551
|
Crozier TWM, Tinti M, Larance M, Lamond AI, Ferguson MAJ. Prediction of Protein Complexes in Trypanosoma brucei by Protein Correlation Profiling Mass Spectrometry and Machine Learning. Mol Cell Proteomics 2017; 16:2254-2267. [PMID: 29042480 PMCID: PMC5724185 DOI: 10.1074/mcp.o117.068122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/04/2017] [Indexed: 01/10/2023] Open
Abstract
A disproportionate number of predicted proteins from the genome sequence of the protozoan parasite Trypanosoma brucei, an important human and animal pathogen, are hypothetical proteins of unknown function. This paper describes a protein correlation profiling mass spectrometry approach, using two size exclusion and one ion exchange chromatography systems, to derive sets of predicted protein complexes in this organism by hierarchical clustering and machine learning methods. These hypothesis-generating proteomic data are provided in an open access online data visualization environment (http://134.36.66.166:8083/complex_explorer). The data can be searched conveniently via a user friendly, custom graphical interface. We provide examples of both potential new subunits of known protein complexes and of novel trypanosome complexes of suggested function, contributing to improving the functional annotation of the trypanosome proteome. Data are available via ProteomeXchange with identifier PXD005968.
Collapse
Affiliation(s)
- Thomas W M Crozier
- From the ‡Division of Biological Chemistry and Drug Discovery and.,§Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD2 1NW, UK
| | - Michele Tinti
- From the ‡Division of Biological Chemistry and Drug Discovery and
| | - Mark Larance
- §Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD2 1NW, UK
| | - Angus I Lamond
- §Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD2 1NW, UK
| | | |
Collapse
|
552
|
Extracellular Matrix Proteins Mediate HIV-1 gp120 Interactions with α 4β 7. J Virol 2017; 91:JVI.01005-17. [PMID: 28814519 DOI: 10.1128/jvi.01005-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/09/2017] [Indexed: 01/01/2023] Open
Abstract
Gut-homing α4β7high CD4+ T lymphocytes have been shown to be preferentially targeted by human immunodeficiency virus type 1 (HIV-1) and are implicated in HIV-1 pathogenesis. Previous studies demonstrated that HIV-1 envelope protein gp120 binds and signals through α4β7 and that this likely contributes to the infection of α4β7high T cells and promotes cell-to-cell virus transmission. Structures within the second variable loop (V2) of gp120, including the tripeptide motif LDV/I, are thought to mediate gp120-α4β7 binding. However, lack of α4β7 binding has been reported in gp120 proteins containing LDV/I, and the precise determinants of gp120-α4β7 binding are not fully defined. In this work, we report the novel finding that fibronectins mediate indirect gp120-α4β7 interactions. We show that Chinese hamster ovary (CHO) cells used to express recombinant gp120 produced fibronectins and other extracellular matrix proteins that copurified with gp120. CHO cell fibronectins were able to mediate the binding of a diverse panel of gp120 proteins to α4β7 in an in vitro cell binding assay. The V2 loop was not required for fibronectin-mediated binding of gp120 to α4β7, nor did V2-specific antibodies block this interaction. Removal of fibronectin through anion-exchange chromatography abrogated V2-independent gp120-α4β7 binding. Additionally, we showed a recombinant human fibronectin fragment mediated gp120-α4β7 interactions similarly to CHO cell fibronectin. These findings provide an explanation for the apparently contradictory observations regarding the gp120-α4β7 interaction and offer new insights into the potential role of fibronectin and other extracellular matrix proteins in HIV-1 biology.IMPORTANCE Immune tissues within the gut are severely damaged by HIV-1, and this plays an important role in the development of AIDS. Integrin α4β7 plays a major role in the trafficking of lymphocytes, including CD4+ T cells, into gut lymphoid tissues. Previous reports indicate that some HIV-1 gp120 envelope proteins bind to and signal through α4β7, which may help explain the preferential infection of gut CD4+ T cells. In this study, we demonstrate that extracellular matrix proteins can mediate interactions between gp120 and α4β7 This suggests that the extracellular matrix may be an important mediator of HIV-1 interaction with α4β7-expressing cells. These findings provide new insight into the nature of HIV-1-α4β7 interactions and how these interactions may represent targets for therapeutic intervention.
Collapse
|
553
|
Proteolytic signatures define unique thrombin-derived peptides present in human wound fluid in vivo. Sci Rep 2017; 7:13136. [PMID: 29030565 PMCID: PMC5640616 DOI: 10.1038/s41598-017-13197-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/19/2017] [Indexed: 01/13/2023] Open
Abstract
The disease burden of failing skin repair and non-healing ulcers is extensive. There is an unmet need for new diagnostic approaches to better predict healing activity and wound infection. Uncontrolled and excessive protease activity, of endogenous or bacterial origin, has been described as a major contributor to wound healing impairments. Proteolytic peptide patterns could therefore correlate and “report” healing activity and infection. This work describes a proof of principle delineating a strategy by which peptides from a selected protein, human thrombin, are detected and attributed to proteolytic actions. With a particular focus on thrombin-derived C-terminal peptides (TCP), we show that distinct peptide patterns are generated in vitro by the human S1 peptidases human neutrophil elastase and cathepsin G, and the bacterial M4 peptidases Pseudomonas aeruginosa elastase and Staphylococcus aureus aureolysin, respectively. Corresponding peptide sequences were identified in wound fluids from acute and non-healing ulcers, and notably, one peptide, FYT21 (FYTHVFRLKKWIQKVIDQFGE), was only present in wound fluid from non-healing ulcers colonized by P. aeruginosa and S. aureus. Our result is a proof of principle pointing at the possibility of defining peptide biomarkers reporting distinct proteolytic activities, of potential implication for improved diagnosis of wound healing and infection.
Collapse
|
554
|
Stewart PA, Fang B, Slebos RJC, Zhang G, Borne AL, Fellows K, Teer JK, Chen YA, Welsh E, Eschrich SA, Haura EB, Koomen JM. Relative protein quantification and accessible biology in lung tumor proteomes from four LC-MS/MS discovery platforms. Proteomics 2017; 17. [PMID: 28195392 DOI: 10.1002/pmic.201600300] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 01/01/2023]
Abstract
Discovery proteomics experiments include many options for sample preparation and MS data acquisition, which are capable of creating datasets for quantifying thousands of proteins. To define a strategy that would produce a dataset with sufficient content while optimizing required resources, we compared (1) single-sample LC-MS/MS with data-dependent acquisition to single-sample LC-MS/MS with data-independent acquisition and (2) peptide fractionation with label-free (LF) quantification to peptide fractionation with relative quantification of chemically labeled peptides (sixplex tandem mass tags (TMT)). These strategies were applied to the same set of four frozen lung squamous cell carcinomas and four adjacent tissues, and the overall outcomes of each experiment were assessed. We identified 6656 unique protein groups with LF, 5535 using TMT, 3409 proteins from single-sample analysis with data-independent acquisition, and 2219 proteins from single-sample analysis with data-dependent acquisition. Pathway analysis indicated the number of proteins per pathway was proportional to the total protein identifications from each method, suggesting limited biological bias between experiments. The results suggest the use of single-sample experiments as a rapid tissue assessment tool and digestion quality control or as a technique to maximize output from limited samples and use of TMT or LF quantification as methods for larger amounts of tumor tissue with the selection being driven mainly by instrument time limitations. Data are available via ProteomeXchange with identifiers PXD004682, PXD004683, PXD004684, and PXD005733.
Collapse
Affiliation(s)
- Paul A Stewart
- Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Bin Fang
- Proteomics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Robbert J C Slebos
- Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Guolin Zhang
- Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Adam L Borne
- Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Katherine Fellows
- Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jamie K Teer
- Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Y Ann Chen
- Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Eric Welsh
- Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Steven A Eschrich
- Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Eric B Haura
- Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - John M Koomen
- Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
555
|
Omenn GS, Lane L, Lundberg EK, Overall CM, Deutsch EW. Progress on the HUPO Draft Human Proteome: 2017 Metrics of the Human Proteome Project. J Proteome Res 2017; 16:4281-4287. [PMID: 28853897 DOI: 10.1021/acs.jproteome.7b00375] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Human Proteome Organization (HUPO) Human Proteome Project (HPP) continues to make progress on its two overall goals: (1) completing the protein parts list, with an annual update of the HUPO draft human proteome, and (2) making proteomics an integrated complement to genomics and transcriptomics throughout biomedical and life sciences research. neXtProt version 2017-01-23 has 17 008 confident protein identifications (Protein Existence [PE] level 1) that are compliant with the HPP Guidelines v2.1 ( https://hupo.org/Guidelines ), up from 13 664 in 2012-12 and 16 518 in 2016-04. Remaining to be found by mass spectrometry and other methods are 2579 "missing proteins" (PE2+3+4), down from 2949 in 2016. PeptideAtlas 2017-01 has 15 173 canonical proteins, accounting for nearly all of the 15 290 PE1 proteins based on MS data. These resources have extensive data on PTMs, single amino acid variants, and splice isoforms. The Human Protein Atlas v16 has 10 492 highly curated protein entries with tissue and subcellular spatial localization of proteins and transcript expression. Organ-specific popular protein lists have been generated for broad use in quantitative targeted proteomics using SRM-MS or DIA-SWATH-MS studies of biology and disease.
Collapse
Affiliation(s)
- Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan , 100 Washtenaw Avenue, Ann Arbor, Michigan 48109-2218, United States.,Institute for Systems Biology , 401 Terry Avenue North, Seattle, Washington 98109-5263, United States
| | - Lydie Lane
- CALIPHO Group, SIB Swiss Institute of Bioinformatics and Department of Human Protein Science, University of Geneva , CMU, Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Emma K Lundberg
- SciLifeLab Stockholm and School of Biotechnology, KTH, Karolinska Institutet Science Park , Tomtebodavägen 23, SE-171 65 Solna, Sweden
| | - Christopher M Overall
- Life Sciences Institute, Faculty of Dentistry, University of British Columbia , 2350 Health Sciences Mall, Room 4.401, Vancouver, British Columbia V6T 1Z3, Canada
| | - Eric W Deutsch
- Institute for Systems Biology , 401 Terry Avenue North, Seattle, Washington 98109-5263, United States
| |
Collapse
|
556
|
Tarallo R, Giurato G, Bruno G, Ravo M, Rizzo F, Salvati A, Ricciardi L, Marchese G, Cordella A, Rocco T, Gigantino V, Pierri B, Cimmino G, Milanesi L, Ambrosino C, Nyman TA, Nassa G, Weisz A. The nuclear receptor ERβ engages AGO2 in regulation of gene transcription, RNA splicing and RISC loading. Genome Biol 2017; 18:189. [PMID: 29017520 PMCID: PMC5634881 DOI: 10.1186/s13059-017-1321-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 09/20/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The RNA-binding protein Argonaute 2 (AGO2) is a key effector of RNA-silencing pathways It exerts a pivotal role in microRNA maturation and activity and can modulate chromatin remodeling, transcriptional gene regulation and RNA splicing. Estrogen receptor beta (ERβ) is endowed with oncosuppressive activities, antagonizing hormone-induced carcinogenesis and inhibiting growth and oncogenic functions in luminal-like breast cancers (BCs), where its expression correlates with a better prognosis of the disease. RESULTS Applying interaction proteomics coupled to mass spectrometry to characterize nuclear factors cooperating with ERβ in gene regulation, we identify AGO2 as a novel partner of ERβ in human BC cells. ERβ-AGO2 association was confirmed in vitro and in vivo in both the nucleus and cytoplasm and is shown to be RNA-mediated. ChIP-Seq demonstrates AGO2 association with a large number of ERβ binding sites, and total and nascent RNA-Seq in ERβ + vs ERβ - cells, and before and after AGO2 knock-down in ERβ + cells, reveals a widespread involvement of this factor in ERβ-mediated regulation of gene transcription rate and RNA splicing. Moreover, isolation and sequencing by RIP-Seq of ERβ-associated long and small RNAs in the cytoplasm suggests involvement of the nuclear receptor in RISC loading, indicating that it may also be able to directly control mRNA translation efficiency and stability. CONCLUSIONS These results demonstrate that AGO2 can act as a pleiotropic functional partner of ERβ, indicating that both factors are endowed with multiple roles in the control of key cellular functions.
Collapse
Affiliation(s)
- Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Giuseppina Bruno
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Maria Ravo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Luca Ricciardi
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Giovanna Marchese
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | | | - Teresa Rocco
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Valerio Gigantino
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Biancamaria Pierri
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Giovanni Cimmino
- Department of Cardiothoracic and Respiratory Sciences, University of Campania'L. Vanvitelli', Naples, Italy
| | - Luciano Milanesi
- Institute of Biomedical Technologies, National Research Council, Segregate, MI, Italy
| | - Concetta Ambrosino
- Department of Science and Technology, University of Sannio, Benevento, Italy
- IRGS Biogem, Ariano Irpino, AV, Italy
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, Oslo, Norway
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy.
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy.
| |
Collapse
|
557
|
Parkyn Schneider M, Liu B, Glock P, Suttie A, McHugh E, Andrew D, Batinovic S, Williamson N, Hanssen E, McMillan P, Hliscs M, Tilley L, Dixon MWA. Disrupting assembly of the inner membrane complex blocks Plasmodium falciparum sexual stage development. PLoS Pathog 2017; 13:e1006659. [PMID: 28985225 PMCID: PMC5646874 DOI: 10.1371/journal.ppat.1006659] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/18/2017] [Accepted: 09/20/2017] [Indexed: 11/18/2022] Open
Abstract
Transmission of malaria parasites relies on the formation of a specialized blood form called the gametocyte. Gametocytes of the human pathogen, Plasmodium falciparum, adopt a crescent shape. Their dramatic morphogenesis is driven by the assembly of a network of microtubules and an underpinning inner membrane complex (IMC). Using super-resolution optical and electron microscopies we define the ultrastructure of the IMC at different stages of gametocyte development. We characterize two new proteins of the gametocyte IMC, called PhIL1 and PIP1. Genetic disruption of PhIL1 or PIP1 ablates elongation and prevents formation of transmission-ready mature gametocytes. The maturation defect is accompanied by failure to form an enveloping IMC and a marked swelling of the digestive vacuole, suggesting PhIL1 and PIP1 are required for correct membrane trafficking. Using immunoprecipitation and mass spectrometry we reveal that PhIL1 interacts with known and new components of the gametocyte IMC. Transmission of the malaria parasite from humans to mosquitoes relies on the formation of the specialised blood stage gametocyte. Plasmodium falciparum gametocytes mature over about 10 days, during which time they undergo a remarkable morphological transformation, eventually adopting a characteristic crescent shape. The shape changes are thought to facilitate the mechanical sequestration of maturing gametocytes within the bone marrow and spleen, as well as the eventual release into the circulation. Failure to mature correctly leads to a failure to transmit. Despite the importance of this process, little is known about the molecular basis of elongation. In this work, we introduce 3D Electron Microscopy of P. falciparum gametocytes and use it, in a combination with super-resolution optical microscopy, to elucidate the genesis and expansion of the molecular structures that drive gametocyte elongation. We use protein interaction profiling to identify some of the proteins that help drive the shape change and employ inducible gene knockdown strategies to show that these proteins play a role in remodeling membranes, and are needed for gametocyte elongation. This work points to potential targets for the development of transmission-blocking therapies.
