451
|
Prodi E, Demuro G, Obici S. How the hypothalamus controls glucose production: an update. Expert Rev Endocrinol Metab 2006; 1:601-608. [PMID: 30754102 DOI: 10.1586/17446651.1.5.601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent evidence highlights a crucial role of the brain in the control of glucose homeostasis. The hypothalamus senses and integrates signals of fuel abundance, such as circulating macronutrients (glucose and fatty acids) and nutrient-induced hormones (insulin and leptin). This, in turn, results in the activation of neural pathways that return circulating nutrients to baseline by reducing hepatic glucose production and food intake. In Type 2 diabetes and obesity, the ability of the brain to sense and respond to circulating signals is impaired. In this review, the neuroendocrine circuits that have recently been involved in the regulation of endogenous glucose production in rodents will be described. The study of these neural pathways promises to unveil new targets for the therapy of Type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Elena Prodi
- a University of Cincinnati College of Medicine, Department of Psychiatry, Obesity Research Center, Cincinnati, OH, USA
| | - Giovanna Demuro
- a University of Cincinnati College of Medicine, Department of Psychiatry, Obesity Research Center, Cincinnati, OH, USA
| | - Silvana Obici
- b University of Cincinnati, Genome Research Institute, ML0506, 2140 East Galbraith Rd, Cincinnati, OH 45237, USA.
| |
Collapse
|
452
|
Affiliation(s)
| | - Stefano Cianfarani
- "Rina Balducci" Center of Pediatric Endocrinology, Department of Public Health and Cell Biology, Tor Vergata University, 00133-Rome, Italy
| |
Collapse
|
453
|
Bryan J, Muñoz A, Zhang X, Düfer M, Drews G, Krippeit-Drews P, Aguilar-Bryan L. ABCC8 and ABCC9: ABC transporters that regulate K+ channels. Pflugers Arch 2006; 453:703-18. [PMID: 16897043 DOI: 10.1007/s00424-006-0116-z] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 06/08/2006] [Indexed: 11/28/2022]
Abstract
The sulfonylurea receptors (SURs) ABCC8/SUR1 and ABCC9/SUR2 are members of the C-branch of the transport adenosine triphosphatase superfamily. Unlike their brethren, the SURs have no identified transport function; instead, evolution has matched these molecules with K(+) selective pores, either K(IR)6.1/KCNJ8 or K(IR)6.2/KCNJ11, to assemble adenosine triphosphate (ATP)-sensitive K(+) channels found in endocrine cells, neurons, and both smooth and striated muscle. Adenine nucleotides, the major regulators of ATP-sensitive K(+) (K(ATP)) channel activity, exert a dual action. Nucleotide binding to the pore reduces the activity or channel open probability, whereas Mg-nucleotide binding and/or hydrolysis in the nucleotide-binding domains of SUR antagonize this inhibitory action to stimulate channel openings. Mutations in either subunit can alter this balance and, in the case of the SUR1/KIR6.2 channels found in neurons and insulin-secreting pancreatic beta cells, are the cause of monogenic forms of hyperinsulinemic hypoglycemia and neonatal diabetes. Additionally, the subtle dysregulation of K(ATP) channel activity by a K(IR)6.2 polymorphism has been suggested as a predisposing factor in type 2 diabetes mellitus. Studies on K(ATP) channel null mice are clarifying the roles of these metabolically sensitive channels in a variety of tissues.
Collapse
Affiliation(s)
- Joseph Bryan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
454
|
Gutiérrez-Juárez R, Pocai A, Mulas C, Ono H, Bhanot S, Monia BP, Rossetti L. Critical role of stearoyl-CoA desaturase-1 (SCD1) in the onset of diet-induced hepatic insulin resistance. J Clin Invest 2006; 116:1686-95. [PMID: 16741579 PMCID: PMC1464900 DOI: 10.1172/jci26991] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 04/04/2006] [Indexed: 01/02/2023] Open
Abstract
Stearoyl-CoA desaturase-1 (SCD1) catalyzes the synthesis of monounsaturated fatty acids from saturated fatty acids. Mice with a targeted disruption of Scd1 gene locus are lean and display increased insulin sensitivity. To examine whether Scd1 activity is required for the development of diet-induced hepatic insulin resistance, we used a sequence-specific antisense oligodeoxynucleotide (ASO) to lower hepatic Scd1 expression in rats and mice with diet-induced insulin resistance. Treatment of rats with Scd1 ASO markedly decreased liver Scd1 expression (approximately 80%) and total Scd activity (approximately 50%) compared with that in rats treated with scrambled ASO (control). Insulin clamp studies revealed severe hepatic insulin resistance in high-fat-fed rats and mice that was completely reversed by 5 days of treatment with Scd1 ASO. The latter treatment decreased glucose production (by approximately 75%), gluconeogenesis, and glycogenolysis. Downregulation of Scd1 also led to increased Akt phosphorylation and marked decreases in the expression of glucose-6-phosphatase (Glc-6-Pase) and phosphoenolpyruvate carboxykinase (PEPCK). Thus, Scd1 is required for the onset of diet-induced hepatic insulin resistance.
Collapse
Affiliation(s)
- Roger Gutiérrez-Juárez
- Department of Medicine, Department of Molecular Pharmacology, and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA.
ISIS Pharmaceuticals, Carlsbad, California, USA
| | - Alessandro Pocai
- Department of Medicine, Department of Molecular Pharmacology, and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA.
ISIS Pharmaceuticals, Carlsbad, California, USA
| | - Claudia Mulas
- Department of Medicine, Department of Molecular Pharmacology, and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA.
ISIS Pharmaceuticals, Carlsbad, California, USA
| | - Hiraku Ono
- Department of Medicine, Department of Molecular Pharmacology, and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA.
ISIS Pharmaceuticals, Carlsbad, California, USA
| | - Sanjay Bhanot
- Department of Medicine, Department of Molecular Pharmacology, and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA.
ISIS Pharmaceuticals, Carlsbad, California, USA
| | - Brett P. Monia
- Department of Medicine, Department of Molecular Pharmacology, and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA.
ISIS Pharmaceuticals, Carlsbad, California, USA
| | - Luciano Rossetti
- Department of Medicine, Department of Molecular Pharmacology, and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA.
ISIS Pharmaceuticals, Carlsbad, California, USA
| |
Collapse
|
455
|
Montero SA, Yarkov A, Lemus M, de Alvarez-Buylla ER, Alvarez-Buylla R. Carotid Chemoreceptor Reflex Modulation by Arginine-Vasopressin Microinjected into the Nucleus Tractus Solitarius in Rats. Arch Med Res 2006; 37:709-16. [PMID: 16824929 DOI: 10.1016/j.arcmed.2006.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2005] [Accepted: 03/03/2006] [Indexed: 11/20/2022]
Abstract
BACKGROUND In addition to their role of sensing O2, pH, CO2, osmolarity and temperature, carotid body receptors (CBR) were proposed by us and others to have a glucose-sensing role in the blood entering the brain, integrating information about blood glucose and O2 levels essential for central nervous system (CNS) metabolism. The nucleus tractus solitarius (NTS) is an important relay station in central metabolic control and receives signals from peripheral glucose-sensitive hepatoportal afferences, from central glucose-responsive neurons in the brainstem and from CBR and arginine-vasopressin (AVP)-containing axons from hypothalamic nuclei. METHODS In normal Wistar rats anesthetized with pentobarbital, permanent cannulas were placed stereotaxically in the NTS. Glucose changes were induced in vivo after CBR stimulation with sodium cyanide (NaCN-5 microg/100 g), preceded by an infusion of AVP [(10 or 40 pmol/100 nL of artificial cerebrospinal fluid) aCSF] or an antagonist for V1a receptors (anti-glycogenolytic vasopressin analogue-VP1-A) (100 pmol/100 nL of aCSF) into the NTS. RESULTS CBR stimulation after an AVP infusion (larger dose) into the NTS resulted in a significantly higher arterial glucose and lower brain arterial-venous glucose difference. In the same way, VP1-A administration in the NTS significantly decreased the effects observed after AVP priming before CBR stimulation or preceding the CBR stimulation, alone. CONCLUSIONS We propose that AVP in the NTS could participate in glucose homeostasis, modulating the information arising in CBR after histotoxic-anoxia stimulation.
