51
|
Sunscreens’ UV Filters Risk for Coastal Marine Environment Biodiversity: A Review. DIVERSITY 2021. [DOI: 10.3390/d13080374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Considering the rapid growth of tourism in recent years and the acknowledgement that exposure to solar UV radiation may cause skin cancer, sunscreens have been widely used by beachgoers in recent decades. UV filters contained in sunscreens, however, were recently identified as emerging pollutants in coastal waters since they accumulate in the marine environment with different adverse effects. In fact, exposure to these components was proven to be toxic to most invertebrate and vertebrate marine species. Some UV filters are linked to the production of significant amounts of reactive oxygen species (ROS), such as hydrogen peroxide, and the release of inorganic micronutrients that may alter the status of coastal habitats. Bioaccumulation and biomagnification have not yet been fully addressed. This review highlights recent progress in research and provides a comprehensive overview of the toxicological and ecotoxicological effects of the most used UV filters both on the abiotic and biotic compartments in different types of coastal areas, to gain a better understanding of the impacts on coastal biodiversity.
Collapse
|
52
|
Impact of Tourist Behavior on the Discharge of Sunscreen Contamination in Aquatic Parks, Sinkholes, and Beaches of the Mexican Caribbean. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11156882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Mexican Caribbean is part of the Mesoamerican Barrier Reef System, considered the second largest reef system globally. This system, as well as inland aquatic ecosystems, are at risk of contamination due to the intensive use of sunscreen by the tourists who visit the Riviera Maya each year. At present, the regulation and management of sunscreens are inconsistent, with most policies and legislation focused on the protected marine areas with little current focus on inland aquatic ecosystems. An estimated 229.76 tons of sunscreen are used annually, with residues putting the health of the marine and freshwater aquatic ecosystems and residents at risk. Groundwater is used recreationally (e.g., tourists swimming in sinkholes or cenotes) and as household drinking water. To understand the environmental impacts of sunscreen use and the management implications, a mixed-methods study was carried out, combining survey and interview data on how tourists use sunscreen and their perceptions of discharge of sunscreens into the water, with analysis of regional, national and international policies and legislation. Our findings of touristic behaviors, gaps in current legislation, and the pollution implications of different sunscreen types provide useful information for future decision-making and the creation of stronger environmental regulations.
Collapse
|
53
|
Wang D, Zheng Q, Lv Q, Zhang C, Zheng Y, Chen H, Zhang W. Assessment of seawater bacterial infection in rabbit tibia by Illumina MiSeq sequencing and bacterial culture. J Orthop Surg Res 2021; 16:463. [PMID: 34289854 PMCID: PMC8293552 DOI: 10.1186/s13018-021-02553-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/11/2021] [Indexed: 12/02/2022] Open
Abstract
Objectives We aimed to explore the bacterial community composition following ocean bacterial infection using an animal model. Methods This animal-based experiment was conducted from September 2019 to November 2019. Eighteen seawater filter membranes were collected from Changle City, Fujiian Province, China, on September 8, 2019. Ten filter membranes were used for implantation. Eight filter membranes that were used in the bacterial culture for the exploration of seawater bacteria were assigned to the seawater group (SG). Fourteen healthy adult New Zealand rabbits were randomly divided into the experimental group (EG) and control group (CG). Seawater filter membranes and asepsis membranes were implanted into the tibia in the EG and CG, respectively. One week after surgery, tibial bone pathology tissues were collected and assessed using light microscopy and scanning electron microscopy (SEM). Medullary cavity tissues were collected for the performance of Illumina MiSeq sequencing and bacterial culture. The differences between EG and CG were assessed by pathological observation under light microscopy and SEM, high-throughput bacterial sequencing, and bacterial culture. Results Compared with the CG, the infection rate was 100%, and the mortality value was 20% after the implantation of the filter membranes in the EG. Both light microscopy and SEM showed that a large number of bacteria were distributed in the bone marrow cavity after ocean bacterial infection. No bacterial growth was found in the CG. Illumina MiSeq sequencing found that Firmicutes, Proteobacteria, Thermotogae, Fusobacteria, Bacteroidetes, and Actinobacteria were the dominant bacteria at the phylum level and Clostridium_sensu_stricto_7, Haloimpatiens, Clostridium_sensu_stricto_15, Clostridiaceae_1, Clostridium_sensu_stricto_18, and Oceanotoga were the dominant bacteria in genus level among the EG. In the bacterial culture of the medullary cavity tissues, Klebsiella pneumoniae, Shewanella algae, Staphylococcus aureus, Escherichia coli, Enterobacter cloacae, and Vibrio vulnificus were the predominant infective species. Moreover, compared with the SG, the EG showed a higher detection rate of E. coli and S. aureus (P = 0.008 and P = 0.001, respectively). The detection rates of V. alginolyticus, V. parahaemolyticus, and V. fluvialis were higher in the SG than the EG (P = 0.007, P = 0.03, and P = 0.03, respectively). Conclusions Our model, which was comprehensively evaluated using four techniques: histopathology and SEM observation, gene detection, and bacteria culture, provides a scientific basis for the clinical diagnosis and treatment of patients in such settings. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-021-02553-9.