Collapse
Affiliation(s)
- Molly Parkyn Schneider
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Boyin Liu
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Philipp Glock
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Annika Suttie
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Emma McHugh
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Dean Andrew
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Steven Batinovic
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nicholas Williamson
- Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Eric Hanssen
- Melbourne Advance Microscopy Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paul McMillan
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Melbourne Advance Microscopy Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
- Biological Optical Microscopy Platform, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Marion Hliscs
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Matthew W. A. Dixon
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
558
|
Pandya NJ, Koopmans F, Slotman JA, Paliukhovich I, Houtsmuller AB, Smit AB, Li KW. Correlation profiling of brain sub-cellular proteomes reveals co-assembly of synaptic proteins and subcellular distribution. Sci Rep 2017; 7:12107. [PMID: 28935861 PMCID: PMC5608747 DOI: 10.1038/s41598-017-11690-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022] Open
Abstract
Protein correlation profiling might assist in defining co-assembled proteins and subcellular distribution. Here, we quantified the proteomes of five biochemically isolated mouse brain cellular sub-fractions, with emphasis on synaptic compartments, from three brain regions, hippocampus, cortex and cerebellum. We demonstrated the expected co-fractionation of canonical synaptic proteins belonging to the same functional groups. The enrichment profiles also suggested the presence of many novel pre- and post-synaptic proteins. Using super-resolution microscopy on primary neuronal culture we confirmed the postsynaptic localization of PLEKHA5 and ADGRA1. We further detected profound brain region specific differences in the extent of enrichment for some functionally associated proteins. This is exemplified by different AMPA receptor subunits and substantial differences in sub-fraction distribution of their potential interactors, which implicated the differences of AMPA receptor complex compositions. This resource aids the identification of proteins partners and subcellular distribution of synaptic proteins.
Collapse
Affiliation(s)
- Nikhil J Pandya
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frank Koopmans
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Johan A Slotman
- Optical Imaging Center, Department of Pathology, Erasmus Medical Center, 3015 GE, Rotterdam, Netherlands
| | - Iryna Paliukhovich
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Adriaan B Houtsmuller
- Optical Imaging Center, Department of Pathology, Erasmus Medical Center, 3015 GE, Rotterdam, Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
559
|
Tain LS, Sehlke R, Jain C, Chokkalingam M, Nagaraj N, Essers P, Rassner M, Grönke S, Froelich J, Dieterich C, Mann M, Alic N, Beyer A, Partridge L. A proteomic atlas of insulin signalling reveals tissue-specific mechanisms of longevity assurance. Mol Syst Biol 2017; 13:939. [PMID: 28916541 PMCID: PMC5615923 DOI: 10.15252/msb.20177663] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 12/20/2022] Open
Abstract
Lowered activity of the insulin/IGF signalling (IIS) network can ameliorate the effects of ageing in laboratory animals and, possibly, humans. Although transcriptome remodelling in long-lived IIS mutants has been extensively documented, the causal mechanisms contributing to extended lifespan, particularly in specific tissues, remain unclear. We have characterized the proteomes of four key insulin-sensitive tissues in a long-lived Drosophila IIS mutant and control, and detected 44% of the predicted proteome (6,085 proteins). Expression of ribosome-associated proteins in the fat body was reduced in the mutant, with a corresponding, tissue-specific reduction in translation. Expression of mitochondrial electron transport chain proteins in fat body was increased, leading to increased respiration, which was necessary for IIS-mediated lifespan extension, and alone sufficient to mediate it. Proteasomal subunits showed altered expression in IIS mutant gut, and gut-specific over-expression of the RPN6 proteasomal subunit, was sufficient to increase proteasomal activity and extend lifespan, whilst inhibition of proteasome activity abolished IIS-mediated longevity. Our study thus uncovered strikingly tissue-specific responses of cellular processes to lowered IIS acting in concert to ameliorate ageing.
Collapse
Affiliation(s)
- Luke S Tain
- Max-Planck Institute for Biology of Ageing, Cologne, Germany
| | - Robert Sehlke
- Max-Planck Institute for Biology of Ageing, Cologne, Germany
- CECAD Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Cologne, Germany
| | - Chirag Jain
- Max-Planck Institute for Biology of Ageing, Cologne, Germany
| | - Manopriya Chokkalingam
- CECAD Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Cologne, Germany
| | - Nagarjuna Nagaraj
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Paul Essers
- Max-Planck Institute for Biology of Ageing, Cologne, Germany
| | - Mark Rassner
- Max-Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Jenny Froelich
- Max-Planck Institute for Biology of Ageing, Cologne, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Nazif Alic
- Institute of Healthy Ageing, and GEE, UCL, London, UK
| | - Andreas Beyer
- CECAD Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Linda Partridge
- Max-Planck Institute for Biology of Ageing, Cologne, Germany
- Institute of Healthy Ageing, and GEE, UCL, London, UK
| |
Collapse
|
560
|
Treiber T, Treiber N, Plessmann U, Harlander S, Daiß JL, Eichner N, Lehmann G, Schall K, Urlaub H, Meister G. A Compendium of RNA-Binding Proteins that Regulate MicroRNA Biogenesis. Mol Cell 2017; 66:270-284.e13. [PMID: 28431233 DOI: 10.1016/j.molcel.2017.03.014] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/22/2016] [Accepted: 03/20/2017] [Indexed: 12/19/2022]
Abstract
During microRNA (miRNA) biogenesis, two endonucleolytic reactions convert stem-loop-structured precursors into mature miRNAs. These processing steps can be posttranscriptionally regulated by RNA-binding proteins (RBPs). Here, we have used a proteomics-based pull-down approach to map and characterize the interactome of a multitude of pre-miRNAs. We identify ∼180 RBPs that interact specifically with distinct pre-miRNAs. For functional validation, we combined RNAi and CRISPR/Cas-mediated knockout experiments to analyze RBP-dependent changes in miRNA levels. Indeed, a large number of the investigated candidates, including splicing factors and other mRNA processing proteins, have effects on miRNA processing. As an example, we show that TRIM71/LIN41 is a potent regulator of miR-29a processing and its inactivation directly affects miR-29a targets. We provide an extended database of RBPs that interact with pre-miRNAs in extracts of different cell types, highlighting a widespread layer of co- and posttranscriptional regulation of miRNA biogenesis.
Collapse
Affiliation(s)
- Thomas Treiber
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Nora Treiber
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Uwe Plessmann
- Bioanalytical Mass Spectrometry Group, Max-Planck-Institute of Biophysical Chemistry, 37077 Göttingen, Germany
| | - Simone Harlander
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Julia-Lisa Daiß
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Norbert Eichner
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Gerhard Lehmann
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Kevin Schall
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max-Planck-Institute of Biophysical Chemistry, 37077 Göttingen, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
561
|
Heavner ME, Ramroop J, Gueguen G, Ramrattan G, Dolios G, Scarpati M, Kwiat J, Bhattacharya S, Wang R, Singh S, Govind S. Novel Organelles with Elements of Bacterial and Eukaryotic Secretion Systems Weaponize Parasites of Drosophila. Curr Biol 2017; 27:2869-2877.e6. [PMID: 28889977 DOI: 10.1016/j.cub.2017.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/03/2017] [Accepted: 08/10/2017] [Indexed: 01/16/2023]
Abstract
The evolutionary success of parasitoid wasps, a highly diverse group of insects widely used in biocontrol, depends on a variety of life history strategies in conflict with those of their hosts [1]. Drosophila melanogaster is a natural host of parasitic wasps of the genus Leptopilina. Attack by L. boulardi (Lb), a specialist wasp to flies of the melanogaster group, activates NF-κB-mediated humoral and cellular immunity. Inflammatory blood cells mobilize and encapsulate Lb eggs and embryos [2-5]. L. heterotoma (Lh), a generalist wasp, kills larval blood cells and actively suppresses immune responses. Spiked virus-like particles (VLPs) in wasp venom have clearly been linked to wasps' successful parasitism of Drosophila [6], but the composition of VLPs and their biotic nature have remained mysterious. Our proteomics studies reveal that VLPs lack viral coat proteins but possess a pharmacopoeia of (1) the eukaryotic vesicular transport system, (2) immunity, and (3) previously unknown proteins. These novel proteins distinguish Lh from Lb VLPs; notably, some proteins specific to Lh VLPs possess sequence similarities with bacterial secretion system proteins. Structure-informed analyses of an abundant Lh VLP surface and spike-tip protein, p40, reveal similarities to the needle-tip invasin proteins SipD and IpaD of Gram-negative bacterial type-3 secretion systems that breach immune barriers and deliver virulence factors into mammalian cells. Our studies suggest that Lh VLPs represent a new class of extracellular organelles and share pathways for protein delivery with both eukaryotic microvesicles and bacterial surface secretion systems. Given their mixed prokaryotic and eukaryotic properties, we propose the term mixed-strategy extracellular vesicle (MSEV) to replace VLP.
Collapse
Affiliation(s)
- Mary Ellen Heavner
- Biology, The City College of New York, Convent Avenue, New York, NY 10031, USA; PhD Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Johnny Ramroop
- Biology, The City College of New York, Convent Avenue, New York, NY 10031, USA; PhD Program in Biology, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Gwenaelle Gueguen
- Biology, The City College of New York, Convent Avenue, New York, NY 10031, USA
| | - Girish Ramrattan
- Biological Sciences, Hunter College, Park Avenue, New York, NY 10065, USA
| | - Georgia Dolios
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Madison Avenue, New York, NY 10029, USA
| | - Michael Scarpati
- PhD Program in Biology, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA; Biology, Brooklyn College, Bedford Avenue, Brooklyn, NY 11210, USA
| | - Jonathan Kwiat
- Biology, Brooklyn College, Bedford Avenue, Brooklyn, NY 11210, USA
| | - Sharmila Bhattacharya
- Space Biosciences Research Branch, NASA Ames Research Center, Moffett Boulevard, Mountain View, CA 94035, USA
| | - Rong Wang
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Madison Avenue, New York, NY 10029, USA
| | - Shaneen Singh
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA; PhD Program in Biology, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA; Biology, Brooklyn College, Bedford Avenue, Brooklyn, NY 11210, USA
| | - Shubha Govind
- Biology, The City College of New York, Convent Avenue, New York, NY 10031, USA; PhD Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA; PhD Program in Biology, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA.
| |
Collapse
|
562
|
Brain ureido degenerative protein modifications are associated with neuroinflammation and proteinopathy in Alzheimer's disease with cerebrovascular disease. J Neuroinflammation 2017; 14:175. [PMID: 28865468 PMCID: PMC5581431 DOI: 10.1186/s12974-017-0946-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/23/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Brain degenerative protein modifications (DPMs) are associated with the apparition and progression of dementia, and at the same time, Alzheimer's disease with cerebrovascular disease (AD + CVD) is the most prevalent form of dementia in the elder population. Thus, understanding the role(s) of brain DPMs in this dementia subtype may provide novel insight on the disease pathogenesis and may aid on the development of novel diagnostic and therapeutic tools. Two essential DPMs known to promote inflammation in several human diseases are the ureido DPMs (uDPMs) arginine citrullination and lysine carbamylation, although they have distinct enzymatic and non-enzymatic origins, respectively. Nevertheless, the implication of uDPMs in the neuropathology of dementia remains poorly understood. METHODS In this study, we use the state-of-the-art, ultracentrifugation-electrostatic repulsion hydrophilic interaction chromatography (UC-ERLIC)-coupled mass spectrometry technology to undertake a comparative characterization of uDPMs in the soluble and particulate postmortem brain fractions of subjects diagnosed with AD + CVD and age-matched controls. RESULTS An increase in the formation of uDPMs was observed in all the profiled AD + CVD brains. Citrulline-containing proteins were found more abundant in the soluble fraction of AD + CVD whereas homocitrulline-containing proteins were preferentially abundant in the particulate fraction of AD + CVD brains. Several dementia-specific citrulline residues were also identified in soluble proteins previously categorized as pro-immunogenic, which include the receptor P2X7, alpha-internexin, GFAP, CNP, MBP, and histones. Similarly, diverse dementia-specific homocitrulline residues were also observed in the particulate fractions of AD + CVD in proteins that have been vastly implicated in neuropathology. Intriguingly, we also found that the amino acids immediately flanking arginine residues may specifically influence the increase in protein citrullination. CONCLUSIONS Taken together, these results indicate that uDPMs widely contribute to the pathophysiology of AD + CVD by promoting neuroinflammation and proteinopathy. Furthermore, the obtained results could help to identify disease-associated proteins that can act as potential targets for therapeutic intervention or as novel biomarkers of specific neuropathology.
