To better assess how this past event affected MHC variation in chimpanzees compared to humans, we analysed several indexes of genetic diversity and linkage disequilibrium across seven MHC genes on four cohorts of chimpanzees and we compared them to those estimated at orthologous HLA genes in a large set of human populations. RESULTS Interestingly, the analyses uncovered similar patterns of both molecular diversity and linkage disequilibrium across the seven MHC genes in chimpanzees and humans. Indeed, in both species the greatest allelic richness and heterozygosity were found at loci A, B, C and DRB1, the greatest nucleotide diversity at loci DRB1, DQA1 and DQB1, and both significant global linkage disequilibrium and the greatest proportions of haplotypes in linkage disequilibrium were observed at pairs DQA1 ~ DQB1, DQA1 ~ DRB1, DQB1 ~ DRB1 and B ~ C. Our results also showed that, despite some differences among loci, the levels of genetic diversity and linkage disequilibrium observed in contemporary chimpanzees were globally similar to those estimated in small isolated human populations, in contrast to significant differences compared to large populations. CONCLUSIONS We conclude, first, that highly conserved mechanisms shaped the diversity of orthologous MHC genes in chimpanzees and humans. Furthermore, our findings support the hypothesis that an ancient demographic decline affecting the chimpanzee populations - like that ascribed to a viral epidemic - exerted a substantial effect on the molecular diversity of their MHC genes, albeit not more pronounced than that experienced by HLA genes in human populations that underwent rapid genetic drift during humans' peopling history. We thus propose a model where chimpanzees' MHC genes regenerated molecular variation through recombination/gene conversion and/or balancing selection after the selective sweep.
Collapse
Affiliation(s)
- Christelle Vangenot
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution, Anthropology Unit, University of Geneva, Geneva, Switzerland
| | - José Manuel Nunes
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution, Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Gaby M Doxiadis
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288, GJ, Rijswijk, The Netherlands
| | - Estella S Poloni
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution, Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Ronald E Bontrop
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288, GJ, Rijswijk, The Netherlands
| | - Natasja G de Groot
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288, GJ, Rijswijk, The Netherlands
| | - Alicia Sanchez-Mazas
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution, Anthropology Unit, University of Geneva, Geneva, Switzerland. .,Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| |
Collapse
|
42
|
Barquera R, Hernández-Zaragoza DI, Bravo-Acevedo A, Arrieta-Bolaños E, Clayton S, Acuña-Alonzo V, Martínez-Álvarez JC, López-Gil C, Adalid-Sáinz C, Vega-Martínez MDR, Escobedo-Ruíz A, Juárez-Cortés ED, Immel A, Pacheco-Ubaldo H, González-Medina L, Lona-Sánchez A, Lara-Riegos J, Sánchez-Fernández MGDJ, Díaz-López R, Guizar-López GU, Medina-Escobedo CE, Arrazola-García MA, Montiel-Hernández GD, Hernández-Hernández O, Ramos-de la Cruz FDR, Juárez-Nicolás F, Pantoja-Torres JA, Rodríguez-Munguía TJ, Juárez-Barreto V, Delgado-Aguirre H, Escutia-González AB, Goné-Vázquez I, Benítez-Arvizu G, Arellano-Prado FP, García-Arias VE, Rodríguez-López ME, Méndez-Mani P, García-Álvarez R, González-Martínez MDR, Aquino-Rubio G, Escareño-Montiel N, Vázquez-Castillo TV, Uribe-Duarte MG, Ruíz-Corral MDJ, Ortega-Yáñez A, Bernal-Felipe N, Gómez-Navarro B, Arriaga-Perea AJ, Martínez-Bezies V, Macías-Medrano RM, Aguilar-Campos JA, Solís-Martínez R, Serrano-Osuna R, Sandoval-Sandoval MJ, Jaramillo-Rodríguez Y, Salgado-Adame A, Juárez-de la Cruz F, Novelo-Garza B, Pavón-Vargas MDLÁ, Salgado-Galicia N, Bortolini MC, Gallo C, Bedoya G, Rothhammer F, González-José R, Ruiz-Linares A, Canizales-Quinteros S, Romero-Hidalgo S, Krause J, Zúñiga J, Yunis EJ, Bekker-Méndez C, Granados J. The immunogenetic diversity of the HLA system in Mexico correlates with underlying population genetic structure. Hum Immunol 2020; 81:461-474. [PMID: 32651014 DOI: 10.1016/j.humimm.2020.06.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022]
