51
|
Scientific evidence of diets for weight loss: Different macronutrient composition, intermittent fasting, and popular diets. Nutrition 2019; 69:110549. [PMID: 31525701 DOI: 10.1016/j.nut.2019.07.001] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
New dietary strategies have been created to treat overweight and obesity and have become popular and widely adopted. Nonetheless, they are mainly based on personal impressions and reports published in books and magazines, rather than on scientific evidence. Animal models and human clinical trials have been employed to study changes in body composition and metabolic outcomes to determine the most effective diet. However, the studies present many limitations and should be carefully analyzed. The aim of this review was to discuss the scientific evidence of three categories of diets for weight loss. There is no one most effective diet to promote weight loss. In the short term, high-protein, low-carbohydrate diets and intermittent fasting are suggested to promote greater weight loss and could be adopted as a jumpstart. However, owing to adverse effects, caution is required. In the long term, current evidence indicates that different diets promoted similar weight loss and adherence to diets will predict their success. Finally, it is fundamental to adopt a diet that creates a negative energy balance and focuses on good food quality to promote health.
Collapse
|
52
|
Stocker R, Reber E, Aeberhard C, Bally L, Schütz P, Stanga Z. [Fasting - Effects on the Human Body and Psyche]. PRAXIS 2019; 108:593-597. [PMID: 31288655 DOI: 10.1024/1661-8157/a003254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fasting - Effects on the Human Body and Psyche Abstract. Fasting has become a trend: to lose weight, to increase well-being, or to heal acute and chronic diseases. The positive and negative effects of fasting are controversially discussed. The aim of this pilot study was to investigate the possible effects of fasting on body and well-being/psychic features. A group of twelve healthy volunteers (ten women and two men) was fasting for one week. Several clinical (body weight, blood pressure) and mental (feeling hungry, feeling cold, mood, power, and sleep quality) parameters were measured during this period. Side effects were recorded as well. This pilot study showed a wide range of effects and remarkable interindividual variation.
Collapse
Affiliation(s)
- Rahel Stocker
- 1 Universitätsklinik für Diabetologie, Endokrinologie, Ernährungsmedizin und Metabolismus, Universitätsspital Bern und Universität Bern
| | - Emilie Reber
- 1 Universitätsklinik für Diabetologie, Endokrinologie, Ernährungsmedizin und Metabolismus, Universitätsspital Bern und Universität Bern
| | - Carla Aeberhard
- 1 Universitätsklinik für Diabetologie, Endokrinologie, Ernährungsmedizin und Metabolismus, Universitätsspital Bern und Universität Bern
| | - Lia Bally
- 1 Universitätsklinik für Diabetologie, Endokrinologie, Ernährungsmedizin und Metabolismus, Universitätsspital Bern und Universität Bern
| | - Philipp Schütz
- 2 Departement für Innere Medizin und Notfallmedizin, Medizinische Universitätsklinik, Kantonsspital Aarau
- 3 Medizinische Fakultät, Universität Basel
| | - Zeno Stanga
- 1 Universitätsklinik für Diabetologie, Endokrinologie, Ernährungsmedizin und Metabolismus, Universitätsspital Bern und Universität Bern
| |
Collapse
|
53
|
Marinho TDS, Ornellas F, Barbosa-da-Silva S, Mandarim-de-Lacerda CA, Aguila MB. Beneficial effects of intermittent fasting on steatosis and inflammation of the liver in mice fed a high-fat or a high-fructose diet. Nutrition 2019; 65:103-112. [PMID: 31079017 DOI: 10.1016/j.nut.2019.02.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 01/29/2019] [Accepted: 02/23/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Intermittent fasting (IF) is a nutritional intervention with significant metabolic effects on the liver that are not yet fully understood. The aim of this study was to investigate the effects of IF on body mass, lipid profile, glucose metabolism, liver lipogenesis, β-oxidation, and inflammation. METHODS We used cellular and molecular techniques to investigate the effects of IF on 3-mo-old male C57 BL/6 mice that were fed control (10% kcal fat), high-fat (HF; 50% kcal fat), or high-fructose (HFr; 50% kcal fructose) diets for 8 wk. Half of the animals were submitted to IF (1 d fed, 1 d fast) for an additional 4 wk. RESULTS Although food intake on the fed day did not differ between the groups, mice in the HF and HFr groups showed diminished body mass, total cholesterol, and triacylglycerol levels. Also, plasma adiponectin increased in the HFr group and leptin decreased in the HF mice. Oral glucose tolerance test and insulin were ameliorated by IF, regardless of the diet consumed (HF or HFr), and decreased hepatic lipogenesis and increased β-oxidation markers, resulting in a reduction of the hepatic steatosis and inflammation. CONCLUSIONS There were beneficial effects of IF even with the continuity of the obesogenic diet and proinflammatory diet in mice. It is recommended that based on the beneficial effects of IF on glucose and liver metabolism and inflammation that IF be a coadjutant factor in the treatment of hepatic metabolic issues and steatosis.
Collapse
Affiliation(s)
- Thatiany de Souza Marinho
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Ornellas
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sandra Barbosa-da-Silva
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
54
|
Castaño-Martinez T, Schumacher F, Schumacher S, Kochlik B, Weber D, Grune T, Biemann R, McCann A, Abraham K, Weikert C, Kleuser B, Schürmann A, Laeger T. Methionine restriction prevents onset of type 2 diabetes in NZO mice. FASEB J 2019; 33:7092-7102. [PMID: 30841758 PMCID: PMC6529347 DOI: 10.1096/fj.201900150r] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dietary methionine restriction (MR) is well known to reduce body weight by increasing energy expenditure (EE) and insulin sensitivity. An elevated concentration of circulating fibroblast growth factor 21 (FGF21) has been implicated as a potential underlying mechanism. The aims of our study were to test whether dietary MR in the context of a high-fat regimen protects against type 2 diabetes in mice and to investigate whether vegan and vegetarian diets, which have naturally low methionine levels, modulate circulating FGF21 in humans. New Zealand obese (NZO) mice, a model for polygenic obesity and type 2 diabetes, were placed on isocaloric high-fat diets (protein, 16 kcal%; carbohydrate, 52 kcal%; fat, 32 kcal%) that provided methionine at control (Con; 0.86% methionine) or low levels (0.17%) for 9 wk. Markers of glucose homeostasis and insulin sensitivity were analyzed. Among humans, low methionine intake and circulating FGF21 levels were investigated by comparing a vegan and a vegetarian diet to an omnivore diet and evaluating the effect of a short-term vegetarian diet on FGF21 induction. In comparison with the Con group, MR led to elevated plasma FGF21 levels and prevented the onset of hyperglycemia in NZO mice. MR-fed mice exhibited increased insulin sensitivity, higher plasma adiponectin levels, increased EE, and up-regulated expression of thermogenic genes in subcutaneous white adipose tissue. Food intake and fat mass did not change. Plasma FGF21 levels were markedly higher in vegan humans compared with omnivores, and circulating FGF21 levels increased significantly in omnivores after 4 d on a vegetarian diet. These data suggest that MR induces FGF21 and protects NZO mice from high-fat diet–induced glucose intolerance and type 2 diabetes. The normoglycemic phenotype in vegans and vegetarians may be caused by induced FGF21. MR akin to vegan and vegetarian diets in humans may offer metabolic benefits via increased circulating levels of FGF21 and merits further investigation.—Castaño-Martinez, T., Schumacher, F., Schumacher, S., Kochlik, B., Weber, D., Grune, T., Biemann, R., McCann, A., Abraham, K., Weikert, C., Kleuser, B., Schürmann, A., Laeger, T. Methionine restriction prevents onset of type 2 diabetes in NZO mice.