Collapse
|
563
|
Min Y, Roche KC, Tian S, Eblan MJ, McKinnon KP, Caster JM, Chai S, Herring LE, Zhang L, Zhang T, DeSimone JM, Tepper JE, Vincent BG, Serody JS, Wang AZ. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. NATURE NANOTECHNOLOGY 2017; 12:877-882. [PMID: 28650437 PMCID: PMC5587366 DOI: 10.1038/nnano.2017.113] [Citation(s) in RCA: 509] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 05/10/2017] [Indexed: 05/02/2023]
Abstract
Immunotherapy holds tremendous promise for improving cancer treatment. To administer radiotherapy with immunotherapy has been shown to improve immune responses and can elicit the 'abscopal effect'. Unfortunately, response rates for this strategy remain low. Herein we report an improved cancer immunotherapy approach that utilizes antigen-capturing nanoparticles (AC-NPs). We engineered several AC-NP formulations and demonstrated that the set of protein antigens captured by each AC-NP formulation is dependent on the NP surface properties. We showed that AC-NPs deliver tumour-specific proteins to antigen-presenting cells (APCs) and significantly improve the efficacy of αPD-1 (anti-programmed cell death 1) treatment using the B16F10 melanoma model, generating up to a 20% cure rate compared with 0% without AC-NPs. Mechanistic studies revealed that AC-NPs induced an expansion of CD8+ cytotoxic T cells and increased both CD4+T/Treg and CD8+T/Treg ratios (Treg, regulatory T cells). Our work presents a novel strategy to improve cancer immunotherapy with nanotechnology.
Collapse
Affiliation(s)
- Yuanzeng Min
- Laboratory of Nano- and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kyle C. Roche
- Laboratory of Nano- and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shaomin Tian
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Michael J. Eblan
- Laboratory of Nano- and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Karen P. McKinnon
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Joseph M. Caster
- Laboratory of Nano- and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shengjie Chai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Laura E. Herring
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA, 27599
| | - Longzhen Zhang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tian Zhang
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Joseph M. DeSimone
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, NC 27695, USA
- Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Joel E. Tepper
- Laboratory of Nano- and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Benjamin G. Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jonathan S. Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Andrew Z. Wang
- Laboratory of Nano- and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
564
|
Beaven R, Bastos RN, Spanos C, Romé P, Cullen CF, Rappsilber J, Giet R, Goshima G, Ohkura H. 14-3-3 regulation of Ncd reveals a new mechanism for targeting proteins to the spindle in oocytes. J Cell Biol 2017; 216:3029-3039. [PMID: 28860275 PMCID: PMC5626551 DOI: 10.1083/jcb.201704120] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/03/2017] [Accepted: 07/20/2017] [Indexed: 11/22/2022] Open
Abstract
The meiotic spindle is formed without centrosomes in a large volume of oocytes. Local activation of crucial spindle proteins around chromosomes is important for formation and maintenance of a bipolar spindle in oocytes. We found that phosphodocking 14-3-3 proteins stabilize spindle bipolarity in Drosophila melanogaster oocytes. A critical 14-3-3 target is the minus end-directed motor Ncd (human HSET; kinesin-14), which has well-documented roles in stabilizing a bipolar spindle in oocytes. Phospho docking by 14-3-3 inhibits the microtubule binding activity of the nonmotor Ncd tail. Further phosphorylation by Aurora B kinase can release Ncd from this inhibitory effect of 14-3-3. As Aurora B localizes to chromosomes and spindles, 14-3-3 facilitates specific association of Ncd with spindle microtubules by preventing Ncd from binding to nonspindle microtubules in oocytes. Therefore, 14-3-3 translates a spatial cue provided by Aurora B to target Ncd selectively to the spindle within the large volume of oocytes.
Collapse
Affiliation(s)
- Robin Beaven
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - Ricardo Nunes Bastos
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - Christos Spanos
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - Pierre Romé
- Institut de Génétique et Développement de Rennes, Centre National de la Recherche Scientifique, UMR 6290, Université de Rennes, Rennes, France
| | - C Fiona Cullen
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, UK.,Chair of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Régis Giet
- Institut de Génétique et Développement de Rennes, Centre National de la Recherche Scientifique, UMR 6290, Université de Rennes, Rennes, France
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Hiroyuki Ohkura
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
565
|
A proteomic portrait of dinoflagellate chromatin reveals abundant RNA-binding proteins. Chromosoma 2017; 127:29-43. [PMID: 28852823 DOI: 10.1007/s00412-017-0643-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 12/20/2022]
Abstract
Dinoflagellate chromatin is unique among eukaryotes, as the chromosomes are permanently condensed in a liquid crystal state instead of being packed in nucleosomes. However, how it is organized is still an unsolved mystery, in part due to the lack of a comprehensive catalog of dinoflagellate nuclear proteins. Here, we report the results of CHromatin Enrichment for Proteomics (CHEP) followed by shotgun mass spectrometry sequencing of the chromatin-associated proteins from the dinoflagellate Lingulodinum polyedra. Our analysis identified proteins involved in DNA replication and repair, transcription, and mRNA splicing, and showed a low level of contamination by proteins from other organelles. A limited number of proteins containing DNA-binding domains were found, consistent with the lack of diversity of these proteins in dinoflagellate transcriptomes. However, the number of proteins containing RNA-binding domains was unexpectedly high supporting a potential role for this type of protein in mediating gene expression and chromatin organization. We also identified a number of proteins involved in chromosome condensation and cell cycle progression as well as a single histone protein (H4). Our results provide the first detailed look at the nuclear proteins associated with the unusual chromatin structure of dinoflagellate nuclei and provide important insights into the biochemical basis of its structure and function.
Collapse
|
566
|
Giess A, Jonckheere V, Ndah E, Chyżyńska K, Van Damme P, Valen E. Ribosome signatures aid bacterial translation initiation site identification. BMC Biol 2017; 15:76. [PMID: 28854918 PMCID: PMC5576327 DOI: 10.1186/s12915-017-0416-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/09/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While methods for annotation of genes are increasingly reliable, the exact identification of translation initiation sites remains a challenging problem. Since the N-termini of proteins often contain regulatory and targeting information, developing a robust method for start site identification is crucial. Ribosome profiling reads show distinct patterns of read length distributions around translation initiation sites. These patterns are typically lost in standard ribosome profiling analysis pipelines, when reads from footprints are adjusted to determine the specific codon being translated. RESULTS Utilising these signatures in combination with nucleotide sequence information, we build a model capable of predicting translation initiation sites and demonstrate its high accuracy using N-terminal proteomics. Applying this to prokaryotic translatomes, we re-annotate translation initiation sites and provide evidence of N-terminal truncations and extensions of previously annotated coding sequences. These re-annotations are supported by the presence of structural and sequence-based features next to N-terminal peptide evidence. Finally, our model identifies 61 novel genes previously undiscovered in the Salmonella enterica genome. CONCLUSIONS Signatures within ribosome profiling read length distributions can be used in combination with nucleotide sequence information to provide accurate genome-wide identification of translation initiation sites.
Collapse
Affiliation(s)
- Adam Giess
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, 5020, Norway
| | - Veronique Jonckheere
- VIB-UGent Center for Medical Biotechnology, B-9000, Ghent, Belgium.,Department of Biochemistry, Ghent University, B-9000, Ghent, Belgium
| | - Elvis Ndah
- VIB-UGent Center for Medical Biotechnology, B-9000, Ghent, Belgium.,Department of Biochemistry, Ghent University, B-9000, Ghent, Belgium.,Lab of Bioinformatics and Computational Genomics, Department of Mathematical Modelling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium
| | - Katarzyna Chyżyńska
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, 5020, Norway
| | - Petra Van Damme
- VIB-UGent Center for Medical Biotechnology, B-9000, Ghent, Belgium. .,Department of Biochemistry, Ghent University, B-9000, Ghent, Belgium.
| | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, 5020, Norway. .,Sars International Centre for Marine Molecular Biology, University of Bergen, 5008, Bergen, Norway.
| |
Collapse
|
567
|
Al-Maleki AR, Loke MF, Lui SY, Ramli NSK, Khosravi Y, Ng CG, Venkatraman G, Goh KL, Ho B, Vadivelu J. Helicobacter pylori outer inflammatory protein A (OipA) suppresses apoptosis of AGS gastric cells in vitro. Cell Microbiol 2017; 19. [PMID: 28776327 DOI: 10.1111/cmi.12771] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 07/02/2017] [Accepted: 07/26/2017] [Indexed: 12/12/2022]
Abstract
Outer inflammatory protein A (OipA) is an important virulence factor associated with gastric cancer and ulcer development; however, the results have not been well established and turned out to be controversial. This study aims to elucidate the role of OipA in Helicobacter pylori infection using clinical strains harbouring oipA "on" and "off" motifs. Proteomics analysis was performed on AGS cell pre-infection and postinfection with H. pylori oipA "on" and "off" strains, using liquid chromatography/mass spectrometry. AGS apoptosis and cell cycle assays were performed. Moreover, expression of vacuolating cytotoxin A (VacA) was screened using Western blotting. AGS proteins that have been suggested previously to play a role or associated with gastric disease were down-regulated postinfection with oipA "off" strains comparing to oipA "on" strains. Furthermore, oipA "off" and ΔoipA cause higher level of AGS cells apoptosis and G0/G1 cell-cycle arrest than oipA "on" strains. Interestingly, deletion of oipA increased bacterial VacA production. The capability of H. pylori to induce apoptosis and suppress expression of proteins having roles in human disease in the absence of oipA suggests that strains not expressing OipA may be less virulent or may even be protective against carcinogenesis compared those expressing OipA. This potentially explains the higher incidence of gastric cancer in East Asia where oipA "on" strains predominates.
Collapse
Affiliation(s)
- Anis Rageh Al-Maleki
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mun Fai Loke
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sook Yin Lui
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nur Siti Khadijah Ramli
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yalda Khosravi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chow Goon Ng
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gopinath Venkatraman
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Khean-Lee Goh
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Bow Ho
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Precision Medicine Centre Pte Ltd, Singapore, Singapore
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
568
|
Vyse S, McCarthy F, Broncel M, Paul A, Wong JP, Bhamra A, Huang PH. Quantitative phosphoproteomic analysis of acquired cancer drug resistance to pazopanib and dasatinib. J Proteomics 2017; 170:130-140. [PMID: 28842319 PMCID: PMC5673060 DOI: 10.1016/j.jprot.2017.08.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/19/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022]
Abstract
Acquired drug resistance impacts the majority of patients being treated with tyrosine kinase inhibitors (TKIs) and remains a key challenge in modern anti-cancer therapy. The lack of clinically effective therapies to overcome resistance represents an unmet need. Understanding the signalling that drives drug resistance will facilitate the development of new salvage therapies to treat patients with secondary TKI resistance. In this study, we utilise mass spectrometry to characterise the global phosphoproteomic alterations that accompany the acquisition of resistance to two FDA-approved TKIs, pazopanib and dasatinib, in the A204 rhabdoid tumour cell line. Our analysis finds that only 6% and 9.7% of the quantified phosphoproteome is altered upon the acquisition of pazopanib and dasatinib resistance, respectively. Pazopanib resistant cells display elevated phosphorylation in cytoskeletal regulatory pathways while dasatinib resistant cells show an upregulation of the insulin receptor/IGF-1R signalling pathway. Drug response profiling rediscovers several previously reported vulnerabilities associated with pazopanib and dasatinib resistance and identifies a new dependency to the second generation HSP90 inhibitor NVP-AUY-922. This study provides a useful resource detailing the candidate signalling determinants of acquired TKI resistance; and reveals a therapeutic approach of inhibiting HSP90 function as a means of salvage therapy to overcome pazopanib and dasatinib resistance. Significance Pazopanib and dasatinib are tyrosine kinase inhibitors (TKIs) approved for the treatment of multiple cancer types. Patients who are treated with these drugs are prone to the development of drug resistance and consequently tumour relapse. Here we use quantitative phosphoproteomics to characterise the signalling pathways which are enriched in cells that have acquired resistance to these two drugs. Furthermore, targeted drug screens were used to identify salvage therapies capable of overcoming pazopanib and dasatinib resistance. This data advances our understanding of the mechanisms of TKI resistance and highlights candidate targets for cancer therapy. Pazopanib resistant cells display elevated phosphorylation in cytoskeletal regulatory pathways. Phosphoproteins in the insulin and IGF-1R pathways are upregulated in dasatinib resistant cells. Less than 10% of the phosphoproteome is altered in acquired drug-resistant A204 cells. Both dasatinib and pazopanib resistant A204 cells are vulnerable to HSP90 inhibition.
Collapse
Affiliation(s)
- Simon Vyse
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Frank McCarthy
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Malgorzata Broncel
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Angela Paul
- Proteomics Core Facility, The Institute of Cancer Research, London SW3 6JB, UK
| | - Jocelyn P Wong
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Amandeep Bhamra
- Proteomics Core Facility, The Institute of Cancer Research, London SW3 6JB, UK
| | - Paul H Huang
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK.
| |
Collapse
|
569
|
Deusch S, Camarinha-Silva A, Conrad J, Beifuss U, Rodehutscord M, Seifert J. A Structural and Functional Elucidation of the Rumen Microbiome Influenced by Various Diets and Microenvironments. Front Microbiol 2017; 8:1605. [PMID: 28883813 PMCID: PMC5573736 DOI: 10.3389/fmicb.2017.01605] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/07/2017] [Indexed: 12/11/2022] Open
Abstract
The structure and function of the microbiome inhabiting the rumen are, amongst other factors, mainly shaped by the animal's feed intake. Describing the influence of different diets on the inherent community arrangement and associated metabolic activities of the most active ruminal fractions (bacteria and archaea) is of great interest for animal nutrition, biotechnology, and climatology. Samples were obtained from three fistulated Jersey cows rotationally fed with corn silage, grass silage or grass hay, each supplemented with a concentrate mixture. Samples were fractionated into ruminal fluid, particle-associated rumen liquid, and solid matter. DNA, proteins and metabolites were analyzed subsequently. DNA extracts were used for Illumina sequencing of the 16S rRNA gene and the metabolomes of rumen fluids were determined by 500 MHz-NMR spectroscopy. Tryptic peptides derived from protein extracts were measured by LC-ESI-MS/MS and spectra were processed by a two-step database search for quantitative metaproteome characterization. Data are available via ProteomeXchange with the identifier PXD006070. Protein- and DNA-based datasets revealed significant differences between sample fractions and diets and affirmed similar trends concerning shifts in phylogenetic composition. Ribosomal genes and proteins belonging to the phylum of Proteobacteria, particularly Succinivibrionaceae, exhibited a higher abundance in corn silage-based samples while fiber-degraders of the Lachnospiraceae family emerged in great quantities throughout the solid phase fractions. The analysis of 8163 quantified bacterial proteins revealed the presence of 166 carbohydrate active enzymes in varying abundance. Cellulosome affiliated proteins were less expressed in the grass silage, glycoside hydrolases appeared in slightest numbers in the corn silage. Most expressed glycoside hydrolases belonged to families 57 and 2. Enzymes analogous to ABC transporters for amino acids and monosaccharides were more abundant in the corn silage whereas oligosaccharide transporters showed a higher abundance in the fiber-rich diets. Proteins involved in carbon metabolism were detected in high numbers and identification of metabolites like short-chain fatty acids, methylamines and phenylpropionate by NMR enabled linkage between producers and products. This study forms a solid basis to retrieve deeper insight into the complex network of microbial adaptation in the rumen.
