51
|
Ayer A, Fazakerley DJ, James DE, Stocker R. The role of mitochondrial reactive oxygen species in insulin resistance. Free Radic Biol Med 2022; 179:339-362. [PMID: 34775001 DOI: 10.1016/j.freeradbiomed.2021.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/31/2021] [Accepted: 11/06/2021] [Indexed: 12/21/2022]
Abstract
Insulin resistance is one of the earliest pathological features of a suite of diseases including type 2 diabetes collectively referred to as metabolic syndrome. There is a growing body of evidence from both pre-clinical studies and human cohorts indicating that reactive oxygen species, such as the superoxide radical anion and hydrogen peroxide are key players in the development of insulin resistance. Here we review the evidence linking mitochondrial reactive oxygen species generated within mitochondria with insulin resistance in adipose tissue and skeletal muscle, two major insulin sensitive tissues. We outline the relevant mitochondria-derived reactive species, how the mitochondrial redox state is regulated, and methodologies available to measure mitochondrial reactive oxygen species. Importantly, we highlight key experimental issues to be considered when studying the role of mitochondrial reactive oxygen species in insulin resistance. Evaluating the available literature on both mitochondrial reactive oxygen species/redox state and insulin resistance in a variety of biological systems, we conclude that the weight of evidence suggests a likely role for mitochondrial reactive oxygen species in the etiology of insulin resistance in adipose tissue and skeletal muscle. However, major limitations in the methods used to study reactive oxygen species in insulin resistance as well as the lack of data linking mitochondrial reactive oxygen species and cytosolic insulin signaling pathways are significant obstacles in proving the mechanistic link between these two processes. We provide a framework to guide future studies to provide stronger mechanistic information on the link between mitochondrial reactive oxygen species and insulin resistance as understanding the source, localization, nature, and quantity of mitochondrial reactive oxygen species, their targets and downstream signaling pathways may pave the way for important new therapeutic strategies.
Collapse
Affiliation(s)
- Anita Ayer
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Daniel J Fazakerley
- Metabolic Research Laboratory, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - David E James
- Charles Perkins Centre, Sydney Medical School, The University of Sydney, Sydney, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Roland Stocker
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.
| |
Collapse
|
52
|
Medak KD, McKie GL, Shamshoum H, Seguin I, Wright DC. The glucose lowering effects of CL 316,243 dissipate with repeated use and are rescued bycilostamide. Physiol Rep 2022; 10:e15187. [PMID: 35179321 PMCID: PMC8855634 DOI: 10.14814/phy2.15187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/22/2022] Open
Abstract
Repeated activation of the beta 3 adrenergic receptor (β3AR) with the agonist CL 316,243 (CL) results in remodeling of white adipose tissue (WAT) characterized by increased mitochondrial enzymes and expression of uncoupling protein 1 (UCP1). β3AR activation also has profound acute metabolic effects including rapidly decreasing blood glucose, secondary to fatty acid-induced increases in insulin, and increasing energy expenditure. The acute (single dose) effects of β3AR activation have largely been examined in treatment naive animals and under room temperature housing conditions. The current study examined if repeated CL treatment would lead to an attenuation of acute metabolic effects of CL treatment under thermoneutral housing conditions and if this could be rescued with cilostamide, a phosphodiesterase inhibitor. We provide evidence demonstrating that the acute effects of CL to increase serum fatty acids and insulin and reduce blood glucose, but not increases in energy expenditure, are attenuated in mice following repeated treatment with CL. This occurs in parallel with reductions in indices of protein kinase A signaling in WAT including the phosphorylation of hormone sensitive lipase. The findings of attenuated serum fatty acid, insulin, and blood glucose responses were confirmed in both high-fat fed and UCP1-/- mice repeatedly treated with CL. Desensitization to CL in mice was rescued by cilostamide. Herein, we provide evidence that the glucose lowering, but not thermogenesis inducing, effects of CL are attenuated with repeated treatment and can be rescued by cilostamide. The findings of this study point toward novel adjunct treatment approaches that could be used to maximize therapeutic, glucose lowering effects of β3AR agonists.
Collapse
Affiliation(s)
- Kyle D. Medak
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| | - Greg L. McKie
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| | - Hesham Shamshoum
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| | - Ian Seguin
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| | - David C. Wright
- Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
53
|
Dieckmann S, Strohmeyer A, Willershäuser M, Maurer SF, Wurst W, Marschall S, de Angelis MH, Kühn R, Worthmann A, Fuh MM, Heeren J, Köhler N, Pauling JK, Klingenspor M. Susceptibility to diet-induced obesity at thermoneutral conditions is independent of UCP1. Am J Physiol Endocrinol Metab 2022; 322:E85-E100. [PMID: 34927460 DOI: 10.1152/ajpendo.00278.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Activation of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) upon cold stimulation leads to substantial increase in energy expenditure to defend body temperature. Increases in energy expenditure after a high-caloric food intake, termed diet-induced thermogenesis, are also attributed to BAT. These properties render BAT a potential target to combat diet-induced obesity. However, studies investigating the role of UCP1 to protect against diet-induced obesity are controversial and rely on the phenotyping of a single constitutive UCP1-knockout model. To address this issue, we generated a novel UCP1-knockout model by Cre-mediated deletion of exon 2 in the UCP1 gene. We studied the effect of constitutive UCP1 knockout on metabolism and the development of diet-induced obesity. UCP1 knockout and wild-type mice were housed at 30°C and fed a control diet for 4 wk followed by 8 wk of high-fat diet. Body weight and food intake were monitored continuously over the course of the study, and indirect calorimetry was used to determine energy expenditure during both feeding periods. Based on Western blot analysis, thermal imaging and noradrenaline test, we confirmed the lack of functional UCP1 in knockout mice. However, body weight gain, food intake, and energy expenditure were not affected by loss of UCP1 function during both feeding periods. We introduce a novel UCP1-KO mouse enabling the generation of conditional UCP1-knockout mice to scrutinize the contribution of UCP1 to energy metabolism in different cell types or life stages. Our results demonstrate that UCP1 does not protect against diet-induced obesity at thermoneutrality.NEW & NOTEWORTHY We provide evidence that the abundance of UCP1 does not influence energy metabolism at thermoneutrality studying a novel Cre-mediated UCP1-KO mouse model. This model will be a foundation for a better understanding of the contribution of UCP1 in different cell types or life stages to energy metabolism.
Collapse
Affiliation(s)
- Sebastian Dieckmann
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Akim Strohmeyer
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Monja Willershäuser
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Stefanie F Maurer
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Germany
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Munich, Germany
| | - Susan Marschall
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Ralf Kühn
- Institute of Developmental Genetics, Helmholtz Zentrum München, Germany
| | - Anna Worthmann
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marceline M Fuh
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nikolai Köhler
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Josch K Pauling
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| |
Collapse
|
54
|
Valentine JM, Ahmadian M, Keinan O, Abu-Odeh M, Zhao P, Zhou X, Keller MP, Gao H, Yu RT, Liddle C, Downes M, Zhang J, Lusis AJ, Attie AD, Evans RM, Rydén M, Saltiel AR. β3-Adrenergic receptor downregulation leads to adipocyte catecholamine resistance in obesity. J Clin Invest 2022; 132:e153357. [PMID: 34847077 PMCID: PMC8759781 DOI: 10.1172/jci153357] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
The dysregulation of energy homeostasis in obesity involves multihormone resistance. Although leptin and insulin resistance have been well characterized, catecholamine resistance remains largely unexplored. Murine β3-adrenergic receptor expression in adipocytes is orders of magnitude higher compared with that of other isoforms. While resistant to classical desensitization pathways, its mRNA (Adrb3) and protein expression are dramatically downregulated after ligand exposure (homologous desensitization). β3-Adrenergic receptor downregulation also occurs after high-fat diet feeding, concurrent with catecholamine resistance and elevated inflammation. This downregulation is recapitulated in vitro by TNF-α treatment (heterologous desensitization). Both homologous and heterologous desensitization of Adrb3 were triggered by induction of the pseudokinase TRIB1 downstream of the EPAC/RAP2A/PI-PLC pathway. TRIB1 in turn degraded the primary transcriptional activator of Adrb3, CEBPα. EPAC/RAP inhibition enhanced catecholamine-stimulated lipolysis and energy expenditure in obese mice. Moreover, adipose tissue expression of genes in this pathway correlated with body weight extremes in a cohort of genetically diverse mice and with BMI in 2 independent cohorts of humans. These data implicate a signaling axis that may explain reduced hormone-stimulated lipolysis in obesity and resistance to therapeutic interventions with β3-adrenergic receptor agonists.
Collapse
Affiliation(s)
| | | | | | | | | | - Xin Zhou
- Department of Pharmacology, Bioengineering, Chemistry, and Biochemistry, UCSD, San Diego, California, USA
| | - Mark P. Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Hui Gao
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Ruth T. Yu
- Gene Expression Laboratory, Salk Institute for Biological Sciences, La Jolla, California, USA
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney School of Medicine, University of Sydney, Westmead, New South Wales, Australia
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Sciences, La Jolla, California, USA
| | - Jin Zhang
- Department of Pharmacology, Bioengineering, Chemistry, and Biochemistry, UCSD, San Diego, California, USA
| | - Aldons J. Lusis
- Department of Microbiology, Immunology, and Molecular Genetics, Department of Medicine, UCLA, Los Angeles, California, USA
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ronald M. Evans
- Gene Expression Laboratory, Salk Institute for Biological Sciences, La Jolla, California, USA
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Alan R. Saltiel
- Department of Medicine and
- Department of Pharmacology, Bioengineering, Chemistry, and Biochemistry, UCSD, San Diego, California, USA
| |
Collapse
|
55
|
Parra-Peralbo E, Talamillo A, Barrio R. Origin and Development of the Adipose Tissue, a Key Organ in Physiology and Disease. Front Cell Dev Biol 2022; 9:786129. [PMID: 34993199 PMCID: PMC8724577 DOI: 10.3389/fcell.2021.786129] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022] Open
Abstract
Adipose tissue is a dynamic organ, well known for its function in energy storage and mobilization according to nutrient availability and body needs, in charge of keeping the energetic balance of the organism. During the last decades, adipose tissue has emerged as the largest endocrine organ in the human body, being able to secrete hormones as well as inflammatory molecules and having an important impact in multiple processes such as adipogenesis, metabolism and chronic inflammation. However, the cellular progenitors, development, homeostasis and metabolism of the different types of adipose tissue are not fully known. During the last decade, Drosophila melanogaster has demonstrated to be an excellent model to tackle some of the open questions in the field of metabolism and development of endocrine/metabolic organs. Discoveries ranged from new hormones regulating obesity to subcellular mechanisms that regulate lipogenesis and lipolysis. Here, we review the available evidences on the development, types and functions of adipose tissue in Drosophila and identify some gaps for future research. This may help to understand the cellular and molecular mechanism underlying the pathophysiology of this fascinating key tissue, contributing to establish this organ as a therapeutic target.
Collapse
Affiliation(s)
| | - Ana Talamillo
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| |
Collapse
|
56
|
Heine M, Corban C, Heeren J. Metabolic Turnover Studies to Quantify Energy Uptake by Thermogenic Adipose Tissues of Mice. Methods Mol Biol 2022; 2448:107-118. [PMID: 35167093 DOI: 10.1007/978-1-0716-2087-8_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The uptake of glucose, non-esterified fatty acids, and triglycerides into brown adipose tissue is an important determinant of systemic energy metabolism, which can be studied by metabolic turnover studies using radioactive tracers in vivo. Here, we address the uptake of glucose and lipid tracers into metabolically active organs with a focus on thermogenically activated adipose tissues. Uptake by beige and brown adipocytes is highly dependent on conditions such as ambient temperature, but also varies between fasted compared to postprandial states. Accordingly, we provide methodological insights how to quantify glucose and lipid disposal under multiple physiological and environmental conditions.
Collapse
Affiliation(s)
- Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carlotta Corban
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
57
|
Zhou Y, Xu Z, Wang L, Ling D, Nong Q, Xie J, Zhu X, Shan T. Cold Exposure Induces Depot-Specific Alterations in Fatty Acid Composition and Transcriptional Profile in Adipose Tissues of Pigs. Front Endocrinol (Lausanne) 2022; 13:827523. [PMID: 35282453 PMCID: PMC8905645 DOI: 10.3389/fendo.2022.827523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Cold exposure promotes fat oxidation and modulates the energy metabolism in adipose tissue through multiple mechanisms. However, it is still unclear about heat-generating capacity and lipid mobilization of different fat depots without functional mitochondrial uncoupling protein 1 (UCP1). In this study, we kept finishing pigs (lack a functional UCP1 gene) under cold (5-7°C) or room temperature (22-25°C) and determined the effects of overnight cold exposure on fatty acid composition and transcriptional profiles of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT). And the plasma metabolomes of porcine was also studied by LC-MS-based untargeted metabolomics. We found that the saturated fatty acids (SFAs) content was decreased in SAT upon cold exposure. While in VAT, the relative content of lauric acid (C12:0), myristic acid (C14:0) and lignoceric acid (C24:0) were decreased without affecting total SFA content. RNA-seq results showed SAT possess active organic acid metabolism and energy mobilization upon cold exposure. Compared with SAT, cold-induced transcriptional changes were far less broad in VAT, and the differentially expressed genes (DEGs) were mainly enriched in fat cell differentiation and cell proliferation. Moreover, we found that the contents of organic acids like creatine, acamprosate, DL-3-phenyllactic acid and taurine were increased in plasma upon overnight cold treatment, suggesting that cold exposure induced lipid and fatty acid metabolism in white adipose tissue (WAT) might be regulated by functions of organic acids. These results provide new insights into the effects of short-term cold exposure on lipid metabolism in adipose tissues without functional UCP1.
