51
|
Harb E, Kheder O, Poopalasingam G, Rashid R, Srinivasan A, Izzi-Engbeaya C. Brown adipose tissue and regulation of human body weight. Diabetes Metab Res Rev 2023; 39:e3594. [PMID: 36398906 PMCID: PMC10077912 DOI: 10.1002/dmrr.3594] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/07/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Approximately 30% of the global population is affected by obesity. Traditional non-surgical measures for weight loss have limited efficacy and tolerability. Therefore, there is a need for novel, effective therapies. Brown adipose tissue (BAT) has been implicated in physiological energy expenditure, indicating that it could be targeted to achieve weight loss in humans. The use of 18 F-fluorodeoxyglucose (18 F-FDG) positron emission tomography-computed tomography-(PET-CT) imaging has enabled the discovery of functionally active BAT in the supraclavicular, subclavian, and thoracic spine regions of human adults. This review aims to discuss the reasons behind the renewed interest in BAT, assess whether it is metabolically important in humans, and evaluate its feasibility as a therapeutic target for treating obesity. SOURCES OF MATERIAL PubMed Central, Europe PMC, Medline. FINDINGS In vivo studies have shown that BAT activity is regulated by thyroid hormones and the sympathetic nervous system. Furthermore, BAT uniquely contains uncoupling protein 1 (UCP1) that is largely responsible for non-shivering thermogenesis. Cold exposure can increase BAT recruitment through the browning of white adipose tissue (WAT); however, this technique has practical limitations that may preclude its use. Currently available medicines for humans, such as the β3-adrenergic receptor agonist mirabegron or the farnesoid X receptor agonist obeticholic acid, have generated excitement, although adverse effects are a concern. Capsinoids represent a tolerable alternative, which require further investigation. CONCLUSIONS The use of currently available BAT-activating agents alone is unlikely to achieve significant weight loss in humans. A combination of BAT activation with physical exercise and modern, successful dietary strategies represents a more realistic option.
Collapse
Affiliation(s)
- Elissa Harb
- Imperial College School of Medicine, Imperial College London, London, UK
| | - Omar Kheder
- Imperial College School of Medicine, Imperial College London, London, UK
| | | | - Razi Rashid
- Imperial College School of Medicine, Imperial College London, London, UK
| | - Akash Srinivasan
- Imperial College School of Medicine, Imperial College London, London, UK
| | - Chioma Izzi-Engbeaya
- Imperial College School of Medicine, Imperial College London, London, UK
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| |
Collapse
|
52
|
Ho WE, Sun L, Goh HJ, Tint MT, Sun L, Leow MKS. Brown adipose tissue influences adiponectin and thyroid hormone changes during Graves' disease therapy. Adipocyte 2022; 11:389-400. [PMID: 35894647 PMCID: PMC9336474 DOI: 10.1080/21623945.2022.2104509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Thyroid hormones (TH), adiponectin and brown adipose tissue (BAT) are regulators of energy homoeostasis. Influence of BAT activity on the relationship between TH and adiponectin remains unexplored. The aim of the study was to identify the relationship between TH and adiponectin and to clarify the impact of active BAT on the metabolic effects of adiponectin before and after the correction of thyrotoxicosis. Twenty-one patients with newly diagnosed hyperthyroidism from Graves' disease were recruited. A titration dosing regimen of thionamide anti-thyroid drug (ATD) was used to establish euthyroidism over 12-24 weeks. Anthropometric, biochemical and adipocytokine parameters were measured before and after control of hyperthyroidism. BAT activity was quantified by fusion 18 F-fluorodeoxyglucose (18 F-FDG) PET/MR imaging, and patients were grouped based on BAT status. Plasma adiponectin level was significantly increased following correction of hyperthyroidism in the overall sample. Free thyroxine (FT4) was also identified as a predictor of adiponectin level in thyroid dysfunction. However, significant changes in adiponectin level and correlations involving adiponectin were absent in BAT-positive patients but maintained in BAT-negative patients. BAT activity diminishes the correlative relationship with body composition and abolishes TH and adiponectin relationships when transitioning from a hyperthyroid to euthyroid state.
Collapse
Affiliation(s)
- Wei-En Ho
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore, Singapore
| | - Lijuan Sun
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A *STAR), Singapore
| | - Hui Jen Goh
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A *STAR), Singapore
| | - Mya Thway Tint
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A *STAR), Singapore.,Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Melvin Khee Shing Leow
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore, Singapore.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A *STAR), Singapore.,Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Endocrinology, Division of Medicine, Tan Tock Seng Hospital (TTSH), Singapore
| |
Collapse
|
53
|
Langer HT, Cantley LC, Goncalves MD. Live cold to grow old? Thermogenesis to fight cancer. Cell Res 2022; 32:1042-1043. [PMID: 36085369 PMCID: PMC9715683 DOI: 10.1038/s41422-022-00723-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Henning T Langer
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lewis C Cantley
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marcus D Goncalves
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
54
|
Association of apolipoprotein M and sphingosine-1-phosphate with brown adipose tissue after cold exposure in humans. Sci Rep 2022; 12:18753. [PMID: 36335116 PMCID: PMC9637161 DOI: 10.1038/s41598-022-21938-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 10/06/2022] [Indexed: 11/07/2022] Open
Abstract
The HDL-associated apolipoprotein M (apoM) and its ligand sphingosine-1-phosphate (S1P) may control energy metabolism. ApoM deficiency in mice is associated with increased vascular permeability, brown adipose tissue (BAT) mass and activity, and protection against obesity. In the current study, we explored the connection between plasma apoM/S1P levels and parameters of BAT as measured via 18F-FDG PET/CT after cold exposure in humans. Fixed (n = 15) vs personalized (n = 20) short-term cooling protocols decreased and increased apoM (- 8.4%, P = 0.032 vs 15.7%, P < 0.0005) and S1P (- 41.0%, P < 0.0005 vs 19.1%, P < 0.005) plasma levels, respectively. Long-term cooling (n = 44) did not affect plasma apoM or S1P levels. Plasma apoM and S1P did not correlate significantly to BAT volume and activity in the individual studies. However, short-term studies combined, showed that increased changes in plasma apoM correlated with BAT metabolic activity (β: 0.44, 95% CI [0.06-0.81], P = 0.024) after adjusting for study design but not BAT volume (β: 0.39, 95% CI [- 0.01-0.78], P = 0.054). In conclusion, plasma apoM and S1P levels are altered in response to cold exposure and may be linked to changes in BAT metabolic activity but not BAT volume in humans. This contrasts partly with observations in animals and highlights the need for further studies to understand the biological role of apoM/S1P complex in human adipose tissue and lipid metabolism.
Collapse
|
55
|
Leow MKS. Brown fat detection by infrared thermography-An invaluable research methodology with noteworthy uncertainties confirmed by a mathematical proof. Endocrinol Diabetes Metab 2022; 6:e378. [PMID: 36379014 PMCID: PMC9836251 DOI: 10.1002/edm2.378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Brown adipose tissue (BAT) represents a pivotal scientific renaissance worthy as a strategy for obesity and diabetes since its re-discovery in adults over a decade ago. Equally compelling is the adoption of infrared thermography (IRT) in recent times as a precise and viable alternative methodology over the 'gold standard' PET-CT scan, given constraints of the latter's high ionizing radiation doses and costs. Unravelling BAT metabolic physiology in live humans has been challenging until recent rigorous validation of IRT against PET. Nevertheless, IRT remains a nascent technique with pitfalls unbeknownst to many researchers. Factors impacting its accuracy merit an in-depth scientific scrutiny. This article discusses the strengths and pitfalls of IRT as an emergent BAT detection technique and provides a mathematical proof of its limitations that BAT researchers should be cognizant of. Understanding these limitations of IRT can prompt extra efforts to control these uncertainties with greater rigour. In conclusion, this warrants further investigations of improving IRT quality via advanced auto-segmentation, powerful image processing of thermograms and protocol standardization along the lines of BARCIST 1.0 to minimize errors and enhance the confidence of the global BAT research community in IRT as a robust and reliable BAT research tool.
Collapse
Affiliation(s)
- Melvin K. S. Leow
- Department of Human DevelopmentSingapore Institute for Clinical Sciences, A*STARSingapore CitySingapore,Lee Kong Chian School of MedicineSingapore CitySingapore,Cardiovascular and Metabolic Disorders ProgramDuke‐NUS Medical SchoolSingapore CitySingapore,Department of EndocrinologyTan Tock Seng HospitalSingapore CitySingapore
| |
Collapse
|
56
|
Yin X, Chen Y, Ruze R, Xu R, Song J, Wang C, Xu Q. The evolving view of thermogenic fat and its implications in cancer and metabolic diseases. Signal Transduct Target Ther 2022; 7:324. [PMID: 36114195 PMCID: PMC9481605 DOI: 10.1038/s41392-022-01178-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 02/07/2023] Open
Abstract
AbstractThe incidence of metabolism-related diseases like obesity and type 2 diabetes mellitus has reached pandemic levels worldwide and increased gradually. Most of them are listed on the table of high-risk factors for malignancy, and metabolic disorders systematically or locally contribute to cancer progression and poor prognosis of patients. Importantly, adipose tissue is fundamental to the occurrence and development of these metabolic disorders. White adipose tissue stores excessive energy, while thermogenic fat including brown and beige adipose tissue dissipates energy to generate heat. In addition to thermogenesis, beige and brown adipocytes also function as dynamic secretory cells and a metabolic sink of nutrients, like glucose, fatty acids, and amino acids. Accordingly, strategies that activate and expand thermogenic adipose tissue offer therapeutic promise to combat overweight, diabetes, and other metabolic disorders through increasing energy expenditure and enhancing glucose tolerance. With a better understanding of its origins and biological functions and the advances in imaging techniques detecting thermogenesis, the roles of thermogenic adipose tissue in tumors have been revealed gradually. On the one hand, enhanced browning of subcutaneous fatty tissue results in weight loss and cancer-associated cachexia. On the other hand, locally activated thermogenic adipocytes in the tumor microenvironment accelerate cancer progression by offering fuel sources and is likely to develop resistance to chemotherapy. Here, we enumerate current knowledge about the significant advances made in the origin and physiological functions of thermogenic fat. In addition, we discuss the multiple roles of thermogenic adipocytes in different tumors. Ultimately, we summarize imaging technologies for identifying thermogenic adipose tissue and pharmacologic agents via modulating thermogenesis in preclinical experiments and clinical trials.
Collapse
|
57
|
Martinez-Tellez B, Sanchez-Delgado G, Acosta FM, Alcantara JMA, Amaro-Gahete FJ, Martinez-Avila WD, Merchan-Ramirez E, Muñoz-Hernandez V, Osuna-Prieto FJ, Jurado-Fasoli L, Xu H, Ortiz-Alvarez L, Arias-Tellez MJ, Mendez-Gutierrez A, Labayen I, Ortega FB, Schönke M, Rensen PCN, Aguilera CM, Llamas-Elvira JM, Gil Á, Ruiz JR. No evidence of brown adipose tissue activation after 24 weeks of supervised exercise training in young sedentary adults in the ACTIBATE randomized controlled trial. Nat Commun 2022; 13:5259. [PMID: 36097264 PMCID: PMC9467993 DOI: 10.1038/s41467-022-32502-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 08/02/2022] [Indexed: 01/06/2023] Open
Abstract
Exercise modulates both brown adipose tissue (BAT) metabolism and white adipose tissue (WAT) browning in murine models. Whether this is true in humans, however, has remained unknown. An unblinded randomized controlled trial (ClinicalTrials.gov ID: NCT02365129) was therefore conducted to study the effects of a 24-week supervised exercise intervention, combining endurance and resistance training, on BAT volume and activity (primary outcome). The study was carried out in the Sport and Health University Research Institute and the Virgen de las Nieves University Hospital of the University of Granada (Spain). One hundred and forty-five young sedentary adults were assigned to either (i) a control group (no exercise, n = 54), (ii) a moderate intensity exercise group (MOD-EX, n = 48), or (iii) a vigorous intensity exercise group (VIG-EX n = 43) by unrestricted randomization. No relevant adverse events were recorded. 97 participants (34 men, 63 women) were included in the final analysis (Control; n = 35, MOD-EX; n = 31, and VIG-EX; n = 31). We observed no changes in BAT volume (Δ Control: −22.2 ± 52.6 ml; Δ MOD-EX: −15.5 ± 62.1 ml, Δ VIG-EX: −6.8 ± 66.4 ml; P = 0.771) or 18F-fluorodeoxyglucose uptake (SUVpeak Δ Control: −2.6 ± 3.1 ml; Δ MOD-EX: −1.2 ± 4.8, Δ VIG-EX: −2.2 ± 5.1; p = 0.476) in either the control or the exercise groups. Thus, we did not find any evidence of an exercise-induced change on BAT volume or activity in young sedentary adults. Exercise modulates brown adipose tissue (BAT) metabolism in murine models. Here the authors report that there is no evidence that 24 weeks of supervised exercise training modulates BAT volume or function in young sedentary adults in the ACTIBATE randomized controlled trial.
Collapse
Affiliation(s)
- Borja Martinez-Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Department of Education, Faculty of Education Sciences and SPORT Research Group (CTS-1024), CERNEP Research Center, University of Almería, Almería, Spain
| | - Guillermo Sanchez-Delgado
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Francisco M Acosta
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Turku PET Centre, University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland.,InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Juan M A Alcantara
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Francisco J Amaro-Gahete
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,EFFECTS-262 Research Group, Department of Physiology, School of Medicine, University of Granada, Granada, Spain
| | - Wendy D Martinez-Avila
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Elisa Merchan-Ramirez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Victoria Muñoz-Hernandez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Francisco J Osuna-Prieto
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Analytical Chemistry, University of Granada, Granada, Spain.,Research and Development of Functional Food Center (CIDAF), Granada, Spain
| | - Lucas Jurado-Fasoli
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Huiwen Xu
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Lourdes Ortiz-Alvarez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - María J Arias-Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Nutrition, Faculty of Medicine, University of Chile, Independence, 1027, Santiago, Chile
| | - Andrea Mendez-Gutierrez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Idoia Labayen
- Institute for Innovation & Sustainable Development in Food Chain (IS-FOOD), Public University of Navarra, Campus de Arrosadía, 31008, Pamplona, Spain
| | - Francisco B Ortega
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Milena Schönke
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Concepción M Aguilera
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - José M Llamas-Elvira
- Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain.,Nuclear Medicine Service, Virgen de las Nieves University Hospital, Granada, Spain.,Nuclear Medicine Department, Biohealth Research Institute in Granada, Granada, Spain
| | - Ángel Gil
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Jonatan R Ruiz
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain. .,Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain.
| |
Collapse
|
58
|
Monitoring of Current Cancer Therapy by Positron Emission Tomography and Possible Role of Radiomics Assessment. Int J Mol Sci 2022; 23:ijms23169394. [PMID: 36012657 PMCID: PMC9409366 DOI: 10.3390/ijms23169394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/31/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Evaluation of cancer therapy with imaging is crucial as a surrogate marker of effectiveness and survival. The unique response patterns to therapy with immune-checkpoint inhibitors have facilitated the revision of response evaluation criteria using FDG-PET, because the immune response recalls reactive cells such as activated T-cells and macrophages, which show increased glucose metabolism and apparent progression on morphological imaging. Cellular metabolism and function are critical determinants of the viability of active cells in the tumor microenvironment, which would be novel targets of therapies, such as tumor immunity, metabolism, and genetic mutation. Considering tumor heterogeneity and variation in therapy response specific to the mechanisms of therapy, appropriate response evaluation is required. Radiomics approaches, which combine objective image features with a machine learning algorithm as well as pathologic and genetic data, have remarkably progressed over the past decade, and PET radiomics has increased quality and reliability based on the prosperous publications and standardization initiatives. PET and multimodal imaging will play a definitive role in personalized therapeutic strategies by the precise monitoring in future cancer therapy.