Collapse
Affiliation(s)
- Simon Deusch
- Department of Feed-Gut Microbiota Interaction, Institute of Animal Science, University of HohenheimStuttgart, Germany
| | - Amélia Camarinha-Silva
- Department of Feed-Gut Microbiota Interaction, Institute of Animal Science, University of HohenheimStuttgart, Germany
| | - Jürgen Conrad
- Department of Bioorganic Chemistry, Institute of Chemistry, University of HohenheimStuttgart, Germany
| | - Uwe Beifuss
- Department of Bioorganic Chemistry, Institute of Chemistry, University of HohenheimStuttgart, Germany
| | - Markus Rodehutscord
- Department of Feed-Gut Microbiota Interaction, Institute of Animal Science, University of HohenheimStuttgart, Germany
| | - Jana Seifert
- Department of Feed-Gut Microbiota Interaction, Institute of Animal Science, University of HohenheimStuttgart, Germany
| |
Collapse
|
570
|
Liu J, Wang Q, Jiang X, Yang H, Zhao D, Han J, Luo Y, Xiang H. Systematic Analysis of Lysine Acetylation in the Halophilic Archaeon Haloferax mediterranei. J Proteome Res 2017; 16:3229-3241. [DOI: 10.1021/acs.jproteome.7b00222] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jingfang Liu
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Wang
- Core Facility of Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiongjian Jiang
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College
of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haibo Yang
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College
of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dahe Zhao
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College
of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Han
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanming Luo
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hua Xiang
- State
Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College
of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
571
|
Fu L, Liu K, Sun M, Tian C, Sun R, Morales Betanzos C, Tallman KA, Porter NA, Yang Y, Guo D, Liebler DC, Yang J. Systematic and Quantitative Assessment of Hydrogen Peroxide Reactivity With Cysteines Across Human Proteomes. Mol Cell Proteomics 2017; 16:1815-1828. [PMID: 28827280 DOI: 10.1074/mcp.ra117.000108] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Indexed: 01/23/2023] Open
Abstract
Protein cysteinyl residues are the mediators of hydrogen peroxide (H2O2)-dependent redox signaling. However, site-specific mapping of the selectivity and dynamics of these redox reactions in cells poses a major analytical challenge. Here we describe a chemoproteomic platform to systematically and quantitatively analyze the reactivity of thousands of cysteines toward H2O2 in human cells. We identified >900 H2O2-sensitive cysteines, which are defined as the H2O2-dependent redoxome. Although redox sites associated with antioxidative and metabolic functions are consistent, most of the H2O2-dependent redoxome varies dramatically between different cells. Structural analyses reveal that H2O2-sensitive cysteines are less conserved than their redox-insensitive counterparts and display distinct sequence motifs, structural features, and potential for crosstalk with lysine modifications. Notably, our chemoproteomic platform also provides an opportunity to predict oxidation-triggered protein conformational changes. The data are freely accessible as a resource at http://redox.ncpsb.org/OXID/.
Collapse
Affiliation(s)
- Ling Fu
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Keke Liu
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Mingan Sun
- §State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, China
| | - Caiping Tian
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Rui Sun
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China.,¶State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Carlos Morales Betanzos
- ‖Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Keri A Tallman
- **Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - Ned A Porter
- **Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - Yong Yang
- ¶State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Dianjing Guo
- §State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, China
| | - Daniel C Liebler
- ‖Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Jing Yang
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China;
| |
Collapse
|
572
|
Sun R, Fu L, Liu K, Tian C, Yang Y, Tallman KA, Porter NA, Liebler DC, Yang J. Chemoproteomics Reveals Chemical Diversity and Dynamics of 4-Oxo-2-nonenal Modifications in Cells. Mol Cell Proteomics 2017; 16:1789-1800. [PMID: 28814509 DOI: 10.1074/mcp.ra117.000116] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
4-Oxo-2-nonenal (ONE) derived from lipid peroxidation modifies nucleophiles and transduces redox signaling by its reactions with proteins. However, the molecular interactions between ONE and complex proteomes and their dynamics in situ remain largely unknown. Here we describe a quantitative chemoproteomic analysis of protein adduction by ONE in cells, in which the cellular target profile of ONE is mimicked by its alkynyl surrogate. The analyses reveal four types of ONE-derived modifications in cells, including ketoamide and Schiff-base adducts to lysine, Michael adducts to cysteine, and a novel pyrrole adduct to cysteine. ONE-derived adducts co-localize and exhibit crosstalk with many histone marks and redox sensitive sites. All four types of modifications derived from ONE can be reversed site-specifically in cells. Taken together, our study provides much-needed mechanistic insights into the cellular signaling and potential toxicities associated with this important lipid derived electrophile.
Collapse
Affiliation(s)
- Rui Sun
- From the ‡State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China.,§State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Ling Fu
- §State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Keke Liu
- §State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Caiping Tian
- §State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Yong Yang
- From the ‡State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing 211198, China
| | - Keri A Tallman
- ¶Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - Ned A Porter
- ¶Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - Daniel C Liebler
- ‖Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Jing Yang
- §State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China;
| |
Collapse
|
573
|
Pardo M, Yu L, Shen S, Tate P, Bode D, Letney BL, Quelle DE, Skarnes W, Choudhary JS. Myst2/Kat7 histone acetyltransferase interaction proteomics reveals tumour-suppressor Niam as a novel binding partner in embryonic stem cells. Sci Rep 2017; 7:8157. [PMID: 28811661 PMCID: PMC5557939 DOI: 10.1038/s41598-017-08456-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/10/2017] [Indexed: 12/28/2022] Open
Abstract
MYST histone acetyltransferases have crucial functions in transcription, replication and DNA repair and are hence implicated in development and cancer. Here we characterise Myst2/Kat7/Hbo1 protein interactions in mouse embryonic stem cells by affinity purification coupled to mass spectrometry. This study confirms that in embryonic stem cells Myst2 is part of H3 and H4 histone acetylation complexes similar to those described in somatic cells. We identify a novel Myst2-associated protein, the tumour suppressor protein Niam (Nuclear Interactor of ARF and Mdm2). Human NIAM is involved in chromosome segregation, p53 regulation and cell proliferation in somatic cells, but its role in embryonic stem cells is unknown. We describe the first Niam embryonic stem cell interactome, which includes proteins with roles in DNA replication and repair, transcription, splicing and ribosome biogenesis. Many of Myst2 and Niam binding partners are required for correct embryonic development, implicating Myst2 and Niam in the cooperative regulation of this process and suggesting a novel role for Niam in embryonic biology. The data provides a useful resource for exploring Myst2 and Niam essential cellular functions and should contribute to deeper understanding of organism early development and survival as well as cancer. Data are available via ProteomeXchange with identifier PXD005987.
Collapse
Affiliation(s)
- Mercedes Pardo
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom.
| | - Lu Yu
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Shihpei Shen
- Stem Cell Engineering, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
- Cold Genesys Inc., Santa Ana, CA, USA
| | - Peri Tate
- Stem Cell Engineering, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Daniel Bode
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
- Wellcome Trust PhD Program, Cambridge Stem Cell Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Blake L Letney
- Departments of Pharmacology and Pathology, The University of Iowa and Holden Comprehensive Cancer Center, Iowa City, IA, 52242, USA
| | - Dawn E Quelle
- Departments of Pharmacology and Pathology, The University of Iowa and Holden Comprehensive Cancer Center, Iowa City, IA, 52242, USA
| | - William Skarnes
- Stem Cell Engineering, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Jyoti S Choudhary
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| |
Collapse
|
574
|
Kan M, Shumyatcher M, Himes BE. Using omics approaches to understand pulmonary diseases. Respir Res 2017; 18:149. [PMID: 28774304 PMCID: PMC5543452 DOI: 10.1186/s12931-017-0631-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/26/2017] [Indexed: 12/24/2022] Open
Abstract
Omics approaches are high-throughput unbiased technologies that provide snapshots of various aspects of biological systems and include: 1) genomics, the measure of DNA variation; 2) transcriptomics, the measure of RNA expression; 3) epigenomics, the measure of DNA alterations not involving sequence variation that influence RNA expression; 4) proteomics, the measure of protein expression or its chemical modifications; and 5) metabolomics, the measure of metabolite levels. Our understanding of pulmonary diseases has increased as a result of applying these omics approaches to characterize patients, uncover mechanisms underlying drug responsiveness, and identify effects of environmental exposures and interventions. As more tissue- and cell-specific omics data is analyzed and integrated for diverse patients under various conditions, there will be increased identification of key mechanisms that underlie pulmonary biological processes, disease endotypes, and novel therapeutics that are efficacious in select individuals. We provide a synopsis of how omics approaches have advanced our understanding of asthma, chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), idiopathic pulmonary fibrosis (IPF), and pulmonary arterial hypertension (PAH), and we highlight ongoing work that will facilitate pulmonary disease precision medicine.
Collapse
Affiliation(s)
- Mengyuan Kan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall 423 Guardian Drive, Philadelphia, PA 19104 USA
| | - Maya Shumyatcher
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall 423 Guardian Drive, Philadelphia, PA 19104 USA
| | - Blanca E. Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall 423 Guardian Drive, Philadelphia, PA 19104 USA
| |
Collapse
|
575
|
Govaert E, Van Steendam K, Willems S, Vossaert L, Dhaenens M, Deforce D. Comparison of fractionation proteomics for local SWATH library building. Proteomics 2017; 17:1700052. [PMID: 28664598 PMCID: PMC5601298 DOI: 10.1002/pmic.201700052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/23/2017] [Accepted: 06/28/2017] [Indexed: 01/08/2023]
Abstract
For data-independent acquisition by means of sequential window acquisition of all theoretical fragment ion spectra (SWATH), a reference library of data-dependent acquisition (DDA) runs is typically used to correlate the quantitative data from the fragment ion spectra with peptide identifications. The quality and coverage of such a reference library is therefore essential when processing SWATH data. In general, library sizes can be increased by reducing the impact of DDA precursor selection with replicate runs or fractionation. However, these strategies can affect the match between the library and SWATH measurement, and thus larger library sizes do not necessarily correspond to improved SWATH quantification. Here, three fractionation strategies to increase local library size were compared to standard library building using replicate DDA injection: protein SDS-PAGE fractionation, peptide high-pH RP-HPLC fractionation and MS-acquisition gas phase fractionation. The impact of these libraries on SWATH performance was evaluated in terms of the number of extracted peptides and proteins, the match quality of the peptides and the extraction reproducibility of the transitions. These analyses were conducted using the hydrophilic proteome of differentiating human embryonic stem cells. Our results show that SWATH quantitative results and interpretations are affected by choice of fractionation technique. Data are available via ProteomeXchange with identifier PXD006190.
Collapse
Affiliation(s)
- Elisabeth Govaert
- Laboratory of Pharmaceutical BiotechnologyGhent UniversityGhentBelgium
| | | | - Sander Willems
- Laboratory of Pharmaceutical BiotechnologyGhent UniversityGhentBelgium
| | - Liesbeth Vossaert
- Laboratory of Pharmaceutical BiotechnologyGhent UniversityGhentBelgium
| | - Maarten Dhaenens
- Laboratory of Pharmaceutical BiotechnologyGhent UniversityGhentBelgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical BiotechnologyGhent UniversityGhentBelgium
| |
Collapse
|
576
|
Abstract
A large body of evidence indicates that genome annotation pipelines have biased our view of coding sequences because they generally undersample small proteins and peptides. The recent development of genome-wide translation profiling reveals the prevalence of small/short open reading frames (smORFs or sORFs), which are scattered over all classes of transcripts, including both mRNAs and presumptive long noncoding RNAs. Proteomic approaches further confirm an unexpected variety of smORF-encoded peptides (SEPs), representing an overlooked reservoir of bioactive molecules. Indeed, functional studies in a broad range of species from yeast to humans demonstrate that SEPs can harbor key activities for the control of development, differentiation, and physiology. Here we summarize recent advances in the discovery and functional characterization of smORF/SEPs and discuss why these small players can no longer be ignored with regard to genome function.
Collapse
Affiliation(s)
- Serge Plaza
- Laboratoire de Recherches en Sciences Végétales, Université de Toulouse, Université Paul Sabatier, 31326 Castanet Tolosan, France; .,CNRS, UMR5546, Laboratoire de Recherches en Sciences Végétales, 31326 Castanet Tolosan, France
| | - Gerben Menschaert
- Department of Mathematical Modeling, Statistics and Bioinformatics, University of Ghent, 9000 Gent, Belgium
| | - François Payre
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, Université Paul Sabatier, 31062 Toulouse, France;
| |
Collapse
|
577
|
Kumar P, Munnangi P, Chowdary KR, Shah VJ, Shinde SR, Kolli NR, Halehalli RR, Nagarajaram HA, Maddika S. A Human Tyrosine Phosphatase Interactome Mapped by Proteomic Profiling. J Proteome Res 2017; 16:2789-2801. [PMID: 28675297 PMCID: PMC5548413 DOI: 10.1021/acs.jproteome.7b00065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tyrosine phosphatases play a critical role in many cellular processes and pathogenesis, yet comprehensive analysis of their functional interacting proteins in the cell is limited. By utilizing a proteomic approach, here we present an interaction network of 81 human tyrosine phosphatases built on 1884 high-confidence interactions of which 85% are unreported. Our analysis has linked several phosphatases with new cellular processes and unveiled protein interactions genetically linked to various human diseases including cancer. We validated the functional importance of an identified interaction network by characterizing a distinct novel interaction between PTPN5 and Mob1a. PTPN5 dephosphorylates Mob1a at Y26 residue. Further, we identify that PTPN5 is required for proper midbody abscission during cytokinesis through regulation of Mob1a dephosphorylation. In conclusion, our study provides a valuable resource of tyrosine phosphatase interactions, which can be further utilized to dissect novel cellular functions of these enzymes.
