51
|
Qiao X, Li G, Zhang J, Du J, Yang Y, Yin J, Li H, Xie J, Jiang Y, Fang X, Dai X, Shao B. Urinary analysis reveals high Alternaria mycotoxins exposure in the general population from Beijing, China. J Environ Sci (China) 2022; 118:122-129. [PMID: 35305760 DOI: 10.1016/j.jes.2021.08.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 06/14/2023]
Abstract
Alternaria mycotoxins are of concern due to its adverse health effect, they affect various cereal crops and grain-based food along with modified forms that contribute to overall exposure. This study aimed to determine the frequency and level of exposure to Alternaria mycotoxins (tenuazonic acid, TeA; alternariol, AOH; alternariol monomethyl ether, AME; tentoxin, TEN; and altenuene, ALT) in human urine from Beijing adults. A total of 2212 urine samples were collected and analyzed for five mycotoxins using LC-ESI-MS/MS. More than 98% of the samples had at least one Alternaria mycotoxin detected. Among the mycotoxins, AME had the highest detection rate (96.0%), followed by TeA (70.5%). The calculated average daily intake values of AME (12.5 ng/kg b.w.) was 5 times the TTC value (2.5 ng/kg b.w.) set by the EFSA, indicating the potential health risks associated with mycotoxins. Immediate attention and subsequent actions should be taken to identify the sources of mycotoxins and the corresponding exposure pathways to humans in the investigated regions.
Collapse
Affiliation(s)
- Xiaoting Qiao
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Gang Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Jing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Jing Du
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Yunjia Yang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Jie Yin
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Hui Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Jie Xie
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - You Jiang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Xiang Fang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China.
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; School of Food and Bioengineering, Xihua University, Chendu 610039, China.
| |
Collapse
|
52
|
Costantino AR, Charbe N, Duarte Y, Gutiérrez M, Giordano A, Prasher P, Dua K, Mandolesi S, Zacconi FC. Toward the cholinesterase inhibition potential of TADDOL derivatives: Seminal biological and computational studies. Arch Pharm (Weinheim) 2022; 355:e2200142. [PMID: 35892245 DOI: 10.1002/ardp.202200142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/03/2022] [Accepted: 07/11/2022] [Indexed: 11/07/2022]
Abstract
Alzheimer's disease (AD) is a degenerative neurological disease characterized by gradual loss of cognitive skills and memory. The exact pathogenesis involved still remains unrevealed, but several studies indicate the involvement of an array of different enzymes, underlining the multifactorial character of the disease. Inhibition of these enzymes is therefore a powerful approach in the development of AD treatments, with promising candidates, including acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and monoamine oxidase. Interestingly, AChE is the target of a major pesticide family (organophosphates), with several reports indicating an intersection between the pesticide's activity and AD. In this study, various TADDOL derivatives were synthesized and their in vitro activities as AChE/BuChE inhibitors as well as their antioxidant activities were studied. Molecular modeling studies revealed the capability of TADDOL derivatives to bind to AChE and induce inhibition, especially compounds 2b and 3c furnishing IC50 values of 36.78 ± 8.97 and 59.23 ± 5.31 µM, respectively. Experimental biological activities and molecular modeling studies clearly demonstrate that TADDOL derivatives with specific stereochemistry have an interesting potential for the design of potent AChE inhibitors. The encouraging results for compounds 2b and 3c indicate them as promising scaffolds for selective and potent AChE inhibitors.
Collapse
Affiliation(s)
- Andrea R Costantino
- INQUISUR, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Nitin Charbe
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, Kingsville, Texas, USA
| | - Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Margarita Gutiérrez
- Organic Synthesis Laboratory and Biological Activity (LSO-Act-Bio), Institute of Chemistry and Natural Resources, Universidad de Talca, Talca, Chile
| | - Ady Giordano
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia.,Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, New South Wales, Australia.,Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sandra Mandolesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Flavia C Zacconi
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile.,Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,The Research Center for Nanotechnology and Advanced Materials, CIEN-UC, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
53
|
Amine ZE, Mauger JF, Imbeault P. CYP1A1, VEGFA and Adipokine Responses of Human Adipocytes Co-exposed to PCB126 and Hypoxia. Cells 2022; 11:cells11152282. [PMID: 35892579 PMCID: PMC9331964 DOI: 10.3390/cells11152282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
It is increasingly recognized that hypoxia may develop in adipose tissue as its mass expands. Adipose tissue is also the main reservoir of lipophilic pollutants, including polychlorinated biphenyls (PCBs). Both hypoxia and PCBs have been shown to alter adipose tissue functions. The signaling pathways induced by hypoxia and pollutants may crosstalk, as they share a common transcription factor: aryl hydrocarbon receptor nuclear translocator (ARNT). Whether hypoxia and PCBs crosstalk and affect adipokine secretion in human adipocytes remains to be explored. Using primary human adipocytes acutely co-exposed to different levels of hypoxia (24 h) and PCB126 (48 h), we observed that hypoxia significantly inhibits the PCB126 induction of cytochrome P450 (CYP1A1) transcription in a dose-response manner, and that Acriflavine (ACF)—an HIF1α inhibitor—partially restores the PCB126 induction of CYP1A1 under hypoxia. On the other hand, exposure to PCB126 did not affect the transcription of the vascular endothelial growth factor-A (VEGFA) under hypoxia. Exposure to hypoxia increased leptin and interleukin-6 (IL-6), and decreased adiponectin levels dose-dependently, while PCB126 increased IL-6 and IL-8 secretion in a dose-dependent manner. Co-exposure to PCB126 and hypoxia did not alter the adipokine secretion pattern observed under hypoxia and PCB126 exposure alone. In conclusion, our results indicate that (1) hypoxia inhibits PCB126-induced CYP1A1 expression at least partly through ARNT-dependent means, suggesting that hypoxia could affect PCB metabolism and toxicity in adipose tissue, and (2) hypoxia and PCB126 affect leptin, adiponectin, IL-6 and IL-8 secretion differently, with no apparent crosstalk between the two factors.
Collapse
Affiliation(s)
- Zeinab El Amine
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (Z.E.A.); (J.-F.M.)
| | - Jean-François Mauger
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (Z.E.A.); (J.-F.M.)
| | - Pascal Imbeault
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (Z.E.A.); (J.-F.M.)
- Institut du Savoir Montfort, Hôpital Montfort, Ottawa, ON K1K 0T2, Canada
- Correspondence: ; Tel.: +1-(613)-562-5800-(7290)
| |
Collapse
|
54
|
Lamat H, Sauvant-Rochat MP, Tauveron I, Bagheri R, Ugbolue UC, Maqdasi S, Navel V, Dutheil F. Metabolic syndrome and pesticides: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119288. [PMID: 35439599 DOI: 10.1016/j.envpol.2022.119288] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
The relation between pesticides exposure and metabolic syndrome (MetS) has not been clearly identified. Performing a systematic review and meta-analysis, PubMed, Cochrane Library, Embase, and ScienceDirect were searched for studies reporting the risk of MetS following pesticides exposure and their contaminants. We included 12 studies for a total of 6789 participants, in which 1981 (29.1%) had a MetS. Overall exposure to pesticides and their contaminants increased the risk of MetS by 30% (95CI 22%-37%). Overall organochlorine increased the risk of MetS by 23% (14-32%), as well as for most types of organochlorines: hexachlorocyclohexane increased the risk by 53% (28-78%), hexachlorobenzene by 40% (0.01-80%), dichlorodiphenyldichloroethylene by 22% (9-34%), dichlorodiphenyltrichloroethane by 28% (5-50%), oxychlordane by 24% (1-47%), and transnonchlor by 35% (19-52%). Sensitivity analyses confirmed that overall exposure to pesticides and their contaminants increased the risk by 46% (35-56%) using crude data or by 19% (10-29%) using fully-adjusted model. The risk for overall pesticides and types of pesticides was also significant with crude data but only for hexachlorocyclohexane (36% risk increase, 17-55%) and transnonchlor (25% risk increase, 3-48%) with fully-adjusted models. Metaregressions demonstrated that hexachlorocyclohexane increased the risk of MetS in comparison to most other pesticides. The risk increased for more recent periods (Coefficient = 0.28, 95CI 0.20 to 0.37, by year). We demonstrated an inverse relationship with body mass index and male gender. In conclusion, pesticides exposure is a major risk factor for MetS. Besides organochlorine exposure, data are lacking for other types of pesticides. The risk increased with time, reflecting a probable increase of the use of pesticides worldwide. The inverse relationship with body mass index may signify a stockage of pesticides and contaminants in fat tissue.
Collapse
Affiliation(s)
- Hugo Lamat
- Université Clermont Auvergne, University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Endocrinology-diabetology-nutrition, 63000, Clermont-Ferrand, France
| | - Marie-Pierre Sauvant-Rochat
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Igor Tauveron
- Université Clermont Auvergne, CNRS, GReD, Inserm, University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Endocrinology, Clermont-Ferrand, France
| | - Reza Bagheri
- University of Isfahan, Exercise Physiology, Isfahan, Iran
| | - Ukadike C Ugbolue
- University of the West of Scotland, Health and Life Sciences, South Lanarkshire, Scotland, UK
| | - Salwan Maqdasi
- Université Clermont Auvergne, CNRS, GReD, Inserm, University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Endocrinology, Clermont-Ferrand, France
| | - Valentin Navel
- Université Clermont Auvergne, CNRS, INSERM, GReD, CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, Ophthalmology, Clermont-Ferrand, France
| | - Frédéric Dutheil
- Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Occupational and Environmental Medicine, WittyFit, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
55
|
Goodes LM, Wong EVS, Alex J, Mofflin L, Toshniwal P, Brunner M, Solomons T, White E, Choudhury O, Seewoo BJ, Mulders YR, Dale T, Newman HJ, Naveed A, Lowe AB, Hendrie DV, Symeonides C, Dunlop SA. A scoping review protocol on in vivo human plastic exposure and health impacts. Syst Rev 2022; 11:137. [PMID: 35790998 PMCID: PMC9258212 DOI: 10.1186/s13643-022-02010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 06/18/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Global plastic production has increased exponentially since the 1960s, with more than 6300 million metric tons of plastic waste generated to date. Studies have found a range of human health outcomes associated with exposure to plastic chemicals. However, only a fraction of plastic chemicals used have been studied in vivo, and then often in animals, for acute toxicological effects. With many questions still unanswered about how long-term exposure to plastic impacts human health, there is an urgent need to map human in vivo research conducted to date, casting a broad net by searching terms for a comprehensive suite of plastic chemical exposures and the widest range of health domains. METHODS This protocol describes a scoping review that will follow the recommended framework outlined in the 2017 Guidance for the Conduct of Joanna Briggs Institute (JBI) Scoping Reviews, to be reported in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) Checklist. A literature search of primary clinical studies in English from 1960 onwards will be conducted in MEDLINE (Ovid) and EMBASE (Ovid) databases. References eligible for inclusion will be identified through a quality-controlled, multi-level screening process. Extracted data will be presented in diagrammatic and tabular form, with a narrative summary addressing the review questions. DISCUSSION This scoping review will comprehensively map the primary research undertaken to date on plastic exposure and human health. Secondary outputs will include extensive databases on plastic chemicals and human health outcomes/impacts. SYSTEMATIC REVIEW REGISTRATION Open Science Framework (OSF)-Standard Pre-Data Collection Registration, https://archive.org/details/osf-registrations-gbxps-v1 , https://doi.org/10.17605/OSF.IO/GBXPS.
Collapse
Affiliation(s)
- Louise M. Goodes
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000 Australia
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 Australia
| | - Enoch V. S. Wong
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000 Australia
| | - Jennifer Alex
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000 Australia
| | - Louise Mofflin
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000 Australia
| | - Priyanka Toshniwal
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000 Australia
| | - Manuel Brunner
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000 Australia
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 Australia
| | - Terena Solomons
- Health and Medical Sciences (Library), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 Australia
| | - Emily White
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000 Australia
| | - Omrik Choudhury
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000 Australia
| | - Bhedita J. Seewoo
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000 Australia
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 Australia
| | - Yannick R. Mulders
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000 Australia
| | - Tristan Dale
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000 Australia
- Fiona Stanley Hospital, 11 Warren Drive, Murdoch, WA 6150 Australia
- UWA Medical School, Faculty of Health and Medical Sciences, 35 Stirling Highway, Crawley, WA 6009 Australia
| | - Hamish J. Newman
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000 Australia
- Sir Charles Gairdner Hospital, Hospital Ave, Nedlands, WA 6009 Australia
- School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 Australia
| | - Alina Naveed
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000 Australia
| | - Andrew B. Lowe
- School of Molecular & Life Sciences, Curtin University, Kent St, Bentley, WA 6102 Australia
| | - Delia V. Hendrie
- School of Population Health, Curtin University, Kent St, Bentley, WA 6102 Australia
| | - Christos Symeonides
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000 Australia
- Murdoch Children’s Research Institute, Royal Children’s Hospital, 50 Flemington Rd, Parkville, VIC 3052 Australia
| | - Sarah A. Dunlop
- Minderoo Foundation, 171 - 173 Mounts Bay Road, Perth, WA 6000 Australia
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 Australia
| |
Collapse
|
56
|
Segovia-Mendoza M, Palacios-Arreola MI, Monroy-Escamilla LM, Soto-Piña AE, Nava-Castro KE, Becerril-Alarcón Y, Camacho-Beiza R, Aguirre-Quezada DE, Cardoso-Peña E, Amador-Muñoz O, Garduño-García JDJ, Morales-Montor J. Association of Serum Levels of Plasticizers Compounds, Phthalates and Bisphenols, in Patients and Survivors of Breast Cancer: A Real Connection? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138040. [PMID: 35805702 PMCID: PMC9265398 DOI: 10.3390/ijerph19138040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023]
Abstract
Phthalates and bisphenols are ubiquitous environmental pollutants with the ability to perturb different systems. Specifically, they can alter the endocrine system, and this is why they are also known as endocrine-disrupting compounds (EDCs). Interestingly, they are related to the development and progression of breast cancer (BC), but the threshold concentrations at which they trigger that are not well established. Objectives: The aim of this study was to compare the concentration measures of parent EDCs in three groups of women (without BC, with BC, and BC survivors) from two urban populations in Mexico, to establish a possible association between EDCs and this disease. We consider the measure of the parent compounds would reflect the individual’s exposure. Methods: The levels of di-ethyl-hexyl-phthalate (DEHP), butyl-benzyl-phthalate (BBP), di-n-butyl phthalate (DBP) and di-ethyl-phthalate (DEP), bisphenol A (BPA) and bisphenol S (BPS) were determined by gas chromatograph-mass spectrometry in 102 subjects, including 37 women without any pathological disease, 46 patients with BC and 19 women survivals of BC of Mexico and Toluca City. Results: All phthalates were detected in 100% of women, two of them were significantly higher in patients with different BC subtypes in Mexico City. Differential increases were observed mainly in the serum concentration of phthalates in women with BC compared to women without disease between Mexico and Toluca City. In addition, when performing an analysis of the concentrations of phthalates by molecular type of BC, DEP and BBP were found mainly in aggressive and poorly differentiated types of BC. It should be noted that female BC survivors treated with anti-hormonal therapy showed lower levels of BBP than patients with BC. BPA and BPS were found in most samples from Mexico City. However, BPS was undetectable in women from Toluca City. Discussion: The results of our study support the hypothesis of a positive association between exposure to phthalates and BC incidence.