Abstract
We studied HLA class I (HLA-A, -B) and class II (HLA-DRB1, -DQB1) allele groups and alleles by PCR-SSP based typing in a total of 15,318 mixed ancestry Mexicans from all the states of the country divided into 78 sample sets, providing information regarding allelic and haplotypic frequencies and their linkage disequilibrium, as well as admixture estimates and genetic substructure. We identified the presence of 4268 unique HLA extended haplotypes across Mexico and find that the ten most frequent (HF > 1%) HLA haplotypes with significant linkage disequilibrium (Δ'≥0.1) in Mexico (accounting for 20% of the haplotypic diversity of the country) are of primarily Native American ancestry (A*02~B*39~DRB1*04~DQB1*03:02, A*02~B*35~DRB1*08~DQB1*04, A*68~B*39~DRB1*04~DQB1*03:02, A*02~B*35~DRB1*04~DQB1*03:02, A*24~B*39~DRB1*14~DQB1*03:01, A*24~B*35~DRB1*04~DQB1*03:02, A*24~B*39~DRB1*04~DQB1*03:02, A*02~B*40:02~DRB1*04~DQB1*03:02, A*68~B*35~DRB1*04~DQB1*03:02, A*02~B*15:01~DRB1*04~DQB1*03:02). Admixture estimates obtained by a maximum likelihood method using HLA-A/-B/-DRB1 as genetic estimators revealed that the main genetic components in Mexico as a whole are Native American (ranging from 37.8% in the northern part of the country to 81.5% in the southeastern region) and European (ranging from 11.5% in the southeast to 62.6% in northern Mexico). African admixture ranged from 0.0 to 12.7% not following any specific pattern. We were able to detect three major immunogenetic clusters correlating with genetic diversity and differential admixture within Mexico: North, Central and Southeast, which is in accordance with previous reports using genome-wide data. Our findings provide insights into the population immunogenetic substructure of the whole country and add to the knowledge of mixed ancestry Latin American population genetics, important for disease association studies, detection of demographic signatures on population variation and improved allocation of public health resources.
Collapse
Affiliation(s)
- Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History (MPI-SHH), Jena, Germany; Molecular Genetics Laboratory, Escuela Nacional de Antropología e Historia (ENAH), Mexico City, Mexico.
| | - Diana Iraíz Hernández-Zaragoza
- Molecular Genetics Laboratory, Escuela Nacional de Antropología e Historia (ENAH), Mexico City, Mexico; Immunogenetics Unit, Técnicas Genéticas Aplicadas a la Clínica (TGAC), Mexico City, Mexico
| | - Alicia Bravo-Acevedo
- Blood Bank, UMAE Hospital de Gineco Obstetricia No. 4 "Luis Castelazo Ayala", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Stephen Clayton
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History (MPI-SHH), Jena, Germany
| | - Víctor Acuña-Alonzo
- Molecular Genetics Laboratory, Escuela Nacional de Antropología e Historia (ENAH), Mexico City, Mexico
| | - Julio César Martínez-Álvarez
- HLA Laboratory, Central Blood Bank, Hospital de Especialidades, Unidad Médica de Alta Especialidad (UMAE), Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Concepción López-Gil
- Histocompatibility Laboratory, Unidad Médica de Alta Especialidad (UMAE) # 6, Instituto Mexicano del Seguro Social (IMSS), Puebla, Puebla, Mexico
| | - Carmen Adalid-Sáinz
- Laboratory of Histocompatibility, Unidad Médica de Alta Especialidad (UMAE) # 71, Instituto Mexicano del Seguro Social (IMSS), Torreón, Coahuila, Mexico
| | - María Del Rosario Vega-Martínez
- Molecular Biology and Histocompatibility Laboratory, Hospital Central Sur de Alta Especialidad, Petróleos Mexicanos (PEMEX), Mexico City, Mexico
| | - Araceli Escobedo-Ruíz
- Histocompatibility Laboratory, Hospital de Especialidades, Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| | - Eva Dolores Juárez-Cortés
- Histocompatibility Laboratory, Central Blood Bank, Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Alexander Immel
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History (MPI-SHH), Jena, Germany; Institute of Clinical Molecular Biology (IKMB), Kiel University, University Hospital, Schleswig-Holstein, Germany