Collapse
Affiliation(s)
- Yanbing Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Defeng Ling
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Qiuyun Nong
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jintang Xie
- Shandong Chunteng Food Co. Ltd., Zaozhuang, China
| | - Xiaodong Zhu
- Shandong Chunteng Food Co. Ltd., Zaozhuang, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Tizhong Shan,
| |
Collapse
|
58
|
Adipose Lipolysis Regulates Cardiac Glucose Uptake and Function in Mice under Cold Stress. Int J Mol Sci 2021; 22:ijms222413361. [PMID: 34948160 PMCID: PMC8703875 DOI: 10.3390/ijms222413361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 02/04/2023] Open
Abstract
The heart primarily uses fatty acids as energy substrates. Adipose lipolysis is a major source of fatty acids, particularly under stress conditions. In this study, we showed that mice with selective inactivation of the lipolytic coactivator comparative gene identification-58 (CGI-58) in adipose tissue (FAT-KO mice), relative to their littermate controls, had lower circulating FA levels in the fed and fasted states due to impaired adipose lipolysis. They preferentially utilized carbohydrates as energy fuels and were more insulin sensitive and glucose tolerant. Under cold stress, FAT-KO versus control mice had >10-fold increases in glucose uptake in the hearts but no increases in other tissues examined. Plasma concentrations of atrial natriuretic peptide and cardiac mRNAs for atrial and brain-type natriuretic peptides, two sensitive markers of cardiac remodeling, were also elevated. After one week of cold exposure, FAT-KO mice showed reduced cardiac expression of several mitochondrial oxidative phosphorylation proteins. After one month of cold exposure, hearts of these animals showed depressed functions, reduced SERCA2 protein, and increased proteins for MHC-β, collagen I proteins, Glut1, Glut4 and phospho-AMPK. Thus, CGI-58-dependent adipose lipolysis critically regulates cardiac metabolism and function, especially during cold adaptation. The adipose-heart axis may be targeted for the management of cardiac dysfunction.
Collapse
|
59
|
Manfredi LH. Overheating or overcooling: heat transfer in the spot to fight against the pandemic obesity. Rev Endocr Metab Disord 2021; 22:665-680. [PMID: 33000381 DOI: 10.1007/s11154-020-09596-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 12/25/2022]
Abstract
The prevalence of obesity has nearly doubled worldwide over the past three and a half decades, reaching pandemic status. Obesity is associated with decreased life expectancy and with an increased risk of metabolic, cardiovascular, nervous system diseases. Hence, understanding the mechanisms involved in the onset and development of obesity is mandatory to promote planned health actions to revert this scenario. In this review, common aspects of cold exposure, a process of heat generation, and exercise, a process of heat dissipation, will be discussed as two opposite mechanisms of obesity, which can be oversimplified as caloric conservation. A common road between heat generation and dissipation is the mobilization of Free Faty Acids (FFA) and Carbohydrates (CHO). An increase in energy expenditure (immediate effect) and molecular/metabolic adaptations (chronic effect) are responses that depend on SNS activity in both conditions of heat transfer. This cycle of using and removing FFA and CHO from blood either for heat or force generation disrupt the key concept of obesity: energy accumulation. Despite efforts in making the anti-obesity pill, maybe it is time to consider that the world's population is living at thermoneutrality since temperature-controlled places and the lack of exercise are favoring caloric accumulation.
Collapse
Affiliation(s)
- Leandro Henrique Manfredi
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, Santa Catarina, Brazil.
| |
Collapse
|
60
|
Tournissac M, Leclerc M, Valentin-Escalera J, Vandal M, Bosoi CR, Planel E, Calon F. Metabolic determinants of Alzheimer's disease: A focus on thermoregulation. Ageing Res Rev 2021; 72:101462. [PMID: 34534683 DOI: 10.1016/j.arr.2021.101462] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/09/2021] [Accepted: 09/11/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a complex age-related neurodegenerative disease, associated with central and peripheral metabolic anomalies, such as impaired glucose utilization and insulin resistance. These observations led to a considerable interest not only in lifestyle-related interventions, but also in repurposing insulin and other anti-diabetic drugs to prevent or treat dementia. Body temperature is the oldest known metabolic readout and mechanisms underlying its maintenance fail in the elderly, when the incidence of AD rises. This raises the possibility that an age-associated thermoregulatory deficit contributes to energy failure underlying AD pathogenesis. Brown adipose tissue (BAT) plays a central role in thermogenesis and maintenance of body temperature. In recent years, the modulation of BAT activity has been increasingly demonstrated to regulate energy expenditure, insulin sensitivity and glucose utilization, which could also provide benefits for AD. Here, we review the evidence linking thermoregulation, BAT and insulin-related metabolic defects with AD, and we propose mechanisms through which correcting thermoregulatory impairments could slow the progression and delay the onset of AD.
Collapse
|
61
|
Grabner GF, Xie H, Schweiger M, Zechner R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat Metab 2021; 3:1445-1465. [PMID: 34799702 DOI: 10.1038/s42255-021-00493-6] [Citation(s) in RCA: 312] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
The perception that intracellular lipolysis is a straightforward process that releases fatty acids from fat stores in adipose tissue to generate energy has experienced major revisions over the last two decades. The discovery of new lipolytic enzymes and coregulators, the demonstration that lipophagy and lysosomal lipolysis contribute to the degradation of cellular lipid stores and the characterization of numerous factors and signalling pathways that regulate lipid hydrolysis on transcriptional and post-transcriptional levels have revolutionized our understanding of lipolysis. In this review, we focus on the mechanisms that facilitate intracellular fatty-acid mobilization, drawing on canonical and noncanonical enzymatic pathways. We summarize how intracellular lipolysis affects lipid-mediated signalling, metabolic regulation and energy homeostasis in multiple organs. Finally, we examine how these processes affect pathogenesis and how lipolysis may be targeted to potentially prevent or treat various diseases.
Collapse
Affiliation(s)
- Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Hao Xie
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
62
|
Oxysterol 7-α Hydroxylase (CYP7B1) Attenuates Metabolic-Associated Fatty Liver Disease in Mice at Thermoneutrality. Cells 2021; 10:cells10102656. [PMID: 34685636 PMCID: PMC8534379 DOI: 10.3390/cells10102656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/30/2021] [Accepted: 10/03/2021] [Indexed: 12/14/2022] Open
Abstract
Ambient temperature is an important determinant of both the alternative bile acid synthesis pathway controlled by oxysterol 7-α hydroxylase (CYP7B1) and the progression of metabolic-associated fatty liver disease (MAFLD). Here, we investigated whether CYP7B1 is involved in the etiology of MAFLD under conditions of low and high energy expenditure. For this, Cyp7b1−/− and wild type (WT) mice were fed a choline-deficient high-fat diet and housed either at 30 °C (thermoneutrality) or at 22 °C (mild cold). To study disease phenotype and underlying mechanisms, plasma and organ samples were analyzed to determine metabolic parameters, immune cell infiltration by immunohistology and flow cytometry, lipid species including hydroxycholesterols, bile acids and structural lipids. In WT and Cyp7b1−/− mice, thermoneutral housing promoted MAFLD, an effect that was more pronounced in CYP7B1-deficient mice. In these mice, we found higher plasma alanine aminotransferase activity, hyperlipidemia, hepatic accumulation of potentially harmful lipid species, aggravated liver fibrosis, increased inflammation and immune cell infiltration. Bile acids and hydroxycholesterols did not correlate with aggravated MAFLD in Cyp7b1−/− mice housed at thermoneutrality. Notably, an up-regulation of lipoprotein receptors was detected at 22 °C but not at 30 °C in livers of Cyp7b1−/− mice, suggesting that accelerated metabolism of lipoproteins carrying lipotoxic molecules counteracts MAFLD progression.
Collapse
|
63
|
Liu Y, Dou X, Zhou WY, Ding M, Liu L, Du RQ, Guo L, Qian SW, Tang Y, Yang QQ, Pan DN, Li XY, Lu Y, Cheng JK, Tang QQ. Hepatic Small Ubiquitin-Related Modifier (SUMO)-Specific Protease 2 Controls Systemic Metabolism Through SUMOylation-Dependent Regulation of Liver-Adipose Tissue Crosstalk. Hepatology 2021; 74:1864-1883. [PMID: 33934381 DOI: 10.1002/hep.31881] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 04/08/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS NAFLD, characterized by aberrant triglyceride accumulation in liver, affects the metabolic remodeling of hepatic and nonhepatic tissues by secreting altered hepatokines. Small ubiquitin-related modifier (SUMO)-specific protease 2 (SENP2) is responsible for de-SUMOylation of target protein, with broad effects on cell growth, signal transduction, and developmental processes. However, the role of SENP2 in hepatic metabolism remains unclear. APPROACH AND RESULTS We found that SENP2 was the most dramatically increased SENP in the fatty liver and that its level was modulated by fed/fasted conditions. To define the role of hepatic SENP2 in metabolic regulation, we generated liver-specific SENP2 knockout (Senp2-LKO) mice. Senp2-LKO mice exhibited resistance to high-fat diet-induced hepatic steatosis and obesity. RNA-sequencing analysis showed that Senp2 deficiency up-regulated genes involved in fatty acid oxidation and down-regulated genes in lipogenesis in the liver. Additionally, ablation of hepatic SENP2 activated thermogenesis of adipose tissues. Improved energy homeostasis of both the liver and adipose tissues by SENP2 disruption prompted us to detect the hepatokines, with FGF21 identified as a key factor markedly elevated in Senp2-LKO mice that maintained metabolic homeostasis. Loss of FGF21 obviously reversed the positive effects of SENP2 deficiency on metabolism. Mechanistically, by screening transcriptional factors of FGF21, peroxisome proliferator-activated receptor alpha (PPARα) was defined as the mediator for SENP2 and FGF21. SENP2 interacted with PPARα and deSUMOylated it, thereby promoting ubiquitylation and subsequent degradation of PPARα, which in turn inhibited FGF21 expression and fatty acid oxidation. Consistently, SENP2 overexpression in liver facilitated development of metabolic disorders. CONCLUSIONS Our finding demonstrated a key role of hepatic SENP2 in governing metabolic balance by regulating liver-adipose tissue crosstalk, linking the SUMOylation process to metabolic regulation.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Dou
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei-Yu Zhou
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Meng Ding
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ling Liu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ruo-Qi Du
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liang Guo
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shu-Wen Qian
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi-Qi Yang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dong-Ning Pan
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao-Ying Li
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Lu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jin-Ke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi-Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
64
|
Metabolomic Analysis Reveals Changes in Plasma Metabolites in Response to Acute Cold Stress and Their Relationships to Metabolic Health in Cold-Acclimatized Humans. Metabolites 2021; 11:metabo11090619. [PMID: 34564435 PMCID: PMC8468536 DOI: 10.3390/metabo11090619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022] Open
Abstract
Cold exposure results in activation of metabolic processes required for fueling thermogenesis, potentially promoting improved metabolic health. However, the metabolic complexity underlying this process is not completely understood. We aimed to analyze changes in plasma metabolites related to acute cold exposure and their relationship to cold-acclimatization level and metabolic health in cold-acclimatized humans. Blood samples were obtained before and acutely after 10–15 min of ice-water swimming (<5 °C) from 14 ice-water swimmers. Using mass spectrometry, 973 plasma metabolites were measured. Ice-water swimming induced acute changes in 70 metabolites. Pathways related to amino acid metabolism were the most cold-affected and cold-induced changes in several amino acids correlated with cold-acclimatization level and/or metabolic health markers, including atherogenic lipid profile or insulin resistance. Metabolites correlating with cold-acclimatization level were enriched in the linoleic/α-linolenic acid metabolic pathway. N-lactoyl-tryptophan correlated with both cold-acclimatization level and cold-induced changes in thyroid and parathyroid hormones. Acute cold stress in cold-acclimatized humans induces changes in plasma metabolome that involve amino acids metabolism, while the linoleic and α-linolenic acid metabolism pathway seems to be affected by regular cold exposure. Metabolites related to metabolic health, thermogenic hormonal regulators and acclimatization level might represent prospective molecular factors important in metabolic adaptations to regular cold exposure.