Collapse
|
59
|
Chen PY, Chiu CC, Hsieh TH, Liu YR, Chen CH, Huang CY, Lu ML, Huang MC. The relationship of antipsychotic treatment with reduced brown adipose tissue activity in patients with schizophrenia. Psychoneuroendocrinology 2022; 142:105775. [PMID: 35594830 DOI: 10.1016/j.psyneuen.2022.105775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Antipsychotic drug (APD) treatment has been associated with metabolic abnormalities. Brown adipose tissue (BAT) is the main site of adaptive thermogenesis and secretes various metabolism-improving factors known as batokines. We explored the association of BAT activity with APD treatment and metabolic abnormalities in patients with schizophrenia by measuring the blood levels of bone morphogenetic protein 8b (BMP8b), a batokine secreted by mature BAT. METHODS BMP8b levels were compared among 50 drug-free, 32 aripiprazole-treated, and 91 clozapine-treated patients with schizophrenia. Regression analysis was used to explore factors, including APD types, that might be associated with BMP8b levels and the potential effect of BMP8b on metabolic syndrome (MS). RESULTS APD-treated patients had decreased BMP8b levels relative to drug-free patients. The difference still existed after adjustment for body mass index and Brief Psychiatric Rating Scale scores. Among APD-treated group, clozapine was associated with even lower BMP8b levels than the less obesogenic APD, aripiprazole. Furthermore, higher BMP8b levels were associated with lower risks of MS after adjustment for BMI and APD treatment. CONCLUSION Using drug-free patients as the comparison group to understand the effect of APDs, this is the first study to show APD treatment is associated with reduced BAT activity that is measured by BMP8b levels, with clozapine associated a more significant reduction than aripiprazole treatment. BMP8b might have a beneficial effect against metabolic abnormalities and this effect is independent of APD treatment. Future studies exploring the causal relationship between APD treatment and BMP8b levels and the underlying mechanisms are warranted.
Collapse
Affiliation(s)
- Po-Yu Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan; Department of Psychology, National Cheng-chi University, Taiwan
| | - Chih-Chiang Chiu
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Tsung-Han Hsieh
- Joint Biobank, Office of Human Research, Taipei Medical University, Taiwan
| | - Yun-Ru Liu
- Joint Biobank, Office of Human Research, Taipei Medical University, Taiwan
| | - Chun-Hsin Chen
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Cho-Yin Huang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
| | - Mong-Liang Lu
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ming-Chyi Huang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Psychiatric Research Center, Taipei Medical University Hospital, 250 Wu-Hsing Street, 110 Taipei, Taiwan.
| |
Collapse
|
60
|
Monfort-Pires M, Regeni-Silva G, Dadson P, Nogueira GA, U-Din M, Ferreira SRG, Sapienza MT, Virtanen K, Velloso LA. Brown fat triglyceride content is associated with cardiovascular risk markers in adults from a tropical region. Front Endocrinol (Lausanne) 2022; 13:919588. [PMID: 35928901 PMCID: PMC9343995 DOI: 10.3389/fendo.2022.919588] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Brown adipose tissue (BAT) is regarded as an interesting potential target for the treatment of obesity, diabetes, and cardiovascular diseases, and the detailed characterization of its structural and functional phenotype could enable an advance in these fields. Most studies evaluating BAT structure and function were performed in temperate climate regions, and we are yet to know how these findings apply to the 40% of the world's population living in tropical areas. Here, we used 18F-fluorodeoxyglucose positron emission tomography - magnetic resonance imaging to evaluate BAT in 45 lean, overweight, and obese volunteers living in a tropical area in Southeast Brazil. We aimed at investigating the associations between BAT activity, volume, metabolic activity, and BAT content of triglycerides with adiposity and cardiovascular risk markers in a sample of adults living in a tropical area and we showed that BAT glucose uptake is not correlated with leanness; instead, BAT triglyceride content is correlated with visceral adiposity and markers of cardiovascular risk. This study expands knowledge regarding the structure and function of BAT in people living in tropical areas. In addition, we provide evidence that BAT triglyceride content could be an interesting marker of cardiovascular risk.
Collapse
Affiliation(s)
- Milena Monfort-Pires
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University ofCampinas (UNICAMP), Campinas, Brazil
| | - Giulianna Regeni-Silva
- Department of Nutrition, School of Public Health -University of São Paulo, São Paulo, Brazil
| | - Prince Dadson
- Turku PET Centre, University of Turku, Turku, Finland
| | - Guilherme A. Nogueira
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University ofCampinas (UNICAMP), Campinas, Brazil
| | - Mueez U-Din
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Sandra R. G. Ferreira
- Department of Epidemiology, School of Public Health-University of São Paulo, São Paulo, Brazil
| | - Marcelo Tatit Sapienza
- Division of Nuclear Medicine, Department of Radiology and Oncology, Medical School of University of São Paulo (FMUSP), São Paulo, Finland
| | - Kirsi A. Virtanen
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland (UEF), Kuopio, Finland
| | - Licio A. Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University ofCampinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
61
|
Acosta FM, Sanchez-Delgado G, Martinez-Tellez B, Osuna-Prieto FJ, Mendez-Gutierrez A, Aguilera CM, Gil A, Llamas-Elvira JM, Ruiz JR. A larger brown fat volume and lower radiodensity are related to a greater cardiometabolic risk, especially in young men. Eur J Endocrinol 2022; 187:171-183. [PMID: 36149276 DOI: 10.1530/eje-22-0130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/11/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVES Brown adipose tissue (BAT) is important in the maintenance of cardiometabolic health in rodents. Recent reports appear to suggest the same in humans, although if this is true remains elusive partly because of the methodological bias that affected previous research. This cross-sectional work reports the relationships of cold-induced BAT volume, activity (peak standardized uptake, SUVpeak), and mean radiodensity (an inverse proxy of the triacylglycerols content) with the cardiometabolic and inflammatory profile of 131 young adults, and how these relationships are influenced by sex and body weight. DESIGN This is a cross-sectional study. METHODS Subjects underwent personalized cold exposure for 2 h to activate BAT, followed by static 18F-fluorodeoxyglucose PET-CT scanning to determine BAT variables. Information on cardiometabolic risk (CMR) and inflammatory markers was gathered, and a CMR score and fatty liver index (FLI) were calculated. RESULTS In men, BAT volume was positively related to homocysteine and liver damage markers concentrations (independently of BMI and seasonality) and the FLI (all P ≤ 0.05). In men, BAT mean radiodensity was negatively related to the glucose and insulin concentrations, alanine aminotransferase activity, insulin resistance, total cholesterol/HDL-C, LDL-C/HDL-C, the CMR score, and the FLI (all P ≤ 0.02). In women, it was only negatively related to the FLI (P < 0.001). These associations were driven by the results for the overweight and obese subjects. No relationship was seen between BAT and inflammatory markers (P > 0.05). CONCLUSIONS A larger BAT volume and a lower BAT mean radiodensity are related to a higher CMR, especially in young men, which may support that BAT acts as a compensatory organ in states of metabolic disruption.
Collapse
Affiliation(s)
- Francisco M Acosta
- PROFITH 'PRO-moting FITness and Health Through Physical Activity' Research Group, Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada, Spain
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Guillermo Sanchez-Delgado
- PROFITH 'PRO-moting FITness and Health Through Physical Activity' Research Group, Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada, Spain
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Borja Martinez-Tellez
- PROFITH 'PRO-moting FITness and Health Through Physical Activity' Research Group, Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada, Spain
- Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Francisco J Osuna-Prieto
- PROFITH 'PRO-moting FITness and Health Through Physical Activity' Research Group, Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada, Spain
- Department of Analytical Chemistry, University of Granada, Granada, Spain
- Research and Development of Functional Food Center (CIDAF), Granada, Spain
| | - Andrea Mendez-Gutierrez
- Department of Biochemistry and Molecular Biology II, 'José Mataix Verdú' Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBNISCIII), Madrid, Spain
| | - Concepcion M Aguilera
- Department of Biochemistry and Molecular Biology II, 'José Mataix Verdú' Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBNISCIII), Madrid, Spain
| | - Angel Gil
- Department of Biochemistry and Molecular Biology II, 'José Mataix Verdú' Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBNISCIII), Madrid, Spain
| | - Jose M Llamas-Elvira
- Nuclear Medicine Services, 'Virgen de las Nieves' University Hospital, Granada, Spain
| | - Jonatan R Ruiz
- PROFITH 'PRO-moting FITness and Health Through Physical Activity' Research Group, Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain
| |
Collapse
|
62
|
Pena-Leon V, Folgueira C, Barja-Fernández S, Pérez-Lois R, Da Silva Lima N, Martin M, Heras V, Martinez-Martinez S, Valero P, Iglesias C, Duquenne M, Al-Massadi O, Beiroa D, Souto Y, Fidalgo M, Sowmyalakshmi R, Guallar D, Cunarro J, Castelao C, Senra A, González-Saenz P, Vázquez-Cobela R, Leis R, Sabio G, Mueller-Fielitz H, Schwaninger M, López M, Tovar S, Casanueva FF, Valjent E, Diéguez C, Prevot V, Nogueiras R, Seoane LM. Prolonged breastfeeding protects from obesity by hypothalamic action of hepatic FGF21. Nat Metab 2022; 4:901-917. [PMID: 35879461 PMCID: PMC9314260 DOI: 10.1038/s42255-022-00602-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/08/2022] [Indexed: 12/25/2022]
Abstract
Early-life determinants are thought to be a major factor in the rapid increase of obesity. However, while maternal nutrition has been extensively studied, the effects of breastfeeding by the infant on the reprogramming of energy balance in childhood and throughout adulthood remain largely unknown. Here we show that delayed weaning in rat pups protects them against diet-induced obesity in adulthood, through enhanced brown adipose tissue thermogenesis and energy expenditure. In-depth metabolic phenotyping in this rat model as well as in transgenic mice reveals that the effects of prolonged suckling are mediated by increased hepatic fibroblast growth factor 21 (FGF21) production and tanycyte-controlled access to the hypothalamus in adulthood. Specifically, FGF21 activates GABA-containing neurons expressing dopamine receptor 2 in the lateral hypothalamic area and zona incerta. Prolonged breastfeeding thus constitutes a protective mechanism against obesity by affecting long-lasting physiological changes in liver-to-hypothalamus communication and hypothalamic metabolic regulation.
Collapse
Affiliation(s)
- Veronica Pena-Leon
- Endocrine Physiopathology Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Complejo Hospitalario Universitario de Santiago/SERGAS, Santiago de Compostela, Spain
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Cintia Folgueira
- Endocrine Physiopathology Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Complejo Hospitalario Universitario de Santiago/SERGAS, Santiago de Compostela, Spain
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- CIBEROBN Physiopathology of Obesity and Nutrition, ISCIII, Santiago de Compostela, Spain
| | - Silvia Barja-Fernández
- Endocrine Physiopathology Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Complejo Hospitalario Universitario de Santiago/SERGAS, Santiago de Compostela, Spain
| | - Raquel Pérez-Lois
- Endocrine Physiopathology Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Complejo Hospitalario Universitario de Santiago/SERGAS, Santiago de Compostela, Spain
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Natália Da Silva Lima
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Marion Martin
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Inserm, University of Lille, Lille, France
| | - Violeta Heras
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Sara Martinez-Martinez
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Paola Valero
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Cristina Iglesias
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Mannon Duquenne
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Inserm, University of Lille, Lille, France
| | - Omar Al-Massadi
- Endocrine Physiopathology Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Complejo Hospitalario Universitario de Santiago/SERGAS, Santiago de Compostela, Spain
- CIBEROBN Physiopathology of Obesity and Nutrition, ISCIII, Santiago de Compostela, Spain
| | - Daniel Beiroa
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Yara Souto
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel Fidalgo
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Rasika Sowmyalakshmi
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Inserm, University of Lille, Lille, France
| | - Diana Guallar
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan Cunarro
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Cecilia Castelao
- Endocrine Physiopathology Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Complejo Hospitalario Universitario de Santiago/SERGAS, Santiago de Compostela, Spain
- CIBEROBN Physiopathology of Obesity and Nutrition, ISCIII, Santiago de Compostela, Spain
| | - Ana Senra
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Patricia González-Saenz
- Endocrine Physiopathology Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Complejo Hospitalario Universitario de Santiago/SERGAS, Santiago de Compostela, Spain
| | - Rocío Vázquez-Cobela
- Pediatrics Department, GI Pediatric Nutrition, Galicia Research Unit for Development, Growth and Human Nutrition, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain
| | - Rosaura Leis
- Pediatrics Department, GI Pediatric Nutrition, Galicia Research Unit for Development, Growth and Human Nutrition, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain
| | | | - Helge Mueller-Fielitz
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Miguel López
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- CIBEROBN Physiopathology of Obesity and Nutrition, ISCIII, Santiago de Compostela, Spain
| | - Sulay Tovar
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- CIBEROBN Physiopathology of Obesity and Nutrition, ISCIII, Santiago de Compostela, Spain
| | - Felipe F Casanueva
- CIBEROBN Physiopathology of Obesity and Nutrition, ISCIII, Santiago de Compostela, Spain
| | - Emmanuel Valjent
- IGF, University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Carlos Diéguez
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- CIBEROBN Physiopathology of Obesity and Nutrition, ISCIII, Santiago de Compostela, Spain
| | - Vincent Prevot
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Inserm, University of Lille, Lille, France
| | - Rubén Nogueiras
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain.
- CIBEROBN Physiopathology of Obesity and Nutrition, ISCIII, Santiago de Compostela, Spain.
- Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain.
| | - Luisa M Seoane
- Endocrine Physiopathology Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Complejo Hospitalario Universitario de Santiago/SERGAS, Santiago de Compostela, Spain.