Collapse
Affiliation(s)
- Sergio Adrián Montero
- University Center for Biomedical Research (CUIB), University of Colima, Colima, Mexico.
| | | | | | | | | |
Collapse
|
456
|
Ritter S, Dinh TT, Li AJ. Hindbrain catecholamine neurons control multiple glucoregulatory responses. Physiol Behav 2006; 89:490-500. [PMID: 16887153 DOI: 10.1016/j.physbeh.2006.05.036] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 05/05/2006] [Accepted: 05/25/2006] [Indexed: 10/24/2022]
Abstract
Reduced brain glucose availability evokes an integrated constellation of responses that protect and restore the brain's glucose supply. These include increased food intake, adrenal medullary secretion, corticosterone secretion and suppression of estrous cycles. Our research has focused on mechanisms and neural circuitry underlying these systemic glucoregulatory responses. Using microinjection techniques, we found that localized glucoprivation of hindbrain but not hypothalamic sites, elicited key glucoregulatory responses, indicating that glucoreceptor cells controlling these responses are located in the hindbrain. Selective destruction of hindbrain catecholamine neurons using the retrogradely transported immunotoxin, anti-dopamine beta-hydroxylase conjugated to saporin (DSAP), revealed that spinally-projecting epinephrine (E) or norepinephrine (NE) neurons are required for the adrenal medullary response to glucoprivation, while E/NE neurons with hypothalamic projections are required for feeding, corticosterone and reproductive responses. We also found that E/NE neurons are required for both consummatory and appetitive phases of glucoprivic feeding, suggesting that multilevel collateral projections of these neurons coordinate various components of the behavioral response. Epinephrine or NE neurons co-expressing neuropeptide Y (NPY) may be the neuronal phenotype required for glucoprivic feeding: they increase NPY mRNA expression in response to glucoprivation and are nearly eliminated by DSAP injections that abolish glucoprivic feeding. In contrast, lesion of arcuate nucleus NPY neurons, using the toxin, NPY-saporin, does not impair glucoprivic feeding or hyperglycemic responses. Thus, hindbrain E/NE neurons orchestrate multiple concurrent glucoregulatory responses. Specific catecholamine phenotypes may mediate the individual components of the overall response. Glucoreceptive control of these neurons resides within the hindbrain.
Collapse
Affiliation(s)
- Sue Ritter
- Programs in Neuroscience, Washington State University, Pullman, WA 99164-6520, USA.
| | | | | |
Collapse
|
457
|
Woods SC, Lutz TA, Geary N, Langhans W. Pancreatic signals controlling food intake; insulin, glucagon and amylin. Philos Trans R Soc Lond B Biol Sci 2006; 361:1219-35. [PMID: 16815800 PMCID: PMC1642707 DOI: 10.1098/rstb.2006.1858] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The control of food intake and body weight by the brain relies upon the detection and integration of signals reflecting energy stores and fluxes, and their interaction with many different inputs related to food palatability and gastrointestinal handling as well as social, emotional, circadian, habitual and other situational factors. This review focuses upon the role of hormones secreted by the endocrine pancreas: hormones, which individually and collectively influence food intake, with an emphasis upon insulin, glucagon and amylin. Insulin and amylin are co-secreted by B-cells and provide a signal that reflects both circulating energy in the form of glucose and stored energy in the form of visceral adipose tissue. Insulin acts directly at the liver to suppress the synthesis and secretion of glucose, and some plasma insulin is transported into the brain and especially the mediobasal hypothalamus where it elicits a net catabolic response, particularly reduced food intake and loss of body weight. Amylin reduces meal size by stimulating neurons in the hindbrain, and there is evidence that amylin additionally functions as an adiposity signal controlling body weight as well as meal size. Glucagon is secreted from A-cells and increases glucose secretion from the liver. Glucagon acts in the liver to reduce meal size, the signal being relayed to the brain via the vagus nerves. To summarize, hormones of the endocrine pancreas are collectively at the crossroads of many aspects of energy homeostasis. Glucagon and amylin act in the short term to reduce meal size, and insulin sensitizes the brain to short-term meal-generated satiety signals; and insulin and perhaps amylin as well act over longer intervals to modulate the amount of fat maintained and defended by the brain. Hormones of the endocrine pancreas interact with receptors at many points along the gut-brain axis, from the liver to the sensory vagus nerve to the hindbrain to the hypothalamus; and their signals are conveyed both neurally and humorally. Finally, their actions include gastrointestinal and metabolic as well as behavioural effects.
Collapse
Affiliation(s)
- Stephen C Woods
- Department of Psychiatry, University of Cincinnati, OH 45237 USA.
| | | | | | | |
Collapse
|
458
|
Buettner C, Pocai A, Muse ED, Etgen AM, Myers MG, Rossetti L. Critical role of STAT3 in leptin's metabolic actions. Cell Metab 2006; 4:49-60. [PMID: 16814732 PMCID: PMC3638026 DOI: 10.1016/j.cmet.2006.04.014] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 03/31/2006] [Accepted: 04/27/2006] [Indexed: 01/07/2023]
Abstract
Leptin has pleiotropic effects on glucose homeostasis and feeding behavior. Here, we validate the use of a cell-permeable phosphopeptide that blocks STAT3 activation in vivo. The combination of this biochemical approach with stereotaxic surgical techniques allowed us to pinpoint the contribution of hypothalamic STAT3 to the acute effects of leptin on food intake and glucose homeostasis. Leptin's ability to acutely reduce food intake critically depends on intact STAT3 signaling. Likewise, hypothalamic signaling of leptin through STAT3 is required for the acute effects of leptin on liver glucose fluxes. Lifelong obliteration of STAT3 signaling via the leptin receptor in mice (s/s mice) results in severe hepatic insulin resistance that is comparable to that observed in db/db mice, devoid of leptin receptor signaling. Our results demonstrate that the activation of the hypothalamic STAT3 pathway is an absolute requirement for the effects of leptin on food intake and hepatic glucose metabolism.