Collapse
Affiliation(s)
- Teresa Castaño-Martinez
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Germany
| | - Fabian Schumacher
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany.,Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Silke Schumacher
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Bastian Kochlik
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany
| | - Ronald Biemann
- Institute for Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | | | - Klaus Abraham
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany; and
| | - Cornelia Weikert
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany; and
| | - Burkhard Kleuser
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Germany.,Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Thomas Laeger
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.,German Center for Diabetes Research, Munich-Neuherberg, Germany
| |
Collapse
|
55
|
Yaribeygi H, Atkin SL, Ramezani M, Sahebkar A. A review of the molecular pathways mediating the improvement in diabetes mellitus following caloric restriction. J Cell Physiol 2018; 234:8436-8442. [PMID: 30426486 DOI: 10.1002/jcp.27760] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022]
Abstract
Lifestyle modification is the cornerstone of diabetes prevention and treatment. Weight loss through caloric restriction (CR) is effective in improving glycemic control, though it is difficult for patients to follow in practice, and remains critical to achieve optimal glucose homeostasis. In this review, we look at what is known about the molecular pathways involved in CR-induced insulin sensitivity and improved insulin resistance.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Majid Ramezani
- Department of Internal Medicine, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
56
|
Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev 2018; 98:2133-2223. [PMID: 30067154 PMCID: PMC6170977 DOI: 10.1152/physrev.00063.2017] [Citation(s) in RCA: 1541] [Impact Index Per Article: 220.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 12/15/2022] Open
Abstract
The 1921 discovery of insulin was a Big Bang from which a vast and expanding universe of research into insulin action and resistance has issued. In the intervening century, some discoveries have matured, coalescing into solid and fertile ground for clinical application; others remain incompletely investigated and scientifically controversial. Here, we attempt to synthesize this work to guide further mechanistic investigation and to inform the development of novel therapies for type 2 diabetes (T2D). The rational development of such therapies necessitates detailed knowledge of one of the key pathophysiological processes involved in T2D: insulin resistance. Understanding insulin resistance, in turn, requires knowledge of normal insulin action. In this review, both the physiology of insulin action and the pathophysiology of insulin resistance are described, focusing on three key insulin target tissues: skeletal muscle, liver, and white adipose tissue. We aim to develop an integrated physiological perspective, placing the intricate signaling effectors that carry out the cell-autonomous response to insulin in the context of the tissue-specific functions that generate the coordinated organismal response. First, in section II, the effectors and effects of direct, cell-autonomous insulin action in muscle, liver, and white adipose tissue are reviewed, beginning at the insulin receptor and working downstream. Section III considers the critical and underappreciated role of tissue crosstalk in whole body insulin action, especially the essential interaction between adipose lipolysis and hepatic gluconeogenesis. The pathophysiology of insulin resistance is then described in section IV. Special attention is given to which signaling pathways and functions become insulin resistant in the setting of chronic overnutrition, and an alternative explanation for the phenomenon of ‟selective hepatic insulin resistanceˮ is presented. Sections V, VI, and VII critically examine the evidence for and against several putative mediators of insulin resistance. Section V reviews work linking the bioactive lipids diacylglycerol, ceramide, and acylcarnitine to insulin resistance; section VI considers the impact of nutrient stresses in the endoplasmic reticulum and mitochondria on insulin resistance; and section VII discusses non-cell autonomous factors proposed to induce insulin resistance, including inflammatory mediators, branched-chain amino acids, adipokines, and hepatokines. Finally, in section VIII, we propose an integrated model of insulin resistance that links these mediators to final common pathways of metabolite-driven gluconeogenesis and ectopic lipid accumulation.
Collapse
Affiliation(s)
- Max C Petersen
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| | - Gerald I Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
57
|
Kramer DA, Quiroga AD, Lian J, Fahlman RP, Lehner R. Fasting and refeeding induces changes in the mouse hepatic lipid droplet proteome. J Proteomics 2018; 181:213-224. [DOI: 10.1016/j.jprot.2018.04.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/10/2018] [Accepted: 04/14/2018] [Indexed: 12/29/2022]
|
58
|
Laeger T, Castaño-Martinez T, Werno MW, Japtok L, Baumeier C, Jonas W, Kleuser B, Schürmann A. Dietary carbohydrates impair the protective effect of protein restriction against diabetes in NZO mice used as a model of type 2 diabetes. Diabetologia 2018; 61:1459-1469. [PMID: 29550873 PMCID: PMC6449005 DOI: 10.1007/s00125-018-4595-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/21/2018] [Indexed: 12/26/2022]
Abstract
AIMS/HYPOTHESIS Low-protein diets are well known to improve glucose tolerance and increase energy expenditure. Increases in circulating fibroblast growth factor 21 (FGF21) have been implicated as a potential underlying mechanism. METHODS We aimed to test whether low-protein diets in the context of a high-carbohydrate or high-fat regimen would also protect against type 2 diabetes in New Zealand Obese (NZO) mice used as a model of polygenetic obesity and type 2 diabetes. Mice were placed on high-fat diets that provided protein at control (16 kJ%; CON) or low (4 kJ%; low-protein/high-carbohydrate [LP/HC] or low-protein/high-fat [LP/HF]) levels. RESULTS Protein restriction prevented the onset of hyperglycaemia and beta cell loss despite increased food intake and fat mass. The effect was seen only under conditions of a lower carbohydrate/fat ratio (LP/HF). When the carbohydrate/fat ratio was high (LP/HC), mice developed type 2 diabetes despite the robustly elevated hepatic FGF21 secretion and increased energy expenditure. CONCLUSION/INTERPRETATION Prevention of type 2 diabetes through protein restriction, without lowering food intake and body fat mass, is compromised by high dietary carbohydrates. Increased FGF21 levels and elevated energy expenditure do not protect against hyperglycaemia and type 2 diabetes per se.
Collapse
Affiliation(s)
- Thomas Laeger
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Teresa Castaño-Martinez
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Martin W Werno
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Lukasz Japtok
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Christian Baumeier
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Burkhard Kleuser
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.
| |
Collapse
|
59
|
Kleinert M, Clemmensen C, Hofmann SM, Moore MC, Renner S, Woods SC, Huypens P, Beckers J, de Angelis MH, Schürmann A, Bakhti M, Klingenspor M, Heiman M, Cherrington AD, Ristow M, Lickert H, Wolf E, Havel PJ, Müller TD, Tschöp MH. Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol 2018; 14:140-162. [PMID: 29348476 DOI: 10.1038/nrendo.2017.161] [Citation(s) in RCA: 547] [Impact Index Per Article: 78.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
More than one-third of the worldwide population is overweight or obese and therefore at risk of developing type 2 diabetes mellitus. In order to mitigate this pandemic, safer and more potent therapeutics are urgently required. This necessitates the continued use of animal models to discover, validate and optimize novel therapeutics for their safe use in humans. In order to improve the transition from bench to bedside, researchers must not only carefully select the appropriate model but also draw the right conclusions. In this Review, we consolidate the key information on the currently available animal models of obesity and diabetes and highlight the advantages, limitations and important caveats of each of these models.
Collapse
Affiliation(s)
- Maximilian Kleinert
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, D-80333 Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Christoffer Clemmensen
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, D-80333 Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Susanna M Hofmann
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Ziemssenstr. 1, D-80336 Munich, Germany
| | - Mary C Moore
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37212, USA
| | - Simone Renner
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilan University München, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Stephen C Woods
- University of Cincinnati College of Medicine, Department of Psychiatry and Behavioral Neuroscience, Metabolic Diseases Institute, 2170 East Galbraith Road, Cincinnati, Ohio 45237, USA
| | - Peter Huypens
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Johannes Beckers
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Technische Universität München, Chair of Experimental Genetics, D-85354 Freising, Germany
| | - Martin Hrabe de Angelis
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Technische Universität München, Chair of Experimental Genetics, D-85354 Freising, Germany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | - Mostafa Bakhti
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, Technische Universität München, TUM School of Life Sciences Weihenstephan, Gregor-Mendel-Str. 2, D-85354 Freising, Germany
- Else Kröner-Fresenius Center for Nutritional Medicine, Technische Universität München, D-85354 Freising, Germany
- Institute for Food & Health, Technische Universität München, D-85354 Freising, Germany
| | - Mark Heiman
- MicroBiome Therapeutics, 1316 Jefferson Ave, New Orleans, Louisiana 70115, USA
| | - Alan D Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37212, USA
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, CH-8603 Zurich-Schwerzenbach, Switzerland
| | - Heiko Lickert
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Eckhard Wolf
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilan University München, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, 3135 Meyer Hall, University of California, Davis, California 95616-5270, USA
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, D-80333 Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, D-80333 Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| |
Collapse
|
60
|
Anton SD, Moehl K, Donahoo WT, Marosi K, Lee S, Mainous AG, Leeuwenburgh C, Mattson MP. Flipping the Metabolic Switch: Understanding and Applying the Health Benefits of Fasting. Obesity (Silver Spring) 2018; 26:254-268. [PMID: 29086496 PMCID: PMC5783752 DOI: 10.1002/oby.22065] [Citation(s) in RCA: 384] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/14/2017] [Accepted: 09/26/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Intermittent fasting (IF) is a term used to describe a variety of eating patterns in which no or few calories are consumed for time periods that can range from 12 hours to several days, on a recurring basis. This review is focused on the physiological responses of major organ systems, including the musculoskeletal system, to the onset of the metabolic switch: the point of negative energy balance at which liver glycogen stores are depleted and fatty acids are mobilized (typically beyond 12 hours after cessation of food intake). RESULTS AND CONCLUSIONS Emerging findings suggest that the metabolic switch from glucose to fatty acid-derived ketones represents an evolutionarily conserved trigger point that shifts metabolism from lipid/cholesterol synthesis and fat storage to mobilization of fat through fatty acid oxidation and fatty acid-derived ketones, which serve to preserve muscle mass and function. Thus, IF regimens that induce the metabolic switch have the potential to improve body composition in overweight individuals. Moreover, IF regimens also induce the coordinated activation of signaling pathways that optimize physiological function, enhance performance, and slow aging and disease processes. Future randomized controlled IF trials should use biomarkers of the metabolic switch (e.g., plasma ketone levels) as a measure of compliance and of the magnitude of negative energy balance during the fasting period.