- CIBEROBN Physiopathology of Obesity and Nutrition, ISCIII, Santiago de Compostela, Spain.
| |
Collapse
|
63
|
Sardjoe Mishre AS, Martinez-Tellez B, Acosta FM, Sanchez-Delgado G, Straat ME, Webb AG, Kan HE, Rensen PC, Ruiz JR. Association of shivering threshold time with body composition and brown adipose tissue in young adults. J Therm Biol 2022; 108:103277. [DOI: 10.1016/j.jtherbio.2022.103277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 05/06/2022] [Accepted: 06/03/2022] [Indexed: 11/26/2022]
|
64
|
Frankl JA, An Y, Sherwood A, Hao G, Huang FY, Thapa P, Clegg DJ, Sun X, Scherer PE, Öz OK. Comparison of BMIPP-SPECT/CT to 18FDG-PET/CT for Imaging Brown or Browning Fat in a Preclinical Model. Int J Mol Sci 2022; 23:4880. [PMID: 35563272 PMCID: PMC9101718 DOI: 10.3390/ijms23094880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Obesity is a leading cause of preventable death and morbidity. To elucidate the mechanisms connecting metabolically active brown adipose tissue (BAT) and metabolic health may provide insights into methods of treatment for obesity-related conditions. 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18FDG-PET/CT) is traditionally used to image human BAT activity. However, the primary energy source of BAT is derived from intracellular fatty acids and not glucose. Beta-methyl-p-iodophenylpentadecanoic acid (BMIPP) is a fatty acid analogue amenable to in vivo imaging by single photon emission computed tomography/CT (SPECT/CT) when radiolabeled with iodine isotopes. In this study, we compare the use of 18FDG-PET/CT and 125I-BMIPP-SPECT/CT for fat imaging to ascertain whether BMIPP is a more robust candidate for the non-invasive evaluation of metabolically active adipose depots. Interscapular BAT, inguinal white adipose tissue (iWAT), and gonadal white adipose tissue (gWAT) uptake of 18FDG and 125I-BMIPP was quantified in mice following treatment with the BAT-stimulating drug CL-316,243 or saline vehicle control. After CL-316,243 treatment, uptake of both radiotracers increased in BAT and iWAT. The standard uptake value (SUVmean) for 18FDG and 125I-BMIPP significantly correlated in these depots, although uptake of 125I-BMIPP in BAT and iWAT more closely mimicked the fold-change in metabolic rate as measured by an extracellular flux analyzer. Herein, we find that imaging BAT with the radioiodinated fatty acid analogue BMIPP yields more physiologically relevant data than 18FDG-PET/CT, and its conventional use may be a pivotal tool for evaluating BAT in both mice and humans.
Collapse
Affiliation(s)
- Joseph A. Frankl
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; (J.A.F.); (A.S.); (G.H.); (P.T.); (X.S.)
| | - Yu An
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Amber Sherwood
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; (J.A.F.); (A.S.); (G.H.); (P.T.); (X.S.)
| | - Guiyang Hao
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; (J.A.F.); (A.S.); (G.H.); (P.T.); (X.S.)
| | - Feng-Yun Huang
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, No. 666, Buzih Road, Beitun District, Taichung City 406053, Taiwan;
| | - Pawan Thapa
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; (J.A.F.); (A.S.); (G.H.); (P.T.); (X.S.)
| | - Deborah J. Clegg
- Department of Internal Medicine, Texas Tech Health Sciences Center, 5001 El Paso Dr, El Paso, TX 79905, USA;
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; (J.A.F.); (A.S.); (G.H.); (P.T.); (X.S.)
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, Southwestern Medical Center, University of Texas, 5323 Harry Hines Blvd, Dallas, TX 75390, USA;
| | - Orhan K. Öz
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; (J.A.F.); (A.S.); (G.H.); (P.T.); (X.S.)
| |
Collapse
|
65
|
Crandall J, Fraum TJ, Wahl RL. Brown adipose tissue: a protective mechanism in "pre-prediabetes"? J Nucl Med 2022; 63:1433-1440. [PMID: 35393347 DOI: 10.2967/jnumed.121.263357] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Brown adipose tissue (BAT) is present in a significant number of adult humans and has been postulated to exert beneficial metabolic effects. Lean, non-diabetic patients undergoing clinical positron emission tomography (PET)/computed tomography (CT) imaging are more likely to exhibit incidental BAT activation. The aim of this study was to assess metabolic changes associated with the cold-activation of BAT and to compare baseline blood metabolites in participants with varying amounts of active BAT. Methods: Serum blood samples were collected from healthy adult volunteers (body mass index 18.0-25.0 and age≤35 years) before and after 2 h cold exposure. 18F-flurodeoxyglucose (FDG) PET/CT imaging was performed immediately following cold exposure. Activated BAT was segmented and fasting glucose, insulin, lipid, and other blood metabolite levels were correlated with volume and intensity of active BAT. Using a median cutoff, subjects were classified as BATHIGH or BATLOW. Results: A higher volume of activated BAT was associated with significantly higher pre-cooling glucose and insulin levels (P<0.001 for each). Pre-cooling thyroid stimulating hormone (TSH) and triglyceride levels were significantly higher in the BATHIGH than in the BATLOW group (P = 0.002 and P<0.001, respectively). Triglyceride levels tended to increase over the cooling period in both BAT groups, but increased significantly more in the BATHIGH group (15.7±13.2 md/dl; P<0.001) than in the BATLOW group (4.5±12.2 mg/dl; P = 0.061). Conclusion: These findings may indicate that BAT is recruited to counteract incipient "pre-prediabetic" states, potentially serving as a first-line protective mechanism against very early metabolic or hormonal variations.
Collapse
|
66
|
Doukbi E, Soghomonian A, Sengenès C, Ahmed S, Ancel P, Dutour A, Gaborit B. Browning Epicardial Adipose Tissue: Friend or Foe? Cells 2022; 11:991. [PMID: 35326442 PMCID: PMC8947372 DOI: 10.3390/cells11060991] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/08/2023] Open
Abstract
The epicardial adipose tissue (EAT) is the visceral fat depot of the heart which is highly plastic and in direct contact with myocardium and coronary arteries. Because of its singular proximity with the myocardium, the adipokines and pro-inflammatory molecules secreted by this tissue may directly affect the metabolism of the heart and coronary arteries. Its accumulation, measured by recent new non-invasive imaging modalities, has been prospectively associated with the onset and progression of coronary artery disease (CAD) and atrial fibrillation in humans. Recent studies have shown that EAT exhibits beige fat-like features, and express uncoupling protein 1 (UCP-1) at both mRNA and protein levels. However, this thermogenic potential could be lost with age, obesity and CAD. Here we provide an overview of the physiological and pathophysiological relevance of EAT and further discuss whether its thermogenic properties may serve as a target for obesity therapeutic management with a specific focus on the role of immune cells in this beiging phenomenon.
Collapse
Affiliation(s)
- Elisa Doukbi
- INSERM, INRAE, C2VN, Aix-Marseille University, F-13005 Marseille, France; (E.D.); (A.S.); (S.A.); (P.A.); (A.D.)
| | - Astrid Soghomonian
- INSERM, INRAE, C2VN, Aix-Marseille University, F-13005 Marseille, France; (E.D.); (A.S.); (S.A.); (P.A.); (A.D.)
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, APHM, F-13005 Marseille, France
| | - Coralie Sengenès
- Stromalab, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, University of Toulouse, F-31100 Toulouse, France;
- Institut National de la Santé et de la Recherche Médicale, University Paul Sabatier, F-31100 Toulouse, France
| | - Shaista Ahmed
- INSERM, INRAE, C2VN, Aix-Marseille University, F-13005 Marseille, France; (E.D.); (A.S.); (S.A.); (P.A.); (A.D.)
| | - Patricia Ancel
- INSERM, INRAE, C2VN, Aix-Marseille University, F-13005 Marseille, France; (E.D.); (A.S.); (S.A.); (P.A.); (A.D.)
| | - Anne Dutour
- INSERM, INRAE, C2VN, Aix-Marseille University, F-13005 Marseille, France; (E.D.); (A.S.); (S.A.); (P.A.); (A.D.)
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, APHM, F-13005 Marseille, France
| | - Bénédicte Gaborit
- INSERM, INRAE, C2VN, Aix-Marseille University, F-13005 Marseille, France; (E.D.); (A.S.); (S.A.); (P.A.); (A.D.)
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, APHM, F-13005 Marseille, France
| |
Collapse
|
67
|
Mun S, Park K, Lee S. Evaluation of thermal sensitivity is of potential clinical utility for the predictive, preventive, and personalized approach advancing metabolic syndrome management. EPMA J 2022; 13:125-135. [PMID: 35265229 PMCID: PMC8897525 DOI: 10.1007/s13167-022-00273-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/23/2022] [Indexed: 01/28/2023]
Abstract
A possible association between metabolic disorders and ambient temperature has been suggested, and cold exposure as a way of increasing energy expenditure has gained considerable interest for preventative/therapeutic measures toward metabolic disorders. Although thermal sensitivity, which has recently been studied in regard to its utility as a risk assessment/patient stratification for various diseases, might influence physiological responses to ambient temperature on an individual basis, more studies are needed. We aimed to investigate the association between self-identified thermal intolerance/sensation and metabolic syndrome (MetS) to verify the working hypothesis that individuals with altered thermal sensitivity may have a predisposition to MetS. We fitted generalized additive models for thermal intolerance/sensation using body mass index (BMI) and waist–hip ratio in women, and identified those with higher/lower thermal intolerance/sensation than those predicted by the models. Higher heat intolerance, higher heat sensation, and lower cold intolerance were associated with a higher prevalence of MetS. The risk of having MetS was increased in those who had two or three associated conditions compared with those with none of these conditions. In an analysis for MetS components, significant associations of thermal sensitivity were present with high glucose, triglyceride, and blood pressure levels. Overall, higher heat intolerance/sensation and lower cold intolerance were associated with increased prevalence of MetS even at a similar level of obesity. Our study indicates that evaluation of thermal sensitivity may help identify individuals at high risk for MetS, and lead to more advanced patient stratification and personalized treatment strategies for MetS, including cold-induced thermogenesis.
Collapse
|
68
|
Osuna-Prieto FJ, Rubio-Lopez J, Di X, Yang W, Kohler I, Rensen PCN, Ruiz JR, Martinez-Tellez B. Plasma Levels of Bile Acids Are Related to Cardiometabolic Risk Factors in Young Adults. J Clin Endocrinol Metab 2022; 107:715-723. [PMID: 34718617 PMCID: PMC8851912 DOI: 10.1210/clinem/dgab773] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 12/28/2022]
Abstract
CONTEXT Bile acids (BA) are known for their role in intestinal lipid absorption and can also play a role as signaling molecules to control energy metabolism. Prior evidence suggests that alterations in circulating BA levels and in the pool of circulating BA are linked to an increased risk of obesity and a higher incidence of type 2 diabetes in middle-aged adults. OBJECTIVE We aimed to investigate the association between plasma levels of BA with cardiometabolic risk factors in a cohort of well-phenotyped, relatively healthy young adults. METHODS Body composition, brown adipose tissue, serum classical cardiometabolic risk factors, and a set of 8 plasma BA (including glyco-conjugated forms) in 136 young adults (age 22.1 ± 2.2 years, 67% women) were measured. RESULTS Plasma levels of chenodeoxycholic acid (CDCA) and glycoursodeoxycholic acid (GUDCA) were higher in men than in women, although these differences disappeared after adjusting for body fat percentage. Furthermore, cholic acid (CA), CDCA, deoxycholic acid (DCA), and glycodeoxycholic acid (GDCA) levels were positively, yet weakly associated, with lean body mass (LBM) levels, while GDCA and glycolithocholic acid (GLCA) levels were negatively associated with 18F-fluorodeoxyglucose uptake by brown adipose tissue. Interestingly, glycocholic acid (GCA), glycochenodeoxycholic acid (GCDCA), and GUDCA were positively associated with glucose and insulin serum levels, HOMA index, low-density lipoprotein cholesterol, tumor necrosis factor alpha, interleukin (IL)-2, and IL-8 levels, but negatively associated with high-density lipoprotein cholesterol, ApoA1, and adiponectin levels, yet these significant correlations partially disappeared after the inclusion of LBM as a confounder. CONCLUSION Our findings indicate that plasma levels of BA might be sex dependent and are associated with cardiometabolic and inflammatory risk factors in young and relatively healthy adults.
Collapse
Affiliation(s)
- Francisco J Osuna-Prieto
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Analytical Chemistry, University of Granada, Granada, Spain
- Research and Development of Functional Food Centre (CIDAF), Granada, Spain
| | - José Rubio-Lopez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Cirugía General y del Aparato Digestivo, Complejo Hospitalario de Jaen, Spain
| | - Xinyu Di
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research (LACDR), Leiden University, EZ Leiden, The Netherlands
| | - Wei Yang
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research (LACDR), Leiden University, EZ Leiden, The Netherlands
| | - Isabelle Kohler
- Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Institute of Molecular and Life Sciences (AIMMS), HV Amsterdam, the Netherlands
- Center for Analytical Sciences Amsterdam, HV Amsterdam, the Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center (LUMC), RC Leiden, the Netherlands
| | - Jonatan R Ruiz
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Jonatan R. Ruiz, PhD, PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011 Granada, Spain.
| | - Borja Martinez-Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center (LUMC), RC Leiden, the Netherlands
- Correspondence: Borja Martinez-Tellez, PhD, PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011 Granada, Spain; Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center (LUMC), 2300 RC Leiden, the Netherlands.
| |
Collapse
|
69
|
Garcia-Beltran C, Cereijo R, Plou C, Gavaldà-Navarro A, Malpique R, Villarroya J, López-Bermejo A, de Zegher F, Ibáñez L, Villarroya F. Posterior Cervical Brown Fat and CXCL14 Levels in the First Year of Life: Sex Differences and Association With Adiposity. J Clin Endocrinol Metab 2022; 107:e1148-e1158. [PMID: 34677618 DOI: 10.1210/clinem/dgab761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Brown adipose tissue (BAT) is particularly abundant in neonates, but its association with measures of adiposity and metabolic health in early infancy is poorly delineated. Besides sustaining nonshivering thermogenesis, BAT secretes brown adipokines that act on systemic metabolism. The chemokine CXCL14 has been identified as a brown adipokine in experimental studies. OBJECTIVE To determine the relationships among BAT activity, adiposity, and circulating CXCL14 levels in the first year of life in girls and boys. METHODS Indices of fat accretion, circulating endocrine-metabolic parameters and serum CXCL14 levels were assessed longitudinally in a cohort of infants at birth and at 4 and 12 months. BAT activity was estimated using infrared thermography only at age 12 months.The main outcome measures were weight and length Z-scores, total and abdominal fat content (by dual X-ray absorptiometry), BAT activity at the posterior cervical and supraclavicular regions, serum levels of glucose, insulin, insulin-like growth factor-I, high-molecular-weight adiponectin, and CXCL14; CXCL14 transcript levels in neonatal BAT and liver. RESULTS Posterior cervical BAT was more active in girls than in boys (P = .02). BAT activity was negatively associated with adiposity parameters only in girls. CXCL14 levels were higher in girls than in boys at age 12 months and correlated positively with the area of active posterior cervical BAT in girls. Neonatal BAT showed high CXCL14 gene expression levels. CONCLUSION BAT activity and the levels of CXCL14-a potential surrogate of BAT activity-are sex specific in the first year of life. Posterior cervical BAT activity associates negatively with indices of adiposity only in girls.