| | - Hanna Pacheco-Ubaldo
- Molecular Genetics Laboratory, Escuela Nacional de Antropología e Historia (ENAH), Mexico City, Mexico
| | - Liliana González-Medina
- Molecular Genetics Laboratory, Escuela Nacional de Antropología e Historia (ENAH), Mexico City, Mexico
| | - Abraham Lona-Sánchez
- Molecular Genetics Laboratory, Escuela Nacional de Antropología e Historia (ENAH), Mexico City, Mexico
| | - Julio Lara-Riegos
- Chemistry Faculty, Universidad Autónoma de Yucatán (UADY), Mérida, Yucatán, Mexico
| | - María Guadalupe de Jesús Sánchez-Fernández
- Department of Nephrology and Transplantation Unit, Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| | - Rosario Díaz-López
- Molecular Biology Laboratory, Hospital Central Militar, Secretaría de la Defensa Nacional (SEDENA), Mexico City, Mexico
| | - Gregorio Ulises Guizar-López
- Molecular Biology Laboratory, Hospital Central Militar, Secretaría de la Defensa Nacional (SEDENA), Mexico City, Mexico
| | - Carolina Elizabeth Medina-Escobedo
- Unit of Research and Education in Health, Unidad Médica de Alta Especialidad (UMAE) # 10, Instituto Mexicano del Seguro Social (IMSS), Mérida, Yucatán, Mexico
| | - María Araceli Arrazola-García
- HLA Laboratory, Central Blood Bank, Hospital de Especialidades, Unidad Médica de Alta Especialidad (UMAE), Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | | | - Flor Del Rocío Ramos-de la Cruz
- Histocompatibility Laboratory, Unidad Médica de Alta Especialidad (UMAE) # 6, Instituto Mexicano del Seguro Social (IMSS), Puebla, Puebla, Mexico
| | | | - Jorge Arturo Pantoja-Torres
- Immunology Division, Unidad Médica de Alta Especialidad (UMAE) # 1, Instituto Mexicano del Seguro Social (IMSS), León, Guanajuato, Mexico
| | - Tirzo Jesús Rodríguez-Munguía
- Molecular Biology Laboratory, Hospital General "Norberto Treviño Zapata", Dirección de Servicios de Salud de Tamaulipas, Ciudad Victoria, Tamaulipas, Mexico
| | | | - Héctor Delgado-Aguirre
- Laboratory of Histocompatibility, Unidad Médica de Alta Especialidad (UMAE) # 71, Instituto Mexicano del Seguro Social (IMSS), Torreón, Coahuila, Mexico
| | | | - Isis Goné-Vázquez
- Histocompatibility Laboratory, Hospital de Especialidades, Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| | - Gamaliel Benítez-Arvizu
- HLA Laboratory, Central Blood Bank, Hospital de Especialidades, Unidad Médica de Alta Especialidad (UMAE), Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Francia Paulina Arellano-Prado
- Pediatrics Hospital, Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| | - Víctor Eduardo García-Arias
- Pediatrics Hospital, Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| | - Marla Estefanía Rodríguez-López
- Pediatrics Hospital, Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| | - Patricia Méndez-Mani
- Histocompatibility Laboratory, Unidad Médica de Alta Especialidad (UMAE) # 6, Instituto Mexicano del Seguro Social (IMSS), Puebla, Puebla, Mexico
| | - Raquel García-Álvarez
- Pharmacology Laboratory, Research Unit, Instituto Nacional de Pediatría (INP), Mexico City, Mexico
| | | | - Guadalupe Aquino-Rubio
- Molecular Biology Laboratory, Hospital General "Norberto Treviño Zapata", Dirección de Servicios de Salud de Tamaulipas, Ciudad Victoria, Tamaulipas, Mexico
| | - Néstor Escareño-Montiel
- Department of Transplantation, Unidad Médica de Alta Especialidad (UMAE) # 71, Instituto Mexicano del Seguro Social (IMSS), Torreón, Coahuila, Mexico
| | | | - María Guadalupe Uribe-Duarte
- Clinical Laboratory, Unidad Médica de Alta Especialidad (UMAE) # 2, Instituto Mexicano del Seguro Social (IMSS), Ciudad Obregón, Sonora, Mexico
| | - María de Jesús Ruíz-Corral
- Clinical Laboratory, Unidad Médica de Alta Especialidad (UMAE) # 2, Instituto Mexicano del Seguro Social (IMSS), Ciudad Obregón, Sonora, Mexico
| | - Andrea Ortega-Yáñez
- Department of Development Genetics and Molecular Physiology, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | | | - Benjamín Gómez-Navarro
- Central Office of Nephrology, Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| | - Agustín Jericó Arriaga-Perea
