1
|
Patel M, Islam S, Glick BR, Vimal SR, Bhor SA, Bernardi M, Johora FT, Patel A, de Los Santos Villalobos S. Elaborating the multifarious role of PGPB for sustainable food security under changing climate conditions. Microbiol Res 2024; 289:127895. [PMID: 39276501 DOI: 10.1016/j.micres.2024.127895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/17/2024]
Abstract
Changing climate creates a challenge to agricultural sustainability and food security by changing patterns of parameters like increased UV radiation, rising temperature, altered precipitation patterns, and higher occurrence of extreme weather incidents. Plants are vulnerable to different abiotic stresses such as waterlogging, salinity, heat, cold, and drought in their natural environments. The prevailing agricultural management practices play a major role in the alteration of the Earth's climate by causing biodiversity loss, soil degradation through chemical and physical degradation, and pollution of water bodies. The extreme usage of pesticides and fertilizers leads to climate change by releasing greenhouse gases (GHGs) and depositing toxic substances in the soil. At present, there is an urgent need to address these abiotic stresses to achieve sustainable growth in agricultural production and fulfill the rising global food demand. Several types of bacteria that are linked with plants can increase plant resistance to stress and lessen the negative effects of environmental challenges. This review aims to explore the environmentally friendly capabilities and prospects of multi-trait plant growth-promoting bacteria (PGPB) in the alleviation of detrimental impacts of harsh environmental conditions on plants.
Collapse
Affiliation(s)
- Margi Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat 384265, India.
| | - Shaikhul Islam
- Plant Pathology Division, Bangladesh Wheat and Maize Research Institute, Nashipur, Dinajpur 5200, Bangladesh.
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Shobhit Raj Vimal
- Department of Botany, University of Allahabad, Prayagraj 211002, India.
| | - Sachin Ashok Bhor
- Laboratory of Plant Molecular Biology and Virology, Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan.
| | - Matteo Bernardi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, via Vetoio, Coppito 67100, Italy.
| | - Fatema Tuj Johora
- Lincoln University, Department of Sustainable Agriculture, 1570 Baltimore Pike, PA 19352, USA.
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat 384265, India.
| | | |
Collapse
|
2
|
Gong M, Han W, Jiang Y, Yang X, He J, Kong M, Huo Q, Lv G. Physiological and transcriptomic analysis reveals the coating of microcapsules embedded with bacteria can enhance wheat salt tolerance. BMC PLANT BIOLOGY 2024; 24:1004. [PMID: 39448914 PMCID: PMC11515405 DOI: 10.1186/s12870-024-05718-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Salt stress is one of the most important abiotic stress factors limiting crop production. Therefore, improving the stress resistance of seeds is very important for crop growth. Our previous studies have shown that using microcapsules encapsulating bacteria (Pontibacter actiniarum DSM 19842) as seed coating for wheat can alleviate salt stress. In this study, the genes and pathways involved in the response of wheat to salt stress were researched further. The results showed that compared with the control, the coating can improve osmotic stress and decrease oxidative damage by increasing the content of proline (29.1%), the activity of superoxide dismutase (SOD) (94.2%), peroxidase (POD) (45.7%) and catalase (CAT) (3.3%), reducing the content of hydrogen peroxide (H2O2) (39.8%) and malondialdehyde (MDA) (45.9%). In addition, ribonucleic acid (RNA) sequencing data showed that 7628 differentially expressed genes (DEGs) were identified, and 4426 DEGs up-regulated, 3202 down-regulated in the coated treatment. Many DEGs related to antioxidant enzymes were up-regulated, indicating that coating can promote the expression of antioxidant enzyme-related genes and alleviate oxidative damage under salt stress. The differential gene expression analysis demonstrated up-regulation of 27 genes and down-regulation of 20 genes. Transcription factor families, mostly belonging to bHLH, MYB, B3, NAC, and WRKY. Overall, this seed coating can promote the development of sustainable agriculture in saline soil.
Collapse
Affiliation(s)
- Min Gong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
| | - Wei Han
- Shandong Agri-tech Extension Center, Jinan, 250013, China
| | - Yawen Jiang
- College of Resources and Environmental Sciences, Shanxi Agricultural University, Taiyuan, 030801, China
| | - Xi Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
| | - Jiuxing He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
| | - Meng Kong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
| | - Qiuyan Huo
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
| | - Guohua Lv
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China.
- National Saline-alkali Soil Comprehensive Utilization Technology Innovation Center, Dongying, 257000, China.
| |
Collapse
|
3
|
Kumar S, Sindhu SS. Drought stress mitigation through bioengineering of microbes and crop varieties for sustainable agriculture and food security. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100285. [PMID: 39512260 PMCID: PMC11542684 DOI: 10.1016/j.crmicr.2024.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Climate change and agriculture are intrinsically connected and sudden changes in climatic conditions adversely impact global food production and security. The climate change-linked abiotic stressors like drought and high temperatures are resulting in crop failure. The most severe abiotic stress drought significantly affect the stomatal closure, production of reactive oxygen species, transpiration, photosynthesis or other physiological processes and plant morphology, and adversely affect plant growth and crop yield. Therefore, there is an exigent need for cost effective and eco-friendly modern technologies to induce drought tolerance in crop plants leading to climate-adapted sustainable agricultural practices for sustained food production. Among many options being pursued in this regard, the use of plant growth promoting microbes (PGPMs) is the most sustainable approach to promote drought stress resilience in crop plants leading to better plant growth and crop productivity. These PGPMs confer drought resistance via various direct or indirect mechanisms including production of antioxidants, enzymes, exopolysaccharides, modulation of phytohormones level, osmotic adjustment by inducing the accumulation of sugars, along with increases in nutrients, water uptake and photosynthetic pigments. However, several technological and ecological challenges limit their use in agriculture and sometimes treatment with plant beneficial microbes fails to produce desired results under field conditions. Thus, development of synthetic microbial communities or host mediated microbiome engineering or development of transgenic plants with the capacity to express desired traits may promote plant survival and growth under drought stress conditions. The present review critically assesses research evidence on the plant growth and stress resilience promoting potentials of PGPMs and their genes as an approach to develop drought resilient plants leading to increased crop productivity. Effective collaboration among scientific communities, policymakers and regulatory agencies is needed to create strong frameworks that both promote and regulate the utilization of synthetic microbial communities and transgenic plants in agriculture.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Satyavir Singh Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| |
Collapse
|
4
|
Brengi SH, Moubarak M, El-Naggar HM, Osman AR. Promoting salt tolerance, growth, and phytochemical responses in coriander (Coriandrum sativum L. cv. Balady) via eco-friendly Bacillus subtilis and cobalt. BMC PLANT BIOLOGY 2024; 24:848. [PMID: 39256685 PMCID: PMC11384715 DOI: 10.1186/s12870-024-05517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024]
Abstract
In plant production, evaluation of salt stress protectants concerning their potential to improve growth and productivity under saline stress is critical. Bacillus subtilis (Bs) and cobalt (Co) have been proposed to optimize salt stress tolerance in coriander (Coriandrum sativum L. cv. Balady) plants by influencing some physiological activities. The main aim of this work is to investigate the response of (Bs) and (Co) as eco-safe salt stress protectants to resist the effect of salinity, on growth, seed, and essential oil yield, and the most important biochemical constituents of coriander produced under salt stress condition. Therefore, in a split-plot factorial experiment design in the RCBD (randomized complete block design), four levels of salinity of NaCl irrigation water (SA) were assigned to the main plots; (0.5, 1.5, 4, and 6 dS m-1); and six salt stress protectants (SP) were randomly assigned to the subplots: distilled water; 15 ppm (Co1); 30 ppm (Co2); (Bs); (Co1 + Bs); (Co2 + Bs). The study concluded that increasing SA significantly reduced coriander growth and yield by 42.6%, which could be attributed to ion toxicity, oxidative stress, or decreased vital element content. From the results, we recommend that applying Bs with Co (30 ppm) was critical for significantly improving overall growth parameters. This was determined by the significant reduction in the activity of reactive oxygen species scavenging enzymes: superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) and non-enzyme: proline by 5, 11.3, 14.7, and 13.8% respectively, while increasing ascorbic acid by 8% and preserving vital nutrient levels and enhancing plant osmotic potential to buffer salt stress, seed yield per plant, and essential oil yield increased by 12.6 and 18.8% respectively. The quality of essential oil was indicated by highly significant quantities of vital biological phytochemicals such as linalool, camphor, and protein which increased by 10.3, 3.6, and 9.39% respectively. Additional research is suggested to determine the precise mechanism of action of Bs and Co's dual impact on medicinal and aromatic plant salt stress tolerance.
Collapse
Affiliation(s)
- Sary H Brengi
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour, Beheira, 22516, Egypt
| | - Maneea Moubarak
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour, Beheira, 22516, Egypt
| | - Hany M El-Naggar
- Department of Floriculture, Faculty of Agriculture, Alexandria University (El-Shatby), Alexandria, 21545, Egypt.
| | - Amira R Osman
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour, Beheira, 22516, Egypt.
| |
Collapse
|
5
|
Santoyo G, Orozco-Mosqueda MDC, Afridi MS, Mitra D, Valencia-Cantero E, Macías-Rodríguez L. Trichoderma and Bacillus multifunctional allies for plant growth and health in saline soils: recent advances and future challenges. Front Microbiol 2024; 15:1423980. [PMID: 39176277 PMCID: PMC11338895 DOI: 10.3389/fmicb.2024.1423980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024] Open
Abstract
Saline soils pose significant challenges to global agricultural productivity, hindering crop growth and efficiency. Despite various mitigation strategies, the issue persists, underscoring the need for innovative and sustainable solutions. One promising approach involves leveraging microorganisms and their plant interactions to reclaim saline soils and bolster crop yields. This review highlights pioneering and recent advancements in utilizing multi-traits Trichoderma and Bacillus species as potent promoters of plant growth and health. It examines the multifaceted impacts of saline stress on plants and microbes, elucidating their physiological and molecular responses. Additionally, it delves into the role of ACC deaminase in mitigating plant ethylene levels by Trichoderma and Bacillus species. Although there are several studies on Trichoderma-Bacillus, much remains to be understood about their synergistic relationships and their potential as auxiliaries in the phytoremediation of saline soils, which is why this work addresses these challenges.
Collapse
Affiliation(s)
- Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán, Mexico
| | | | | | - Debasis Mitra
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Eduardo Valencia-Cantero
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán, Mexico
| | - Lourdes Macías-Rodríguez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán, Mexico
| |
Collapse
|
6
|
Msaad H, Lamsaadi N, Farssi O, Oubenali A, Lahmaoui S, Boulli A, Ghoulam C, El Moukhtari A, Farissi M. Biofertilizer and biostimulant potentials of phosphate-solubilizing Bacillus subtilis subsp. subtilis M1 strain and silicon in improving low phosphorus availability tolerance in rosemary. Lett Appl Microbiol 2024; 77:ovae072. [PMID: 39066498 DOI: 10.1093/lambio/ovae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/08/2024] [Accepted: 07/25/2024] [Indexed: 07/28/2024]
Abstract
The present study aimed to evaluate the single and combined effects of Si exogenous treatment and Bacillus subtilis subsp. subtilis M1 strain inoculation on rosemary tolerance to low phosphorus (P) availability. Hence, rosemary plants were fertilized with 250 µmol Ca3HPO4 (stressed plants) or 250 µmol KH2PO4 (control plants) under Si treatment and B. subtilis M1 strain inoculation. P starvation negatively affected rosemary growth and its P nutrition. However, exogenous Si supply or B. subtilis M1 strain inoculation significantly (P < 0.001) alleviated the deficiency-induced effects and significantly improved rhizogenesis, acid phosphatase activity, P uptake, and eventually dry weight of shoot and root. Moreover, Si-treatment and/or B. subtilis M1 strain inoculation significantly (P < 0.001) reduced the oxidative damage, in terms of malondialdehyde and hydrogen peroxide accumulation. This was found positively correlated with the higher superoxide dismutase activity, and the elevated non-enzymatic antioxidant molecules accumulation, including total polyphenols in Si-treated and inoculated P-deficient plants. Taken together, Si supplementation and/or B. subtilis M1 strain inoculation could be a good strategy to sustain rosemary plant growth under P starvation conditions.