Collapse
Affiliation(s)
- Cristina Garcia-Beltran
- Endocrinology Department, Research Institute Sant Joan de Déu, University of Barcelona, 08950 Esplugues, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029, Madrid, Spain
| | - Rubén Cereijo
- Biochemistry and Molecular Biomedicine Department, Institute of Biomedicine, University of Barcelona & Research Institute Sant Joan de Déu, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029, Madrid, Spain
- Department of Infectious Diseases, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Cristina Plou
- Endocrinology Department, Research Institute Sant Joan de Déu, University of Barcelona, 08950 Esplugues, Barcelona, Spain
| | - Aleix Gavaldà-Navarro
- Biochemistry and Molecular Biomedicine Department, Institute of Biomedicine, University of Barcelona & Research Institute Sant Joan de Déu, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029, Madrid, Spain
| | - Rita Malpique
- Endocrinology Department, Research Institute Sant Joan de Déu, University of Barcelona, 08950 Esplugues, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029, Madrid, Spain
| | - Joan Villarroya
- Biochemistry and Molecular Biomedicine Department, Institute of Biomedicine, University of Barcelona & Research Institute Sant Joan de Déu, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029, Madrid, Spain
| | - Abel López-Bermejo
- Department of Pediatrics, Dr. Josep Trueta Hospital, 17007 Girona, and Girona Institute for Biomedical Research, 17007 Girona, Spain
| | - Francis de Zegher
- Department of Development & Regeneration, University of Leuven, 3000 Leuven, Belgium
| | - Lourdes Ibáñez
- Endocrinology Department, Research Institute Sant Joan de Déu, University of Barcelona, 08950 Esplugues, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029, Madrid, Spain
| | - Francesc Villarroya
- Biochemistry and Molecular Biomedicine Department, Institute of Biomedicine, University of Barcelona & Research Institute Sant Joan de Déu, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029, Madrid, Spain
| |
Collapse
|
70
|
Bonfante ILP, Monfort-Pires M, Duft RG, da Silva Mateus KC, de Lima Júnior JC, Dos Santos Trombeta JC, Finardi EAR, Brunelli DT, Morari J, de Lima JAB, Bellotto ML, de Araújo TMF, Ramos CD, Chacon-Mikahil MPT, Velloso LA, Cavaglieri CR. Combined training increases thermogenic fat activity in patients with overweight and type 2 diabetes. Int J Obes (Lond) 2022; 46:1145-1154. [PMID: 35173278 DOI: 10.1038/s41366-022-01086-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Exercise is an important strategy in the management of diabetes. Experimental studies have shown that exercise acts, at least in part, by inducing the production of myokines that improve metabolic control and activate brown/beige adipose tissue depots. Combined training (CT) is recommended by the major diabetes guidelines due to its metabolic and cardiovascular benefits, however, its impact on brown/beige adipose tissue activities has never been tested in humans with overweight and type 2 diabetes (T2D). Here, we evaluated the effects of 16-week combined training (CT) program on brown adipose tissue activity; browning and autophagy markers, and serum pro-thermogenic/inflammatory inducers in patients with overweight and T2D. METHODS Thirty-four patients with overweight and T2D were assigned to either a control group (CG) or a combined training group (CTG) in a randomized and controlled study. Functional/fitness parameters, anthropometry/body composition parameters, blood hormone/biochemical parameters, thermogenic/autophagic gene expression in subcutaneous adipose tissue were evaluated before and at the end of the intervention. In addition, cold-induced 18-Fluoroxyglucose Positron Emission Computed Tomography (18F-FDG PET/CT) was performed in the training group before and after the end of the intervention. RESULTS CT increased cervical/supraclavicular brown adipose tissue (BAT) thermogenic activity (p = 0.03) as well as in perirenal adipose tissue (p = 0.02). In addition, CT increased the expression of genes related to thermogenic profile (TMEM26: + 95%, p = 0.04; and EPSTI1: + 26%, p = 0.03) and decreased autophagic genes (ULK1: -15%, p = 0.04; LC3: -5%, p = 0.02; and ATG4: -22%, p < 0.001) in subcutaneous adipose tissue. There were positive correlations between Δ% BAT activity with Δ% of post training energy expenditure cold exposure, HDL-c, IL4, adiponectin, irisin, meteorin-like, and TMEM26 and ZIC1 genes, besides negative correlations with LDL-c, total cholesterol and C-reactive protein. CONCLUSION This is the first evidence of the beneficial actions of CT on adipose tissue thermogenic activity in humans, and it adds important support for the recommendation of CT as a strategy in the management of diabetes.
Collapse
Affiliation(s)
- Ivan Luiz Padilha Bonfante
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, SP, 13083-970, Brazil. .,Federal Institute of Education, Science and Technology of São Paulo, Hortolândia campus, Hortolândia, SP, 13183-091, Brazil.
| | - Milena Monfort-Pires
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, SP, 13084-970, Brazil.,Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, 13084-970, Brazil
| | - Renata Garbellini Duft
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Keryma Chaves da Silva Mateus
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - José Carlos de Lima Júnior
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, SP, 13084-970, Brazil.,Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, 13084-970, Brazil
| | | | | | - Diego Trevisan Brunelli
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Joseane Morari
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, SP, 13084-970, Brazil.,Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, 13084-970, Brazil
| | | | - Maria Luisa Bellotto
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Thiago Matos Ferreira de Araújo
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, SP, 13084-970, Brazil.,Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, 13084-970, Brazil
| | - Celso Darío Ramos
- Department of Radiology, University of Campinas, Campinas, SP, 13084-970, Brazil
| | | | - Licio Augusto Velloso
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, SP, 13084-970, Brazil.,Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, 13084-970, Brazil
| | - Cláudia Regina Cavaglieri
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
71
|
Kasza I, Kühn JP, Völzke H, Hernando D, Xu YG, Siebert JW, Gibson ALF, Yen CLE, Nelson DW, MacDougald OA, Richardson NE, Lamming DW, Kern PA, Alexander CM. Contrasting recruitment of skin-associated adipose depots during cold challenge of mouse and human. J Physiol 2022; 600:847-868. [PMID: 33724479 PMCID: PMC8443702 DOI: 10.1113/jp280922] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/02/2021] [Indexed: 02/03/2023] Open
Abstract
KEY POINTS Several distinct strategies produce and conserve heat to maintain the body temperature of mammals, each associated with unique physiologies, with consequences for wellness and disease susceptibility Highly regulated properties of skin offset the total requirement for heat production We hypothesize that the adipose component of skin is primarily responsible for modulating heat flux; here we evaluate the relative regulation of adipose depots in mouse and human, to test their recruitment to heat production and conservation We found that insulating mouse dermal white adipose tissue accumulates in response to environmentally and genetically induced cool stress; this layer is one of two adipose depots closely apposed to mouse skin, where the subcutaneous mammary gland fat pads are actively recruited to heat production In contrast, the body-wide adipose depot associated with human skin produces heat directly, potentially creating an alternative to the centrally regulated brown adipose tissue ABSTRACT: Mammalian skin impacts metabolic efficiency system-wide, controlling the rate of heat loss and consequent heat production. Here we compare the unique fat depots associated with mouse and human skin, to determine whether they have corresponding functions and regulation. For humans, we assay a skin-associated fat (SAF) body-wide depot to distinguish it from the subcutaneous fat pads characteristic of the abdomen and upper limbs. We show that the thickness of SAF is not related to general adiposity; it is much thicker (1.6-fold) in women than men, and highly subject-specific. We used molecular and cellular assays of β-adrenergic-induced lipolysis and found that dermal white adipose tissue (dWAT) in mice is resistant to lipolysis; in contrast, the body-wide human SAF depot becomes lipolytic, generating heat in response to β-adrenergic stimulation. In mice challenged to make more heat to maintain body temperature (either environmentally or genetically), there is a compensatory increase in thickness of dWAT: a corresponding β-adrenergic stimulation of human skin adipose (in vivo or in explant) depletes adipocyte lipid content. We summarize the regulation of skin-associated adipocytes by age, sex and adiposity, for both species. We conclude that the body-wide dWAT depot of mice shows unique regulation that enables it to be deployed for heat preservation; combined with the actively lipolytic subcutaneous mammary fat pads they enable thermal defence. The adipose tissue that covers human subjects produces heat directly, providing an alternative to the brown adipose tissues.
Collapse
Affiliation(s)
- Ildiko Kasza
- McArdle Laboratory for Cancer Research, University of
Wisconsin-Madison, Germany
| | - Jens-Peter Kühn
- Institute and Policlinic of Diagnostic and Interventional
Radiology, Medical Faculty Carl Gustav Carus, Technical University Dresden,
Germany
| | - Henry Völzke
- Institute of Community Medicine, University of Greifswald,
Germany
| | - Diego Hernando
- Department of Radiology, University of Wisconsin-School of
Medicine and Public Health,Department of Medical Physics, University of
Wisconsin-School of Medicine and Public Health
| | - Yaohui G. Xu
- Department of Dermatology, University of Wisconsin-School
of Medicine and Public Health
| | - John W. Siebert
- Department of Surgery, University of Wisconsin-School of
Medicine and Public Health
| | - Angela LF Gibson
- Department of Surgery, University of Wisconsin-School of
Medicine and Public Health
| | - C.-L. Eric Yen
- Department of Nutritional Sciences, University of
Wisconsin-Madison
| | - David W. Nelson
- Department of Nutritional Sciences, University of
Wisconsin-Madison
| | | | - Nicole E. Richardson
- Department of Medicine, University of Wisconsin-School of
Medicine and Public Health,William S. Middleton Memorial Veterans Hospital, Madison,
Wisconsin
| | - Dudley W. Lamming
- Department of Medicine, University of Wisconsin-School of
Medicine and Public Health,William S. Middleton Memorial Veterans Hospital, Madison,
Wisconsin
| | - Philip A. Kern
- Department of Internal Medicine, University of Kentucky,
Lexington
| | - CM Alexander
- McArdle Laboratory for Cancer Research, University of
Wisconsin-Madison, Germany,corresponding author: CM Alexander, McArdle
Laboratory for Cancer Research, University of Wisconsin-Madison, 1111 Highland
Ave, Madison WI 53705-2275. Ph: 608-265 5182;
| |
Collapse
|
72
|
Kulterer OC, Herz CT, Prager M, Schmöltzer C, Langer FB, Prager G, Marculescu R, Kautzky-Willer A, Hacker M, Haug AR, Kiefer FW. Brown Adipose Tissue Prevalence Is Lower in Obesity but Its Metabolic Activity Is Intact. Front Endocrinol (Lausanne) 2022; 13:858417. [PMID: 35432192 PMCID: PMC9009254 DOI: 10.3389/fendo.2022.858417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/21/2022] [Indexed: 01/09/2023] Open
Abstract
Due to its high metabolic activity, brown adipose tissue (BAT) has become a promising target for the development of novel treatment concepts for metabolic disease. Despite several reports of a negative association between the presence of active BAT and obesity, very little is known about the quantitative and qualitative differences of BAT in lean and obese individuals. Systematic studies directly comparing cold-induced BAT activity in leanness and obesity are currently lacking. Here we studied BAT mass and function in 31 lean and 64 obese men and women. After a standardized cooling protocol using a water-perfused vest, 18F-FDG-positron emission tomography/computed tomography scans were performed, and BAT was delineated using lean body-mass adjusted standardized uptake value (SUV) thresholds in anatomic regions with fat radiodensity. Cold-induced thermogenesis (CIT), a functional readout of BAT activity, was quantified by indirect calorimetry. Active BAT was present in a significantly higher proportion of lean than obese individuals (58% vs. 33%, p=0.019). In these participants with active BAT, however, BAT volume and activity did not differ between leanness and obesity. Accordingly, CIT was similar in both weight groups. BAT metrics were not related to adiposity or total fat mass per se. However, in obese participants a strong negative correlation existed between visceral adipose tissue and BAT volume, 18F-FDG uptake and CIT. In summary, despite a significantly lower prevalence of BAT, the metabolic activity and thermogenic capacity of BAT appears to be still intact in obesity and is inversely associated with visceral fat mass.
Collapse
Affiliation(s)
- Oana C. Kulterer
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Carsten T. Herz
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Marlene Prager
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Christoph Schmöltzer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Felix B. Langer
- Division of Visceral Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Gerhard Prager
- Division of Visceral Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Rodrig Marculescu
- Division of Medical-Chemical Laboratory Diagnostics, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Alexandra Kautzky-Willer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Alexander R. Haug
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Florian W. Kiefer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- *Correspondence: Florian W. Kiefer,
| |
Collapse
|
73
|
Chen KY, Brychta RJ, Israni NS, Jiang A, Lea HJ, Lentz TN, Pierce AE, Cypess AM. Activating Human Adipose Tissue with the β3-Adrenergic Agonist Mirabegron. Methods Mol Biol 2022; 2448:83-96. [PMID: 35167091 DOI: 10.1007/978-1-0716-2087-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An appealing strategy for treatment of metabolic disease in humans is activation of brown adipose tissue (BAT), a thermogenic organ best visualized through 18F-FDG PET/CT. BAT has been activated to varying degrees by mild cold exposure. However, this approach can cause undesirable stress, and there remains no consensus protocol. Here, we describe standardized methods for both acute and chronic activation of BAT using the orally administered β3-adrenergic receptor (AR) agonist, mirabegron. Acute pharmacological stimulation has enabled quantification of whole-body BAT volume and metabolic activity using PET/CT imaging, and chronic stimulation increases these properties of BAT over time.
Collapse
Affiliation(s)
- Kong Y Chen
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes, Bethesda, MD, USA.
- Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Robert J Brychta
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes, Bethesda, MD, USA
- Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nikita S Israni
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes, Bethesda, MD, USA
- Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alex Jiang
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes, Bethesda, MD, USA
- Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hannah J Lea
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes, Bethesda, MD, USA
- Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Taylor N Lentz
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes, Bethesda, MD, USA
- Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anne E Pierce
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes, Bethesda, MD, USA
- Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes, Bethesda, MD, USA.
- Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
74
|
Abstract
Positron emission tomography (PET) combined with computed tomography (CT) is used to detect brown adipose tissue (BAT) in humans. Function can be measured using different tracers, most typically with glucose analog 18F-fluoro-deoxyglucose (FDG). CT provides an anatomical reference, but this tool can be utilized for other purposes as well, such as indirect estimate of triglyceride content of the BAT. PET/CT measurements require sophisticated and highly specified devices, and manufacturer-dependent differences exist between different scanners. Therefore, complete device-specific instructions are not given in this article, but rather general guidelines which are important when human BAT is imaged using PET/CT.