- Histocompatibility Laboratory, Central Blood Bank, Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Rosa María Macías-Medrano
- Histocompatibility Laboratory, Central Blood Bank, Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Jesús Abraham Aguilar-Campos
- Clinical Laboratory, Unidad Médica de Alta Especialidad (UMAE) # 2, Instituto Mexicano del Seguro Social (IMSS), Ciudad Obregón, Sonora, Mexico
| | - Raúl Solís-Martínez
- Department of Molecular Biology, Laboratorios Diagnóstica, Villahermosa, Tabasco, Mexico
| | - Ricardo Serrano-Osuna
- Clinical Laboratory, Unidad Médica de Alta Especialidad (UMAE) # 2, Instituto Mexicano del Seguro Social (IMSS), Ciudad Obregón, Sonora, Mexico
| | - Mario J Sandoval-Sandoval
- Central Office of Transplantation, Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico; Health Research Division, Unidad Médica de Alta Especialidad (UMAE) # 71, Instituto Mexicano del Seguro Social (IMSS), Torreón, Coahuila, Mexico
| | - Yolanda Jaramillo-Rodríguez
- Direction of Health Education and Research, Unidad Médica de Alta Especialidad (UMAE) # 71, Instituto Mexicano del Seguro Social (IMSS), Torreón, Coahuila, Mexico
| | - Antonio Salgado-Adame
- Direction of Health Education and Research, Unidad Médica de Alta Especialidad (UMAE) # 71, Instituto Mexicano del Seguro Social (IMSS), Torreón, Coahuila, Mexico
| | - Federico Juárez-de la Cruz
- Department of Transplantation, Unidad Médica de Alta Especialidad (UMAE) # 71, Instituto Mexicano del Seguro Social (IMSS), Torreón, Coahuila, Mexico
| | - Bárbara Novelo-Garza
- Medical Infrastructure Planning Committee, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - María de Los Ángeles Pavón-Vargas
- Histocompatibility Laboratory, Unidad Médica de Alta Especialidad (UMAE) # 6, Instituto Mexicano del Seguro Social (IMSS), Puebla, Puebla, Mexico
| | - Norma Salgado-Galicia
- Molecular Biology and Histocompatibility Laboratory, Hospital Central Sur de Alta Especialidad, Petróleos Mexicanos (PEMEX), Mexico City, Mexico
| | - Maria Cátira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Gabriel Bedoya
- Genética Molecular (GENMOL, Universidad de Antioquia, Medellín, Colombia
| | - Francisco Rothhammer
- Programa de Genética Humana, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
| | - Rolando González-José
- Instituto Patagónico de Ciencias Sociales y Humanas-Centro Nacional Patagónico, CONICET, Puerto Madryn, Argentina
| | - Andrés Ruiz-Linares
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, China; Aix-Marseille Univ, CNRS, EFS, ADES, Marseille, France
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química, Universidad Nacional Autónoma de México e Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Sandra Romero-Hidalgo
- Department of Computational Genomics, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History (MPI-SHH), Jena, Germany
| | - Joaquín Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Edmond J Yunis
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Carolina Bekker-Méndez
- Immunology and Infectology Research Unit, Infectology Hospital, Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Julio Granados
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" (INCMNSZ), Mexico City, Mexico.
| |
Collapse
|
43
|
Ovsyannikova IG, Haralambieva IH, Crooke SN, Poland GA, Kennedy RB. The role of host genetics in the immune response to SARS-CoV-2 and COVID-19 susceptibility and severity. Immunol Rev 2020; 296:205-219. [PMID: 32658335 PMCID: PMC7404857 DOI: 10.1111/imr.12897] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 01/08/2023]
Abstract
This article provides a review of studies evaluating the role of host (and viral) genetics (including variation in HLA genes) in the immune response to coronaviruses, as well as the clinical outcome of coronavirus-mediated disease. The initial sections focus on seasonal coronaviruses, SARS-CoV, and MERS-CoV. We then examine the state of the knowledge regarding genetic polymorphisms and SARS-CoV-2 and COVID-19. The article concludes by discussing research areas with current knowledge gaps and proposes several avenues for future scientific exploration in order to develop new insights into the immunology of SARS-CoV-2.