Collapse
Affiliation(s)
- Mariana Segovia-Mendoza
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
- Correspondence: (M.S.-M.); (J.M.-M.)
| | - Margarita Isabel Palacios-Arreola
- Grupo de Especiación Química de Aerosoles Orgánicos Atmosféricos, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (M.I.P.-A.); (O.A.-M.)
| | | | - Alexandra Estela Soto-Piña
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50000, Mexico; (A.E.S.-P.); (Y.B.-A.); (R.C.-B.); (E.C.-P.); (J.d.J.G.-G.)
| | - Karen Elizabeth Nava-Castro
- Grupo de Biología y Química Ambientales, Departamento de Ciencias Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Yizel Becerril-Alarcón
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50000, Mexico; (A.E.S.-P.); (Y.B.-A.); (R.C.-B.); (E.C.-P.); (J.d.J.G.-G.)
| | - Roberto Camacho-Beiza
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50000, Mexico; (A.E.S.-P.); (Y.B.-A.); (R.C.-B.); (E.C.-P.); (J.d.J.G.-G.)
- Unidad Médica Especializada para la Detección y Diagnóstico de Cáncer de Mama, Instituto de Salud del Estado de México, Toluca 51760, Mexico;
| | - David Eduardo Aguirre-Quezada
- Unidad Médica Especializada para la Detección y Diagnóstico de Cáncer de Mama, Instituto de Salud del Estado de México, Toluca 51760, Mexico;
| | - Elías Cardoso-Peña
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50000, Mexico; (A.E.S.-P.); (Y.B.-A.); (R.C.-B.); (E.C.-P.); (J.d.J.G.-G.)
- Unidad de Medicina Familiar 220, Instituto Mexicano del Seguro Social, Toluca 50070, Mexico
| | - Omar Amador-Muñoz
- Grupo de Especiación Química de Aerosoles Orgánicos Atmosféricos, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (M.I.P.-A.); (O.A.-M.)
| | - José de Jesús Garduño-García
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50000, Mexico; (A.E.S.-P.); (Y.B.-A.); (R.C.-B.); (E.C.-P.); (J.d.J.G.-G.)
- Hospital Regional 251, Instituto Mexicano del Seguro Social, Toluca 50070, Mexico
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
- Correspondence: (M.S.-M.); (J.M.-M.)
| |
Collapse
|
57
|
Exposure to Per- and Polyfluoroalkyl Substances and Mortality in U.S. Adults: A Population-Based Cohort Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:67007. [PMID: 35731224 PMCID: PMC9215707 DOI: 10.1289/ehp10393] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are widespread environmental contaminants associated with diseases such as cancer and dyslipidemia. However, few studies have investigated the association between PFAS mixture exposure and mortality in general populations. OBJECTIVES This study aimed to explore the association between PFAS mixture, perfluorooctanoic acid (PFOA), and perfluorooctane sulfonic acid (PFOS) and mortality in U.S. adults by a nationally representative cohort. METHODS Adults ≥18 years of age who were enrolled in the National Health and Nutrition Examination Survey (NHANES) (1999-2014) were included in our study. Baseline serum concentrations of seven PFAS were measured and individuals were followed up to 31 December 2015. Hazard ratios (HRs) and confidence intervals (CIs) were estimated using Cox proportional hazards models. Association between PFAS mixture exposure and mortality was analyzed using the k-means method by clustering PFAS mixtures into subgroups. Association between PFOA/PFOS exposure and mortality was subsequently analyzed in both continuous and categorical models. RESULTS During the follow-up period, 1,251 participants died. In the mixture analysis, the k-means algorithm clustered participants into low-, medium-, and high-exposure groups. Compared with the low-exposure group, participants in the high-exposure group showed significantly higher risks for all-cause mortality (HR=1.38; 95% CI: 1.07, 1.80), heart disease mortality (HR=1.58; 95% CI: 1.05, 2.51), and cancer mortality (HR=1.70; 95% CI: 1.08, 2.84). In single PFAS analysis, PFOS was found to be positively associated with all-cause mortality (third vs. first tertile HR=1.57; 95% CI: 1.22, 2.07), heart disease mortality (third vs. first tertile HR=1.65; 95% CI: 1.09, 2.57), and cancer mortality (third vs. first tertile HR=1.75; 95% CI: 1.10, 2.83), whereas PFOA exposure had no significant association with mortality. Assuming the observed association is causal, the number of deaths associated with PFOS exposure (≥17.1 vs. <7.9 ng/mL) was ∼382,000 (95% CI: 176,000, 588,000) annually between 1999 and 2015, and it decreased to 69,000 (95% CI: 28,000, 119,000) annually between 2015 and 2018. The association between PFOS and mortality was stronger among women and people without diabetes. DISCUSSION We observed a positive association between PFAS mixture exposure and mortality among U.S. adults. Limitations of this study include the potential for unmeasured confounding, selection bias, a relatively small number of deaths, and only measuring PFAS at one point in time. Further studies with serial measures of PFAS concentrations and longer follow-ups are necessary to elucidate the association between PFAS and mortality from specific causes. https://doi.org/10.1289/EHP10393.
Collapse
|
58
|
Transcriptome sequencing of 3,3',4,4',5-Pentachlorobiphenyl (PCB126)-treated human preadipocytes demonstrates progressive changes in pathways associated with inflammation and diabetes. Toxicol In Vitro 2022; 83:105396. [PMID: 35618242 DOI: 10.1016/j.tiv.2022.105396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 12/02/2022]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants that accumulate in adipose tissue and have been associated with cardiometabolic disease. We have previously demonstrated that exposure of human preadipocytes to the dioxin-like PCB126 disrupts adipogenesis via the aryl hydrocarbon receptor (AhR). To further understand how PCB126 disrupts adipose tissue cells, we performed RNAseq analysis of PCB126-treated human preadipocytes over a 3-day time course. The most significant predicted upstream regulator affected by PCB126 exposure at the early time point of 9 h was the AhR. Progressive changes occurred in the number and magnitude of transcript levels of genes associated with inflammation, most closely fitting the pathways of cytokine-cytokine-receptor signaling and the AGE-RAGE diabetic complications pathway. Transcript levels of genes involved in the IL-17A, IL-1β, MAP kinase, and NF-κB signaling pathways were increasingly dysregulated by PCB126 over time. Our results illustrate the progressive time-dependent nature of transcriptional changes caused by toxicants such as PCB126, point to important pathways affected by PCB126 exposure, and provide a rich dataset for further studies to address how PCB126 and other AhR agonists disrupt preadipocyte function. These findings have implications for understanding how dioxin-like PCBs and other dioxin-like compounds are involved in the development of obesity and diabetes.
Collapse
|
59
|
Kladnicka I, Bludovska M, Plavinova I, Muller L, Mullerova D. Obesogens in Foods. Biomolecules 2022; 12:biom12050680. [PMID: 35625608 PMCID: PMC9138445 DOI: 10.3390/biom12050680] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 02/07/2023] Open
Abstract
Obesogens, as environmental endocrine-disrupting chemicals, are supposed to have had an impact on the prevalence of rising obesity around the world over the last forty years. These chemicals are probably able to contribute not only to the development of obesity and metabolic disturbances in individuals, but also in their progeny, having the capability to epigenetically reprogram genetically inherited set-up points for body weight and body composition control during critical periods of development, such as fetal, early life, and puberty. In individuals, they may act on myriads of neuro-endocrine–immune metabolic regulatory pathways, leading to pathophysiological consequences in adipogenesis, lipogenesis, lipolysis, immunity, the influencing of central appetite and energy expenditure regulations, changes in gut microbiota–intestine functioning, and many other processes. Evidence-based medical data have recently brought much more convincing data about associations of particular chemicals and the probability of the raised risk of developing obesity. Foods are the main source of obesogens. Some obesogens occur naturally in food, but most are environmental chemicals, entering food as a foreign substance, whether in the form of contaminants or additives, and they are used in a large amount in highly processed food. This review article contributes to a better overview of obesogens, their occurrence in foods, and their impact on the human organism.
Collapse
Affiliation(s)
- Iva Kladnicka
- Department of Public Health and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic; (M.B.); (I.P.); (D.M.)
- Department of Cybernetics, European Centre of Excellence New Technologies for the Information Society, University of West Bohemia, 301 00 Pilsen, Czech Republic;
- Correspondence: ; Tel.: +420-377-593-193
| | - Monika Bludovska
- Department of Public Health and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic; (M.B.); (I.P.); (D.M.)
- Institute of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic
| | - Iveta Plavinova
- Department of Public Health and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic; (M.B.); (I.P.); (D.M.)
| | - Ludek Muller
- Department of Cybernetics, European Centre of Excellence New Technologies for the Information Society, University of West Bohemia, 301 00 Pilsen, Czech Republic;
| | - Dana Mullerova
- Department of Public Health and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic; (M.B.); (I.P.); (D.M.)
- Department of Cybernetics, European Centre of Excellence New Technologies for the Information Society, University of West Bohemia, 301 00 Pilsen, Czech Republic;
| |
Collapse
|
60
|
Natterson-Horowitz B, Boddy AM, Zimmerman D. Female Health Across the Tree of Life: Insights at the Intersection of Women's Health, One Health and Planetary Health. PNAS NEXUS 2022; 1:pgac044. [PMID: 35668878 PMCID: PMC9154074 DOI: 10.1093/pnasnexus/pgac044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/11/2022] [Indexed: 01/29/2023]
Abstract
Across the tree of life, female animals share biological characteristics that place them at risk for similar diseases and disorders. Greater awareness of these shared vulnerabilities can accelerate insight and innovation in women's health. We present a broadly comparative approach to female health that can inform issues ranging from mammary, ovarian, and endometrial cancer to preeclampsia, osteoporosis, and infertility. Our focus on female health highlights the interdependence of human, animal, and environmental health. As the boundaries between human and animal environments become blurred, female animals across species are exposed to increasingly similar environmental hazards. As such, the health of female animals has unprecedented relevance to the field of woman's health. Expanding surveillance of animal populations beyond zoonoses to include noncommunicable diseases can strengthen women's health prevention efforts as environmental factors are increasingly implicated in human mortality. The physiology of nonhuman females can also spark innovation in women's health. There is growing interest in those species of which the females appear to have a level of resistance to pathologies that claim millions of human lives every year. These physiologic adaptations highlight the importance of biodiversity to human health. Insights at the intersection of women's health and planetary health can be a rich source of innovations benefitting the health of all animals across the tree of life.
Collapse
Affiliation(s)
- B Natterson-Horowitz
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Amy M Boddy
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85281, USA
- Department of Anthropology, University of California, Santa Barbara, CA 93106, USA
| | - Dawn Zimmerman
- Director of Wildlife Health, Veterinary Medical Officer, Global Health Program, Smithsonian Conservation Biology Institute, Smithsonian Institution, Washington, DC 20008, USA
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, New Haven, CT 06520, USA
- Veterinary Initiative for Endangered Wildlife, Bozeman, MT 59715, USA
| |
Collapse
|
61
|
Hasanović M, Čakar J, Ahatović A, Murtić S, Subašić M, Bajrović K, Durmić-Pašić A. Physiological parameters indicate remarkable survival mechanisms of Sanguisorba minor Scop. on metalliferous and non-metalliferous sites. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01052-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
62
|
Association between recurrent breast cancer and phthalate exposure modified by hormone receptors and body mass index. Sci Rep 2022; 12:2858. [PMID: 35190574 PMCID: PMC8861041 DOI: 10.1038/s41598-022-06709-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
The association between phthalate exposure and breast cancer remains controversial. We performed a prospective patient cohort design to explore the interaction between creatinine-corrected urinary phthalate metabolites and hormone receptors as well as body mass index (BMI) on recurrent breast cancer. In this follow-up study, 636 female breast cancer patients and 45 new recurrent cases diagnosed for a total of 1576.68 person-years of follow-up were recruited. Mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) was negatively associated with breast cancer recurrence, with adjusted hazard ratio (aHR) 3rd vs. 1st quartile of 0.15 (95% CI 0.04–0.51). The MEOHP presented as a non-monotonic dose–response (NMDR) curve, being U-shaped. In the stratification of hormone receptors, MEOHP still exhibited a U-shaped dose–response curve. The third quartile of MEOHP showed significant lowest recurrent risk in the status of ER-positive (aHR 0.18, 95% CI 0.05–0.66), PR-negative (aHR 0.14, 95% CI 0.03–0.63), and HER2-negative (aHR 0.24, 95% CI 0.08–0.76). Whether in BMI < 25 or in BMI ≥ 25, the third quartile of MEOHP was negatively associated with recurrent breast cancer, and there was a negative interaction on an additive scale between MEOHP and BMI (pinteraction = 0.042). The association between MEOHP and recurrent breast cancer was modified by hormone receptors and BMI.
Collapse
|
63
|
Sun T, Wang S, Ji C, Li F, Wu H. Microplastics aggravate the bioaccumulation and toxicity of coexisting contaminants in aquatic organisms: A synergistic health hazard. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127533. [PMID: 34879523 DOI: 10.1016/j.jhazmat.2021.127533] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
There are ongoing controversies regarding the effects of microplastics (MPs) on the bioaccumulation and toxicity of coexisting contaminants in aquatic organisms. This study aims to quantitatively evaluate this issue based on 870 endpoints from 40 publications. It was shown that the presence of MPs significantly increased the bioaccumulation of co-contaminants by 31%, with high statistical power and without obvious publication bias. The aggravated bioaccumulation was also revealed by the strongly positive correlation between bioconcentration factors in the presence and the absence of MPs. Furthermore, the subgroup/regression analyses indicated that the vector effect of MPs on other chemicals was affected by multiple factors and their interactions, such as particle size and exposure time. In addition, a relatively comprehensive biomarker profile was recompiled from included studies to assess the changes in toxicity caused by combined exposure. Results confirmed that the presence of MPs obviously exacerbated the toxicity of co-contaminants by 18%, manifested by the potentiated cytotoxicity, endocrine disruption, immunotoxicity and oxidative stress, implying a synergistic health hazard. Ultimately, the mismatches between laboratory and field conditions were discussed, and the recommendations for future research were offered.
Collapse
Affiliation(s)
- Tao Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuang Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China.
| |
Collapse
|
64
|
Oberlin S, Nkiliza A, Parks M, Evans JE, Klimas N, Keegan AP, Sullivan K, Krengel MH, Mullan M, Crawford F, Abdullah L. Sex-specific differences in plasma lipid profiles are associated with Gulf War Illness. J Transl Med 2022; 20:73. [PMID: 35123492 PMCID: PMC8817550 DOI: 10.1186/s12967-022-03272-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/23/2022] [Indexed: 11/20/2022] Open
Abstract
Background Nearly 250,000 veterans from the 1990–1991 Gulf War have Gulf War Illness (GWI), a condition with heterogeneous pathobiology that remains difficult to diagnose. As such, availability of blood biomarkers that reflect the underlying biology of GWI would help clinicians provide appropriate care to ill veterans. In this study, we measured blood lipids to examine the influence of sex on the association between blood lipids and GWI diagnosis. Methods Plasma lipid extracts from GWI (n = 100) and control (n = 45) participants were subjected to reversed-phase nano-flow liquid chromatography-mass spectrometry analysis. Results An influence of sex and GWI case status on plasma neutral lipid and phospholipid species was observed. Among male participants, triglycerides, diglycerides, and phosphatidylcholines were increased while cholesterol esters were decreased in GWI cases compared to controls. In female participants, ceramides were increased in GWI cases compared to controls. Among male participants, unsaturated triglycerides, phosphatidylcholine and diglycerides were increased while unsaturated cholesterol esters were lower in GWI cases compared to controls. The ratio of arachidonic acid- to docosahexaenoic acid-containing triglyceride species was increased in female and male GWI cases as compared to their sex-matched controls. Conclusion Differential modulation of neutral lipids and ratios of arachidonic acid to docosahexaenoic acid in male veterans with GWI suggest metabolic dysfunction and inflammation. Increases in ceramides among female veterans with GWI also suggest activation of inflammatory pathways. Future research should characterize how these lipids and their associated pathways relate to GWI pathology to identify biomarkers of the disorder. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03272-3.
