1
|
Gu Y, Zhang J, Zhao X, Nie W, Xu X, Liu M, Zhang X. Olfactory dysfunction and its related molecular mechanisms in Parkinson's disease. Neural Regen Res 2024; 19:583-590. [PMID: 37721288 DOI: 10.4103/1673-5374.380875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Changes in olfactory function are considered to be early biomarkers of Parkinson's disease. Olfactory dysfunction is one of the earliest non-motor features of Parkinson's disease, appearing in about 90% of patients with early-stage Parkinson's disease, and can often predate the diagnosis by years. Therefore, olfactory dysfunction should be considered a reliable marker of the disease. However, the mechanisms responsible for olfactory dysfunction are currently unknown. In this article, we clearly explain the pathology and medical definition of olfactory function as a biomarker for early-stage Parkinson's disease. On the basis of the findings of clinical olfactory function tests and animal model experiments as well as neurotransmitter expression levels, we further characterize the relationship between olfactory dysfunction and neurodegenerative diseases as well as the molecular mechanisms underlying olfactory dysfunction in the pathology of early-stage Parkinson's disease. The findings highlighted in this review suggest that olfactory dysfunction is an important biomarker for preclinical-stage Parkinson's disease. Therefore, therapeutic drugs targeting non-motor symptoms such as olfactory dysfunction in the early stage of Parkinson's disease may prevent or delay dopaminergic neurodegeneration and reduce motor symptoms, highlighting the potential of identifying effective targets for treating Parkinson's disease by inhibiting the deterioration of olfactory dysfunction.
Collapse
Affiliation(s)
- Yingying Gu
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Jiaying Zhang
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Xinru Zhao
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Wenyuan Nie
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaole Xu
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Mingxuan Liu
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaoling Zhang
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
Wang T, Chen X, Wang K, Ju J, Yu X, Yu W, Liu C, Wang Y. Cardiac regeneration: Pre-existing cardiomyocyte as the hub of novel signaling pathway. Genes Dis 2024; 11:747-759. [PMID: 37692487 PMCID: PMC10491875 DOI: 10.1016/j.gendis.2023.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 09/12/2023] Open
Abstract
In the mammalian heart, cardiomyocytes are forced to withdraw from the cell cycle shortly after birth, limiting the ability of the heart to regenerate and repair. The development of multimodal regulation of cardiac proliferation has verified that pre-existing cardiomyocyte proliferation is an essential driver of cardiac renewal. With the continuous development of genetic lineage tracking technology, it has been revealed that cell cycle activity produces polyploid cardiomyocytes during the embryonic, juvenile, and adult stages of cardiogenesis, but newly formed mononucleated diploid cardiomyocytes also elevated sporadically during myocardial infarction. It implied that adult cardiomyocytes have a weak regenerative capacity under the condition of ischemia injury, which offers hope for the clinical treatment of myocardial infarction. However, the regeneration frequency and source of cardiomyocytes are still low, and the mechanism of regulating cardiomyocyte proliferation remains further explained. It is noteworthy to explore what force triggers endogenous cardiomyocyte proliferation and heart regeneration. Here, we focused on summarizing the recent research progress of emerging endogenous key modulators and crosstalk with other signaling pathways and furnished valuable insights into the internal mechanism of heart regeneration. In addition, myocardial transcription factors, non-coding RNAs, cyclins, and cell cycle-dependent kinases are involved in the multimodal regulation of pre-existing cardiomyocyte proliferation. Ultimately, awakening the myocardial proliferation endogenous modulator and regeneration pathways may be the final battlefield for the regenerative therapy of cardiovascular diseases.