Collapse
|
44
|
Vianna R, Secco D, Hanhoerderster L, Motta J, Cardoso J, Porto LC. An
NGS
‐based
HLA
haplotype analysis and population comparison between two cities in Rio de Janeiro, Brazil. HLA 2020; 96:268-276. [DOI: 10.1111/tan.13940] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 04/10/2020] [Accepted: 05/15/2020] [Indexed: 02/02/2023]
Affiliation(s)
- Romulo Vianna
- Histocompatibility and Cryopreservation LaboratoryRio de Janeiro State University Rio de Janeiro Brazil
| | - Danielle Secco
- Histocompatibility and Cryopreservation LaboratoryRio de Janeiro State University Rio de Janeiro Brazil
| | - Leonardo Hanhoerderster
- Histocompatibility and Cryopreservation LaboratoryRio de Janeiro State University Rio de Janeiro Brazil
| | - Juliana Motta
- Histocompatibility and Cryopreservation LaboratoryRio de Janeiro State University Rio de Janeiro Brazil
| | - Juliana Cardoso
- Histocompatibility and Cryopreservation LaboratoryRio de Janeiro State University Rio de Janeiro Brazil
| | - Luís Cristóvão Porto
- Histocompatibility and Cryopreservation LaboratoryRio de Janeiro State University Rio de Janeiro Brazil
| |
Collapse
|
45
|
Barquera R, Collen E, Di D, Buhler S, Teixeira J, Llamas B, Nunes JM, Sanchez-Mazas A. Binding affinities of 438 HLA proteins to complete proteomes of seven pandemic viruses and distributions of strongest and weakest HLA peptide binders in populations worldwide. HLA 2020; 96:277-298. [PMID: 32475052 PMCID: PMC7300650 DOI: 10.1111/tan.13956] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
Abstract
We report detailed peptide‐binding affinities between 438 HLA Class I and Class II proteins and complete proteomes of seven pandemic human viruses, including coronaviruses, influenza viruses and HIV‐1. We contrast these affinities with HLA allele frequencies across hundreds of human populations worldwide. Statistical modelling shows that peptide‐binding affinities classified into four distinct categories depend on the HLA locus but that the type of virus is only a weak predictor, except in the case of HIV‐1. Among the strong HLA binders (IC50 ≤ 50), we uncovered 16 alleles (the top ones being A*02:02, B*15:03 and DRB1*01:02) binding more than 1% of peptides derived from all viruses, 9 (top ones including HLA‐A*68:01, B*15:25, C*03:02 and DRB1*07:01) binding all viruses except HIV‐1, and 15 (top ones A*02:01 and C*14:02) only binding coronaviruses. The frequencies of strongest and weakest HLA peptide binders differ significantly among populations from different geographic regions. In particular, Indigenous peoples of America show both higher frequencies of strongest and lower frequencies of weakest HLA binders. As many HLA proteins are found to be strong binders of peptides derived from distinct viral families, and are hence promiscuous (or generalist), we discuss this result in relation to possible signatures of natural selection on HLA promiscuous alleles due to past pathogenic infections. Our findings are highly relevant for both evolutionary genetics and the development of vaccine therapies. However they should not lead to forget that individual resistance and vulnerability to diseases go beyond the sole HLA allelic affinity and depend on multiple, complex and often unknown biological, environmental and other variables.