Collapse
|
65
|
Cui Y, Mo Z, Ji P, Zhong J, Li Z, Li D, Qin L, Liao Q, He Z, Guo W, Chen L, Wang Q, Dong G, Chen W, Xiao Y, Xing X. Benzene Exposure Leads to Lipodystrophy and Alters Endocrine Activity In Vivo and In Vitro. Front Endocrinol (Lausanne) 2022; 13:937281. [PMID: 35909554 PMCID: PMC9326257 DOI: 10.3389/fendo.2022.937281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Benzene is a ubiquitous pollutant and mainly accumulates in adipose tissue which has important roles in metabolic diseases. The latest studies reported that benzene exposure was associated with many metabolic disorders, while the effect of benzene exposure on adipose tissue remains unclear. We sought to investigate the effect using in vivo and in vitro experiments. Male adult C57BL/6J mice were exposed to benzene at 0, 1, 10 and 100 mg/kg body weight by intragastric gavage for 4 weeks. Mature adipocytes from 3T3-L1 cells were exposed to hydroquinone (HQ) at 0, 1, 5 and 25 μM for 24 hours. Besides the routine hematotoxicity, animal experiments also displayed significant body fat content decrease from 1 mg/kg. Interestingly, the circulating non-esterified fatty acid (NEFA) level increased from the lowest dose (ptrend < 0.05). Subsequent analysis indicated that body fat content decrease may be due to atrophy of white adipose tissue (WAT) upon benzene exposure. The average adipocyte area of WAT decreased significantly even from 1 mg/kg with no significant changes in total number of adipocytes. The percentages of small and large adipocytes in WAT began to significantly increase or decrease from 1 mg/kg (all p < 0.05), respectively. Critical genes involved in lipogenesis and lipolysis were dysregulated, which may account for the disruption of lipid homeostasis. The endocrine function of WAT was also disordered, manifested as significant decrease in adipokine levels, especially the leptin. In vitro cell experiments displayed similar findings in decreased fat content, dysregulated critical lipid metabolism genes, and disturbed endocrine function of adipocytes after HQ treatment. Pearson correlation analysis showed positive correlations between white blood cell (WBC) count with WAT fat content and plasma leptin level (r = 0.330, 0.344, both p < 0.05). This study shed light on the novel aspect that benzene exposure could induce lipodystrophy and disturb endocrine function of WAT, and the altered physiology of WAT might in turn affect benzene-induced hematotoxicity and metabolic disorders. The study provided new insight into understanding benzene-induced toxicity and the relationship between benzene and adipose tissue.
Collapse
Affiliation(s)
- Ying Cui
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ziying Mo
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Penglei Ji
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jingyi Zhong
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zongxin Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lina Qin
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qilong Liao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhini He
- School of Public Health, Food Safety and Health Research Center, Southern Medical University, Guangzhou, China
| | - Wei Guo
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Guanghui Dong
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yongmei Xiao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiumei Xing
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xiumei Xing,
| |
Collapse
|
66
|
Sun Y, Li X, Benmarhnia T, Chen JC, Avila C, Sacks DA, Chiu V, Slezak J, Molitor J, Getahun D, Wu J. Exposure to air pollutant mixture and gestational diabetes mellitus in Southern California: Results from electronic health record data of a large pregnancy cohort. ENVIRONMENT INTERNATIONAL 2022; 158:106888. [PMID: 34563749 PMCID: PMC9022440 DOI: 10.1016/j.envint.2021.106888] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Epidemiological findings are inconsistent regarding the associations between air pollution exposure during pregnancy and gestational diabetes mellitus (GDM). Several limitations exist in previous studies, including potential outcome and exposure misclassification, unassessed confounding, and lack of simultaneous consideration of air pollution mixtures and particulate matter (PM) constituents. OBJECTIVES To assess the association between GDM and maternal residential exposure to air pollution, and the joint effect of the mixture of air pollutants and PM constituents. METHODS Detailed clinical data were obtained for 395,927 pregnancies in southern California (2008-2018) from Kaiser Permanente Southern California (KPSC) electronic health records. GDM diagnosis was based on KPSC laboratory tests. Monthly average concentrations of fine particulate matter < 2.5 μm (PM2.5), <10 μm (PM10), nitrogen dioxide (NO2), and ozone (O3) were estimated using kriging interpolation of Environmental Protection Agency's routine monitoring station data, while PM2.5 constituents (i.e., sulfate, nitrate, ammonium, organic matter and black carbon) were estimated using a fine-resolution geoscience-derived model. A multilevel logistic regression was used to fit single-pollutant models; quantile g-computation approach was applied to estimate the joint effect of air pollution and PM component mixtures. Main analyses adjusted for maternal age, race/ethnicity, education, median family household income, pre-pregnancy BMI, smoking during pregnancy, insurance type, season of conception and year of delivery. RESULTS The incidence of GDM was 10.9% in the study population. In single-pollutant models, we observed an increased odds for GDM associated with exposures to PM2.5, PM10, NO2 and PM2.5 constituents. The association was strongest for NO2 [adjusted odds ratio (OR) per interquartile range: 1.176, 95% confidence interval (CI): 1.147-1.205)]. In multi-pollutant models, increased ORs for GDM in association with one quartile increase in air pollution mixtures were found for both kriging-based regional air pollutants (NO2, PM2.5, and PM10, OR = 1.095, 95% CI: 1.082-1.108) and PM2.5 constituents (i.e., sulfate, nitrate, ammonium, organic matter and black carbon, OR = 1.258, 95% CI: 1.206-1.314); NO2 (78%) and black carbon (48%) contributed the most to the overall mixture effects among all krigged air pollutants and all PM2.5 constituents, respectively. The risk of GDM associated with air pollution exposure were significantly higher among Hispanic mothers, and overweight/obese mothers. CONCLUSION This study found that exposure to a mixture of ambient PM2.5, PM10, NO2, and PM2.5 chemical constituents was associated with an increased risk of GDM. NO2 and black carbon PM2.5 contributed most to GDM risk.
Collapse
Affiliation(s)
- Yi Sun
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, CA, USA
| | - Xia Li
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Tarik Benmarhnia
- Herbert Wertheim School of Public Health and Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive #0725, CA La Jolla 92093, USA
| | - Jiu-Chiuan Chen
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Chantal Avila
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - David A Sacks
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA; Department of Obstetrics and Gynecology, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Vicki Chiu
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Jeff Slezak
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - John Molitor
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Darios Getahun
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA; Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, USA.
| | - Jun Wu
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, CA, USA.
| |
Collapse
|
67
|
Association of Blood Mercury Levels with the Risks of Overweight and High Waist-to-Height Ratio in Children and Adolescents: Data from the Korean National Health and Nutrition Examination Survey. CHILDREN (BASEL, SWITZERLAND) 2021; 8:children8121087. [PMID: 34943283 PMCID: PMC8700710 DOI: 10.3390/children8121087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 01/18/2023]
Abstract
A previous study in adults demonstrated the substantial role of mercury exposure in the development of overweight and obesity. Although children and adolescents are more susceptible to the toxic effects of mercury than adults, studies on the association of overweight and obesity with mercury exposure is limited. This study aimed to investigate the association of blood mercury levels with the body mass index (BMI) and waist-to-height ratio (WHtR) as obesity indices in Korean children and adolescents. The analyzed cross-sectional data were obtained from 1327 participants (age: 10–18 years; 672 male and 655 female) who completed the Korean National Health and Nutrition Examination Survey 2010–2013. The covariates included sociodemographic factors (age, sex, and household income), dietary factors (fish, shellfish, and seaweed consumption), lifestyle factors (alcohol consumption, smoking status, and exercise), and blood hematocrit levels. The adjusted geometric mean blood mercury level was 2.19 µg/L, and the level of mercury was significantly higher in the overweight (BMI ≥ 85th gender and age-specific percentiles) and high WHtR (cutoff: ≥0.5) groups than in the normal group. In all the participants, the blood mercury levels were significantly positively associated with the BMI and WHtR after adjusting for all covariates (p < 0.05). All the participants in the highest blood mercury level quartile were at a higher risk for overweight and a high WHtR than those in the lowest quartile after adjusting for all covariates (p < 0.05). Our study suggests a significant association between mercury exposure and the risks of overweight and high WHtR in Korean children and adolescents.
Collapse
|
68
|
Pérez-Carrascosa FM, Gómez-Peña C, Echeverría R, Jiménez Moleón JJ, Manuel Melchor J, García-Ruiz A, Navarro-Espigares JL, Cabeza-Barrera J, Martin-Olmedo P, Ortigosa-García JC, Arrebola JP. Historical exposure to persistent organic pollutants and cardiovascular disease: A 15-year longitudinal analysis focused on pharmaceutical consumption in primary care. ENVIRONMENT INTERNATIONAL 2021; 156:106734. [PMID: 34224998 DOI: 10.1016/j.envint.2021.106734] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/26/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Despite restrictions on their production and use, most of the population is still exposed to Persistent Organic Pollutants (POPs), including organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). These chemicals are thought to contribute to the aetiology of highly prevalent chronic conditions, such as cardiovascular diseases (CVDs), although current evidences are still controversial. OBJECTIVES To explore the potential contribution of historical POP exposure to 15-year pharmaceutical consumption in relation to CVD. METHODS This study is framed within GraMo adult cohort. Participants (n = 387) were recruited in two hospitals in Granada province, Southern Spain (2003-2004). Historical exposure to 5 OCPs and 3 non-dioxine-like PCBs was estimated by analysing adipose tissue concentrations at recruitment. Pharmaceutical consumption from recruitment until year 2017 was quantified by reviewing dispensation databases. Average consumption increase (ACI) in CVD medication was calculated by subtracting average consumption in 2002 to the average yearly consumption during follow-up. ACI was expressed as Defined Daily Dose (DDD)/year units. Data analyses were carried out using a multivariable multinomial logistic regression and weighted quantile sum regression (WQS), with ACI categorized in quartiles (Q) as the dependent variable. RESULTS Concentrations of most pollutants showed a positive trend with the quartiles of ACI. Particularly, PCB-153 showed increasing and statistically significant odds ratios (ORs) for Q2 (OR: 1.27, 95% confidence interval (CI): 1.07-1.52), Q3 (OR: 1.49, 95 %CI: 1.17-1.88) and Q4 (OR: 1.42, 95 %CI: 1.13-1.78) vs Q1. Similarly, beta-hexachlorocyclohexane (β-HCH) also showed increasing ORs, that reached statistical significance in Q4 (OR: 1.36, 95 %CI: 1.06-1.74) vs Q1. These findings were corroborated by WQS analyses, that revealed a significant mixture effect, predominantly accounted for by PCB-153 and β-HCH. DISCUSSION Our results suggest that long-term POP exposure might represent a modifiable risk factor for CVD. These findings are relevant for public health campaigns and management, since pharmaceutical consumption is considered an indicator of both morbidity and health expenditure.
Collapse
Affiliation(s)
- Francisco Miguel Pérez-Carrascosa
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Spain; Servicio de Oncología Radioterápica, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Celia Gómez-Peña
- Instituto de Investigación Biosanitaria ibs.GRANADA, Spain; Servicio de Farmacia Hospitalaria, Hospital Universitario San Cecilio, Granada, Spain.
| | - Ruth Echeverría
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
| | - José Juan Jiménez Moleón
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Juan Manuel Melchor
- Instituto de Investigación Biosanitaria ibs.GRANADA, Spain; Departamento de estadística e Investigación Operativa, Universidad de Granada, Granada, Spain; Unidad de Excelencia Modeling Nature, MNat, Universidad de Granada, Granada, Spain
| | - Antonio García-Ruiz
- Departamento de Farmacología y Pediatría, Universidad de Málaga, Málaga, Spain, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - José Luis Navarro-Espigares
- Universidad de Granada, Departamento de Economía Internacional y de España, Granada, Spain; Dirección Económica y Servicios Generales, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - José Cabeza-Barrera
- Instituto de Investigación Biosanitaria ibs.GRANADA, Spain; Servicio de Farmacia Hospitalaria, Hospital Universitario San Cecilio, Granada, Spain
| | | | - Juan Carlos Ortigosa-García
- Unidad de Tecnologías de la Información y Comunicaciones, Hospital Universitario San Cecilio, Granada, Spain
| | - Juan Pedro Arrebola
- Universidad de Granada, Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
69
|
Barrios-Rodríguez R, Pérez-Carrascosa FM, Gómez-Peña C, Mustieles V, Salcedo-Bellido I, Requena P, Martín-Olmedo P, Jiménez-Moleón JJ, Arrebola JP. Associations of accumulated selected persistent organic pollutants in adipose tissue with insulin sensitivity and risk of incident type-2 diabetes. ENVIRONMENT INTERNATIONAL 2021; 155:106607. [PMID: 33971459 DOI: 10.1016/j.envint.2021.106607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Continuous exposure to low doses of persistent organic pollutant (POPs), such as those occurring in the general population, might contribute to the burden of type 2 diabetes mellitus (T2DM). However, evidences from longitudinal studies are scarce. We aimed to explore the associations of accumulated POP exposure with the development of T2DM by means of 1) longitudinal associations with the 16-year incidence of the disease, and 2) complementary cross-sectional analyses with markers of glucose homeostasis at recruitment. Organochlorine pesticide and polychlorinated biphenyl (PCB) concentrations were analyzed in adipose tissue samples and incident T2DM cases were retrieved from clinical records. Homeostatic model assessment values of insulin sensitivity/resistance and β-cell function at recruitment were calculated. Linear and Cox-regression models were performed. In individuals with normal weight/overweight (n = 293), we observed positive dose-response relationships between the studied POPs and T2DM risk, particularly for hexachlorobenzene (HCB) [hazard ratio (HR): 3.96 for 4th quartile versus 1st quartile (Q1); confidence interval (CI) 95%: 0.79, 19.71]. PCB-180 showed a positive but seemingly non-linear association with T2DM risk [HR of 3er quartile (Q3) versus Q1: 6.48; CI 95%: 0.82, 51.29]. Unadjustment for body mass index considerably increased the magnitude of the associations. In the cross-sectional study (n = 180), HCB and PCB-180 were inversely associated with insulin sensitivity and positively associated with insulin resistance parameters. Our results suggest that a higher burden of specific POPs in adipose tissue may disrupt glucose homeostasis, possibly contributing to increase T2DM risk, especially in non-obese adults.