Collapse
Affiliation(s)
- Parveen Kumar
- Graduate Studies, Manipal University , Manipal, 576104, India
| | | | | | - Varun J Shah
- Graduate Studies, Manipal University , Manipal, 576104, India
| | | | | | | | | | | |
Collapse
|
578
|
Batinovic S, McHugh E, Chisholm SA, Matthews K, Liu B, Dumont L, Charnaud SC, Schneider MP, Gilson PR, de Koning-Ward TF, Dixon MWA, Tilley L. An exported protein-interacting complex involved in the trafficking of virulence determinants in Plasmodium-infected erythrocytes. Nat Commun 2017; 8:16044. [PMID: 28691708 PMCID: PMC5508133 DOI: 10.1038/ncomms16044] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/20/2017] [Indexed: 01/01/2023] Open
Abstract
The malaria parasite, Plasmodium falciparum, displays the P. falciparum erythrocyte membrane protein 1 (PfEMP1) on the surface of infected red blood cells (RBCs). We here examine the physical organization of PfEMP1 trafficking intermediates in infected RBCs and determine interacting partners using an epitope-tagged minimal construct (PfEMP1B). We show that parasitophorous vacuole (PV)-located PfEMP1B interacts with components of the PTEX (Plasmodium Translocon of EXported proteins) as well as a novel protein complex, EPIC (Exported Protein-Interacting Complex). Within the RBC cytoplasm PfEMP1B interacts with components of the Maurer’s clefts and the RBC chaperonin complex. We define the EPIC interactome and, using an inducible knockdown approach, show that depletion of one of its components, the parasitophorous vacuolar protein-1 (PV1), results in altered knob morphology, reduced cell rigidity and decreased binding to CD36. Accordingly, we show that deletion of the Plasmodium berghei homologue of PV1 is associated with attenuation of parasite virulence in vivo. Plasmodium-infected red blood cells export virulence factors, such as PfEMP1, to the cell surface. Here, the authors identify a protein complex termed EPIC that interacts with PfEMP1 during export, and they show that knockdown of an EPIC component affects parasite virulence.
Collapse
Affiliation(s)
- Steven Batinovic
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Emma McHugh
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Scott A Chisholm
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3220, Australia
| | - Kathryn Matthews
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3220, Australia
| | - Boiyin Liu
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Laure Dumont
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sarah C Charnaud
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria 3004, Australia
| | - Molly Parkyn Schneider
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Paul R Gilson
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria 3004, Australia
| | | | - Matthew W A Dixon
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
579
|
Sung E, Kwon OK, Lee JM, Lee S. Proteomics approach to identify novel metastatic bone markers from the secretome of PC-3 prostate cancer cells. Electrophoresis 2017. [PMID: 28627741 DOI: 10.1002/elps.201700052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prostate cancer is the leading type of cancer diagnosed, and the most frequent cause of worldwide male cancer-related deaths annually. The limitations of current prostate cancer screening tests demand the identification of novel biomarkers for the early diagnosis of prostate cancer bone metastasis. In the present study, we performed a proteomic analysis of secreted proteins from the prostate cancer bone metastasis cell line, PC-3, and the normal prostate cell line, RWPE-1. We thus quantified 917 proteins, of which 68 were found to be secreted at higher levels by PC-3 than by RWPE-1 cells via LC-MS/MS. To characterize the highly secreted proteins in the PC-3 cell line and thereby identify biomarker proteins, we divided the quantifiable proteins into four quantitative categories (Q1-Q4). The KEGG lysine degradation and osteoclast differentiation pathways were demonstrated to be enriched in the highly secreted Q4 protein group. Transforming growth factor (TGF) beta family proteins related to osteoclast differentiation were identified as key regulators of PC-3 cell proliferation. Immunoblotting was used to confirm the observed high level of pentraxin, follistatin, TGF-beta family members, and serpin B3 secretion by PC-3 cells. From the collective results of the present study, we suggest that serpin B3 is a promising novel biomarker candidate for the diagnosis of prostate cancer bone metastasis.
Collapse
Affiliation(s)
- EunJi Sung
- BK21 Plus KNU Multi-Omics-based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Oh Kwang Kwon
- BK21 Plus KNU Multi-Omics-based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Mok Lee
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics-based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
580
|
Exogenous Auxin Elicits Changes in the Arabidopsis thaliana Root Proteome in a Time-Dependent Manner. Proteomes 2017; 5:proteomes5030016. [PMID: 28698516 PMCID: PMC5620533 DOI: 10.3390/proteomes5030016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/27/2017] [Accepted: 07/04/2017] [Indexed: 11/24/2022] Open
Abstract
Auxin is involved in many aspects of root development and physiology, including the formation of lateral roots. Improving our understanding of how the auxin response is mediated at the protein level over time can aid in developing a more complete molecular framework of the process. This study evaluates the effects of exogenous auxin treatment on the Arabidopsis root proteome after exposure of young seedlings to auxin for 8, 12, and 24 h, a timeframe permitting the initiation and full maturation of individual lateral roots. Root protein extracts were processed to peptides, fractionated using off-line strong-cation exchange, and analyzed using ultra-performance liquid chromatography and data independent acquisition-based mass spectrometry. Protein abundances were then tabulated using label-free techniques and evaluated for significant changes. Approximately 2000 proteins were identified during the time course experiment, with the number of differences between the treated and control roots increasing over the 24 h time period, with more proteins found at higher abundance with exposure to auxin than at reduced abundance. Although the proteins identified and changing in levels at each time point represented similar biological processes, each time point represented a distinct snapshot of the response. Auxin coordinately regulates many physiological events in roots and does so by influencing the accumulation and loss of distinct proteins in a time-dependent manner. Data are available via ProteomeXchange with the identifier PXD001400.
Collapse
|
581
|
Testoni G, Duran J, García-Rocha M, Vilaplana F, Serrano AL, Sebastián D, López-Soldado I, Sullivan MA, Slebe F, Vilaseca M, Muñoz-Cánoves P, Guinovart JJ. Lack of Glycogenin Causes Glycogen Accumulation and Muscle Function Impairment. Cell Metab 2017; 26:256-266.e4. [PMID: 28683291 DOI: 10.1016/j.cmet.2017.06.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/08/2017] [Accepted: 06/13/2017] [Indexed: 11/27/2022]
Abstract
Glycogenin is considered essential for glycogen synthesis, as it acts as a primer for the initiation of the polysaccharide chain. Against expectations, glycogenin-deficient mice (Gyg KO) accumulate high amounts of glycogen in striated muscle. Furthermore, this glycogen contains no covalently bound protein, thereby demonstrating that a protein primer is not strictly necessary for the synthesis of the polysaccharide in vivo. Strikingly, in spite of the higher glycogen content, Gyg KO mice showed lower resting energy expenditure and less resistance than control animals when subjected to endurance exercise. These observations can be attributed to a switch of oxidative myofibers toward glycolytic metabolism. Mice overexpressing glycogen synthase in the muscle showed similar alterations, thus indicating that this switch is caused by the excess of glycogen. These results may explain the muscular defects of GSD XV patients, who lack glycogenin-1 and show high glycogen accumulation in muscle.
Collapse
Affiliation(s)
- Giorgia Testoni
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Jordi Duran
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid 28029, Spain
| | - Mar García-Rocha
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Francisco Vilaplana
- Division of Glycoscience, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm 10691, Sweden
| | - Antonio L Serrano
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona 08003, Spain
| | - David Sebastián
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid 28029, Spain; Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona 08028, Spain
| | - Iliana López-Soldado
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid 28029, Spain
| | - Mitchell A Sullivan
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Felipe Slebe
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Marta Vilaseca
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Pura Muñoz-Cánoves
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona 08003, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain; Spanish National Center on Cardiovascular Research (CNIC), Madrid 28029, Spain
| | - Joan J Guinovart
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid 28029, Spain; Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona 08028, Spain.
| |
Collapse
|
582
|
Harriff MJ, Wolfe LM, Swarbrick G, Null M, Cansler ME, Canfield ET, Vogt T, Toren KG, Li W, Jackson M, Lewinsohn DA, Dobos KM, Lewinsohn DM. HLA-E Presents Glycopeptides from the Mycobacterium tuberculosis Protein MPT32 to Human CD8 + T cells. Sci Rep 2017; 7:4622. [PMID: 28676677 PMCID: PMC5496856 DOI: 10.1038/s41598-017-04894-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/22/2017] [Indexed: 12/17/2022] Open
Abstract
Infection with Mycobacterium tuberculosis (Mtb), the bacterium that causes tuberculosis, remains a global health concern. Both classically and non-classically restricted cytotoxic CD8+ T cells are important to the control of Mtb infection. We and others have demonstrated that the non-classical MHC I molecule HLA-E can present pathogen-derived peptides to CD8+ T cells. In this manuscript, we identified the antigen recognized by an HLA-E-restricted CD8+ T cell clone isolated from an Mtb latently infected individual as a peptide from the Mtb protein, MPT32. Recognition by the CD8+ T cell clone required N-terminal O-linked mannosylation of MPT32 by a mannosyltransferase encoded by the Rv1002c gene. This is the first description of a post-translationally modified Mtb-derived protein antigen presented in the context of an HLA-E specific CD8+ T cell immune response. The identification of an immune response that targets a unique mycobacterial modification is novel and may have practical impact in the development of vaccines and diagnostics.
Collapse
Affiliation(s)
- Melanie J Harriff
- Veterans Administration Portland Health Care System, Research & Development, 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA.
- Oregon Health & Sciences University, Department of Pulmonary and Critical Care Medicine, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | - Lisa M Wolfe
- Colorado State University, Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Gwendolyn Swarbrick
- Oregon Health & Sciences University, Department of Pediatrics, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Megan Null
- Oregon Health & Sciences University, Department of Pediatrics, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Meghan E Cansler
- Oregon Health & Sciences University, Department of Pediatrics, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Elizabeth T Canfield
- Oregon Health & Sciences University, Department of Pulmonary and Critical Care Medicine, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Todd Vogt
- Oregon Health & Sciences University, Department of Pulmonary and Critical Care Medicine, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Katelynne Gardner Toren
- Oregon Health & Sciences University, Department of Pulmonary and Critical Care Medicine, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Wei Li
- Colorado State University, Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Mary Jackson
- Colorado State University, Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Deborah A Lewinsohn
- Oregon Health & Sciences University, Department of Pediatrics, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Karen M Dobos
- Colorado State University, Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - David M Lewinsohn
- Veterans Administration Portland Health Care System, Research & Development, 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA.
- Oregon Health & Sciences University, Department of Pulmonary and Critical Care Medicine, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
583
|
Delcourt V, Franck J, Leblanc E, Narducci F, Robin YM, Gimeno JP, Quanico J, Wisztorski M, Kobeissy F, Jacques JF, Roucou X, Salzet M, Fournier I. Combined Mass Spectrometry Imaging and Top-down Microproteomics Reveals Evidence of a Hidden Proteome in Ovarian Cancer. EBioMedicine 2017; 21:55-64. [PMID: 28629911 PMCID: PMC5514399 DOI: 10.1016/j.ebiom.2017.06.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/01/2017] [Accepted: 06/01/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Recently, it was demonstrated that proteins can be translated from alternative open reading frames (altORFs), increasing the size of the actual proteome. Top-down mass spectrometry-based proteomics allows the identification of intact proteins containing post-translational modifications (PTMs) as well as truncated forms translated from reference ORFs or altORFs. METHODS Top-down tissue microproteomics was applied on benign, tumor and necrotic-fibrotic regions of serous ovarian cancer biopsies, identifying proteins exhibiting region-specific cellular localization and PTMs. The regions of interest (ROIs) were determined by MALDI mass spectrometry imaging and spatial segmentation. FINDINGS Analysis with a customized protein sequence database containing reference and alternative proteins (altprots) identified 15 altprots, including alternative G protein nucleolar 1 (AltGNL1) found in the tumor, and translated from an altORF nested within the GNL1 canonical coding sequence. Co-expression of GNL1 and altGNL1 was validated by transfection in HEK293 and HeLa cells with an expression plasmid containing a GNL1-FLAG(V5) construct. Western blot and immunofluorescence experiments confirmed constitutive co-expression of altGNL1-V5 with GNL1-FLAG. CONCLUSIONS Taken together, our approach provides means to evaluate protein changes in the case of serous ovarian cancer, allowing the detection of potential markers that have never been considered.