Collapse
|
75
|
Geslot A, Chanson P, Caron P. Covid-19, the thyroid and the pituitary - the real state of play. ANNALES D'ENDOCRINOLOGIE 2022; 83:103-108. [PMID: 35065920 PMCID: PMC8772063 DOI: 10.1016/j.ando.2021.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 01/08/2023]
Abstract
Thyroid and pituitary disorders linked to the coronavirus SARS-CoV-2, responsible for the COVID-19 epidemic, are mainly due to direct infection of the endocrine glands by the virus and to cell damage induced by the immune response. The two most frequent thyroid complications of COVID-19 are low T3 syndrome, or “non-thyroidal illness syndrome” (NTIS), and thyroiditis. Studies among in-patients with COVID-19 have shown that between one out of six and half of them have a low TSH level, related to NTIS and thyroiditis, respectively, sometimes found in the same patient. In NTIS, the decrease in free T3 concentration correlates with the severity of the infection and with a poor prognosis. Assessment of thyroid function in patients after a COVID-19 infection, shows normalization of thyroid function tests. Thyroiditis linked to COVID-19 can be divided into two groups, which probably differ in their pathophysiology. One is “destructive” thyroiditis occurring early in infection with SARS-CoV-2, with a severe form of COVID-19, usually observed in men. It is often asymptomatic and associated with lymphopenia. The other is subacute thyroiditis occurring, on average, one month after the COVID-19 episode, usually in clinically symptomatic women and associated with moderate hyperleukocytosis. Post-infection, one quarter to one third of patients remain hypothyroid. An Italian study demonstrated that low TSH in patients hospitalized for COVID-19 was associated with prolonged hospitalization and a higher mortality risk. Pituitary diseases associated with SARS-CoV-2 infection are much rarer and the causal relationship more difficult to ascertain. Several cases of pituitary apoplexy and diabetes insipidus during COVID-19 infection have been reported. Hyponatremia occurs in 20–50% of patients admitted to hospital for COVID-19. The prevalence of the syndrome of inappropriate antidiuretic hormone secretion (SIADH) amongst these hyponatremic cases is difficult to determine. These endocrine complications may influence the prognosis of infection with SARS-CoV-2. Although they rarely require specific treatment, it is important that endocrinologists recognize them to ensure appropriate management, particularly in the acute phase.
Collapse
Affiliation(s)
- Aurore Geslot
- Service d'endocrinologie, maladies métaboliques et nutrition, pôle cardio-vasculaire et métabolique, CHU Larrey, 24, chemin de Pouvourville, TSA 30030, 31059 Toulouse cedex, France.
| | - Philippe Chanson
- Université Paris-Saclay, Inserm, physiologie et physiopathologie endocriniennes, Assistance publique-Hôpitaux de Paris, hôpital Bicêtre, service d'endocrinologie et des maladies de la reproduction, centre de référence des maladies rares de l'hypophyse HYPO, Le Kremlin-Bicêtre, France
| | - Philippe Caron
- Service d'endocrinologie, maladies métaboliques et nutrition, pôle cardio-vasculaire et métabolique, CHU Larrey, 24, chemin de Pouvourville, TSA 30030, 31059 Toulouse cedex, France
| |
Collapse
|
76
|
Choi KM, Kim JH, Kong X, Isik M, Zhang J, Lim HW, Yoon JC. Defective brown adipose tissue thermogenesis and impaired glucose metabolism in mice lacking Letmd1. Cell Rep 2021; 37:110104. [PMID: 34910916 PMCID: PMC12003058 DOI: 10.1016/j.celrep.2021.110104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Manipulation of energy-dissipating adipocytes has the potential to produce metabolic benefits. To this end, it is valuable to understand the mechanisms controlling the generation and function of thermogenic fat. Here, we identify Letm1 domain containing 1 (Letmd1) as a regulator of brown fat formation and function. The expression of Letmd1 is induced in brown fat by cold exposure and by β-adrenergic activation. Letmd1-deficient mice exhibit severe cold intolerance concomitant with abnormal brown fat morphology, reduced thermogenic gene expression, and low mitochondrial content. The null mice exhibit impaired β3-adrenoreceptor-dependent thermogenesis and are prone to diet-induced obesity and defective glucose disposal. Letmd1 was previously described as a mitochondrial protein, and we find that it also localizes to the nucleus and interacts with the transcriptional coregulator and chromatin remodeler Brg1/Smarca4, thus providing a way to impact thermogenic gene expression. Our study uncovers a role for Letmd1 as a key regulatory component of adaptive thermogenesis.
Collapse
Affiliation(s)
- Kyung-Mi Choi
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA 95616, USA
| | - Jung Hak Kim
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA 95616, USA
| | - Xiangmudong Kong
- Department of Surgical and Radiological Sciences, University of California Davis School of Veterinary Medicine, Davis, CA 95616, USA
| | | | - Jin Zhang
- Department of Surgical and Radiological Sciences, University of California Davis School of Veterinary Medicine, Davis, CA 95616, USA
| | - Hee-Woong Lim
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - John C Yoon
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA 95616, USA.
| |
Collapse
|
77
|
Sabbagh F, Kim BS. Recent advances in polymeric transdermal drug delivery systems. J Control Release 2021; 341:132-146. [PMID: 34813879 DOI: 10.1016/j.jconrel.2021.11.025] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022]
Abstract
Transdermal delivery has proven to be one of the most favorable methods among novel drug delivery systems. Since drugs administered by transdermal delivery systems avoid the gastrointestinal tract, and thus avoid conversion by the liver, the likelihood of liver dysfunction and gastrointestinal tract irritation as side effects is low. Drug delivery through the skin has other advantages, such as maintaining an effective rate of drug delivery over time, a steady rate of circulation, and the benefits of a passive delivery system and diffusion. Transdermal drug delivery is achieved using patches which consist of different and specific layers. In the last few decades, many types of patches have been approved worldwide, such as medical plasters, which have been generally applied to the skin for localized diseases. Such patches can be traced back to ancient China (around 2000 BCE) and are the early precursors of today's transdermal patches. With the help of effective design, materials, manufacturing, and evaluation, a large number of drugs can now be administered using this valuable advanced technology. This study reviews different types of polymer patches, their advantages and disadvantages, and different studies related to transdermal drug delivery methods, and the advantages and disadvantages of each method. Different mechanisms of transdermal drug delivery system with patches are also discussed.
Collapse
Affiliation(s)
- Farzaneh Sabbagh
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
78
|
Yuko OO, Saito M. Brown Fat as a Regulator of Systemic Metabolism beyond Thermogenesis. Diabetes Metab J 2021; 45:840-852. [PMID: 34176254 PMCID: PMC8640153 DOI: 10.4093/dmj.2020.0291] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/26/2021] [Indexed: 12/01/2022] Open
Abstract
Brown adipose tissue (BAT) is a specialized tissue for nonshivering thermogenesis to dissipate energy as heat. Although BAT research has long been limited mostly in small rodents, the rediscovery of metabolically active BAT in adult humans has dramatically promoted the translational studies on BAT in health and diseases. Moreover, several remarkable advancements have been made in brown fat biology over the past decade: The molecular and functional analyses of inducible thermogenic adipocytes (socalled beige adipocytes) arising from a developmentally different lineage from classical brown adipocytes have been accelerated. In addition to a well-established thermogenic activity of uncoupling protein 1 (UCP1), several alternative thermogenic mechanisms have been discovered, particularly in beige adipocytes. It has become clear that BAT influences other peripheral tissues and controls their functions and systemic homeostasis of energy and metabolic substrates, suggesting BAT as a metabolic regulator, other than for thermogenesis. This notion is supported by discovering that various paracrine and endocrine factors are secreted from BAT. We review the current understanding of BAT pathophysiology, particularly focusing on its role as a metabolic regulator in small rodents and also in humans.
Collapse
Affiliation(s)
| | - Masayuki Saito
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Nutrition, Tenshi College, Sapporo, Japan
- Corresponding author: Masayuki Saito https://orcid.org/0000-0002-3058-3003 Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan E-mail:
| |
Collapse
|
79
|
Søberg S, Löfgren J, Philipsen FE, Jensen M, Hansen AE, Ahrens E, Nystrup KB, Nielsen RD, Sølling C, Wedell-Neergaard AS, Berntsen M, Loft A, Kjær A, Gerhart-Hines Z, Johannesen HH, Pedersen BK, Karstoft K, Scheele C. Altered brown fat thermoregulation and enhanced cold-induced thermogenesis in young, healthy, winter-swimming men. CELL REPORTS MEDICINE 2021; 2:100408. [PMID: 34755128 PMCID: PMC8561167 DOI: 10.1016/j.xcrm.2021.100408] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 07/13/2021] [Accepted: 09/17/2021] [Indexed: 12/18/2022]
Abstract
The Scandinavian winter-swimming culture combines brief dips in cold water with hot sauna sessions, with conceivable effects on body temperature. We study thermogenic brown adipose tissue (BAT) in experienced winter-swimming men performing this activity 2–3 times per week. Our data suggest a lower thermal comfort state in the winter swimmers compared with controls, with a lower core temperature and absence of BAT activity. In response to cold, we observe greater increases in cold-induced thermogenesis and supraclavicular skin temperature in the winter swimmers, whereas BAT glucose uptake and muscle activity increase similarly to those of the controls. All subjects demonstrate nocturnal reduction in supraclavicular skin temperature, whereas a distinct peak occurs at 4:30–5:30 a.m. in the winter swimmers. Our data leverage understanding of BAT in adult human thermoregulation, suggest both heat and cold acclimation in winter swimmers, and propose winter swimming as a potential strategy for increasing energy expenditure. Winter swimmers have a lower core temperature at a thermal comfort state than controls Winter swimmers had no BAT glucose uptake at a thermal comfort state Winter swimmers have higher cold-induced thermogenesis than control subjects Human supraclavicular skin temperature varies with a diurnal rhythm
Collapse
Affiliation(s)
- Susanna Søberg
- The Center of Inflammation and Metabolism and the Center for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Johan Löfgren
- Department of Clinical Physiology, Nuclear Medicine & PET, and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen 2100, Denmark
| | - Frederik E Philipsen
- Department of Clinical Physiology, Nuclear Medicine & PET, and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen 2100, Denmark
| | - Michal Jensen
- The Center of Inflammation and Metabolism and the Center for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Adam E Hansen
- Department of Clinical Physiology, Nuclear Medicine & PET, and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen 2100, Denmark
| | - Esben Ahrens
- Department of Neurophysiology, Rigshospitalet, Copenhagen 2100, Denmark
| | - Kristin B Nystrup
- Department of Neuroanaesthesiology, Rigshospitalet, Copenhagen 2100, Denmark
| | - Rune D Nielsen
- Department of Neuroanaesthesiology, Rigshospitalet, Copenhagen 2100, Denmark
| | - Christine Sølling
- Department of Neuroanaesthesiology, Rigshospitalet, Copenhagen 2100, Denmark
| | - Anne-Sophie Wedell-Neergaard
- The Center of Inflammation and Metabolism and the Center for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Marianne Berntsen
- Department of Neuroanaesthesiology, Rigshospitalet, Copenhagen 2100, Denmark
| | - Annika Loft
- Department of Clinical Physiology, Nuclear Medicine & PET, and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen 2100, Denmark
| | - Andreas Kjær
- Department of Clinical Physiology, Nuclear Medicine & PET, and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen 2100, Denmark
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Helle H Johannesen
- Department of Clinical Physiology, Nuclear Medicine & PET, and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen 2100, Denmark
| | - Bente K Pedersen
- The Center of Inflammation and Metabolism and the Center for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Kristian Karstoft
- The Center of Inflammation and Metabolism and the Center for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark.,Department of Clinical Pharmacology, Bispebjerg Hospital, Copenhagen 2400, Denmark
| | - Camilla Scheele
- The Center of Inflammation and Metabolism and the Center for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
80
|
Herz CT, Kulterer OC, Prager M, Schmöltzer C, Langer FB, Prager G, Marculescu R, Kautzky-Willer A, Hacker M, Haug AR, Kiefer FW. Active Brown Adipose Tissue is Associated With a Healthier Metabolic Phenotype in Obesity. Diabetes 2021; 71:db210475. [PMID: 34957487 DOI: 10.2337/db21-0475] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022]
Abstract
Obesity is associated with increasing cardiometabolic morbidity and mortality worldwide. Not everyone with obesity, however, develops metabolic complications. Brown adipose tissue (BAT) has been suggested as a promoter of leanness and metabolic health. To date, little is known about the prevalence and metabolic function of BAT in subjects with severe obesity, a population at high cardiometabolic risk. In this cross-sectional study, we included 40 individuals with WHO class II-III obesity (BMI ≥ 35 kg/m2). Employing a 150-minute personalized cooling protocol and 18F-fluorodeoxyglucose positron emission tomography/computed tomography, cold-activated BAT was detectable in 14 (35%) of the participants. Cold-induced thermogenesis was significantly higher in participants with detectable BAT compared to those without. Notably, individuals with obesity and active BAT had 28.8% lower visceral fat mass despite slightly higher total fat mass compared to those without detectable BAT 18F-FDG uptake. This was accompanied by lower insulin resistance and systemic inflammation and improved NAFLD parameters, all adjusted for age, sex, and percent body fat. Contrary to previous assumptions, we show here that a significant fraction of individuals with severe obesity has active BAT. We found that decreased BAT 18F-FDG uptake was not associated with adiposity per se but with higher visceral fat mass. In summary, active BAT is linked to a healthier metabolic phenotype in obesity.
Collapse
Affiliation(s)
- Carsten T Herz
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Oana C Kulterer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Marlene Prager
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Christoph Schmöltzer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Felix B Langer
- Division of General Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Gerhard Prager
- Division of General Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Rodrig Marculescu
- Division of Medical-Chemical Laboratory Diagnostics, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Alexandra Kautzky-Willer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Alexander R Haug
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Florian W Kiefer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
81
|
Herz CT, Kulterer OC, Prager M, Langer FB, Prager G, Marculescu R, Fauler G, Hacker M, Kautzky-Willer A, Trauner M, Haug AR, Kiefer FW. Characterization of endogenous bile acid composition in individuals with cold-activated brown adipose tissue. Mol Cell Endocrinol 2021; 536:111403. [PMID: 34332024 DOI: 10.1016/j.mce.2021.111403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Bile acid signaling has been suggested to promote BAT activity in various experimental models. However, little is known if and how physiologic bile acid metabolism is linked to BAT function in humans. Here we investigated the association between BAT activity and circulating bile acid concentrations in lean and obese individuals. METHODS BAT 18F-fluorodeoxyglucose uptake was measured after a standardized cooling protocol by positron emission tomography/computed tomography. Cold-induced thermogenesis was assessed by indirect calorimetry. Fasting bile acid concentrations were determined by high performance liquid chromatography-high-resolution mass spectrometry. RESULTS In a cohort of 24 BAT-negative and 20 BAT-positive individuals matched by age, sex, and body mass index, circulating bile acid levels were similar between groups except for higher ursodeoxycholic acid and a trend towards a lower 12α-OH/non-12α-OH bile acid ratio in lean participants with active BAT compared to those without. Moreover, the 12α-OH/non-12α-OH ratio, a marker of CYP8B1 activity, correlated negatively with BAT volume and activity. CONCLUSION Fasting concentrations of major bile acids are not associated with cold-induced BAT activity in humans. However, the inverse association between BAT activity and 12α-OH/non-12α-OH ratio may suggest CYP8B1 as a potential new target in BAT function and warrants additional investigation.