Collapse
Affiliation(s)
- Christoph Buettner
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Alessandro Pocai
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Evan D. Muse
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Anne M. Etgen
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Martin G. Myers
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Luciano Rossetti
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York 10461
- Correspondence:
| |
Collapse
|
459
|
Foye OT, Uni Z, Ferket PR. Effect of in ovo feeding egg white protein, β-hydroxy-β-methylbutyrate, and carbohydrates on glycogen status and neonatal growth of turkeys. Poult Sci 2006; 85:1185-92. [PMID: 16830858 DOI: 10.1093/ps/85.7.1185] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In ovo feeding (IOF), injecting dietary components into the amnion about 1 d prior to internal pipping, may enhance growth by altering glycogen status. This hypothesis was evaluated with 5 IOF solutions containing protein, beta-hydroxy-beta-methylbutyrate (HMB), and carbohydrate. Four IOF treatments were arranged as a factorial of 2 levels of egg white protein (EWP; 0 and 18%) and 2 levels of HMB (0 and 0.1%). An IOF solution of carbohydrates (S; 20% dextrin and 3% maltose) was evaluated for contrast purposes. At 23 d of incubation, 1.5 mL of IOF solution was injected into the amnion of 100 eggs per treatment. At hatch, feed and water were provided ad libitum. At hatch and 3 and 7 d of age, BW were determined, and 10 poults per treatment were sampled to determine liver (LG) and pectoralis muscle (PC) glycogen content. Poults on IOF treatments A (18% EWP), B (18% EWP + HMB), and D (HMB) weighed 6.0, 2.7, and 3.3% more than the controls at hatch, respectively (P < 0.05) with an EWP x HMB interaction (P < 0.05) sustained to 3 and 7 d only in treatment D (P < 0.005). At hatch, A and D poults had greater percentages of PC (P < 0.05) than controls, and the percentage of PC in treatment D was sustained until 7 d. Total LG was enhanced by A and B at 7 d (P < 0.05) over the controls, whereas total PC glycogen was enhanced at 7 d by IOF treatment D (P < 0.05). The IOF A and S poults had greater BW than the controls at hatch only (P < 0.05). The IOF treatment A had greater LG at hatch (P < 0.05), but by 7 d, A and S had greater LG than controls (P < 0.05). Poults fed S in ovo had enhanced total PC glycogen over controls, whereas poults on treatment A had less total PC glycogen than controls (P < 0.05). The results of this experiment demonstrate that IOF of A or S poults may enhance hatch BW and glycogen status of poults during the neonatal period by inclusion of HMB.
Collapse
Affiliation(s)
- O T Foye
- Department of Poultry Science, North Carolina State University, Raleigh 27695-7608, USA
| | | | | |
Collapse
|
460
|
Radziuk J, Pye S. Diurnal rhythm in endogenous glucose production is a major contributor to fasting hyperglycaemia in type 2 diabetes. Suprachiasmatic deficit or limit cycle behaviour? Diabetologia 2006; 49:1619-28. [PMID: 16752180 DOI: 10.1007/s00125-006-0273-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 02/18/2006] [Indexed: 10/24/2022]
Abstract
AIMS/HYPOTHESIS An increase in endogenous glucose production (EGP) is a major contributor to fasting morning hyperglycaemia in type 2 diabetes. This increase is dissipated with fasting, later in the day. To understand its origin, EGP, gluconeogenesis and hormones that regulate metabolism were measured over 24 h. We hypothesised that EGP, and therefore glycaemia, would demonstrate a centrally mediated circadian rhythm in type 2 diabetes. SUBJECTS AND METHODS Seven subjects with type 2 diabetes and six age- and BMI-matched control subjects, fasting after breakfast (08.00 h), underwent a further 24-h fast, with the infusion of [U-(13)C]glucose and [3-(14)C]lactate, starting at 14.00 h. The MCR and production of total and gluconeogenic glucose were determined from the tracer concentrations using compartmental analysis. RESULTS MCR was near constant: 1.73+/-0.10 in control and 1.40+/-0.14 ml kg(-1) min(-1) in diabetic subjects (p=0.04). EGP in diabetes rose gradually overnight from 8.2+/-0.7 to 11.3+/-0.5 micromol kg(-1) min(-1) at 06.00 h (p<0.05). Glucose utilisation lagged EGP, rising from 8.5+/-0.6 to 10.5+/-0.4 micromol kg(-1) min(-1) (p<0.05), inducing a fall in glycaemia from a peak of 8.0+/-0.5 mmol/l to 6.3+/-0.4 mmol/l (p<0.05). Cortisol and melatonin showed diurnal variations, whereas insulin, glucagon and leptin did not. Melatonin was most closely related to EGP, but its secretion was attenuated in diabetes (p<0.05). CONCLUSIONS/INTERPRETATION In type 2 diabetes, EGP and gluconeogenesis display diurnal rhythms that drive the fasting hyperglycaemia and are absent in healthy control subjects. The rise in EGP may be related to a deficit in suprachiasmatic nucleus activity in diabetes, or result from non-linear behaviour plus a transition from a normal steady state to a limit cycle pattern in diabetes, or both.
Collapse
Affiliation(s)
- J Radziuk
- Diabetes and Metabolism Research Unit, Ottawa Hospital (Civic Campus), 1053 Carling Avenue, Ottawa, ON, K1Y 4E9, Canada.
| | | |
Collapse
|
461
|
Abstract
PURPOSE OF REVIEW Brain nutrient sensing allows a fine regulation of different physiological functions, such as food intake and blood glucose, related to energy homeostasis. Glucose sensing is the most studied function and a parallel has been made between the cellular mechanisms involved in pancreatic beta cells and neurons. RECENT FINDINGS Two types of glucosensing neurons have been characterized--those for which the activity is proportional to changes in glucose concentration and those for which the activity is inversely proportional to these changes. A new level of complexity has recently been demonstrated, as the response and the mechanism appear to vary in function according to the level of the glucose change. For some of the responses, the detection is probably not at the level of the neuron itself, but astrocytes also appear to be involved, indicating a coupling between the two types of cells. Finally, numerous data have demonstrated the modulation of glucose sensing by other nutrients, in particular fatty acids, hormones (insulin, leptin and ghrelin) and peptides (neuropeptide Y). This implies a common pathway in which AMPkinase may play a crucial role. SUMMARY Recent observations in brain nutrient sensing indicate subtle mechanisms, with different cellular and molecular mechanisms involved. This fact would explain the discrepancies reported in the expression of different proteins (glucose transporters, hexokinases, channels). Astrocytes may be involved in one type of response, thus adding a new level of complexity.
Collapse
|
462
|
Rifkind AB. CYP1A in TCDD toxicity and in physiology-with particular reference to CYP dependent arachidonic acid metabolism and other endogenous substrates. Drug Metab Rev 2006; 38:291-335. [PMID: 16684662 DOI: 10.1080/03602530600570107] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Toxicologic and physiologic roles of CYP1A enzyme induction, the major biochemical effect of aryl hydrocarbon receptor activation by TCDD and other receptor ligands, are unknown. Evidence is presented that CYP1A exerts biologic effects via metabolism of endogenous substrates (i.e., arachidonic acid, other eicosanoids, estrogens, bilirubin, and melatonin), production of reactive oxygen, and effects on K(+) and Ca(2+) channels. These interrelated pathways may connect CYP1A induction to TCDD toxicities, including cardiotoxicity, vascular dysfunction, and wasting. They may also underlie homeostatic roles for CYP1A, especially when transiently induced by common chemical exposures and environmental conditions (i.e., tryptophan photoproducts, dietary indoles, and changes in oxygen tension).
Collapse
Affiliation(s)
- Arleen B Rifkind
- Department of Pharmacology, Weill Medical College of Cornell University, New York, NY 10021, USA.
| |
Collapse
|
463
|
da Silva AA, Tallam LS, Liu J, Hall JE. Chronic antidiabetic and cardiovascular actions of leptin: role of CNS and increased adrenergic activity. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1275-82. [PMID: 16778068 DOI: 10.1152/ajpregu.00187.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined the importance of direct central nervous system (CNS) actions and increased adrenergic activity in mediating the chronic antidiabetic and cardiovascular actions of leptin. Insulin-deficient rats (streptozotocin, 50 mg/kg) were used to examine the effects of leptin on glucose homeostasis independent of changes in insulin. Male Sprague-Dawley rats were instrumented with arterial and venous catheters and intracerebroventricular cannula for 24-h/day blood pressure (BP) and heart rate (HR) monitoring and intravenous and intracerebroventricular infusions. Insulin-deficient diabetes was associated with marked hyperglycemia, hyperphagia, decreased BP, and pronounced fall in HR. Leptin treatment, intravenous or intracerebroventricular, completely restored to control values plasma glucose levels (384+/-58 to 102+/-28 and 307+/-38 to 65+/-7 mg/dl, respectively), food intake, BP, and HR (304+/-8 to 364+/-7 and 317+/-13 to 423+/-9 bpm, respectively). Combined blockade of alpha1-, beta1-, and beta2-adrenergic receptors attenuated the rise in HR by 30 to 50% but had no effect on the antidiabetic and dietary actions of leptin. Blockade of beta3-adrenergic receptors did not attenuate the chronic cardiovascular or metabolic effects of leptin. These data demonstrate that leptin, via its direct actions in the CNS, has powerful antidiabetic actions in insulin-deficient rats independent of increased peripheral alpha1, beta1, beta2, and beta3-adrenergic activity. Leptin also exerts important long-term cardiovascular actions that are partially mediated via alpha1- and beta1/beta2-adrenergic activation. These findings provide new insights into novel pathways for long-term control of glucose homeostasis and cardiovascular regulation.