Collapse
Affiliation(s)
- Stephen D. Anton
- Department of Aging and Geriatric Research, Institute on Aging, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL 32610
| | - Keelin Moehl
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - William T. Donahoo
- Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, Gainesville, FL 32610
| | - Krisztina Marosi
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - Stephanie Lee
- Department of Aging and Geriatric Research, Institute on Aging, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL 32610
| | - Arch G. Mainous
- Department of Health Services Research, Management and Policy; Department of Community Health and Family Medicine, University of Florida, Gainesville, FL 32610
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, Institute on Aging, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL 32610
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
61
|
Weiser A, Giesbertz P, Daniel H, Spanier B. Acylcarnitine Profiles in Plasma and Tissues of Hyperglycemic NZO Mice Correlate with Metabolite Changes of Human Diabetes. J Diabetes Res 2018; 2018:1864865. [PMID: 29854816 PMCID: PMC5944288 DOI: 10.1155/2018/1864865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/28/2018] [Accepted: 03/08/2018] [Indexed: 12/22/2022] Open
Abstract
The New Zealand obese (NZO) mouse is a polygenic model for obesity and diabetes with obese females and obese, diabetes-prone males, used to study traits of the metabolic syndrome like type 2 diabetes mellitus (T2DM), obesity, and dyslipidaemia. By using LC-MS/MS, we here examine the suitability of this model to mirror tissue-specific changes in acylcarnitine (AC) and amino acid (AA) species preceding T2DM which may reflect patterns investigated in human metabolism. We observed high concentrations of fatty acid-derived ACs in 11 female mice, high abundance of branched-chain amino acid- (BCAA-) derived ACs in 6 male mice, and slight increases in BCAA-derived ACs in the remaining 6 males. Principal component analysis (PCA) including all ACs and AAs confirmed our hypothesis especially in plasma samples by clustering females, males with high BCAA-derived ACs, and males with slight increases in BCAA-derived ACs. Concentrations of insulin, blood glucose, NEFAs, and triacylglycerols (TAGs) further supported the hypothesis of high BCAA-derived ACs being able to mirror the onset of diabetic traits in male individuals. In conclusion, alterations in AC and AA profiles overlap with observations from human studies indicating the suitability of NZO mice to study metabolic changes preceding human T2DM.
Collapse
Affiliation(s)
- Anna Weiser
- Nutrition Physiology, Technische Universität München, Gregor-Mendel-Str. 2, 85350 Freising, Germany
| | - Pieter Giesbertz
- Nutrition Physiology, Technische Universität München, Gregor-Mendel-Str. 2, 85350 Freising, Germany
| | - Hannelore Daniel
- Nutrition Physiology, Technische Universität München, Gregor-Mendel-Str. 2, 85350 Freising, Germany
| | - Britta Spanier
- Nutrition Physiology, Technische Universität München, Gregor-Mendel-Str. 2, 85350 Freising, Germany
| |
Collapse
|
62
|
Knebel B, Göddeke S, Hartwig S, Hörbelt T, Fahlbusch P, Al-Hasani H, Jacob S, Koellmer C, Nitzgen U, Schiller M, Lehr S, Kotzka J. Alteration of Liver Peroxisomal and Mitochondrial Functionality in the NZO Mouse Model of Metabolic Syndrome. Proteomics Clin Appl 2017; 12. [PMID: 29068532 DOI: 10.1002/prca.201700028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/15/2017] [Indexed: 12/18/2022]
Abstract
PURPOSE Metabolic syndrome (MetS) consists of five risk factors: elevated blood pressure and fasting glucose, visceral obesity, dyslipidemia, and hypercholesterinemia. The physiological impact of lipid metabolism indicated as visceral obesity and hepatic lipid accumulation on MetS is still under debate. One major cause of disturbed lipid metabolism might be dysfunction of cellular organelles controlling energy homeostasis, i.e., mitochondria and peroxisomes. EXPERIMENTAL DESIGN The New Zealand Obese (NZO) mouse model exhibits a polygenic syndrome of obesity, insulin resistance, triglyceridemia, and hypercholesterolemia that resembles human metabolic syndrome. We applied a multi-omics approach combining lipidomics with liver transcriptomics and top-down MS based organelle proteomics (2D-DIGE) of highly enriched mitochondria and peroxisomes in male mice, to investigate molecular mechanisms related to the impact of lipid metabolism in the pathophysiology of the metabolic syndrome. CONCLUSIONS AND CLINICAL RELEVANCE Proteome analyses of liver organelles indicate differences in fatty acid and cholesterol metabolism, mainly influenced by PG-C1α/PPARα and other nuclear receptor mediated pathways. These results are in accordance with altered serum lipid profiles and elevated organelle functionality. These data emphasize that metabolic syndrome is accompanied with increased mitochondria and peroxisomal activity to cope with dyslipidemia and hypercholesterinemia driven hepatic lipid overflow in developing a fatty liver.
Collapse
Affiliation(s)
- Birgit Knebel
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, Duesseldorf, Germany.,German Center of Diabetes Research Partner, Duesseldorf, Germany
| | - Simon Göddeke
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, Duesseldorf, Germany.,German Center of Diabetes Research Partner, Duesseldorf, Germany.,Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf Medical Faculty, Duesseldorf, Germany
| | - Sonja Hartwig
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, Duesseldorf, Germany.,German Center of Diabetes Research Partner, Duesseldorf, Germany
| | - Tina Hörbelt
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, Duesseldorf, Germany.,German Center of Diabetes Research Partner, Duesseldorf, Germany.,Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf Medical Faculty, Duesseldorf, Germany
| | - Pia Fahlbusch
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, Duesseldorf, Germany.,German Center of Diabetes Research Partner, Duesseldorf, Germany.,Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf Medical Faculty, Duesseldorf, Germany
| | - Hadi Al-Hasani
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, Duesseldorf, Germany.,German Center of Diabetes Research Partner, Duesseldorf, Germany.,Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf Medical Faculty, Duesseldorf, Germany
| | - Sylvia Jacob
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, Duesseldorf, Germany.,German Center of Diabetes Research Partner, Duesseldorf, Germany
| | - Cornelia Koellmer
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, Duesseldorf, Germany.,German Center of Diabetes Research Partner, Duesseldorf, Germany
| | - Ulrike Nitzgen
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, Duesseldorf, Germany.,German Center of Diabetes Research Partner, Duesseldorf, Germany
| | - Martina Schiller
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, Duesseldorf, Germany.,German Center of Diabetes Research Partner, Duesseldorf, Germany
| | - Stefan Lehr
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, Duesseldorf, Germany.,German Center of Diabetes Research Partner, Duesseldorf, Germany
| | - Jorg Kotzka
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, Duesseldorf, Germany.,German Center of Diabetes Research Partner, Duesseldorf, Germany
| |
Collapse
|
63
|
Martel C, Pinçon A, Bélanger AM, Luo X, Gillis MA, de Montgolfier O, Thorin-Trescases N, Thorin É. Knockdown of angiopoietin-like 2 mimics the benefits of intermittent fasting on insulin responsiveness and weight loss. Exp Biol Med (Maywood) 2017; 243:45-49. [PMID: 29192516 DOI: 10.1177/1535370217745505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Angiopoietin-like 2 (ANGPTL2) is an inflammatory adipokine linking obesity to insulin resistance. Intermittent fasting, on the other hand, is a lifestyle intervention able to prevent obesity and diabetes but difficult to implement and maintain. Our objectives were to characterize a link between ANGPTL2 and intermittent fasting and to investigate whether the knockdown of ANGPTL2 reproduces the benefits of intermittent fasting on weight gain and insulin responsiveness in knockdown and wild-type littermates mice. Intermittent fasting, access to food ad libitum once every other day, was initiated at the age of three months and maintained for four months. Intermittent fasting decreased by 63% (p < 0.05) gene expression of angptl2 in adipose tissue of wild-type mice. As expected, intermittent fasting improved insulin sensitivity (p < 0.05) and limited weight gain (p < 0.05) in wild-type mice. Knockdown mice fed ad libitum, however, were comparable to wild-type mice following the intermittent fasting regimen: insulin sensitivity and weight gain were identical, while intermittent fasting had no additional impact on these parameters in knockdown mice. Energy intake was similar between both wild-type fed intermittent fasting and ANGPTL2 knockdown mice fed ad libitum, suggesting that intermittent fasting and knockdown of ANGPTL2 equally lower feeding efficiency. These results suggest that the reduction of ANGPTL2 could be a useful and promising strategy to prevent obesity and insulin resistance, although further investigation of the mechanisms linking ANGPTL2 and intermittent fasting is warranted. Impact statement Intermittent fasting is an efficient diet pattern to prevent weight gain and improve insulin sensitivity. It is, however, a difficult regimen to follow and compliance is expected to be very low. In this work, we demonstrate that knockdown of ANGPTL2 in mice fed ad libitum mimics the beneficial effects of intermittent fasting on weight gain and insulin sensitivity in wild-type mice. ANGPTL2 is a cytokine positively associated with fat mass in humans, which inactivation in mice improves resistance to a high-fat metabolic challenge. This study provides a novel pathway by which IF acts to limit obesity despite equivalent energy intake. The development of a pharmacological ANGPTL2 antagonist could provide an efficient tool to reduce the burden of obesity.