Collapse
Affiliation(s)
- Carsten T Herz
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Oana C Kulterer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Marlene Prager
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Felix B Langer
- Division of General Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Gerhard Prager
- Division of General Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Rodrig Marculescu
- Division of Medical-Chemical Laboratory Diagnostics, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Günter Fauler
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Alexandra Kautzky-Willer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Alexander R Haug
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, Vienna, Austria
| | - Florian W Kiefer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
82
|
Diurnal variations of cold-induced thermogenesis in young, healthy adults: A randomized crossover trial. Clin Nutr 2021; 40:5311-5321. [PMID: 34536639 DOI: 10.1016/j.clnu.2021.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Harnessing cold-induced thermogenesis (CIT) and brown adipose tissue (BAT) activity has been proposed as a means of counteracting a positive energy balance, and thus of combating obesity and its related comorbidities. However, it has remained unclear whether CIT and BAT activity show diurnal variation in humans - knowledge that might allow treatments based on these factors to be time-optimized. METHODS A randomized crossover experiment was designed to examine whether CIT shows morning/evening variation in young, healthy adults (n = 14, 5 women). On the first experimental day, subjects' shivering thresholds were determined following a cooling protocol. After ≈96 h had elapsed, the subjects then returned on two further days (approx. 48 h apart) at 08:00 h or 18:00 in random order. On both the latter days, the resting energy expenditure (REE) was measured before the subjects underwent personalized cold exposure (i.e., according to their shivering threshold). CIT was then assessed for 60 min by indirect calorimetry. In an independent cross-sectional study (n = 133, 88 women), subjects came to the laboratory between 8:00 and 18:00 h and their BAT 18F-fluordeoxyglucose (18F-FDG) uptake was assessed after personalized cold stimulation. RESULTS Both the REE and CIT were similar in the morning and evening (all P > 0.05). Indeed, 60 min of personalized-mild cold exposure in the morning or evening elicited a similar change in energy expenditure (16.8 ± 12.8 vs. 15.7 ± 15.1% increase above REE, P = 0.72). BAT 18F-FDG uptake was also similar in the morning, evening and afternoon (all P > 0.05). CONCLUSION CIT does not appear to show morning/evening variation in young healthy adults, with the current study design and methodology. BAT 18F-FDG uptake appears not to change across the day either, although experiments with a within-subject study design are needed to confirm these findings. Registered under ClinicalTrials.gov Identifier no. NCT02365129.
Collapse
|
83
|
Yang J, Zhang H, Parhat K, Xu H, Li M, Wang X, Ran C. Molecular Imaging of Brown Adipose Tissue Mass. Int J Mol Sci 2021; 22:ijms22179436. [PMID: 34502347 PMCID: PMC8431742 DOI: 10.3390/ijms22179436] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Brown adipose tissue (BAT), a uniquely thermogenic tissue that plays an important role in metabolism and energy expenditure, has recently become a revived target in the fight against metabolic diseases, such as obesity, diabetes, and non-alcoholic fatty liver disease (NAFLD). Different from white adipose tissue (WAT), the brown adipocytes have distinctive features including multilocular lipid droplets, a large number of mitochondria, and a high expression of uncoupling protein-1 (UCP-1), as well as abundant capillarity. These histologic characteristics provide an opportunity to differentiate BAT from WAT using imaging modalities, such as PET/CT, SPECT/CT, MRI, NIRF and Ultrasound. However, most of the reported imaging methods were BAT activation dependent, and the imaging signals could be affected by many factors, including environmental temperatures and the states of the sympathetic nervous system. Accurate BAT mass detection methods that are independent of temperature and hormone levels have the capacity to track the development and changes of BAT throughout the lifetime of mammals, and such methods could be very useful for the investigation of potential BAT-related therapies. In this review, we focus on molecular imaging modalities that can detect and quantify BAT mass. In addition, their detection mechanism and limitations will be discussed as well.
Collapse
Affiliation(s)
- Jing Yang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, MA 02129, USA
- Correspondence: (J.Y.); (C.R.)
| | - Haili Zhang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
| | - Kadirya Parhat
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
| | - Hui Xu
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
| | - Mingshuang Li
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
| | - Xiangyu Wang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, MA 02129, USA
- Correspondence: (J.Y.); (C.R.)
| |
Collapse
|
84
|
Sun L, Goh HJ, Verma S, Govindharajulu P, Sadananthan SA, Michael N, Jadegoud Y, Henry CJ, Velan SS, Yeo PS, Lee Y, Lim BSP, Liew H, Chew CK, Quek TPL, Abdul Shakoor SAKK, Hoi WH, Chan SP, Chew DE, Dalan R, Leow MKS. Metabolic effects of brown fat in transitioning from hyperthyroidism to euthyroidism. Eur J Endocrinol 2021; 185:553-563. [PMID: 34342595 PMCID: PMC8428075 DOI: 10.1530/eje-21-0366] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Brown adipose tissue (BAT) controls metabolic rate through thermogenesis. As its regulatory factors during the transition from hyperthyroidism to euthyroidism are not well established, our study investigated the relationships between supraclavicular brown adipose tissue (sBAT) activity and physiological/metabolic changes with changes in thyroid status. DESIGN Participants with newly diagnosed Graves' disease were recruited. A thionamide antithyroid drug (ATD) such as carbimazole (CMZ) or thiamazole (TMZ) was prescribed in every case. All underwent energy expenditure (EE) measurement and supraclavicular infrared thermography (IRT) within a chamber calorimeter, as well as 18F-fluorodeoxyglucose (18F-FDG) positron-emission tomography/magnetic resonance (PET/MR) imaging scanning, with clinical and biochemical parameters measured during hyperthyroidism and repeated in early euthyroidism. PET sBAT mean/maximum standardized uptake value (SUV mean/max), MR supraclavicular fat fraction (sFF) and mean temperature (Tscv) quantified sBAT activity. RESULTS Twenty-one (16 female/5 male) participants aged 39.5 ± 2.5 years completed the study. The average duration to attain euthyroidism was 28.6 ± 2.3 weeks. Eight participants were BAT-positive while 13 were BAT-negative. sFF increased with euthyroidism (72.3 ± 1.4% to 76.8 ± 1.4%; P < 0.01), but no changes were observed in PET SUV mean and Tscv. Significant changes in serum-free triiodothyronine (FT3) levels were related to BAT status (interaction P value = 0.04). FT3 concentration at hyperthyroid state was positively associated with sBAT PET SUV mean (r = 0.58, P = 0.01) and resting metabolic rate (RMR) (P < 0.01). CONCLUSION Hyperthyroidism does not consistently lead to a detectable increase in BAT activity. FT3 reduction during the transition to euthyroidism correlated with BAT activity.
Collapse
Affiliation(s)
- Lijuan Sun
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Hui Jen Goh
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Sanjay Verma
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Priya Govindharajulu
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Suresh Anand Sadananthan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Navin Michael
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yaligar Jadegoud
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Christiani Jeyakumar Henry
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine
| | - S Sendhil Velan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), Singapore
- Departments of Physiology & Medicine, National University of Singapore (NUS), Singapore
| | - Pei Shan Yeo
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | - Yingshan Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | - Brenda Su Ping Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | - Huiling Liew
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | - Chee Kian Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | - Timothy Peng Lim Quek
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | - Shaikh A K K Abdul Shakoor
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | - Wai Han Hoi
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | - Siew Pang Chan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Daniel Ek Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | - Rinkoo Dalan
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | - Melvin Khee Shing Leow
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
- Correspondence should be addressed to M K Leow Email
| |
Collapse
|
85
|
Herz CT, Kulterer OC, Prager M, Marculescu R, Langer FB, Prager G, Kautzky-Willer A, Haug AR, Kiefer FW. Sex differences in brown adipose tissue activity and cold-induced thermogenesis. Mol Cell Endocrinol 2021; 534:111365. [PMID: 34126190 DOI: 10.1016/j.mce.2021.111365] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Brown adipose tissue (BAT) is suggested to exhibit a sexual dimorphism and thus contributes to the observed sex differences in cardiometabolic risk observed between women and men. Clinical data supporting this hypothesis are however scarce. The aim of this study was to investigate the relationship between BAT activity and sex using positron emission tomography (PET) - the current gold-standard for BAT quantification. METHODS In this study, we included 95 subjects with a wide BMI range (20-55 kg/m2) aged from 18 to 50 years. Avoiding shivering, participants were cooled with a water-perfused vest to achieve adequate BAT activation. BAT activity was determined by 18F-fluorodeoxyglucose PET/computed tomography (18F-FDG PET/CT). Cold-induced thermogenesis (CIT) was quantified by indirect calorimetry. RESULTS BAT was present in 44.6% of pre-menopausal women and in 35.9% of men (p = 0.394). CIT was significantly higher in women (p = 0.024). Estradiol levels were positively associated with CIT independent of age, sex, body fat and other sex hormones (b = 0.360, p = 0.016). In women, CIT decreased during the menstrual cycle, with lower levels in the luteal phase similar to median concentrations in men. CONCLUSION The prevalence of cold-activated BAT is slightly but non-significantly higher in pre-menopausal women than men. CIT is increased in females and independently associated with estradiol, suggesting that sex hormones may play a role in different thermogenic responses between men and women.
Collapse
Affiliation(s)
- Carsten T Herz
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Oana C Kulterer
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Marlene Prager
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Rodrig Marculescu
- Division of Medical-Chemical Laboratory Diagnostics, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Felix B Langer
- Division of General Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Gerhard Prager
- Division of General Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Alexandra Kautzky-Willer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Alexander R Haug
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Florian W Kiefer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
86
|
Affiliation(s)
| | - Pirjo Nuutila
- Turku PET Centre, Turku University Hospital, Turku, Finland.
- Turku PET Centre, University of Turku, Turku, Finland.
| |
Collapse
|
87
|
Bini J, Norcross M, Cheung M, Duffy A. The Role of Positron Emission Tomography in Bariatric Surgery Research: a Review. Obes Surg 2021; 31:4592-4606. [PMID: 34304378 DOI: 10.1007/s11695-021-05576-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022]
Abstract
Bariatric surgery, initially understood as restricting or bypassing the amount of food that reaches the stomach to reduce food intake and/or increase malabsorption of food to promote weight loss, is now recognized to also affect incretin signaling in the gut and promote improvements in system-wide metabolism. Positron emission tomography (PET) is an imaging technique whereby patients are injected with picomolar concentrations of radioactive molecules, below the threshold of having physiological effects, to measure spatial distributions of blood flow, metabolism, receptor, and enzyme pharmacology. Recent advances in both whole-body PET imaging and radioligand development will allow for novel research that may help clarify the roles of peripheral and central receptor/enzyme systems in treating obesity with bariatric surgery.
Collapse
Affiliation(s)
- Jason Bini
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 801 Howard Avenue, PO Box 208048, New Haven, CT, USA.
| | | | - Maija Cheung
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew Duffy
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
88
|
PET/MRI of glucose metabolic rate, lipid content and perfusion in human brown adipose tissue. Sci Rep 2021; 11:14955. [PMID: 34294741 PMCID: PMC8298487 DOI: 10.1038/s41598-021-87768-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 03/15/2021] [Indexed: 11/08/2022] Open
Abstract
This study evaluated the MRI-derived fat fraction (FF), from a Cooling-reheating protocol, for estimating the cold-induced brown adipose tissue (BAT) metabolic rate of glucose (MRglu) and changes in lipid content, perfusion and arterial blood volume (VA) within cervical-supraclavicular fat (sBAT). Twelve volunteers underwent PET/MRI at baseline, during cold exposure and reheating. For each temperature condition, perfusion and VA were quantified with dynamic [15O]water-PET, and FF, with water-fat MRI. MRglu was assessed with dynamic [18F]fluorodeoxyglucose-PET during cold exposure. sBAT was defined using anatomical criteria, and its subregion sBATHI, by MRglu > 11 μmol/100 cm3/min. For all temperature conditions, sBAT-FF correlated negatively with sBAT-MRglu (ρ ≤ - 0.87). After 3 h of cold, sBAT-FF decreased (- 2.13 percentage points) but tended to normalize during reheating although sBATHI-FF remained low. sBAT-perfusion and sBAT-VA increased during cold exposure (perfusion: + 5.2 ml/100 cm3/min, VA: + 4.0 ml/100 cm3). sBAT-perfusion remained elevated and sBAT-VA normalized during reheating. Regardless of temperature condition during the Cooling-reheating protocol, sBAT-FF could predict the cold-induced sBAT-MRglu. The FF decreases observed after reheating were mainly due to lipid consumption, but could potentially be underestimated due to intracellular lipid replenishment. The influence of perfusion and VA, on the changes in FF observed during cold exposure, could not be ruled out.
Collapse
|
89
|
Brown adipose tissue is associated with healthier body fat distribution and metabolic benefits independent of regional adiposity. CELL REPORTS MEDICINE 2021; 2:100332. [PMID: 34337558 PMCID: PMC8324464 DOI: 10.1016/j.xcrm.2021.100332] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/25/2021] [Accepted: 06/08/2021] [Indexed: 12/27/2022]
Abstract
The association of brown adipose tissue (BAT) and body fat distribution and their combined effects on metabolic health in humans remains unknown. Here, we retrospectively identify individuals with and without BAT on 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) and assemble a propensity score-matched study cohort to compare body fat distribution and determine its role in mediating the benefits of brown fat. We find that BAT is associated with lower amounts of visceral adipose tissue and higher amounts of subcutaneous adipose tissue, resulting in less central obesity. In addition, BAT is independently associated with lower blood glucose and white blood cell count, improved lipids, lower prevalence of type 2 diabetes mellitus, and decreased liver fat accumulation. These observations are most prominent in individuals with central obesity. Our results support a role of BAT in protection from visceral adiposity and improved metabolic health. Brown adipose tissue is associated with more subcutaneous and less visceral fat Brown adipose tissue is associated with health independent of fat distribution Brown adipose tissue is associated with less liver fat and type 2 diabetes Brown adipose tissue is most beneficial in individuals with central obesity
Collapse
|
90
|
Sanchez-Delgado G, Martinez-Tellez B, Acosta FM, Virtue S, Vidal-Puig A, Gil A, Llamas-Elvira JM, Ruiz JR. Brown Adipose Tissue Volume and Fat Content Are Positively Associated With Whole-Body Adiposity in Young Men-Not in Women. Diabetes 2021; 70:1473-1485. [PMID: 33858825 DOI: 10.2337/db21-0011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/05/2021] [Indexed: 11/13/2022]
Abstract
Human brown adipose tissue (BAT) volume has consistently been claimed to be inversely associated with whole-body adiposity. However, recent advances in the assessment of human BAT suggest that previously reported associations may have been biased. The present cross-sectional study investigates the association of BAT volume, mean radiodensity, and 18F-fluorodeoxyglucose (18F-FDG) uptake (assessed via a static positron emission tomography [PET]-computed tomography [CT] scan after a 2-h personalized cold exposure) with whole-body adiposity (measured by DXA) in 126 young adults (42 men and 84 women; mean ± SD BMI 24.9 ± 4.7 kg/m2). BAT volume, but not 18F-FDG uptake, was positively associated with BMI, fat mass, and visceral adipose tissue (VAT) mass in men but not in women. These associations were independent of the date when the PET-CT was performed, insulin sensitivity, and body surface area. BAT mean radiodensity, an inverse proxy of BAT fat content, was negatively associated with BMI, fat mass, and VAT mass in men and in women. These results refute the widely held belief that human BAT volume is reduced in obese persons, at least in young adults, and suggest that it might even be the opposite in young men.