Collapse
Affiliation(s)
- Vivian Delcourt
- Université de Lille 1, INSERM, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France; Département de Biochimie Lab. Z8-2001, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada
| | - Julien Franck
- Université de Lille 1, INSERM, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Eric Leblanc
- Université de Lille 1, INSERM, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France; Centre Oscar-Lambret, 3 Rue Frédéric Combemale, 59000 Lille, France
| | - Fabrice Narducci
- Université de Lille 1, INSERM, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France; Centre Oscar-Lambret, 3 Rue Frédéric Combemale, 59000 Lille, France
| | - Yves-Marie Robin
- Université de Lille 1, INSERM, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France; Centre Oscar-Lambret, 3 Rue Frédéric Combemale, 59000 Lille, France
| | - Jean-Pascal Gimeno
- Université de Lille 1, INSERM, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France; ONCOLille, Maison Régionale de la Recherche Clinique, Lille, France
| | - Jusal Quanico
- Université de Lille 1, INSERM, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Maxence Wisztorski
- Université de Lille 1, INSERM, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Jean-François Jacques
- Département de Biochimie Lab. Z8-2001, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada
| | - Xavier Roucou
- Département de Biochimie Lab. Z8-2001, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada
| | - Michel Salzet
- Université de Lille 1, INSERM, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France.
| | - Isabelle Fournier
- Université de Lille 1, INSERM, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France.
| |
Collapse
|
584
|
Poppleton DI, Duchateau M, Hourdel V, Matondo M, Flechsler J, Klingl A, Beloin C, Gribaldo S. Outer Membrane Proteome of Veillonella parvula: A Diderm Firmicute of the Human Microbiome. Front Microbiol 2017; 8:1215. [PMID: 28713344 PMCID: PMC5491611 DOI: 10.3389/fmicb.2017.01215] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/14/2017] [Indexed: 12/24/2022] Open
Abstract
Veillonella parvula is a biofilm-forming commensal found in the lungs, vagina, mouth, and gastro-intestinal tract of humans, yet it may develop into an opportunistic pathogen. Furthermore, the presence of Veillonella has been associated with the development of a healthy immune system in infants. Veillonella belongs to the Negativicutes, a diverse clade of bacteria that represent an evolutionary enigma: they phylogenetically belong to Gram-positive (monoderm) Firmicutes yet maintain an outer membrane (OM) with lipopolysaccharide similar to classic Gram-negative (diderm) bacteria. The OMs of Negativicutes have unique characteristics including the replacement of Braun's lipoprotein by OmpM for tethering the OM to the peptidoglycan. Through phylogenomic analysis, we have recently provided bioinformatic annotation of the Negativicutes diderm cell envelope. We showed that it is a unique type of envelope that was present in the ancestor of present-day Firmicutes and lost multiple times independently in this phylum, giving rise to the monoderm architecture; however, little experimental data is presently available for any Negativicutes cell envelope. Here, we performed the first experimental proteomic characterization of the cell envelope of a diderm Firmicute, producing an OM proteome of V. parvula. We initially conducted a thorough bioinformatics analysis of all 1,844 predicted proteins from V. parvula DSM 2008's genome using 12 different localization prediction programs. These results were complemented by protein extraction with surface exposed (SE) protein tags and by subcellular fractionation, both of which were analyzed by liquid chromatography tandem mass spectrometry. The merging of proteomics and bioinformatics results allowed identification of 78 OM proteins. These include a number of receptors for TonB-dependent transport, the main component of the BAM system for OM protein biogenesis (BamA), the Lpt system component LptD, which is responsible for insertion of LPS into the OM, and several copies of the major OmpM protein. The annotation of V. parvula's OM proteome markedly extends previous inferences on the nature of the cell envelope of Negativicutes, including the experimental evidence of a BAM/TAM system for OM protein biogenesis and of a complete Lpt system for LPS transport to the OM. It also provides important information on the role of OM components in the lifestyle of Veillonella, such as a possible gene cluster for O-antigen synthesis and a large number of adhesins. Finally, many OM hypothetical proteins were identified, which are priority targets for further characterization.
Collapse
Affiliation(s)
- Daniel I. Poppleton
- Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, Institut PasteurParis, France
| | - Magalie Duchateau
- Unité de Spectrométrie de Masse Structurale et Protéomique, Plateforme Protéomique, Départment de Biologie Structurale et Chime, Institut Pasteur, USR 2000 Centre National de la Recherche ScientifiqueParis, France
| | - Véronique Hourdel
- Unité de Spectrométrie de Masse Structurale et Protéomique, Plateforme Protéomique, Départment de Biologie Structurale et Chime, Institut Pasteur, USR 2000 Centre National de la Recherche ScientifiqueParis, France
| | - Mariette Matondo
- Unité de Spectrométrie de Masse Structurale et Protéomique, Plateforme Protéomique, Départment de Biologie Structurale et Chime, Institut Pasteur, USR 2000 Centre National de la Recherche ScientifiqueParis, France
| | - Jennifer Flechsler
- Pflanzliche Entwicklungsbiologie und Elektronenmikroskopie, Department I. Botanik, Biozentrum der LMU MünchenPlanegg-Martinsried, Germany
| | - Andreas Klingl
- Pflanzliche Entwicklungsbiologie und Elektronenmikroskopie, Department I. Botanik, Biozentrum der LMU MünchenPlanegg-Martinsried, Germany
| | - Christophe Beloin
- Unité de Génétique des Biofilms, Département de Microbiologie, Institut PasteurParis, France
| | - Simonetta Gribaldo
- Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, Institut PasteurParis, France
| |
Collapse
|
585
|
A Quantitative Acetylomic Analysis of Early Seed Development in Rice (Oryza sativa L.). Int J Mol Sci 2017; 18:ijms18071376. [PMID: 28654018 PMCID: PMC5535869 DOI: 10.3390/ijms18071376] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 11/20/2022] Open
Abstract
PKA (protein lysine acetylation) is a critical post-translational modification that regulates various developmental processes, including seed development. However, the acetylation events and dynamics on a proteomic scale in this process remain largely unknown, especially in rice early seed development. We report the first quantitative acetylproteomic study focused on rice early seed development by employing a mass spectral-based (MS-based), label-free approach. A total of 1817 acetylsites on 1688 acetylpeptides from 972 acetylproteins were identified in pistils and seeds at three and seven days after pollination, including 268 acetyproteins differentially acetylated among the three stages. Motif-X analysis revealed that six significantly enriched motifs, such as (DxkK), (kH) and (kY) around the acetylsites of the identified rice seed acetylproteins. Differentially acetylated proteins among the three stages, including adenosine diphosphate (ADP) -glucose pyrophosphorylases (AGPs), PDIL1-1 (protein disulfide isomerase like 1-1), hexokinases, pyruvate dehydrogenase complex (PDC) and numerous other regulators that are extensively involved in the starch and sucrose metabolism, glycolysis/gluconeogenesis, tricarboxylic acid (TCA) cycle and photosynthesis pathways during early seed development. This study greatly expanded the rice acetylome dataset, and shed novel insight into the regulatory roles of PKA in rice early seed development.
Collapse
|
586
|
Heyer R, Schallert K, Zoun R, Becher B, Saake G, Benndorf D. Challenges and perspectives of metaproteomic data analysis. J Biotechnol 2017; 261:24-36. [PMID: 28663049 DOI: 10.1016/j.jbiotec.2017.06.1201] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 02/07/2023]
Abstract
In nature microorganisms live in complex microbial communities. Comprehensive taxonomic and functional knowledge about microbial communities supports medical and technical application such as fecal diagnostics as well as operation of biogas plants or waste water treatment plants. Furthermore, microbial communities are crucial for the global carbon and nitrogen cycle in soil and in the ocean. Among the methods available for investigation of microbial communities, metaproteomics can approximate the activity of microorganisms by investigating the protein content of a sample. Although metaproteomics is a very powerful method, issues within the bioinformatic evaluation impede its success. In particular, construction of databases for protein identification, grouping of redundant proteins as well as taxonomic and functional annotation pose big challenges. Furthermore, growing amounts of data within a metaproteomics study require dedicated algorithms and software. This review summarizes recent metaproteomics software and addresses the introduced issues in detail.
Collapse
Affiliation(s)
- Robert Heyer
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Kay Schallert
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Roman Zoun
- Otto von Guericke University, Institute for Technical and Business Information Systems, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Beatrice Becher
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Gunter Saake
- Otto von Guericke University, Institute for Technical and Business Information Systems, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Dirk Benndorf
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany; Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstraße 1, 39106, Magdeburg, Germany.
| |
Collapse
|
587
|
Sun C, De Mello V, Mohamed A, Ortuste Quiroga HP, Garcia-Munoz A, Al Bloshi A, Tremblay AM, von Kriegsheim A, Collie-Duguid E, Vargesson N, Matallanas D, Wackerhage H, Zammit PS. Common and Distinctive Functions of the Hippo Effectors Taz and Yap in Skeletal Muscle Stem Cell Function. Stem Cells 2017; 35:1958-1972. [PMID: 28589555 PMCID: PMC5575518 DOI: 10.1002/stem.2652] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 01/07/2017] [Indexed: 12/13/2022]
Abstract
Hippo pathway downstream effectors Yap and Taz play key roles in cell proliferation and regeneration, regulating gene expression especially via Tead transcription factors. To investigate their role in skeletal muscle stem cells, we analyzed Taz in vivo and ex vivo in comparison with Yap. Small interfering RNA knockdown or retroviral‐mediated expression of wild‐type human or constitutively active TAZ mutants in satellite cells showed that TAZ promoted proliferation, a function shared with YAP. However, at later stages of myogenesis, TAZ also enhanced myogenic differentiation of myoblasts, whereas YAP inhibits such differentiation. Functionally, while muscle growth was mildly affected in Taz (gene Wwtr1–/–) knockout mice, there were no overt effects on regeneration. Conversely, conditional knockout of Yap in satellite cells of Pax7Cre‐ERT2/+: Yapfl°x/fl°x:Rosa26Lacz mice produced a regeneration deficit. To identify potential mechanisms, microarray analysis showed many common TAZ/YAP target genes, but TAZ also regulates some genes independently of YAP, including myogenic genes such as Pax7, Myf5, and Myod1 (ArrayExpress–E‐MTAB‐5395). Proteomic analysis revealed many novel binding partners of TAZ/YAP in myogenic cells, but TAZ also interacts with proteins distinct from YAP that are often involved in myogenesis and aspects of cytoskeleton organization (ProteomeXchange–PXD005751). Neither TAZ nor YAP bind members of the Wnt destruction complex but both regulated expression of Wnt and Wnt‐cross talking genes with known roles in myogenesis. Finally, TAZ operates through Tead4 to enhance myogenic differentiation. In summary, Taz and Yap have overlapping functions in promoting myoblast proliferation but Taz then switches to enhance myogenic differentiation. Stem Cells2017;35:1958–1972
Collapse
Affiliation(s)
- Congshan Sun
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Vanessa De Mello
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | - Abdalla Mohamed
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | | | | | - Abdullah Al Bloshi
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | - Annie M Tremblay
- Stem Cell Program, Children's Hospital, Boston, Massachusetts, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | | | - Elaina Collie-Duguid
- Centre for Genome Enabled Biology and Medicine, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | - Neil Vargesson
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | | | - Henning Wackerhage
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK.,Faculty of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Peter S Zammit
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| |
Collapse
|
588
|
Lu Y, Li R, Wang R, Wang X, Zheng W, Sun Q, Tong S, Dai S, Xu S. Comparative Proteomic Analysis of Flag Leaves Reveals New Insight into Wheat Heat Adaptation. FRONTIERS IN PLANT SCIENCE 2017; 8:1086. [PMID: 28676819 PMCID: PMC5476934 DOI: 10.3389/fpls.2017.01086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/06/2017] [Indexed: 05/18/2023]
Abstract
Hexaploid wheat (Triticum aestivum L.) is an important food crop but it is vulnerable to heat. The heat-responsive proteome of wheat remains to be fully elucidated because of previous technical and genomic limitations, and this has hindered our understanding of the mechanisms of wheat heat adaptation and advances in improving thermotolerance. Here, flag leaves of wheat during grain filling stage were subjected to high daytime temperature stress, and 258 heat-responsive proteins (HRPs) were identified with iTRAQ analysis. Enrichment analysis revealed that chlorophyll synthesis, carbon fixation, protein turnover, and redox regulation were the most remarkable heat-responsive processes. The HRPs involved in chlorophyll synthesis and carbon fixation were significantly decreased, together with severe membrane damage, demonstrating the specific effects of heat on photosynthesis of wheat leaves. In addition, the decrease in chlorophyll content may result from the decrease in HRPs involved in chlorophyll precursor synthesis. Further analysis showed that the accumulated effect of heat stress played a critical role in photosynthesis reduction, suggested that improvement in heat tolerance of photosynthesis, and extending heat tolerant period would be major research targets. The significantly accumulation of GSTs and Trxs in response to heat suggested their important roles in redox regulation, and they could be the promising candidates for improving wheat thermotolerance. In summary, our results provide new insight into wheat heat adaption and provide new perspectives on thermotolerance improvement.
Collapse
Affiliation(s)
- Yunze Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| | - Ruiqiong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| | - Ruochen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| | - Xiaoming Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| | - Weijun Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| | - Qixin Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
- Department of Plant Genetics and Breeding, China Agricultural UniversityBeijing, China
| | - Shaoming Tong
- College of Life Sciences, Liaoning Normal UniversityDalian, China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal UniversityShanghai, China
| | - Shengbao Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F UniversityYangling, China
| |
Collapse
|
589
|
Bygdell J, Srivastava V, Obudulu O, Srivastava MK, Nilsson R, Sundberg B, Trygg J, Mellerowicz EJ, Wingsle G. Protein expression in tension wood formation monitored at high tissue resolution in Populus. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3405-3417. [PMID: 28633298 PMCID: PMC5853651 DOI: 10.1093/jxb/erx186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/30/2017] [Indexed: 05/18/2023]
Abstract
Tension wood (TW) is a specialized tissue with contractile properties that is formed by the vascular cambium in response to gravitational stimuli. We quantitatively analysed the proteomes of Populus tremula cambium and its xylem cell derivatives in stems forming normal wood (NW) and TW to reveal the mechanisms underlying TW formation. Phloem-, cambium-, and wood-forming tissues were sampled by tangential cryosectioning and pooled into nine independent samples. The proteomes of TW and NW samples were similar in the phloem and cambium samples, but diverged early during xylogenesis, demonstrating that reprogramming is an integral part of TW formation. For example, 14-3-3, reactive oxygen species, ribosomal and ATPase complex proteins were found to be up-regulated at early stages of xylem differentiation during TW formation. At later stages of xylem differentiation, proteins involved in the biosynthesis of cellulose and enzymes involved in the biosynthesis of rhamnogalacturonan-I, rhamnogalacturonan-II, arabinogalactan-II and fasciclin-like arabinogalactan proteins were up-regulated in TW. Surprisingly, two isoforms of exostosin family proteins with putative xylan xylosyl transferase function and several lignin biosynthesis proteins were also up-regulated, even though xylan and lignin are known to be less abundant in TW than in NW. These data provided new insight into the processes behind TW formation.