Collapse
Affiliation(s)
- Hamid Msaad
- Unit of Biotechnology and Sustainable Development of Natural Resources, Polydisciplinary Faculty of Beni-Mellal, Sultan Moulay Slimane University, Mghila, PO Box. 592, Beni Mellal 23000, Morocco
| | - Nadia Lamsaadi
- Unit of Biotechnology and Sustainable Development of Natural Resources, Polydisciplinary Faculty of Beni-Mellal, Sultan Moulay Slimane University, Mghila, PO Box. 592, Beni Mellal 23000, Morocco
| | - Omar Farssi
- Polyvalent Unit on Research and Development, Sultan Moulay Slimane University, Mghila, PO Box. 592, Beni Mellal 23000, Morocco
| | - Aziz Oubenali
- Unit of Biotechnology and Sustainable Development of Natural Resources, Polydisciplinary Faculty of Beni-Mellal, Sultan Moulay Slimane University, Mghila, PO Box. 592, Beni Mellal 23000, Morocco
| | - Soukaina Lahmaoui
- Unit of Biotechnology and Sustainable Development of Natural Resources, Polydisciplinary Faculty of Beni-Mellal, Sultan Moulay Slimane University, Mghila, PO Box. 592, Beni Mellal 23000, Morocco
| | - Abdelali Boulli
- Ecology and Sustainable Development Team, Faculty of Sciences and Technology, University Sultan Moulay Slimane, Mghila, PO Box. 523, Beni Mellal 23000, Morocco
| | - Cherki Ghoulam
- Centre of Agrobiotechnology and Bioengineering, Research Unit Labeled CNRST, Cadi Ayyad University, PO Box. 549, St. Abdelkarim Elkhattabi, Gueliz Marrakesh, Morocco
- CAES, Agrobiosciences Program, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, 43150, Benguerir, Morocco
| | - Ahmed El Moukhtari
- Laboratory of Ecology and Environment, Faculty of Sciences Ben M'sik, Hassan II University of Casablanca, PO Box. 7955 Sidi Othman, Casablanca, Morocco
| | - Mohamed Farissi
- Unit of Biotechnology and Sustainable Development of Natural Resources, Polydisciplinary Faculty of Beni-Mellal, Sultan Moulay Slimane University, Mghila, PO Box. 592, Beni Mellal 23000, Morocco
| |
Collapse
|
7
|
Dong H, Wang Y, Di Y, Qiu Y, Ji Z, Zhou T, Shen S, Du N, Zhang T, Dong X, Guo Z, Piao F, Li Y. Plant growth-promoting rhizobacteria Pseudomonas aeruginosa HG28-5 improves salt tolerance by regulating Na +/K + homeostasis and ABA signaling pathway in tomato. Microbiol Res 2024; 283:127707. [PMID: 38582011 DOI: 10.1016/j.micres.2024.127707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
Salinity stress badly restricts the growth, yield and quality of vegetable crops. Plant growth-promoting rhizobacteria (PGPR) is a friendly and effective mean to enhance plant growth and salt tolerance. However, information on the regulatory mechanism of PGPR on vegetable crops in response to salt stress is still incomplete. Here, we screened a novel salt-tolerant PGPR strain Pseudomonas aeruginosa HG28-5 by evaluating the tomatoes growth performance, chlorophyll fluorescence index, and relative electrolyte leakage (REL) under normal and salinity conditions. Results showed that HG28-5 colonization improved seedling growth parameters by increasing the plant height (23.7%), stem diameter (14.6%), fresh and dry weight in the shoot (60.3%, 91.1%) and root (70.1%, 92.5%), compared to salt-stressed plants without colonization. Likewise, HG28-5 increased levels of maximum photochemical efficiency of PSII (Fv/Fm) (99.3%), the antioxidant enzyme activities as superoxide dismutase (SOD, 85.5%), peroxidase (POD, 35.2%), catalase (CAT, 20.6%), and reduced the REL (48.2%), MDA content (41.3%) and ROS accumulation in leaves of WT tomatoes under salt stress in comparison with the plants treated with NaCl alone. Importantly, Na+ content of HG28-5 colonized salt-stressed WT plants were decreased by15.5% in the leaves and 26.6% in the roots in the corresponding non-colonized salt-stressed plants, which may be attributed to the higher K+ concentration and SOS1, SOS2, HKT1;2, NHX1 transcript levels in leaves of colonized plants under saline condition. Interestingly, increased abscisic acid (ABA) content and upregulation of ABA pathway genes (ABA synthesis-related genes NCED1, NCED2, NCED4, NECD6 and signal genes ABF4, ABI5, and AREB) were observed in HG28-5 inoculated salt-stressed WT plants. ABA-deficient mutant (not) with NCED1 deficiency abolishes the effect of HG28-5 on alleviating salt stress in tomato, as exhibited by the substantial rise of REL and ROS accumulation and sharp drop of Fv/Fm in the leaves of not mutant plants. Notably, HG28-5 colonization enhances tomatoes fruit yield by 54.9% and 52.4% under normal and saline water irrigation, respectively. Overall, our study shows that HG28-5 colonization can significantly enhance salt tolerance and improved fruit yield by a variety of plant protection mechanism, including reducing oxidative stress, regulating plant growth, Na+/K+ homeostasis and ABA signaling pathways in tomato. The findings not only deepen our understanding of PGPR regulation plant growth and salt tolerance but also allow us to apply HG28-5 as a microbial fertilizer for agricultural production in high-salinity areas.
Collapse
Affiliation(s)
- Han Dong
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, PR China; College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yuanyuan Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yancui Di
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yingying Qiu
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Zelin Ji
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Tengfei Zhou
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Shunshan Shen
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Nanshan Du
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Tao Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Xiaoxing Dong
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Zhixin Guo
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Provincial Facility Horticulture Engineering Technology Research Center, Zhengzhou 450002, PR China.
| | - Fengzhi Piao
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Provincial Facility Horticulture Engineering Technology Research Center, Zhengzhou 450002, PR China.
| | - Yonghua Li
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, PR China.
| |
Collapse
|
8
|
Bao X, Chong P, He C, Wang X, Zhang F. Mechanism on the promotion of host growth and enhancement of salt tolerance by Bacillaceae isolated from the rhizosphere of Reaumuria soongorica. Front Microbiol 2024; 15:1408622. [PMID: 38881656 PMCID: PMC11176432 DOI: 10.3389/fmicb.2024.1408622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Salt stress is a major abiotic stress that affects the growth of Reaumuria soongorica and many psammophytes in the desert areas of Northwest China. However, various Plant Growth-Promoting Rhizobacteria (PGPR) have been known to play an important role in promoting plant growth and alleviating the damaging effects of salt stress. In this study, three PGPR strains belonging to Bacillaceae were isolated from the rhizosphere of Reaumuria soongorica by morphological and molecular identification. All isolated strains exhibited capabilities of producing IAA, solubilizing phosphate, and fixing nitrogen, and were able to tolerate high levels of NaCl stress, up to 8-12%. The results of the pot-based experiment showed that salt (400 mM NaCl) stress inhibited Reaumuria soongorica seedlings' growth performance as well as biomass production, but after inoculation with strains P2, S37, and S40, the plant's height significantly increased by 26.87, 17.59, and 13.36%, respectively (p < 0.05), and both aboveground and root fresh weight significantly increased by more than 2 times compared to NaCl treatment. Additionally, inoculation with P2, S37, and S40 strains increased the content of photosynthetic pigments, proline, and soluble protein in Reaumuria soongorica seedlings under NaCl stress, while reducing the content of malondialdehyde and soluble sugars. Metabolomic analysis showed that strain S40 induces Reaumuria soongorica seedling leaves metabolome reprogramming to regulate cell metabolism, including plant hormone signal transduction and phenylalanine, tyrosine, and tryptophan biosynthesis pathways. Under NaCl stress, inoculation with strain S40 upregulated differential metabolites in plant hormone signal transduction pathways including plant hormones such as auxins (IAA), cytokinins, and jasmonic acid. The results indicate that inoculation with Bacillaceae can promote the growth of Reaumuria soongorica seedlings under NaCl stress and enhance salt tolerance by increasing the content of photosynthetic pigments, accumulating osmoregulatory substances, regulating plant hormone levels This study contributes to the enrichment of PGPR strains capable of promoting the growth of desert plants and has significant implications for the psammophytes growth and development in desert regions, as well as the effective utilization and transformation of saline-alkali lands.
Collapse
Affiliation(s)
- Xinguang Bao
- College of Forest of Gansu Agriculture University, Lanzhou, China
| | - Peifang Chong
- College of Forest of Gansu Agriculture University, Lanzhou, China
| | - Cai He
- Wuwei Academy of Forestry, Wuwei, China
| | - Xueying Wang
- College of Forest of Gansu Agriculture University, Lanzhou, China
| | - Feng Zhang
- College of Forest of Gansu Agriculture University, Lanzhou, China
| |
Collapse
|
9
|
Yu W, Luo L, Qi X, Cao Y, An J, Xie Z, Hu T, Yang P. Insights into the Impact of Trans-Zeatin Overproduction-Engineered Sinorhizobium meliloti on Alfalfa ( Medicago sativa L.) Tolerance to Drought Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8650-8663. [PMID: 38564678 DOI: 10.1021/acs.jafc.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Plant growth-promoting rhizobacteria have been shown to enhance plant tolerance to drought stress through various mechanisms. However, there is limited research on improving drought resistance in alfalfa by genetically modifying PGPR to produce increased levels of cytokinins. Herein, we employed synthetic biology approaches to engineer two novel strains of Sinorhizobium meliloti capable of overproducing trans-Zeatin and investigated their potential in enhancing drought tolerance in alfalfa. Our results demonstrate that alfalfa plants inoculated with these engineered S. meliloti strains exhibited reduced wilting and yellowing while maintaining higher relative water content under drought conditions. The engineered S. meliloti-induced tZ activated the activity of antioxidant enzymes and the accumulation of osmolytes. Additionally, the increased endogenous tZ content in plants alleviated the impact of drought stress on the alfalfa photosynthetic rate. However, under nondrought conditions, inoculation with the engineered S. meliloti strains had no significant effect on alfalfa biomass and nodule formation.
Collapse
Affiliation(s)
- Wenzhe Yu
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Li Luo
- Shanghai Key Laboratory of Bio-Energy Crops, Shanghai University, Shanghai 200444, China
| | - Xiangyu Qi
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Yuman Cao
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Jie An
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Zhiguo Xie
- Shaanxi Academy of Forestry, Xi'an 710082, China
| | - Tianming Hu
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
10
|
Luo H, Win CS, Lee DH, He L, Yu JM. Microbacterium azadirachtae CNUC13 Enhances Salt Tolerance in Maize by Modulating Osmotic and Oxidative Stress. BIOLOGY 2024; 13:244. [PMID: 38666856 PMCID: PMC11048422 DOI: 10.3390/biology13040244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024]
Abstract
Soil salinization is one of the leading threats to global ecosystems, food security, and crop production. Plant growth-promoting rhizobacteria (PGPRs) are potential bioinoculants that offer an alternative eco-friendly agricultural approach to enhance crop productivity from salt-deteriorating lands. The current work presents bacterial strain CNUC13 from maize rhizosphere soil that exerted several PGPR traits and abiotic stress tolerance. The strain tolerated up to 1000 mM NaCl and 30% polyethylene glycol (PEG) 6000 and showed plant growth-promoting (PGP) traits, including the production of indole-3-acetic acid (IAA) and siderophore as well as phosphate solubilization. Phylogenetic analysis revealed that strain CNUC13 was Microbacterium azadirachtae. Maize plants exposed to high salinity exhibited osmotic and oxidative stresses, inhibition of seed germination, plant growth, and reduction in photosynthetic pigments. However, maize seedlings inoculated with strain CNUC13 resulted in significantly improved germination rates and seedling growth under the salt-stressed condition. Specifically, compared with the untreated control group, CNUC13-treated seedlings exhibited increased biomass, including fresh weight and root system proliferation. CNUC13 treatment also enhanced photosynthetic pigments (chlorophyll and carotenoids), reduced the accumulation of osmotic (proline) and oxidative (hydrogen peroxide and malondialdehyde) stress indicators, and positively influenced the activities of antioxidant enzymes (catalase, superoxide dismutase, and peroxidase). As a result, CNUC13 treatment alleviated oxidative stress and promoted salt tolerance in maize. Overall, this study demonstrates that M. azadirachtae CNUC13 significantly enhances the growth of salt-stressed maize seedlings by improving photosynthetic efficiency, osmotic regulators, oxidative stress resilience, and antioxidant enzyme activity. These findings emphasize the potential of utilizing M. azadirachtae CNUC13 as a bioinoculant to enhance salt stress tolerance in maize, providing an environmentally friendly approach to mitigate the negative effects of salinity and promote sustainable agriculture.
Collapse
Affiliation(s)
- Huan Luo
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Republic of Korea; (H.L.); (C.S.W.); (D.H.L.); (L.H.)
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Chaw Su Win
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Republic of Korea; (H.L.); (C.S.W.); (D.H.L.); (L.H.)
| | - Dong Hoon Lee
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Republic of Korea; (H.L.); (C.S.W.); (D.H.L.); (L.H.)
| | - Lin He
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Republic of Korea; (H.L.); (C.S.W.); (D.H.L.); (L.H.)
| | - Jun Myoung Yu
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Republic of Korea; (H.L.); (C.S.W.); (D.H.L.); (L.H.)
| |
Collapse
|
11
|
Rathod K, Rana S, Dhandhukia P, Thakker JN. From Sea to Soil: Marine Bacillus subtilis enhancing chickpea production through in vitro and in vivo plant growth promoting traits. Braz J Microbiol 2024; 55:823-836. [PMID: 38191971 PMCID: PMC10920480 DOI: 10.1007/s42770-023-01238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/26/2023] [Indexed: 01/10/2024] Open
Abstract
Various strategies are used to augment agricultural output in response to the escalating food requirements stemming from population expansion. Out of various strategies, the use of plant growth-promoting bacteria (PGPB) has shown promise as a viable technique in implementing new agricultural practices. The study of PGPB derived from rhizospheric soil is extensive, but there is a need for more exploration of marine microorganisms. The present research aims to investigate the potential of marine microorganisms as promoters of plant growth. The marine microbe Bacillus subtilis used in current study has been discovered as a possible plant growth-promoting bacterium (PGPB) as it showed ability to produce ammonia, solubilize potassium and phosphate, and was able to colonize chickpea roots. Bacillus subtilis exhibited a 40% augmentation in germination. A talc-based bio-formulation was prepared using Bacillus subtilis, and pot experiment was done under two conditions: control (T1) and Bacillus treated (T2). In the pot experiment, the plant weight with Bacillus treatment increased by 14.17%, while the plant height increased by 13.71% as compared to control. It also enhanced the chlorophyll content of chickpea and had a beneficial influence on stress indicators. Furthermore, it was noted that it enhanced the levels of nitrogen, potassium, and phosphate in the soil improving soil quality. The findings showed that B. subtilis functioned as a plant growth-promoting bacteria (PGPB) to enhance the overall development of chickpea.