Collapse
Affiliation(s)
- Cécile Martel
- 1 Montreal Heart Institute, Research Center, 12368 University of Montreal , Montreal, QC H1T 1C8, Canada
| | - Anthony Pinçon
- 1 Montreal Heart Institute, Research Center, 12368 University of Montreal , Montreal, QC H1T 1C8, Canada
| | - Alexandre Maxime Bélanger
- 1 Montreal Heart Institute, Research Center, 12368 University of Montreal , Montreal, QC H1T 1C8, Canada
| | - Xiaoyan Luo
- 1 Montreal Heart Institute, Research Center, 12368 University of Montreal , Montreal, QC H1T 1C8, Canada
| | - Marc-Antoine Gillis
- 1 Montreal Heart Institute, Research Center, 12368 University of Montreal , Montreal, QC H1T 1C8, Canada
| | - Olivia de Montgolfier
- 2 Departments of Surgery and Pharmacology, Faculty of Medicine, 12368 University of Montreal , Montréal H3T 1J4, QC, Canada
| | - Nathalie Thorin-Trescases
- 1 Montreal Heart Institute, Research Center, 12368 University of Montreal , Montreal, QC H1T 1C8, Canada
| | - Éric Thorin
- 1 Montreal Heart Institute, Research Center, 12368 University of Montreal , Montreal, QC H1T 1C8, Canada.,2 Departments of Surgery and Pharmacology, Faculty of Medicine, 12368 University of Montreal , Montréal H3T 1J4, QC, Canada
| |
Collapse
|
64
|
Liu H, Javaheri A, Godar RJ, Murphy J, Ma X, Rohatgi N, Mahadevan J, Hyrc K, Saftig P, Marshall C, McDaniel ML, Remedi MS, Razani B, Urano F, Diwan A. Intermittent fasting preserves beta-cell mass in obesity-induced diabetes via the autophagy-lysosome pathway. Autophagy 2017; 13:1952-1968. [PMID: 28853981 DOI: 10.1080/15548627.2017.1368596] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Obesity-induced diabetes is characterized by hyperglycemia, insulin resistance, and progressive beta cell failure. In islets of mice with obesity-induced diabetes, we observe increased beta cell death and impaired autophagic flux. We hypothesized that intermittent fasting, a clinically sustainable therapeutic strategy, stimulates autophagic flux to ameliorate obesity-induced diabetes. Our data show that despite continued high-fat intake, intermittent fasting restores autophagic flux in islets and improves glucose tolerance by enhancing glucose-stimulated insulin secretion, beta cell survival, and nuclear expression of NEUROG3, a marker of pancreatic regeneration. In contrast, intermittent fasting does not rescue beta-cell death or induce NEUROG3 expression in obese mice with lysosomal dysfunction secondary to deficiency of the lysosomal membrane protein, LAMP2 or haplo-insufficiency of BECN1/Beclin 1, a protein critical for autophagosome formation. Moreover, intermittent fasting is sufficient to provoke beta cell death in nonobese lamp2 null mice, attesting to a critical role for lysosome function in beta cell homeostasis under fasting conditions. Beta cells in intermittently-fasted LAMP2- or BECN1-deficient mice exhibit markers of autophagic failure with accumulation of damaged mitochondria and upregulation of oxidative stress. Thus, intermittent fasting preserves organelle quality via the autophagy-lysosome pathway to enhance beta cell survival and stimulates markers of regeneration in obesity-induced diabetes.
Collapse
Affiliation(s)
- Haiyan Liu
- a Center for Cardiovascular Research and Division of Cardiology , Washington University School of Medicine , St. Louis , MO , USA.,b John Cochran VA Medical Center , St. Louis , MO , USA
| | - Ali Javaheri
- a Center for Cardiovascular Research and Division of Cardiology , Washington University School of Medicine , St. Louis , MO , USA
| | - Rebecca J Godar
- a Center for Cardiovascular Research and Division of Cardiology , Washington University School of Medicine , St. Louis , MO , USA
| | - John Murphy
- a Center for Cardiovascular Research and Division of Cardiology , Washington University School of Medicine , St. Louis , MO , USA
| | - Xiucui Ma
- a Center for Cardiovascular Research and Division of Cardiology , Washington University School of Medicine , St. Louis , MO , USA.,b John Cochran VA Medical Center , St. Louis , MO , USA
| | - Nidhi Rohatgi
- c Department of Pathology and Immunology , Washington University School of Medicine , St. Louis , MO , USA
| | - Jana Mahadevan
- d Division of Endocrinology , Department of Internal Medicine , Washington University School of Medicine , St. Louis , MO , USA
| | - Krzysztof Hyrc
- e Department of Neurology , Washington University School of Medicine , St. Louis , MO , USA
| | - Paul Saftig
- f Institut für Biochemie, Christian-Albrechts-Universität zu Kiel , Kiel , Germany
| | - Connie Marshall
- c Department of Pathology and Immunology , Washington University School of Medicine , St. Louis , MO , USA
| | - Michael L McDaniel
- c Department of Pathology and Immunology , Washington University School of Medicine , St. Louis , MO , USA
| | - Maria S Remedi
- d Division of Endocrinology , Department of Internal Medicine , Washington University School of Medicine , St. Louis , MO , USA
| | - Babak Razani
- a Center for Cardiovascular Research and Division of Cardiology , Washington University School of Medicine , St. Louis , MO , USA
| | - Fumihiko Urano
- d Division of Endocrinology , Department of Internal Medicine , Washington University School of Medicine , St. Louis , MO , USA
| | - Abhinav Diwan
- a Center for Cardiovascular Research and Division of Cardiology , Washington University School of Medicine , St. Louis , MO , USA.,b John Cochran VA Medical Center , St. Louis , MO , USA.,g Department of Cell Biology and Physiology , Washington University School of Medicine , St. Louis , MO , USA
| |
Collapse
|
65
|
Li G, Brocker CN, Yan T, Xie C, Krausz KW, Xiang R, Gonzalez FJ. Metabolic adaptation to intermittent fasting is independent of peroxisome proliferator-activated receptor alpha. Mol Metab 2017; 7:80-89. [PMID: 29146411 PMCID: PMC5784329 DOI: 10.1016/j.molmet.2017.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/19/2017] [Accepted: 10/24/2017] [Indexed: 12/15/2022] Open
Abstract
Background Peroxisome proliferator-activated receptor alpha (PPARA) is a major regulator of fatty acid oxidation and severe hepatic steatosis occurs during acute fasting in Ppara-null mice. Thus, PPARA is considered an important mediator of the fasting response; however, its role in other fasting regiments such as every-other-day fasting (EODF) has not been investigated. Methods Mice were pre-conditioned using either a diet containing the potent PPARA agonist Wy-14643 or an EODF regimen prior to acute fasting. Ppara-null mice were used to assess the contribution of PPARA activation during the metabolic response to EODF. Livers were collected for histological, biochemical, qRT-PCR, and Western blot analysis. Results Acute fasting activated PPARA and led to steatosis, whereas EODF protected against fasting-induced hepatic steatosis without affecting PPARA signaling. In contrast, pretreatment with Wy-14,643 did activate PPARA signaling but did not ameliorate acute fasting-induced steatosis and unexpectedly promoted liver injury. Ppara ablation exacerbated acute fasting-induced hypoglycemia, hepatic steatosis, and liver injury in mice, whereas these detrimental effects were absent in response to EODF, which promoted PPARA-independent fatty acid metabolism and normalized serum lipids. Conclusions These findings indicate that PPARA activation prior to acute fasting cannot ameliorate fasting-induced hepatic steatosis, whereas EODF induced metabolic adaptations to protect against fasting-induced steatosis without altering PPARA signaling. Therefore, PPARA activation does not mediate the metabolic adaptation to fasting, at least in preventing acute fasting-induced steatosis. Wy-14,643 activates PPARA but does not alleviate acute fasting-induced steatosis. EODF prevents acute fasting-induced steatosis but does not activate PPARA. EODF protects against fasting-induced steatosis, even in Ppara-null mice. EODF normalizes serum acylcarnitines in Ppara-null mice.