Collapse
Affiliation(s)
- Tao Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| | - Xinzhe Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| | - Kai Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| | - Jie Ju
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| | - Xue Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| | - Wanpeng Yu
- College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| | - Cuiyun Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266023, China
| |
Collapse
|
3
|
Zhu JX, Guo MX, Zhou L, Yi LT, Huang HL, Wang HL, Cheng HY. Evaluation of the anti-inflammatory material basis of Lagotis brachystachya in HepG2 and THP-1 cells. J Ethnopharmacol 2024; 318:117055. [PMID: 37597676 DOI: 10.1016/j.jep.2023.117055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE LAGOTIS BRACHYSTACHYA Maxim is a traditional ethnic medicine commonly used in Tibet. In Tibetan medicine theory, Lagotis brachystachya is mainly used for the treatment of inflammatory related diseases. However, the active components and mechanism of the anti-inflammatory activity of Lagotis brachystachya are not clear. AIM OF THE STUDY The putative anti-inflammatory active compounds from Lagotis brachystachya Maxim and its anti-inflammation related mechanism involving in the TLR4/MyD88/NF-κB and NLRP3 signaling pathways were investigated. MATERIALS AND METHODS In this study, we investigated the anti-inflammatory activity and mechanism of 32 compounds extracted from Lagotis brachystachya in HepG2 and THP-1 cells using the alcohol-induced HepG2 cell injury model and the monosodium urate (MSU) combined with lipopolysaccharide (LPS)-induced THP-1 cell inflammation model. RESULTS The results found that six compounds, including Echinacoside, Quercetin, Homoplantaginin, Tricin-7-O-glucoside, Apigenin and Luteolin-7-O-beta-d-glucopyranoside, were shown to exhibit significant anti-inflammatory effects in both cell models. Furthermore, these compounds were shown to inhibit the TLR4/MyD88/NF-κB and NLRP3 signaling pathways and reduce the release of pro-inflammatory cytokines IL-1β, TNF-α, and IL-6 in both cell models. CONCLUSION These findings suggest that Echinacoside, Quercetin, Homoplantaginin, Tricin-7-O-glucoside, Apigenin and Luteolin-7-O-beta-d-glucopyranoside from Lagotis brachystachya have promising potential as natural anti-inflammatory agents for the treatment of inflammatory-related diseases. The discovery of bioactive compounds from this plant opens up possibilities for the development of novel treatments for inflammatory-related diseases, potentially providing alternative or adjunctive options to conventional therapies.
Collapse
Affiliation(s)
- Ji-Xiao Zhu
- Research Center of Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China.
| | - Min-Xia Guo
- Research Center of Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China.
| | - Lin Zhou
- Research Center of Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China.
| | - Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian province, PR China.
| | - Hui-Lian Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China.
| | - Hong-Ling Wang
- Research Center of Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China.
| | - Hong-Yu Cheng
- College of Humanities, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, PR China.
| |
Collapse
|
4
|
Wang X, Liang F, Dai Z, Feng X, Qiu F. Combination of Coptis chinensis polysaccharides and berberine ameliorates ulcerative colitis by regulating gut microbiota and activating AhR/IL-22 pathway. J Ethnopharmacol 2024; 318:117050. [PMID: 37595814 DOI: 10.1016/j.jep.2023.117050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coptis chinensis Franch. polysaccharide (CCP) and berberine (BBR) are the primary active components of Coptis chinensis Franch. BBR is clinically used for the treatment of intestinal infections and gastroenteritis. CCP was also reported to be effective for the treatment of ulcerative colitis (UC). However, whether CCP combined with BBR shows a synergistic effect on the treatment of UC has not been elucidated yet. AIM OF THE STUDY This study aspired to investigate the therapeutic effect and the possible mechanisms of the combination of CCP with BBR on chronic UC. MATERIALS AND METHODS By periodic administration of dextran sulfate sodium (DSS) to C57BL/6J mice, chronic UC model mice were induced. CCP (15 mg/kg), BBR (50 mg/kg), and CCP.BBR (a combination of 15 mg/kg CCP and 50 mg/kg BBR) were orally administered to the model mice for 10 days. Changes of body weight, disease activity index, colon length, organ index, histopathological damage, expression of cytokines, and intestinal tight junction proteins were determined to evaluate the therapeutic effects. 16S rDNA sequencing, targeted short-chain fatty acid metabolomics, qPCR, and western blotting were performed to elucidate the potential mechanism. RESULTS Both CCP and BBR alleviated UC via improving colon pathological damage, inhibiting the inflammatory response, and regulating the expression of intestinal tight junction proteins. The combination of CCP with BBR showed a more substantial therapeutic effect via increasing the relative abundance of short-chain fatty acids (SCFAs) producing bacteria, thereby increasing the contents of SCFAs in vivo and activating AhR/IL-22 pathway. CONCLUSION The combination of CCP and BBR showed a synergistic effect on the therapy of chronic UC and the mechanism was associated with regulating gut microbiota and activating AhR/IL-22 pathway.