Collapse
Affiliation(s)
- Alexandre A da Silva
- Dept. of Physiology and Biophysics, Univ. of Mississippi Medical Center, 2500 North State St., Jackson, MS 39216-4505, USA.
| | | | | | | |
Collapse
|
464
|
Abstract
The insulin resistance syndrome refers to a constellation of findings, including glucose intolerance, obesity, dyslipidemia, and hypertension, that promote the development of type 2 diabetes, cardiovascular disease, cancer, and other disorders. Defining the pathophysiological links between insulin resistance, the insulin resistance syndrome, and its sequelae is critical to understanding and treating these disorders. Over the past decade, two approaches have provided important insights into how changes in insulin signaling produce the spectrum of phenotypes associated with insulin resistance. First, studies using tissue-specific knockouts or tissue-specific reconstitution of the insulin receptor in vivo in mice have enabled us to deconstruct the insulin resistance syndromes by dissecting the contributions of different tissues to the insulin-resistant state. Second, in vivo and in vitro studies of the complex network of insulin signaling have provided insight into how insulin resistance can develop in some pathways whereas insulin sensitivity is maintained in others. These data, taken together, give us a framework for understanding the relationship between insulin resistance and the insulin resistance syndromes.
Collapse
Affiliation(s)
- Sudha B Biddinger
- Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
465
|
Abstract
Recent evidence points to the crucial role of the central nervous system in controlling glucose homeostasis. Hypothalamic centers involved in the regulation of energy balance and endogenous glucose production constantly sense fuel availability by receiving and integrating inputs from circulating nutrients and hormones such as insulin and leptin. In response to these peripheral signals, the hypothalamus sends out efferent impulses that restrain food intake and endogenous glucose production. This promotes energy homeostasis and keeps blood glucose levels in the normal range. Disruption of this intricate neural control is likely to occur in type 2 diabetes and obesity and may contribute to defects of glucose homeostasis and insulin resistance common to both diseases. This review summarizes the latest findings on the hypothalamic control of endogenous glucose production, and focuses on the central effects of circulating macronutrients and nutrient-induced hormones.
Collapse
|
466
|
Lazar DF, Saltiel AR. Lipid phosphatases as drug discovery targets for type 2 diabetes. Nat Rev Drug Discov 2006; 5:333-42. [PMID: 16582877 DOI: 10.1038/nrd2007] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The soaring incidence of type 2 diabetes has created pressure for new pharmaceutical strategies to treat this devastating disease. With much of the focus on overcoming insulin resistance, investigation has focused on finding ways to restore activation of the phosphatidylinositol 3'-kinase pathway, which is diminished in many patients with type 2 diabetes. Here we review the evidence that lipid phosphatases, specifically PTEN and SHIP2, attenuate this important insulin signalling pathway. Both in vivo and in vitro studies indicate their role in regulating whole-body energy metabolism, and possibly weight gain as well. The promise and challenges presented by this new class of drug discovery targets will also be discussed.
Collapse
Affiliation(s)
- Dan F Lazar
- Eli Lilly and Co., Endocrine Division, Lilly Research Laboratories, Indianapolis, Indianapolis 46285, USA.
| | | |
Collapse
|
467
|
Abstract
Type 2 Diabetes results from a complex physiologic process that includes the pancreatic beta cells, peripheral glucose uptake in muscle, the secretion of multiple cytokines and hormone-like molecules from adipocytes, hepatic glucose production, and likely the central nervous system. Consistent with the complex web of physiologic defects, the emerging picture of the genetics will involve a large number of risk susceptibility genes, each individually with relatively small effect (odds ratios below 1.2 in most cases). The challenge for the future will include cataloging and confirming the genetic risk factors, and understanding how these risk factors interact with each other and with the known environmental and lifestyle risk factors that increase the propensity to type 2 diabetes.
Collapse
Affiliation(s)
- Swapan Kumar Das
- University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| | | |
Collapse
|
468
|
Kitamura T, Feng Y, Kitamura YI, Chua SC, Xu AW, Barsh GS, Rossetti L, Accili D. Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nat Med 2006; 12:534-40. [PMID: 16604086 DOI: 10.1038/nm1392] [Citation(s) in RCA: 344] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 03/03/2006] [Indexed: 12/26/2022]
Abstract
Leptin controls food intake by regulating the transcription of key neuropeptides in the hypothalamus. The mechanism by which leptin regulates gene expression is unclear, however. Here we show that delivery of adenovirus encoding a constitutively nuclear mutant FoxO1, a transcription factor known to control liver metabolism and pancreatic beta-cell function, to the hypothalamic arcuate nucleus of rodents results in a loss of the ability of leptin to curtail food intake and suppress expression of Agrp. Conversely, a transactivation-deficient FoxO1 mutant prevents induction of Agrp by fasting. We also find that FoxO1 and the transcription factor Stat3 exert opposing actions on the expression of Agrp and Pomc through transcriptional squelching. FoxO1 promotes opposite patterns of coactivator-corepressor exchange at the Pomc and Agrp promoters, resulting in activation of Agrp and inhibition of Pomc. Thus, FoxO1 represents a shared component of pathways integrating food intake and peripheral metabolism.
Collapse
Affiliation(s)
- Tadahiro Kitamura
- Department of Medicine, Columbia University Medical Center, 1150 St. Nicholas Avenue, New York, New York 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
469
|
Inoue H, Ogawa W, Asakawa A, Okamoto Y, Nishizawa A, Matsumoto M, Teshigawara K, Matsuki Y, Watanabe E, Hiramatsu R, Notohara K, Katayose K, Okamura H, Kahn CR, Noda T, Takeda K, Akira S, Inui A, Kasuga M. Role of hepatic STAT3 in brain-insulin action on hepatic glucose production. Cell Metab 2006; 3:267-75. [PMID: 16581004 DOI: 10.1016/j.cmet.2006.02.009] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2005] [Revised: 12/20/2005] [Accepted: 02/07/2006] [Indexed: 12/12/2022]
Abstract
STAT3 regulates glucose homeostasis by suppressing the expression of gluconeogenic genes in the liver. The mechanism by which hepatic STAT3 is regulated by nutritional or hormonal status has remained unknown, however. Here, we show that an increase in the plasma insulin concentration, achieved either by glucose administration or by intravenous insulin infusion, stimulates tyrosine phosphorylation of STAT3 in the liver. This effect of insulin was mediated by the hormone's effects in the brain, and the increase in hepatic IL-6 induced by the brain-insulin action is essential for the activation of STAT3. The inhibition of hepatic glucose production and of expression of gluconeogenic genes induced by intracerebral ventricular insulin infusion was impaired in mice with liver-specific STAT3 deficiency or in mice with IL-6 deficiency. These results thus indicate that IL-6-STAT3 signaling in the liver contributes to insulin action in the brain, leading to the suppression of hepatic glucose production.