Collapse
|
65
|
Annie-Mathew AS, Prem-Santhosh S, Jayasuriya R, Ganesh G, Ramkumar KM, Sarada DVL. The pivotal role of Nrf2 activators in adipocyte biology. Pharmacol Res 2021; 173:105853. [PMID: 34455076 DOI: 10.1016/j.phrs.2021.105853] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 01/07/2023]
Abstract
Adipose tissue is instrumental in maintaining metabolic homeostasis by regulating energy storage in the form of triglycerides. In the case of over-nutrition, adipocytes favorably regulate lipogenesis over lipolysis and accumulate excess triglycerides, resulting in increased adipose tissue mass. An abnormal increase in hypertrophic adipocytes is associated with chronic complications such as insulin resistance, obesity, diabetes, atherosclerosis and nonalcoholic fatty liver disease. Experimental studies indicate the occurrence of oxidative stress in the pathogenesis of obesity. A common underlying link between increasing adipose tissue mass and oxidative stress is the Nuclear Factor Erythroid 2-related factor 2 (Nrf2), Keap1-Nrf2-ARE signaling, which plays an indispensable role in metabolic homeostasis by regulating oxidative and inflammatory responses. Additionally, Nrf2 also activates CCAAT/enhancer-binding protein α, (C/EBP-α), C/EBP-β and peroxisome proliferator-activated receptor γ (PPARγ) the crucial pro-adipogenic factors that promote de novo adipogenesis. Hence, at the forefront of research is the quest for prospecting novel compounds to modulate Nrf2 activity in the context of adipogenesis and obesity. This review summarizes the molecular mechanism behind the activation of the Keap1-Nrf2-ARE signaling network and the role of Nrf2 activators in adipocyte pathophysiology.
Collapse
Affiliation(s)
- A S Annie-Mathew
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Subramanian Prem-Santhosh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Ravichandran Jayasuriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India; SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Goutham Ganesh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India; SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India; SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - D V L Sarada
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
66
|
Heeren J, Scheja L. Metabolic-associated fatty liver disease and lipoprotein metabolism. Mol Metab 2021; 50:101238. [PMID: 33892169 PMCID: PMC8324684 DOI: 10.1016/j.molmet.2021.101238] [Citation(s) in RCA: 304] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease, or as recently proposed 'metabolic-associated fatty liver disease' (MAFLD), is characterized by pathological accumulation of triglycerides and other lipids in hepatocytes. This common disease can progress from simple steatosis to steatohepatitis, and eventually end-stage liver diseases. MAFLD is closely related to disturbances in systemic energy metabolism, including insulin resistance and atherogenic dyslipidemia. SCOPE OF REVIEW The liver is the central organ in lipid metabolism by secreting very low density lipoproteins (VLDL) and, on the other hand, by internalizing fatty acids and lipoproteins. This review article discusses recent research addressing hepatic lipid synthesis, VLDL production, and lipoprotein internalization as well as the lipid exchange between adipose tissue and the liver in the context of MAFLD. MAJOR CONCLUSIONS Liver steatosis in MAFLD is triggered by excessive hepatic triglyceride synthesis utilizing fatty acids derived from white adipose tissue (WAT), de novo lipogenesis (DNL) and endocytosed remnants of triglyceride-rich lipoproteins. In consequence of high hepatic lipid content, VLDL secretion is enhanced, which is the primary cause of complex dyslipidemia typical for subjects with MAFLD. Interventions reducing VLDL secretory capacity attenuate dyslipidemia while they exacerbate MAFLD, indicating that the balance of lipid storage versus secretion in hepatocytes is a critical parameter determining disease outcome. Proof of concept studies have shown that promoting lipid storage and energy combustion in adipose tissues reduces hepatic lipid load and thus ameliorates MAFLD. Moreover, hepatocellular triglyceride synthesis from DNL and WAT-derived fatty acids can be targeted to treat MAFLD. However, more research is needed to understand how individual transporters, enzymes, and their isoforms affect steatosis and dyslipidemia in vivo, and whether these two aspects of MAFLD can be selectively treated. Processing of cholesterol-enriched lipoproteins appears less important for steatosis. It may, however, modulate inflammation and consequently MAFLD progression.
Collapse
Affiliation(s)
- Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
67
|
Jung SM, Doxsey WG, Le J, Haley JA, Mazuecos L, Luciano AK, Li H, Jang C, Guertin DA. In vivo isotope tracing reveals the versatility of glucose as a brown adipose tissue substrate. Cell Rep 2021; 36:109459. [PMID: 34320357 PMCID: PMC8369932 DOI: 10.1016/j.celrep.2021.109459] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/13/2021] [Accepted: 07/07/2021] [Indexed: 11/15/2022] Open
Abstract
Active brown adipose tissue (BAT) consumes copious amounts of glucose, yet how glucose metabolism supports thermogenesis is unclear. By combining transcriptomics, metabolomics, and stable isotope tracing in vivo, we systematically analyze BAT glucose utilization in mice during acute and chronic cold exposure. Metabolite profiling reveals extensive temperature-dependent changes in the BAT metabolome and transcriptome upon cold adaptation, discovering unexpected metabolite markers of thermogenesis, including increased N-acetyl-amino acid production. Time-course stable isotope tracing further reveals rapid incorporation of glucose carbons into glycolysis and TCA cycle, as well as several auxiliary pathways, including NADPH, nucleotide, and phospholipid synthesis pathways. Gene expression differences inconsistently predict glucose fluxes, indicating that posttranscriptional mechanisms also govern glucose utilization. Surprisingly, BAT swiftly generates fatty acids and acyl-carnitines from glucose, suggesting that lipids are rapidly synthesized and immediately oxidized. These data reveal versatility in BAT glucose utilization, highlighting the value of an integrative-omics approach to understanding organ metabolism.
Collapse
Affiliation(s)
- Su Myung Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA; Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Will G Doxsey
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Johnny Le
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - John A Haley
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lorena Mazuecos
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Amelia K Luciano
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Huawei Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA.
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
68
|
Atrial Natriuretic Peptide Orchestrates a Coordinated Physiological Response to Fuel Non-shivering Thermogenesis. Cell Rep 2021; 32:108075. [PMID: 32846132 DOI: 10.1016/j.celrep.2020.108075] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 02/12/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Atrial natriuretic peptide (ANP) is a cardiac hormone controlling blood volume and pressure in mammals. It is still unclear whether ANP controls cold-induced thermogenesis in vivo. Here, we show that acute cold exposure induces cardiac ANP secretion in mice and humans. Genetic inactivation of ANP promotes cold intolerance and suppresses half of cold-induced brown adipose tissue (BAT) activation in mice. While white adipocytes are resistant to ANP-mediated lipolysis at thermoneutral temperature in mice, cold exposure renders white adipocytes fully responsive to ANP to activate lipolysis and a thermogenic program, a physiological response that is dramatically suppressed in ANP null mice. ANP deficiency also blunts liver triglycerides and glycogen metabolism, thus impairing fuel availability for BAT thermogenesis. ANP directly increases mitochondrial uncoupling and thermogenic gene expression in human white and brown adipocytes. Together, these results indicate that ANP is a major physiological trigger of BAT thermogenesis upon cold exposure in mammals.
Collapse
|
69
|
Brandão BB, Poojari A, Rabiee A. Thermogenic Fat: Development, Physiological Function, and Therapeutic Potential. Int J Mol Sci 2021; 22:5906. [PMID: 34072788 PMCID: PMC8198523 DOI: 10.3390/ijms22115906] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
The concerning worldwide increase of obesity and chronic metabolic diseases, such as T2D, dyslipidemia, and cardiovascular disease, motivates further investigations into preventive and alternative therapeutic approaches. Over the past decade, there has been growing evidence that the formation and activation of thermogenic adipocytes (brown and beige) may serve as therapy to treat obesity and its associated diseases owing to its capacity to increase energy expenditure and to modulate circulating lipids and glucose levels. Thus, understanding the molecular mechanism of brown and beige adipocytes formation and activation will facilitate the development of strategies to combat metabolic disorders. Here, we provide a comprehensive overview of pathways and players involved in the development of brown and beige fat, as well as the role of thermogenic adipocytes in energy homeostasis and metabolism. Furthermore, we discuss the alterations in brown and beige adipose tissue function during obesity and explore the therapeutic potential of thermogenic activation to treat metabolic syndrome.
Collapse
Affiliation(s)
- Bruna B. Brandão
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Ankita Poojari
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA 95211, USA;
| | - Atefeh Rabiee
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA 95211, USA;
| |
Collapse
|
70
|
Goldberg IJ, Cabodevilla AG, Samovski D, Cifarelli V, Basu D, Abumrad NA. Lipolytic enzymes and free fatty acids at the endothelial interface. Atherosclerosis 2021; 329:1-8. [PMID: 34130222 DOI: 10.1016/j.atherosclerosis.2021.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 01/17/2023]
Abstract
Lipids released from circulating lipoproteins by intravascular action of lipoprotein lipase (LpL) reach parenchymal cells in tissues with a non-fenestrated endothelium by transfer through or around endothelial cells. The actions of LpL are controlled at multiple sites, its synthesis and release by myocytes and adipocytes, its transit and association with the endothelial cell luminal surface, and finally its activation and inhibition by a number of proteins and by its product non-esterified fatty acids. Multiple pathways mediate endothelial transit of lipids into muscle and adipose tissues. These include movement of fatty acids via the endothelial cell fatty acid transporter CD36 and movement of whole or partially LpL-hydrolyzed lipoproteins via other apical endothelial cell receptors such as SR-B1and Alk1. Lipids also likely change the barrier function of the endothelium and operation of the paracellular pathway around endothelial cells. This review summarizes in vitro and in vivo support for the key role of endothelial cells in delivery of lipids and highlights incompletely understood processes that are the focus of active investigation.
Collapse
Affiliation(s)
- Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Ainara G Cabodevilla
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Dmitri Samovski
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, Saint Louis, MO, USA
| | - Vincenza Cifarelli
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, Saint Louis, MO, USA
| | - Debapriya Basu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Nada A Abumrad
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
71
|
Michurina SS, Stafeev IS, Menshikov MY, Parfyonova YV. Mitochondrial dynamics keep balance of nutrient combustion in thermogenic adipocytes. Mitochondrion 2021; 59:157-168. [PMID: 34010673 DOI: 10.1016/j.mito.2021.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/02/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022]
Abstract
Non-shivering thermogenesis takes place in brown and beige adipocytes and facilitates cold tolerance and acclimation. However, thermogenesis in adipose tissue also was found to be activated in metabolic overload states for fast utilization of nutrients excess. This observation spurred research interest in mechanisms of thermogenesis regulation for metabolic overload and obesity prevention. One of proposed regulators of thermogenic efficiency in adipocytes is the dynamics of mitochondria, where thermogenesis takes place. Indeed, brown and beige adipocytes exhibit fragmented round-shaped mitochondria, while white adipocytes have elongated organelles with high ATP synthesis. Mitochondrial morphology can determine uncoupling protein 1 (UCP1) content, efficiency of catabolic pathways and electron transport chain, supplying thermogenesis. This review will highlight the co-regulation of mitochondrial dynamics and thermogenesis and formulate hypothetical ways for excessive nutrients burning in response to mitochondrial morphology manipulation.
Collapse
Affiliation(s)
- S S Michurina
- Lomonosov Moscow State University, 119234 Moscow, Russia; Institute of Experimental Cardiology, National Medical Research Centre for Cardiology, 121500 Moscow, Russia.
| | - I S Stafeev
- Institute of Experimental Cardiology, National Medical Research Centre for Cardiology, 121500 Moscow, Russia.
| | - M Y Menshikov
- Institute of Experimental Cardiology, National Medical Research Centre for Cardiology, 121500 Moscow, Russia
| | - Ye V Parfyonova
- Lomonosov Moscow State University, 119234 Moscow, Russia; Institute of Experimental Cardiology, National Medical Research Centre for Cardiology, 121500 Moscow, Russia
| |
Collapse
|
72
|
Lundh M, Altıntaş A, Tozzi M, Fabre O, Ma T, Shamsi F, Gerhart-Hines Z, Barrès R, Tseng YH, Emanuelli B. Cold-induction of afadin in brown fat supports its thermogenic capacity. Sci Rep 2021; 11:9794. [PMID: 33963248 PMCID: PMC8105362 DOI: 10.1038/s41598-021-89207-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/14/2021] [Indexed: 12/17/2022] Open
Abstract
The profound energy-expending nature of brown adipose tissue (BAT) thermogenesis makes it an attractive target tissue to combat obesity-associated metabolic disorders. While cold exposure is the strongest inducer of BAT activity, the temporal mechanisms tuning BAT adaptation during this activation process are incompletely understood. Here we show that the scaffold protein Afadin is dynamically regulated by cold in BAT, and participates in cold acclimation. Cold exposure acutely increases Afadin protein levels and its phosphorylation in BAT. Knockdown of Afadin in brown pre-adipocytes does not alter adipogenesis but restricts β3-adrenegic induction of thermogenic genes expression and HSL phosphorylation in mature brown adipocytes. Consistent with a defect in thermogenesis, an impaired cold tolerance was observed in fat-specific Afadin knockout mice. However, while Afadin depletion led to reduced Ucp1 mRNA induction by cold, stimulation of Ucp1 protein was conserved. Transcriptomic analysis revealed that fat-specific ablation of Afadin led to decreased functional enrichment of gene sets controlling essential metabolic functions at thermoneutrality in BAT, whereas it led to an altered reprogramming in response to cold, with enhanced enrichment of different pathways related to metabolism and remodeling. Collectively, we demonstrate a role for Afadin in supporting the adrenergic response in brown adipocytes and BAT function.