Collapse
Affiliation(s)
- Rocío Barrios-Rodríguez
- Universidad de Granada. Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| | - Francisco M Pérez-Carrascosa
- Universidad de Granada. Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Servicio de Oncología Radioterápica. Hospital Universitario Virgen de las Nieves, Granada, Spain.
| | - Celia Gómez-Peña
- Department of Pharmacy, San Cecilio University Hospital, Granada, Spain.
| | - Vicente Mustieles
- Universidad de Granada. Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; University of Granada, Center for Biomedical Research (CIBM), Spain.
| | - Inmaculada Salcedo-Bellido
- Universidad de Granada. Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| | - Pilar Requena
- Universidad de Granada. Departamento de Medicina Preventiva y Salud Pública, Granada, Spain.
| | - Piedad Martín-Olmedo
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Andalusian School of Public Health (EASP), Granada, Spain.
| | - José Juan Jiménez-Moleón
- Universidad de Granada. Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| | - Juan Pedro Arrebola
- Universidad de Granada. Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| |
Collapse
|
70
|
Emond C, DeVito MJ, Birnbaum LS. A PBPK model describing the pharmacokinetics of γ-HBCD exposure in mice. Toxicol Appl Pharmacol 2021; 428:115678. [PMID: 34390738 PMCID: PMC8674938 DOI: 10.1016/j.taap.2021.115678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/10/2021] [Accepted: 08/09/2021] [Indexed: 11/22/2022]
Abstract
The brominated flame retardant, hexabromocyclododecane (HBCD), is added-but not bound-to consumer products and is eventually found in the environment and human tissues. Commercial-grade HBCD mixtures contain three major stereoisomers, alpha (α), beta (β), and gamma (γ), that are typically at a ratio of 12%:6%:82%, respectively. Although HBCD is widely used, the toxicological effects from its exposure in humans are not clearly understood. Using a physiologically based pharmacokinetic (PBPK) model could help improve our understanding of the toxicity of HBCD. The aim of this work was to develop a PBPK model, consisting of five permeability limited compartments (i.e., brain, liver, adipose tissue, blood, and rest of the body), to evaluate the pharmacokinetics of γ-HBCD in C57BL/6 mice. Physiological parameters related to body size, organ weights, and blood flow were taken from the literature. All partition coefficients were calculated based on the log Kow. The elimination in urine and feces was optimized to reflect the percent dose eliminated, as published in the literature. Compared with data from the literature for brain, liver, blood, and adipose tissue, the model simulations accurately described the mouse data set within 1.5-fold of the data points. Also, two examples showing the utility of the PBPK model supplement the information regarding the internal dose that caused the health effects observed during these studies. Although this version of the PBPK model expressly describes γ-HBCD, more efforts are needed to clarify and improve the model to discriminate between the α, β, and γ stereoisomers.
Collapse
Affiliation(s)
- Claude Emond
- BioSimulation Consulting Inc., Newark, DE, USA; School of Public Health, Department of Environmental and Occupational Health, University of Montreal, Quebec, Canada.
| | - Michael J DeVito
- National Institute of Environmental Health Sciences, National Toxicology Program, Research Triangle Park, NC, USA
| | | |
Collapse
|
71
|
de Prado-Bert P, Ruiz-Arenas C, Vives-Usano M, Andrusaityte S, Cadiou S, Carracedo Á, Casas M, Chatzi L, Dadvand P, González JR, Grazuleviciene R, Gutzkow KB, Haug LS, Hernandez-Ferrer C, Keun HC, Lepeule J, Maitre L, McEachan R, Nieuwenhuijsen MJ, Pelegrí D, Robinson O, Slama R, Vafeiadi M, Sunyer J, Vrijheid M, Bustamante M. The early-life exposome and epigenetic age acceleration in children. ENVIRONMENT INTERNATIONAL 2021; 155:106683. [PMID: 34144479 DOI: 10.1016/j.envint.2021.106683] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
The early-life exposome influences future health and accelerated biological aging has been proposed as one of the underlying biological mechanisms. We investigated the association between more than 100 exposures assessed during pregnancy and in childhood (including indoor and outdoor air pollutants, built environment, green environments, tobacco smoking, lifestyle exposures, and biomarkers of chemical pollutants), and epigenetic age acceleration in 1,173 children aged 7 years old from the Human Early-Life Exposome project. Age acceleration was calculated based on Horvath's Skin and Blood clock using child blood DNA methylation measured by Infinium HumanMethylation450 BeadChips. We performed an exposure-wide association study between prenatal and childhood exposome and age acceleration. Maternal tobacco smoking during pregnancy was nominally associated with increased age acceleration. For childhood exposures, indoor particulate matter absorbance (PMabs) and parental smoking were nominally associated with an increase in age acceleration. Exposure to the organic pesticide dimethyl dithiophosphate and the persistent pollutant polychlorinated biphenyl-138 (inversely associated with child body mass index) were protective for age acceleration. None of the associations remained significant after multiple-testing correction. Pregnancy and childhood exposure to tobacco smoke and childhood exposure to indoor PMabs may accelerate epigenetic aging from an early age.
Collapse
Affiliation(s)
- Paula de Prado-Bert
- ISGlobal, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Carlos Ruiz-Arenas
- ISGlobal, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Marta Vives-Usano
- ISGlobal, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Sandra Andrusaityte
- Department of Environmental Sciences, Vytautas Magnus University, K. Donelaicio Street 58, 44248 Kaunas, Lithuania
| | - Solène Cadiou
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, IAB, 38000 Grenoble, France
| | - Ángel Carracedo
- Grupo de Medicina Xenómica, Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), SERGAS, Rúa Choupana s/n, 15706 Santiago de Compostela, Spain; Centro de Investigación en Red de Enfermedades Raras (CIBERER) y Centro Nacional de Genotipado (CEGEN-PRB3-ISCIII), Universidade de Santiago de Compostela, Praza do Obradoiro s/n, 15782 Santiago de Compostela, Spain
| | - Maribel Casas
- ISGlobal, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, USA; Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Payam Dadvand
- ISGlobal, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Juan R González
- ISGlobal, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Regina Grazuleviciene
- Department of Environmental Sciences, Vytautas Magnus University, K. Donelaicio Street 58, 44248 Kaunas, Lithuania
| | - Kristine B Gutzkow
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Line S Haug
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Carles Hernandez-Ferrer
- ISGlobal, Dr. Aiguader 88, 08003 Barcelona, Spain; CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona 08028, Spain
| | - Hector C Keun
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, IAB, 38000 Grenoble, France
| | - Léa Maitre
- ISGlobal, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Rosie McEachan
- Bradford Institute for Health Research, Bradford Royal Infirmary, Bradford, UK
| | - Mark J Nieuwenhuijsen
- ISGlobal, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Dolors Pelegrí
- ISGlobal, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Oliver Robinson
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, St Marys Hospital Campus, London W21PG, UK
| | - Rémy Slama
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, IAB, 38000 Grenoble, France
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Jordi Sunyer
- ISGlobal, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mariona Bustamante
- ISGlobal, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain.
| |
Collapse
|
72
|
Wang B, Tsakiridis EE, Zhang S, Llanos A, Desjardins EM, Yabut JM, Green AE, Day EA, Smith BK, Lally JSV, Wu J, Raphenya AR, Srinivasan KA, McArthur AG, Kajimura S, Patel JS, Wade MG, Morrison KM, Holloway AC, Steinberg GR. The pesticide chlorpyrifos promotes obesity by inhibiting diet-induced thermogenesis in brown adipose tissue. Nat Commun 2021; 12:5163. [PMID: 34453052 PMCID: PMC8397754 DOI: 10.1038/s41467-021-25384-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/02/2021] [Indexed: 01/01/2023] Open
Abstract
Obesity results from a caloric imbalance between energy intake, absorption and expenditure. In both rodents and humans, diet-induced thermogenesis contributes to energy expenditure and involves the activation of brown adipose tissue (BAT). We hypothesize that environmental toxicants commonly used as food additives or pesticides might reduce BAT thermogenesis through suppression of uncoupling protein 1 (UCP1) and this may contribute to the development of obesity. Using a step-wise screening approach, we discover that the organophosphate insecticide chlorpyrifos suppresses UCP1 and mitochondrial respiration in BAT at concentrations as low as 1 pM. In mice housed at thermoneutrality and fed a high-fat diet, chlorpyrifos impairs BAT mitochondrial function and diet-induced thermogenesis, promoting greater obesity, non-alcoholic fatty liver disease (NAFLD) and insulin resistance. This is associated with reductions in cAMP; activation of p38MAPK and AMPK; protein kinases critical for maintaining UCP1 and mitophagy, respectively in BAT. These data indicate that the commonly used pesticide chlorpyrifos, suppresses diet-induced thermogenesis and the activation of BAT, suggesting its use may contribute to the obesity epidemic.
Collapse
Affiliation(s)
- Bo Wang
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Evangelia E Tsakiridis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Shuman Zhang
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Andrea Llanos
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Eric M Desjardins
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Julian M Yabut
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Alexander E Green
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Emily A Day
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Brennan K Smith
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - James S V Lally
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jianhan Wu
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Amogelang R Raphenya
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Krishna A Srinivasan
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Andrew G McArthur
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Shingo Kajimura
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Jagdish Suresh Patel
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, USA
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Michael G Wade
- Environmental Health Science & Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Katherine M Morrison
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - Alison C Holloway
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada.
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada.
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
73
|
Pinos H, Carrillo B, Merchán A, Biosca-Brull J, Pérez-Fernández C, Colomina MT, Sánchez-Santed F, Martín-Sánchez F, Collado P, Arias JL, Conejo NM. Relationship between Prenatal or Postnatal Exposure to Pesticides and Obesity: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18137170. [PMID: 34281107 PMCID: PMC8295932 DOI: 10.3390/ijerph18137170] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022]
Abstract
In recent years, the worldwide prevalence of overweight and obesity among adults and children has dramatically increased. The conventional model regarding the onset of obesity is based on an imbalance between energy intake and expenditure. However, other possible environmental factors involved, such as the exposure to chemicals like pesticides, cannot be discarded. These compounds could act as endocrine-disrupting chemicals (EDC) that may interfere with hormone activity related to several mechanisms involved in body weight control. The main objective of this study was to systematically review the data provided in the scientific literature for a possible association between prenatal and postnatal exposure to pesticides and obesity in offspring. A total of 25 human and 9 animal studies were analyzed. The prenatal, perinatal, and postnatal exposure to organophosphate, organochlorine, pyrethroid, neonicotinoid, and carbamate, as well as a combined pesticide exposure was reviewed. This systematic review reveals that the effects of pesticide exposure on body weight are mostly inconclusive, finding conflicting results in both humans and experimental animals. The outcomes reviewed are dependent on many factors, including dosage and route of administration, species, sex, and treatment duration. More research is needed to effectively evaluate the impact of the combined effects of different pesticides on human health.
Collapse
Affiliation(s)
- Helena Pinos
- Department of Psychobiology, Faculty of Psychology, National Distance Education University (UNED), 28040 Madrid, Spain; (B.C.); (P.C.)
- Joint Research Institute-UNED-Instituto de Salud Carlos III (IMIENS), 28029 Madrid, Spain;
- Correspondence: (H.P.); (N.M.C.)
| | - Beatriz Carrillo
- Department of Psychobiology, Faculty of Psychology, National Distance Education University (UNED), 28040 Madrid, Spain; (B.C.); (P.C.)
- Joint Research Institute-UNED-Instituto de Salud Carlos III (IMIENS), 28029 Madrid, Spain;
| | - Ana Merchán
- Department of Psychology and Health Research Center (CEINSA), Almeria University, 04120 Almeria, Spain; (A.M.); (C.P.-F.); (F.S.-S.)
| | - Judit Biosca-Brull
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, 43007 Tarragona, Spain; (J.B.-B.); (M.T.C.)
- Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Cristian Pérez-Fernández
- Department of Psychology and Health Research Center (CEINSA), Almeria University, 04120 Almeria, Spain; (A.M.); (C.P.-F.); (F.S.-S.)
| | - María Teresa Colomina
- Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, 43007 Tarragona, Spain; (J.B.-B.); (M.T.C.)
- Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Fernando Sánchez-Santed
- Department of Psychology and Health Research Center (CEINSA), Almeria University, 04120 Almeria, Spain; (A.M.); (C.P.-F.); (F.S.-S.)
| | - Fernando Martín-Sánchez
- Joint Research Institute-UNED-Instituto de Salud Carlos III (IMIENS), 28029 Madrid, Spain;
- National School of Public Health, Institute of Health Carlos III, University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), 28029 Madrid, Spain
| | - Paloma Collado
- Department of Psychobiology, Faculty of Psychology, National Distance Education University (UNED), 28040 Madrid, Spain; (B.C.); (P.C.)
- Joint Research Institute-UNED-Instituto de Salud Carlos III (IMIENS), 28029 Madrid, Spain;
| | - Jorge L. Arias
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, 33003 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Nélida M. Conejo
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, 33003 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
- Correspondence: (H.P.); (N.M.C.)
| |
Collapse
|
74
|
Bennett KA, Robinson KJ, Armstrong HC, Moss SEW, Scholl G, Tranganida A, Eppe G, Thomé JP, Debier C, Hall AJ. Predicting consequences of POP-induced disruption of blubber glucose uptake, mass gain rate and thyroid hormone levels for weaning mass in grey seal pups. ENVIRONMENT INTERNATIONAL 2021; 152:106506. [PMID: 33770584 DOI: 10.1016/j.envint.2021.106506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Persistent organic pollutants (POPs) are endocrine disruptors that alter adipose tissue development, regulation and function. Top marine predators are particularly vulnerable because they possess large fat stores that accumulate POPs. However, links between endocrine or adipose tissue function disruption and whole animal energetics have rarely been investigated. We predicted the impact of alterations to blubber metabolic characteristics and circulating thyroid hormone (TH) levels associated with polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides (OCPs) on suckling mass gain and weaning mass in wild grey seal pups. Glucose uptake by inner blubber was a strong predictor of whole animal mass gain rate, which in turn, resulted in heavier weaning mass. Weaning mass was predicted to increase by 3.7 ± 1.59 (sem) %, through increased mass gain rate, in the absence of the previously reported suppressive effect of dioxin-like PCB (DL-PCBs) on blubber glucose uptake. PBDEs were, conversely, associated with faster mass gain. Alleviation of this effect was predicted to reduce weaning mass by 6.02 ± 1.86% (sem). To better predict POPs effects on energy balance, it is crucial to determine if and how PBDEs promote mass gain in grey seal pups. Weaning mass was negatively related to total T3 (TT3) levels. A 20% (range = 9.3-31.7%) reduction in TT3 by DL-PCBs partially overcame the effect of DL-PCB -mediated reduction in blubber glucose uptake. Overall, DL-PCBs were thus predicted to reduce weaning mass by 1.86 ± 1.60%. Organohalogen impacts on whole-animal energy balance in grey seal pups appear to partially offset each other through opposing effects on different mechanisms. POP effects were generally minor, but the largest POP-induced reductions in weaning mass were predicted to occur in pups that were already small. Since weaning mass is positively related to first-year survival, POPs may disproportionately affect smaller individuals, and could continue to have population-level impacts even when levels are relatively low compared to historical values. Our findings show how in vitro experiments combined with measurements in vivo can help elucidate mechanisms that underpin energy balance regulation and help to quantify the magnitude of disruptive effects by contaminants and other stressors in wildlife.