Collapse
Affiliation(s)
- Khushbu Rathod
- Department of Biological Sciences, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Gujarat, India
| | - Shruti Rana
- Department of Biological Sciences, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Gujarat, India
| | - Pinakin Dhandhukia
- Department of Microbiology, School of Science and Technology, Vanita Vishram Women's University, Surat, Gujarat, India
| | - Janki N Thakker
- Department of Biological Sciences, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Gujarat, India.
| |
Collapse
|
12
|
Ferrante R, Campagni C, Vettori C, Checcucci A, Garosi C, Paffetti D. Meta-analysis of plant growth-promoting rhizobacteria interaction with host plants: implications for drought stress response gene expression. FRONTIERS IN PLANT SCIENCE 2024; 14:1282553. [PMID: 38288406 PMCID: PMC10823023 DOI: 10.3389/fpls.2023.1282553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/18/2023] [Indexed: 01/31/2024]
Abstract
Introduction The molecular and physiological mechanisms activated in plants during drought stress tolerance are regulated by several key genes with both metabolic and regulatory roles. Studies focusing on crop gene expression following plant growth-promoting rhizobacteria (PGPR) inoculation may help understand which bioinoculant is closely related to the induction of abiotic stress responses. Methods Here, we performed a meta-analysis following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to summarise information regarding plant-PGPR interactions, focusing on the regulation of nine genes involved in plant drought stress response. The literature research yielded 3,338 reports, of which only 41 were included in the meta-analysis based on the chosen inclusion criteria. The meta-analysis was performed on four genes (ACO, APX, ACS and DREB2); the other five genes (ERD15, MYB, MYC, acdS, WRKY) had an insufficient number of eligible articles. Results Forest plots obtained through each meta-analysis showed that the overexpression of ACO, APX, ACS and DREB2 genes was not statistically significant. Unlike the other genes, DREB2 showed statistically significant results in both the presence and absence of PGPR. Considering I2>75 %, the results showed a high heterogeneity among the studies included, and the cause for this was examined using subgroup analysis. Moreover, the funnel plot and Egger's test showed that the analyses were affected by strong publication bias. Discussion This study argues that the presence of PGPR may not significantly influence the expression of drought stress response-related crop genes. This finding may be due to high heterogeneity, lack of data on the genes examined, and significant publication bias.
Collapse
Affiliation(s)
- Roberta Ferrante
- National Biodiversity Future Center (NBFC), Palermo, Italy
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università degli Studi di Firenze, Florence, Italy
| | - Chiara Campagni
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università degli Studi di Firenze, Florence, Italy
| | - Cristina Vettori
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università degli Studi di Firenze, Florence, Italy
- Istituto di Bioscienze e Biorisorse (IBBR), Consiglio Nazionale delle Ricerche (CNR), Sesto Fiorentino, Italy
| | - Alice Checcucci
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università degli Studi di Firenze, Florence, Italy
| | - Cesare Garosi
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università degli Studi di Firenze, Florence, Italy
| | - Donatella Paffetti
- National Biodiversity Future Center (NBFC), Palermo, Italy
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
13
|
Chen L, Xie YL, Wu XH, Wu LL, Yang J, Gao Y, Mi Y, Yang F. Bioactivity and genome analysis of Bacillus amyloliquefaciens GL18 isolated from the rhizosphere of Kobresia myosuroides in an alpine meadow. Antonie Van Leeuwenhoek 2024; 117:16. [PMID: 38189906 DOI: 10.1007/s10482-023-01917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/04/2023] [Indexed: 01/09/2024]
Abstract
The unique eco-environment of the Qinghai-Tibet Plateau breeds abundant microbial resources. In this research, Bacillus amyloliquefaciens GL18, isolated from the rhizosphere of Kobresia myosuroides from an alpine meadow, and the antagonistic activity, bacteriostatic hydrolase activity, and low temperature, salt, and drought resistance of it were determined and analysed. The seedlings of Avena sativa were root-irrigated using bacteria suspensions (cell concentration 1 × 107 cfu/mL) of GL18, and the growth-promoting effect of GL18 on it was determined under cold, salt and drought stress, respectively. The whole genome of GL18 was sequenced, and its functional genes were analysed. GL18 presented significant antagonistic activity to Fusarium graminearum, Fusarium acuminatum, Fusarium oxysporum and Aspergillus niger (inhibition zone diameter > 17 mm). Transparent zones formed on four hydrolase detection media, indicating that GL18 secreted cellulase, protease, pectinase and β-1,3-glucanase. GL18 tolerated conditions of 10 °C, 11% NaCl and 15% PEG-6000, presenting cold, salt and drought resistance. GL18 improved the cold, salt and drought tolerance of A. sativa and it showed significant growth effects under different stress. The total length of the GL18 genome was 3,915,550 bp, and the number of coding DNA sequence was 3726. Compared with the clusters of orthologous groups of proteins, gene ontology and kyoto encyclopedia of genes and genomes databases, 3088, 2869 and 2357 functional genes were annotated, respectively. GL18 contained gene clusters related to antibacterial substances, functional genes related to the synthesis of plant growth-promoting substances, and encoding genes related to stress resistance. This study identified an excellent Bacillus strain and provided a theoretical basis for improving stress resistance and promoting the growth of herbages under abiotic stress.
Collapse
Affiliation(s)
- L Chen
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China
| | - Y L Xie
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China.
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China.
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai University, Xining, 810016, China.
| | - X H Wu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China
| | - L L Wu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China
| | - J Yang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China
| | - Y Gao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China
| | - Y Mi
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China
| | - F Yang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China
| |
Collapse
|
14
|
Zhou H, Shi H, Yang Y, Feng X, Chen X, Xiao F, Lin H, Guo Y. Insights into plant salt stress signaling and tolerance. J Genet Genomics 2024; 51:16-34. [PMID: 37647984 DOI: 10.1016/j.jgg.2023.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Soil salinization is an essential environmental stressor, threatening agricultural yield and ecological security worldwide. Saline soils accumulate excessive soluble salts which are detrimental to most plants by limiting plant growth and productivity. It is of great necessity for plants to efficiently deal with the adverse effects caused by salt stress for survival and successful reproduction. Multiple determinants of salt tolerance have been identified in plants, and the cellular and physiological mechanisms of plant salt response and adaption have been intensely characterized. Plants respond to salt stress signals and rapidly initiate signaling pathways to re-establish cellular homeostasis with adjusted growth and cellular metabolism. This review summarizes the advances in salt stress perception, signaling, and response in plants. A better understanding of plant salt resistance will contribute to improving crop performance under saline conditions using multiple engineering approaches. The rhizosphere microbiome-mediated plant salt tolerance as well as chemical priming for enhanced plant salt resistance are also discussed in this review.
Collapse
Affiliation(s)
- Huapeng Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Haifan Shi
- College of Grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yongqing Yang
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China
| | - Xixian Feng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xi Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Fei Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
15
|
Salimian Rizi S, Rezayatmand Z, Ranjbar M, Yazdanpanahi N, Emami- Karvani ZD. The Effect of Bacillus Cereus on the Ion Homeostasis, Growth Parameters, and the Expression of Some Genes of Artemisinin Biosynthesis Pathway in Artemisia Absinthium Under Salinity Stress. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3687. [PMID: 38827342 PMCID: PMC11139441 DOI: 10.30498/ijb.2024.394178.3687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/12/2023] [Indexed: 06/04/2024]
Abstract
Background Soil salinity is a major problem in the world that affects the growth and yield of plants. Application of new and up-to-date techniques can help plants in dealing with salinity stress. One of the approaches for reducing environmental stress is the use of rhizosphere bacteria. Objective The aim of present study was to investigate the effect of the inoculation of Bacillus cereus on physiological and biochemical indicators and the expression of some key genes involved in the Artemisinin biosynthesis pathway in Artemisia absinthium under salinity stress. Materials and Methods The study was conducted using three different salinity levels (0, 75, 150 mM/NaCl) and two different bacterial treatments (i. e, without bacterial inoculation and co-inoculation with B. cereus isolates). The data from the experiments were analyzed using factorial analysis, and the resulting interaction effects were subsequently examined and discussed. Results The results showed that with increasing salinity, root and stem length, root and stem weight, root and stem dry weight, and potassium content were decreased, although the content of sodium was increased. Rhizosphere bacteria increased the contents of Artemisinin, potassium, calcium, magnesium, and iron and the expression of Amorpha-4,11-diene synthase and Cytochrome P450 monooxygenase1 genes as well as the growth indicators; although decreased the sodium content. The highest ADS expression was related to co-inoculation with B. cereus isolates E and B in 150 mM salinity. The highest CYP71AV1 expression was related to co-inoculation with B. cereus isolates E and B in 150 mM salinity. Conclusion These findings showed that the increase in growth indices under salinity stress was probably due to the improvement of nutrient absorption conditions as a result of ion homeostasis, sodium ion reduction and Artemisinin production conditions by rhizosphere B. cereus isolates E and B.
Collapse
Affiliation(s)
- Sara Salimian Rizi
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Zahra Rezayatmand
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Monireh Ranjbar
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Nasrin Yazdanpanahi
- Department of Biotechnology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | | |
Collapse
|
16
|
Hung SHW, Yeh PH, Huang TC, Huang SY, Wu IC, Liu CH, Lin YH, Chien PR, Huang FC, Ho YN, Kuo CH, Hwang HH, Chiang EPI, Huang CC. A cyclic dipeptide for salinity stress alleviation and the trophic flexibility of endophyte provide insights into saltmarsh plant-microbe interactions. ISME COMMUNICATIONS 2024; 4:ycae041. [PMID: 38707842 PMCID: PMC11070113 DOI: 10.1093/ismeco/ycae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/23/2024] [Accepted: 03/20/2024] [Indexed: 05/07/2024]
Abstract
In response to climate change, the nature of endophytes and their applications in sustainable agriculture have attracted the attention of academics and agro-industries. This work focused on the endophytic halophiles of the endangered Taiwanese salt marsh plant, Bolboschoenus planiculmis, and evaluated the functions of these isolates through in planta salinity stress alleviation assay using Arabidopsis. The endophytic strain Priestia megaterium BP01R2, which can promote plant growth and salinity tolerance, was further characterized through multi-omics approaches. The transcriptomics results suggested that BP01R2 could function by tuning hormone signal transduction, energy-producing metabolism, multiple stress responses, etc. In addition, the cyclodipeptide cyclo(L-Ala-Gly), which was identified by metabolomics analysis, was confirmed to contribute to the alleviation of salinity stress in stressed plants via exogenous supplementation. In this study, we used multi-omics approaches to investigate the genomics, metabolomics, and tropisms of endophytes, as well as the transcriptomics of plants in response to the endophyte. The results revealed the potential molecular mechanisms underlying the occurrence of biostimulant-based plant-endophyte symbioses with possible application in sustainable agriculture.
Collapse
Affiliation(s)
- Shih-Hsun Walter Hung
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 402202, Taiwan
| | - Pin-Hsien Yeh
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Tsai-Ching Huang
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Shao-Yu Huang
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - I-Chen Wu
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Chia-Ho Liu
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Yu-Hsi Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Pei-Ru Chien
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Fan-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Ying-Ning Ho
- Institute of Marine Biology, College of Life Science, National Taiwan Ocean University, Keelung 202301, Taiwan
- Centre of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan
- Taiwan Ocean Genome Center, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung 402202, Taiwan
| | - Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 402202, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402202, Taiwan
| | - En-Pei Isabel Chiang
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 402202, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402202, Taiwan
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402202, Taiwan
| | - Chieh-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 402202, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402202, Taiwan
| |
Collapse
|
17
|
Ju XY, Gan S, Yang KX, Xu QB, Dai WW, Yangchen YT, Zhang J, Wang YN, Li RP, Yuan B. Characterization of a Novel Polysaccharide Derived from Rhizospheric Paecilomyces vaniformisi and Its Mechanism for Enhancing Salinity Resistance in Rice Seedlings. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20585-20601. [PMID: 38101321 DOI: 10.1021/acs.jafc.3c05430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Soil salinity is an important limiting factor in agricultural production. Rhizospheric fungi can potentially enhance crop salinity tolerance, but the precise role of signaling substances is still to be systematically elucidated. A rhizospheric fungus identified as Paecilomyces vaniformisi was found to enhance the salinity tolerance of rice seedlings. In this study, a novel polysaccharide (PPL2b) was isolated from P. vaniformisi and identified as consisting of Manp, Glcp, GalpA, and Galp. In a further study, PPL2b showed significant activity in alleviating salinity stress-induced growth inhibition in rice seedlings. The results indicated that under salinity stress, PPL2b enhances seed germination, plant growth (height and biomass), and biochemical parameters (soluble sugar and protein contents). Additionally, PPL2b regulates genes such as SOS1 and SKOR to decrease K+ efflux and increase Na+ efflux. PPL2b increased the expression and activity of genes related to antioxidant enzymes and nonenzyme substances in salinity-induced oxidative stress. Further study indicated that PPL2b plays a crucial role in regulating osmotic substances, such as proline and betaine, in maintaining the osmotic balance. It also modulates plant hormones to promote rice seedling growth and enhance their tolerance to soil salinity. The variables interacted and were divided into two groups (PC1 77.39% and PC2 18.77%) based on their relative values. Therefore, these findings indicate that PPL2b from P. vaniformisi can alleviate the inhibitory effects of salinity stress on root development, osmotic adjustment, ion balance, oxidative stress balance, and growth of rice seedlings. Furthermore, it suggests that polysaccharides produced by rhizospheric fungi could be utilized to enhance crop tolerance to salinity.