Collapse
Affiliation(s)
- Guolin Li
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Laboratory of Aging Biochemistry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China.
| | - Chad N Brocker
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tingting Yan
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cen Xie
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rong Xiang
- The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 41001, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
66
|
Laeger T, Baumeier C, Wilhelmi I, Würfel J, Kamitz A, Schürmann A. FGF21 improves glucose homeostasis in an obese diabetes-prone mouse model independent of body fat changes. Diabetologia 2017; 60:2274-2284. [PMID: 28770320 PMCID: PMC6448882 DOI: 10.1007/s00125-017-4389-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/26/2017] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS Fibroblast growth factor 21 (FGF21) is considered to be a promising therapeutic candidate for the treatment of type 2 diabetes. However, as FGF21 levels are elevated in obese and diabetic conditions we aimed to test if exogenous FGF21 is sufficient to prevent diabetes and beta cell loss in New Zealand obese (NZO) mice, a model for polygenetic obesity and type 2 diabetes. METHODS Male NZO mice were treated with a specific dietary regimen that leads to the onset of diabetes within 1 week. Mice were treated subcutaneously with PBS or FGF21 to assess changes in glucose homeostasis, energy expenditure, food intake and other metabolic endpoints. RESULTS FGF21 treatment prevented islet destruction and the onset of hyperglycaemia, and improved glucose clearance. FGF21 increased energy expenditure by inducing browning in subcutaneous white adipose tissue. However, as a result of a compensatory increased food intake, body fat did not decrease in response to FGF21 treatment, but exhibited elevated Glut4 expression. CONCLUSIONS/INTERPRETATION FGF21 prevents the onset of diet-induced diabetes, without changing body fat mass. Beneficial effects are mediated via white adipose tissue browning and elevated thermogenesis. Furthermore, these data indicate that obesity does not induce FGF21 resistance in NZO mice.
Collapse
Affiliation(s)
- Thomas Laeger
- Department of Experimental Diabetology (DIAB), German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Christian Baumeier
- Department of Experimental Diabetology (DIAB), German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Ilka Wilhelmi
- Department of Experimental Diabetology (DIAB), German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Josefine Würfel
- Department of Experimental Diabetology (DIAB), German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Anne Kamitz
- Department of Experimental Diabetology (DIAB), German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology (DIAB), German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
67
|
Ke M, Wu H, Zhu Z, Zhang C, Zhang Y, Deng Y. Differential proteomic analysis of white adipose tissues from T2D KKAy mice by LC-ESI-QTOF. Proteomics 2017; 17. [PMID: 27995753 DOI: 10.1002/pmic.201600219] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 11/28/2016] [Accepted: 12/13/2016] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes (T2D) has become a worldwide increasingly social health burden for its high morbidity and heightened prevalence. As one of the main tissues involved in uptake of glucose under the stimulation of insulin, WAT plays very important role in metabolic and homeostasis regulation. We performed a differential proteomics study to investigate alterations in epididymis fat pad of high fat diet fed T2D KKAy mice compared to normal fed C57BL/6J mice, by 18 O-labeling relative quantitative technique. Among 329 confidently identified proteins, 121 proteins showed significant changes with CV ≤ 20% (fold changes of >2 or <0.5 as threshold). According to GO classification, we found that altered proteins contained members of biological processes of metabolic process, oxidative stress, ion homeostasis, apoptosis and cell division. In metabolic, proteins assigned to fatty acid biosynthesis (FAS etc.) were decreased, the key enzyme (ACOX3) in β-oxidation process was increased. Increased glycolysis enzymes (ENOB etc.) and decreased TCA cycle related enzymes (SCOT1 etc.) suggested that glucose metabolism in mitochondria of T2D mice might be impaired. Elevated oxidative stress was observed with alterations of a series of oxidordeuctase (QSOX1 etc.). Besides, alterations of ion homeostasis (AT2C1 etc.) proteins were also observed. The enhancement of cell proliferation associated proteins (ELYS etc.) and inhibition of apoptosis associated proteins (RASF6 etc.) in WAT might contributed to the fat pad and body weight gain. Overall, these changes in WAT may serve as a reference for understanding the functional mechanism of T2D.
Collapse
Affiliation(s)
- Ming Ke
- Beijing Institute of Technology, School of life science, Haidian, Beijing, P. R. China
| | - Hanyan Wu
- Beijing Institute of Technology, School of life science, Haidian, Beijing, P. R. China
| | - Zhaoyang Zhu
- Beijing Institute of Technology, School of life science, Haidian, Beijing, P. R. China
| | - Chi Zhang
- Beijing Institute of Technology, School of life science, Haidian, Beijing, P. R. China
| | - Yongqian Zhang
- Beijing Institute of Technology, School of life science, Haidian, Beijing, P. R. China
| | - Yunlin Deng
- Beijing Institute of Technology, School of life science, Haidian, Beijing, P. R. China
| |
Collapse
|
68
|
Baumeier C, Schlüter L, Saussenthaler S, Laeger T, Rödiger M, Alaze SA, Fritsche L, Häring HU, Stefan N, Fritsche A, Schwenk RW, Schürmann A. Elevated hepatic DPP4 activity promotes insulin resistance and non-alcoholic fatty liver disease. Mol Metab 2017; 6:1254-1263. [PMID: 29031724 PMCID: PMC5641684 DOI: 10.1016/j.molmet.2017.07.016] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Increased hepatic expression of dipeptidyl peptidase 4 (DPP4) is associated with non-alcoholic fatty liver disease (NAFLD). Whether this is causative for the development of NAFLD is not yet clarified. Here we investigate the effect of hepatic DPP4 overexpression on the development of liver steatosis in a mouse model of diet-induced obesity. METHODS Plasma DPP4 activity of subjects with or without NAFLD was analyzed. Wild-type (WT) and liver-specific Dpp4 transgenic mice (Dpp4-Liv-Tg) were fed a high-fat diet and characterized for body weight, body composition, hepatic fat content and insulin sensitivity. In vitro experiments on HepG2 cells and primary mouse hepatocytes were conducted to validate cell autonomous effects of DPP4 on lipid storage and insulin sensitivity. RESULTS Subjects suffering from insulin resistance and NAFLD show an increased plasma DPP4 activity when compared to healthy controls. Analysis of Dpp4-Liv-Tg mice revealed elevated systemic DPP4 activity and diminished active GLP-1 levels. They furthermore show increased body weight, fat mass, adipose tissue inflammation, hepatic steatosis, liver damage and hypercholesterolemia. These effects were accompanied by increased expression of PPARγ and CD36 as well as severe insulin resistance in the liver. In agreement, treatment of HepG2 cells and primary hepatocytes with physiological concentrations of DPP4 resulted in impaired insulin sensitivity independent of lipid content. CONCLUSIONS Our results give evidence that elevated expression of DPP4 in the liver promotes NAFLD and insulin resistance. This is linked to reduced levels of active GLP-1, but also to auto- and paracrine effects of DPP4 on hepatic insulin signaling.
Collapse
Affiliation(s)
- Christian Baumeier
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Luisa Schlüter
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, Potsdam-Rehbruecke, Germany
| | - Sophie Saussenthaler
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Thomas Laeger
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Maria Rödiger
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Stella Amelie Alaze
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, Potsdam-Rehbruecke, Germany
| | - Louise Fritsche
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Hans-Ulrich Häring
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Norbert Stefan
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Andreas Fritsche
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Robert Wolfgang Schwenk
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Annette Schürmann
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
69
|
Abstract
The objective of this review is to provide an overview of intermittent fasting regimens, summarize the evidence on the health benefits of intermittent fasting, and discuss physiological mechanisms by which intermittent fasting might lead to improved health outcomes. A MEDLINE search was performed using PubMed and the terms "intermittent fasting," "fasting," "time-restricted feeding," and "food timing." Modified fasting regimens appear to promote weight loss and may improve metabolic health. Several lines of evidence also support the hypothesis that eating patterns that reduce or eliminate nighttime eating and prolong nightly fasting intervals may result in sustained improvements in human health. Intermittent fasting regimens are hypothesized to influence metabolic regulation via effects on (a) circadian biology, (b) the gut microbiome, and (c) modifiable lifestyle behaviors, such as sleep. If proven to be efficacious, these eating regimens offer promising nonpharmacological approaches to improving health at the population level, with multiple public health benefits.