Collapse
Affiliation(s)
- Xuemei Wang
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Fengni Liang
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Zhaoyuan Dai
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xinchi Feng
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
5
|
Fan YM, Zhao QY, Wei YY, Wang HR, Ga Y, Zhang YN, Hao ZH. Qingjie decoction attenuated E.coli-induced diarrhea by regulating energy metabolism and alleviating inflammation based on network analysis and metabolomics. J Ethnopharmacol 2024; 318:116806. [PMID: 37460028 DOI: 10.1016/j.jep.2023.116806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 08/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diarrhea is a frequently encountered gastrointestinal complication in clinical practice, and E. coli is one of the main causative agents. Although Qingjie decoction (QJD) has been shown to be highly effective in treating diarrhea by eliminating heat-toxin, the underlying molecular mechanisms and pathways of QJD remain unclear. AIM OF REVIEW The aim of this research was to explore the effects and fundamental mechanism of QJD on diarrhea induced by E.coli in rats. MATERIALS AND METHODS Initially, we used UHPLC-MS/MS analysis to identify the chemical composition of QJD. Then, we constructed a visualization network using network pharmacology. Next, we utilized metabolomics to identify differentially expressed metabolites of QJD that are effective in treating diarrhea. RESULTS The chemical composition of QJD was analyzed using UHPLC-MS/MS, which identified a total of 292 components. Using a network pharmacology approach, 127 bioactive compounds of QJD were screened, targeting 171 potential diarrhea treatment targets. TNF-α, IL-6, IL-1β, and CAT were identified as important targets through visualizing the PPI network. Enrichment analysis demonstrated significant enrichment in the TNF signaling pathway, IL-17 signaling pathway, and PI3K-Akt signaling pathway. QJD showed beneficial effects, such as increased body weight, decreased fecal water content, and reduced inflammatory cell infiltration in the duodenum and colon, as well as maintaining the structure of the duodenum and colon. Metabolomic analysis revealed 32 differentially expressed metabolites in the control, model and QJD-H groups, including glucose, valine, and cysteine. Functional analysis indicated that differential metabolites were related to energy metabolism, including glucose metabolism, TCA cycle, and amino acid metabolism. CONCLUSION QJD significantly increased body weight, decreased water content in feces, relieved inflammatory cell infiltration, maintained the structure of duodenum and colon. Combining network analysis and metabolomics, QJD exerted therapeutic effects by inhibiting inflammation and oxidative stress, regulating glucose metabolism, tricarboxylic acid metabolism, and amino acid metabolism.
Collapse
Affiliation(s)
- Yi-Meng Fan
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Qing-Yu Zhao
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Yuan-Yuan Wei
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Hui-Ru Wang
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Yu Ga
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Yan-Nan Zhang
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Zhi-Hui Hao
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China.
| |
Collapse
|
6
|
Weerasinghe-Mudiyanselage PDE, Kim JS, Shin T, Moon C. Understanding the spectrum of non-motor symptoms in multiple sclerosis: insights from animal models. Neural Regen Res 2024; 19:84-91. [PMID: 37488849 PMCID: PMC10479859 DOI: 10.4103/1673-5374.375307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 07/26/2023] Open
Abstract
Multiple sclerosis is a chronic autoimmune disease of the central nervous system and is generally considered to be a non-traumatic, physically debilitating neurological disorder. In addition to experiencing motor disability, patients with multiple sclerosis also experience a variety of non-motor symptoms, including cognitive deficits, anxiety, depression, sensory impairments, and pain. However, the pathogenesis and treatment of such non-motor symptoms in multiple sclerosis are still under research. Preclinical studies for multiple sclerosis benefit from the use of disease-appropriate animal models, including experimental autoimmune encephalomyelitis. Prior to understanding the pathophysiology and developing treatments for non-motor symptoms, it is critical to characterize the animal model in terms of its ability to replicate certain non-motor features of multiple sclerosis. As such, no single animal model can mimic the entire spectrum of symptoms. This review focuses on the non-motor symptoms that have been investigated in animal models of multiple sclerosis as well as possible underlying mechanisms. Further, we highlighted gaps in the literature to explain the non-motor aspects of multiple sclerosis in experimental animal models, which will serve as the basis for future studies.