Collapse
Affiliation(s)
- Xiu-Yun Ju
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Shu Gan
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Ke-Xin Yang
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Quan-Bin Xu
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Wei-Wei Dai
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | | | - Jie Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yue-Nan Wang
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Rong-Peng Li
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Bo Yuan
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
18
|
Nguyen NL, Van Dung V, Van Tung N, Nguyen TKL, Quan ND, Giang TTH, Ngan NTT, Hien NT, Nguyen HH. Draft genome sequencing of halotolerant bacterium Salinicola sp. DM10 unravels plant growth-promoting potentials. 3 Biotech 2023; 13:416. [PMID: 38009164 PMCID: PMC10667196 DOI: 10.1007/s13205-023-03833-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/24/2023] [Indexed: 11/28/2023] Open
Abstract
In this study, strain DM10 was isolated from mangrove roots and characterized as a halotolerant plant growth-promoting bacterium. Strain DM10 exhibited the ability to solubilize phosphate, produce siderophore, show 1-aminocyclopropane-1-carboxylic acid deaminase activity, and hydrolyze starch. The rice plants subjected to a treatment of NaCl (200 mM) and inoculated with strain DM10 showed an improvement in the shoot length, root length, and dried weight, when compared to those exposed solely to saline treatment. The comprehensive genome sequencing of strain DM10 revealed a genome spanning of 4,171,745 bp, harboring 3626 protein coding sequences. Within its genome, strain DM10 possesses genes responsible for both salt-in and salt-out strategies, indicative of a robust genetic adaptation aimed at fostering salt tolerance. Additionally, the genome encodes genes involved in phosphate solubilization, such as the synthesis of gluconic acid, high-affinity phosphate transport systems, and alkaline phosphatase. In the genome of DM10, we identified the acdS gene, responsible for encoding 1-aminocyclopropane-1-carboxylate deaminase, as well as the amy1A gene, which encodes α-amylase. Furthermore, the genome of DM10 contains sequences associated with the iron (3+)-hydroxamate and iron uptake clusters, responsible for siderophore production. Such data provide a deep understanding of the mechanism employed by strain DM10 to combat osmotic and salinity stress, facilitate plant growth, and elucidate its molecular-level behaviors.
Collapse
Affiliation(s)
- Ngoc-Lan Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
- Graduate of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| | - Vu Van Dung
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
- Graduate of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| | - Nguyen Van Tung
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
- Graduate of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| | - Thi Kim Lien Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| | - Nguyen Duc Quan
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| | - Tran Thi Huong Giang
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| | - Nguyen Thi Thanh Ngan
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
- Graduate of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| | - Nguyen Thanh Hien
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| | - Huy-Hoang Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
- Graduate of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay, Hanoi Vietnam
| |
Collapse
|
19
|
Banerjee A, Roychoudhury A. Bio-priming with a Novel Plant Growth-Promoting Acinetobacter indicus Strain Alleviates Arsenic-Fluoride Co-toxicity in Rice by Modulating the Physiome and Micronutrient Homeostasis. Appl Biochem Biotechnol 2023; 195:6441-6464. [PMID: 36870026 DOI: 10.1007/s12010-023-04410-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/05/2023]
Abstract
Sustainable remediation of arsenic-fluoride from rice fields through efficient bio-extraction is the need of the hour, since these toxicants severely challenge safe cultivation of rice and food biosafety. In the present study, we screened an arsenic-fluoride tolerant strain AB-ARC of Acinetobacter indicus from the soil of a severely polluted region of West Bengal, India, which was capable of efficiently removing extremely high doses of arsenate and fluoride from the media. The strain also behaved as a plant growth-promoting rhizobacterium, since it could produce indole-3-acetic acid and solubilize phosphate, zinc, and starch. Due to these properties of the identified strain, it was used for bio-priming the seeds of the arsenic-fluoride susceptible rice cultivar, Khitish for testing the efficacy of the AB-ARC strain to promote combined arsenic-fluoride tolerance in the rice genotype. Bio-priming with AB-ARC led to accelerated uptake of crucial elements like iron, copper, and nickel which behave as co-factors of physiological and antioxidative enzymes. Thus, the activation of superoxide dismutase, catalase, guaiacol peroxidase, glutathione peroxidase, and glutathione-S-transferase enabled detoxification of reactive oxygen species (ROS) and reduction of the oxidative injuries like malondialdehyde and methylglyoxal generation. Overall, due to ameliorated molecular damages and low uptake of the toxic xenobiotics, the plants were able to maintain improved growth vigor and photosynthesis, as evident from the elevated levels of Hill activity and chlorophyll content. Hence, bio-priming with the A. indicus AB-ARC strain may be advocated for sustainable rice cultivation in arsenic-fluoride co-polluted fields.
Collapse
Affiliation(s)
- Aditya Banerjee
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, West Bengal, 700016, India
| | - Aryadeep Roychoudhury
- Discipline of Life Sciences, School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi, India.
| |
Collapse
|
20
|
Shang X, Hui L, Jianlong Z, Hao Z, Cao C, Le H, Weimin Z, Yang L, Gao Y, Hou X. The application of plant growth-promoting rhizobacteria enhances the tolerance of tobacco seedling to salt stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115512. [PMID: 37757625 DOI: 10.1016/j.ecoenv.2023.115512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/30/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
The application of plant growth-promoting rhizobacteria (PGPR) is a novel and an efficient strategy for improving soil degradation and productivity. However, the effect of PGPR on tobacco (Nicotiana tabacum L.) seedling growth under salt stress remains unclear. Here, microcosm experiments were designed to verify the effects of Bacillus cereus TC012 (BC), Bacillus methylotrophicus TC023 (BM), and Bacillus amyloliquefacien TC037 (BA) on tobacco grown in salt-affected soil. The results showed that BC, BM, and BA treatments significantly increased the height of tobacco plants by 38.65%, 91.94%, and 90.66%, respectively. Furthermore, the growth of various components of tobacco plant, such as stem girth, seedling biomass, carotenoid, and chlorophyll were stimulated in salt-affected soils. The changes in the salinity of the tobacco plant mostly relies on the improvement of proline, soluble protein, soluble sugar content, plant protective enzymatic activity, and K+/Na+ ratios. Increases in indole-3-acetic acid, zeatin riboside and gibberellic acid also promoted tobacco growth. Additionally, inoculation with PGPR enhanced the enzymatic activity of laccase, urease, neutral protease, acid phosphatase, and sucrase in soil samples and had positive effects on the physicochemical properties. The soil bacterial communities significantly improved after inoculation with PGPR. In particular, the relative abundance of Pseudomonas and Bacillus significantly increased. Overall, PGPR inoculation has great potential to alleviate salt damage in tobacco plants and may have far reaching benefits to the agricultural community.
Collapse
Affiliation(s)
- Xianchao Shang
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Liu Hui
- Yunnan Tobacco Leaf Company, Kunming 650218, China
| | | | - Zong Hao
- Shandong Linyi Tobacco Co., Ltd., Linyi 276000, China
| | - Changdai Cao
- Shandong Rizhao Tobacco Co., Ltd., Rizhao 276800, China
| | - Hou Le
- Shandong China Tobacco Industry Co., Ltd. Jinan Cigarette Factory, Jinan 250104, China
| | - Zhang Weimin
- Yunnan Tobacco Leaf Company, Kunming 650218, China
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Yun Gao
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China.
| | - Xin Hou
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
21
|
Xue X, Su X, Zhou L, Ji J, Qin Z, Liu J, Li K, Wang H, Wang Z. Antibiotic-Induced Recruitment of Specific Algae-Associated Microbiome Enhances the Adaptability of Chlorella vulgaris to Antibiotic Stress and Incidence of Antibiotic Resistance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13336-13345. [PMID: 37642958 DOI: 10.1021/acs.est.3c02801] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Insights into the symbiotic relation between eukaryotic hosts and their microbiome lift the curtain on the crucial roles of microbes in host fitness, behavior, and ecology. However, it remains unclear whether and how abiotic stress shapes the microbiome and further affects host adaptability. This study first investigated the effect of antibiotic exposure on behavior across varying algae taxa at the community level. Chlorophyta, in particular Chlorella vulgaris, exhibited remarkable adaptability to antibiotic stress, leading to their dominance in phytoplankton communities. Accordingly, we isolated C. vulgaris strains and compared the growth of axenic and nonaxenic ones under antibiotic conditions. The positive roles of antibiotics in algal growth were apparent only in the presence of bacteria. Results of 16S rRNA sequencing further revealed that antibiotic challenges resulted in the recruitment of specific bacterial consortia in the phycosphere, whose functions were tightly linked to the host growth promotion and adaptability enhancement. In addition, the algal phycosphere was characterized with 47-fold higher enrichment capability of antibiotic resistance genes (ARGs) than the surrounding water. Under antibiotic stress, specific ARG profiles were recruited in C. vulgaris phycosphere, presumably driven by the specific assembly of bacterial consortia and mobile genetic elements induced by antibiotics. Moreover, the antibiotics even enhanced the dissemination potential of the bacteria carrying ARGs from the algal phycosphere to broader environmental niches. Overall, this study provides an in-depth understanding into the potential functional significance of antibiotic-mediated recruitment of specific algae-associated bacteria for algae adaptability and ARG proliferation in antibiotic-polluted waters.
Collapse
Affiliation(s)
- Xue Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoyue Su
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linjun Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiaqi Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ziwei Qin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jialin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kaiqi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - He Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
22
|
Kumar R, Sagar V, Verma VC, Kumari M, Gujjar RS, Goswami SK, Kumar Jha S, Pandey H, Dubey AK, Srivastava S, Singh SP, Mall AK, Pathak AD, Singh H, Jha PK, Prasad PVV. Drought and salinity stresses induced physio-biochemical changes in sugarcane: an overview of tolerance mechanism and mitigating approaches. FRONTIERS IN PLANT SCIENCE 2023; 14:1225234. [PMID: 37645467 PMCID: PMC10461627 DOI: 10.3389/fpls.2023.1225234] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/18/2023] [Indexed: 08/31/2023]
Abstract
Sugarcane productivity is being hampered globally under changing environmental scenarios like drought and salinity. The highly complex nature of the plant responses against these stresses is determined by a variety of factors such as genotype, developmental phase of the plant, progression rate and stress, intensity, and duration. These factors influence plant responses and can determine whether mitigation approaches associated with acclimation are implemented. In this review, we attempt to summarize the effects of drought and salinity on sugarcane growth, specifically on the plant's responses at various levels, viz., physiological, biochemical, and metabolic responses, to these stresses. Furthermore, mitigation strategies for dealing with these stresses have been discussed. Despite sugarcane's complex genomes, conventional breeding approaches can be utilized in conjunction with molecular breeding and omics technologies to develop drought- and salinity-tolerant cultivars. The significant role of plant growth-promoting bacteria in sustaining sugarcane productivity under drought and salinity cannot be overlooked.
Collapse
Affiliation(s)
- Rajeev Kumar
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Sugarcane Research, Lucknow, India
| | - Vidya Sagar
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Vegetable Research, Varanasi, India
| | | | - Mala Kumari
- Integral Institute of Agriculture Science and Technology, Integral University, Lucknow, India
| | - Ranjit Singh Gujjar
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Sugarcane Research, Lucknow, India
| | - Sanjay K. Goswami
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Sugarcane Research, Lucknow, India
| | - Sudhir Kumar Jha
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Pulses Research, Kanpur, India
| | - Himanshu Pandey
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Sugarcane Research, Lucknow, India
| | - Abhishek Kumar Dubey
- Indian Council of Agricultural Research (ICAR)-Research Complex for Eastern Region, Patna, India
| | - Sangeeta Srivastava
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Sugarcane Research, Lucknow, India
| | - S. P. Singh
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Sugarcane Research, Lucknow, India
| | - Ashutosh K. Mall
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Sugarcane Research, Lucknow, India
| | - Ashwini Dutt Pathak
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Sugarcane Research, Lucknow, India
| | - Hemlata Singh
- Department of Botany, Plant Physiology & Biochemistry, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, India
| | - Prakash Kumar Jha
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS, United States
| | - P. V. Vara Prasad
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS, United States
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
23
|
Bouzroud S, Henkrar F, Fahr M, Smouni A. Salt stress responses and alleviation strategies in legumes: a review of the current knowledge. 3 Biotech 2023; 13:287. [PMID: 37520340 PMCID: PMC10382465 DOI: 10.1007/s13205-023-03643-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/21/2023] [Indexed: 08/01/2023] Open
Abstract
Salinity is one of the most significant environmental factors limiting legumes development and productivity. Salt stress disturbs all developmental stages of legumes and affects their hormonal regulation, photosynthesis and biological nitrogen fixation, causing nutritional imbalance, plant growth inhibition and yield losses. At the molecular level, salt stress exposure involves large number of factors that are implicated in stress perception, transduction, and regulation of salt responsive genes' expression through the intervention of transcription factors. Along with the complex gene network, epigenetic regulation mediated by non-coding RNAs, and DNA methylation events are also involved in legumes' response to salinity. Different alleviation strategies can increase salt tolerance in legume plants. The most promising ones are Plant Growth Promoting Rhizobia, Arbuscular Mycorrhizal Fungi, seed and plant's priming. Genetic manipulation offers an effective approach for improving salt tolerance. In this review, we present a detailed overview of the adverse effect of salt stress on legumes and their molecular responses. We also provide an overview of various ameliorative strategies that have been implemented to mitigate/overcome the harmful effects of salt stress on legumes.
Collapse
Affiliation(s)
- Sarah Bouzroud
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco
| | - Fatima Henkrar
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5R/INAU, 10000 Rabat, Morocco
| | - Mouna Fahr
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5R/INAU, 10000 Rabat, Morocco
| | - Abdelaziz Smouni
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5R/INAU, 10000 Rabat, Morocco
| |
Collapse
|
24
|
Peng M, Jiang Z, Zhou F, Wang Z. From salty to thriving: plant growth promoting bacteria as nature's allies in overcoming salinity stress in plants. Front Microbiol 2023; 14:1169809. [PMID: 37426022 PMCID: PMC10327291 DOI: 10.3389/fmicb.2023.1169809] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Soil salinity is one of the main problems that affects global crop yield. Researchers have attempted to alleviate the effects of salt stress on plant growth using a variety of approaches, including genetic modification of salt-tolerant plants, screening the higher salt-tolerant genotypes, and the inoculation of beneficial plant microbiome, such as plant growth-promoting bacteria (PGPB). PGPB mainly exists in the rhizosphere soil, plant tissues and on the surfaces of leaves or stems, and can promote plant growth and increase plant tolerance to abiotic stress. Many halophytes recruit salt-resistant microorganisms, and therefore endophytic bacteria isolated from halophytes can help enhance plant stress responses. Beneficial plant-microbe interactions are widespread in nature, and microbial communities provide an opportunity to understand these beneficial interactions. In this study, we provide a brief overview of the current state of plant microbiomes and give particular emphasis on its influence factors and discuss various mechanisms used by PGPB in alleviating salt stress for plants. Then, we also describe the relationship between bacterial Type VI secretion system and plant growth promotion.