Collapse
Affiliation(s)
- Hiroshi Inoue
- Department of Clinical Molecular Medicine, Division of Diabetes and Digestive and Kidney Diseases, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
470
|
|
471
|
Pocai A, Lam TK, Obici S, Gutierrez-Juarez R, Muse ED, Arduini A, Rossetti L. Restoration of hypothalamic lipid sensing normalizes energy and glucose homeostasis in overfed rats. J Clin Invest 2006; 116:1081-91. [PMID: 16528412 PMCID: PMC1395479 DOI: 10.1172/jci26640] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Accepted: 01/17/2006] [Indexed: 11/17/2022] Open
Abstract
Short-term overfeeding blunts the central effects of fatty acids on food intake and glucose production. This acquired defect in nutrient sensing could contribute to the rapid onset of hyperphagia and insulin resistance in this model. Here we examined whether central inhibition of lipid oxidation is sufficient to restore the hypothalamic levels of long-chain fatty acyl-CoAs (LCFA-CoAs) and to normalize food intake and glucose homeostasis in overfed rats. To this end, we targeted the liver isoform of carnitine palmitoyltransferase-1 (encoded by the CPT1A gene) by infusing either a sequence-specific ribozyme against CPT1A or an isoform-selective inhibitor of CPT1A activity in the third cerebral ventricle or in the mediobasal hypothalamus (MBH). Inhibition of CPT1A activity normalized the hypothalamic levels of LCFA-CoAs and markedly inhibited feeding behavior and hepatic glucose fluxes in overfed rats. Thus central inhibition of lipid oxidation is sufficient to restore hypothalamic lipid sensing as well as glucose and energy homeostasis in this model and may be an effective approach to the treatment of diet-induced obesity and insulin resistance.
Collapse
Affiliation(s)
- Alessandro Pocai
- Departments of Medicine and Molecular Pharmacology, Diabetes Research Center, Albert Einstein College of Medicine, New York, New York, USA.
Iperboreal Pharma S.r.l. Via Roma, Pescara, Italy
| | - Tony K.T. Lam
- Departments of Medicine and Molecular Pharmacology, Diabetes Research Center, Albert Einstein College of Medicine, New York, New York, USA.
Iperboreal Pharma S.r.l. Via Roma, Pescara, Italy
| | - Silvana Obici
- Departments of Medicine and Molecular Pharmacology, Diabetes Research Center, Albert Einstein College of Medicine, New York, New York, USA.
Iperboreal Pharma S.r.l. Via Roma, Pescara, Italy
| | - Roger Gutierrez-Juarez
- Departments of Medicine and Molecular Pharmacology, Diabetes Research Center, Albert Einstein College of Medicine, New York, New York, USA.
Iperboreal Pharma S.r.l. Via Roma, Pescara, Italy
| | - Evan D. Muse
- Departments of Medicine and Molecular Pharmacology, Diabetes Research Center, Albert Einstein College of Medicine, New York, New York, USA.
Iperboreal Pharma S.r.l. Via Roma, Pescara, Italy
| | - Arduino Arduini
- Departments of Medicine and Molecular Pharmacology, Diabetes Research Center, Albert Einstein College of Medicine, New York, New York, USA.
Iperboreal Pharma S.r.l. Via Roma, Pescara, Italy
| | - Luciano Rossetti
- Departments of Medicine and Molecular Pharmacology, Diabetes Research Center, Albert Einstein College of Medicine, New York, New York, USA.
Iperboreal Pharma S.r.l. Via Roma, Pescara, Italy
| |
Collapse
|
472
|
Elmquist JK, Coppari R, Balthasar N, Ichinose M, Lowell BB. Identifying hypothalamic pathways controlling food intake, body weight, and glucose homeostasis. J Comp Neurol 2006; 493:63-71. [PMID: 16254991 DOI: 10.1002/cne.20786] [Citation(s) in RCA: 298] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The past decade has greatly increased our understanding and appreciation of the ability of the central nervous system (CNS) to regulate food intake and body weight. This was spearheaded by the discovery of key molecules regulating body weight homeostasis. It is now also apparent that the CNS, especially the hypothalamus, plays a primary role in directly regulating glucose homeostasis, independently of effects on body weight. These discoveries are important given the increasing incidences of obesity and type II diabetes in Western societies. In this article, we will highlight recent data from genetically modified mice. These data and other models have helped to dissect the CNS pathways regulating body weight and glucose homeostasis. Finally, although these studies have been illustrative, they also underscore our relative lack of knowledge and highlight the need for more definitive approaches to unravel the functional significance of these pathways.
Collapse
Affiliation(s)
- Joel K Elmquist
- Department of Medicine and Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
473
|
Wang R, Cruciani-Guglielmacci C, Migrenne S, Magnan C, Cotero VE, Routh VH. Effects of Oleic Acid on Distinct Populations of Neurons in the Hypothalamic Arcuate Nucleus Are Dependent on Extracellular Glucose Levels. J Neurophysiol 2006; 95:1491-8. [PMID: 16306178 DOI: 10.1152/jn.00697.2005] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pharmacological manipulation of fatty acid metabolism in the hypothalamic arcuate nucleus (ARC) alters energy balance and glucose homeostasis. Thus, we tested the hypotheses that distinctive populations of ARC neurons are oleic acid (OA) sensors that exhibit a glucose dependency, independent of whether some of these OA sensors are also glucose-sensing neurons. We used patch-clamp recordings to investigate the effects of OA on ARC neurons in brain slices from 14- to 21-day-old Sprague–Dawley (SD) rats. Additionally, we recorded spontaneous discharge rate in ARC neurons in 8-wk-old fed and fasted SD rats in vivo. Patch-clamp studies showed that in 2.5 mM glucose 12 of 94 (13%) ARC neurons were excited by 2 μM OA (OA-excited or OAE neurons), whereas six of 94 (6%) were inhibited (OA-inhibited2.5or OAI2.5neurons). In contrast, in 0.1 mM glucose, OA inhibited six of 20 (30%) ARC neurons (OAI0.1neurons); none was excited. None of the OAI0.1neurons responded to OA in 2.5 mM glucose. Thus OAI2.5and OAI0.1neurons are distinct. Similarly, in seven of 20 fed rats (35%) the overall response was OAE-like, whereas in three of 20 (15%) it was OAI-like. In contrast, in fasted rats only OAI-like response were observed (three of 15; 20%). There was minimal overlap between OA-sensing neurons and glucose-sensing neurons. In conclusion, OA regulated three distinct subpopulations of ARC neurons in a glucose-dependent fashion. These data suggest that an interaction between glucose and fatty acids regulates OA sensing in ARC neurons.
Collapse
Affiliation(s)
- R Wang
- Department of Pharmacology and Physiology, New Jersey Medical School, 185 S. Orange Ave, PO Box 1709, Newark, NJ 07101-1709, USA
| | | | | | | | | | | |
Collapse
|
474
|
Kreier F, Kap YS, Mettenleiter TC, van Heijningen C, van der Vliet J, Kalsbeek A, Sauerwein HP, Fliers E, Romijn JA, Buijs RM. Tracing from fat tissue, liver, and pancreas: a neuroanatomical framework for the role of the brain in type 2 diabetes. Endocrinology 2006; 147:1140-7. [PMID: 16339209 DOI: 10.1210/en.2005-0667] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hypothalamus uses hormones and the autonomic nervous system to balance energy fluxes in the body. Here we show that the autonomic nervous system has a distinct organization in different body compartments. The same neurons control intraabdominal organs (intraabdominal fat, liver, and pancreas), whereas sc adipose tissue located outside the abdominal compartment receives input from another set of autonomic neurons. This differentiation persists up to preautonomic neurons in the hypothalamus, including the biological clock, that have a distinct organization depending on the body compartment they command. Moreover, we demonstrate a neuronal feedback from adipose tissue that reaches the brainstem. We propose that this compartment-specific organization offers a neuroanatomical perspective for the regional malfunction of organs in type 2 diabetes, where increased insulin secretion by the pancreas and disturbed glucose metabolism in the liver coincide with an augmented metabolic activity of visceral compared with sc adipose tissue.