Collapse
Affiliation(s)
- Guillermo Sanchez-Delgado
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Pennington Biomedical Research Center, Baton Rouge, LA
| | - Borja Martinez-Tellez
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| | - Francisco M Acosta
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Samuel Virtue
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, U.K
| | - Antonio Vidal-Puig
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, U.K
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, U.K
| | - Angel Gil
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology, Centre for Biomedical Research, University of Granada, Granada, Spain
- CIBEROBN, Carlos III Health Institute, Madrid, Spain
| | - Jose M Llamas-Elvira
- Nuclear Medicine Services, "Virgen de las Nieves" University Hospital, Granada, Spain
- Biohealth Research Institute in Granada (ibs.GRANADA), Granada, Spain
| | - Jonatan R Ruiz
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
91
|
Crandall JP, Wahl RL. Perspectives on Brown Adipose Tissue Imaging: Insights from Preclinical and Clinical Observations from the Last and Current Century. J Nucl Med 2021; 62:34S-43S. [PMID: 34230071 DOI: 10.2967/jnumed.120.246991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
Brown adipose tissue (BAT) was first described in the 16th century, but until late last century had mainly been considered a tissue with the function of nonshivering thermogenesis, maintaining body temperature in key organs in newborns who have high body surface areas relative to their weight and thus marked radiative heat loss. BAT was believed to have substantially disappeared by adulthood. Molecular imaging with 18F-FDG PET and PET combined with CT, as well as imaging with 131I-metaiodobenzylguanidine (MIBG) beginning late last century have shown BAT to be present and active well into adulthood. This review highlights key aspects of BAT biology, early empiric observations misidentifying BAT, pitfalls in image interpretation, and methods to intentionally reduce BAT uptake, and outlines multiple imaging methods used to identify BAT in vivo. The therapeutic potential of increasing the amount or activity of BAT for weight loss and improvement of glucose and lipid profiles is highlighted as a major opportunity. Molecular imaging can help dissect the physiology of this complex dynamic tissue and offers the potential for addressing challenges separating "active BAT" from "total BAT." Research in BAT has grown extensively, and 18F-FDG PET is the key imaging procedure against which all other BAT imaging methods must be compared. Given the multiple functions of BAT, it is reasonable to consider it a previously unrecognized endocrine tissue and thus an appropriate topic for review in this supplement to The Journal of Nuclear Medicine.
Collapse
Affiliation(s)
- John P Crandall
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Richard L Wahl
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
92
|
Cohen P, Kajimura S. The cellular and functional complexity of thermogenic fat. Nat Rev Mol Cell Biol 2021; 22:393-409. [PMID: 33758402 PMCID: PMC8159882 DOI: 10.1038/s41580-021-00350-0] [Citation(s) in RCA: 297] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 02/01/2023]
Abstract
Brown and beige adipocytes are mitochondria-enriched cells capable of dissipating energy in the form of heat. These thermogenic fat cells were originally considered to function solely in heat generation through the action of the mitochondrial protein uncoupling protein 1 (UCP1). In recent years, significant advances have been made in our understanding of the ontogeny, bioenergetics and physiological functions of thermogenic fat. Distinct subtypes of thermogenic adipocytes have been identified with unique developmental origins, which have been increasingly dissected in cellular and molecular detail. Moreover, several UCP1-independent thermogenic mechanisms have been described, expanding the role of these cells in energy homeostasis. Recent studies have also delineated roles for these cells beyond the regulation of thermogenesis, including as dynamic secretory cells and as a metabolic sink. This Review presents our current understanding of thermogenic adipocytes with an emphasis on their development, biological functions and roles in systemic physiology.
Collapse
Affiliation(s)
- Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA.
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Cell and Tissue Biology, UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
93
|
蔡 子, 易 佩, 陶 泉, 冯 衍. [Comparison of 1H-MRS, Dixon fat-water separation and Z-spectral imaging for quantification of brown adipose tissue in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:783-788. [PMID: 34134968 PMCID: PMC8214954 DOI: 10.12122/j.issn.1673-4254.2021.05.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To evaluate the performance of 1H-magnetic resonance spectroscopy (1H-MRS), Dixon fat-water separation and Z-spectral magnetic resonance imaging (ZS-MRI) for quantification of fat content in phantoms and brown adipose tissues in rats. OBJECTIVE First, six water-oil mixture phantoms with different fat fractions (0, 20%, 40%, 60%, 80% and 100%) were prepared and placed in a 50-mL centrifuge tube. ZS-MRI, 1H-MRS and Dixon's method were used to quantitatively evaluate the fat content of the phantom, and the results were compared against the actual fat fractions. Then, ZS-MRI and Dixon's method were used to collect the data in the interscapular region of 6 rats, the fat-water distribution map was calculated, and the results were compared with 1H-MRS. OBJECTIVE ZS-MRI accurately quantified fat contents in the phantoms (Y=0.95*X+1.48). ZS-MRI was capable of distinguishing brown adipose tissue from white adipose tissue and defining the spatial distribution of the adipose tissue, and the results were highly consistent with those obtained by Dixon's method. No significant differences were found in the results derived by ZS-MRI and 1H-MRS for quantification of brown adipose tissue (P=0.35). OBJECTIVE ZS-MRI can generate an artifact-free fat distribution map for quantitative measurement of the content and distribution of brown adipose tissues in rats.
Collapse
Affiliation(s)
- 子萌 蔡
- 南方医科大学 生物医学工程学院,广东 广州 510515School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- 南方医科大学 广东省医学图像处理重点实验室,广东 广州 510515Guangdong Provincial Key Laboratory of Medical Imaging Processing, Southern Medical University, Guangzhou 510515, China
| | - 佩伟 易
- 南方医科大学 生物医学工程学院,广东 广州 510515School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- 南方医科大学 广东省医学图像处理重点实验室,广东 广州 510515Guangdong Provincial Key Laboratory of Medical Imaging Processing, Southern Medical University, Guangzhou 510515, China
| | - 泉 陶
- 南方医科大学 生物医学工程学院,广东 广州 510515School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- 南方医科大学 广东省医学图像处理重点实验室,广东 广州 510515Guangdong Provincial Key Laboratory of Medical Imaging Processing, Southern Medical University, Guangzhou 510515, China
| | - 衍秋 冯
- 南方医科大学 生物医学工程学院,广东 广州 510515School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- 南方医科大学 广东省医学图像处理重点实验室,广东 广州 510515Guangdong Provincial Key Laboratory of Medical Imaging Processing, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
94
|
Michurina SS, Stafeev IS, Menshikov MY, Parfyonova YV. Mitochondrial dynamics keep balance of nutrient combustion in thermogenic adipocytes. Mitochondrion 2021; 59:157-168. [PMID: 34010673 DOI: 10.1016/j.mito.2021.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/02/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022]
Abstract
Non-shivering thermogenesis takes place in brown and beige adipocytes and facilitates cold tolerance and acclimation. However, thermogenesis in adipose tissue also was found to be activated in metabolic overload states for fast utilization of nutrients excess. This observation spurred research interest in mechanisms of thermogenesis regulation for metabolic overload and obesity prevention. One of proposed regulators of thermogenic efficiency in adipocytes is the dynamics of mitochondria, where thermogenesis takes place. Indeed, brown and beige adipocytes exhibit fragmented round-shaped mitochondria, while white adipocytes have elongated organelles with high ATP synthesis. Mitochondrial morphology can determine uncoupling protein 1 (UCP1) content, efficiency of catabolic pathways and electron transport chain, supplying thermogenesis. This review will highlight the co-regulation of mitochondrial dynamics and thermogenesis and formulate hypothetical ways for excessive nutrients burning in response to mitochondrial morphology manipulation.
Collapse
Affiliation(s)
- S S Michurina
- Lomonosov Moscow State University, 119234 Moscow, Russia; Institute of Experimental Cardiology, National Medical Research Centre for Cardiology, 121500 Moscow, Russia.
| | - I S Stafeev
- Institute of Experimental Cardiology, National Medical Research Centre for Cardiology, 121500 Moscow, Russia.
| | - M Y Menshikov
- Institute of Experimental Cardiology, National Medical Research Centre for Cardiology, 121500 Moscow, Russia
| | - Ye V Parfyonova
- Lomonosov Moscow State University, 119234 Moscow, Russia; Institute of Experimental Cardiology, National Medical Research Centre for Cardiology, 121500 Moscow, Russia
| |
Collapse
|
95
|
Nazeri A, Crandall JP, Fraum TJ, Wahl RL. Repeatability of Radiomic Features of Brown Adipose Tissue. J Nucl Med 2021; 62:700-706. [PMID: 33037091 DOI: 10.2967/jnumed.120.248674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to assess the repeatability of activated brown adipose tissue (BAT) radiomic features. To decipher radiomic features that may provide useful information on BAT, the impact of reconstruction methods and imaging modality choice was also evaluated. Methods: Twenty-seven healthy adults enrolled in this study. After a cooling procedure to activate BAT, volunteers underwent 18F-FDG imaging. Participants underwent repeat imaging using the same imaging protocols and a similar 18F-FDG dose within 14 d. Active BAT was segmented using the BARCIST 1.0 methods. Radiomic features were extracted from each region of interest on high-definition PET (HD PET), non-HD PET, and CT images. Lin's concordance correlation coefficient was used to estimate the repeatability of the extracted radiomic features. To determine whether BAT radiomic feature repeatability correlates with BAT SUVmax repeatability, participants were stratified based on the relative difference in SUVmax between sessions. Non-HD PET repeatable features were clustered together using hierarchical clustering, and the normalized dynamic range of each feature was computed to identify the most informative feature within each cluster. Results: Eighteen of the 27 volunteers had sufficient BAT activity for radiomic analysis. Sixty-six HD PET, 66 non-HD PET, and 6 CT features showed high repeatability (concordance correlation coefficient ≥ 0.80). Feature repeatability was significantly higher for PET than for CT, but there was no statistically significant difference between HD and non-HD PET in radiomic feature repeatability. The repeatability of radiomic features extracted from each modality and reconstruction method type followed the trend in SUVmax, as participants with lower relative differences in SUVmax between initial and repeated imaging sessions had higher radiomic feature repeatability. Hierarchical clustering of the high-repeatability PET features resulted in 10 highly correlated clusters (R 2 ≥ 0.95). Seven features, including SUVmax, did not cluster with any other features. Conclusion: Several clusters of highly repeatable BAT radiomic features derived from 18F-FDG PET/CT appear to provide information regarding BAT activity distinct from SUVmax These features might be explored as quantitative imaging biomarkers of BAT activity in future studies.
Collapse
Affiliation(s)
- Aria Nazeri
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - John P Crandall
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Tyler J Fraum
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Richard L Wahl
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
96
|
McNeill BT, Suchacki KJ, Stimson RH. MECHANISMS IN ENDOCRINOLOGY: Human brown adipose tissue as a therapeutic target: warming up or cooling down? Eur J Endocrinol 2021; 184:R243-R259. [PMID: 33729178 PMCID: PMC8111330 DOI: 10.1530/eje-20-1439] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
Excessive accumulation of white adipose tissue leads to obesity and its associated metabolic health consequences such as type 2 diabetes and cardiovascular disease. Several approaches to treat or prevent obesity including public health interventions, surgical weight loss, and pharmacological approaches to reduce caloric intake have failed to substantially modify the increasing prevalence of obesity. The (re-)discovery of active brown adipose tissue (BAT) in adult humans approximately 15 years ago led to a resurgence in research into whether BAT activation could be a novel therapy for the treatment of obesity. Upon cold stimulus, BAT activates and generates heat to maintain body temperature, thus increasing energy expenditure. Activation of BAT may provide a unique opportunity to increase energy expenditure without the need for exercise. However, much of the underlying mechanisms surrounding BAT activation are still being elucidated and the effectiveness of BAT as a therapeutic target has not been realised. Research is ongoing to determine how best to expand BAT mass and activate existing BAT; approaches include cold exposure, pharmacological stimulation using sympathomimetics, browning agents that induce formation of thermogenic beige adipocytes in white adipose depots, and the identification of factors secreted by BAT with therapeutic potential. In this review, we discuss the caloric capacity and other metabolic benefits from BAT activation in humans and the role of metabolic tissues such as skeletal muscle in increasing energy expenditure. We discuss the potential of current approaches and the challenges of BAT activation as a novel strategy to treat obesity and metabolic disorders.
Collapse
Affiliation(s)
- Ben T McNeill
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK
| | - Karla J Suchacki
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK
| | - Roland H Stimson
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK
- Correspondence should be addressed to R H Stimson Email
| |
Collapse
|
97
|
Piquer-Garcia I, Cereijo R, Corral-Pérez J, Pellitero S, Martínez E, Taxerås SD, Tarascó J, Moreno P, Balibrea J, Puig-Domingo M, Serra D, Herrero L, Jiménez-Pavón D, Lerin C, Villarroya F, Sánchez-Infantes D. Use of Infrared Thermography to Estimate Brown Fat Activation After a Cooling Protocol in Patients with Severe Obesity That Underwent Bariatric Surgery. Obes Surg 2021; 30:2375-2381. [PMID: 32133589 DOI: 10.1007/s11695-020-04502-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND In contrast to the energy-storing role of white adipose tissue (WAT), brown adipose tissue (BAT) acts as the main site of non-shivering thermogenesis in mammals and has been reported to play a role in protection against obesity and associated metabolic alterations in rodents. Infrared thermography (IRT) has been proposed as a novel non-invasive, safe, and quick method to estimate BAT thermogenic activation in humans. The aim of this study is to determine whether the IRT could be a potential new tool to estimate BAT thermogenic activation in patients with severe obesity in response to bariatric surgery. METHODS Supraclavicular BAT thermogenic activation was evaluated using IRT in a cohort of 31 patients (50 ± 10 years old, BMI = 44.5 ± 7.8; 15 undergoing laparoscopy sleeve gastrectomy and 16 Roux-en-Y gastric bypass) at baseline and 6 months after a bariatric surgery. Clinical parameters were determined at these same time points. RESULTS Supraclavicular BAT-related activity was detected in our patients by IRT after a cooling stimulus. The BAT thermogenic activation was higher at 6 months after laparoscopy sleeve gastrectomy (0.06 ± 0.1 vs 0.32 ± 0.1), while patients undergoing to a roux-en-Y gastric bypass did not change their thermogenic response using the same cooling stimulus (0.09 ± 0.1 vs 0.08 ± 0.1). CONCLUSIONS Our study postulates the IRT as a potential tool to evaluate BAT thermogenic activation in patients with obesity before and after a bariatric surgery. Further studies are needed to evaluate differences between LSG technique and RYGB on BAT activation.