Collapse
Affiliation(s)
- Mu Peng
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, China
| | - Zhihui Jiang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, China
| | - Fangzhen Zhou
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, China
| | - Zhiyong Wang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China
| |
Collapse
|
25
|
Oliva G, Vigliotta G, Terzaghi M, Guarino F, Cicatelli A, Montagnoli A, Castiglione S. Counteracting action of Bacillus stratosphericus and Staphylococcus succinus strains against deleterious salt effects on Zea mays L. Front Microbiol 2023; 14:1171980. [PMID: 37303788 PMCID: PMC10248413 DOI: 10.3389/fmicb.2023.1171980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
The salinization of soil is the process of progressive accumulation of salts such as sulfates, sodium, or chlorides into the soil. The increased level of salt has significant effects on glycophyte plants, such as rice, maize, and wheat, which are staple foods for the world's population. Consequently, it is important to develop biotechnologies that improve crops and clean up the soil. Among other remediation methods, there is an environmentally friendly approach to ameliorate the cultivation of glycophyte plants in saline soil, namely, the use of microorganisms tolerant to salt with growth-promoting features. Plant growth-promoting rhizobacteria (PGPR) can improve plant growth by colonizing their roots and playing a vital role in helping plants to establish and grow in nutrient-deficient conditions. Our research aimed to test in vivo halotolerant PGPR, isolated and characterized in vitro in a previous study conducted in our laboratory, inoculating them on maize seedlings to improve their growth in the presence of sodium chloride. The bacterial inoculation was performed using the seed-coating method, and the produced effects were evaluated by morphometric analysis, quantization of ion contents (sodium, potassium), produced biomass, both for epigeal (shoot) and hypogeal (root) organs, and by measuring salt-induced oxidative damage. The results showed an increase in biomass and sodium tolerance and even a reduction of oxidative stress in seedlings pretreated with a PGPR bacterial consortium (Staphylococcus succinus + Bacillus stratosphericus) over the control. Moreover, we observed that salt reduces growth and alters root system traits of maize seedlings, while bacterial treatment improves plant growth and partially restores the root architecture system in saline stress conditions. Therefore, the PGPR seed-coating or seedling treatment could be an effective strategy to enhance sustainable agriculture in saline soils due to the protection of the plants from their inhibitory effect.
Collapse
Affiliation(s)
- Gianmaria Oliva
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Fisciano, SA, Italy
| | - Giovanni Vigliotta
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Fisciano, SA, Italy
| | - Mattia Terzaghi
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Fisciano, SA, Italy
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, Bari, BA, Italy
| | - Francesco Guarino
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Fisciano, SA, Italy
| | - Angela Cicatelli
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Fisciano, SA, Italy
| | - Antonio Montagnoli
- Department of Biotechnologies and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Stefano Castiglione
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Fisciano, SA, Italy
| |
Collapse
|
26
|
Gupta S, Pandey S, Kotra V, Kumar A. Assessing the role of ACC deaminase-producing bacteria in alleviating salinity stress and enhancing zinc uptake in plants by altering the root architecture of French bean (Phaseolus vulgaris) plants. PLANTA 2023; 258:3. [PMID: 37212904 DOI: 10.1007/s00425-023-04159-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/14/2023] [Indexed: 05/23/2023]
Abstract
MAIN CONCLUSION The consortium inoculation with strains R1 and R4 modified the root system to boost seedling growth, increase the zinc content of French bean pods, and reduce salinity stress. The present study demonstrated the effect of two 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-producing plant growth-promoting rhizobacteria (Pantoea agglomerans R1 and Pseudomonas fragi R4) alone and consortia on the root system development, French bean growth, and zinc content as well as salinity stress tolerance. Both the strains were characterized for ACC utilization activity (426.23 and 380.54 nmol α-ketobutyrate mg protein-1 h-1), indole acetic acid (IAA) production, phosphate solubilization, ammonia, hydrogen cyanide (HCN), and siderophore production. The strains exhibited zinc solubilization in both plate and broth assays with zinc oxide and zinc carbonate as zinc sources as validated by atomic absorption spectroscopy (AAS). Single or combined inoculations with the selected strains significantly modulated the architectural and morphological traits of the root system of French bean plants. Furthermore, the application of R1and R4 consortia has enhanced zinc content in roots (60.83 mg kg-1), shoots (15.41 mg kg-1), and pods (30.04 mg kg-1) of French bean plants grown in ZnCO3 amended soil. In another set of pot experiments, the consortium bacterization has significantly enhanced length as well as fresh and dry biomass of roots and shoots of the French bean plant under saline stress conditions. Additionally, inoculation with ACC-degrading rhizobacterial strains has increased chlorophyll and carotenoid contents, osmoprotectant content, and antioxidative enzyme (catalase and peroxidase) activity in comparison to their counterparts exposed to salt treatments only. Current findings suggested ACC deaminase-producing rhizobacterial strains hold the potential to improve root architecture which in turn promotes plant growth under salt-stressed conditions as well as enhances micronutrient concentration in host plants.
Collapse
Affiliation(s)
- Shikha Gupta
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201313, India
| | - Sangeeta Pandey
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201313, India.
| | - Vashista Kotra
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201313, India
| | - Atul Kumar
- Division of Seed Science and Technology, ICAR, Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| |
Collapse
|
27
|
Pallavi, Mishra RK, Sahu PK, Mishra V, Jamal H, Varma A, Tripathi S. Isolation and characterization of halotolerant plant growth promoting rhizobacteria from mangrove region of Sundarbans, India for enhanced crop productivity. FRONTIERS IN PLANT SCIENCE 2023; 14:1122347. [PMID: 37152133 PMCID: PMC10158646 DOI: 10.3389/fpls.2023.1122347] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/24/2023] [Indexed: 12/07/2023]
Abstract
Halotolerant plant growth promoting rhizobacteria (PGPR) are beneficial microorganisms utilized to mitigate the biotic and abiotic stresses in plants. The areas of Sundarban mangroves of West Bengal, India have been reported to be rich in halotolerant microflora, yet major area remains unexplored. The present study, therefore, aims to map down the region-specific native microbial community potent of salt tolerance, plant growth promoting (PGP) activity and antagonistic activity against fungal pathogens. Bacterial samples were isolated from the saline soil of the Sundarban mangroves. A total of 156 bacterial samples were isolated and 20 were screened for their salt tolerance potential. These isolates were characterised using morphological, biochemical, and molecular approaches. Based on 16s rRNA sequencing, they were classified into 4 different genera, including Arthrobacter sp. (01 isolate), Pseudomonas plecoglossicida (01 isolate), Kocuria rosea (01 isolate), and Bacillus (17 isolates). The halotolerant isolates which possessed plant growth promoting traits including phosphate, and zinc solubilization, indole acetic acid production, siderophore, and ammonia generation were selected. Further, the effect of two halotolerant isolates GN-5 and JR-12 which showed most prominent PGP activities was evaluated in pea plant under high salinity conditions. The isolates improved survival by promoting germination (36 to 43%) and root-shoot growth and weight of pea plant in comparison to non-inoculated control plants. In a subsequent dual culture confrontation experiment, both these halo-tolerant isolates showed antagonistic activities against the aggressive root rot disease-causing Macrophomina phaseolina (Tassi) Goid NAIMCC-F-02902. The identified isolates could be used as potential bioagents for saline soils, with potential antagonistic effect on root rot disease. However, further studies at the physiological and molecular level would help to delineate a detail mechanistic understanding of broad-spectrum defence against salinity and potential biotic pathogen.
Collapse
Affiliation(s)
- Pallavi
- Amity Institute of Microbial Technology, Amity University, Noida, India
- Department of Microbiology, Indian Council of Agricultural Research – National Bureau of Agriculturally Important Microorganism, Kushmaur, Mau, Uttar Pradesh, India
| | - Rohit Kumar Mishra
- Centre of Science and Society, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Pramod Kumar Sahu
- Department of Microbiology, Indian Council of Agricultural Research – National Bureau of Agriculturally Important Microorganism, Kushmaur, Mau, Uttar Pradesh, India
| | - Vani Mishra
- Nanotechnology Application Centre, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Hafiza Jamal
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Swati Tripathi
- Amity Institute of Microbial Technology, Amity University, Noida, India
| |
Collapse
|
28
|
Castaldi S, Valkov VT, Ricca E, Chiurazzi M, Isticato R. Use of halotolerant Bacillus amyloliquefaciens RHF6 as a bio-based strategy for alleviating salinity stress in Lotus japonicus cv Gifu. Microbiol Res 2023; 268:127274. [PMID: 36527786 DOI: 10.1016/j.micres.2022.127274] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Halotolerant (HT) bacteria are a group of microorganisms able to thrive in environments with relatively high salt concentrations. HT-microorganisms with plant growth-promoting (PGP) characteristics have been proposed to increase plant tolerance in salty soil. Here, we evaluated the PGP properties at increasing NaCl concentrations of HT-Bacillus strains, previously shown to have beneficial effects under physiological conditions. Most of the isolated showed indole acetic acid and ammonia production and were able to solubilize phosphate and suppress the proliferation of the phytopathogenic fungus Macrophomina phaseolina 2013-1 at high salt concentrations. One of the selected strains, Bacillus amyloliquefaciens RHF6, which retained its beneficial properties up to 400 mM NaCl in vitro, was tested on the legume model plant Lotus japonicus cv Gifu under salt stress. The inoculation with RHF6 significantly improved the survival of plants under high salinity conditions, as reflected in seedling root and shoot growth and total fresh weight (increased by 40%) when compared with non-inoculated plants. The ability of RHF6 to induce a plant antioxidant response, secrete the osmoprotectant proline and reduce ethylene level via the enzymatic ACC deaminase activity indicated this strain as a potentially helpful PGPB for the treatment of degraded soils.
Collapse
Affiliation(s)
- Stefany Castaldi
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Naples, Italy
| | - Vladimir Totev Valkov
- Institute of Biosciences and Bioresources (IBBR), Italian National Research Council (CNR), Napoli, Italy
| | - Ezio Ricca
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Naples, Italy
| | - Maurizio Chiurazzi
- Institute of Biosciences and Bioresources (IBBR), Italian National Research Council (CNR), Napoli, Italy
| | - Rachele Isticato
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Naples, Italy; Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), Portici, NA, Italy; National Biodiversity Future Center (NBFC), Palermo 90133, Italy.
| |
Collapse
|
29
|
Shukla A, Gupta A, Srivastava S. Bacterial consortium (Priestia endophytica NDAS01F, Bacillus licheniformis NDSA24R, and Priestia flexa NDAS28R) and thiourea mediated amelioration of arsenic stress and growth improvement of Oryza sativa L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:14-24. [PMID: 36584629 DOI: 10.1016/j.plaphy.2022.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The present study analyzed the effects of individual microbes and their consortium (Priestia endophytica NDAS01F, Bacillus licheniformis NDSA24R, and P. flexa NDAS28R) either alone or in interaction with thiourea (TU) on growth and responses of rice plants subjected to As stress (50 mg kg-1 in soil) in a pot experiment. The bacteria used in the experiment were isolated from As contaminated fields of Nadia, West Bengal and showed significant As removal potential in in vitro experiment. The results revealed significant growth improvement, biomass accumulation, and decline in malondialdehyde levels in rice plants in bacterial and TU treatments as compared to control As treatment. The best results were observed in a bacterial consortium (B1-2-3), which induced a profound increase of 65%, 43%, 127% and 83% in root length, shoot length, leaf width and fresh weight, respectively. Sulfur metabolism and cell wall synthesis were stimulated upon bacterial and TU amendment in plants. The maximum reduction in As concentration was observed in B2 in roots (-55%) and in B1-2-3 in shoot (-83%). The combined treatment of B1-2-3 + TU proved to be less effective as compared to that of B1-2-3 in terms of As reduction and growth improvement. Hence, the usage of bacterial consortium obtained in the present work is a sustainable approach, which might find relevance in field conditions to achieve As reduction in rice grains and to attain higher growth of plants without the need for additional TU supplementation.
Collapse
Affiliation(s)
- Anurakti Shukla
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, U.P, India
| | - Ankita Gupta
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, U.P, India
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, U.P, India.
| |
Collapse
|
30
|
Bacillus Consortia Modulate Transcriptional and Metabolic Machinery of Arabidopsis Plants for Salt Tolerance. Curr Microbiol 2023; 80:77. [PMID: 36652029 DOI: 10.1007/s00284-023-03187-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/07/2023] [Indexed: 01/19/2023]
Abstract
Rhizobacteria that are helpful to plants can lessen the impacts of salt stress, and they may hold promise for the development of sustainable agriculture in the future. The present study was intended to explicate consortia of salt-tolerant plant-beneficial rhizobacteria for the amelioration of salinity stress in Arabidopsis plants. Inoculation with both the consortia positively influenced the growth of plants as indicated by total chlorophyll content, MDA content, and antioxidant enzyme activities under stressful conditions. Both the multi-trait consortia altered the expression profiles of stress-related genes including CSD1, CAT1, Wrky, Ein, Etr, and ACO. Furthermore, the metabolomic analysis indicated that inoculated plants modulated the metabolic profiles to stimulate physiological and biochemical responses in Arabidopsis plants to mitigate salt stress. Our study affirms that the consortia of salt-tolerant bacterial strains modulate the transcriptional as well as metabolic machinery of plants to protect them from salinity stress. Nevertheless, the findings of this study revealed that consortia are composed of salt-tolerant bacterial strains viz. Bacillus safensis NBRI 12M, B. subtilis NBRI 28B, and B. subtilis NBRI 33N demonstrated significant improvement in Arabidopsis plants under saline stress conditions.