Collapse
Affiliation(s)
- Ruth E Patterson
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093; .,Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, California 92093
| | - Dorothy D Sears
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093; .,Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, California 92093.,Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
70
|
Bersuker K, Olzmann JA. Establishing the lipid droplet proteome: Mechanisms of lipid droplet protein targeting and degradation. Biochim Biophys Acta Mol Cell Biol Lipids 2017. [PMID: 28627435 DOI: 10.1016/j.bbalip.2017.06.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lipid droplets (LDs) are ubiquitous, endoplasmic reticulum (ER)-derived organelles that mediate the sequestration of neutral lipids (e.g. triacylglycerol and sterol esters), providing a dynamic cellular storage depot for rapid lipid mobilization in response to increased cellular demands. LDs have a unique ultrastructure, consisting of a core of neutral lipids encircled by a phospholipid monolayer that is decorated with integral and peripheral proteins. The LD proteome contains numerous lipid metabolic enzymes, regulatory scaffold proteins, proteins involved in LD clustering and fusion, and other proteins of unknown functions. The cellular role of LDs is inherently determined by the composition of its proteome and alteration of the LD protein coat provides a powerful mechanism to adapt LDs to fluctuating metabolic states. Here, we review the current understanding of the molecular mechanisms that govern LD protein targeting and degradation. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
Affiliation(s)
- Kirill Bersuker
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | - James A Olzmann
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
71
|
A multi-component classifier for nonalcoholic fatty liver disease (NAFLD) based on genomic, proteomic, and phenomic data domains. Sci Rep 2017; 7:43238. [PMID: 28266614 PMCID: PMC5339694 DOI: 10.1038/srep43238] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/20/2017] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a spectrum of conditions that include steatohepatitis and fibrosis that are thought to emanate from hepatic steatosis. Few robust biomarkers or diagnostic tests have been developed for hepatic steatosis in the setting of obesity. We have developed a multi-component classifier for hepatic steatosis comprised of phenotypic, genomic, and proteomic variables using data from 576 adults with extreme obesity who underwent bariatric surgery and intra-operative liver biopsy. Using a 443 patient training set, protein biomarker discovery was performed using the highly multiplexed SOMAscan® proteomic assay, a set of 19 clinical variables, and the steatosis predisposing PNPLA3 rs738409 single nucleotide polymorphism genotype status. The most stable markers were selected using a stability selection algorithm with a L1-regularized logistic regression kernel and were then fitted with logistic regression models to classify steatosis, that were then tested against a 133 sample blinded verification set. The highest area under the ROC curve (AUC) for steatosis of PNPLA3 rs738409 genotype, 8 proteins, or 19 phenotypic variables was 0.913, whereas the final classifier that included variables from all three domains had an AUC of 0.935. These data indicate that multi-domain modeling has better predictive power than comprehensive analysis of variables from a single domain.
Collapse
|
72
|
Persynaki A, Karras S, Pichard C. Unraveling the metabolic health benefits of fasting related to religious beliefs: A narrative review. Nutrition 2017; 35:14-20. [DOI: 10.1016/j.nut.2016.10.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/02/2016] [Accepted: 10/01/2016] [Indexed: 11/17/2022]
|
73
|
Li L, Sawashita J, Ding X, Yang M, Xu Z, Miyahara H, Mori M, Higuchi K. Caloric restriction reduces the systemic progression of mouse AApoAII amyloidosis. PLoS One 2017; 12:e0172402. [PMID: 28225824 PMCID: PMC5321440 DOI: 10.1371/journal.pone.0172402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/22/2016] [Indexed: 11/19/2022] Open
Abstract
In mouse senile amyloidosis, apolipoprotein (Apo) A-II is deposited extracellularly in many organs in the form of amyloid fibrils (AApoAII). Reduction of caloric intake, known as caloric restriction (CR), slows the progress of senescence and age-related disorders in mice. In this study, we intravenously injected 1 μg of isolated AApoAII fibrils into R1.P1-Apoa2c mice to induce experimental amyloidosis and investigated the effects of CR for the next 16 weeks. In the CR group, AApoAII amyloid deposits in the liver, tongue, small intestine and skin were significantly reduced compared to those of the ad libitum feeding group. CR treatment led to obvious reduction in body weight, improvement in glucose metabolism and reduction in the plasma concentration of ApoA-II. Our molecular biological analyses of the liver suggested that CR treatment might improve the symptoms of inflammation, the unfolded protein response induced by amyloid deposits and oxidative stress. Furthermore, we suggest that CR treatment might improve mitochondrial functions via the sirtuin 1-peroxisome proliferator-activated receptor γ coactivator 1α (SIRT1-PGC-1α) pathway. We suggest that CR is a promising approach for treating the onset and/or progression of amyloidosis, especially for systemic amyloidosis such as senile AApoAII amyloidosis. Our analysis of CR treatment for amyloidosis should provide useful information for determining the cause of amyloidosis and developing effective preventive treatments.
Collapse
Affiliation(s)
- Lin Li
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Jinko Sawashita
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan
- Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
- * E-mail:
| | - Xin Ding
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Mu Yang
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Zhe Xu
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Hiroki Miyahara
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Masayuki Mori
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan
- Department of Advanced Medicine for Health Promotion, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| | - Keiichi Higuchi
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan
- Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| |
Collapse
|
74
|
Abstract
PURPOSE OF REVIEW Non-invasive neuroimaging methods have been developed as powerful tools for identifying in vivo brain functions for studies in humans and animals. Here we review the imaging biomarkers that are being used to determine the changes within brain metabolic and vascular functions induced by caloric restriction (CR), and their potential usefulness for future studies with dietary interventions in humans. RECENT FINDINGS CR causes an early shift in brain metabolism of glucose to ketone bodies, and enhances ATP production, neuronal activity and cerebral blood flow (CBF). With age, CR preserves mitochondrial activity, neurotransmission, CBF, and spatial memory. CR also reduces anxiety in aging mice. Neuroimaging studies in humans show that CR restores abnormal brain activity in the amygdala of women with obesity and enhances brain connectivity in old adults. SUMMARY Neuroimaging methods have excellent translational values and can be widely applied in future studies to identify dietary effects on brain functions in humans.
Collapse
|
75
|
Abstract
Two intermittent fasting variants, intermittent energy restriction (IER) and time-restricted feeding (TRF), have received considerable interest as strategies for weight-management and/or improving metabolic health. With these strategies, the pattern of energy restriction and/or timing of food intake are altered so that individuals undergo frequently repeated periods of fasting. This review provides a commentary on the rodent and human literature, specifically focusing on the effects of IER and TRF on glucose and lipid metabolism. For IER, there is a growing evidence demonstrating its benefits on glucose and lipid homeostasis in the short-to-medium term; however, more long-term safety studies are required. Whilst the metabolic benefits of TRF appear quite profound in rodents, findings from the few human studies have been mixed. There is some suggestion that the metabolic changes elicited by these approaches can occur in the absence of energy restriction, and in the context of IER, may be distinct from those observed following similar weight-loss achieved via modest continuous energy restriction. Mechanistically, the frequently repeated prolonged fasting intervals may favour preferential reduction of ectopic fat, beneficially modulate aspects of adipose tissue physiology/morphology, and may also impinge on circadian clock regulation. However, mechanistic evidence is largely limited to findings from rodent studies, thus necessitating focused human studies, which also incorporate more dynamic assessments of glucose and lipid metabolism. Ultimately, much remains to be learned about intermittent fasting (in its various forms); however, the findings to date serve to highlight promising avenues for future research.