Collapse
Affiliation(s)
- Morten Lundh
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Ali Altıntaş
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marco Tozzi
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Odile Fabre
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tao Ma
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Farnaz Shamsi
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yu-Hua Tseng
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Brice Emanuelli
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
73
|
Sostre-Colón J, Uehara K, Garcia Whitlock AE, Gavin MJ, Ishibashi J, Potthoff MJ, Seale P, Titchenell PM. Hepatic AKT orchestrates adipose tissue thermogenesis via FGF21-dependent and -independent mechanisms. Cell Rep 2021; 35:109128. [PMID: 34010646 PMCID: PMC8167823 DOI: 10.1016/j.celrep.2021.109128] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 04/02/2021] [Accepted: 04/22/2021] [Indexed: 11/03/2022] Open
Abstract
Organismal stressors such as cold exposure require a systemic response to maintain body temperature. Brown adipose tissue (BAT) is a key thermogenic tissue in mammals that protects against hypothermia in response to cold exposure. Defining the complex interplay of multiple organ systems in this response is fundamental to our understanding of adipose tissue thermogenesis. In this study, we identify a role for hepatic insulin signaling via AKT in the adaptive response to cold stress and show that liver AKT is an essential cell-nonautonomous regulator of adipocyte lipolysis and BAT function. Mechanistically, inhibition of forkhead box O1 (FOXO1) by AKT controls BAT thermogenesis by enhancing catecholamine-induced lipolysis in the white adipose tissue (WAT) and increasing circulating fibroblast growth factor 21 (FGF21). Our data identify a role for hepatic insulin signaling via the AKT-FOXO1 axis in regulating WAT lipolysis, promoting BAT thermogenic capacity, and ensuring a proper thermogenic response to acute cold exposure.
Collapse
Affiliation(s)
- Jaimarie Sostre-Colón
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kahealani Uehara
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Anna E Garcia Whitlock
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew J Gavin
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jeff Ishibashi
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew J Potthoff
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Paul M Titchenell
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
74
|
Sass F, Schlein C, Jaeckstein MY, Pertzborn P, Schweizer M, Schinke T, Ballabio A, Scheja L, Heeren J, Fischer AW. TFEB deficiency attenuates mitochondrial degradation upon brown adipose tissue whitening at thermoneutrality. Mol Metab 2021; 47:101173. [PMID: 33516944 PMCID: PMC7903014 DOI: 10.1016/j.molmet.2021.101173] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/07/2021] [Accepted: 01/21/2021] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Brown adipose tissue (BAT) thermogenesis offers the potential to improve metabolic health in mice and humans. However, humans predominantly live under thermoneutral conditions, leading to BAT whitening, a reduction in BAT mitochondrial content and metabolic activity. Recent studies have established mitophagy as a major driver of mitochondrial degradation in the whitening of thermogenic brite/beige adipocytes, yet the pathways mediating mitochondrial breakdown in whitening of classical BAT remain largely elusive. The transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy belonging to the MiT family of transcription factors, is the only member of this family that is upregulated during whitening, pointing toward a role of TFEB in whitening-associated mitochondrial breakdown. METHODS We generated brown adipocyte-specific TFEB knockout mice, and induced BAT whitening by thermoneutral housing. We characterized gene and protein expression patterns, BAT metabolic activity, systemic metabolism, and mitochondrial localization using in vivo and in vitro approaches. RESULTS Under low thermogenic activation conditions, deletion of TFEB preserves mitochondrial mass independently of mitochondriogenesis in BAT and primary brown adipocytes. However, this does not translate into elevated thermogenic capacity or protection from diet-induced obesity. Autophagosomal/lysosomal marker levels are altered in TFEB-deficient BAT and primary adipocytes, and lysosomal markers co-localize and co-purify with mitochondria in TFEB-deficient BAT, indicating trapping of mitochondria in late stages of mitophagy. CONCLUSION We identify TFEB as a driver of BAT whitening, mediating mitochondrial degradation via the autophagosomal and lysosomal machinery. This study provides proof of concept that interfering with the mitochondrial degradation machinery can increase mitochondrial mass in classical BAT under human-relevant conditions. However, it must be considered that interfering with autophagy may result in accumulation of non-functional mitochondria. Future studies targeting earlier steps of mitophagy or target recognition are therefore warranted.
Collapse
Affiliation(s)
- Frederike Sass
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Christian Schlein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michelle Y Jaeckstein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Pertzborn
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michaela Schweizer
- Core Facility of Electron Microscopy, Center for Molecular Neurobiology ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Medical and Translational Sciences, Medical Genetics, Federico II University, Naples, Italy; Department of Molecular and Human Genetics and Neurological Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander W Fischer
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
75
|
Nascimento EBM, Moonen MPB, Remie CME, Gariani K, Jörgensen JA, Schaart G, Hoeks J, Auwerx J, van Marken Lichtenbelt WD, Schrauwen P. Nicotinamide Riboside Enhances In Vitro Beta-adrenergic Brown Adipose Tissue Activity in Humans. J Clin Endocrinol Metab 2021; 106:1437-1447. [PMID: 33524145 DOI: 10.1210/clinem/dgaa960] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 12/11/2022]
Abstract
CONTEXT Elevating nicotinamide adenine dinucleotide (NAD+) levels systemically improves metabolic health, which can be accomplished via nicotinamide riboside (NR). Previously, it was demonstrated that NR supplementation in high-fat-diet (HFD)-fed mice decreased weight gain, normalized glucose metabolism, and enhanced cold tolerance. OBJECTIVE Because brown adipose tissue (BAT) is a major source of thermogenesis, we hypothesize that NR stimulates BAT in mice and humans. DESIGN AND INTERVENTION HFD-fed C56BL/6J mice were supplemented with 400 mg/kg/day NR for 4 weeks and subsequently exposed to cold. In vitro primary adipocytes derived from human BAT biopsies were pretreated with 50 µM or 500 µM NR before measuring mitochondrial uncoupling. Human volunteers (45-65 years; body mass index, 27-35 kg/m2) were supplemented with 1000 mg/day NR for 6 weeks to determine whether BAT activity increased, as measured by [18F]FDG uptake via positron emission tomography-computed tomography (randomized, double blinded, placebo-controlled, crossover study with NR supplementation). RESULTS NR supplementation in HFD-fed mice decreased adipocyte cell size in BAT. Cold exposure further decreased adipocyte cell size on top of that achieved by NR alone independent of ex vivo lipolysis. In adipocytes derived from human BAT, NR enhanced in vitro norepinephrine-stimulated mitochondrial uncoupling. However, NR supplementation in human volunteers did not alter BAT activity or cold-induced thermogenesis. CONCLUSIONS NR stimulates in vitro human BAT but not in vivo BAT in humans. Our research demonstrates the need for further translational research to better understand the differences in NAD+ metabolism in mouse and human.
Collapse
Affiliation(s)
- Emmani B M Nascimento
- NUTRIM School of Nutrition and Translational Research in Metabolism; Department of Nutrition and Movement Sciences; Maastricht University Medical Center, Maastricht, MD, The Netherlands
| | - Michiel P B Moonen
- NUTRIM School of Nutrition and Translational Research in Metabolism; Department of Nutrition and Movement Sciences; Maastricht University Medical Center, Maastricht, MD, The Netherlands
| | - Carlijn M E Remie
- NUTRIM School of Nutrition and Translational Research in Metabolism; Department of Nutrition and Movement Sciences; Maastricht University Medical Center, Maastricht, MD, The Netherlands
| | - Karim Gariani
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Division of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Geneva University Hospitals, Geneva, Switzerland
| | - Johanna A Jörgensen
- NUTRIM School of Nutrition and Translational Research in Metabolism; Department of Nutrition and Movement Sciences; Maastricht University Medical Center, Maastricht, MD, The Netherlands
| | - Gert Schaart
- NUTRIM School of Nutrition and Translational Research in Metabolism; Department of Nutrition and Movement Sciences; Maastricht University Medical Center, Maastricht, MD, The Netherlands
| | - Joris Hoeks
- NUTRIM School of Nutrition and Translational Research in Metabolism; Department of Nutrition and Movement Sciences; Maastricht University Medical Center, Maastricht, MD, The Netherlands
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Wouter D van Marken Lichtenbelt
- NUTRIM School of Nutrition and Translational Research in Metabolism; Department of Nutrition and Movement Sciences; Maastricht University Medical Center, Maastricht, MD, The Netherlands
| | - Patrick Schrauwen
- NUTRIM School of Nutrition and Translational Research in Metabolism; Department of Nutrition and Movement Sciences; Maastricht University Medical Center, Maastricht, MD, The Netherlands
| |
Collapse
|
76
|
Carpentier AC. 100 th anniversary of the discovery of insulin perspective: insulin and adipose tissue fatty acid metabolism. Am J Physiol Endocrinol Metab 2021; 320:E653-E670. [PMID: 33522398 DOI: 10.1152/ajpendo.00620.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin inhibits systemic nonesterified fatty acid (NEFA) flux to a greater degree than glucose or any other metabolite. This remarkable effect is mainly due to insulin-mediated inhibition of intracellular triglyceride (TG) lipolysis in adipose tissues and is essential to prevent diabetic ketoacidosis, but also to limit the potential lipotoxic effects of NEFA in lean tissues that contribute to the development of diabetes complications. Insulin also regulates adipose tissue fatty acid esterification, glycerol and TG synthesis, lipogenesis, and possibly oxidation, contributing to the trapping of dietary fatty acids in the postprandial state. Excess NEFA flux at a given insulin level has been used to define in vivo adipose tissue insulin resistance. Adipose tissue insulin resistance defined in this fashion has been associated with several dysmetabolic features and complications of diabetes, but the mechanistic significance of this concept is not fully understood. This review focusses on the in vivo regulation of adipose tissue fatty acid metabolism by insulin and the mechanistic significance of the current definition of adipose tissue insulin resistance. One hundred years after the discovery of insulin and despite decades of investigations, much is still to be understood about the multifaceted in vivo actions of this hormone on adipose tissue fatty acid metabolism.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
77
|
Kim K, Kang JK, Jung YH, Lee SB, Rametta R, Dongiovanni P, Valenti L, Pajvani UB. Adipocyte PHLPP2 inhibition prevents obesity-induced fatty liver. Nat Commun 2021; 12:1822. [PMID: 33758172 PMCID: PMC7988046 DOI: 10.1038/s41467-021-22106-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/25/2021] [Indexed: 01/22/2023] Open
Abstract
Increased adiposity confers risk for systemic insulin resistance and type 2 diabetes (T2D), but mechanisms underlying this pathogenic inter-organ crosstalk are incompletely understood. We find PHLPP2 (PH domain and leucine rich repeat protein phosphatase 2), recently identified as the Akt Ser473 phosphatase, to be increased in adipocytes from obese mice. To identify the functional consequence of increased adipocyte PHLPP2 in obese mice, we generated adipocyte-specific PHLPP2 knockout (A-PHLPP2) mice. A-PHLPP2 mice show normal adiposity and glucose metabolism when fed a normal chow diet, but reduced adiposity and improved whole-body glucose tolerance as compared to Cre- controls with high-fat diet (HFD) feeding. Notably, HFD-fed A-PHLPP2 mice show increased HSL phosphorylation, leading to increased lipolysis in vitro and in vivo. Mobilized adipocyte fatty acids are oxidized, leading to increased peroxisome proliferator-activated receptor alpha (PPARα)-dependent adiponectin secretion, which in turn increases hepatic fatty acid oxidation to ameliorate obesity-induced fatty liver. Consistently, adipose PHLPP2 expression is negatively correlated with serum adiponectin levels in obese humans. Overall, these data implicate an adipocyte PHLPP2-HSL-PPARα signaling axis to regulate systemic glucose and lipid homeostasis, and suggest that excess adipocyte PHLPP2 explains decreased adiponectin secretion and downstream metabolic consequence in obesity. Obesity can be associated with an increased risk of metabolic complications. Here, the authors show that adipocyte-specific ablation of the phosphatase PHLPP2 improves glucose homeostasis in high-fat diet fed obese mice, and that this may be due at least in part to PHLPP2 dephosphorylation of HSL.