Collapse
|
31
|
Zahra ST, Tariq M, Abdullah M, Azeem F, Ashraf MA. Dominance of Bacillus species in the wheat ( Triticum aestivum L.) rhizosphere and their plant growth promoting potential under salt stress conditions. PeerJ 2023; 11:e14621. [PMID: 36643649 PMCID: PMC9835707 DOI: 10.7717/peerj.14621] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/01/2022] [Indexed: 01/10/2023] Open
Abstract
Wheat (Triticum aestivum L.) is a major source of calorific intake in its various forms and is considered one of the most important staple foods. Improved wheat productivity can contribute substantially to addressing food security in the coming decades. Soil salinity is the most serious limiting factor in crop production and fertilizer use efficiency. In this study, 11 bacteria were isolated from wheat rhizosphere and examined for salt tolerance ability. WGT1, WGT2, WGT3, WGT6, WGT8, and WGT11 were able to tolerate NaCl salinity up to 4%. Bacterial isolates were characterized in vitro for plant growth-promoting properties including indole-3-acetic acid (IAA) production, phosphate solubilization, nitrogen fixation, zinc solubilization, biofilm formation, and cellulase-pectinase production. Six isolates, WGT1, WGT3, WGT4, WGT6, WGT8, and WGT9 showed IAA production ability ranging from 0.7-6 µg m/L. WGT8 displayed the highest IAA production. Five isolates, WGT1, WGT2, WGT5, WGT10, and WGT11, demonstrated phosphate solubilization ranging from 1.4-12.3 µg m/L. WGT2 showed the highest phosphate solubilization. Nitrogen fixation was shown by only two isolates, WGT1 and WGT8. Zinc solubilization was shown by WGT1 and WGT11 on minimal media. All isolates showed biofilm formation ability, where WGT4 exhibited maximum potential. Cellulase production ability was noticed in WGT1, WGT2, WGT4, and WGT5, while pectinase production was observed in WGT2 and WGT3. Phylogenetic identification of potential bacteria isolates confirmed their close relationship with various species of the genus Bacillus. WGT1, WGT2, and WGT3 showed the highest similarity with B. cereus, WGT6 with B. tianshenii, WGT8 with B. subtilis, and WGT11 with B. thuringiensis. Biofertilizer characteristics of salt-tolerant potential rhizospheric bacteria were evaluated by inoculating wheat plants under controlled conditions and field experiments. B. cereus WGT1 and B. thuringiensis WGT11 displayed the maximum potential to increase plant growth parameters and enhance grain yield by 37% and 31%, respectively. Potential bacteria of this study can tolerate salt stress, have the ability to produce plant growth promoting substances under salt stress and contribute significantly to enhance wheat grain yield. These bacterial isolates have the potential to be used as biofertilizers for improved wheat production under salinity conditions and contribute to the sustainable agriculture.
Collapse
Affiliation(s)
- Syeda Tahseen Zahra
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Punjab, Pakistan
| | - Mohsin Tariq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Punjab, Pakistan
| | - Muhammad Abdullah
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Punjab, Pakistan
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Punjab, Pakistan
| | - Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, Faisalabad, Punjab, Pakistan
| |
Collapse
|
32
|
Xiao F, Zhou H. Plant salt response: Perception, signaling, and tolerance. FRONTIERS IN PLANT SCIENCE 2023; 13:1053699. [PMID: 36684765 PMCID: PMC9854262 DOI: 10.3389/fpls.2022.1053699] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/05/2022] [Indexed: 05/14/2023]
Abstract
Salt stress is one of the significant environmental stressors that severely affects plant growth and development. Plant responses to salt stress involve a series of biological mechanisms, including osmoregulation, redox and ionic homeostasis regulation, as well as hormone or light signaling-mediated growth adjustment, which are regulated by different functional components. Unraveling these adaptive mechanisms and identifying the critical genes involved in salt response and adaption are crucial for developing salt-tolerant cultivars. This review summarizes the current research progress in the regulatory networks for plant salt tolerance, highlighting the mechanisms of salt stress perception, signaling, and tolerance response. Finally, we also discuss the possible contribution of microbiota and nanobiotechnology to plant salt tolerance.
Collapse
Affiliation(s)
- Fei Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Huapeng Zhou
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
James N, Umesh M, Sarojini S, Shanmugam S, Nasif O, Alharbi SA, Lan Chi NT, Brindhadevi K. Unravelling the potential plant growth activity of halotolerant Bacillus licheniformis NJ04 isolated from soil and its possible use as a green bioinoculant on Solanum lycopersicum L. ENVIRONMENTAL RESEARCH 2023; 216:114620. [PMID: 36273595 DOI: 10.1016/j.envres.2022.114620] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Immensely expanding world population and narrowing arable land for agriculture is a mighty concern faced by the planet at present. One of the major reasons for decline in arable lands is the increased soil salinity, making it unfavourable for crop cultivation. Utilisation of these saline land for agriculture is possible with suitable invention for improving the soil quality. Biofertizers manufactured out of Plant Growth Promoting Rhizobacteria is one such innovation. In the present study, Bacillus licheniformis NJ04 strain was isolated and studied for its halotolerance and other effective plant growth promoting traits. The NJ04 strain was able to tolerate salt up to 10% and highlighted remarkable antifungal activity against common fungal phytopathogens. The preliminary seed germination test in Solanum lycopersicum seeds revealed a significant increase in root length (16.29 ± 0.91 cm) and shoot length (9.66 ± 0.11 cm) of treated plants as compared with the control plants and thereby shows its possible use as a green bioinoculant in agriculture and an ideal candidate to compete with salt stress.
Collapse
Affiliation(s)
- Nilina James
- Department of Life Sciences, CHRIST (Deemed to Be University), Bangalore, Karnataka, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to Be University), Bangalore, Karnataka, India.
| | - Suma Sarojini
- Department of Life Sciences, CHRIST (Deemed to Be University), Bangalore, Karnataka, India
| | - Sabarathinam Shanmugam
- Chair of Biosystems Engineering, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 56, 51014, Tartu, Estonia.
| | - Omaima Nasif
- Department of Physiology, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh, 11461, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Kathirvel Brindhadevi
- Computational Engineering and Design Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
34
|
Luo H, Riu M, Ryu CM, Yu JM. Volatile organic compounds emitted by Burkholderia pyrrocinia CNUC9 trigger induced systemic salt tolerance in Arabidopsis thaliana. Front Microbiol 2022; 13:1050901. [PMID: 36466674 PMCID: PMC9713481 DOI: 10.3389/fmicb.2022.1050901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/02/2022] [Indexed: 08/01/2023] Open
Abstract
Salinity is among the most significant abiotic stresses that negatively affects plant growth and agricultural productivity worldwide. One ecofriendly tool for broadly improving plant tolerance to salt stress is the use of bio-inoculum with plant growth-promoting rhizobacteria (PGPR). In this study, a bacterium strain CNUC9, which was isolated from maize rhizosphere, showed several plant growth-promoting characteristics including the production of 1-aminocyclopropane-1-carboxylate deaminase, indole acetic acid, siderophore, and phosphate solubilization. Based on 16S rRNA and recA gene sequence analysis, we identified strain CNUC9 as Burkholderia pyrrocinia. Out of bacterial determinants to elicit plant physiological changes, we investigated the effects of volatile organic compounds (VOCs) produced by B. pyrrocinia CNUC9 on growth promotion and salinity tolerance in Arabidopsis thaliana. Higher germination and survival rates were observed after CNUC9 VOCs exposure under 100 mM NaCl stress. CNUC9 VOCs altered the root system architecture and total leaf area of A. thaliana compared to the control. A. thaliana exposed to VOCs induced salt tolerance by increasing its total soluble sugar and chlorophyll content. In addition, lower levels of reactive oxygen species, proline, and malondialdehyde were detected in CNUC9 VOCs-treated A. thaliana seedlings under stress conditions, indicating that VOCs emitted by CNUC9 protected the plant from oxidative damage induced by salt stress. VOC profiles were obtained through solid-phase microextraction and analyzed by gas chromatography coupled with mass spectrometry. Dimethyl disulfide (DMDS), methyl thioacetate, and 2-undecanone were identified as products of CNUC9. Our results indicate that optimal concentrations of DMDS and 2-undecanone promoted growth in A. thaliana seedlings. Our findings provide greater insight into the salt stress alleviation of VOCs produced by B. pyrrocinia CNUC9, as well as potential sustainable agriculture applications.
Collapse
Affiliation(s)
- Huan Luo
- Department of Applied Biology, Chungnam National University, Daejeon, South Korea
| | - Myoungjoo Riu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea
| | - Jun Myoung Yu
- Department of Applied Biology, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
35
|
Barquero M, Poveda J, Laureano-Marín AM, Ortiz-Liébana N, Brañas J, González-Andrés F. Mechanisms involved in drought stress tolerance triggered by rhizobia strains in wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:1036973. [PMID: 36438093 PMCID: PMC9686006 DOI: 10.3389/fpls.2022.1036973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/06/2022] [Indexed: 05/29/2023]
Abstract
Rhizobium spp. is a well-known microbial plant biostimulant in non-legume crops, but little is known about the mechanisms by which rhizobia enhance crop productivity under drought stress. This work analyzed the mechanisms involved in drought stress alleviation exerted by Rhizobium leguminosarum strains in wheat plants under water shortage conditions. Two (LBM1210 and LET4910) of the four R. leguminosarum strains significantly improved the growth parameters (fresh and dry aerial weight, FW and DW, respectively), chlorophyll content, and relative water content (RWC) compared to a non-inoculated control under water stress, providing values similar to or even higher for FW (+4%) and RWC (+2.3%) than the non-inoculated and non-stressed control. Some other biochemical parameters and gene expression explain the observed drought stress alleviation, namely the reduction of MDA, H2O2 (stronger when inoculating with LET4910), and ABA content (stronger when inoculating with LBM1210). In agreement with these results, inoculation with LET4910 downregulated DREB2 and CAT1 genes in plants under water deficiency and upregulated the CYP707A1 gene, while inoculation with LBM1210 strongly upregulated the CYP707A1 gene, which encodes an ABA catabolic enzyme. Conversely, from our results, ethylene metabolism did not seem to be involved in the alleviation of drought stress exerted by the two strains, as the expression of the CTR1 gene was very similar in all treatments and controls. The obtained results regarding the effect of the analyzed strains in alleviating drought stress are very relevant in the present situation of climate change, which negatively influences agricultural production.
Collapse
Affiliation(s)
- Marcia Barquero
- Institute of Environment, Natural Resources and Biodiversity, University of León, León, Spain
| | - Jorge Poveda
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Pamplona, Spain
| | - Ana M. Laureano-Marín
- Centro de Tecnologías Agroambientales (CTA) Fertiberia - Edificio CITIUS (Centro de Investigación, Tecnología e Innovación) 1, Sevilla, Spain
| | - Noemí Ortiz-Liébana
- Institute of Environment, Natural Resources and Biodiversity, University of León, León, Spain
| | - Javier Brañas
- Centro de Tecnologías Agroambientales (CTA) Fertiberia - Edificio CITIUS (Centro de Investigación, Tecnología e Innovación) 1, Sevilla, Spain
| | | |
Collapse
|
36
|
Yaghoubi Khanghahi M, AbdElgawad H, Verbruggen E, Korany SM, Alsherif EA, Beemster GTS, Crecchio C. Biofertilisation with a consortium of growth-promoting bacterial strains improves the nutritional status of wheat grain under control, drought, and salinity stress conditions. PHYSIOLOGIA PLANTARUM 2022; 174:e13800. [PMID: 36250979 DOI: 10.1111/ppl.13800] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/22/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
We investigated the effect of plant growth-promoting bacterial strains (PGPB) as biofertilisers on the grain metabolic composition of durum wheat (Triticum durum Desf.). To this aim, we conducted a greenhouse experiment where we grew durum wheat plants supplied with a biofertiliser consortium of four PGPB and/or chemical fertiliser (containing nitrogen, phosphorus, potassium, and zinc), under non-stress, drought (at 40% field capacity), or salinity (150 mM NaCl) conditions. Nutrient accumulations in the grain were increased in plants treated with the biofertiliser consortium, alone or with a half dose of chemical fertilisers, compared to those in no fertilisation treatment. A clear benefit of biofertiliser application in the improvement of protein, soluble sugar, starch, and lipid contents in the grains was observed in comparison with untreated controls, especially under stress conditions. The most striking observation was the absence of significant differences between biofertiliser and chemical fertiliser treatments for most parameters. Moreover, the overall response to the biofertiliser consortium was accompanied by greater changes in amino acids, organic acids, and fatty acid profiles. In conclusion, PGPB improved the metabolic and nutrient status of durum wheat grains to a similar extent as chemical fertilisers, particularly under stress conditions, demonstrating the value of PGPB as a sustainable fertilisation treatment.
Collapse
Affiliation(s)
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Erik Verbruggen
- Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Universiteitsplein 1C, Wilrijk, Belgium
| | - Shereen Magdy Korany
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Emad A Alsherif
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
| | - Gerrit T S Beemster
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Carmine Crecchio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
37
|
Li Y, You X, Tang Z, Zhu T, Liu B, Chen MX, Xu Y, Liu TY. Isolation and identification of plant growth-promoting rhizobacteria from tall fescue rhizosphere and their functions under salt stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13817. [PMID: 36344445 DOI: 10.1111/ppl.13817] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/29/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Soil salinity has become one of the major factors that threaten tall fescue growth and turf quality. Plants recruit diverse microorganisms in the rhizosphere to cope with salinity stress. In this study, 15 plant growth-promoting rhizobacteria (PGPR) were isolated from the salt-treated rhizosphere of tall fescue and were annotated to 10 genera, including Agrobacterium, Fictibacillus, Rhizobium, Bhargavaea, Microbacterium, Paenarthrobacter, Pseudarthrobacter, Bacillus, Halomonas, and Paracoccus. All strains could produce indole-3-acetic acid (IAA). Additionally, eight strains exhibited the ability to solubilize phosphate and potassium. Most strains could grow on the medium containing 600 mM NaCl, such as Bacillus zanthoxyli and Bacillus altitudinis. Furthermore, Bacillus zanthoxyli and Bacillus altitudinis were inoculated with tall fescue seeds and seedlings to determine their growth-promoting effect. The results showed that Bacillus altitudinis and mixed culture significantly increased the germination rate of tall fescue seeds. Bacillus zanthoxyli can significantly increase the tillers number and leaf width of seedlings under salt conditions. Through the synergistic effect of FaSOS1, FaHKT1, and FaHAK1 genes, Bacillus zanthoxyli helps to expel the excess Na+ from aboveground parts and absorb more K+ in roots to maintain ion homeostasis in tall fescue. Unexpectedly, we found that Bacillus altitudinis displayed an inapparent growth-promoting effect on seedlings under salt stress. Interestingly, the mixed culture of the two strains was also able to alleviate, to some extent, the effects of salt stress on tall fescue. This study provides a preliminary understanding of tall fescue rhizobacteria and highlights the role of Bacillus zanthoxyli in tall fescue growth and salt tolerance.