Collapse
Affiliation(s)
- Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Evelyn Collen
- Australian Centre for Ancient DNA (ACAD), Department of Genetics and Evolution, The University of Adelaide, Adelaide, South Australia, Australia
| | - Da Di
- Anthropology Unit, Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Stéphane Buhler
- Anthropology Unit, Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland
| | - João Teixeira
- Australian Centre for Ancient DNA (ACAD), Department of Genetics and Evolution, The University of Adelaide, Adelaide, South Australia, Australia.,School of Biological Sciences, Centre of Excellence for Australian Biodiversity and Heritage, The University of Adelaide, Adelaide, South Australia, Australia
| | - Bastien Llamas
- School of Biological Sciences, Centre of Excellence for Australian Biodiversity and Heritage, The University of Adelaide, Adelaide, South Australia, Australia.,The Environment Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - José M Nunes
- Anthropology Unit, Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva, Geneva, Switzerland
| | - Alicia Sanchez-Mazas
- Anthropology Unit, Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
46
|
Kramer CSM, Koster J, Haasnoot GW, Roelen DL, Claas FHJ, Heidt S. HLA-EMMA: A user-friendly tool to analyse HLA class I and class II compatibility on the amino acid level. HLA 2020; 96:43-51. [PMID: 32227681 PMCID: PMC7317360 DOI: 10.1111/tan.13883] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 11/30/2022]
Abstract
In renal transplantation, polymorphic amino acids on mismatched donor HLA molecules can lead to the induction of de novo donor‐specific antibodies (DSA), which are associated with inferior graft survival. To ultimately prevent de novo DSA formation without unnecessarily precluding transplants it is essential to define which polymorphic amino acid mismatches can actually induce an antibody response. To facilitate this, we developed a user‐friendly software program that establishes HLA class I and class II compatibility between donor and recipient on the amino acid level. HLA epitope mismatch algorithm (HLA‐EMMA) is a software program that compares simultaneously the HLA class I and class II amino acid sequences of the donor with the HLA amino acid sequences of the recipient and determines the polymorphic solvent accessible amino acid mismatches that are likely to be accessible to B cell receptors. Analysis can be performed for a large number of donor‐recipient pairs at once. As proof of principle, a previously described study cohort of 191 lymphocyte immunotherapy recipients was analysed with HLA‐EMMA and showed a higher frequency of DSA formation with higher number of solvent accessible amino acids mismatches. Overall, HLA‐EMMA can be used to analyse compatibility on amino acid level between donor and recipient HLA class I and class II simultaneously for large cohorts to ultimately determine the most immunogenic amino acid mismatches.
Collapse
Affiliation(s)
- Cynthia S M Kramer
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Johan Koster
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Geert W Haasnoot
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Dave L Roelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans H J Claas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Sebastiaan Heidt
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
47
|
Oli AN, Obialor WO, Ifeanyichukwu MO, Odimegwu DC, Okoyeh JN, Emechebe GO, Adejumo SA, Ibeanu GC. Immunoinformatics and Vaccine Development: An Overview. Immunotargets Ther 2020; 9:13-30. [PMID: 32161726 PMCID: PMC7049754 DOI: 10.2147/itt.s241064] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/25/2020] [Indexed: 12/11/2022] Open
Abstract
The use of vaccines have resulted in a remarkable improvement in global health. It has saved several lives, reduced treatment costs and raised the quality of animal and human lives. Current traditional vaccines came empirically with either vague or completely no knowledge of how they modulate our immune system. Even at the face of potential vaccine design advance, immune-related concerns (as seen with specific vulnerable populations, cases of emerging/re-emerging infectious disease, pathogens with complex lifecycle and antigenic variability, need for personalized vaccinations, and concerns for vaccines' immunological safety -specifically vaccine likelihood to trigger non-antigen-specific responses that may cause autoimmunity and vaccine allergy) are being raised. And these concerns have driven immunologists toward research for a better approach to vaccine design that will consider these challenges. Currently, immunoinformatics has paved the way for a better understanding of some infectious disease pathogenesis, diagnosis, immune system response and computational vaccinology. The importance of this immunoinformatics in the study of infectious diseases is diverse in terms of computational approaches used, but is united by common qualities related to host–pathogen relationship. Bioinformatics methods are also used to assign functions to uncharacterized genes which can be targeted as a candidate in vaccine design and can be a better approach toward the inclusion of women that are pregnant into vaccine trials and programs. The essence of this review is to give insight into the need to focus on novel computational, experimental and computation-driven experimental approaches for studying of host–pathogen interactions and thus making a case for its use in vaccine development.