Collapse
Affiliation(s)
- KyeongJin Kim
- Department of Medicine, Columbia University, New York, NY, USA. .,Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, South Korea. .,Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon, Republic of Korea.
| | - Jin Ku Kang
- Department of Medicine, Columbia University, New York, NY, USA
| | - Young Hoon Jung
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, South Korea.,Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon, Republic of Korea
| | - Sang Bae Lee
- Division of Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Raffaela Rametta
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, DEPT, Università degli Studi di Milano, Milano, Italy
| | - Paola Dongiovanni
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, DEPT, Università degli Studi di Milano, Milano, Italy
| | - Luca Valenti
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, DEPT, Università degli Studi di Milano, Milano, Italy
| | - Utpal B Pajvani
- Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
78
|
Fischer AW, Jaeckstein MY, Gottschling K, Heine M, Sass F, Mangels N, Schlein C, Worthmann A, Bruns OT, Yuan Y, Zhu H, Chen O, Ittrich H, Nilsson SK, Stefanicka P, Ukropec J, Balaz M, Dong H, Sun W, Reimer R, Scheja L, Heeren J. Lysosomal lipoprotein processing in endothelial cells stimulates adipose tissue thermogenic adaptation. Cell Metab 2021; 33:547-564.e7. [PMID: 33357458 DOI: 10.1016/j.cmet.2020.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/02/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
Abstract
In response to cold exposure, thermogenic adipocytes internalize large amounts of fatty acids after lipoprotein lipase-mediated hydrolysis of triglyceride-rich lipoproteins (TRL) in the capillary lumen of brown adipose tissue (BAT) and white adipose tissue (WAT). Here, we show that in cold-exposed mice, vascular endothelial cells in adipose tissues endocytose substantial amounts of entire TRL particles. These lipoproteins subsequently follow the endosomal-lysosomal pathway, where they undergo lysosomal acid lipase (LAL)-mediated processing. Endothelial cell-specific LAL deficiency results in impaired thermogenic capacity as a consequence of reduced recruitment of brown and brite/beige adipocytes. Mechanistically, TRL processing by LAL induces proliferation of endothelial cells and adipocyte precursors via beta-oxidation-dependent production of reactive oxygen species, which in turn stimulates hypoxia-inducible factor-1α-dependent proliferative responses. In conclusion, this study demonstrates a physiological role for TRL particle uptake into BAT and WAT and establishes endothelial lipoprotein processing as an important determinant of adipose tissue remodeling during thermogenic adaptation.
Collapse
Affiliation(s)
- Alexander W Fischer
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Michelle Y Jaeckstein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristina Gottschling
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frederike Sass
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nils Mangels
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Schlein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Worthmann
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver T Bruns
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Yucheng Yuan
- Department of Chemistry, Brown University, Providence, RI, USA
| | - Hua Zhu
- Department of Chemistry, Brown University, Providence, RI, USA
| | - Ou Chen
- Department of Chemistry, Brown University, Providence, RI, USA
| | - Harald Ittrich
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan K Nilsson
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Patrik Stefanicka
- Department of Otorhinolaryngology - Head and Neck Surgery, Comenius University, Bratislava, Slovakia
| | - Jozef Ukropec
- Institute of Experimental Endocrinology, Biomedical Research Center at the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslav Balaz
- Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach, Switzerland
| | - Hua Dong
- Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach, Switzerland
| | - Wenfei Sun
- Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach, Switzerland
| | - Rudolf Reimer
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
79
|
Li X, Lu HY, Jiang XW, Yang Y, Xing B, Yao D, Wu Q, Xu ZH, Zhao QC. Cinnamomum cassia extract promotes thermogenesis during exposure to cold via activation of brown adipose tissue. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113413. [PMID: 32980484 DOI: 10.1016/j.jep.2020.113413] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 09/07/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cinnamomum cassia (L.) J.Presl (Lauraceae), a widely used traditional Chinese medicine, is well known to exert hot property. It is recorded as dispelling cold drug in ancient Chinese monographs, such as Synopsis of golden chamber published in Han dynasty. According to Chinese Pharmacopoeia (2015), Cinnamomum cassia (L.) J.Presl (Cinnamon) has the functions of dispersing cold, relieving pain, warming meridians and promoting blood circulation. AIM OF THE STUDY The aim of this study is to evaluate the effect of Cinnamon extract (CE) on cold endurance and the mechanism of thermogenesis activity. MATERIALS AND METHODS The improving effect of hypothermia were evaluated with body temperature by infrared camera and multi-thermo thermometer. In vivo, the thermogenic effect was observed with energy metabolism and substrate utilization. The activation of brown adipose tissue (BAT) was evaluated with the histomorphology and expression of thermogenic protein. In vitro, the uncoupling effect on mitochondrial was evaluated with Seahorse and fluorescent staining. The mechanism of thermogenesis was explored in brown adipocyte. RESULTS The body temperature and energy expenditure were significantly increased by CE administration in cold environment. In morphology, lipid droplets were reduced and the number of mitochondrial was increased. CE significantly increased the non-shivering thermogenesis via upregulating the expression of thermogenic protein. In vitro, the uncoupling effect was obviously along with the decreased mitochondrial membrane potential and ATP production. It was confirmed that the thermogenesis effect was induced via lipolysis and energy metabolism. In addition, CE also alleviated myocardium injury in the morphology in cold environment. Moreover, the major constituent was identified as (1) coumarin, (2) cinnamic acid, (3) cinnamaldehyde and (4) 2-methoxy cinnamaldehyde. CONCLUSIONS The mechanism of improving cold tolerance was related to lipolysis and activation of BAT. Meanwhile, we provided a kind of potential prevention methods for cold injury.
Collapse
Affiliation(s)
- Xiang Li
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, China.
| | - Hong-Yuan Lu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Xiao-Wen Jiang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Yue Yang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Bo Xing
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Dong Yao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, China.
| | - Qiong Wu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Zi-Hua Xu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, China.
| | - Qing-Chun Zhao
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, China.
| |
Collapse
|
80
|
Pernes G, Morgan PK, Huynh K, Mellett NA, Meikle PJ, Murphy AJ, Henstridge DC, Lancaster GI. Characterization of the circulating and tissue-specific alterations to the lipidome in response to moderate and major cold stress in mice. Am J Physiol Regul Integr Comp Physiol 2021; 320:R95-R104. [PMID: 33175588 DOI: 10.1152/ajpregu.00112.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study analyzed the effects of 24 h of cold stress (22°C or 5°C vs. mice maintained at 30 °C) on the plasma, brown adipose tissue (BAT), subcutaneous (SubQ) and epididymal (Epi) white adipose tissue (WAT), liver, and skeletal muscle lipidome of mice. Using mass spectrometry-lipidomics, 624 lipid species were detected, of which 239 were significantly altered in plasma, 134 in BAT, and 51 in the liver. In plasma, acylcarnitines and free fatty acids were markedly increased at 5°C. Plasma triacylglycerols (TGs) were reduced at 22°C and 5°C. We also identified ether lipids as a novel, cold-induced lipid class. In BAT, TGs were the principal lipid class affected by cold stress, being significantly reduced at both 22°C and 5°C. Interestingly, although BAT TG species were uniformly affected at 5°C, at 22°C we observed species-dependent effects, with TGs containing longer and more unsaturated fatty acids particularly sensitive to the effects of cold. In the liver, TGs were the most markedly affected lipid class, increasing in abundance at 5 °C. TGs containing longer and more unsaturated fatty acids accumulated to a greater degree. Our work demonstrates the following: 1) acute exposure to moderate (22°C) cold stress alters the plasma and BAT lipidome; although this effect is markedly less pronounced than at 5°C. 2) Cold stress at 5°C dramatically alters the plasma lipidome, with ether lipids identified as a novel lipid class altered by cold exposure. 3) Cold-induced alterations in liver and BAT TG levels are not uniform, with changes being influenced by acyl chain composition.
Collapse
Affiliation(s)
- Gerard Pernes
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Pooranee K Morgan
- Baker Heart and Diabetes Institute, Melbourne, Australia.,School of Life Sciences, La Trobe University, Melbourne, Australia
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | | | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, Melbourne, Australia.,School of Life Sciences, La Trobe University, Melbourne, Australia.,Department of Immunology, Monash University, Melbourne, Australia
| | - Darren C Henstridge
- Baker Heart and Diabetes Institute, Melbourne, Australia.,School of Health Sciences, University of Tasmania, Launceston, Australia
| | - Graeme I Lancaster
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Immunology, Monash University, Melbourne, Australia
| |
Collapse
|
81
|
Uncovering the Role of Glycogen in Brown Adipose Tissue. Pharm Res 2021; 38:9-14. [PMID: 33433776 DOI: 10.1007/s11095-020-02979-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
The presence of glycogen in the brown adipose tissue (BAT) has been described 60 years ago. However, the role of this energetic storage in brown adipocytes has been long time underestimated. We have recently shown that during brown adipocyte differentiation in the embryo, glycogen accumulates and is degraded by glycophagy, a dynamic essential for lipid droplets biogenesis. Recent studies have shown that the storage and degradation of triglycerides in BAT are not essential for the activation of BAT in response to cold exposure in adults, and that glycogen can compensate for their absence. In this review, we report the recent advances related to the importance of glycogen in brown adipocytes.
Collapse
|
82
|
Felder M, Maushart CI, Gashi G, Senn JR, Becker AS, Müller J, Balaz M, Wolfrum C, Burger IA, Betz MJ. Fluvastatin Reduces Glucose Tolerance in Healthy Young Individuals Independently of Cold Induced BAT Activity. Front Endocrinol (Lausanne) 2021; 12:765807. [PMID: 34858338 PMCID: PMC8631514 DOI: 10.3389/fendo.2021.765807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/14/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Statins are commonly prescribed for primary and secondary prevention of atherosclerotic disease. They reduce cholesterol biosynthesis by inhibiting hydroxymethylglutaryl-coenzyme A-reductase (HMG-CoA-reductase) and therefore mevalonate synthesis. Several studies reported a small, but significant increase in the diagnosis of diabetes mellitus with statin treatment. The molecular mechanisms behind this adverse effect are not yet fully understood. Brown adipose tissue (BAT), which plays a role in thermogenesis, has been associated with a reduced risk of insulin resistance. Statins inhibit adipose tissue browning and have been negatively linked to the presence of BAT in humans. We therefore speculated that inhibition of BAT by statins contributes to increased insulin resistance in humans. METHODS A prospective study was conducted in 17 young, healthy men. After screening whether significant cold-induced thermogenesis (CIT) was present, participants underwent glucose tolerance testing (oGTT) and assessment of BAT activity by FDG-PET/MRI after cold-exposure and treatment with a β3-agonist. Fluvastatin 2x40mg per day was then administered for two weeks and oGTT and FDG-PET/MRI were repeated. RESULTS Two weeks of fluvastatin treatment led to a significant increase in glucose area under the curve (AUC) during oGTT (p=0.02), reduction in total cholesterol and LDL cholesterol (both p<0.0001). Insulin AUC (p=0.26), resting energy expenditure (REE) (p=0.44) and diet induced thermogenesis (DIT) (p=0.27) did not change significantly. The Matsuda index, as an indicator of insulin sensitivity, was lower after fluvastatin intake, but the difference was not statistically significant (p=0.09). As parameters of BAT activity, mean standard uptake value (SUVmean) (p=0.12), volume (p=0.49) and total glycolysis (p=0.74) did not change significantly during the intervention. Matsuda index, was inversely related to SUVmean and the respiratory exchange ratio (RER) (both R2 = 0.44, p=0.005) at baseline, but not after administration of fluvastatin (R2 = 0.08, p=0.29, and R2 = 0.14, p=0.16, respectively). CONCLUSIONS Treatment with fluvastatin for two weeks reduced serum lipid levels but increased glucose AUC in young, healthy men, indicating reduced glucose tolerance. This was not associated with changes in cold-induced BAT activity.
Collapse
Affiliation(s)
- Martina Felder
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Claudia Irene Maushart
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Gani Gashi
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jaël Rut Senn
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Anton S. Becker
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich/University of Zurich, Zurich, Switzerland
| | - Julian Müller
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich/University of Zurich, Zurich, Switzerland
| | - Miroslav Balaz
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Irene A. Burger
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich/University of Zurich, Zurich, Switzerland
| | - Matthias Johannes Betz
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel and University of Basel, Basel, Switzerland
- *Correspondence: Matthias Johannes Betz,
| |
Collapse
|
83
|
Wang Z, Yu X, Chen Y. Recruitment of Thermogenic Fat: Trigger of Fat Burning. Front Endocrinol (Lausanne) 2021; 12:696505. [PMID: 34367068 PMCID: PMC8341719 DOI: 10.3389/fendo.2021.696505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/04/2021] [Indexed: 11/17/2022] Open
Abstract
Brown and beige adipose tissues possess the remarkable capacity to convert energy into heat, which potentially opens novel therapeutic perspectives targeting the epidemic of metabolic syndromes such as obesity and type 2 diabetes. These thermogenic fats implement mitochondrial oxidative phosphorylation and uncouple respiration to catabolize fatty acids and glucose, which leads to an increase in energy expenditure. In particular, beige adipocytes that arise in white adipose tissue display their thermogenic capacity through various noncanonical mechanisms. This review aims to summarize the general overview of thermogenic fat, especially including the UCP1-independent adaptive thermogenesis and the emerging mechanisms of "beiging", which may provide more evidence of targeting thermogenic fat to counteract obesity and other metabolic disorders in humans.