Collapse
Affiliation(s)
- Youyue Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Xiangkai You
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| | - Zhe Tang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| | - Tianqi Zhu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| | - Bowen Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| | - Mo-Xian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China and Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu Province, People's Republic of China
| | - Yuefei Xu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| | - Tie-Yuan Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, People's Republic of China
| |
Collapse
|
38
|
Hoque MN, Imran S, Hannan A, Paul NC, Mahamud MA, Chakrobortty J, Sarker P, Irin IJ, Brestic M, Rhaman MS. Organic Amendments for Mitigation of Salinity Stress in Plants: A Review. Life (Basel) 2022; 12:life12101632. [PMID: 36295067 PMCID: PMC9605495 DOI: 10.3390/life12101632] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/20/2022] Open
Abstract
Natural and/or human-caused salinization of soils has become a growing problem in the world, and salinization endangers agro-ecosystems by causing salt stress in most cultivated plants, which has a direct effect on food quality and quantity. Several techniques, as well as numerous strategies, have been developed in recent years to help plants cope with the negative consequences of salt stress and mitigate the impacts of salt stress on agricultural plants. Some of them are not environmentally friendly. In this regard, it is crucial to develop long-term solutions that boost saline soil productivity while also protecting the ecosystem. Organic amendments, such as vermicompost (VC), vermiwash (VW), biochar (BC), bio-fertilizer (BF), and plant growth promoting rhizobacteria (PGPR) are gaining attention in research. The organic amendment reduces salt stress and improves crops growth, development and yield. The literature shows that organic amendment enhances salinity tolerance and improves the growth and yield of plants by modifying ionic homeostasis, photosynthetic apparatus, antioxidant machineries, and reducing oxidative damages. However, the positive regulatory role of organic amendments in plants and their stress mitigation mechanisms is not reviewed adequately. Therefore, the present review discusses the recent reports of organic amendments in plants under salt stress and how stress is mitigated by organic amendments. The current assessment also analyzes the limitations of applying organic amendments and their future potential.
Collapse
Affiliation(s)
- Md. Najmol Hoque
- Department of Biochemistry and Molecular Biology, Khulna Agricultural University, Khulna 9100, Bangladesh
| | - Shahin Imran
- Department of Agronomy, Khulna Agricultural University, Khulna 9100, Bangladesh
| | - Afsana Hannan
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Newton Chandra Paul
- Department of Agronomy, Khulna Agricultural University, Khulna 9100, Bangladesh
| | - Md. Asif Mahamud
- Department of Agricultural Chemistry, Khulna Agricultural University, Khulna 9100, Bangladesh
| | | | - Prosenjit Sarker
- Department of Crop Botany, Khulna Agricultural University, Khulna 9100, Bangladesh
| | - Israt Jahan Irin
- Department of Agronomy, Khulna Agricultural University, Khulna 9100, Bangladesh
| | - Marian Brestic
- Department of Botany and Plant Physiology, Czech University of Life Sciences, Kamycka 129, 16500 Prague, Czech Republic
- Institute of Plant and Environmental Studies, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovakia
- Correspondence: (M.B.); (M.S.R.)
| | - Mohammad Saidur Rhaman
- Department of Seed Science and Technology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
- Correspondence: (M.B.); (M.S.R.)
| |
Collapse
|
39
|
A Plant Endophytic Bacterium Priestia megaterium StrainBP-R2 Isolated from the Halophyte Bolboschoenus planiculmis Enhances Plant Growth under Salt and Drought Stresses. Microorganisms 2022; 10:microorganisms10102047. [PMID: 36296323 PMCID: PMC9610499 DOI: 10.3390/microorganisms10102047] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Global warming and climate change have contributed to the rise of weather extremes. Severe drought and soil salinization increase because of rising temperatures. Economically important crop production and plant growth and development are hindered when facing various abiotic stresses. Plant endophytic bacteria live inside host plants without causing visible harm and can be isolated from surface-sterilized plant tissues. Using plant endophytic bacteria to stimulate plant growth and increase environmental stress tolerance has become an alternative approach besides using the traditional breeding and genetically modifying approaches to select or create new crop types resistant to different environmental stresses. The plant endophytic bacterium, Priestia megaterium (previously known as Bacillus megaterium) strain BP-R2, was isolated from the surface-sterilized root tissues of the salt marsh halophyte Bolboschoenus planiculmis. The bacteria strain BP-R2 showed high tolerance to different sodium chloride (NaCl) concentrations and produced the auxin plant hormone, indole acetic acid (IAA), under various tested growth conditions. Inoculation of Arabidopsis and pak choi (Brassica rapa L. R. Chinensis Group) plants with the strain BP-R2 greatly enhanced different growth parameters of the host plants under normal and salt and drought stress conditions compared to that of the mock-inoculated plants. Furthermore, the hydrogen peroxide (H2O2) content, electrolyte leakage (EL), and malondialdehyde (MDA) concentration accumulated less in the BP-R2-inoculated plants than in the mock-inoculated control plants under salt and drought stresses. In summary, the plant endophytic bacterium strain BP-R2 increased host plant growth and stress tolerance to salt and drought conditions.
Collapse
|
40
|
Raihan MRH, Rahman M, Mahmud NU, Adak MK, Islam T, Fujita M, Hasanuzzaman M. Application of Rhizobacteria, Paraburkholderia fungorum and Delftia sp. Confer Cadmium Tolerance in Rapeseed ( Brassica campestris) through Modulating Antioxidant Defense and Glyoxalase Systems. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202738. [PMID: 36297762 PMCID: PMC9610570 DOI: 10.3390/plants11202738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/14/2022] [Accepted: 10/13/2022] [Indexed: 05/06/2023]
Abstract
We investigated the role of two different plant growth-promoting probiotic bacteria in conferring cadmium (Cd) tolerance in rapeseed (Brassica campestris cv. BARI Sarisha-14) through improving reactive oxygen species scavenging, antioxidant defense, and glyoxalase system. Soil, as well as seeds of rapeseed, were separately treated with probiotic bacteria, Paraburkholderia fungorum BRRh-4 and Delftia sp. BTL-M2. Fourteen-day-old seedlings were exposed to 0.25 and 0.5 mM CdCl2 for two weeks. Cadmium-treated plants resulted in a higher accumulation of hydrogen peroxide, increased lipid peroxidation, electrolyte leakage, chlorophyll damage, and impaired antioxidant defense and glyoxalase systems. Consequently, it reduced plant growth and biomass production, and yield parameters. However, probiotic bacteria-inoculated plants significantly ameliorated the Cd toxicity by enhancing the activities of antioxidant enzymes (ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, glutathione reductase, glutathione peroxidase, and catalase) and glyoxalase enzymes (glyoxalase I and glyoxalase II) which led to the mitigation of oxidative damage indicated by reduced hydrogen peroxide, lipid peroxidation, and electrolyte leakage that ultimately improved growth, physiology, and yield of the bacterial inoculants rapeseed plants. When taken together, our results demonstrated the potential role of the plant probiotic bacteria, BRRh-4 and BTL-M2, in mitigating the Cd-induced damages in rapeseed plants.
Collapse
Affiliation(s)
| | - Mira Rahman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Nur Uddin Mahmud
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Malay Kumar Adak
- Department of Botany, University of Kalyani, Nadia 741235, West Bengal, India
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
- Correspondence: (T.I.); (M.F.); (M.H.)
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Takamatsu 761-0795, Japan
- Correspondence: (T.I.); (M.F.); (M.H.)
| | - Mirza Hasanuzzaman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
- Correspondence: (T.I.); (M.F.); (M.H.)
| |
Collapse
|
41
|
González-Reguero D, Robas-Mora M, Probanza A, Jiménez PA. Evaluation of the oxidative stress alleviation in Lupinus albus var. orden Dorado by the inoculation of four plant growth-promoting bacteria and their mixtures in mercury-polluted soils. Front Microbiol 2022; 13:907557. [PMID: 36246290 PMCID: PMC9556840 DOI: 10.3389/fmicb.2022.907557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Mercury (Hg) pollution is a serious environmental and public health problem. Hg has the ability to biomagnify through the trophic chain and generate various pathologies in humans. The exposure of plants to Hg affects normal plant growth and its stress levels, producing oxidative cell damage. Root inoculation with plant growth-promoting bacteria (PGPB) can help reduce the absorption of Hg, minimizing the harmful effects of this metal in the plant. This study evaluates the phytoprotective capacity of four bacterial strains selected for their PGPB capabilities, quantified by the calculation of the biomercuroremediator suitability index (IIBMR), and their consortia, in the Lupinus albus var. orden Dorado. The oxidative stress modulating capacity in the inoculated plant was analyzed by measuring the activity of the enzymes catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR). In turn, the phytoprotective capacity of these PGPBs against the bioaccumulation of Hg was studied in plants grown in soils highly contaminated by Hg vs. soils in the absence of Hg contamination. The results of the oxidative stress alleviation and Hg bioaccumulation were compared with the biometric data of Lupinus albus var. orden Dorado previously obtained under the same soil conditions of Hg concentration. The results show that the biological behavior of plants (biometrics, bioaccumulation of Hg, and activity of regulatory enzymes of reactive oxygen species [ROS]) is significantly improved by the inoculation of strains B1 (Pseudomonas moraviensis) and B2 (Pseudomonas baetica), as well as their corresponding consortium (CS5). In light of the conclusions of this work, the use of these strains, as well as their consortium, is postulated as good candidates for their subsequent use in phytostimulation and phytoprotection processes in areas contaminated with Hg.
Collapse
|
42
|
Pang F, Solanki MK, Wang Z. Streptomyces can be an excellent plant growth manager. World J Microbiol Biotechnol 2022; 38:193. [PMID: 35980475 DOI: 10.1007/s11274-022-03380-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/07/2022] [Indexed: 11/27/2022]
Abstract
Streptomyces, the most abundant and arguably the most important genus of actinomycetes, is an important source of biologically active compounds such as antibiotics, and extracellular hydrolytic enzymes. Since Streptomyces can have a beneficial symbiotic relationship with plants they can contribute to nutrition, health and fitness of the latter. This review article summarizes recent research contributions on the ability of Streptomyces to promote plant growth and improve plant tolerance to biotic and abiotic stress responses, as well as on the consequences, on plant health, of the enrichment of rhizospheric soils in Streptomyces species. This review summarizes the most recent reports of the contribution of Streptomyces to plant growth, health and fitness and suggests future research directions to promote the use of these bacteria for the development of a cleaner agriculture.
Collapse
Affiliation(s)
- Fei Pang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Biology and Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Manoj Kumar Solanki
- Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-701, Katowice, Poland.
| | - Zhen Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Biology and Pharmacy, Yulin Normal University, Yulin, 537000, China.
| |
Collapse
|
43
|
Wu X, Fan Y, Wang R, Zhao Q, Ali Q, Wu H, Gu Q, Borriss R, Xie Y, Gao X. Bacillus halotolerans KKD1 induces physiological, metabolic and molecular reprogramming in wheat under saline condition. FRONTIERS IN PLANT SCIENCE 2022; 13:978066. [PMID: 36035675 PMCID: PMC9404337 DOI: 10.3389/fpls.2022.978066] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Salt stress decreases plant growth and is a major threat to crop yields worldwide. The present study aimed to alleviate salt stress in plants by inoculation with halophilic plant growth-promoting rhizobacteria (PGPR) isolated from an extreme environment in the Qinghai-Tibetan Plateau. Wheat plants inoculated with Bacillus halotolerans KKD1 showed increased seedling morphological parameters and physiological indexes. The expression of wheat genes directly involved in plant growth was upregulated in the presence of KKD1, as shown by real-time quantitative PCR (RT-qPCR) analysis. The metabolism of phytohormones, such as 6-benzylaminopurine and gibberellic acid were also enhanced. Mining of the KKD1 genome corroborated its potential plant growth promotion (PGP) and biocontrol properties. Moreover, KKD1 was able to support plant growth under salt stress by inducing a stress response in wheat by modulating phytohormone levels, regulating lipid peroxidation, accumulating betaine, and excluding Na+. In addition, KKD1 positively affected the soil nitrogen content, soil phosphorus content and soil pH. Our findings indicated that KKD1 is a promising candidate for encouraging wheat plant growth under saline conditions.