Collapse
Affiliation(s)
- Felix Kreier
- Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
475
|
Bischof MG, Brehm A, Bernroider E, Krssák M, Mlynárik V, Krebs M, Roden M. Cerebral glutamate metabolism during hypoglycaemia in healthy and type 1 diabetic humans. Eur J Clin Invest 2006; 36:164-9. [PMID: 16506960 DOI: 10.1111/j.1365-2362.2006.01615.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The mechanisms responsible for the progressive failure of hypoglycaemia counterregulation in long-standing type 1 diabetes are poorly understood. Increased brain glucose uptake during hypoglycaemia or alterations of brain energy metabolism could effect glucose sensing by the brain and thus contribute to hypoglycaemia-associated autonomic failure. MATERIALS AND METHODS Type 1 diabetic patients (T1DM) and healthy volunteers (CON) were studied before, during and after a hypoglycaemic (50 mg dL(-1)) hyperinsulinaemic (1.5 mU kg(-1) min(-1)) clamp test. The (1)H magnetic resonance spectroscopy of the occipital lobe of the brain was performed employing the STEAM localization technique. The water signal was suppressed by the modified SWAMP method. All spectra were acquired on a 3 Tesla scanner (80 cm MEDSPEC-DBX, Bruker Medical, Ettlingen, Germany) using a 10-cm diameter surface coil. RESULTS During hypoglycaemia, T1DM showed blunted endocrine counterregulation. At baseline the brain tissue glucose : creatine ratio was lower in CON than in T1DM (CON 0.13 +/- 0.05 vs. T1DM 0.19 0.11; P < 0.01). During hypoglycaemia glucose : creatine ratios decreased in both groups (CON 0.07 +/- 0.08, P < 0.05; T1DM 0.03 +/- 0.03, P < 0.001). A significant drop in the glutamate : creatine ratio could only be found in CON during hypoglycaemia (CON 1.36 +/- 0.08 vs. 1.26 +/- 0.11; P < 0.01; T1DM 1.32 +/- 0.13 vs. 1.28 +/- 0.15; P = NS). The ratios of glutamine, N-acetylaspartate, choline and myo-inositol : creatine were not different between both groups and did not change throughout the experiment. CONCLUSIONS Only in CON does moderate hypoglycaemia reduce intracerebral glutamate concentrations, possibly owing to a slower substrate flux through the tricarboxylic acid cycle in neurones. The maintenance of normal energy metabolism in T1DM during hypoglycaemia might effect glucose sensing in the brain and contribute to hypoglycaemia-associated autonomic failure.
Collapse
Affiliation(s)
- M G Bischof
- Department of Internal Medicine III, Division of Endocrinology and Metabolism,Medical University of Vienna, Hanusch Hospital, A-1090 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
476
|
|
477
|
Kakkar R, Ye B, Stoller DA, Smelley M, Shi NQ, Galles K, Hadhazy M, Makielski JC, McNally EM. Spontaneous coronary vasospasm in KATP mutant mice arises from a smooth muscle-extrinsic process. Circ Res 2006; 98:682-9. [PMID: 16456098 DOI: 10.1161/01.res.0000207498.40005.e7] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the vasculature, ATP-sensitive potassium channels (KATP) channels regulate vascular tone. Mice with targeted gene disruptions of KATP subunits expressed in vascular smooth muscle develop spontaneous coronary vascular spasm and sudden death. From these models, it was hypothesized that the loss of KATP channel activity in arterial vascular smooth muscle was responsible for coronary artery spasm. We now tested this hypothesis using a transgenic strategy where the full-length sulfonylurea receptor containing exon 40 was expressed under the control of a smooth muscle-specific SM22alpha promoter. Two transgenic founder lines were generated and independently bred to sulfonylurea receptor 2 (SUR2) null mice to generate mice that restored expression of KATP channels in vascular smooth muscle. Transgenic expression of the sulfonylurea receptor in vascular smooth muscle cells was confirmed by detecting mRNA and protein from the transgene. Functional restoration was determined by recording pinacidil-based KATP current by whole cell voltage clamping of isolated aortic vascular smooth muscle cells isolated from the transgenic restored mice. Despite successful restoration of KATP channels in vascular smooth muscle, transgene-restored SUR2 null mice continued to display frequent episodes of spontaneous ST segment elevation, identical to the phenotype seen in SUR2 null mice. As in SUR2 null mice, ST segment elevation was frequently followed by atrioventricular heart block. ST segment elevation and coronary perfusion pressure in the restored mice did not differ significantly between transgene-negative and transgene-positive SUR2 null mice. We conclude that spontaneous coronary vasospasm and sudden death in SUR2 null mice arises from a coronary artery vascular smooth muscle-extrinsic process.
Collapse
Affiliation(s)
- Rahul Kakkar
- Department of Medicine, The University of Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
478
|
He W, Lam TKT, Obici S, Rossetti L. Molecular disruption of hypothalamic nutrient sensing induces obesity. Nat Neurosci 2006; 9:227-33. [PMID: 16415870 DOI: 10.1038/nn1626] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Accepted: 12/08/2005] [Indexed: 11/09/2022]
Abstract
The sensing of circulating nutrients within the mediobasal hypothalamus may be critical for energy homeostasis. To induce a sustained impairment in hypothalamic nutrient sensing, adeno-associated viruses (AAV) expressing malonyl-coenzyme A decarboxylase (MCD; an enzyme involved in the degradation of malonyl coenzyme A) were injected bilaterally into the mediobasal hypothalamus of rats. MCD overexpression led to decreased abundance of long-chain fatty acyl-coenzyme A in the mediobasal hypothalamus and blunted the hypothalamic responses to increased lipid availability. The enhanced expression of MCD within this hypothalamic region induced a rapid increase in food intake and progressive weight gain. Obesity was sustained for at least 4 months and occurred despite increased plasma concentrations of leptin and insulin. These findings indicate that nutritional modulation of the hypothalamic abundance of malonyl-coenzyme A is required to restrain food intake and that a primary impairment in this central nutrient-sensing pathway is sufficient to disrupt energy homeostasis and induce obesity.
Collapse
Affiliation(s)
- Wu He
- Department of Medicine, Diabetes Research Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
479
|
Gelling RW, Morton GJ, Morrison CD, Niswender KD, Myers MG, Rhodes CJ, Schwartz MW. Insulin action in the brain contributes to glucose lowering during insulin treatment of diabetes. Cell Metab 2006; 3:67-73. [PMID: 16399506 DOI: 10.1016/j.cmet.2005.11.013] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 10/17/2005] [Accepted: 11/17/2005] [Indexed: 10/25/2022]
Abstract
To investigate the role of brain insulin action in the pathogenesis and treatment of diabetes, we asked whether neuronal insulin signaling is required for glucose-lowering during insulin treatment of diabetes. Hypothalamic signaling via the insulin receptor substrate-phosphatidylinositol 3-kinase (IRS-PI3K) pathway, a key intracellular mediator of insulin action, was reduced in rats with uncontrolled diabetes induced by streptozotocin (STZ-DM). Further, infusion of a PI3K inhibitor into the third cerebral ventricle of STZ-DM rats prior to peripheral insulin injection attenuated insulin-induced glucose lowering by approximately 35%-40% in both acute and chronic insulin treatment paradigms. Conversely, increased PI3K signaling induced by hypothalamic overexpression of either IRS-2 or protein kinase B (PKB, a key downstream mediator of PI3K action) enhanced the glycemic response to insulin by approximately 2-fold in STZ-DM rats. We conclude that hypothalamic insulin signaling via the IRS-PI3K pathway is a key determinant of the response to insulin in the management of uncontrolled diabetes.