Collapse
Affiliation(s)
- Kimberley A Bennett
- Division of Health Sciences, School of Applied Sciences, Abertay University, Kydd Building, Bell St., Dundee DD1 1HG, UK.
| | - Kelly J Robinson
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife KY 16 8LB, UK; Centre for Biological Diversity, Sir Harold Mitchell Building, University of St Andrews, Greenside Place, St Andrews, Fife KY16 9TF, UK.
| | - Holly C Armstrong
- Division of Health Sciences, School of Applied Sciences, Abertay University, Kydd Building, Bell St., Dundee DD1 1HG, UK.
| | - Simon E W Moss
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife KY 16 8LB, UK.
| | - Georges Scholl
- Center for Analytical Research and Technology (CART), Research Unit MolSys, B6c, Department of Chemistry, Université de Liège, 4000 Liege, Belgium.
| | - Alexandra Tranganida
- Division of Health Sciences, School of Applied Sciences, Abertay University, Kydd Building, Bell St., Dundee DD1 1HG, UK.
| | - Gauthier Eppe
- Center for Analytical Research and Technology (CART), Research Unit MolSys, B6c, Department of Chemistry, Université de Liège, 4000 Liege, Belgium.
| | - Jean-Pierre Thomé
- Center for Analytical Research and Technology (CART), Laboratory of Animal Ecology and Ecotoxicology (LEAE), Université de Liège, 4000 Liege, Belgium.
| | - Cathy Debier
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| | - Ailsa J Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife KY 16 8LB, UK.
| |
Collapse
|
75
|
Cohen IC, Cohenour ER, Harnett KG, Schuh SM. BPA, BPAF and TMBPF Alter Adipogenesis and Fat Accumulation in Human Mesenchymal Stem Cells, with Implications for Obesity. Int J Mol Sci 2021; 22:ijms22105363. [PMID: 34069744 PMCID: PMC8160667 DOI: 10.3390/ijms22105363] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022] Open
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical used in the production of plastics, and is linked to developmental, reproductive, and metabolic disorders including obesity. Manufacturers have begun using ‘BPA-free’ alternatives instead of BPA in many consumer products. However, these alternatives have had much less testing and oversight, yet they are already being mass-produced and used across industries from plastics to food-contact coatings. Here, we used human female adipose-derived stem cells (hASCs), a type of adult mesenchymal stem cell, to compare the effects of BPA and BPA alternatives on adipogenesis or fat cell development in vitro. We focused on two commonly used BPA replacements, bisphenol AF (BPAF) and tetramethyl bisphenol F (TMBPF; monomer of the new valPure V70 food-contact coating). Human ASCs were differentiated into adipocytes using chemically defined media in the presence of control differentiation media with and without 17β-estradiol (E2; 10 μM), or with increasing doses of BPA (0, 0.1 and 1 μM), BPAF (0, 0.1, 1 and 10 nM), or TMBPF (0, 0.01 and 0.1 μM). After differentiation, the cells were stained and imaged to visualize and quantify the accumulation of lipid vacuoles and number of developing fat cells. Treated cells were also examined for cell viability and apoptosis (programmed cell death) using the respective cellular assays. Similar to E2, BPA at 0.1 μM and BPAF at 0.1 nM, significantly increased adipogenesis and lipid production by 20% compared to control differentiated cells (based on total lipid vacuole number to cell number ratios), whereas higher levels of BPA and BPAF significantly decreased adipogenesis (p < 0.005). All tested doses of TMBPF significantly reduced adipogenesis and lipid production by 30–40%, likely at least partially through toxic effects on stem cells, as viable cell numbers decreased and apoptosis levels increased throughout differentiation. These findings indicate that low, environmentally-relevant doses of BPA, BPAF, and TMBPF have significant effects on fat cell development and lipid accumulation, with TMBPF having non-estrogenic, anti-adipogenic effects. These and other recent results may provide a potential cellular mechanism between exposure to bisphenols and human obesity, and underscore the likely impact of these chemicals on fat development in vivo.
Collapse
Affiliation(s)
- Isabel C. Cohen
- Department of Biology, Saint Mary’s College of California, Moraga, CA 94575, USA; (I.C.C.); (K.G.H.)
| | - Emry R. Cohenour
- Department of Cell and Molecular Biology, California State University, East Bay, Hayward, CA 94542, USA;
| | - Kristen G. Harnett
- Department of Biology, Saint Mary’s College of California, Moraga, CA 94575, USA; (I.C.C.); (K.G.H.)
| | - Sonya M. Schuh
- Department of Biology, Saint Mary’s College of California, Moraga, CA 94575, USA; (I.C.C.); (K.G.H.)
- Correspondence:
| |
Collapse
|
76
|
Bjørklund G, Tippairote T, Dadar M, Lizcano F, Aaseth J, Borisova O. The Roles of Dietary, Nutritional and Lifestyle Interventions in Adipose Tissue Adaptation and Obesity. Curr Med Chem 2021; 28:1683-1702. [PMID: 32368968 DOI: 10.2174/0929867327666200505090449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/03/2020] [Accepted: 03/28/2020] [Indexed: 11/22/2022]
Abstract
The obesity and the associated non-communicable diseases (NCDs) are globally increasing in their prevalence. While the modern-day lifestyle required less ventilation of metabolic energy through muscular activities, this lifestyle transition also provided the unlimited accession to foods around the clock, which prolong the daily eating period of foods that contained high calorie and high glycemic load. These situations promote the high continuous flux of carbon substrate availability in mitochondria and induce the indecisive bioenergetic switches. The disrupted bioenergetic milieu increases the uncoupling respiration due to the excess flow of the substrate-derived reducing equivalents and reduces ubiquinones into the respiratory chain. The diversion of the uncoupling proton gradient through adipocyte thermogenesis will then alleviate the damaging effects of free radicals to mitochondria and other organelles. The adaptive induction of white adipose tissues (WAT) to beige adipose tissues (beAT) has shown beneficial effects on glucose oxidation, ROS protection and mitochondrial function preservation through the uncoupling protein 1 (UCP1)-independent thermogenesis of beAT. However, the maladaptive stage can eventually initiate with the persistent unhealthy lifestyles. Under this metabolic gridlock, the low oxygen and pro-inflammatory environments promote the adipose breakdown with sequential metabolic dysregulation, including insulin resistance, systemic inflammation and clinical NCDs progression. It is unlikely that a single intervention can reverse all these complex interactions. A comprehensive protocol that includes dietary, nutritional and all modifiable lifestyle interventions, can be the preferable choice to decelerate, stop, or reverse the NCDs pathophysiologic processes.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Torsak Tippairote
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Olga Borisova
- Odesa I. I. Mechnikov National University, Odessa, Ukraine
| |
Collapse
|
77
|
Foerster C, Zúñiga-Venegas L, Enríquez P, Rojas J, Zamora C, Muñoz X, Pancetti F, Muñoz-Quezada MT, Lucero B, Saracini C, Salas C, Cortés S. Levels of Polychlorinated Dibenzo- p-Dioxins/Furans (PCDD/Fs) and Dioxin-Like Polychlorinated Biphenyls (DL-PCBs) in Human Breast Milk in Chile: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4825. [PMID: 33946521 PMCID: PMC8125136 DOI: 10.3390/ijerph18094825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022]
Abstract
Persistent organic pollutants (POPs) are organic compounds that resist biochemical degradation, moving long distances across the atmosphere before deposition occurs. Our goal was to provide up-to-date data on the levels of polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) in breast milk from Chilean women and to estimate the exposure of infants due to breast milk consumption. In Chile, we conducted a cross-sectional study based on methodologies proposed by the WHO, with a sample of 30 women recruited from three defined areas: 10 from the Arica Region (urban; Arica and Parinacota Region), 10 from Coltauco (rural; O'Higgins Region), and 10 from Molina (40% rural; Maule Region). High-resolution gas chromatography coupled with high-resolution mass spectrometry (HRGC/HRMS) was performed on pooled samples from each area. We calculated equivalent toxic concentrations (WHO-TEQ) based on the current WHO Toxic Equivalency Factors (TEF). The minimum and maximum values of ∑ PCDDs/Fs + DL-PCBs-TEQ were 4.317 pg TEQ/g fat in Coltauco and 6.31 pg TEQ/g fat in Arica. Molina had a total TEQ of 5.50 pg TEQ/g fat. The contribution of PCDD/Fs was approximately five-fold higher than that of DL-PCBs. The Estimated Daily Intake (EDI) of ∑ PCDDs/Fs + DL-PCBs based on the three pooled samples ranged between 6.71 and 26.28 pg TEQ/kg body weight (bw)/day, with a mean intake of 16.11 (±6.71) pg TEQ/kg bw/day in breastfed children from 0 to 24 months old. These levels were lower than those reported in international studies. Despite the fact that the observed levels were low compared to those in most industrialized countries, the detection of a variety of POPs in breast milk from Chilean women indicates the need for follow-up studies to determine whether such exposures during childhood could represent a health risk in adulthood.
Collapse
Affiliation(s)
- Claudia Foerster
- Instituto de Ciencias Agroalimentarias, Animales y Ambientales (ICA3), Universidad de O’Higgins, Campus Colchagua, Ruta 90, KM 3, San Fernando 3070000, Chile;
| | - Liliana Zúñiga-Venegas
- Laboratorio de Investigaciones Biomédicas, Departamento de Preclínicas, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile;
- Centro de Investigaciones y Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca 3460000, Chile;
| | - Pedro Enríquez
- Laboratorio Química e Inocuidad Alimentaria, Servicio Agrícola Ganadero, Ruta 68 N° 19100, Pudahuel 9020000, Chile; (P.E.); (J.R.); (C.Z.)
| | - Jacqueline Rojas
- Laboratorio Química e Inocuidad Alimentaria, Servicio Agrícola Ganadero, Ruta 68 N° 19100, Pudahuel 9020000, Chile; (P.E.); (J.R.); (C.Z.)
| | - Claudia Zamora
- Laboratorio Química e Inocuidad Alimentaria, Servicio Agrícola Ganadero, Ruta 68 N° 19100, Pudahuel 9020000, Chile; (P.E.); (J.R.); (C.Z.)
| | - Ximena Muñoz
- Secretaria Regional de Salud Arica-Parinacota, Maipú 410, Arica 1000000, Chile;
| | - Floria Pancetti
- Laboratorio de Neurotoxicología Ambiental, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Larrondo N° 1281, Coquimbo 1780000, Chile;
- Centro de Investigación y Desarrollo Tecnológico en Algas y Otros Recursos Biológicos, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1780000, Chile
| | - María Teresa Muñoz-Quezada
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca 3460000, Chile; (M.T.M.-Q.); (B.L.)
| | - Boris Lucero
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca 3460000, Chile; (M.T.M.-Q.); (B.L.)
| | - Chiara Saracini
- Centro de Investigaciones y Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca 3460000, Chile;
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca 3460000, Chile; (M.T.M.-Q.); (B.L.)
| | - Claudio Salas
- Instituto de Investigaciones Agropecuarias INIA Intihuasi, Colina San Joaquín S/N, La Serena 1700000, Chile;
| | - Sandra Cortés
- Departamento de Salud Pública, Escuela de Medicina, Universidad Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
- Advanced Center for Chronic Diseases (ACCDIS), Santiago 8320000, Chile
- Centro de Desarrollo Urbano Sustentable (CEDEUS), Santiago 8320000, Chile
| |
Collapse
|
78
|
Rothbauer M, Bachmann BE, Eilenberger C, Kratz SR, Spitz S, Höll G, Ertl P. A Decade of Organs-on-a-Chip Emulating Human Physiology at the Microscale: A Critical Status Report on Progress in Toxicology and Pharmacology. MICROMACHINES 2021; 12:470. [PMID: 33919242 PMCID: PMC8143089 DOI: 10.3390/mi12050470] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022]
Abstract
Organ-on-a-chip technology has the potential to accelerate pharmaceutical drug development, improve the clinical translation of basic research, and provide personalized intervention strategies. In the last decade, big pharma has engaged in many academic research cooperations to develop organ-on-a-chip systems for future drug discoveries. Although most organ-on-a-chip systems present proof-of-concept studies, miniaturized organ systems still need to demonstrate translational relevance and predictive power in clinical and pharmaceutical settings. This review explores whether microfluidic technology succeeded in paving the way for developing physiologically relevant human in vitro models for pharmacology and toxicology in biomedical research within the last decade. Individual organ-on-a-chip systems are discussed, focusing on relevant applications and highlighting their ability to tackle current challenges in pharmacological research.
Collapse
Affiliation(s)
- Mario Rothbauer
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-22, 1090 Vienna, Austria
| | - Barbara E.M. Bachmann
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Allgemeine Unfallversicherungsanstalt (AUVA) Research Centre, Donaueschingenstraße 13, 1200 Vienna, Austria
| | - Christoph Eilenberger
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Sebastian R.A. Kratz
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Drug Delivery and 3R-Models Group, Buchmann Institute for Molecular Life Sciences & Institute for Pharmaceutical Technology, Goethe University Frankfurt Am Main, 60438 Frankfurt, Germany
| | - Sarah Spitz
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Gregor Höll
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Peter Ertl
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
79
|
Wan MLY, Co VA, El-Nezami H. Endocrine disrupting chemicals and breast cancer: a systematic review of epidemiological studies. Crit Rev Food Sci Nutr 2021; 62:6549-6576. [PMID: 33819127 DOI: 10.1080/10408398.2021.1903382] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Endocrine-disrupting compounds (EDCs) are ubiquitous substances that are found in our everyday lives, including pesticides, plasticizers, pharmaceutical agents, personal care products, and also in food products and food packaging. Increasing epidemiological evidence suggest that EDCs may affect the development or progression of breast cancer and consequently lead to lifelong harmful health consequences, especially when exposure occurs during early life in humans. Yet so far no appraisal of the available evidence has been conducted on this topic. OBJECTIVE To systematically review all the available epidemiological studies about the association of the levels of environmental exposures of EDCs with breast cancer risk. METHODS The search was performed in accordance with the PRISMA guidelines. We retrieved articles from PubMed (MEDLINE) until 10 March 2021. The key words used in this research were: "Endocrine disruptor(s)" OR "Endocrine disrupting chemical(s)" OR any of the EDCs mentioned below AND "Breast cancer" to locate all relevant articles published. We included only cohort studies and case-control studies. All relevant articles were accessed in full text and were evaluated and summarized in tables. RESULTS We identified 131 studies that met the search criteria and were included in this systematic review. EDCs reviewed herein included pesticides (e.g. p,p'-dichlorodiphenyltrichloroethane (DDT), p,p'-dichlorodiphenyldichloroethylene (DDE), atrazine, 2,3,7,8-tetrachloridibenzo-p-dioxin (TCDD or dioxin)), synthetic chemicals (e.g. bisphenol A (BPA), phthalates, per- and polyfluoroalkyl substances (PFAS), parabens, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), contraceptive pills), phytoestrogens (e.g. genistein, resveratrol), and certain mycotoxins (e.g. zearalenone). Most studies assessed environmental EDCs exposure via biomarker measurements. CONCLUSION We identified certain EDC exposures could potentially elevate the risk of breast cancer. As majority of EDCs are highly persistent in the environment and bio-accumulative, it is essential to assess the long-term impacts of EDC exposures, especially multi-generational and transgenerational. Also, since food is often a major route of exposure to EDCs, well-designed exposure assessments of potential EDCs in food and food packing are necessary and their potential link to breast cancer development need to be carefully evaluated for subsequent EDC policy making and regulations.
Collapse
Affiliation(s)
- Murphy Lam Yim Wan
- Faculty of Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong S.A.R.,Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Vanessa Anna Co
- Faculty of Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| | - Hani El-Nezami
- Faculty of Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong S.A.R.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
80
|
Pollack AZ, Krall JR, Kannan K, Buck Louis GM. Adipose to serum ratio and mixtures of persistent organic pollutants in relation to endometriosis: Findings from the ENDO Study. ENVIRONMENTAL RESEARCH 2021; 195:110732. [PMID: 33484721 PMCID: PMC8432300 DOI: 10.1016/j.envres.2021.110732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/14/2020] [Accepted: 01/07/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND Endometriosis is an estrogen-dependent disease. Endocrine disrupting chemicals (EDCs) and their mixtures may play an etiologic role. OBJECTIVES We evaluated an adipose-to-serum ratio (ASR) of lipophilic EDCs and their mixtures associated with incident endometriosis. METHODS We quantified 13 polychlorinated biphenyl (PCB) congeners, 6 polybrominated diphenyl ether (PBDE) congeners, and 11 organochlorine pesticides (OCPs) in serum and omental fat among women from the ENDO Study (2007-2009) aged 18-44 years diagnosed with (n=190) or without (n=283) surgically-visualized incident endometriosis. Odds ratios (OR) and 95% confidence intervals (CI) between ASR and endometriosis were estimated using logistic regression models adjusted for age (years), body mass index (kg/m2), serum cotinine (ng/ml), and breastfeeding conditional on parity. Bayesian hierarchical models (BHM) compared estimated associations for adipose and ASR to serum. Bayesian kernel machine regression (BKMR) estimated change in latent health and 95% posterior intervals (PI) between chemical mixtures and endometriosis. RESULTS Select ASR for estrogenic PCBs and OCPs were associated with an increased odds of an endometriosis diagnosis, but not for anti-estrogenic PCBs or PBDEs. Across all chemicals, BHMs generated ORs that were on average 14% (95% PI: 6%, 22%) higher for adipose and 20% (95% PI: 12%, 29%) higher for ASR in comparison to serum. ORs from BHMs were greater for estrogenic PCBs and OCPs, with no differences for PBDEs. BKMR models comparing the 75th to 25th percentile were moderately associated with endometriosis for estrogenic PCBs [adipose 0.27 (95% PI: 0.18, 0.72) and ASR 0.37 (95% PI: 0.06, 0.80)] and OCPs [adipose 0.17 (95% PI: 0.21, 0.56) and ASR 0.26 (95% PI: 0.05, 0.57)], but not for antiestrogenic PCBs and PBDEs. DISCUSSION ASR added little insight beyond adipose for lipophilic chemicals. BKMR results supported associations between ASR and adipose estrogenic PCB and OCP mixtures and incident endometriosis. These findings underscore the importance of choice of biospecimen and considering mixtures when assessing exposure-disease relationships.