Collapse
Affiliation(s)
- Angus Nnamdi Oli
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Wilson Okechukwu Obialor
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Martins Ositadimma Ifeanyichukwu
- Department of Immunology, College of Health Sciences, Faculty of Medicine, Nnamdi Azikiwe University, Anambra, Nigeria.,Department of Medical Laboratory Science,Faculty of Health Science and Technology, College of Health Sciences, Nnamdi Azikiwe University,Nnewi Campus, Nnewi, Nigeria
| | - Damian Chukwu Odimegwu
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka, Enugu, Nigeria
| | - Jude Nnaemeka Okoyeh
- Department of Biology and Clinical Laboratory Science, Division of Arts and Sciences, Neumann University, Aston, PA 19014-1298, USA
| | - George Ogonna Emechebe
- Department of Pediatrics, Faculty of Clinical Medicine, Chukwuemeka Odumegwu Ojukwu University, Awka, Nigeria
| | - Samson Adedeji Adejumo
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Gordon C Ibeanu
- Department of Pharmaceutical Science, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
48
|
Barquera R, Zuniga J, Flores-Rivera J, Corona T, Penman BS, Hernández-Zaragoza DI, Soler M, Jonapá-Gómez L, Mallempati KC, Yescas P, Ochoa-Morales A, Barsakis K, Aguilar-Vázquez JA, García-Lechuga M, Mindrinos M, Yunis M, Jiménez-Alvarez L, Mena-Hernández L, Ortega E, Cruz-Lagunas A, Tovar-Méndez VH, Granados J, Fernández-Viña M, Yunis E. Diversity of HLA Class I and Class II blocks and conserved extended haplotypes in Lacandon Mayans. Sci Rep 2020; 10:3248. [PMID: 32094421 PMCID: PMC7039995 DOI: 10.1038/s41598-020-58897-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Here we studied HLA blocks and haplotypes in a group of 218 Lacandon Maya Native American using a high-resolution next generation sequencing (NGS) method. We assessed the genetic diversity of HLA class I and class II in this population, and determined the most probable ancestry of Lacandon Maya HLA class I and class II haplotypes. Importantly, this Native American group showed a high degree of both HLA homozygosity and linkage disequilibrium across the HLA region and also lower class II HLA allelic diversity than most previously reported populations (including other Native American groups). Distinctive alleles present in the Lacandon population include HLA-A*24:14 and HLA-B*40:08. Furthermore, in Lacandons we observed a high frequency of haplotypes containing the allele HLA-DRB1*04:11, a relatively frequent allele in comparison with other neighboring indigenous groups. The specific demographic history of the Lacandon population including inbreeding, as well as pathogen selection, may have elevated the frequencies of a small number of HLA class II alleles and DNA blocks. To assess the possible role of different selective pressures in determining Native American HLA diversity, we evaluated the relationship between genetic diversity at HLA-A, HLA-B and HLA-DRB1 and pathogen richness for a global dataset and for Native American populations alone. In keeping with previous studies of such relationships we included distance from Africa as a covariate. After correction for multiple comparisons we did not find any significant relationship between pathogen diversity and HLA genetic diversity (as measured by polymorphism information content) in either our global dataset or the Native American subset of the dataset. We found the expected negative relationship between genetic diversity and distance from Africa in the global dataset, but no relationship between HLA genetic diversity and distance from Africa when Native American populations were considered alone.
Collapse
Affiliation(s)
- Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History (MPI-SHH), Jena, Germany
- Laboratory of Molecular Genetics, Escuela Nacional de Antropología e Historia (ENAH), Mexico City, Mexico
| | - Joaquin Zuniga
- Department of Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - José Flores-Rivera
- Clinical Laboratory of Neurodegenerative Diseases, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico
| | - Teresa Corona
- Clinical Laboratory of Neurodegenerative Diseases, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico
| | - Bridget S Penman
- University of Warwick, School of Life Sciences, Coventry, United Kingdom
| | - Diana Iraíz Hernández-Zaragoza
- Laboratory of Molecular Genetics, Escuela Nacional de Antropología e Historia (ENAH), Mexico City, Mexico
- Immunogenetics Unit, Técnicas Genéticas Aplicadas a la Clínica (TGAC), Mexico City, Mexico
| | - Manuel Soler
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMSZ), Mexico City, Mexico
| | | | - Kalyan C Mallempati
- Histocompatibility, Immunogenetics and Disease Profiling Laboratory, Stanford Blood Center, Palo Alto, CA, USA
- Biology Department, University of Crete, Heraklion, Greece
| | - Petra Yescas
- Department of Neurogenetics and Molecular Biology, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico
| | - Adriana Ochoa-Morales
- Department of Neurogenetics and Molecular Biology, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico
| | - Konstantinos Barsakis
- Histocompatibility, Immunogenetics and Disease Profiling Laboratory, Stanford Blood Center, Palo Alto, CA, USA
- Department of Pathology, Stanford University, CA, USA
| | - José Artemio Aguilar-Vázquez
- Clinical Analysis Laboratory, Unidad Médica Familiar (UMF) No. 23, Instituto Mexicano del Seguro Social (IMSS), Tuxtla Gutiérrez, Chiapas, Mexico
| | - Maricela García-Lechuga
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMSZ), Mexico City, Mexico
| | | | - María Yunis
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Luis Jiménez-Alvarez
- Department of Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
| | - Lourdes Mena-Hernández
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMSZ), Mexico City, Mexico
| | - Esteban Ortega
- The William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Alfredo Cruz-Lagunas
- Department of Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
| | - Víctor Hugo Tovar-Méndez
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMSZ), Mexico City, Mexico
| | - Julio Granados
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMSZ), Mexico City, Mexico.