Collapse
Affiliation(s)
- Poornima D. E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju, Republic of Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju, Republic of Korea
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
7
|
Menchén-Martínez D, Martínez-Blanco M, Lozano-Ojalvo D, Berin MC. Evaluation of the Suppressive Capacity of Regulatory T Cells in Food Allergy Research. Methods Mol Biol 2024; 2717:191-205. [PMID: 37737985 DOI: 10.1007/978-1-0716-3453-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Regulatory T cells (Treg) exert a crucial role in the suppression of exacerbated T helper (Th) cell responses, including those of type 2 Th (Th2) cells, and in the maintenance of tolerance to environmental antigens and food allergens. The functional capacity of Tregs to suppress Th2 responses has been studied through activation and immunosuppression assays using cells from mice and humans. The immunosuppression assay is an essential in vitro tool that allows the evaluation of the Treg capacity to limit the proliferation and expansion of conventional T cells. This approach enables the determination of the suppressive ability of different Treg subsets. In this chapter, we describe a basic and well-established immunosuppression protocol for human and murine Treg that has been widely applied in food allergy research.
Collapse
Affiliation(s)
- David Menchén-Martínez
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| | - Mónica Martínez-Blanco
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Daniel Lozano-Ojalvo
- Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Cecilia Berin
- Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
8
|
Hou J, Lu K, Chen P, Wang P, Li J, Yang J, Liu Q, Xue Q, Tang Z, Pei H. Comprehensive viewpoints on heart rate variability at high altitude. Clin Exp Hypertens 2023; 45:2238923. [PMID: 37552638 DOI: 10.1080/10641963.2023.2238923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 08/10/2023]
Abstract
OBJECTIVES Hypoxia is a physiological state characterized by reduced oxygen levels in organs and tissues. It is a common clinicopathological process and a major cause of health problems in highland areas. Heart rate variability (HRV) is a measure of the balance in autonomic innervation to the heart. It provides valuable information on the regulation of the cardiovascular system by neurohumoral factors, and changes in HRV reflect the complex interactions between multiple systems. In this review, we provide a comprehensive overview of the relationship between high-altitude hypoxia and HRV. We summarize the different mechanisms of diseases caused by hypoxia and explore the changes in HRV across various systems. Additionally, we discuss relevant pharmaceutical interventions. Overall, this review aims to provide research ideas and assistance for in-depth studies on HRV. By understanding the intricate relationship between high-altitude hypoxia and HRV, we can gain insights into the underlying mechanisms and potential therapeutic approaches to mitigate the effects of hypoxia on cardiovascular and other systems. METHODS The relevant literature was collected systematically from scientific database, including PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), Baidu Scholar, as well as other literature sources, such as classic books of hypoxia. RESULTS There is a close relationship between heart rate variability and high-altitude hypoxia. Heart rate variability is an indicator that evaluates the impact of hypoxia on the cardiovascular system and other related systems. By improving the observation of HRV, we can estimate the progress of cardiovascular diseases and predict the impact on other systems related to cardiovascular health. At the same time, changes in heart rate variability can be used to observe the efficacy of preventive drugs for altitude related diseases. CONCLUSIONS HRV can be used to assess autonomic nervous function under various systemic conditions, and can be used to predict and monitor diseases caused by hypoxia at high altitude. Investigating the correlation between high altitude hypoxia and heart rate variability can help make HRV more rapid, accurate, and effective for the diagnosis of plateau-related diseases.