Collapse
Affiliation(s)
- Zhihan Wang
- Division of Endocrinology, Internal Medicine, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, China
- Laboratory of Endocrinology, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, China
| | - Xuefeng Yu
- Division of Endocrinology, Internal Medicine, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Yong Chen
- Division of Endocrinology, Internal Medicine, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, China
- Laboratory of Endocrinology, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
- *Correspondence: Yong Chen,
| |
Collapse
|
84
|
Schlein C, Fischer AW, Sass F, Worthmann A, Tödter K, Jaeckstein MY, Behrens J, Lynes MD, Kiebish MA, Narain NR, Bussberg V, Darkwah A, Jespersen NZ, Nielsen S, Scheele C, Schweizer M, Braren I, Bartelt A, Tseng YH, Heeren J, Scheja L. Endogenous Fatty Acid Synthesis Drives Brown Adipose Tissue Involution. Cell Rep 2021; 34:108624. [PMID: 33440156 PMCID: PMC8240962 DOI: 10.1016/j.celrep.2020.108624] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/20/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Thermoneutral conditions typical for standard human living environments result in brown adipose tissue (BAT) involution, characterized by decreased mitochondrial mass and increased lipid deposition. Low BAT activity is associated with poor metabolic health, and BAT reactivation may confer therapeutic potential. However, the molecular drivers of this BAT adaptive process in response to thermoneutrality remain enigmatic. Using metabolic and lipidomic approaches, we show that endogenous fatty acid synthesis, regulated by carbohydrate-response element-binding protein (ChREBP), is the central regulator of BAT involution. By transcriptional control of lipogenesis-related enzymes, ChREBP determines the abundance and composition of both storage and membrane lipids known to regulate organelle turnover and function. Notably, ChREBP deficiency and pharmacological inhibition of lipogenesis during thermoneutral adaptation preserved mitochondrial mass and thermogenic capacity of BAT independently of mitochondrial biogenesis. In conclusion, we establish lipogenesis as a potential therapeutic target to prevent loss of BAT thermogenic capacity as seen in adult humans. Schlein et al. show that carbohydrate-response element-binding protein (ChREBP) controls de novo lipogenesis (DNL) in brown adipose tissue (BAT) and determines BAT whitening in response to thermoneutral housing. ChREBP deficiency prevents enrichment of DNL-derived lipids and mitophagy during BAT involution, which is associated with higher thermogenic capacity.
Collapse
Affiliation(s)
- Christian Schlein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander W Fischer
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frederike Sass
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Worthmann
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Tödter
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michelle Y Jaeckstein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janina Behrens
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthew D Lynes
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Naja Zenius Jespersen
- Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Søren Nielsen
- Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Scheele
- Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Michaela Schweizer
- Core Facility of Electron Microscopy, Center for Molecular Neurobiology ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingke Braren
- Vector Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Bartelt
- Department of Molecular Metabolism & Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, 81377 Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
85
|
Okamatsu-Ogura Y, Kuroda M, Tsutsumi R, Tsubota A, Saito M, Kimura K, Sakaue H. UCP1-dependent and UCP1-independent metabolic changes induced by acute cold exposure in brown adipose tissue of mice. Metabolism 2020; 113:154396. [PMID: 33065161 DOI: 10.1016/j.metabol.2020.154396] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Brown adipose tissue (BAT) is a site of metabolic thermogenesis mediated by mitochondrial uncoupling protein 1 (UCP1) and represents a target for a therapeutic intervention in obesity. Cold exposure activates UCP1-mediated thermogenesis in BAT and causes drastic changes in glucose, lipid, and amino acid metabolism; however, the relationship between these metabolic changes and UCP1-mediated thermogenesis is not fully understood. METHODS We conducted metabolomic and GeneChip array analyses of BAT after 4-h exposure to cold temperature (10 °C) in wild-type (WT) and UCP1-KO mice. RESULTS Cold exposure largely increased metabolites of the glycolysis pathway and lactic acid levels in WT, but not in UCP1-KO, mice, indicating that aerobic glycolysis is enhanced as a consequence of UCP1-mediated thermogenesis. GeneChip array analysis of BAT revealed that there were 2865 genes upregulated by cold exposure in WT mice, and 838 of these were upregulated and 74 were downregulated in UCP1-KO mice. Pathway analysis revealed the enrichment of genes involved in fatty acid (FA) β oxidation and triglyceride (TG) synthesis in both WT and UCP1-KO mice, suggesting that these metabolic pathways were enhanced by cold exposure independently of UCP1-mediated thermogenesis. FA and cholesterol biosynthesis pathways were enhanced only in UCP1-KO mice. Cold exposure also significantly increased the BAT content of proline, tryptophan, and phenylalanine amino acids in both WT and UCP1-KO mice. In WT mice, cold exposure significantly increased glutamine content and enhanced the expression of genes related to glutamine metabolism. Surprisingly, aspartate was almost completely depleted after cold exposure in UCP1-KO mice. Gene expression analysis suggested that aspartate was actively utilized after cold exposure both in WT and UCP1-KO mice, but it was replenished from intracellular N-acetyl-aspartate in WT mice. CONCLUSIONS These results revealed that cold exposure induces UCP1-mediated thermogenesis-dependent glucose utilization and UCP1-independent active lipid metabolism in BAT. In addition, cold exposure largely affects amino acid metabolism in BAT, especially UCP1-dependently enhances glutamine utilization. These results contribute a comprehensive understanding of UCP1-mediated thermogenesis-dependent and thermogenesis-independent metabolism in BAT.
Collapse
Affiliation(s)
- Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.
| | - Masashi Kuroda
- Department of Nutrition and Metabolism, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Rie Tsutsumi
- Department of Nutrition and Metabolism, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Ayumi Tsubota
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Masayuki Saito
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Kazuhiro Kimura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Hiroshi Sakaue
- Department of Nutrition and Metabolism, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| |
Collapse
|
86
|
Chitraju C, Fischer AW, Farese RV, Walther TC. Lipid Droplets in Brown Adipose Tissue Are Dispensable for Cold-Induced Thermogenesis. Cell Rep 2020; 33:108348. [PMID: 33147469 PMCID: PMC7696656 DOI: 10.1016/j.celrep.2020.108348] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/29/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022] Open
Abstract
Brown adipocytes store metabolic energy as triglycerides (TGs) in lipid droplets (LDs). Fatty acids released from brown adipocyte LDs by lipolysis are thought to activate and fuel UCP1-mediated thermogenesis. Here, we test this hypothesis by preventing fatty acid storage in murine brown adipocytes through brown adipose tissue (BAT)-specific deletions of the TG synthesis enzymes DGAT1 and DGAT2 (BA-DGAT KO). Despite the absence of TGs in brown adipocytes, BAT is functional, and BA-DGAT-KO mice maintain euthermia during acute or chronic cold exposure. As apparent adaptations to the lack of TG, brown adipocytes of BA-DGAT-KO mice appear to use circulating glucose and fatty acids, and stored glycogen, to fuel thermogenesis. Moreover, BA-DGAT-KO mice are resistant to diet-induced glucose intolerance, likely because of increased glucose disposal by BAT. We conclude that TGs in BAT are dispensable for its contribution to cold-induced thermogenesis, at least when other fuel sources are available.
Collapse
Affiliation(s)
- Chandramohan Chitraju
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander W Fischer
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Robert V Farese
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Tobias C Walther
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| |
Collapse
|
87
|
Scheja L, Heeren J. Novel Adipose Tissue Targets to Prevent and Treat Atherosclerosis. Handb Exp Pharmacol 2020; 270:289-310. [PMID: 33373032 DOI: 10.1007/164_2020_363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adipose tissue as a major organ of lipid and lipoprotein metabolism has a major impact on metabolic homeostasis and thus influences the development of atherosclerosis and related cardiometabolic diseases. Unhealthy adipose tissue, which is often associated with obesity and systemic insulin resistance, promotes the development of diabetic dyslipidemia and can negatively affect vascular tissue homeostasis by secreting pro-inflammatory peptides and lipids. Conversely, paracrine and endocrine factors that are released from healthy adipose tissue can preserve metabolic balance and a functional vasculature. In this chapter, we describe adipose tissue types relevant for atherosclerosis and address the question how lipid metabolism as well as regulatory molecules produced in these fat depots can be targeted to counteract atherogenic processes in the vessel wall and improve plasma lipids. We discuss the role of adipose tissues in the action of approved drugs with anti-atherogenic activity. In addition, we present potential novel targets and therapeutic approaches aimed at increasing lipoprotein disposal in adipose tissue, boosting the activity of heat-producing (thermogenic) adipocytes, reducing adipose tissue inflammation, and improving or replacing beneficial hormones released from adipose tissues. Furthermore, we describe the future potential of innovative drug delivery technologies.
Collapse
Affiliation(s)
- Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
88
|
Nahon KJ, Janssen LGM, Sardjoe Mishre ASD, Bilsen MP, van der Eijk JA, Botani K, Overduin LA, Ruiz JR, Burakiewicz J, Dzyubachyk O, Webb AG, Kan HE, Berbée JFP, van Klinken J, van Dijk KW, van Weeghel M, Vaz FM, Coskun T, Jazet IM, Kooijman S, Martinez‐Tellez B, Boon MR, Rensen PCN. The effect of mirabegron on energy expenditure and brown adipose tissue in healthy lean South Asian and Europid men. Diabetes Obes Metab 2020; 22:2032-2044. [PMID: 32558052 PMCID: PMC7771034 DOI: 10.1111/dom.14120] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/04/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023]
Abstract
AIM To compare the effects of cold exposure and the β3-adrenergic receptor agonist mirabegron on plasma lipids, energy expenditure and brown adipose tissue (BAT) activity in South Asians versus Europids. MATERIALS AND METHODS Ten lean Dutch South Asian (aged 18-30 years; body mass index [BMI] 18-25 kg/m2 ) and 10 age- and BMI-matched Europid men participated in a randomized, double-blinded, cross-over study consisting of three interventions: short-term (~ 2 hours) cold exposure, mirabegron (200 mg one dose p.o.) and placebo. Before and after each intervention, we performed lipidomic analysis in serum, assessed resting energy expenditure (REE) and skin temperature, and measured BAT fat fraction by magnetic resonance imaging. RESULTS In both ethnicities, cold exposure increased the levels of several serum lipid species, whereas mirabegron only increased free fatty acids. Cold exposure increased lipid oxidation in both ethnicities, while mirabegron increased lipid oxidation in Europids only. Cold exposure and mirabegron enhanced supraclavicular skin temperature in both ethnicities. Cold exposure decreased BAT fat fraction in both ethnicities. After the combination of data from both ethnicities, mirabegron decreased BAT fat fraction compared with placebo. CONCLUSIONS In South Asians and Europids, cold exposure and mirabegron induced beneficial metabolic effects. When combining both ethnicities, cold exposure and mirabegron increased REE and lipid oxidation, coinciding with a higher supraclavicular skin temperature and lower BAT fat fraction.