Collapse
Affiliation(s)
- Xiaohui Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Plateau Ecology and Agriculture, Department of Grassland Science, College of Agricultural and Husbandry, Qinghai University, Xining, China
| | - Yaning Fan
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ruoyi Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qian Zhao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Huijun Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qin Gu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Rainer Borriss
- Institut für Biologie, Humboldt Universität, Berlin, Germany
- Nord Reet UG, Greifswald, Germany
| | - Yongli Xie
- State Key Laboratory of Plateau Ecology and Agriculture, Department of Grassland Science, College of Agricultural and Husbandry, Qinghai University, Xining, China
| | - Xuewen Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
44
|
Hung SHW, Chiu MC, Huang CC, Kuo CH. Complete Genome Sequence of Curtobacterium sp. C1, a Beneficial Endophyte with the Potential for In-Plant Salinity Stress Alleviation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:731-735. [PMID: 35819348 DOI: 10.1094/mpmi-01-22-0027-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Shih-Hsun Walter Hung
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Min-Chih Chiu
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chieh-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
- Innovation and Development Centre of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
45
|
Ali B, Hafeez A, Ahmad S, Javed MA, Sumaira, Afridi MS, Dawoud TM, Almaary KS, Muresan CC, Marc RA, Alkhalifah DHM, Selim S. Bacillus thuringiensis PM25 ameliorates oxidative damage of salinity stress in maize via regulating growth, leaf pigments, antioxidant defense system, and stress responsive gene expression. FRONTIERS IN PLANT SCIENCE 2022; 13:921668. [PMID: 35968151 PMCID: PMC9366557 DOI: 10.3389/fpls.2022.921668] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/30/2022] [Indexed: 07/30/2023]
Abstract
Soil salinity is the major abiotic stress that disrupts nutrient uptake, hinders plant growth, and threatens agricultural production. Plant growth-promoting rhizobacteria (PGPR) are the most promising eco-friendly beneficial microorganisms that can be used to improve plant responses against biotic and abiotic stresses. In this study, a previously identified B. thuringiensis PM25 showed tolerance to salinity stress up to 3 M NaCl. The Halo-tolerant Bacillus thuringiensis PM25 demonstrated distinct salinity tolerance and enhance plant growth-promoting activities under salinity stress. Antibiotic-resistant Iturin C (ItuC) and bio-surfactant-producing (sfp and srfAA) genes that confer biotic and abiotic stresses were also amplified in B. thuringiensis PM25. Under salinity stress, the physiological and molecular processes were followed by the over-expression of stress-related genes (APX and SOD) in B. thuringiensis PM25. The results detected that B. thuringiensis PM25 inoculation substantially improved phenotypic traits, chlorophyll content, radical scavenging capability, and relative water content under salinity stress. Under salinity stress, the inoculation of B. thuringiensis PM25 significantly increased antioxidant enzyme levels in inoculated maize as compared to uninoculated plants. In addition, B. thuringiensis PM25-inoculation dramatically increased soluble sugars, proteins, total phenols, and flavonoids in maize as compared to uninoculated plants. The inoculation of B. thuringiensis PM25 significantly reduced oxidative burst in inoculated maize under salinity stress, compared to uninoculated plants. Furthermore, B. thuringiensis PM25-inoculated plants had higher levels of compatible solutes than uninoculated controls. The current results demonstrated that B. thuringiensis PM25 plays an important role in reducing salinity stress by influencing antioxidant defense systems and abiotic stress-related genes. These findings also suggest that multi-stress tolerant B. thuringiensis PM25 could enhance plant growth by mitigating salt stress, which might be used as an innovative tool for enhancing plant yield and productivity.
Collapse
Affiliation(s)
- Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aqsa Hafeez
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saliha Ahmad
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Ammar Javed
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Sumaira
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Turki M. Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Khalid S. Almaary
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Crina Carmen Muresan
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Romina Alina Marc
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
46
|
Sharma K, Sharma S, Vaishnav A, Jain R, Singh D, Singh HB, Goel A, Singh S. Salt tolerant PGPR strain Priestia endophytica SK1 promotes Fenugreek growth under salt stress by inducing nitrogen assimilation and secondary metabolites. J Appl Microbiol 2022; 133:2802-2813. [PMID: 35880391 DOI: 10.1111/jam.15735] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
AIMS Soil salinity is a huge obstacle in crop production worldwide. Saline soil can reduce active chemical contents in medicinal plants of Leguminosae family through crippled normal nodule function. Intensive efforts are underway to improve yield and medicinal value of leguminous herbs under salt stress condition by using benign microbes. Here, an attempt was made to explore the salt tolerant bacteria associated with rhizosphere of fenugreek plant (Trigonella foenum-graecum L.) and to evaluate their impact on host plant growth and metabolite of pharmaceutical importance. METHODS AND RESULTS A salt tolerant plant growth promoting rhizobacterial (PGPR) strain Priestia endophytica SK1 isolated from fenugreek rhizospheric soil, which increased biomass and metabolite content in plants grown under saline stress. SK1 bacterial application induced nodule formation and enhanced nitrogen and phosphorus content under salt (100 mM NaCl) stress as compared to control plants. H2O2 production and lipid peroxidation as a measure of stress were observed high in control plants, while a reduction in these parameters was observed in plants inoculated with SK1. In addition, a significant effect was found on the phenolic compounds and trigonelline content in fenugreek plant inoculated with SK1 bacterium. An increased trigonelline content of about 54% over uninoculated control was recorded under salt stress. CONCLUSION The results of this study revealed that application of salt tolerant PGPR strain P. endophytica SK1 induced nitrogen fixation machinery that leads to alleviate salt stress and improved the biosynthesis of trigonelline content in fenugreek. SIGNIFICANCE OF THE STUDY This study extends our understanding on significance of rhizosphere microbiome and their beneficial role in plant health under environmental stress to promote agro-eco-farming practices.
Collapse
Affiliation(s)
- Krishna Sharma
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Sonal Sharma
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Anukool Vaishnav
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India.,Plant-Soil Interaction Group, Agroscope (Reckenholz), Zurich, Switzerland
| | - Rahul Jain
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Dinesh Singh
- Department of Plant Pathology, ICAR-Indian Agricultural Research Institute (IARI), Pusa, New Delhi, India
| | - Harikesh Bahadur Singh
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Anjana Goel
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Shoorvir Singh
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
47
|
Liang SM, Zheng FL, Wu QS. Elucidating the dialogue between arbuscular mycorrhizal fungi and polyamines in plants. World J Microbiol Biotechnol 2022; 38:159. [PMID: 35834138 DOI: 10.1007/s11274-022-03336-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/12/2022] [Indexed: 12/12/2022]
Abstract
The most dominant arbuscular mycorrhizal (AM) symbiont can be established on roots of most terrestrial plants by beneficial AM fungi. A type of polycationic and aliphatic compounds, polyamines (PAs), are involved in plant physiological activities including stress responses. Interestingly, small amounts of PAs such as putrescine (Put) and spermidine (Spd) were found in AM fungal spores, and they are considered to be a component involved in mycorrhizal development, including mycorrhizal colonization, appressoria formation, spore germination and mycelial growth. Thus, PAs are regulatory factors in plant-AM symbiosis. Inoculation of AM fungi also affects the metabolism of endogenous PAs in host plants, including PAs synthesis and catabolism, thus, regulating various physiological events of the host. As a result, there seems to be a dialogue between PAs and AM fungi. Existing knowledge makes us understand that endogenous or exogenous PAs are an important regulator factor in the growth of AM fungi, as well as a key substance to colonize roots, which further enhances mycorrhizal benefits in plant growth responses and root architecture. The presence of AM symbiosis in roots alters the dynamic balance of endogenous PAs, triggering osmotic adjustment and antioxidant defense systems, maintaining charge balance and acting as a stress signalling molecule, which affects various physiological activities, such as plant growth, nutrient acquisition, stress tolerance and improvement of root architecture. This review mainly elucidated (i) what is the role of fungal endogenous PAs in fungal growth and colonization of roots in host plants? (ii) how AM fungi and PAs interact with each other to alter the growth of fungi and plants and subsequent activities, providing the reference for the future combined use of AM fungi and PAs in agricultural production, although there are still many unknown events in the dialogue.
Collapse
Affiliation(s)
- Sheng-Min Liang
- College of Horticulture and Gardening, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Feng-Ling Zheng
- College of Horticulture and Gardening, Yangtze University, 434025, Jingzhou, Hubei, China
| | - Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, 434025, Jingzhou, Hubei, China.
| |
Collapse
|
48
|
Rhizobacteria modify soil biological indices and induce tolerance to osmotic stress in tomato depending on the salinity level and bacteria species. Braz J Microbiol 2022; 53:1473-1481. [PMID: 35780284 DOI: 10.1007/s42770-022-00781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/08/2022] [Indexed: 11/02/2022] Open
Abstract
Salinity is a major abiotic stress that impacts crop productivity globally. Plant growth-promoting rhizobacteria (PGPRs) exploit several mechanisms to not only decrease soil salinity but also improve the systemic tolerance of plants to osmotic stress. In this work, the effect of five PGPR strains was investigated on the growth and physiological responses of tomato plants, including stomatal closure, proline, and K+ and Na+ content under a range of salt stress, 0, 2.5, 5, 7.5, and 10 dS m-1. The effect of PGPR strains and salinity levels on the soil biological characteristics was also investigated. Salt stress affected the plant growth and physiological factors and soil biological factors in a dose-dependent manner. The highest saline stress, 10 dS m-1, reduced shoot and root dry weight and root volume up to 51.3, 41.5, and 51.8%, respectively. It also increased stomatal resistance and proline content 2.01- and 3.66-folds and decreased K+/Na+ ratio 4.16-folds, respectively. It also reduced basal respiration, substrate-induced respiration, and microbial biomass carbon up to 2.25-, 4.83-, and 6.7-folds and increased qCO2 3.18-folds, respectively. PGPR strains were able to modulate salt tolerance mechanisms, improve plant growth factors, and improve soil biological indicators. Bacillus megaterium P2 was the best strain in the balancing K+/Na+ uptake at least at 10 dS m-1. However, the efficiency of strains was dependent on the magnitude of salt stress. Therefore, it is possible to introduce PGPR strains based on soil salt level or exploit rhizobacteria consortia to manage salt stress in different conditions.
Collapse
|
49
|
Pérez-Rodriguez MM, Pontin M, Piccoli P, Lobato Ureche MA, Gordillo MG, Funes-Pinter I, Cohen AC. Halotolerant native bacteria Enterobacter 64S1 and Pseudomonas 42P4 alleviate saline stress in tomato plants. PHYSIOLOGIA PLANTARUM 2022; 174:e13742. [PMID: 35770943 DOI: 10.1111/ppl.13742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Salinity is one of the principal abiotic stresses that limit the growth and productivity of crops. The use of halotolerant plant growth-promoting rhizobacteria (PGPR) that increase the growth of salt-stressed crops is an environmentally friendly alternative to promote plant yield under salinity. The aim of this study was to test native PGPR, isolated according to their tolerance to NaCl, and to evaluate their influence on morphological, physiological, and biochemical traits promoted by salt stress in tomato plants. Enterobacter 64S1 and Pseudomonas 42P4 were selected as the most efficient strains in terms of salt tolerance. Both strains were classified as moderately resistant to salinity (NaCl) and maintained their plant growth-promoting activities, such as nitrogen fixation and phosphate solubilization, even in the presence of high levels of salt. The results of a greenhouse experiment demonstrated that PGPR inoculation increased root and shoot dry weight, stem diameter, plant height, and leaf area compared to control noninoculated plants under nonsaline stress conditions, reversing the effects of salinity. Inoculated plants showed increased tolerance to salt conditions by reducing electrolyte leakage (improved membrane stability) and lipid peroxidation and increasing chlorophyll quantum efficiency (Fv/Fm) and the performance index. Also, inoculation increased the accumulation of proline and antioxidant nonenzymatic compounds, such as carotenes and total phenolic compounds. The catalase and peroxidase activities increased with salinity, but the effect was reversed by Enterobacter 64S1. In conclusion, Enterobacter 64S1 and Pseudomonas 42P4 isolated from salt-affected regions have the potential to alleviate the deleterious effects of salt stress in tomato crops.
Collapse
Affiliation(s)
- María Micaela Pérez-Rodriguez
- Instituto de Biología Agrícola de Mendoza (IBAM-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Mariela Pontin
- Estación Experimental Agropecuaria La Consulta, Instituto Nacional de Tecnología Agropecuaria, Mendoza, Argentina
| | - Patricia Piccoli
- Instituto de Biología Agrícola de Mendoza (IBAM-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Miguel Andrés Lobato Ureche
- Instituto de Biología Agrícola de Mendoza (IBAM-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María G Gordillo
- Instituto de Biología Agrícola de Mendoza (IBAM-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Iván Funes-Pinter
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Mendoza (INTA EEA Mendoza), Mendoza, Argentina
| | - Ana Carmen Cohen
- Instituto de Biología Agrícola de Mendoza (IBAM-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
50
|
Kong WL, Wang WY, Zuo SH, Wu XQ. Genome Sequencing of Rahnella victoriana JZ-GX1 Provides New Insights Into Molecular and Genetic Mechanisms of Plant Growth Promotion. Front Microbiol 2022; 13:828990. [PMID: 35464970 PMCID: PMC9020876 DOI: 10.3389/fmicb.2022.828990] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/07/2022] [Indexed: 12/02/2022] Open
Abstract
Genomic information for bacteria within the genus Rahnella remains limited. Rahnella sp. JZ-GX1 was previously isolated from the Pinus massoniana rhizosphere in China and shows potential as a plant growth-promoting (PGP) bacterium. In the present work, we combined the GridION Nanopore ONT and Illumina sequencing platforms to obtain the complete genome sequence of strain JZ-GX1, and the application effects of the strain in natural field environment was assessed. The whole genome of Rahnella sp. JZ-GX1 comprised a single circular chromosome (5,472,828 bp, G + C content of 53.53%) with 4,483 protein-coding sequences, 22 rRNAs, and 77 tRNAs. Based on whole genome phylogenetic and average nucleotide identity (ANI) analysis, the JZ-GX1 strain was reidentified as R. victoriana. Genes related to indole-3-acetic acid (IAA), phosphorus solubilization, nitrogen fixation, siderophores, acetoin, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, gamma-aminobutyric acid (GABA) production, spermidine and volatile organic compounds (VOCs) biosynthesis were present in the genome of strain JZ-GX1. In addition, these functions were also confirmed by in vitro experiments. Importantly, compared to uninoculated control plants, Pyrus serotina, Malus spectabilis, Populus euramericana (Dode) Guinier cv. “San Martino” (I-72 poplar) and Pinus elliottii plants inoculated with strain JZ-GX1 showed increased heights and ground diameters. These findings improve our understanding of R. victoriana JZ-GX1 as a potential biofertilizer in agriculture.
Collapse
Affiliation(s)
- Wei-Liang Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Wei-Yu Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Sheng-Han Zuo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| |
Collapse
|