Collapse
|
76
|
Abstract
The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronizes these with daily cycles, feeding patterns also regulates circadian clocks. The clock genes and adipocytokines show circadian rhythmicity. Dysfunction of these genes are involved in the alteration of these adipokines during the development of obesity. Food availability promotes the stimuli associated with food intake which is a circadian oscillator outside of the suprachiasmatic nucleus (SCN). Its circadian rhythm is arranged with the predictable daily mealtimes. Food anticipatory activity is mediated by a self-sustained circadian timing and its principal component is food entrained oscillator. However, the hypothalamus has a crucial role in the regulation of energy balance rather than food intake. Fatty acids or their metabolites can modulate neuronal activity by brain nutrient-sensing neurons involved in the regulation of energy and glucose homeostasis. The timing of three-meal schedules indicates close association with the plasma levels of insulin and preceding food availability. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition can lead to uncoupling of peripheral clocks from the central pacemaker and to the development of metabolic disorders. Metabolic dysfunction is associated with circadian disturbances at both central and peripheral levels and, eventual disruption of circadian clock functioning can lead to obesity. While CLOCK expression levels are increased with high fat diet-induced obesity, peroxisome proliferator-activated receptor (PPAR) alpha increases the transcriptional level of brain and muscle ARNT-like 1 (BMAL1) in obese subjects. Consequently, disruption of clock genes results in dyslipidemia, insulin resistance and obesity. Modifying the time of feeding alone can greatly affect body weight. Changes in the circadian clock are associated with temporal alterations in feeding behavior and increased weight gain. Thus, shift work is associated with increased risk for obesity, diabetes and cardio-vascular diseases as a result of unusual eating time and disruption of circadian rhythm.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- , Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
77
|
Chung H, Chou W, Sears DD, Patterson RE, Webster NJG, Ellies LG. Time-restricted feeding improves insulin resistance and hepatic steatosis in a mouse model of postmenopausal obesity. Metabolism 2016; 65:1743-1754. [PMID: 27832862 PMCID: PMC5123758 DOI: 10.1016/j.metabol.2016.09.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Menopause is associated with significant hormonal changes that result in increased total body fat and abdominal fat, amplifying the risk for metabolic syndrome and diseases such as diabetes, cardiovascular disease and cancer in postmenopausal women. Intermittent fasting regimens hold significant health benefit promise for obese humans, however, regimens that include extreme daytime calorie restriction or daytime fasting are generally associated with hunger and irritability, hampering long-term compliance and adoption in the clinical setting. Time-restricted feeding (TRF), a regimen allowing eating only during a specific period in the normal circadian feeding cycle, without calorie restriction, may increase compliance and provide a more clinically viable method for reducing the detrimental metabolic consequences associated with obesity. METHODS We tested TRF as an intervention in a mouse model of postmenopausal obesity. Metabolic parameters were measured using Clinical Laboratory Animal Monitoring System (CLAMS) and we carried out glucose tolerance tests. We also stained liver sections with oil red O to examine steatosis and measured gene expression related to gluconeogenesis. RESULTS Preexisting metabolic disease was significantly attenuated during 7 weeks of TRF. Despite having access to the same high fat diet (HFD) as ad libitum fed (ALF) mice, TRF mice experienced rapid weight loss followed by a delayed improvement in insulin resistance and a reduced severity of hepatic steatosis by having access to the HFD for only 8h during their normal nocturnal feeding period. The lower respiratory exchange ratio in the TRF group compared with the ALF group early in the dark phase suggested that fat was the predominant fuel source in the TRF group and correlated with gene expression analyses that suggested a switch from gluconeogenesis to ketogenesis. In addition, TRF mice were more physically active than ALF fed mice. CONCLUSIONS Our data support further analysis of TRF as a clinically viable form of intermittent fasting to improve metabolic health due to obesity.
Collapse
Affiliation(s)
- Heekyung Chung
- Department of Medicine, Division of Endocrinology and Metabolism, UC San Diego, La Jolla, CA 92093, USA
| | - Winjet Chou
- Department of Medicine, Division of Endocrinology and Metabolism, UC San Diego, La Jolla, CA 92093, USA
| | - Dorothy D Sears
- Department of Medicine, Division of Endocrinology and Metabolism, UC San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, UC San Diego, La Jolla, CA 92093, USA; Department of Family Medicine and Public Health, UC San Diego, La Jolla, CA 92093, USA
| | - Ruth E Patterson
- Moores Cancer Center, UC San Diego, La Jolla, CA 92093, USA; Department of Family Medicine and Public Health, UC San Diego, La Jolla, CA 92093, USA
| | - Nicholas J G Webster
- Department of Medicine, Division of Endocrinology and Metabolism, UC San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, UC San Diego, La Jolla, CA 92093, USA; VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Lesley G Ellies
- Moores Cancer Center, UC San Diego, La Jolla, CA 92093, USA; Department of Pathology, UC San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
78
|
Kannan S, Mahadevan S, Seshadri K, Sadacharan D, Velayutham K. Fasting practices in Tamil Nadu and their importance for patients with diabetes. Indian J Endocrinol Metab 2016; 20:858-862. [PMID: 27867892 PMCID: PMC5105573 DOI: 10.4103/2230-8210.192921] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Religious practices and cultural customs related to eating habits have a significant impact on lifestyle and health of the community. The Ramadan fasting in Muslims and its influence on various metabolic parameters such as diabetes have been reasonably studied. However, literature related to Hindu religious customs related to fasting and food patterns during various festivals and its effect on diabetes are scarce. This article is an attempt to describe the Hindu religious customs related to fasting and food practices from the State of Tamil Nadu (South India) and to raise the awareness among physicians about its relationship with diabetes which may help in managing their diabetic patients in a better way.
Collapse
Affiliation(s)
- Subramanian Kannan
- Department of Endocrinology, Diabetes and Bariatric Medicine, Narayana Health City, Bengaluru, Karnataka, India
| | - Shriraam Mahadevan
- Department of Endocrinology, Diabetes and Metabolism, Sri Ramachandra Medical College, Chennai, Tamil Nadu, India
| | - Krishna Seshadri
- Department of Endocrinology, Diabetes and Metabolism, Sri Ramachandra Medical College, Chennai, Tamil Nadu, India
| | | | | |
Collapse
|
79
|
da Costa JP, Vitorino R, Silva GM, Vogel C, Duarte AC, Rocha-Santos T. A synopsis on aging-Theories, mechanisms and future prospects. Ageing Res Rev 2016; 29:90-112. [PMID: 27353257 PMCID: PMC5991498 DOI: 10.1016/j.arr.2016.06.005] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 12/31/2022]
Abstract
Answering the question as to why we age is tantamount to answering the question of what is life itself. There are countless theories as to why and how we age, but, until recently, the very definition of aging - senescence - was still uncertain. Here, we summarize the main views of the different models of senescence, with a special emphasis on the biochemical processes that accompany aging. Though inherently complex, aging is characterized by numerous changes that take place at different levels of the biological hierarchy. We therefore explore some of the most relevant changes that take place during aging and, finally, we overview the current status of emergent aging therapies and what the future holds for this field of research. From this multi-dimensional approach, it becomes clear that an integrative approach that couples aging research with systems biology, capable of providing novel insights into how and why we age, is necessary.
Collapse
Affiliation(s)
- João Pinto da Costa
- CESAM and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Rui Vitorino
- Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Gustavo M Silva
- Department of Biology, Center for Genomics and Systems Biology, NY, NY 10003, USA
| | - Christine Vogel
- Department of Biology, Center for Genomics and Systems Biology, NY, NY 10003, USA
| | - Armando C Duarte
- CESAM and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Teresa Rocha-Santos
- CESAM and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
80
|
Magalhães AFB, de Camargo GMF, Fernandes GA, Gordo DGM, Tonussi RL, Costa RB, Espigolan R, Silva RMDO, Bresolin T, de Andrade WBF, Takada L, Feitosa FLB, Baldi F, Carvalheiro R, Chardulo LAL, de Albuquerque LG. Genome-Wide Association Study of Meat Quality Traits in Nellore Cattle. PLoS One 2016; 11:e0157845. [PMID: 27359122 PMCID: PMC4928802 DOI: 10.1371/journal.pone.0157845] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/06/2016] [Indexed: 01/19/2023] Open
Abstract
The objective of this study was to identify genomic regions that are associated with meat quality traits in the Nellore breed. Nellore steers were finished in feedlots and slaughtered at a commercial slaughterhouse. This analysis included 1,822 phenotypic records of tenderness and 1,873 marbling records. After quality control, 1,630 animals genotyped for tenderness, 1,633 animals genotyped for marbling, and 369,722 SNPs remained. The results are reported as the proportion of variance explained by windows of 150 adjacent SNPs. Only windows with largest effects were considered. The genomic regions were located on chromosomes 5, 15, 16 and 25 for marbling and on chromosomes 5, 7, 10, 14 and 21 for tenderness. These windows explained 3,89% and 3,80% of the additive genetic variance for marbling and tenderness, respectively. The genes associated with the traits are related to growth, muscle development and lipid metabolism. The study of these genes in Nellore cattle is the first step in the identification of causal mutations that will contribute to the genetic evaluation of the breed.