Collapse
Affiliation(s)
- Kimberly J. Nahon
- Department of Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenthe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenthe Netherlands
| | - Laura G. M. Janssen
- Department of Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenthe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenthe Netherlands
| | | | - Manu P. Bilsen
- Department of Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenthe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenthe Netherlands
| | - Jari A. van der Eijk
- Department of RadiologyC.J. Gorter Center for High Field MRILeidenthe Netherlands
| | - Kani Botani
- Department of Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenthe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenthe Netherlands
| | - Lisanne A. Overduin
- Department of Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenthe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenthe Netherlands
| | - Jonatan R. Ruiz
- Department of Physical Education and Sport, Faculty of Sport SciencesPROFITH “PROmoting FITness and Health through physical activity” research group, Sport and Health University Research Institute (iMUDS), University of GranadaGranadaSpain
| | - Jedrzej Burakiewicz
- Department of RadiologyC.J. Gorter Center for High Field MRILeidenthe Netherlands
| | - Oleh Dzyubachyk
- Department of Radiology, Division of Image Processing (LKEB)Leiden University Medical CenterLeidenthe Netherlands
| | - Andrew G. Webb
- Department of RadiologyC.J. Gorter Center for High Field MRILeidenthe Netherlands
| | - Hermien E. Kan
- Department of RadiologyC.J. Gorter Center for High Field MRILeidenthe Netherlands
| | - Jimmy F. P. Berbée
- Department of Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenthe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenthe Netherlands
| | - Jan‐Bert van Klinken
- Department of Human GeneticsLeiden University Medical CenterLeidenthe Netherlands
- Laboratory Genetic Metabolic DiseasesAmsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular SciencesAmsterdamthe Netherlands
- Core Facility MetabolomicsAmsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Ko Willems van Dijk
- Department of Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenthe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenthe Netherlands
- Department of Human GeneticsLeiden University Medical CenterLeidenthe Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic DiseasesAmsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular SciencesAmsterdamthe Netherlands
- Core Facility MetabolomicsAmsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Frédéric M. Vaz
- Laboratory Genetic Metabolic DiseasesAmsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular SciencesAmsterdamthe Netherlands
- Core Facility MetabolomicsAmsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Tamer Coskun
- Department of Diabetes/EndocrineLilly Research Laboratories, Lilly Corporate CenterIndianapolisIndianaUSA
| | - Ingrid M. Jazet
- Department of Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenthe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenthe Netherlands
| | - Sander Kooijman
- Department of Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenthe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenthe Netherlands
| | - Borja Martinez‐Tellez
- Department of Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenthe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenthe Netherlands
- Department of Physical Education and Sport, Faculty of Sport SciencesPROFITH “PROmoting FITness and Health through physical activity” research group, Sport and Health University Research Institute (iMUDS), University of GranadaGranadaSpain
| | - Mariëtte R. Boon
- Department of Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenthe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenthe Netherlands
| | - Patrick C. N. Rensen
- Department of Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenthe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|
89
|
Adipocyte lipolysis: from molecular mechanisms of regulation to disease and therapeutics. Biochem J 2020; 477:985-1008. [PMID: 32168372 DOI: 10.1042/bcj20190468] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 12/20/2022]
Abstract
Fatty acids (FAs) are stored safely in the form of triacylglycerol (TAG) in lipid droplet (LD) organelles by professional storage cells called adipocytes. These lipids are mobilized during adipocyte lipolysis, the fundamental process of hydrolyzing TAG to FAs for internal or systemic energy use. Our understanding of adipocyte lipolysis has greatly increased over the past 50 years from a basic enzymatic process to a dynamic regulatory one, involving the assembly and disassembly of protein complexes on the surface of LDs. These dynamic interactions are regulated by hormonal signals such as catecholamines and insulin which have opposing effects on lipolysis. Upon stimulation, patatin-like phospholipase domain containing 2 (PNPLA2)/adipocyte triglyceride lipase (ATGL), the rate limiting enzyme for TAG hydrolysis, is activated by the interaction with its co-activator, alpha/beta hydrolase domain-containing protein 5 (ABHD5), which is normally bound to perilipin 1 (PLIN1). Recently identified negative regulators of lipolysis include G0/G1 switch gene 2 (G0S2) and PNPLA3 which interact with PNPLA2 and ABHD5, respectively. This review focuses on the dynamic protein-protein interactions involved in lipolysis and discusses some of the emerging concepts in the control of lipolysis that include allosteric regulation and protein turnover. Furthermore, recent research demonstrates that many of the proteins involved in adipocyte lipolysis are multifunctional enzymes and that lipolysis can mediate homeostatic metabolic signals at both the cellular and whole-body level to promote inter-organ communication. Finally, adipocyte lipolysis is involved in various diseases such as cancer, type 2 diabetes and fatty liver disease, and targeting adipocyte lipolysis is of therapeutic interest.
Collapse
|
90
|
Paulus A, Drude N, van Marken Lichtenbelt W, Mottaghy FM, Bauwens M. Brown adipose tissue uptake of triglyceride-rich lipoprotein-derived fatty acids in diabetic or obese mice under different temperature conditions. EJNMMI Res 2020; 10:127. [PMID: 33085016 PMCID: PMC7578207 DOI: 10.1186/s13550-020-00701-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/17/2020] [Indexed: 05/15/2023] Open
Abstract
Background In vivo imaging of glucose analogue 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) via positron emission tomography (PET) is the current gold standard to visualize and assess brown adipose tissue (BAT) activity. However, glucose metabolism is only a part of the metabolic activity of BAT. [18F]FDG-PET has been shown in clinical trials to often fail to visualize BAT under insulin-resistant conditions associated with aging and weight gain. We employed a novel developed triglyceride-based tracer to visualize BATs metabolic activity under different temperature conditions as well as under diabetic and obese conditions in preclinical models. Results [18F]BDP-TG-chylomicron-like particles visualized BAT in control, streptozocin-induced diabetes and obese mice. Increased BAT tracer uptake was found in control mice acutely exposed to cold but not in cold-acclimated animals. Diabetes did not remove BAT tracer uptake, but did limit BAT tracer uptake to levels of control mice housed at 21 °C. In obese animals, BAT tracer uptake was significantly reduced, although the stimulating effect of cold exposure could still be noted. Conclusion BAT was visualized in control, diabetic and obese conditions. Streptozocin-induced diabetes, but not obesity, inhibited the stimulatory effect of cold exposure.
Collapse
Affiliation(s)
- Andreas Paulus
- Department of Radiology and Nuclear Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany.,Department of Medical Imaging, Division of Nuclear Medicine, MUMC, Maastricht, The Netherlands
| | - Natascha Drude
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany.,Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Aachen, Germany
| | - Wouter van Marken Lichtenbelt
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany.,Department of Medical Imaging, Division of Nuclear Medicine, MUMC, Maastricht, The Netherlands
| | - Matthias Bauwens
- Department of Medical Imaging, Division of Nuclear Medicine, MUMC, Maastricht, The Netherlands. .,Research School NUTRIM, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| |
Collapse
|
91
|
Yuan Y, Zhu H, Hills-Kimball K, Cai T, Shi W, Wei Z, Yang H, Candler Y, Wang P, He J, Chen O. Stereoselective C-C Oxidative Coupling Reactions Photocatalyzed by Zwitterionic Ligand Capped CsPbBr 3 Perovskite Quantum Dots. Angew Chem Int Ed Engl 2020; 59:22563-22569. [PMID: 32852841 DOI: 10.1002/anie.202007520] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/12/2020] [Indexed: 01/27/2023]
Abstract
Semiconductor quantum dots (QDs) have attracted tremendous attention in the field of photocatalysis, owing to their superior optoelectronic properties for photocatalytic reactions, including high absorption coefficients and long photogenerated carrier lifetimes. Herein, by choosing 2-(3,4-dimethoxyphenyl)-3-oxobutanenitrile as a model substrate, we demonstrate that the stereoselective (>99 %) C-C oxidative coupling reaction can be realized with a high product yield (99 %) using zwitterionic ligand capped CsPbBr3 perovskite QDs under visible light illumination. The reaction can be generalized to different starting materials with various substituents on the phenyl ring and varied functional moieties, producing stereoselective dl-isomers. A radical mediated reaction pathway has been proposed. Our study provides a new way of stereoselective C-C oxidative coupling via a photocatalytic means using specially designed perovskite QDs.
Collapse
Affiliation(s)
- Yucheng Yuan
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI, 02912, USA
| | - Hua Zhu
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI, 02912, USA
| | - Katie Hills-Kimball
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI, 02912, USA
| | - Tong Cai
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI, 02912, USA
| | - Wenwu Shi
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI, 02912, USA
| | - Zichao Wei
- Department of Chemistry, University of Connecticut, 55 North Eagleville Rd., Storrs, CT, 06269, USA
| | - Hanjun Yang
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI, 02912, USA
| | - Yolanda Candler
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI, 02912, USA
| | - Ping Wang
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI, 02912, USA.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, P.R.China
| | - Jie He
- Department of Chemistry, University of Connecticut, 55 North Eagleville Rd., Storrs, CT, 06269, USA
| | - Ou Chen
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI, 02912, USA
| |
Collapse
|
92
|
Yuan Y, Zhu H, Hills‐Kimball K, Cai T, Shi W, Wei Z, Yang H, Candler Y, Wang P, He J, Chen O. Stereoselective C−C Oxidative Coupling Reactions Photocatalyzed by Zwitterionic Ligand Capped CsPbBr
3
Perovskite Quantum Dots. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yucheng Yuan
- Department of Chemistry Brown University 324 Brook St. Providence RI 02912 USA
| | - Hua Zhu
- Department of Chemistry Brown University 324 Brook St. Providence RI 02912 USA
| | - Katie Hills‐Kimball
- Department of Chemistry Brown University 324 Brook St. Providence RI 02912 USA
| | - Tong Cai
- Department of Chemistry Brown University 324 Brook St. Providence RI 02912 USA
| | - Wenwu Shi
- Department of Chemistry Brown University 324 Brook St. Providence RI 02912 USA
| | - Zichao Wei
- Department of Chemistry University of Connecticut 55 North Eagleville Rd. Storrs CT 06269 USA
| | - Hanjun Yang
- Department of Chemistry Brown University 324 Brook St. Providence RI 02912 USA
| | - Yolanda Candler
- Department of Chemistry Brown University 324 Brook St. Providence RI 02912 USA
| | - Ping Wang
- Department of Chemistry Brown University 324 Brook St. Providence RI 02912 USA
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 Jilin P.R.China
| | - Jie He
- Department of Chemistry University of Connecticut 55 North Eagleville Rd. Storrs CT 06269 USA
| | - Ou Chen
- Department of Chemistry Brown University 324 Brook St. Providence RI 02912 USA
| |
Collapse
|
93
|
The P2X7 ion channel is dispensable for energy and metabolic homeostasis of white and brown adipose tissues. Purinergic Signal 2020; 16:529-542. [PMID: 33025427 PMCID: PMC7855144 DOI: 10.1007/s11302-020-09738-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/20/2020] [Indexed: 12/12/2022] Open
Abstract
Several studies suggest a role of extracellular adenine nucleotides in regulating adipose tissue functions via the purinergic signaling network. Metabolic studies in mice with global deletion of the purinergic receptor P2X7 on the C57BL/6 background indicate that this receptor has only a minor role in adipose tissue for diet-induced inflammation or cold-triggered thermogenesis. However, recent data show that a polymorphism (P451L) present in C57BL/6 mice attenuates P2X7 receptor function, whereas BALB/c mice express the fully functional P451 allele. To determine the potential role of P2rx7 under metabolic and thermogenic stress conditions, we performed comparative studies using male P2rx7 knockout (KO) and respective wild-type controls on both BALB/c and C57BL/6 backgrounds. Our data show that adipose P2rx7 mRNA levels are increased in obese mice. Moreover, P2rx7 deficiency results in reduced levels of circulating CCL2 and IL6 with a moderate effect on gene expression of pro-inflammatory markers in white adipose tissue and liver of BALB/c and C57BL/6 mice. However, P2X7 expression does not alter body weight, insulin resistance, and hyperglycemia associated with high-fat diet feeding on both genetic backgrounds. Furthermore, deficiency of P2rx7 is dispensable for energy expenditure at thermoneutral and acute cold exposure conditions. In summary, these data show that-apart from a moderate effect on inflammatory cytokines-P2X7 plays only a minor role in inflammatory and thermogenic effects of white and brown adipose tissue even on the BALB/c background.
Collapse
|
94
|
Benzi A, Sturla L, Heine M, Fischer AW, Spinelli S, Magnone M, Sociali G, Parodi A, Fenoglio D, Emionite L, Koch-Nolte F, Mittrücker HW, Guse AH, De Flora A, Zocchi E, Heeren J, Bruzzone S. CD38 downregulation modulates NAD + and NADP(H) levels in thermogenic adipose tissues. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158819. [PMID: 33010451 DOI: 10.1016/j.bbalip.2020.158819] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/05/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
Different strategies to boost NAD+ levels are considered promising means to promote healthy aging and ameliorate dysfunctional metabolism. CD38 is a NAD+-dependent enzyme involved in the regulation of different cell functions. In the context of systemic energy metabolism, it has been demonstrated that brown adipocytes, the parenchymal cells of brown adipose tissue (BAT) as well as beige adipocytes that emerge in white adipose tissue (WAT) depots in response to catabolic conditions, are important to maintain metabolic homeostasis. In this study we aim to understand the functional relevance of CD38 for NAD+ and energy metabolism in BAT and WAT, also using a CD38-/- mouse model. During cold exposure, an increase in NAD+ levels occurred in BAT of wild type mice, together with a marked downregulation of CD38, as detected at the mRNA and protein level. CD38 downregulation was observed also in WAT of cold-exposed mice, where it was accompanied by a strong increase in NADP(H) levels. Accordingly, NAD kinase and glucose-6-phosphate dehydrogenase activities were enhanced in WAT (but not in BAT). Increased NAD+ levels were observed in BAT/WAT from CD38-/- compared with wild type mice, in line with CD38 being a major NAD+-consumer in AT. CD38-/- mice kept at 6 °C had higher levels of Ucp1 and Pgc-1α in BAT and WAT, and increased levels of phosphorylated hormone-sensitive lipase in BAT, compared with wild type mice. These results demonstrate that CD38, by modulating cellular NAD(P)+ levels, is involved in the regulation of thermogenic responses in cold-activated BAT and WAT.
Collapse
Affiliation(s)
- Andrea Benzi
- DIMES-Section of Biochemistry, University of Genova, Italy
| | - Laura Sturla
- DIMES-Section of Biochemistry, University of Genova, Italy.