Collapse
Affiliation(s)
- Richard W Gelling
- Department of Medicine, Harborview Medical Center, University of Washington, Seattle, Washington 98102, USA
| | | | | | | | | | | | | |
Collapse
|
480
|
van den Top M, Spanswick D. Integration of metabolic stimuli in the hypothalamic arcuate nucleus. PROGRESS IN BRAIN RESEARCH 2006; 153:141-54. [PMID: 16876573 DOI: 10.1016/s0079-6123(06)53008-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Integration of peripheral and central anabolic and catabolic inputs within the hypothalamic arcuate nucleus (ARC) is believed to be central to the maintenance of energy balance. In order to perform this complex task, neurons in the ARC express receptors for all major humoral and central transmitters involved in the maintenance of energy homeostasis. The integration of these inputs occurs at the cellular and circuit level and the resulting electrical output forms the origins for the activation of feeding and energy balance-related networks. Here, we discuss the role that active intrinsic membrane conductances, K(ATP) channels and intracellular second messenger systems play in the integration of metabolic stimuli at the cellular level in the ARC. We conclude that the research into the integration of hunger and satiety signals in the ARC has made substantial progress in the last decade, but we are far from unraveling the complex neuronal networks involved in the maintenance of energy homeostasis. The diverse range of inputs, neuronal integrative properties, targets, output signals and how these signals relate to the physiological output provides us with a colossal challenge for years to come. However, to battle the current obesity epidemic, target-specific drugs need to be developed for which the knowledge of neuronal pathways involved in the maintenance of energy homeostasis will be crucial.
Collapse
Affiliation(s)
- M van den Top
- Division of Clinical Sciences, Warwick Medical School, The University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
481
|
Dong X, Park S, Lin X, Copps K, Yi X, White MF. Irs1 and Irs2 signaling is essential for hepatic glucose homeostasis and systemic growth. J Clin Invest 2005; 116:101-14. [PMID: 16374520 PMCID: PMC1319221 DOI: 10.1172/jci25735] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Accepted: 10/25/2005] [Indexed: 02/06/2023] Open
Abstract
Insulin receptor substrates, including Irs1 and Irs2, integrate insulin and IGF receptor signals with heterologous pathways to coordinate growth and metabolism. Since Irs2 is thought to be especially important in hepatic nutrient homeostasis, we deleted Irs2 [corrected] from hepatocytes of WT mice (called LKO) or genetically insulin-resistant Irs1-/- mice (called LKO::Irs1-/-). Viable LKO::Irs1-/- mice were 70% smaller than WT or LKO mice, and 40% smaller than Irs1-/- mice. Hepatic insulin receptors were functional in all the mice, but insulin signaling via the Akt-FoxO1 pathway was reduced in Irs1-/- and LKO liver, and undetected in LKO::Irs1-/- liver; however, Gsk3beta phosphorylation (Ser9) and hepatic glycogen stores were nearly normal in all of the mice. LKO and Irs1-/- mice developed insulin resistance and glucose intolerance that never progressed to diabetes, whereas LKO::Irs1-/- mice developed hyperglycemia and hyperinsulinemia immediately after birth. Regardless, few hepatic genes changed expression significantly in Irs1-/- or LKO mice, whereas hundreds of genes changed in LKO::Irs1-/- mice--including elevated levels of Pck1, G6pc, Ppargc1, Pparg, and Igfbp1. Thus, signals delivered by Irs1 or Irs2 regulate hepatic gene expression that coordinates glucose homeostasis and systemic growth.
Collapse
Affiliation(s)
- Xiaocheng Dong
- Howard Hughes Medical Institute, Division of Endocrinology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
482
|
Morton GJ, Gelling RW, Niswender KD, Morrison CD, Rhodes CJ, Schwartz MW. Leptin regulates insulin sensitivity via phosphatidylinositol-3-OH kinase signaling in mediobasal hypothalamic neurons. Cell Metab 2005; 2:411-20. [PMID: 16330326 DOI: 10.1016/j.cmet.2005.10.009] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 10/21/2005] [Accepted: 10/31/2005] [Indexed: 11/28/2022]
Abstract
To investigate whether phosphatidylinositol-3 kinase (PI3K) signaling mediates the metabolic effects of hypothalamic leptin action, adenoviral gene therapy was used to direct expression of leptin receptors to the area of the hypothalamic arcuate nucleus (ARC). This intervention markedly improved insulin sensitivity in genetically obese, leptin-receptor-deficient Koletsky (fa(k)/fa(k)) rats via a mechanism that was not dependent on reduced food intake but was attenuated by approximately 44% by third-ventricular infusion of the PI3K inhibitor LY294002. Conversely, ARC-directed expression of a constitutively active mutant of protein kinase B (PKB/Akt, an enzyme activated by PI3K) mimicked the insulin-sensitizing effect of restored hypothalamic leptin signaling in these animals, despite having no effect on food intake or body weight. These findings suggest that hypothalamic leptin signaling is an important determinant of glucose metabolism and that the underlying neuronal mechanism involves PI3K.
Collapse
Affiliation(s)
- Gregory J Morton
- Department of Medicine, Harborview Medical Center and University of Washington, Seattle, WA 98104, USA
| | | | | | | | | | | |
Collapse
|
483
|
Muñoz A, Hu M, Hussain K, Bryan J, Aguilar-Bryan L, Rajan AS. Regulation of glucagon secretion at low glucose concentrations: evidence for adenosine triphosphate-sensitive potassium channel involvement. Endocrinology 2005; 146:5514-21. [PMID: 16123162 DOI: 10.1210/en.2005-0637] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glucagon is a potent counterregulatory hormone that opposes the action of insulin in controlling glycemia. The cellular mechanisms by which pancreatic alpha-cell glucagon secretion occurs in response to hypoglycemia are poorly known. SUR1/K(IR)6.2-type ATP-sensitive K(+) (K(ATP)) channels have been implicated in the glucagon counterregulatory response at central and peripheral levels, but their role is not well understood. In this study, we examined hypoglycemia-induced glucagon secretion in vitro in isolated islets and in vivo using Sur1KO mice lacking neuroendocrine-type K(ATP) channels and paired wild-type (WT) controls. Sur1KO mice fed ad libitum have normal glucagon levels and mobilize hepatic glycogen in response to exogenous glucagon but exhibit a blunted glucagon response to insulin-induced hypoglycemia. Glucagon release from Sur1KO and WT islets is increased at 2.8 mmol/liter glucose and suppressed by increasing glucose concentrations. WT islets increase glucagon secretion approximately 20-fold when challenged with 0.1 mmol/liter glucose vs. approximately 2.7-fold for Sur1KO islets. Glucagon release requires Ca(2+) and is inhibited by nifedipine. Consistent with a regulatory interaction between K(ATP) channels and intra-islet zinc-insulin, WT islets exhibit an inverse correlation between beta-cell secretion and glucagon release. Glibenclamide stimulated insulin secretion and reduced glucagon release in WT islets but was without effect on secretion from Sur1KO islets. The results indicate that loss of alpha-cell K(ATP) channels uncouples glucagon release from inhibition by beta-cells and reveals a role for K(ATP) channels in the regulation of glucagon release by low glucose.