Collapse
Affiliation(s)
- Anna Z Pollack
- Department of Global and Community Health, College of Health and Human Services George Mason University, Fairfax, VA, 22030, USA.
| | - Jenna R Krall
- Department of Global and Community Health, College of Health and Human Services George Mason University, Fairfax, VA, 22030, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Germaine M Buck Louis
- College of Health and Human Services George Mason University, Fairfax, VA, 22030, USA
| |
Collapse
|
81
|
Environmental Contaminant Body Burdens and the Relationship with Blood Pressure Measures Among Indigenous Adults. Environ Epidemiol 2021; 5:e137. [PMID: 33870012 PMCID: PMC8043735 DOI: 10.1097/ee9.0000000000000137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/20/2021] [Indexed: 12/26/2022] Open
Abstract
Supplemental Digital Content is available in the text. Blood pressure (BP) increase cardiovascular disease (CVD) risk. Indigenous Canadians experience slightly higher CVD compared with nonIndigenous Canadians. This study examined the role of polychlorinated biphenyls (PCBs), other organic compound concentrations (OCs), and toxic metals on blood pressure measures among Indigenous Canadians.
Collapse
|
82
|
Tawar N, Banerjee BD, Mishra BK, Sharma T, Tyagi S, Madhu SV, Agarwal V, Gupta S. Adipose Tissue Levels of DDT as Risk Factor for Obesity and Type 2 Diabetes Mellitus. Indian J Endocrinol Metab 2021; 25:160-165. [PMID: 34660245 PMCID: PMC8477732 DOI: 10.4103/ijem.ijem_198_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Exposure to dichlorodiphenyltrichloroethane (DDT), a potent lipophilic organochlorine pesticide, has long been linked as a risk factor for type 2 diabetes mellitus (T2DM). However, its presence in the adipose tissues of the T2DM subjects has not been explored in the Indian population, where this long-banned pesticide is still in use. The present study was conducted to evaluate the possible association of DDT and its metabolites in obese and non-obese T2DM subjects. METHODS Subjects with normal glucose tolerance (n = 50) and T2DM (n = 50) were divided into equal numbers in obese and non-obese groups. Their plasma glucose levels, HbA1c, and lipid profile were measured. The adipose tissues were collected intraoperatively, and DDT and its metabolites were measured using a gas chromatograph equipped with an electron capture detector. RESULTS Obese subjects, irrespective of their glycemic status, and T2DM subjects had higher concentrations of DDT. p, p' DDT was found to increase the odds for diabetes, and o, p' DDT for central obesity. p, p' DDD was also strongly correlated with central obesity, glycemic parameters, and triglycerides. CONCLUSION The excess deposition of p, p' DDD, o, p' DDT, and p, p' DDT in obese subjects may proceed to T2DM by disrupting triglycerides and glycemic parameters.
Collapse
Affiliation(s)
- Neha Tawar
- Department of Biochemistry, University College of Medical Sciences (UCMS) and GTB Hospital (University of Delhi), Dilshad Garden, Delhi, India
| | - Basu Dev Banerjee
- Department of Biochemistry, University College of Medical Sciences (UCMS) and GTB Hospital (University of Delhi), Dilshad Garden, Delhi, India
| | - Brijesh Kumar Mishra
- Department of Diabetes Endocrinology and Metabolism, University College of Medical Sciences (UCMS) and GTB Hospital (University of Delhi), Dilshad Garden, Delhi, India
| | - Tusha Sharma
- Department of Biochemistry, University College of Medical Sciences (UCMS) and GTB Hospital (University of Delhi), Dilshad Garden, Delhi, India
| | - Shipra Tyagi
- Department of Environmental Studies, University of Delhi, Delhi, India
| | - Sri Venkata Madhu
- Department of Diabetes Endocrinology and Metabolism, University College of Medical Sciences (UCMS) and GTB Hospital (University of Delhi), Dilshad Garden, Delhi, India
| | - Vivek Agarwal
- Department of Surgery, University College of Medical Sciences (UCMS) and GTB Hospital (University of Delhi), Dilshad Garden, Delhi, India
| | - Sanjay Gupta
- Department of Surgery, University College of Medical Sciences (UCMS) and GTB Hospital (University of Delhi), Dilshad Garden, Delhi, India
| |
Collapse
|
83
|
Koual M, Tomkiewicz C, Guerrera IC, Sherr D, Barouki R, Coumoul X. Aggressiveness and Metastatic Potential of Breast Cancer Cells Co-Cultured with Preadipocytes and Exposed to an Environmental Pollutant Dioxin: An in Vitro and in Vivo Zebrafish Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:37002. [PMID: 33683140 PMCID: PMC7939125 DOI: 10.1289/ehp7102] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 01/27/2021] [Accepted: 02/09/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Breast cancer (BC) is a major public health concern, and its prognosis is very poor once metastasis occurs. The tumor microenvironment and chemical pollution have been suggested recently to contribute, independently, to the development of metastatic cells. The BC microenvironment consists, in part, of adipocytes and preadipocytes in which persistent organic pollutants (POPs) can be stored. OBJECTIVES We aimed to test the hypothesis that these two factors (2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an extensively studied, toxic POP and the microenvironment) may interact to increase tumor aggressiveness. METHODS We used a co-culture model using BC MCF-7 cells or MDA-MB-231 cells together with hMADS preadipocytes to investigate the contribution of the microenvironment and 2,3,7,8-tetrachlorodibenzo-p-dioxin TCDD on BC cells. Global differences were characterized using a high-throughput proteomic assay. Subsequently we measured the BC stem cell-like activity, analyzed the cell morphology, and used a zebrafish larvae model to study the metastatic potential of the BC cells. RESULTS We found that coexposure to TCDD and preadipocytes modified BC cell properties; moreover, it induced the expression of ALDH1A3, a cancer stem cell marker, and the appearance of giant cancer cells with cell-in-cell structures (CICs), which are associated with malignant metastatic progression, that we demonstrated in vivo. DISCUSSION The results of our study using BC cell lines co-cultured with preadipocytes and a POP and an in vivo zebrafish model of metastasis suggest that the interactions between BC cells and their microenvironment could affect their invasive or metastatic potential. https://doi.org/10.1289/EHP7102.
Collapse
Affiliation(s)
- Meriem Koual
- UMR-S1124, Institut national de la santé et de la recherché médicale (Inserm), T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, Paris, France
- Service de Chirurgie Cancérologique Gynécologique et du Sein, Hôpital Européen Georges-Pompidou, Assistance Publique-Hôpitaux de Paris, France
- Université de Paris, Paris, France
| | - Céline Tomkiewicz
- UMR-S1124, Institut national de la santé et de la recherché médicale (Inserm), T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, Paris, France
| | - Ida Chiara Guerrera
- Plateforme protéomique 3P5-Necker, Structure Fédérative de Recherche Necker, Université de Paris, US24/CNRS UMS3633, Inserm, Paris, France
| | - David Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Robert Barouki
- UMR-S1124, Institut national de la santé et de la recherché médicale (Inserm), T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, Paris, France
- Université de Paris, Paris, France
| | - Xavier Coumoul
- UMR-S1124, Institut national de la santé et de la recherché médicale (Inserm), T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, Paris, France
- Université de Paris, Paris, France
| |
Collapse
|
84
|
García F, Barbería E, Torralba P, Landin I, Laguna C, Marquès M, Nadal M, Domingo JL. Decreasing temporal trends of polychlorinated dibenzo-p-dioxins and dibenzofurans in adipose tissue from residents near a hazardous waste incinerator. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141844. [PMID: 32861949 DOI: 10.1016/j.scitotenv.2020.141844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) are very toxic chemicals which are emitted in waste incineration and whose exposure has important adverse effects for the human health. In 2019, adipose tissue samples were collected from 15 individuals with a median age of 61 years, who had been living near a hazardous waste incinerator in Constantí (Spain). The content of PCDD/Fs in each sample was analyzed. The results were compared with data from previous studies, conducted before (1998) and after (2002, 2007 and 2013) the facility started to operate, and based on populations of similar age. In 2019, the mean concentration of PCDD/Fs in adipose tissue was 6.63 pg WHO-TEQ/g fat, ranging from 0.95 to 12.95 pg WHO-TEQ/g fat. A significant reduction was observed with respect to the baseline study (1998), when a mean PCDD/Fs concentration of 40.1 pg WHO-TEQ/g fat was found. Moreover, the current level was much lower than those observed in the 3 previous studies (9.89, 14.6 and 11.5 pg WHO-TEQ/g fat in 2002, 2007 and 2013, respectively). The body burdens of PCDD/Fs were strongly correlated with age. The significant reduction of PCDD/Fs levels in adipose tissue fully agreed with the decreasing trend of the dietary intake of PCDD/Fs by the population of the zone (from 210.1 pg I-TEQ/day in 2018 to 8.54 pg WHO-TEQ/day in 2018). Furthermore, a similar decrease has been also observed in other biological, such as breast milk and plasma. The current data in adipose tissue, as well as those in other biological monitors, indicate that the population living near the HWI is not particularly exposed to high levels of PCDD/Fs. However, biomonitoring studies cannot differentiate the impact of the HWI emissions from food consumption patterns. This question can be only solved by conducting complementary investigations and contrasting the results of monitoring and epidemiological studies.
Collapse
Affiliation(s)
- Francisco García
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut de Medicina Legal i Ciències Forenses, Divisió de Tarragona, Rambla del President Lluís Companys 10, 43005 Tarragona, Catalonia, Spain
| | - Eneko Barbería
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut de Medicina Legal i Ciències Forenses, Divisió de Tarragona, Rambla del President Lluís Companys 10, 43005 Tarragona, Catalonia, Spain
| | - Pilar Torralba
- Institut de Medicina Legal i Ciències Forenses, Divisió de Tarragona, Rambla del President Lluís Companys 10, 43005 Tarragona, Catalonia, Spain
| | - Inés Landin
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut de Medicina Legal i Ciències Forenses, Divisió de Tarragona, Rambla del President Lluís Companys 10, 43005 Tarragona, Catalonia, Spain
| | - Carlos Laguna
- Institut de Medicina Legal i Ciències Forenses, Divisió de Tarragona, Rambla del President Lluís Companys 10, 43005 Tarragona, Catalonia, Spain
| | - Montse Marquès
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain.
| |
Collapse
|
85
|
Yao Y, Lawrence DA. Susceptibility to COVID-19 in populations with health disparities: Posited involvement of mitochondrial disorder, socioeconomic stress, and pollutants. J Biochem Mol Toxicol 2021; 35:e22626. [PMID: 32905655 PMCID: PMC9340490 DOI: 10.1002/jbt.22626] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/30/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022]
Abstract
SARS-CoV-2 is a novel betacoronavirus that has caused the global health crisis known as COVID-19. The implications of mitochondrial dysfunction with COVID-19 are discussed as well as deregulated mitochondria and inter-organelle functions as a posited comorbidity enhancing detrimental outcomes. Many environmental chemicals (ECs) and endocrine-disrupting chemicals can do damage to mitochondria and cause mitochondrial dysfunction. During infection, SARS-CoV-2 via its binding target ACE2 and TMPRSS2 can disrupt mitochondrial function. Viral genomic RNA and structural proteins may also affect the normal function of the mitochondria-endoplasmic reticulum-Golgi apparatus. Drugs considered for treatment of COVID-19 should consider effects on organelles including mitochondria functions. Mitochondrial self-balance and clearance via mitophagy are important in SARS-CoV-2 infection, which indicate monitoring and protection of mitochondria against SARS-CoV-2 are important. Mitochondrial metabolomic analysis may provide new indicators of COVID-19 prognosis. A better understanding of the role of mitochondria during SARS-CoV-2 infection may help to improve intervention therapies and better protect mitochondrial disease patients from pathogens as well as people living with poor nutrition and elevated levels of socioeconomic stress and ECs.
Collapse
Affiliation(s)
- Yunyi Yao
- Wadsworth Center, New York State Department of Health, Center for Medical Science, Albany, New York
| | - David A Lawrence
- Wadsworth Center, New York State Department of Health, Center for Medical Science, Albany, New York
- Department of Environmental Health Sciences, University at Albany School of Public Health, Rensselaer, New York
| |
Collapse
|
86
|
Khare S, Akre T, Gorey V, Ghosh R, Palav S. Bariatric Medicine: A new faculty; Dealing with obesity: An account of successful intervention. APOLLO MEDICINE 2021. [DOI: 10.4103/am.am_24_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
87
|
Szychowski KA, Skóra B, Kryshchyshyn-Dylevych A, Kaminskyy D, Rybczyńska-Tkaczyk K, Lesyk R, Gmiński J. Induction of Cyp450 enzymes by 4-thiazolidinone-based derivatives in 3T3-L1 cells in vitro. Naunyn Schmiedebergs Arch Pharmacol 2020; 394:915-927. [PMID: 33219472 PMCID: PMC8102453 DOI: 10.1007/s00210-020-02025-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/15/2020] [Indexed: 12/24/2022]
Abstract
4-Thiazolidinones and related derivatives are regarded as privileged structures in medicinal chemistry and a source of new drug-like compounds. To date it is known that thiazolidinones are able to induce CYP1A1 activity in 3T3-L1 cells. Therefore, to extend the knowledge of the mechanism of thiazolidinones in the cell, four chemically synthesized heterocycles were tested on 3T3-L1 cells. The 3T3-L1 cells were exposed to Les-2194, Les-3640, Les-5935, and Les-6166. Our study showed that 1 μM βNF, Les-2194, and Les-6166 decreased the expression of Ahr mRNA. In turn, βNF, Les-2194, and Les-3640 increased the Cyp1a1 mRNA expression at the same time interval. On the other hand, Les-5935 was found to decrease the Cyp1a1 mRNA expression. Interestingly, the expression of Cyp1a2 mRNA was activated only by βNF and Les-2194. The expression of Cyp1b1 mRNA in the 3T3 cell line increased after the βNF and Les-2194 treatment but declined after the exposure to Les-5935 and Les-6166. Moreover, the Les-2194 and Les-5935 compounds were shown to increase the activity of EROD, MROD, and PROD. Les-3640 increased the activity of EROD and decreased the activity of PROD. In turn, the treatment with Les-6166 resulted in an increase in the activity of EROD and a decrease in the activity of MROD and PROD in the 3T3-L1 cells.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland.
| | - Bartosz Skóra
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| | - Anna Kryshchyshyn-Dylevych
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | - Danylo Kaminskyy
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | - Kamila Rybczyńska-Tkaczyk
- Department of Environmental Microbiology, University of Life Sciences, Leszczyńskiego 7, 20-069, Lublin, Poland
| | - Roman Lesyk
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland.,Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | - Jan Gmiński
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| |
Collapse
|
88
|
Orešič M, McGlinchey A, Wheelock CE, Hyötyläinen T. Metabolic Signatures of the Exposome-Quantifying the Impact of Exposure to Environmental Chemicals on Human Health. Metabolites 2020; 10:metabo10110454. [PMID: 33182712 PMCID: PMC7698239 DOI: 10.3390/metabo10110454] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Human health and well-being are intricately linked to environmental quality. Environmental exposures can have lifelong consequences. In particular, exposures during the vulnerable fetal or early development period can affect structure, physiology and metabolism, causing potential adverse, often permanent, health effects at any point in life. External exposures, such as the “chemical exposome” (exposures to environmental chemicals), affect the host’s metabolism and immune system, which, in turn, mediate the risk of various diseases. Linking such exposures to adverse outcomes, via intermediate phenotypes such as the metabolome, is one of the central themes of exposome research. Much progress has been made in this line of research, including addressing some key challenges such as analytical coverage of the exposome and metabolome, as well as the integration of heterogeneous, multi-omics data. There is strong evidence that chemical exposures have a marked impact on the metabolome, associating with specific disease risks. Herein, we review recent progress in the field of exposome research as related to human health as well as selected metabolic and autoimmune diseases, with specific emphasis on the impacts of chemical exposures on the host metabolome.