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander W Fischer
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonia Spinelli
- DIMES-Section of Biochemistry, University of Genova, Italy
| | - Mirko Magnone
- DIMES-Section of Biochemistry, University of Genova, Italy
| | | | | | - Daniela Fenoglio
- IRCCS Ospedale Policlinico San Martino, Genova, Italy; Department of Internal Medicine, University of Genova, Italy
| | - Laura Emionite
- Animal Facility, IRCCS Ospedale Policlinico San Martino, Largo Benzi 10, 16132 Genova, Italy
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Willi Mittrücker
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Guse
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Elena Zocchi
- DIMES-Section of Biochemistry, University of Genova, Italy
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
95
|
Panic V, Pearson S, Banks J, Tippetts TS, Velasco-Silva JN, Lee S, Simcox J, Geoghegan G, Bensard CL, van Ry T, Holland WL, Summers SA, Cox J, Ducker GS, Rutter J, Villanueva CJ. Mitochondrial pyruvate carrier is required for optimal brown fat thermogenesis. eLife 2020; 9:e52558. [PMID: 32795388 PMCID: PMC7476754 DOI: 10.7554/elife.52558] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
Brown adipose tissue (BAT) is composed of thermogenic cells that convert chemical energy into heat to maintain a constant body temperature and counteract metabolic disease. The metabolic adaptations required for thermogenesis are not fully understood. Here, we explore how steady state levels of metabolic intermediates are altered in brown adipose tissue in response to cold exposure. Transcriptome and metabolome analysis revealed changes in pathways involved in amino acid, glucose, and TCA cycle metabolism. Using isotopic labeling experiments, we found that activated brown adipocytes increased labeling of pyruvate and TCA cycle intermediates from U13C-glucose. Although glucose oxidation has been implicated as being essential for thermogenesis, its requirement for efficient thermogenesis has not been directly tested. We show that mitochondrial pyruvate uptake is essential for optimal thermogenesis, as conditional deletion of Mpc1 in brown adipocytes leads to impaired cold adaptation. Isotopic labeling experiments using U13C-glucose showed that loss of MPC1 led to impaired labeling of TCA cycle intermediates. Loss of MPC1 in BAT increased 3-hydroxybutyrate levels in blood and BAT in response to the cold, suggesting that ketogenesis provides an alternative fuel source to compensate. Collectively, these studies highlight that complete glucose oxidation is essential for optimal brown fat thermogenesis.
Collapse
Affiliation(s)
- Vanja Panic
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| | - Stephanie Pearson
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| | - James Banks
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| | - Trevor S Tippetts
- Department of Nutrition and Integrative Physiology, University of UtahSalt Lake CityUnited States
| | | | - Sanghoon Lee
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| | - Judith Simcox
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| | - Gisela Geoghegan
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| | - Claire L Bensard
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| | - Tyler van Ry
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| | - Will L Holland
- Department of Nutrition and Integrative Physiology, University of UtahSalt Lake CityUnited States
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of UtahSalt Lake CityUnited States
| | - James Cox
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| | - Gregory S Ducker
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| | - Jared Rutter
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
- Howard Hughes Medical Institute, University of UtahSalt Lake CityUnited States
| | - Claudio J Villanueva
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
96
|
Fischer AW, Behrens J, Sass F, Schlein C, Heine M, Pertzborn P, Scheja L, Heeren J. Brown adipose tissue lipoprotein and glucose disposal is not determined by thermogenesis in uncoupling protein 1-deficient mice. J Lipid Res 2020; 61:1377-1389. [PMID: 32769145 DOI: 10.1194/jlr.ra119000455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Adaptive thermogenesis is highly dependent on uncoupling protein 1 (UCP1), a protein expressed by thermogenic adipocytes present in brown adipose tissue (BAT) and white adipose tissue (WAT). Thermogenic capacity of human and mouse BAT can be measured by positron emission tomography-computed tomography quantifying the uptake of 18F-fluodeoxyglucose or lipid tracers. BAT activation is typically studied in response to cold exposure or treatment with β-3-adrenergic receptor agonists such as CL316,243 (CL). Currently, it is unknown whether cold-stimulated uptake of glucose or lipid tracers is a good surrogate marker of UCP1-mediated thermogenesis. In metabolic studies using radiolabeled tracers, we found that glucose uptake is increased in mildly cold-activated BAT of Ucp1 -/- versus WT mice kept at subthermoneutral temperature. Conversely, lower glucose disposal was detected after full thermogenic activation achieved by sustained cold exposure or CL treatment. In contrast, uptake of lipoprotein-derived fatty acids into chronically activated thermogenic adipose tissues was substantially increased in UCP1-deficient mice. This effect is linked to higher sympathetic tone in adipose tissues of Ucp1 -/- mice, as indicated by elevated levels of thermogenic genes in BAT and WAT. Thus, glucose and lipoprotein handling does not necessarily reflect UCP1-dependent thermogenic activity, but especially lipid uptake rather mirrors sympathetic activation of adipose tissues.
Collapse
Affiliation(s)
- Alexander W Fischer
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janina Behrens
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frederike Sass
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Schlein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Pertzborn
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
97
|
Leiria LO, Tseng YH. Lipidomics of brown and white adipose tissue: Implications for energy metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158788. [PMID: 32763428 DOI: 10.1016/j.bbalip.2020.158788] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/21/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022]
Abstract
Adipose tissue exerts multiple vital functions that critically maintain energy balance, including storing and expending energy, as well as secreting factors that systemically modulate nutrient metabolism. Since lipids are the major constituents of the adipocytes, it is unsurprising that the lipid composition of these cells plays a critical role in maintaining their functions and communicating with other organs and cells. In both positive and negative energy balance conditions, lipids and free fatty acids secreted from adipocytes exert either beneficial or detrimental effects in other tissues, such as the liver, pancreas and muscle. The way the adipocytes communicate with other organs tightly depends on the nature of their lipidome composition. Notwithstanding, the lipidome composition of the adipocytes is affected by physiological factors such as adipocyte type, gender and age, but also by environmental cues such as diet composition, thermal stress and physical activity. Here we provide an updated overview on how the adipose tissue lipidome profile is shaped by different physiological and environmental factors and how these changes impact the way the adipocytes regulate whole-body energy metabolism.
Collapse
Affiliation(s)
- Luiz O Leiria
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Yu-Hua Tseng
- Joslin Diabetes Center, Section on Integrative Physiology and Metabolism, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
98
|
Wang L, Zhu L, Meister J, Bone DBJ, Pydi SP, Rossi M, Wess J. Use of DREADD Technology to Identify Novel Targets for Antidiabetic Drugs. Annu Rev Pharmacol Toxicol 2020; 61:421-440. [PMID: 32746768 DOI: 10.1146/annurev-pharmtox-030220-121042] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
G protein-coupled receptors (GPCRs) form a superfamily of plasma membrane receptors that couple to four major families of heterotrimeric G proteins, Gs, Gi, Gq, and G12. GPCRs represent excellent targets for drug therapy. Since the individual GPCRs are expressed by many different cell types, the in vivo metabolic roles of a specific GPCR expressed by a distinct cell type are not well understood. The development of designer GPCRs known as DREADDs (designer receptors exclusively activated by a designer drug) that selectively couple to distinct classes of heterotrimeric G proteins has greatly facilitated studies in this area. This review focuses on the use of DREADD technology to explore the physiological and pathophysiological roles of distinct GPCR/G protein cascades in several metabolically important cell types. The novel insights gained from these studies should stimulate the development of GPCR-based treatments for major metabolic diseases such as type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Lei Wang
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA;
| | - Lu Zhu
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA;
| | - Jaroslawna Meister
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA;
| | - Derek B J Bone
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA;
| | - Sai P Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA;
| | - Mario Rossi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA;
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA;
| |
Collapse
|
99
|
Reinisch I, Schreiber R, Prokesch A. Regulation of thermogenic adipocytes during fasting and cold. Mol Cell Endocrinol 2020; 512:110869. [PMID: 32439414 DOI: 10.1016/j.mce.2020.110869] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022]
Abstract
Cold exposure activates brown and brown-like adipocytes that dissipate large amounts of glucose and fatty acids via uncoupling protein 1 (UCP1) to drive non-shivering thermogenesis (NST). Evidence for the existence of these thermogenic adipocytes in adult humans gave rise to a renaissance in research on brown adipose tissue, establishing it as linchpin of energy homeostasis and metabolic health. Besides low ambient temperature, shortage or excess of food affect thermoregulation. Upon high caloric meals thermogenic adipocytes burn excess calories and maintain energy balance. In contrast, in conditions of nutrient deprivation, counter-regulatory mechanisms prevent thermogenic adipocytes from "wasting" energy substrates that need to be conserved. In this review, we discuss cell-autonomous mechanisms, metabolites, and hormones that modify NST in response to nutrient fluctuations. In particular, we focus on how thermogenic adipocytes balance thermogenesis with systemic energy homeostasis during fasting periods.
Collapse
Affiliation(s)
- Isabel Reinisch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, 8010, Graz, Austria
| | - Renate Schreiber
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria
| | - Andreas Prokesch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, 8010, Graz, Austria; BioTechMed-Graz, 8010, Graz, Austria.
| |
Collapse
|
100
|
O’Mara AE, Johnson JW, Linderman JD, Brychta RJ, McGehee S, Fletcher LA, Fink YA, Kapuria D, Cassimatis TM, Kelsey N, Cero C, Sater ZA, Piccinini F, Baskin AS, Leitner BP, Cai H, Millo CM, Dieckmann W, Walter M, Javitt NB, Rotman Y, Walter PJ, Ader M, Bergman RN, Herscovitch P, Chen KY, Cypess AM. Chronic mirabegron treatment increases human brown fat, HDL cholesterol, and insulin sensitivity. J Clin Invest 2020; 130:2209-2219. [PMID: 31961826 PMCID: PMC7190915 DOI: 10.1172/jci131126] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 01/14/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUNDMirabegron is a β3-adrenergic receptor (β3-AR) agonist approved only for the treatment of overactive bladder. Encouraging preclinical results suggest that β3-AR agonists could also improve obesity-related metabolic disease by increasing brown adipose tissue (BAT) thermogenesis, white adipose tissue (WAT) lipolysis, and insulin sensitivity.METHODSWe treated 14 healthy women of diverse ethnicities (27.5 ± 1.1 years of age, BMI of 25.4 ± 1.2 kg/m2) with 100 mg mirabegron (Myrbetriq extended-release tablet, Astellas Pharma) for 4 weeks in an open-label study. The primary endpoint was the change in BAT metabolic activity as measured by [18F]-2-fluoro-d-2-deoxy-d-glucose (18F-FDG) PET/CT. Secondary endpoints included resting energy expenditure (REE), plasma metabolites, and glucose and insulin metabolism as assessed by a frequently sampled intravenous glucose tolerance test.RESULTSChronic mirabegron therapy increased BAT metabolic activity. Whole-body REE was higher, without changes in body weight or composition. Additionally, there were elevations in plasma levels of the beneficial lipoprotein biomarkers HDL and ApoA1, as well as total bile acids. Adiponectin, a WAT-derived hormone that has antidiabetic and antiinflammatory capabilities, increased with acute treatment and was 35% higher upon completion of the study. Finally, an intravenous glucose tolerance test revealed higher insulin sensitivity, glucose effectiveness, and insulin secretion.CONCLUSIONThese findings indicate that human BAT metabolic activity can be increased after chronic pharmacological stimulation with mirabegron and support the investigation of β3-AR agonists as a treatment for metabolic disease.TRIAL REGISTRATIONClinicaltrials.gov NCT03049462.FUNDINGThis work was supported by grants from the Intramural Research Program of the NIDDK, NIH (DK075112, DK075116, DK071013, and DK071014).
Collapse
Affiliation(s)
- Alana E. O’Mara
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - James W. Johnson
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Joyce D. Linderman
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Robert J. Brychta
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Suzanne McGehee
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Laura A. Fletcher
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Yael A. Fink
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Devika Kapuria
- Liver Diseases Branch, NIDDK, NIH, Bethesda, Maryland, USA
| | - Thomas M. Cassimatis
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Nathan Kelsey
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Cheryl Cero
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Zahraa Abdul Sater
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Francesca Piccinini
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Alison S. Baskin
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Brooks P. Leitner
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Hongyi Cai
- Clinical Mass Spectrometry Core, NIDDK, NIH, Bethesda, Maryland, USA
| | - Corina M. Millo
- Positron Emission Tomography Department, NIH, Bethesda, Maryland, USA
| | - William Dieckmann
- Positron Emission Tomography Department, NIH, Bethesda, Maryland, USA
| | - Mary Walter
- Clinical Laboratory Core, NIDDK, NIH, Bethesda, Maryland, USA
| | - Norman B. Javitt
- Departments of Medicine and Pediatrics, NYU School of Medicine, New York, New York, USA
| | - Yaron Rotman
- Liver Diseases Branch, NIDDK, NIH, Bethesda, Maryland, USA
| | - Peter J. Walter
- Clinical Mass Spectrometry Core, NIDDK, NIH, Bethesda, Maryland, USA
| | - Marilyn Ader
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Richard N. Bergman
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Peter Herscovitch
- Positron Emission Tomography Department, NIH, Bethesda, Maryland, USA
| | - Kong Y. Chen
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Aaron M. Cypess
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| |
Collapse
|