Collapse
Affiliation(s)
- Alvaro Muñoz
- Departments of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
484
|
Cailotto C, La Fleur SE, Van Heijningen C, Wortel J, Kalsbeek A, Feenstra M, Pévet P, Buijs RM. The suprachiasmatic nucleus controls the daily variation of plasma glucose via the autonomic output to the liver: are the clock genes involved? Eur J Neurosci 2005; 22:2531-40. [PMID: 16307595 DOI: 10.1111/j.1460-9568.2005.04439.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In order to drive tissue-specific rhythmic outputs, the master clock, located in the suprachiasmatic nucleus (SCN), is thought to reset peripheral oscillators via either chemical and hormonal cues or neural connections. Recently, the daily rhythm of plasma glucose (characterized by a peak before the onset of the activity period) has been shown to be directly driven by the SCN, independently of the SCN control of rhythmic feeding behaviour. Indeed, the daily variation in glucose was not impaired unless the scheduled feeding regimen (six-meal schedule) was associated with an SCN lesion. Here we show that the rhythmicity of both clock-gene mRNA expression in the liver and plasma glucose is not abolished under such a regular feeding schedule. Because the onset of the activity period and hyperglycemia are correlated with an increased sympathetic tonus, we investigated whether this autonomic branch is involved in the SCN control of plasma glucose rhythm and liver rhythmicity. Interestingly, hepatic sympathectomy combined with a six-meal feeding schedule resulted in a disruption of the plasma glucose rhythmicity without affecting the daily variation in clock-gene mRNA expression in the liver. Taking all these data together, we conclude that (i) the SCN needs the sympathetic pathway to the liver to generate the 24-h rhythm in plasma glucose concentrations, (ii) rhythmic clock-gene expression in the liver is not dependent on the sympathetic liver innervation and (iii) clock-gene rhythmicity in liver cells is not sufficient for sustaining a circadian rhythm in plasma glucose concentrations.
Collapse
Affiliation(s)
- Cathy Cailotto
- Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
485
|
Pocai A, Morgan K, Buettner C, Gutierrez-Juarez R, Obici S, Rossetti L. Central leptin acutely reverses diet-induced hepatic insulin resistance. Diabetes 2005; 54:3182-9. [PMID: 16249443 DOI: 10.2337/diabetes.54.11.3182] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Voluntary overfeeding rapidly induces resistance to the effects of systemic insulin and leptin on liver glucose metabolism. To examine whether central administration of recombinant leptin can restore leptin and insulin action on liver glucose fluxes, we infused leptin in the third cerebral ventricle of conscious overfed rats during pancreatic-insulin clamp studies. The effect of leptin on the phosphorylation of the signal transducer and activator of transcription-3 in the arcuate nuclei of the hypothalamus was similar in animals fed a regular diet or a high-fat diet for 3 days. The infusion of leptin in the third cerebral ventricle markedly inhibited glucose production in rats fed a high-fat diet mainly by decreasing glycogenolysis. The inhibition of glycogenolysis was sufficient to normalize glucose production and was accompanied by leptin-induced decreases in the hepatic expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. Thus central administration of leptin rescues the hepatic insulin resistance induced by short-term hyperphagia.
Collapse
Affiliation(s)
- Alessandro Pocai
- Department of Medicine, Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
486
|
Liang M, Ventura B. Physiological genomics in PG and beyond: July to September 2005. Physiol Genomics 2005. [DOI: 10.1152/physiolgenomics.00212.2005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
487
|
Wada A, Yokoo H, Yanagita T, Kobayashi H. New twist on neuronal insulin receptor signaling in health, disease, and therapeutics. J Pharmacol Sci 2005; 99:128-43. [PMID: 16210778 DOI: 10.1254/jphs.crj05006x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Long after the pioneering studies documenting the existence of insulin (year 1967) and insulin receptor (year 1978) in brain, the last decade has witnessed extraordinary progress in the understanding of brain region-specific multiple roles of insulin receptor signalings in health and disease. In the hypothalamus, insulin regulates food intake, body weight, peripheral fat deposition, hepatic gluconeogenesis, reproductive endocrine axis, and compensatory secretion of counter-regulatory hormones to hypoglycemia. In the hippocampus, insulin promotes learning and memory, independent of the glucoregulatory effect of insulin. Defective insulin receptor signalings are associated with the dementia in normal aging and patients with age-related neurodegenerative diseases (e.g., Alzheimer's disease); the cognitive impairment can be reversed with systemic administration of insulin in the euglycemic condition. Intranasal administration of insulin enhances memory and mood and decreases body weight in healthy humans, without causing hypoglycemia. In the hypothalamus, insulin-induced activation of the phosphoinositide 3-kinase pathway followed by opening of ATP-sensitive K+ channel has been shown to be related to multiple effects of insulin. However, the precise molecular mechanisms of insulin's pleiotropic effects still remain obscure. More importantly, much remains unknown about the quality control mechanisms ensuring correct conformational maturation of the insulin receptor, and the cellular mechanisms regulating density of cell surface functional insulin receptors.
Collapse
Affiliation(s)
- Akihiko Wada
- Department of Pharmacology, Miyazaki Medical College, University of Miyazaki, Miyazaki 889-1692, Japan.
| | | | | | | |
Collapse
|
488
|
Abstract
In the clinic, obesity and anorexia constitute prevalent problems whose manifestations are encountered in virtually every field of medicine. However, as the command centre for regulating food intake and energy metabolism is located in the brain, the basic neuroscientist sees in the same disorders malfunctions of a model network for how integration of diverse sensory inputs leads to a coordinated behavioural, endocrine and autonomic response. The two approaches are not mutually exclusive; rather, much can be gained by combining both perspectives to understand the pathophysiology of over- and underweight. The present review summarizes recent advances in this field including the characterization of peripheral metabolic signals to the brain such as leptin, insulin, peptide YY, ghrelin and lipid mediators as well as the vagus nerve; signalling of the metabolic sensors in the brainstem and hypothalamus via, e.g. neuropeptide Y and melanocortin peptides; integration and coordination of brain-mediated responses to nutritional challenges; the organization of food intake in simple model organisms; the mechanisms underlying food reward and processing of the sensory and metabolic properties of food in the cerebral cortex; and the development of the central metabolic system, as well as its pathological regulation in cancer and infections. Finally, recent findings on the genetics of human obesity are summarized, as well as the potential for novel treatments of body weight disorders.
Collapse
Affiliation(s)
- C Broberger
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
489
|
Woods SC, Seeley RJ. Hormonal mediation of energy homeostasis in obesity, diabetes and related disorders. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.ddmec.2005.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
490
|
Affiliation(s)
- Pascal Ferré
- INSERM U.671, Centre de Recherches Biomedicales des Cordeliers, Université Pierre et Marie Curie, 15 rue de l'Ecole de Médecine, 75270 Paris Cedex 06, France.
| |
Collapse
|
491
|
Lam TKT, Gutierrez-Juarez R, Pocai A, Rossetti L. Regulation of blood glucose by hypothalamic pyruvate metabolism. Science 2005; 309:943-7. [PMID: 16081739 DOI: 10.1126/science.1112085] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The brain keenly depends on glucose for energy, and mammalians have redundant systems to control glucose production. An increase in circulating glucose inhibits glucose production in the liver, but this negative feedback is impaired in type 2 diabetes. Here we report that a primary increase in hypothalamic glucose levels lowers blood glucose through inhibition of glucose production in rats. The effect of glucose requires its conversion to lactate followed by stimulation of pyruvate metabolism, which leads to activation of adenosine triphosphate (ATP)-sensitive potassium channels. Thus, interventions designed to enhance the hypothalamic sensing of glucose may improve glucose homeostasis in diabetes.
Collapse
Affiliation(s)
- Tony K T Lam
- Departments of Medicine and Molecular Pharmacology, Diabetes Research Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
492
|
|