Collapse
Affiliation(s)
- Jun Hou
- Department of Cardiology, Chengdu Third People's Hospital, Affiliated Hospital of Southwest Jiao Tong University, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
| | - Keji Lu
- School of Medical and Life Sciences, Chengdu University of TCM, Chengdu, China
| | - Peiwen Chen
- School of Medical and Life Sciences, Chengdu University of TCM, Chengdu, China
| | - Peng Wang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Jing Li
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Jiali Yang
- Department of Cardiology, Chengdu Third People's Hospital, Affiliated Hospital of Southwest Jiao Tong University, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
| | - Qing Liu
- Department of Medical Engineering, The 950th Hospital of PLA, Yecheng, Xinjiang, China
| | - Qiang Xue
- Department of Cardiology Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Zhaobing Tang
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Chengdu, China
| | - Haifeng Pei
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
9
|
Yang S, Zhou P, Zhang L, Xie X, Zhang Y, Bo K, Xue J, Zhang W, Liao F, Xu P, Hu Y, Yan R, Liu D, Chang J, Zhou K. VAMP8 suppresses the metastasis via DDX5/β-catenin signal pathway in osteosarcoma. Cancer Biol Ther 2023; 24:2230641. [PMID: 37405957 DOI: 10.1080/15384047.2023.2230641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Osteosarcoma is a highly metastatic malignant bone tumor, necessitating the development of new treatments to target its metastasis. Recent studies have revealed the significance of VAMP8 in regulating various signaling pathways in various types of cancer. However, the specific functional role of VAMP8 in osteosarcoma progression remains unclear. In this study, we observed a significant downregulation of VAMP8 in osteosarcoma cells and tissues. Low levels of VAMP8 in osteosarcoma tissues were associated with patients' poor prognosis. VAMP8 inhibited the migration and invasion capability of osteosarcoma cells. Mechanically, we identified DDX5 as a novel interacting partner of VAMP8, and the conjunction of VAMP8 and DDX5 promoted the degradation of DDX5 via the ubiquitin-proteasome system. Moreover, reduced levels of DDX5 led to the downregulation of β-catenin, thereby suppressing the epithelial-mesenchymal transition (EMT). Additionally, VAMP8 promoted autophagy flux, which may contribute to the suppression of osteosarcoma metastasis. In conclusion, our study anticipated that VAMP8 inhibits osteosarcoma metastasis by promoting the proteasomal degradation of DDX5, consequently inhibiting WNT/β-catenin signaling and EMT. Dysregulation of autophagy by VAMP8 is also implicated as a potential mechanism. These findings provide new insights into the biological nature driving osteosarcoma metastasis and highlight the modulation of VAMP8 as a potential therapeutic strategy for targeting osteosarcoma metastasis.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
| | - Ping Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
| | - Lelei Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
| | - Xiangpeng Xie
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
| | - Yuanyi Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
| | - Kaida Bo
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
| | - Jing Xue
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
- Clinical Pathology Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Faxue Liao
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
| | - Pengfei Xu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
| | - Yong Hu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruyu Yan
- Cancer Metabolism Laboratory, School of Life Sciences, Anhui Medical University, Hefei, China
| | - Dan Liu
- Cancer Metabolism Laboratory, School of Life Sciences, Anhui Medical University, Hefei, China
| | - Jun Chang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
| | - Kecheng Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, China
- Cancer Metabolism Laboratory, School of Life Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
10
|
Mushtaq Z, Imran M, Saeed F, Imran A, Ali SW, Shahbaz M, Alsagaby SA, Guerrero Sánchez Y, Umar M, Hussain M, Al Abdimonem W, Al Jbawi E, Mahwish, El-Ghorab AH, Abdelgawad MA. Berberine: a comprehensive Approach to combat human maladies. International Journal of Food Properties 2023. [DOI: 10.1080/10942912.2023.2184300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Zarina Mushtaq
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal-Pakistan, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Ali Imran
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Shinawar Waseem Ali
- Institute of Agricultural Sciences, University of the Punjab, Quid-i-Azam Campus, Lahore, Pakistan
| | - Muhammad Shahbaz
- Department of Food Science and Technology, MNS-University Multan, Pakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | | | - Maryam Umar
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Waleed Al Abdimonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | | | - Mahwish
- Department of Nutritional Sciences, Government College Women University Faisalabad, Pakistan
| | - Ahmed H. El-Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
11
|
El-Khattab SO, Abdelhamid AEE, Abdalla Ibrahim W, Yousef Elsherif AI, Khalil GM. C-reactive protein as an early marker of severity and outcome in patients with SARS-CoV-2 infection. Egyptian Journal of Anaesthesia 2023. [DOI: 10.1080/11101849.2023.2171545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Salwa Omar El-Khattab
- Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University Cairo Egypt
| | | | - Waleed Abdalla Ibrahim
- Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University Cairo Egypt
| | | | - George Mekhael Khalil
- Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University Cairo Egypt
| |
Collapse
|
12
|
Kim DY, Son SR, Kim JY, Min JW, Kong CH, Park K, Jeon M, Kang WC, Jung SY, Choi JH, Jang DS, Ryu JH. Effects of Artemisia annua L. on postmenopausal syndrome in ovariectomized mice. J Ethnopharmacol 2023; 317:116800. [PMID: 37331451 DOI: 10.1016/j.jep.2023.116800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia annua L. (Asteraceae) has been used as an antipyretic and anti-parasitic drug in traditional medicine for more than 2000 years. It has also been prescribed to treat symptoms caused by deficiency of Yin, which might be observed in menopausal state from the point of view of traditional medicine. AIM OF THE STUDY We hypothesized that A. annua might be useful for treating menopausal disorders with less adverse effects than hormone replacement therapy. Thus, the aim of the present study was to investigate effects of A. annua on postmenopausal symptoms of ovariectomized (OVX) mice. MATERIALS AND METHODS OVX mice were employed as a model for postmenopausal disorders. Mice were treated with a water extract of A. annua (EAA; 30, 100 or 300 mg/kg, p.o.) or 17β-estradiol (E2; 0.5 mg/kg, s.c.) for 8 weeks. Open field test (OFT), novel object recognition task (NOR), Y-maze test, elevated plus maze test (EPM), splash test and tail suspension test (TST) were conducted to determine whether EAA could ameliorate postmenopausal symptoms. Phosphorylated levels of extracellular signal-regulated kinase (ERK), protein kinase B (Akt), and glycogen synthase kinase-3β (GSK-3β), β-catenin and expression level of synaptophysin in the cortex and hippocampus were evaluated by Western blot analysis. RESULTS EAA treatment significantly increased the discrimination index in NOR, decreased the time in closed arm than in open arm in EPM, increased grooming time in splash test, and decreased immobility time in TST, as did E2 treatment. In addition, decreased phosphorylation levels of ERK, Akt, GSK-3β, and β-catenin and expression levels of synaptophysin in the cortex and hippocampus after OVX were reversed by administration of EAA and E2. CONCLUSION These results suggest that A. annua can ameliorate postmenopausal symptoms such as cognitive dysfunction, anxiety, anhedonia, and depression by activating ERK, Akt, and GSK-3β/β-catenin signaling pathway and hippocampal synaptic plasticity, and that A. annua would be a novel treatment for postmenopausal symptoms.
Collapse
Affiliation(s)
- Do Yeon Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - So-Ri Son
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jae Youn Kim
- Department of Integrated Drug Development and Natural Products, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ji Won Min
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Chang Hyeon Kong
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Keontae Park
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Mijin Jeon
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Woo Chang Kang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Seo Yun Jung
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jung-Hye Choi
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Jong Hoon Ryu
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
13
|
Huang L, Shao J, Xu X, Hong W, Yu W, Zheng S, Ge X. WTAP regulates autophagy in colon cancer cells by inhibiting FLNA through N6-methyladenosine. Cell Adh Migr 2023; 17:1-13. [PMID: 36849408 PMCID: PMC9980444 DOI: 10.1080/19336918.2023.2180196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Our study investigated the role of WTAP in colon cancer. We employed experiments including m6A dot blot hybridization, methylated RNA immunoprecipitation, dual-luciferase, and RNA immunoprecipitation to investigate the regulatory mechanism of WTAP. Western blot was performed to analyze the expression of WTAP, FLNA and autophagy-related proteins in cells. Our results confirmed the up-regulation of WTAP in colon cancer and its promoting effect on proliferation and inhibiting effect on apoptosis. FLNA was the downstream gene of WTAP and WTAP-regulated m6A modification led to post-transcriptional repression of FLNA. The rescue experiments showed that WTAP/FLNA could inhibit autophagy. WTAP-mediated m6A modification was confirmed to be crucial in colon cancer development, providing new insights into colon cancer therapy.
Collapse
Affiliation(s)
- Liang Huang
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Jinfan Shao
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Xijuan Xu
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Weiwen Hong
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Wenfeng Yu
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Shuang Zheng
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Xiaogang Ge
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China,CONTACT Xiaogang Ge Department of General Surgery, Taizhou First People’s Hospital, No. 218 Hengjie Road, Huangyan District, Taizhou, Zhejiang, 318020, China
| |
Collapse
|
14
|
Yue J, Li J, Ma J, Zhai Y, Shen L, Zhang W, Li L, Fu R. Myeloid-derived suppressor cells inhibit natural killer cells in myelodysplastic syndromes through the TIGIT/CD155 pathway. Hematology 2023; 28:2166333. [PMID: 36651499 DOI: 10.1080/16078454.2023.2166333] [Citation(s) in RCA: 0] |