Collapse
Affiliation(s)
- Joakim Bygdell
- Department of Chemistry, Umeå University, Umeå, Sweden
- Computational life science cluster (CLiC), Umeå University, Sweden
| | - Vaibhav Srivastava
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Ogonna Obudulu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Manoj K Srivastava
- Crop Improvement Division, Indian Grassland and Fodder Research Institute, Jhansi, UP, India
| | - Robert Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Björn Sundberg
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Johan Trygg
- Department of Chemistry, Umeå University, Umeå, Sweden
- Computational life science cluster (CLiC), Umeå University, Sweden
| | - Ewa J Mellerowicz
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Gunnar Wingsle
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
590
|
Lindemann SR, Mobberley JM, Cole JK, Markillie LM, Taylor RC, Huang E, Chrisler WB, Wiley HS, Lipton MS, Nelson WC, Fredrickson JK, Romine MF. Predicting Species-Resolved Macronutrient Acquisition during Succession in a Model Phototrophic Biofilm Using an Integrated 'Omics Approach. Front Microbiol 2017; 8:1020. [PMID: 28659875 PMCID: PMC5468372 DOI: 10.3389/fmicb.2017.01020] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/22/2017] [Indexed: 12/27/2022] Open
Abstract
The principles governing acquisition and interspecies exchange of nutrients in microbial communities and how those exchanges impact community productivity are poorly understood. Here, we examine energy and macronutrient acquisition in unicyanobacterial consortia for which species-resolved genome information exists for all members, allowing us to use multi-omic approaches to predict species' abilities to acquire resources and examine expression of resource-acquisition genes during succession. Metabolic reconstruction indicated that a majority of heterotrophic community members lacked the genes required to directly acquire the inorganic nutrients provided in culture medium, suggesting high metabolic interdependency. The sole primary producer in consortium UCC-O, cyanobacterium Phormidium sp. OSCR, displayed declining expression of energy harvest, carbon fixation, and nitrate and sulfate reduction proteins but sharply increasing phosphate transporter expression over 28 days. Most heterotrophic members likewise exhibited signs of phosphorus starvation during succession. Though similar in their responses to phosphorus limitation, heterotrophs displayed species-specific expression of nitrogen acquisition genes. These results suggest niche partitioning around nitrogen sources may structure the community when organisms directly compete for limited phosphate. Such niche complementarity around nitrogen sources may increase community diversity and productivity in phosphate-limited phototrophic communities.
Collapse
Affiliation(s)
- Stephen R Lindemann
- Biological Sciences Division, Pacific Northwest National Laboratory, RichlandWA, United States.,Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West LafayetteIN, United States.,Department of Nutrition Science, Purdue University, West LafayetteIN, United States
| | - Jennifer M Mobberley
- Biological Sciences Division, Pacific Northwest National Laboratory, RichlandWA, United States
| | - Jessica K Cole
- Biological Sciences Division, Pacific Northwest National Laboratory, RichlandWA, United States
| | - L M Markillie
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West LafayetteIN, United States
| | - Ronald C Taylor
- Biological Sciences Division, Pacific Northwest National Laboratory, RichlandWA, United States
| | - Eric Huang
- Biological Sciences Division, Pacific Northwest National Laboratory, RichlandWA, United States
| | - William B Chrisler
- Biological Sciences Division, Pacific Northwest National Laboratory, RichlandWA, United States
| | - H S Wiley
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, RichlandWA, United States
| | - Mary S Lipton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, RichlandWA, United States
| | - William C Nelson
- Biological Sciences Division, Pacific Northwest National Laboratory, RichlandWA, United States
| | - James K Fredrickson
- Biological Sciences Division, Pacific Northwest National Laboratory, RichlandWA, United States
| | - Margaret F Romine
- Biological Sciences Division, Pacific Northwest National Laboratory, RichlandWA, United States
| |
Collapse
|
591
|
Fesenko I, Khazigaleeva R, Kirov I, Kniazev A, Glushenko O, Babalyan K, Arapidi G, Shashkova T, Butenko I, Zgoda V, Anufrieva K, Seredina A, Filippova A, Govorun V. Alternative splicing shapes transcriptome but not proteome diversity in Physcomitrella patens. Sci Rep 2017; 7:2698. [PMID: 28578384 PMCID: PMC5457400 DOI: 10.1038/s41598-017-02970-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/20/2017] [Indexed: 12/13/2022] Open
Abstract
Alternative splicing (AS) can significantly impact the transcriptome and proteome of a eukaryotic cell. Here, using transcriptome and proteome profiling data, we analyzed AS in two life forms of the model moss Physcomitrella patens, namely protonemata and gametophores, as well as in protoplasts. We identified 12 043 genes subject to alternative splicing and analyzed the extent to which AS contributes to proteome diversity. We could distinguish a few examples that unambiguously indicated the presence of two or more splice isoforms from the same locus at the proteomic level. Our results indicate that alternative isoforms have a small effect on proteome diversity. We also revealed that mRNAs and pre-mRNAs have thousands of complementary binding sites for long non-coding RNAs (lncRNAs) that may lead to potential interactions in transcriptome. This finding points to an additional level of gene expression and AS regulation by non-coding transcripts in Physcomitrella patens. Among the differentially expressed and spliced genes we found serine/arginine-rich (SR) genes, which are known to regulate AS in cells. We found that treatment with abscisic (ABA) and methyl jasmonic acids (MeJA) led to an isoform-specific response and suggested that ABA in gametophores and MeJA in protoplasts regulate AS and the transcription of SR genes.
Collapse
Affiliation(s)
- Igor Fesenko
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | - Regina Khazigaleeva
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ilya Kirov
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia
| | - Andrey Kniazev
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Oksana Glushenko
- Laboratory of the Proteomic Analysis, Research Institute for Physico-Chemical Medicine, Moscow, Russia
| | - Konstantin Babalyan
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Georgij Arapidi
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Tatyana Shashkova
- Laboratory of the Proteomic Analysis, Research Institute for Physico-Chemical Medicine, Moscow, Russia
| | - Ivan Butenko
- Laboratory of the Proteomic Analysis, Research Institute for Physico-Chemical Medicine, Moscow, Russia
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Moscow, Russian Federation
| | - Ksenia Anufrieva
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna Seredina
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna Filippova
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vadim Govorun
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Laboratory of the Proteomic Analysis, Research Institute for Physico-Chemical Medicine, Moscow, Russia
| |
Collapse
|
592
|
Quantitative Proteomics Shows Extensive Remodeling Induced by Nitrogen Limitation in Prochlorococcusmarinus SS120. mSystems 2017; 2:mSystems00008-17. [PMID: 28593196 PMCID: PMC5451487 DOI: 10.1128/msystems.00008-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/26/2017] [Indexed: 12/27/2022] Open
Abstract
Prochlorococcus requires the capability to accommodate to environmental changes in order to proliferate in oligotrophic oceans, in particular regarding nitrogen availability. A precise knowledge of the composition and changes in the proteome can yield fundamental insights into such a response. Here we report a detailed proteome analysis of the important model cyanobacterium Prochlorococcus marinus SS120 after treatment with azaserine, an inhibitor of ferredoxin-dependent glutamate synthase (GOGAT), to simulate extreme nitrogen starvation. In total, 1,072 proteins, corresponding to 57% of the theoretical proteome, were identified-the maximum proteome coverage obtained for any Prochlorococcus strain thus far. Spectral intensity, calibrated quantification by the Hi3 method, was obtained for 1,007 proteins. Statistically significant changes (P value of <0.05) were observed for 408 proteins, with the majority of proteins (92.4%) downregulated after 8 h of treatment. There was a strong decrease in ribosomal proteins upon azaserine addition, while many transporters were increased. The regulatory proteins PII and PipX were decreased, and the global nitrogen regulator NtcA was upregulated. Furthermore, our data for Prochlorococcus indicate that NtcA also participates in the regulation of photosynthesis. Prochlorococcus responds to the lack of nitrogen by slowing down translation, while inducing photosynthetic cyclic electron flow and biosynthesis of proteins involved in nitrogen uptake and assimilation. IMPORTANCEProchlorococcus is the most abundant photosynthetic organism on Earth, contributing significantly to global primary production and playing a prominent role in biogeochemical cycles. Here we study the effects of extreme nitrogen limitation, a feature of the oligotrophic oceans inhabited by this organism. Quantitative proteomics allowed an accurate quantification of the Prochlorococcus proteome, finding three main responses to nitrogen limitation: upregulation of nitrogen assimilation-related proteins, including transporters; downregulation of ribosome proteins; and induction of the photosystem II cyclic electron flow. This suggests that nitrogen limitation affects a range of metabolic processes far wider than initially believed, with the ultimate goal of saving nitrogen and maximizing the nitrogen uptake and assimilation capabilities of the cell.
Collapse
|
593
|
Gupta N, Duggal S, Jailkhani N, Chatterjee S, Rao KVS, Kumar A. Dataset to delineate changes in association between Akt1 and its interacting partners as a function of active state of Akt1 protein. Data Brief 2017; 13:187-191. [PMID: 28603765 PMCID: PMC5454128 DOI: 10.1016/j.dib.2017.05.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/06/2017] [Accepted: 05/19/2017] [Indexed: 11/29/2022] Open
Abstract
Akt1 is a multi-functional protein, implicated in multiple human solid tumors. Pertaining to its key role in cell survival, Akt1 is under focus for development of targeted therapies. Functional diversity of Akt1 is a result of its interactions with other proteins; which changes with changing context. This investigation was designed to capture the dynamics of Akt1 Interactome as a function of its active state. Delineating dynamic changes in association of Akt1 with its interactors could help us comprehend how it changes as a function of inhibition of its active form. Similar information on changes in Akt1 interactome as of now is not well explored. Akt1 expressing HEK293 cells were cultured in light and heavy labeled SILAC media. Normal lysine and arginine were incorporated as light labels while for heavy labeling the isotopes were 8 and 10 Da heavier. Light labeled cells represented the indigenous state of Akt1 interactome while heavy labeled cells represented Akt1 interactome in presence of its allosteric inhibitor, MK-2206. Equal number of cells from both conditions were pooled, lysed and subjected to Affinity Purification coupled to Mass Spectroscopy (AP-MS). Additionally, SILAC labeling aided in quantitative estimation of changing association of a number of proteins which were common to the two experimental conditions, with Akt1. Data are available via ProteomeXchange with identifier PXD005976.
Collapse
Affiliation(s)
- Nutan Gupta
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asif Ali Marg, New Delhi 110067, India
| | - Shweta Duggal
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asif Ali Marg, New Delhi 110067, India
| | - Noor Jailkhani
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asif Ali Marg, New Delhi 110067, India
| | - Samrat Chatterjee
- Drug Discovery Research Center (DDRC), Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Kanury V S Rao
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asif Ali Marg, New Delhi 110067, India.,Drug Discovery Research Center (DDRC), Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Ajay Kumar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asif Ali Marg, New Delhi 110067, India.,Drug Discovery Research Center (DDRC), Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| |
Collapse
|
594
|
Boubriak II, Malhas AN, Drozdz MM, Pytowski L, Vaux DJ. Stress-induced release of Oct-1 from the nuclear envelope is mediated by JNK phosphorylation of lamin B1. PLoS One 2017; 12:e0177990. [PMID: 28542436 PMCID: PMC5443517 DOI: 10.1371/journal.pone.0177990] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 05/06/2017] [Indexed: 02/08/2023] Open
Abstract
The nuclear lamina can bind and sequester transcription factors (TFs), a function lost if the lamina is abnormal, with missing or mutant lamin proteins. We now show that TF sequestration is not all-or-nothing, but a dynamic physiological response to external signals. We show that the binding of the ubiquitous TF, Oct-1, to lamin B1 was reversed under conditions of cellular stress caused, inter alia, by the chemical methylating agent methylmethanesulfonate (MMS). A search for lamin B1 post-translational modifications that might mediate changes in Oct-1 binding using kinase inhibitors uncovered a role for c-Jun N-terminal kinase (JNK). Phosphoproteomic and site-directed mutagenesis analyses of lamin B1 isolated from control and MMS-treated nuclei identified T575 as a JNK site phosphorylated after stress. A new phospho-T575 specific anti-peptide antibody confirmed increased interphase cellular T575 phosphorylation after cell exposure to certain stress conditions, enabling us to conclude that lamin B1 acts as an interphase kinase target, releasing Oct-1 to execute a protective response to stress.
Collapse
Affiliation(s)
- Ivan I. Boubriak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Ashraf N. Malhas
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Marek M. Drozdz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Lior Pytowski
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - David J. Vaux
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
595
|
Lago M, Monteil V, Douche T, Guglielmini J, Criscuolo A, Maufrais C, Matondo M, Norel F. Proteome remodelling by the stress sigma factor RpoS/σ S in Salmonella: identification of small proteins and evidence for post-transcriptional regulation. Sci Rep 2017; 7:2127. [PMID: 28522802 PMCID: PMC5437024 DOI: 10.1038/s41598-017-02362-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/10/2017] [Indexed: 12/17/2022] Open
Abstract
The RpoS/σS sigma subunit of RNA polymerase is the master regulator of the general stress response in many Gram-negative bacteria. Extensive studies have been conducted on σS-regulated gene expression at the transcriptional level. In contrast, very limited information regarding the impact of σS on global protein production is available. In this study, we used a mass spectrometry-based proteomics approach to explore the wide σS-dependent proteome of the human pathogen Salmonella enterica serovar Typhimurium. Our present goals were twofold: (1) to survey the protein changes associated with the ΔrpoS mutation and (2) to assess the coding capacity of σS-dependent small RNAs. Our proteomics data, and complementary assays, unravelled the large impact of σS on the Salmonella proteome, and validated expression and σS regulation of twenty uncharacterized small proteins of 27 to 96 amino acids. Furthermore, a large number of genes regulated at the protein level only were identified, suggesting that post-transcriptional regulation is an important component of the σS response. Novel aspects of σS in the control of important catabolic pathways such as myo-inositol, L-fucose, propanediol, and ethanolamine were illuminated by this work, providing new insights into the physiological remodelling involved in bacterial adaptation to a non-actively growing state.