Collapse
Affiliation(s)
- Matej Orešič
- School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden; (M.O.); (A.M.)
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Aidan McGlinchey
- School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden; (M.O.); (A.M.)
| | - Craig E. Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77 Stockholm, Sweden;
| | - Tuulia Hyötyläinen
- MTM Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
- Correspondence:
| |
Collapse
|
89
|
Welleman IM, Hoorens MWH, Feringa BL, Boersma HH, Szymański W. Photoresponsive molecular tools for emerging applications of light in medicine. Chem Sci 2020; 11:11672-11691. [PMID: 34094410 PMCID: PMC8162950 DOI: 10.1039/d0sc04187d] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/14/2020] [Indexed: 12/29/2022] Open
Abstract
Light-based therapeutic and imaging modalities, which emerge in clinical applications, rely on molecular tools, such as photocleavable protecting groups and photoswitches that respond to photonic stimulus and translate it into a biological effect. However, optimisation of their key parameters (activation wavelength, band separation, fatigue resistance and half-life) is necessary to enable application in the medical field. In this perspective, we describe the applications scenarios that can be envisioned in clinical practice and then we use those scenarios to explain the necessary properties that the photoresponsive tools used to control biological function should possess, highlighted by examples from medical imaging, drug delivery and photopharmacology. We then present how the (photo)chemical parameters are currently being optimized and an outlook is given on pharmacological aspects (toxicity, solubility, and stability) of light-responsive molecules. With these interdisciplinary insights, we aim to inspire the future directions for the development of photocontrolled tools that will empower clinical applications of light.
Collapse
Affiliation(s)
- Ilse M Welleman
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen Groningen The Netherlands
- Stratingh Institute for Chemistry, University of Groningen Groningen The Netherlands
| | - Mark W H Hoorens
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen Groningen The Netherlands
- Stratingh Institute for Chemistry, University of Groningen Groningen The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen Groningen The Netherlands
| | - Hendrikus H Boersma
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen Groningen The Netherlands
- Departments of Clinical Pharmacy and Pharmacology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen Groningen The Netherlands
| | - Wiktor Szymański
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen Groningen The Netherlands
- Stratingh Institute for Chemistry, University of Groningen Groningen The Netherlands
| |
Collapse
|
90
|
Valvi D, Walker DI, Inge T, Bartell SM, Jenkins T, Helmrath M, Ziegler TR, La Merrill MA, Eckel SP, Conti D, Liang Y, Jones DP, McConnell R, Chatzi L. Environmental chemical burden in metabolic tissues and systemic biological pathways in adolescent bariatric surgery patients: A pilot untargeted metabolomic approach. ENVIRONMENT INTERNATIONAL 2020; 143:105957. [PMID: 32683211 PMCID: PMC7708399 DOI: 10.1016/j.envint.2020.105957] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Advances in untargeted metabolomic technologies have great potential for insight into adverse metabolic effects underlying exposure to environmental chemicals. However, important challenges need to be addressed, including how biological response corresponds to the environmental chemical burden in different target tissues. AIM We performed a pilot study using state-of-the-art ultra-high-resolution mass spectrometry (UHRMS) to characterize the burden of lipophilic persistent organic pollutants (POPs) in metabolic tissues and associated alterations in the plasma metabolome. METHODS We studied 11 adolescents with severe obesity at the time of bariatric surgery. We measured 18 POPs that can act as endocrine and metabolic disruptors (i.e. 2 dioxins, 11 organochlorine compounds [OCs] and 5 polybrominated diphenyl ethers [PBDEs]) in visceral and subcutaneous abdominal adipose tissue (vAT and sAT), and liver samples using gas chromatography with UHRMS. Biological pathways were evaluated by measuring the plasma metabolome using high-resolution metabolomics. Network and pathway enrichment analysis assessed correlations between the tissue-specific burden of three frequently detected POPs (i.e. p,p'-dichlorodiphenyldichloroethene [DDE], hexachlorobenzene [HCB] and PBDE-47) and plasma metabolic pathways. RESULTS Concentrations of 4 OCs and 3 PBDEs were quantifiable in at least one metabolic tissue for > 80% of participants. All POPs had the highest median concentrations in adipose tissue, especially sAT, except for PBDE-154, which had comparable average concentrations across all tissues. Pathway analysis showed high correlations between tissue-specific POPs and metabolic alterations in pathways of amino acid metabolism, lipid and fatty acid metabolism, and carbohydrate metabolism. CONCLUSIONS Most of the measured POPs appear to accumulate preferentially in adipose tissue compared to liver. Findings of plasma metabolic pathways potentially associated with tissue-specific POPs concentrations merit further investigation in larger populations.
Collapse
Affiliation(s)
- Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Thomas Inge
- Children's Hospital Colorado and University of Colorado, Denver, United States
| | - Scott M Bartell
- Program in Public Health and Department of Statistics, University of California, Irvine, CA, United States
| | - Todd Jenkins
- Cincinnati Children's Hospital and University of Cincinnati Departments of Pediatrics and Surgery, Cincinnati, OH, United States
| | - Michael Helmrath
- Cincinnati Children's Hospital and University of Cincinnati Departments of Pediatrics and Surgery, Cincinnati, OH, United States
| | - Thomas R Ziegler
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA, United States
| | - Sandrah P Eckel
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, United States
| | - David Conti
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yongliang Liang
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Rob McConnell
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, United States
| | - Leda Chatzi
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
91
|
Fernández-Martínez NF, Ching-López A, Olry de Labry Lima A, Salamanca-Fernández E, Pérez-Gómez B, Jiménez-Moleón JJ, Sánchez MJ, Rodríguez-Barranco M. Relationship between exposure to mixtures of persistent, bioaccumulative, and toxic chemicals and cancer risk: A systematic review. ENVIRONMENTAL RESEARCH 2020; 188:109787. [PMID: 32798941 DOI: 10.1016/j.envres.2020.109787] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 05/15/2023]
Abstract
Environmental risks are responsible for one in five of all deaths worldwide. Persistent, bioaccumulative, and toxic substances are chemicals that can subsist for decades in human tissues and the environment. They include heavy metals, organochlorines, polychlorinated biphenyls, organobromines, organofluorines, and polycyclic aromatic hydrocarbons among others. Although humans are often exposed to multiple pollutants simultaneously, their negative effects on health have generally been studied for each one separately. Among the most severe of these harmful effects is cancer. Here, to compile and analyze the available evidence on the relationship between exposure to mixtures of persistent, bioaccumulative, and toxic chemicals and the risk of developing cancer in the general population, we provide a systematic review based on the main databases (Cochrane, PubMed and Embase), together with complementary sources, using the general methodology of the PRISMA Statement. The articles analyzed were selected by two researchers working independently and their quality was evaluated by reference to the Newcastle-Ottawa scale. The initial search yielded 2379 results from the main sources of information and 22 from the complementary ones. After the article selection process, 22 were included in the final review (21 case-control studies and one cohort study). Analysis of the selected studies revealed that most of the mixtures analyzed were positively associated with risk of cancer, especially that of the breast, colon-rectum or testis, and more strongly so than each contaminant alone. In view of the possible stronger association observed with the development of cancer for some mixtures of pollutants than when each one is present separately, exposure to mixtures should also be monitored and measured, preferably in cohort designs, to complement the traditional approach to persistent, bioaccumulative, and toxic chemicals. The results presented should be taken into account in public health policies in order to strengthen the regulatory framework for cancer prevention and control.
Collapse
Affiliation(s)
- Nicolás Francisco Fernández-Martínez
- Unidad de Gestión Clínica Interniveles de Prevención, Promoción y Vigilancia de La Salud, Hospital Universitario Reina Sofía, Córdoba, Spain; Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Córdoba, Spain
| | - Ana Ching-López
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Andalusian School of Public Health (EASP), Granada, Spain
| | - Antonio Olry de Labry Lima
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - Elena Salamanca-Fernández
- Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - Beatriz Pérez-Gómez
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Carlos III Institute of Health, Madrid, Spain
| | - José Juan Jiménez-Moleón
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Maria José Sánchez
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain.
| | - Miguel Rodríguez-Barranco
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| |
Collapse
|
92
|
Phthalate exposure causes browning-like effects on adipocytes in vitro and in vivo. Food Chem Toxicol 2020; 142:111487. [DOI: 10.1016/j.fct.2020.111487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/11/2020] [Accepted: 05/29/2020] [Indexed: 01/04/2023]
|
93
|
Ayaz-Guner S, Alessio N, Acar MB, Aprile D, Özcan S, Di Bernardo G, Peluso G, Galderisi U. A comparative study on normal and obese mice indicates that the secretome of mesenchymal stromal cells is influenced by tissue environment and physiopathological conditions. Cell Commun Signal 2020; 18:118. [PMID: 32727501 PMCID: PMC7388533 DOI: 10.1186/s12964-020-00614-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Background The term mesenchymal stromal cells (MSCs) designates an assorted cell population comprised of stem cells, progenitor cells, fibroblasts, and stromal cells. MSCs contribute to the homeostatic maintenance of many organs through paracrine and long-distance signaling. Tissue environment, in both physiological and pathological conditions, may affect the intercellular communication of MSCs. Methods We performed a secretome analysis of MSCs isolated from subcutaneous adipose tissue (sWAT) and visceral adipose tissue (vWAT), and from bone marrow (BM), of normal and obese mice. Results The MSCs isolated from tissues of healthy mice share a common core of released factors: components of cytoskeletal and extracellular structures; regulators of basic cellular functions, such as protein synthesis and degradation; modulators of endoplasmic reticulum stress; and counteracting oxidative stress. It can be hypothesized that MSC secretome beneficially affects target cells by the horizontal transfer of many released factors. Each type of MSC may exert specific signaling functions, which could be determined by looking at the many factors that are exclusively released from every MSC type. The vWAT-MSCs release factors that play a role in detoxification activity in response to toxic substances and drugs. The sWAT-MSC secretome contains proteins involved in in chondrogenesis, osteogenesis, and angiogenesis. Analysis of BM-MSC secretome revealed that these cells exert a signaling function by remodeling extracellular matrix structures, such as those containing glycosaminoglycans. Obesity status profoundly modified the secretome content of MSCs, impairing the above-described activity and promoting the release of inflammatory factors. Conclusion We demonstrated that the content of MSC secretomes depends on tissue microenvironment and that pathological condition may profoundly alter its composition. Video abstract
Collapse
Affiliation(s)
- Serife Ayaz-Guner
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Science, Abdullah Gül University, Kayseri, Turkey
| | - Nicola Alessio
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, Naples, Italy
| | - Mustafa B Acar
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.,Department of Biology, Faculty of Sciences; Erciyes University, Kayseri, Turkey
| | - Domenico Aprile
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, Naples, Italy
| | - Servet Özcan
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.,Department of Biology, Faculty of Sciences; Erciyes University, Kayseri, Turkey
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, Naples, Italy
| | | | - Umberto Galderisi
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, Naples, Italy. .,Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey. .,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, 1900 N. 12th St, Philadelphia, PA, 19107-6799, USA.
| |
Collapse
|
94
|
Vrijheid M, Fossati S, Maitre L, Márquez S, Roumeliotaki T, Agier L, Andrusaityte S, Cadiou S, Casas M, de Castro M, Dedele A, Donaire-Gonzalez D, Grazuleviciene R, Haug LS, McEachan R, Meltzer HM, Papadopouplou E, Robinson O, Sakhi AK, Siroux V, Sunyer J, Schwarze PE, Tamayo-Uria I, Urquiza J, Vafeiadi M, Valentin A, Warembourg C, Wright J, Nieuwenhuijsen MJ, Thomsen C, Basagaña X, Slama R, Chatzi L. Early-Life Environmental Exposures and Childhood Obesity: An Exposome-Wide Approach. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:67009. [PMID: 32579081 PMCID: PMC7313401 DOI: 10.1289/ehp5975] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Chemical and nonchemical environmental exposures are increasingly suspected to influence the development of obesity, especially during early life, but studies mostly consider single exposure groups. OBJECTIVES Our study aimed to systematically assess the association between a wide array of early-life environmental exposures and childhood obesity, using an exposome-wide approach. METHODS The HELIX (Human Early Life Exposome) study measured child body mass index (BMI), waist circumference, skinfold thickness, and body fat mass in 1,301 children from six European birth cohorts age 6-11 y. We estimated 77 prenatal exposures and 96 childhood exposures (cross-sectionally), including indoor and outdoor air pollutants, built environment, green spaces, tobacco smoking, and biomarkers of chemical pollutants (persistent organic pollutants, metals, phthalates, phenols, and pesticides). We used an exposure-wide association study (ExWAS) to screen all exposure-outcome associations independently and used the deletion-substitution-addition (DSA) variable selection algorithm to build a final multiexposure model. RESULTS The prevalence of overweight and obesity combined was 28.8%. Maternal smoking was the only prenatal exposure variable associated with higher child BMI (z-score increase of 0.28, 95% confidence interval: 0.09, 0.48, for active vs. no smoking). For childhood exposures, the multiexposure model identified particulate and nitrogen dioxide air pollution inside the home, urine cotinine levels indicative of secondhand smoke exposure, and residence in more densely populated areas and in areas with fewer facilities to be associated with increased child BMI. Child blood levels of copper and cesium were associated with higher BMI, and levels of organochlorine pollutants, cobalt, and molybdenum were associated with lower BMI. Similar results were found for the other adiposity outcomes. DISCUSSION This first comprehensive and systematic analysis of many suspected environmental obesogens strengthens evidence for an association of smoking, air pollution exposure, and characteristics of the built environment with childhood obesity risk. Cross-sectional biomarker results may suffer from reverse causality bias, whereby obesity status influenced the biomarker concentration. https://doi.org/10.1289/EHP5975.