| | | | - Edmond Yunis
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
49
|
Clayton EA, Khalid S, Ban D, Wang L, Jordan IK, McDonald JF. Tumor suppressor genes and allele-specific expression: mechanisms and significance. Oncotarget 2020; 11:462-479. [PMID: 32064050 PMCID: PMC6996918 DOI: 10.18632/oncotarget.27468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022] Open
Abstract
Recent findings indicate that allele-specific expression (ASE) at specific cancer driver gene loci may be of importance in onset/progression of the disease. Of particular interest are loss-of-function (LOF) of tumor suppressor gene (TSGs) alleles. While LOF tumor suppressor mutations are typically considered to be recessive, if these mutant alleles can be significantly differentially expressed relative to wild-type alleles in heterozygotes, the clinical consequences could be significant. LOF TSG alleles are shown to be segregating at high frequencies in world-wide populations of normal/healthy individuals. Matched sets of normal and tumor tissues isolated from 233 cancer patients representing four diverse tumor types demonstrate functionally important changes in patterns of ASE in individuals heterozygous for LOF TSG alleles associated with cancer onset/progression. While a variety of molecular mechanisms were identified as potentially contributing to changes in ASE patterns in cancer, changes in DNA copy number and allele-specific alternative splicing possibly mediated by antisense RNA emerged as predominant factors. In conclusion, LOF TSGs are segregating in human populations at significant frequencies indicating that many otherwise healthy individuals are at elevated risk of developing cancer. Changes in ASE between normal and cancer tissues indicates that LOF TSG alleles may contribute to cancer onset/progression even when heterozygous with wild-type functional alleles.
Collapse
Affiliation(s)
- Evan A. Clayton
- Integrated Cancer Research Center, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shareef Khalid
- Integrated Cancer Research Center, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Dongjo Ban
- Integrated Cancer Research Center, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Lu Wang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- PanAmerican Bioinformatics Institute, Cali, Colombia
| | - I. King Jordan
- Integrated Cancer Research Center, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- PanAmerican Bioinformatics Institute, Cali, Colombia
- Applied Bioinformatics Laboratory, Atlanta, GA, USA
| | - John F. McDonald
- Integrated Cancer Research Center, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
50
|
García-Nieto PE, Morrison AJ, Fraser HB. The somatic mutation landscape of the human body. Genome Biol 2019; 20:298. [PMID: 31874648 PMCID: PMC6930685 DOI: 10.1186/s13059-019-1919-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Somatic mutations in healthy tissues contribute to aging, neurodegeneration, and cancer initiation, yet they remain largely uncharacterized. RESULTS To gain a better understanding of the genome-wide distribution and functional impact of somatic mutations, we leverage the genomic information contained in the transcriptome to uniformly call somatic mutations from over 7500 tissue samples, representing 36 distinct tissues. This catalog, containing over 280,000 mutations, reveals a wide diversity of tissue-specific mutation profiles associated with gene expression levels and chromatin states. For example, lung samples with low expression of the mismatch-repair gene MLH1 show a mutation signature of deficient mismatch repair. In addition, we find pervasive negative selection acting on missense and nonsense mutations, except for mutations previously observed in cancer samples, which are under positive selection and are highly enriched in many healthy tissues. CONCLUSIONS These findings reveal fundamental patterns of tissue-specific somatic evolution and shed light on aging and the earliest stages of tumorigenesis.
Collapse
Affiliation(s)
- Pablo E García-Nieto
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA, 94305, USA
| | - Ashby J Morrison
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA, 94305, USA
| | - Hunter B Fraser
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA, 94305, USA.
| |
Collapse
|