Collapse
Affiliation(s)
| | - Rubén Cereijo
- Department of Biochemistry and Molecular Biomedicine, and Institute of Biomedicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Juan Corral-Pérez
- MOVE-IT Research Group and Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Cadiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of the Province of Cádiz (INiBICA), University of Cádiz, Cadiz, Spain
| | - Silvia Pellitero
- Germans Trias i Pujol Research Institute, Barcelona, Spain.,Centro de Investigación Biomédica en Fisiopatología de la Diabetes y enfermedades metabólicas (CIBERDEM), ISCIII, Madrid, Spain
| | - Eva Martínez
- Germans Trias i Pujol Research Institute, Barcelona, Spain
| | - Siri D Taxerås
- Germans Trias i Pujol Research Institute, Barcelona, Spain
| | - Jordi Tarascó
- Germans Trias i Pujol Research Institute, Barcelona, Spain
| | - Pau Moreno
- Germans Trias i Pujol Research Institute, Barcelona, Spain
| | - José Balibrea
- Metabolic and Bariatric Surgery Unit, EAC-BS Center of Excellence, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Manel Puig-Domingo
- Germans Trias i Pujol Research Institute, Barcelona, Spain.,Centro de Investigación Biomédica en Fisiopatología de la Diabetes y enfermedades metabólicas (CIBERDEM), ISCIII, Madrid, Spain
| | - Dolors Serra
- Centro de Investigación Biomédica de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Department of Biochemistry and Physiology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB),, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Laura Herrero
- Centro de Investigación Biomédica de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Department of Biochemistry and Physiology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB),, Universitat de Barcelona, 08028, Barcelona, Spain
| | - David Jiménez-Pavón
- MOVE-IT Research Group and Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Cadiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of the Province of Cádiz (INiBICA), University of Cádiz, Cadiz, Spain
| | - Carles Lerin
- Endocrinology department, Institut de Recerca Sant Joan de Déu, 08950, Barcelona, Spain
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biomedicine, and Institute of Biomedicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - David Sánchez-Infantes
- Germans Trias i Pujol Research Institute, Barcelona, Spain. .,Centro de Investigación Biomédica de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain. .,Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, Carretera de Can Ruti, Camí de les Escoles s/n, Badalona, 08916, Barcelona, Spain.
| |
Collapse
|
98
|
Hollstein T, Vinales K, Chen KY, Cypess AM, Basolo A, Schlögl M, Krakoff J, Piaggi P. Reduced brown adipose tissue activity during cold exposure is a metabolic feature of the human thrifty phenotype. Metabolism 2021; 117:154709. [PMID: 33476636 PMCID: PMC7956243 DOI: 10.1016/j.metabol.2021.154709] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/22/2020] [Accepted: 01/14/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND We recently demonstrated that thrifty subjects, characterized by a greater decrease in 24 h energy expenditure (24hEE) during short-term fasting, have less capacity for cold-induced thermogenesis (CIT) during 24 h of mild cold exposure. OBJECTIVE As cold-induced brown adipose tissue activation (CIBA) is a determinant of CIT, we sought to investigate whether thrifty individuals also have reduced CIBA. METHODS Twenty-four healthy subjects (age: 29.8 ± 9.5y, body fat: 27.3 ± 12.4%, 63% male) were admitted to our clinical research unit and underwent two 24hEE assessments in a whole-room indirect calorimeter during energy balance and fasting conditions at thermoneutrality to quantify their degree of thriftiness. Positron emission tomography/computed tomography scans were performed after exposure to 16 °C for 2 h to quantify peak CIBA. RESULTS A greater decrease in 24hEE during fasting was associated with lower peak CIBA (r = 0.50, p = 0.01), such that a 100 kcal/day greater reduction in 24hEE related to an average 3.2 g/mL lower peak CIBA. CONCLUSION Our results indicate that reduced CIBA is a metabolic trait of the thrifty phenotype which might explain reduced CIT capacity and greater predisposition towards weight gain in individuals with a thrifty metabolism.
Collapse
Affiliation(s)
- Tim Hollstein
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 4212 N 16th Street, Phoenix, AZ 85016, USA; Division of Endocrinology, Diabetology and Clinical Nutrition, Department of Internal Medicine 1, University of Kiel, Arnold Heller Straße 3, Kiel 24105, Germany
| | - Karyne Vinales
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 4212 N 16th Street, Phoenix, AZ 85016, USA; Endocrinology Division, Medicine Department, Phoenix VA Health Care System, Phoenix, AZ 85012, USA
| | - Kong Y Chen
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Alessio Basolo
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 4212 N 16th Street, Phoenix, AZ 85016, USA
| | - Mathias Schlögl
- Department of Geriatrics and Aging Research, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Jonathan Krakoff
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 4212 N 16th Street, Phoenix, AZ 85016, USA
| | - Paolo Piaggi
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 4212 N 16th Street, Phoenix, AZ 85016, USA; Department of Information Engineering, University of Pisa, Pisa 56122, Italy.
| |
Collapse
|
99
|
Finlin BS, Memetimin H, Zhu B, Confides AL, Vekaria HJ, El Khouli RH, Johnson ZR, Westgate PM, Chen J, Morris AJ, Sullivan PG, Dupont-Versteegden EE, Kern PA. Pioglitazone does not synergize with mirabegron to increase beige fat or further improve glucose metabolism. JCI Insight 2021; 6:143650. [PMID: 33571166 PMCID: PMC8026187 DOI: 10.1172/jci.insight.143650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Beige and brown adipose tissue (BAT) are associated with improved metabolic homeostasis. We recently reported that the β3-adrenergic receptor agonist mirabegron induced beige adipose tissue in obese insulin-resistant subjects, and this was accompanied by improved glucose metabolism. Here we evaluated pioglitazone treatment with a combination pioglitazone and mirabegron treatment and compared these with previously published data evaluating mirabegron treatment alone. Both drugs were used at FDA-approved dosages. METHODS We measured BAT by PET CT scans, measured beige adipose tissue by immunohistochemistry, and comprehensively characterized glucose and lipid homeostasis and insulin sensitivity by euglycemic clamp and oral glucose tolerance tests. Subcutaneous white adipose tissue, muscle fiber type composition and capillary density, lipotoxicity, and systemic inflammation were evaluated by immunohistochemistry, gene expression profiling, mass spectroscopy, and ELISAs. RESULTS Treatment with pioglitazone or the combination of pioglitazone and mirabegron increased beige adipose tissue protein marker expression and improved insulin sensitivity and glucose homeostasis, but neither treatment induced BAT in these obese subjects. When the magnitude of the responses to the treatments was evaluated, mirabegron was found to be the most effective at inducing beige adipose tissue. Although monotherapy with either mirabegron or pioglitazone induced adipose beiging, combination treatment resulted in less beiging than either alone. The 3 treatments also had different effects on muscle fiber type switching and capillary density. CONCLUSION The addition of pioglitazone to mirabegron treatment does not enhance beiging or increase BAT in obese insulin-resistant research participants. TRIAL REGISTRATION ClinicalTrials.gov NCT02919176. FUNDING NIH DK112282 and P20GM103527 and Clinical and Translational Science Awards grant UL1TR001998.
Collapse
Affiliation(s)
- Brian S Finlin
- Division of Endocrinology, Department of Internal Medicine, College of Medicine.,Barnstable Brown Diabetes and Obesity Center
| | - Hasiyet Memetimin
- Division of Endocrinology, Department of Internal Medicine, College of Medicine.,Barnstable Brown Diabetes and Obesity Center
| | - Beibei Zhu
- Division of Endocrinology, Department of Internal Medicine, College of Medicine.,Barnstable Brown Diabetes and Obesity Center
| | - Amy L Confides
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences
| | | | | | - Zachary R Johnson
- Division of Endocrinology, Department of Internal Medicine, College of Medicine
| | | | - Jianzhong Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, Kentucky, USA.,Lexington Veterans Affairs Medical Center, Lexington, Kentucky, USA
| | - Andrew J Morris
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, Kentucky, USA.,Lexington Veterans Affairs Medical Center, Lexington, Kentucky, USA
| | | | | | - Philip A Kern
- Division of Endocrinology, Department of Internal Medicine, College of Medicine.,Barnstable Brown Diabetes and Obesity Center
| |
Collapse
|
100
|
Ouwerkerk R, Hamimi A, Matta J, Abd-Elmoniem KZ, Eary JF, Abdul Sater Z, Chen KY, Cypess AM, Gharib AM. Proton MR Spectroscopy Measurements of White and Brown Adipose Tissue in Healthy Humans: Relaxation Parameters and Unsaturated Fatty Acids. Radiology 2021; 299:396-406. [PMID: 33724063 DOI: 10.1148/radiol.2021202676] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background Activation of brown adipose tissue (BAT) in rodents increases lipolysis in white adipose tissue (WAT) and improves glucose tolerance. Adult humans can have metabolically active BAT. Implications for diabetes and obesity in humans require a better characterization of BAT in humans. Purpose To study fat depots with localized proton MR spectroscopy relaxometry and to identify differences between WAT and fluorine 18 fluorodeoxyglucose (FDG) PET/CT proven cold-activated BAT in humans. Materials and Methods Participants were consecutively enrolled in this prospective study (ClinicalTrials.gov identifiers: NCT01568671 and NCT01399385) from August 2016 to May 2019. Supraclavicular potential BAT regions were localized with MRI. Proton densities, T1, and T2 were measured with localized MR spectroscopy in potential BAT and in subcutaneous WAT. FDG PET/CT after cold stimulation was used to retrospectively identify active supraclavicular BAT or supraclavicular quiescent adipose tissue (QAT) regions. MR spectroscopy results from BAT and WAT were compared with grouped and paired tests. Results Of 21 healthy participants (mean age, 36 years ± 16 [standard deviation]; 13 men) FDG PET/CT showed active BAT in 24 MR spectroscopy-targeted regions in 16 participants (eight men). Four men had QAT. The T2 for methylene protons was shorter in BAT (mean, 69 msec ± 6, 24 regions) than in WAT (mean, 83 msec ± 3, 18 regions, P < .01) and QAT (mean, 78 msec ± 2, five regions, P < .01). A T2 cut-off value of 76 msec enabled the differentiation of BAT from WAT or QAT with a sensitivity of 85% and a specificity of 95%. Densities of protons adjacent and between double bonds were 33% and 24% lower, respectively, in BAT compared with those in WAT (P = .01 and P = .03, respectively), indicating a lower content of unsaturated and polyunsaturated fatty acids, respectively, in BAT compared with WAT. Conclusion Proton MR spectroscopy showed shorter T2 and lower unsaturated fatty acids in brown adipose tissue (BAT) than that in white adipose tissue in healthy humans. It was feasible to identify BAT with MR spectroscopy without the use of PET/CT or cold stimulation. © RSNA, 2021 See also the editorial by Barker in this issue. Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Ronald Ouwerkerk
- From the Biomedical and Metabolic Imaging Branch (R.O., A.H., J.M., K.Z.A., A.M.G.) and Diabetes, Endocrinology, and Obesity Branch (Z.A.S., K.Y.C., A.M.C.), National Institute of Diabetes and Digestive and Kidney Diseases, 10 Center Dr, Bldg 10-CRC, Room 3-5340, Bethesda, MD 20892-1263; and Cancer Imaging Program, National Cancer Institute, Bethesda, Md (J.F.E.)
| | - Ahmed Hamimi
- From the Biomedical and Metabolic Imaging Branch (R.O., A.H., J.M., K.Z.A., A.M.G.) and Diabetes, Endocrinology, and Obesity Branch (Z.A.S., K.Y.C., A.M.C.), National Institute of Diabetes and Digestive and Kidney Diseases, 10 Center Dr, Bldg 10-CRC, Room 3-5340, Bethesda, MD 20892-1263; and Cancer Imaging Program, National Cancer Institute, Bethesda, Md (J.F.E.)
| | - Jatin Matta
- From the Biomedical and Metabolic Imaging Branch (R.O., A.H., J.M., K.Z.A., A.M.G.) and Diabetes, Endocrinology, and Obesity Branch (Z.A.S., K.Y.C., A.M.C.), National Institute of Diabetes and Digestive and Kidney Diseases, 10 Center Dr, Bldg 10-CRC, Room 3-5340, Bethesda, MD 20892-1263; and Cancer Imaging Program, National Cancer Institute, Bethesda, Md (J.F.E.)
| | - Khaled Z Abd-Elmoniem
- From the Biomedical and Metabolic Imaging Branch (R.O., A.H., J.M., K.Z.A., A.M.G.) and Diabetes, Endocrinology, and Obesity Branch (Z.A.S., K.Y.C., A.M.C.), National Institute of Diabetes and Digestive and Kidney Diseases, 10 Center Dr, Bldg 10-CRC, Room 3-5340, Bethesda, MD 20892-1263; and Cancer Imaging Program, National Cancer Institute, Bethesda, Md (J.F.E.)
| | - Janet F Eary
- From the Biomedical and Metabolic Imaging Branch (R.O., A.H., J.M., K.Z.A., A.M.G.) and Diabetes, Endocrinology, and Obesity Branch (Z.A.S., K.Y.C., A.M.C.), National Institute of Diabetes and Digestive and Kidney Diseases, 10 Center Dr, Bldg 10-CRC, Room 3-5340, Bethesda, MD 20892-1263; and Cancer Imaging Program, National Cancer Institute, Bethesda, Md (J.F.E.)
| | - Zahraa Abdul Sater
- From the Biomedical and Metabolic Imaging Branch (R.O., A.H., J.M., K.Z.A., A.M.G.) and Diabetes, Endocrinology, and Obesity Branch (Z.A.S., K.Y.C., A.M.C.), National Institute of Diabetes and Digestive and Kidney Diseases, 10 Center Dr, Bldg 10-CRC, Room 3-5340, Bethesda, MD 20892-1263; and Cancer Imaging Program, National Cancer Institute, Bethesda, Md (J.F.E.)
| | - Kong Y Chen
- From the Biomedical and Metabolic Imaging Branch (R.O., A.H., J.M., K.Z.A., A.M.G.) and Diabetes, Endocrinology, and Obesity Branch (Z.A.S., K.Y.C., A.M.C.), National Institute of Diabetes and Digestive and Kidney Diseases, 10 Center Dr, Bldg 10-CRC, Room 3-5340, Bethesda, MD 20892-1263; and Cancer Imaging Program, National Cancer Institute, Bethesda, Md (J.F.E.)
| | - Aaron M Cypess
- From the Biomedical and Metabolic Imaging Branch (R.O., A.H., J.M., K.Z.A., A.M.G.) and Diabetes, Endocrinology, and Obesity Branch (Z.A.S., K.Y.C., A.M.C.), National Institute of Diabetes and Digestive and Kidney Diseases, 10 Center Dr, Bldg 10-CRC, Room 3-5340, Bethesda, MD 20892-1263; and Cancer Imaging Program, National Cancer Institute, Bethesda, Md (J.F.E.)
| | - Ahmed M Gharib
- From the Biomedical and Metabolic Imaging Branch (R.O., A.H., J.M., K.Z.A., A.M.G.) and Diabetes, Endocrinology, and Obesity Branch (Z.A.S., K.Y.C., A.M.C.), National Institute of Diabetes and Digestive and Kidney Diseases, 10 Center Dr, Bldg 10-CRC, Room 3-5340, Bethesda, MD 20892-1263; and Cancer Imaging Program, National Cancer Institute, Bethesda, Md (J.F.E.)
| |
Collapse
|