Collapse
Affiliation(s)
- Martine Vrijheid
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Serena Fossati
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Léa Maitre
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Sandra Márquez
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Lydiane Agier
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, INSERM, CNRS, University Grenoble Alpes, Institute for Advanced Biosciences (IAB), U1209 Joint Research Center, Grenoble, France
| | - Sandra Andrusaityte
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Solène Cadiou
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, INSERM, CNRS, University Grenoble Alpes, Institute for Advanced Biosciences (IAB), U1209 Joint Research Center, Grenoble, France
| | - Maribel Casas
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Montserrat de Castro
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Audrius Dedele
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - David Donaire-Gonzalez
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | | | - Line S Haug
- Norwegian Institute of Public Health, Oslo, Norway
| | - Rosemary McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | | | | | - Oliver Robinson
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | | | - Valerie Siroux
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, INSERM, CNRS, University Grenoble Alpes, Institute for Advanced Biosciences (IAB), U1209 Joint Research Center, Grenoble, France
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | | | - Ibon Tamayo-Uria
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
- Division of Immunology and Immunotherapy, CIMA, Universidad de Navarra, and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Jose Urquiza
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Antonia Valentin
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Charline Warembourg
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Mark J Nieuwenhuijsen
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | | | - Xavier Basagaña
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Rémy Slama
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, INSERM, CNRS, University Grenoble Alpes, Institute for Advanced Biosciences (IAB), U1209 Joint Research Center, Grenoble, France
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
95
|
Mancini FR, Cano-Sancho G, Mohamed O, Cervenka I, Omichessan H, Marchand P, Boutron-Ruault MC, Arveux P, Severi G, Antignac JP, Kvaskoff M. Plasma concentration of brominated flame retardants and postmenopausal breast cancer risk: a nested case-control study in the French E3N cohort. Environ Health 2020; 19:54. [PMID: 32434563 PMCID: PMC7238573 DOI: 10.1186/s12940-020-00607-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/11/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Brominated flame retardants (BFRs) are lipophilic substances with endocrine-disrupting properties. To date, only few investigations, mainly retrospective case-control studies, have explored the link between internal levels of BFRs and the risk of breast cancer, leading to conflicting results. We investigated the associations between plasma concentrations of two main groups of BFRs, PBDEs (pentabromodiphenyl ethers) and PBBs (polybrominated biphenyls), and the risk of breast cancer in a nested case-control study. METHODS A total of 197 incident breast cancer cases and 197 controls with a blood sample collected in 1994-1999 were included. Plasma levels of PBDE congeners (BDE-28, BDE-47, BDE-99, BDE-100, BDE153, BDE-154) and of PBB-153 were measured by gas chromatography coupled to high-resolution mass spectrometry. Conditional logistic regression models, adjusted for potential confounders, were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS Women were aged 56 years on average at blood draw. All cases, except for one, were diagnosed after menopause, with an average age at diagnosis of 68 years. Overall, we found no evidence of an association between plasma levels of PBDEs and PBB-153 and postmenopausal breast cancer risk (log-concentrations of BFRs yielding non-statistically significant ORs of 0.87 to 1.07). The analysis showed a non-linear inverse association for BDE-100 and BDE-153 and postmenopausal breast cancer risk; nevertheless, these findings were statistically significant only when the exposure was modeled as ng/L plasma (third vs. first quintile: OR = 0.42, 95%CI = 0.19-0.93 and OR = 0.42, 95%CI = 0.18-0.98, respectively) and not when modeled as ng/gr of lipids (OR = 0.58, 95%CI = 0.27-1.25 and OR = 0.53, 95%CI = 0.25-1.17). These results were unchanged in stratified analyses by tumor hormone receptor expression or body mass index. CONCLUSIONS Our results suggest no clear association between internal levels of PBDEs and PBB-153 and the risk of breast cancer in postmenopausal women. However, these findings need to be carefully interpreted, taking into account limitations due to the limited number of women included in the study, the lack of information concerning genetic susceptibility of cases, and the unavailability of exposure assessment during critical windows of susceptibility for breast cancer. More studies are warranted to further investigate the relationships between PBDE and PBB exposure and breast cancer risk.
Collapse
Affiliation(s)
- Francesca Romana Mancini
- CESP, Faculté de médecine, Université Paris-Saclay, UVSQ, INSERM, Villejuif, France
- Gustave Roussy, Villejuif, France
| | | | - Oceane Mohamed
- CESP, Faculté de médecine, Université Paris-Saclay, UVSQ, INSERM, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Iris Cervenka
- CESP, Faculté de médecine, Université Paris-Saclay, UVSQ, INSERM, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Hanane Omichessan
- CESP, Faculté de médecine, Université Paris-Saclay, UVSQ, INSERM, Villejuif, France
- Gustave Roussy, Villejuif, France
| | | | | | - Patrick Arveux
- CESP, Faculté de médecine, Université Paris-Saclay, UVSQ, INSERM, Villejuif, France
- Gustave Roussy, Villejuif, France
- Breast and Gynaecologic Cancer Registry of Côte d’Or, Georges-François Leclerc Cancer Centre, UNICANCER, Dijon, France
| | - Gianluca Severi
- CESP, Faculté de médecine, Université Paris-Saclay, UVSQ, INSERM, Villejuif, France
- Gustave Roussy, Villejuif, France
- Departement of Statistics, Computer Science and Applications (DISIA), University of Florence, Florence, Italy
| | | | - Marina Kvaskoff
- CESP, Faculté de médecine, Université Paris-Saclay, UVSQ, INSERM, Villejuif, France
- Gustave Roussy, Villejuif, France
| |
Collapse
|
96
|
Walsh-Wilcox MT, Kaye J, Rubinstein E, Walker MK. 2,3,7,8-Tetrachlorodibenzo-p-dioxin Induces Vascular Dysfunction That is Dependent on Perivascular Adipose and Cytochrome P4501A1 Expression. Cardiovasc Toxicol 2020; 19:565-574. [PMID: 31115867 DOI: 10.1007/s12012-019-09529-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is associated with hypertension in humans and animals, and studies suggest that cytochrome P4501A1 (Cyp1a1) induction and vascular dysfunction may contribute. We investigated the role of perivascular adipose tissue (PVAT) and Cyp1a1 in TCDD-induced vascular dysfunction. Cyp1a1 wild-type (WT) and knockout (KO) male mice were fed a dough pill containing 1,4-p-dioxane (TCDD vehicle control) on days 0 and 7, or 1000 ng/kg TCDD on day 0 and 250 ng/kg TCDD on day 7. mRNA expression of Cyp1a1 was assessed on days 3, 7, and 14, and of Cyp1b1, 1a2, angiotensinogen, and phosphodiesterase 5a on day 14. Dose-dependent vasoconstriction to a thromboxane A2 mimetic (U46619), and vasorelaxation to acetylcholine and a nitric oxide donor (S-nitroso-N-acetyl-DL-penicillamine, SNAP), were investigated in the aorta with and without PVAT. Cyp1a1 and 1a2 mRNA was induced in aorta of WT mice only with PVAT, and Cyp1a1 induction was sustained through day 14. TCDD significantly enhanced constriction to U46619 in WT mice and inhibited relaxation to both acetylcholine and SNAP, but only in the presence of PVAT. The effects of TCDD on U46619 constriction and SNAP relaxation were not observed in Cyp1a1 KO mice. Finally, in aorta + PVAT of WT mice TCDD significantly induced expression of angiotensinogen and phosphodiesterase 5a both of which could contribute to the TCDD-induced vascular dysfunction. These data establish PVAT as a TCDD target which is critically involved in mediating vascular dysfunction. TCDD enhances vasoconstriction via the thromboxane/prostanoid (TP) receptor and inhibits vasorelaxation via nitric oxide (NO) signaling. This TCDD-induced vascular dysfunction requires perivascular adipose (PVAT) and cytochrome P4501a1 (CYP1a1) induction.
Collapse
Affiliation(s)
- Mary T Walsh-Wilcox
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, 2703 Frontier Ave NE MSC09 5630, Albuquerque, NM, 87131, USA
| | - Joel Kaye
- Teva Pharmaceutical Industries Ltd, Netanya, Israel.,Ayala Targeted Therapies, Rehovot, Israel
| | | | - Mary K Walker
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, 2703 Frontier Ave NE MSC09 5630, Albuquerque, NM, 87131, USA.
| |
Collapse
|
97
|
Griffin MD, Pereira SR, DeBari MK, Abbott RD. Mechanisms of action, chemical characteristics, and model systems of obesogens. BMC Biomed Eng 2020; 2:6. [PMID: 32903358 PMCID: PMC7422567 DOI: 10.1186/s42490-020-00040-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
There is increasing evidence for the role of environmental endocrine disrupting contaminants, coined obesogens, in exacerbating the rising obesity epidemic. Obesogens can be found in everyday items ranging from pesticides to food packaging. Although research shows that obesogens can have effects on adipocyte size, phenotype, metabolic activity, and hormone levels, much remains unknown about these chemicals. This review will discuss what is currently known about the mechanisms of obesogens, including expression of the PPARs, hormone interference, and inflammation. Strategies for identifying obesogenic chemicals and their mechanisms through chemical characteristics and model systems will also be discussed. Ultimately, research should focus on improving models to discern precise mechanisms of obesogenic action and to test therapeutics targeting these mechanisms.
Collapse
Affiliation(s)
- Mallory D Griffin
- Carnegie Mellon University, 5000 Forbes Avenue, Scott Hall, Pittsburgh, PA 15213 USA
| | - Sean R Pereira
- Carnegie Mellon University, 5000 Forbes Avenue, Scott Hall, Pittsburgh, PA 15213 USA
| | - Megan K DeBari
- Carnegie Mellon University, 5000 Forbes Avenue, Scott Hall, Pittsburgh, PA 15213 USA
| | - Rosalyn D Abbott
- Carnegie Mellon University, 5000 Forbes Avenue, Scott Hall, Pittsburgh, PA 15213 USA
| |
Collapse
|
98
|
Lee YM, Heo S, Kim SA, Lee DH. Is dietary macronutrient intake associated with serum concentrations of organochlorine pesticides in humans? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113819. [PMID: 31887593 DOI: 10.1016/j.envpol.2019.113819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/03/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
In the general population, chronic exposure to low-dose persistent organic pollutants (POPs), particularly organochlorine pesticides (OCPs), has been recently linked to many chronic diseases. Widespread contamination of the food chain and human adipose tissue has made avoiding exposure to these chemicals impossible; thus, alternative strategies for decreasing the chemical burden must be investigated. Recently, macronutrient intake was found to significantly modify the toxicokinetics of POPs in animal experimental studies. Thus, we evaluated whether macronutrient intake was related to serum concentrations of OCPs in healthy adults without cardio-metabolic diseases. Subjects included 1,764 adults, aged 20 years or above, who participated in the National Health and Nutrition Examination Survey 1999-2004. Macronutrient intake was assessed based on a 24-h dietary recall interview. Six individual OCPs commonly detected among the general population were evaluated as markers of OCPs and other coexisting lipophilic chemicals stored in adipose tissue and released into circulation. High fat intake was associated with lower concentrations of OCPs, while high carbohydrate intake showed the opposite result. When three types of fats were individually evaluated, both saturated fatty acids and monounsaturated fatty acids, but not polyunsaturated fatty acids, were inversely associated with serum concentrations of OCPs. Adjustment for possible confounders did not change the results. When stratified by age, gender, body mass index, and physical activity, these associations were similar in most subgroups. Thus, similar to the findings observed in animal experimental studies, a moderate-fat diet with low carbohydrate intake was related to low serum concentrations of OCPs in humans. Although these findings need to be replicated, changing dietary macronutrient intake can be investigated as a practical strategy for dealing with unavoidable lipophilic chemical mixtures such as OCPs in modern society.
Collapse
Affiliation(s)
- Yu-Mi Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Somi Heo
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Se-A Kim
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea.
| | - Duk-Hee Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
99
|
Temkin AM, Hocevar BA, Andrews DQ, Naidenko OV, Kamendulis LM. Application of the Key Characteristics of Carcinogens to Per and Polyfluoroalkyl Substances. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1668. [PMID: 32143379 PMCID: PMC7084585 DOI: 10.3390/ijerph17051668] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) constitute a large class of environmentally persistent chemicals used in industrial and consumer products. Human exposure to PFAS is extensive, and PFAS contamination has been reported in drinking water and food supplies as well as in the serum of nearly all people. The most well-studied member of the PFAS class, perfluorooctanoic acid (PFOA), induces tumors in animal bioassays and has been associated with elevated risk of cancer in human populations. GenX, one of the PFOA replacement chemicals, induces tumors in animal bioassays as well. Using the Key Characteristics of Carcinogens framework for cancer hazard identification, we considered the existing epidemiological, toxicological and mechanistic data for 26 different PFAS. We found strong evidence that multiple PFAS induce oxidative stress, are immunosuppressive, and modulate receptor-mediated effects. We also found suggestive evidence indicating that some PFAS can induce epigenetic alterations and influence cell proliferation. Experimental data indicate that PFAS are not genotoxic and generally do not undergo metabolic activation. Data are currently insufficient to assess whether any PFAS promote chronic inflammation, cellular immortalization or alter DNA repair. While more research is needed to address data gaps, evidence exists that several PFAS exhibit one or more of the key characteristics of carcinogens.
Collapse
Affiliation(s)
- Alexis M. Temkin
- Environmental Working Group, Washington, DC 20009, USA; (D.Q.A.); (O.V.N.)
| | - Barbara A. Hocevar
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (B.A.H.); (L.M.K.)
| | - David Q. Andrews
- Environmental Working Group, Washington, DC 20009, USA; (D.Q.A.); (O.V.N.)
| | - Olga V. Naidenko
- Environmental Working Group, Washington, DC 20009, USA; (D.Q.A.); (O.V.N.)
| | - Lisa M. Kamendulis
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (B.A.H.); (L.M.K.)
| |
Collapse
|
100
|
Choi SI, Lee JS, Lee S, Sim WS, Kim YC, Lee OH. Potentilla rugulosa Nakai Extract Attenuates Bisphenol A-, S- and F-Induced ROS Production and Differentiation of 3T3-L1 Preadipocytes in the Absence of Dexamethasone. Antioxidants (Basel) 2020; 9:antiox9020113. [PMID: 32012803 PMCID: PMC7071078 DOI: 10.3390/antiox9020113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/12/2020] [Accepted: 01/26/2020] [Indexed: 12/14/2022] Open
Abstract
Endocrine disrupting chemicals (EDCs) disrupt the physiological metabolism, thus playing an important role in the development of obesity. EDCs, the so-called ‘obesogens’, might predispose some individuals to gain weight. This study investigated the effects of bisphenol A (BPA) and its alternatives (BPS and BPF) on adipocyte differentiation and the effects of the leaves of Potentilla rugulosa Nakai extract (LPE) as a functional food ingredient on obesogen-induced lipid production and adipogenesis in 3T3-L1 cells. The results showed that LPE has high total phenolic and flavonoid contents (77.58 ± 0.57 mg gallic acid equivalents (GAE)/g and 57.31 ± 1.72 mg quercetin equivalents (QE)/g, respectively). In addition, LPE exerted significant antioxidant effects in terms of DPPH radical scavenging activity, reducing power, ferric-ion reducing antioxidant power, and oxygen radical absorbance capacity. BPA, BPS, and BPF increased lipid accumulation, protein expressions of adipogenic transcription factors (PPAR-γ, C/EBP-α, and aP2), and reactive oxygen species (ROS) production in 3T3-L1 cells. However, LPE suppressed the BPA-, BPS-, and BPF-induced effects on adipogenesis. Therefore, LPE has potential as a functional food supplement that can prevent bisphenol-induced lipid metabolism disorders.
Collapse
Affiliation(s)
- Sun-Il Choi
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (S.-I.C.); (W.-S.S.)
| | - Jong Seok Lee
- National Institute of Biological Resources, Incheon 22689, Korea; (J.S.L.); (S.L.)
| | - Sarah Lee
- National Institute of Biological Resources, Incheon 22689, Korea; (J.S.L.); (S.L.)
| | - Wan-Sup Sim
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (S.-I.C.); (W.-S.S.)
| | - Young-Cheul Kim
- Department of Nutrition, University of Massachusetts Amherst, MA 01003, USA;
| | - Ok-Hwan Lee
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (S.-I.C.); (W.-S.S.)
- Correspondence: ; Tel.: +82-33-250-6454; Fax: +82-33-259-5565
| |
Collapse
|