Collapse
Affiliation(s)
- Du Wang
- Department of Joint Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qingcong Zheng
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Qi Lv
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Chaofan Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yun Zheng
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Huidong Chen
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Wenming Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| |
Collapse
|
54
|
Santana-Viera S, Montesdeoca-Esponda S, Sosa-Ferrera Z, Santana-Rodríguez JJ. UV filters and UV stabilisers adsorbed in microplastic debris from beach sand. MARINE POLLUTION BULLETIN 2021; 168:112434. [PMID: 33964666 DOI: 10.1016/j.marpolbul.2021.112434] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) in oceans adsorb different types of pollutants, which can negatively impact the food chain. The extensive use of personal care products (PCPs) has led to their ubiquitous environmental presence, and their partition between plastic matrices and surroundings is determined by their physico-chemical characteristics and environmental conditions. This work develops and applies a methodology to determine 12 UV filters (UVFs) and UV stabilisers (UVSs) in MPs collected in beach sand. The analyses were carried out by ultrasound-assisted extraction and ultrahigh-performance liquid chromatography with tandem mass spectrometry detection. The validated procedure was applied to MPs samples taken in sand samples from 13 beaches on the Canary Islands (Spain). The results showed the presence of 10 UV filters and UV stabilisers at concentrations between 1 and 4031 ng·g-1, where octocrylene was the most frequently found. The target analytes were present in all the sampling beaches.
Collapse
Affiliation(s)
- Sergio Santana-Viera
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | - Sarah Montesdeoca-Esponda
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain.
| | - Zoraida Sosa-Ferrera
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | - José Juan Santana-Rodríguez
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
55
|
Zhang Y, Shah P, Wu F, Liu P, You J, Goss G. Potentiation of lethal and sub-lethal effects of benzophenone and oxybenzone by UV light in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 235:105835. [PMID: 33887502 DOI: 10.1016/j.aquatox.2021.105835] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/14/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Benzophenones are widely used as organic UV filters in many personal care products, especially sunscreen, to protect humans from UV radiation. The increasing use of benzophenone class UV filters has raised concerns about the potential effects on the aquatic environment. These organic UV filters are designed to absorb UV light. However, to date, studies have not considered the potential of UV light to potentiate the toxicity of benzophenones in aquatic organisms. In this study using zebrafish embryos, we assessed the median lethal concentration (LC50) and sub-lethal effects of benzophenone and oxybenzone either under natural levels of UV light or under laboratory light conditions. The LC50 value in zebrafish embryos under both light conditions of oxybenzone was lower when compared to benzophenone. Interestingly, UV light significantly decreased the LC50 values (increased toxicity) of both benzophenone and oxybenzone. The presence of UV light induced a significant increase in hydroxyl radical formation and this was reflected in both increased SOD activity and lipid peroxidation in oxybenzone treated groups. Exposure to either benzophenone or oxybenzone also delayed hatching between 60 and 96 hpf when comparing to the control group while UV exposure further delayed hatching only in oxybenzone-exposed embryos. The results demonstrate the importance of involving UV light in toxicity testing for UV filters and provide much-need information on the UV-induced toxicity of benzophenone and oxybenzone under ecologically realistic conditions.