Collapse
Affiliation(s)
- Ana F. B. Magalhães
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - Gregório M. F. de Camargo
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - Gerardo A. Fernandes
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - Daniel G. M. Gordo
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - Rafael L. Tonussi
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - Raphael B. Costa
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - Rafael Espigolan
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - Rafael M. de O. Silva
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - Tiago Bresolin
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - Willian B. F. de Andrade
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - Luciana Takada
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - Fabieli L. B. Feitosa
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - Fernando Baldi
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Jaboticabal, São Paulo, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq, Brasília, Distrito Federal, Brazil
| | - Roberto Carvalheiro
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Jaboticabal, São Paulo, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq, Brasília, Distrito Federal, Brazil
| | - Luis A. L. Chardulo
- Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq, Brasília, Distrito Federal, Brazil
- Departamento de Melhoramento e Nutrição Animal, Faculdade de Medicina Veterinária e Zootecnia, Botucatu, São Paulo, Brazil
| | - Lucia G. de Albuquerque
- Departamento de Zootecnia, Faculdade de Ciências Agrarias e Veterinárias, Jaboticabal, São Paulo, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq, Brasília, Distrito Federal, Brazil
- * E-mail:
| |
Collapse
|
81
|
Klapper M, Findeis D, Koefeler H, Döring F. Methyl group donors abrogate adaptive responses to dietary restriction in C. elegans. GENES & NUTRITION 2016; 11:4. [PMID: 27482296 PMCID: PMC4959552 DOI: 10.1186/s12263-016-0522-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/14/2015] [Indexed: 01/27/2023]
Abstract
BACKGROUND Almost all animals adapt to dietary restriction through alternative life history traits that affect their growth, reproduction, and survival. Economized management of fat stores is a prevalent type of such adaptations. Because one-carbon metabolism is a critical gauge of food availability, in this study, we used Caenorhabditis elegans to test whether the methyl group donor choline regulates adaptive responses to dietary restriction. We used a modest dietary restriction regimen that prolonged the fecund period without reducing the lifetime production of progeny, which is the best measure of fitness. RESULTS We found that dietary supplementation with choline abrogate the dietary restriction-induced prolongation of the reproductive period as well as the accumulation and delayed depletion of large lipid droplets and whole-fat stores and increased the survival rate in the cold. By contrast, the life span-prolonging effect of dietary restriction is not affected by choline. Moreover, we found that dietary restriction led to the enlargement of lipid droplets within embryos and enhancement of the cold tolerance of the progeny of dietarily restricted mothers. Both of these transgenerational responses to maternal dietary restriction were abrogated by exposing the parental generation to choline. CONCLUSIONS In conclusion, supplementation with the methyl group donor choline abrogates distinct responses to dietary restriction related to reproduction, utilization of fat stored in large lipid droplets, cold tolerance, and thrifty phenotypes in C. elegans.
Collapse
Affiliation(s)
- Maja Klapper
- Institute of Human Nutrition and Food Science, Molecular Prevention, Christian-Albrechts University of Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| | - Daniel Findeis
- Institute of Genetics, TU Braunschweig, 38106 Braunschweig, Germany
| | - Harald Koefeler
- ZMF—Center for Medical Research, University of Graz, Core Facility for Mass Spectrometry, Lipidomics and Metabolomics, A-8010 Graz, Austria
- Omics Center Graz, A-8010 Graz, Austria
| | - Frank Döring
- Institute of Human Nutrition and Food Science, Molecular Prevention, Christian-Albrechts University of Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| |
Collapse
|
82
|
Intermittent Moderate Energy Restriction Improves Weight Loss Efficiency in Diet-Induced Obese Mice. PLoS One 2016; 11:e0145157. [PMID: 26784324 PMCID: PMC4718562 DOI: 10.1371/journal.pone.0145157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 11/10/2015] [Indexed: 11/19/2022] Open
Abstract
Background Intermittent severe energy restriction is popular for weight management. To investigate whether intermittent moderate energy restriction may improve this approach by enhancing weight loss efficiency, we conducted a study in mice, where energy intake can be controlled. Methods Male C57/Bl6 mice that had been rendered obese by an ad libitum diet high in fat and sugar for 22 weeks were then fed one of two energy-restricted normal chow diets for a 12-week weight loss phase. The continuous diet (CD) provided 82% of the energy intake of age-matched ad libitum chow-fed controls. The intermittent diet (ID) provided cycles of 82% of control intake for 5–6 consecutive days, and ad libitum intake for 1–3 days. Weight loss efficiency during this phase was calculated as (total weight change) ÷ [(total energy intake of mice on CD or ID)–(total average energy intake of controls)]. Subsets of mice then underwent a 3-week weight regain phase involving ad libitum re-feeding. Results Mice on the ID showed transient hyperphagia relative to controls during each 1–3-day ad libitum feeding period, and overall ate significantly more than CD mice (91.1±1.0 versus 82.2±0.5% of control intake respectively, n = 10, P<0.05). There were no significant differences between CD and ID groups at the end of the weight loss or weight regain phases with respect to body weight, fat mass, circulating glucose or insulin concentrations, or the insulin resistance index. Weight loss efficiency was significantly greater with ID than with CD (0.042±0.007 versus 0.018±0.001 g/kJ, n = 10, P<0.01). Mice on the CD exhibited significantly greater hypothalamic mRNA expression of proopiomelanocortin (POMC) relative to ID and control mice, with no differences in neuropeptide Y or agouti-related peptide mRNA expression between energy-restricted groups. Conclusion Intermittent moderate energy restriction may offer an advantage over continuous moderate energy restriction, because it induces significantly greater weight loss relative to energy deficit in mice.
Collapse
|
83
|
Radenković M, Stojanović M, Prostran M. Experimental diabetes induced by alloxan and streptozotocin: The current state of the art. J Pharmacol Toxicol Methods 2015; 78:13-31. [PMID: 26596652 DOI: 10.1016/j.vascn.2015.11.004] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 11/14/2015] [Accepted: 11/15/2015] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus is a chronic metabolic disorder with a high prevalence worldwide. Animal models of diabetes represent an important tool in diabetes investigation that helps us to avoid unnecessary and ethically challenging studies in human subjects, as well as to obtain a comprehensive scientific viewpoint of this disease. Although there are several methods through which diabetes can be induced, chemical methods of alloxan- and streptozotocin-induced diabetes represent the most important and highly preferable experimental models for this pathological condition. Therefore, the aim of this article was to review the current knowledge related to quoted models of diabetes, including to this point available information about mechanism of action, particular time- and dose-dependent protocols, frequent problems, as well as major limitations linked to laboratory application of alloxan and sterptozotocin in inducing diabetes. Given that diabetes is known to be closely associated with serious health consequences it is of fundamental importance that current animal models for induction of diabetes should be continuously upgraded in order to improve overall prevention, diagnosis and treatment of this pathological condition.
Collapse
Affiliation(s)
- Miroslav Radenković
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, PO Box 38, 11129 Belgrade, Serbia.
| | - Marko Stojanović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, PO Box 38, 11129 Belgrade, Serbia.
| | - Milica Prostran
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, PO Box 38, 11129 Belgrade, Serbia.
| |
Collapse
|
84
|
Guo J, Bakshi V, Lin AL. Early Shifts of Brain Metabolism by Caloric Restriction Preserve White Matter Integrity and Long-Term Memory in Aging Mice. Front Aging Neurosci 2015; 7:213. [PMID: 26617514 PMCID: PMC4643125 DOI: 10.3389/fnagi.2015.00213] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/30/2015] [Indexed: 12/15/2022] Open
Abstract
Preservation of brain integrity with age is highly associated with lifespan determination. Caloric restriction (CR) has been shown to increase longevity and healthspan in various species; however, its effects on preserving living brain functions in aging remain largely unexplored. In the study, we used multimodal, non-invasive neuroimaging (PET/MRI/MRS) to determine in vivo brain glucose metabolism, energy metabolites, and white matter structural integrity in young and old mice fed with either control or 40% CR diet. In addition, we determined the animals' memory and learning ability with behavioral assessments. Blood glucose, blood ketone bodies, and body weight were also measured. We found distinct patterns between normal aging and CR aging on brain functions - normal aging showed reductions in brain glucose metabolism, white matter integrity, and long-term memory, resembling human brain aging. CR aging, in contrast, displayed an early shift from glucose to ketone bodies metabolism, which was associated with preservations of brain energy production, white matter integrity, and long-term memory in aging mice. Among all the mice, we found a positive correlation between blood glucose level and body weight, but an inverse association between blood glucose level and lifespan. Our findings suggest that CR could slow down brain aging, in part due to the early shift of energy metabolism caused by lower caloric intake, and we were able to identify the age-dependent effects of CR non-invasively using neuroimaging. These results provide a rationale for CR-induced sustenance of brain health with extended longevity.
Collapse
Affiliation(s)
- Janet Guo
- Sanders-Brown Center on Aging, University of Kentucky , Lexington, KY , USA ; Department of Pharmacology and Nutritional Sciences, University of Kentucky , Lexington, KY , USA
| | - Vikas Bakshi
- Sanders-Brown Center on Aging, University of Kentucky , Lexington, KY , USA ; Department of Pharmacology and Nutritional Sciences, University of Kentucky , Lexington, KY , USA
| | - Ai-Ling Lin
- Sanders-Brown Center on Aging, University of Kentucky , Lexington, KY , USA ; Department of Pharmacology and Nutritional Sciences, University of Kentucky , Lexington, KY , USA ; Department of Biomedical Engineering, University of Kentucky , Lexington, KY , USA
| |
Collapse
|