Collapse
Affiliation(s)
- Magali Lago
- Institut Pasteur, Laboratoire Systèmes Macromoléculaires et Signalisation, Département de Microbiologie, rue du Dr. Roux, 75015, Paris, France
- CNRS ERL6002, rue du Docteur Roux, 75015, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, rue du Dr. Roux, 75015, Paris, France
| | - Véronique Monteil
- Institut Pasteur, Laboratoire Systèmes Macromoléculaires et Signalisation, Département de Microbiologie, rue du Dr. Roux, 75015, Paris, France
- CNRS ERL6002, rue du Docteur Roux, 75015, Paris, France
- Institut Pasteur, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie structurale et Chimie, rue du Dr. Roux, 75015, Paris, France
| | - Thibaut Douche
- Institut Pasteur, Unité de Spectrométrie de Masse Structurale et Protéomique, Département de Biologie Structurale et Chimie, UMR3528, rue du Dr. Roux, 75015, Paris, France
| | - Julien Guglielmini
- Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756 IP CNRS, rue du Dr. Roux, 75015, Paris, France
| | - Alexis Criscuolo
- Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756 IP CNRS, rue du Dr. Roux, 75015, Paris, France
| | - Corinne Maufrais
- Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756 IP CNRS, rue du Dr. Roux, 75015, Paris, France
| | - Mariette Matondo
- Institut Pasteur, Unité de Spectrométrie de Masse Structurale et Protéomique, Département de Biologie Structurale et Chimie, UMR3528, rue du Dr. Roux, 75015, Paris, France
| | - Françoise Norel
- Institut Pasteur, Laboratoire Systèmes Macromoléculaires et Signalisation, Département de Microbiologie, rue du Dr. Roux, 75015, Paris, France.
- CNRS ERL6002, rue du Docteur Roux, 75015, Paris, France.
- Institut Pasteur, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie structurale et Chimie, rue du Dr. Roux, 75015, Paris, France.
| |
Collapse
|
596
|
Bhogaraju S, Kalayil S, Liu Y, Bonn F, Colby T, Matic I, Dikic I. Phosphoribosylation of Ubiquitin Promotes Serine Ubiquitination and Impairs Conventional Ubiquitination. Cell 2017; 167:1636-1649.e13. [PMID: 27912065 DOI: 10.1016/j.cell.2016.11.019] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/28/2016] [Accepted: 11/10/2016] [Indexed: 01/13/2023]
Abstract
Conventional ubiquitination involves the ATP-dependent formation of amide bonds between the ubiquitin C terminus and primary amines in substrate proteins. Recently, SdeA, an effector protein of pathogenic Legionella pneumophila, was shown to mediate NAD-dependent and ATP-independent ubiquitin transfer to host proteins. Here, we identify a phosphodiesterase domain in SdeA that efficiently catalyzes phosphoribosylation of ubiquitin on a specific arginine via an ADP-ribose-ubiquitin intermediate. SdeA also catalyzes a chemically and structurally distinct type of substrate ubiquitination by conjugating phosphoribosylated ubiquitin to serine residues of protein substrates via a phosphodiester bond. Furthermore, phosphoribosylation of ubiquitin prevents activation of E1 and E2 enzymes of the conventional ubiquitination cascade, thereby impairing numerous cellular processes including mitophagy, TNF signaling, and proteasomal degradation. We propose that phosphoribosylation of ubiquitin potently modulates ubiquitin functions in mammalian cells.
Collapse
Affiliation(s)
- Sagar Bhogaraju
- Institute of Biochemistry II, School of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Sissy Kalayil
- Institute of Biochemistry II, School of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Yaobin Liu
- Institute of Biochemistry II, School of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Florian Bonn
- Institute of Biochemistry II, School of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Thomas Colby
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Ivan Matic
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, School of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany; Department of Immunology and Medical Genetics, University of Split, School of Medicine, Soltanska 2, 21000 Split, Croatia.
| |
Collapse
|
597
|
The essential role of YAP O-GlcNAcylation in high-glucose-stimulated liver tumorigenesis. Nat Commun 2017; 8:15280. [PMID: 28474680 PMCID: PMC5424161 DOI: 10.1038/ncomms15280] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 03/14/2017] [Indexed: 12/19/2022] Open
Abstract
O-GlcNAcylation has been implicated in the tumorigenesis of various tissue origins, but its function in liver tumorigenesis is not clear. Here, we demonstrate that O-GlcNAcylation can enhance the expression, stability and function of Yes-associated protein (YAP), the downstream transcriptional regulator of the Hippo pathway and a potent oncogenic factor in liver cancer. O-GlcNAcylation induces transformative phenotypes of liver cancer cells in a YAP-dependent manner. An O-GlcNAc site of YAP was identified at Thr241, and mutating this site decreased the O-GlcNAcylation, stability, and pro-tumorigenic capacities of YAP, while increasing YAP phosphorylation. Importantly, we found via in vitro cell-based and in vivo mouse model experiments that O-GlcNAcylation of YAP was required for high-glucose-induced liver tumorigenesis. Interestingly, a positive feedback between YAP and global cellular O-GlcNAcylation is also uncovered. We conclude that YAP O-GlcNAcylation is a potential therapeutic intervention point for treating liver cancer associated with high blood glucose levels and possibly diabetes. Yap is a transcriptional factor involved in tumorigenesis. Here the authors show that a previously unknown post-translational modification of Yap, O-GlcNAcylation, increases its transcriptional activity and is required for high glucose-induced liver cancer development.
Collapse
|
598
|
Wright MH, Fetzer C, Sieber SA. Chemical Probes Unravel an Antimicrobial Defense Response Triggered by Binding of the Human Opioid Dynorphin to a Bacterial Sensor Kinase. J Am Chem Soc 2017; 139:6152-6159. [PMID: 28350441 DOI: 10.1021/jacs.7b01072] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Host-microbe communication via small molecule signals is important for both symbiotic and pathogenic relationships, but is often poorly understood at the molecular level. Under conditions of host stress, levels of the human opioid peptide dynorphin are elevated, triggering virulence in the opportunistic pathogenic bacterium Pseudomonas aeruginosa via an unknown pathway. Here we apply a multilayered chemical biology strategy to unravel the mode of action of this putative interkingdom signal. We designed and applied dynorphin-inspired photoaffinity probes to reveal the protein targets of the peptide in live bacteria via chemical proteomics. ParS, a largely uncharacterized membrane sensor of a two-component system, was identified as the most promising hit. Subsequent full proteome studies revealed that dynorphin(1-13) induces an antimicrobial peptide-like response in Pseudomonas, with specific upregulation of membrane defense mechanisms. No such response was observed in a parS mutant, which was more susceptible to dynorphin-induced toxicity. Thus, P. aeruginosa exploits the ParS sensing machinery to defend itself against the host in response to dynorphin as a signal. This study highlights interkingdom communication as a potential essential strategy not only for induction of P. aeruginosa virulence but also for maintaining viability in the hostile environment of the host.
Collapse
Affiliation(s)
- Megan H Wright
- Department of Chemistry, Technical University of Munich , Lichtenbergstr. 4, D-85748 Garching, Germany
| | - Christian Fetzer
- Department of Chemistry, Technical University of Munich , Lichtenbergstr. 4, D-85748 Garching, Germany
| | - Stephan A Sieber
- Department of Chemistry, Technical University of Munich , Lichtenbergstr. 4, D-85748 Garching, Germany
| |
Collapse
|
599
|
Fricke F, Lee J, Michalak M, Warnken U, Hausser I, Suarez-Carmona M, Halama N, Schnölzer M, Kopitz J, Gebert J. TGFBR2-dependent alterations of exosomal cargo and functions in DNA mismatch repair-deficient HCT116 colorectal cancer cells. Cell Commun Signal 2017; 15:14. [PMID: 28376875 PMCID: PMC5379773 DOI: 10.1186/s12964-017-0169-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/21/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Colorectal cancers (CRCs) that lack DNA mismatch repair function exhibit the microsatellite unstable (MSI) phenotype and are characterized by the accumulation of frameshift mutations at short repetitive DNA sequences (microsatellites). These tumors recurrently show inactivating frameshift mutations in the tumor suppressor Transforming Growth Factor Beta Receptor Type 2 (TGFBR2) thereby abrogating downstream signaling. How altered TGFBR2 signaling affects exosome-mediated communication between MSI tumor cells and their environment has not been resolved. Here, we report on molecular alterations of exosomes shed by MSI cells and the biological response evoked in recipient cells. METHODS Exosomes were isolated and characterized by electron microscopy, nanoparticle tracking, and western blot analysis. TGFBR2-dependent effects on the cargo and functions of exosomes were studied in a MSI CRC model cell line enabling reconstituted and inducible TGFBR2 expression and signaling. Microsatellite frameshift mutations in exosomal and cellular DNA were examined by PCR-based DNA fragment analysis and exosomal protein profiles were identified by mass spectrometry. Uptake of fluorescent-labeled exosomes by hepatoma recipient cells was monitored by confocal microscopy. TGFBR2-dependent exosomal effects on secreted cytokine levels of recipient cells were analyzed by Luminex technology and ELISA. RESULTS Frameshift mutation patterns in microsatellite stretches of TGFBR2 and other MSI target genes were found to be reflected in the cargo of MSI CRC-derived exosomes. At the proteome level, reconstituted TGFBR2 expression and signaling uncovered two protein subsets exclusively occurring in exosomes derived from TGFBR2-deficient (14 proteins) or TGFBR2-proficient (five proteins) MSI donor cells. Uptake of these exosomes by recipient cells caused increased secretion (2-6 fold) of specific cytokines (Interleukin-4, Stem Cell Factor, Platelet-derived Growth Factor-B), depending on the TGFBR2 expression status of the tumor cell. CONCLUSION Our results indicate that the coding MSI phenotype of DNA mismatch repair-deficient CRC cells is maintained in their exosomal DNA. Moreover, we uncovered that a recurrent MSI tumor driver mutation like TGFBR2 can reprogram the protein content of MSI cell-derived exosomes and in turn modulate the cytokine secretion profile of recipient cells. Apart from its diagnostic potential, these TGFBR2-dependent exosomal molecular and proteomic signatures might help to understand the signaling routes used by MSI tumors. Fricke et al. uncovered coding microsatellite instability-associated mutations of colorectal tumor driver genes like TGFBR2 in MSI tumor cellderived exosomes. Depending on the TGFBR2 expression status of their donor cells, shed exosomes show distinct proteomic signatures and promote altered cytokine secretion profiles in recipient cells.
Collapse
Affiliation(s)
- Fabia Fricke
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
- Department of Cancer Early Detection, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Jennifer Lee
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
- Department of Cancer Early Detection, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
- Present address: Tissue Genesis, Suite 1000, Tissue Genesis Tower, 810 Richards Street, Honolulu, HI 96813 USA
| | - Malwina Michalak
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
- Department of Cancer Early Detection, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Uwe Warnken
- Functional Proteome Analysis and Core Facility Protein Analysis (B100), German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ingrid Hausser
- Department of General Pathology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Meggy Suarez-Carmona
- Department of Medical Oncology, National Center for Tumor diseases (NCT), Tissue Imaging and Analysis Center, Bioquant, University Hospital Heidelberg, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Niels Halama
- Department of Medical Oncology, National Center for Tumor diseases (NCT), Tissue Imaging and Analysis Center, Bioquant, University Hospital Heidelberg, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Martina Schnölzer
- Functional Proteome Analysis and Core Facility Protein Analysis (B100), German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jürgen Kopitz
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
- Department of Cancer Early Detection, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Johannes Gebert
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
- Department of Cancer Early Detection, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| |
Collapse
|
600
|
Anderson KA, Huynh FK, Fisher-Wellman K, Stuart JD, Peterson BS, Douros JD, Wagner GR, Thompson JW, Madsen AS, Green MF, Sivley RM, Ilkayeva OR, Stevens RD, Backos DS, Capra JA, Olsen CA, Campbell JE, Muoio DM, Grimsrud PA, Hirschey MD. SIRT4 Is a Lysine Deacylase that Controls Leucine Metabolism and Insulin Secretion. Cell Metab 2017; 25:838-855.e15. [PMID: 28380376 PMCID: PMC5444661 DOI: 10.1016/j.cmet.2017.03.003] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 09/26/2016] [Accepted: 03/06/2017] [Indexed: 01/17/2023]
Abstract
Sirtuins are NAD+-dependent protein deacylases that regulate several aspects of metabolism and aging. In contrast to the other mammalian sirtuins, the primary enzymatic activity of mitochondrial sirtuin 4 (SIRT4) and its overall role in metabolic control have remained enigmatic. Using a combination of phylogenetics, structural biology, and enzymology, we show that SIRT4 removes three acyl moieties from lysine residues: methylglutaryl (MG)-, hydroxymethylglutaryl (HMG)-, and 3-methylglutaconyl (MGc)-lysine. The metabolites leading to these post-translational modifications are intermediates in leucine oxidation, and we show a primary role for SIRT4 in controlling this pathway in mice. Furthermore, we find that dysregulated leucine metabolism in SIRT4KO mice leads to elevated basal and stimulated insulin secretion, which progressively develops into glucose intolerance and insulin resistance. These findings identify a robust enzymatic activity for SIRT4, uncover a mechanism controlling branched-chain amino acid flux, and position SIRT4 as a crucial player maintaining insulin secretion and glucose homeostasis during aging.
Collapse
Affiliation(s)
- Kristin A Anderson
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Frank K Huynh
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Kelsey Fisher-Wellman
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - J Darren Stuart
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Brett S Peterson
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Jonathan D Douros
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Gregory R Wagner
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - J Will Thompson
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA; Duke Proteomics and Metabolomics Shared Resource, Duke University Medical Center, Durham, NC 27710, USA
| | - Andreas S Madsen
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Michelle F Green
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - R Michael Sivley
- Department of Biological Sciences, Department of Biomedical Informatics, Vanderbilt Genetics Institute, Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Olga R Ilkayeva
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Robert D Stevens
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Donald S Backos
- Computational Chemistry and Biology Core Facility, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - John A Capra
- Department of Biological Sciences, Department of Biomedical Informatics, Vanderbilt Genetics Institute, Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Christian A Olsen
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - Deborah M Muoio
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - Paul A Grimsrud
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Matthew D Hirschey
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|