Collapse
Affiliation(s)
- Yueyang Zhang
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, T6G 2E9, Canada
| | - Prachi Shah
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, T6G 2E9, Canada
| | - Fan Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Peipei Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Greg Goss
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, T6G 2E9, Canada; National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada; Director of Office of Environmental Nanosafety, University of Alberta, Canada.
| |
Collapse
|
56
|
Rosner A, Armengaud J, Ballarin L, Barnay-Verdier S, Cima F, Coelho AV, Domart-Coulon I, Drobne D, Genevière AM, Jemec Kokalj A, Kotlarska E, Lyons DM, Mass T, Paz G, Pazdro K, Perić L, Ramšak A, Rakers S, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. Stem cells of aquatic invertebrates as an advanced tool for assessing ecotoxicological impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144565. [PMID: 33736145 DOI: 10.1016/j.scitotenv.2020.144565] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Environmental stressors are assessed through methods that quantify their impacts on a wide range of metrics including species density, growth rates, reproduction, behaviour and physiology, as on host-pathogen interactions and immunocompetence. Environmental stress may induce additional sublethal effects, like mutations and epigenetic signatures affecting offspring via germline mediated transgenerational inheritance, shaping phenotypic plasticity, increasing disease susceptibility, tissue pathologies, changes in social behaviour and biological invasions. The growing diversity of pollutants released into aquatic environments requires the development of a reliable, standardised and 3R (replacement, reduction and refinement of animals in research) compliant in vitro toolbox. The tools have to be in line with REACH regulation 1907/2006/EC, aiming to improve strategies for potential ecotoxicological risks assessment and monitoring of chemicals threatening human health and aquatic environments. Aquatic invertebrates' adult stem cells (ASCs) are numerous and can be pluripotent, as illustrated by high regeneration ability documented in many of these taxa. This is of further importance as in many aquatic invertebrate taxa, ASCs are able to differentiate into germ cells. Here we propose that ASCs from key aquatic invertebrates may be harnessed for applicable and standardised new tests in ecotoxicology. As part of this approach, a battery of modern techniques and endpoints are proposed to be tested for their ability to correctly identify environmental stresses posed by emerging contaminants in aquatic environments. Consequently, we briefly describe the current status of the available toxicity testing and biota-based monitoring strategies in aquatic environmental ecotoxicology and highlight some of the associated open issues such as replicability, consistency and reliability in the outcomes, for understanding and assessing the impacts of various chemicals on organisms and on the entire aquatic environment. Following this, we describe the benefits of aquatic invertebrate ASC-based tools for better addressing ecotoxicological questions, along with the current obstacles and possible overhaul approaches.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200 Bagnols-sur-Cèze, France.
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, F-06107 Nice, France.
| | - Francesca Cima
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Isabelle Domart-Coulon
- Muséum National d'Histoire Naturelle, CNRS, Microorganism Communication and Adaptation Molecules MCAM, Paris F-75005, France.
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111,D, 1000 Ljubljana, Slovenia.
| | - Anne-Marie Genevière
- Sorbonne Université, CNRS, Integrative Biology of Marine Organisms, BIOM, F-6650 Banyuls-sur-mer, France.
| | - Anita Jemec Kokalj
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111,D, 1000 Ljubljana, Slovenia.
| | - Ewa Kotlarska
- Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland.
| | - Daniel Mark Lyons
- Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, HR-52210 Rovinj, Croatia.
| | - Tali Mass
- Marine Biology Department, Leon H. Charney School of Marine Sciences, 199 Aba Khoushy Ave, University of Haifa, 3498838, Israel.
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Ksenia Pazdro
- Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Lorena Perić
- Rudjer Boskovic Institute, Laboratory for Aquaculture and Pathology of Aquaculture Organisms, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station, Fornače 41, 6330 Piran, Slovenia.
| | | | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, 20133 Milano, Italy.
| | - Sébastien Cambier
- Luxembourg Institute of Science and Technology, 5, avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
57
|
Lucas J, Logeux V, Rodrigues AMS, Stien D, Lebaron P. Exposure to four chemical UV filters through contaminated sediment: impact on survival, hatching success, cardiac frequency, and aerobic metabolic scope in embryo-larval stage of zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29412-29420. [PMID: 33555472 DOI: 10.1007/s11356-021-12582-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
UV filters are widely used in many pharmaceutical and personal care products such as sunscreen and cosmetics to protect from UV irradiation. Due to their hydrophobic properties and relative stability, they have a high capacity to accumulate in sediment. Little information is available on their ecotoxicity on fish. In aquatic ecosystems, fish eggs could be directly affected by UV filters through contact with contaminated sediment. The aim of this study was to investigate the individual toxicity of four UV filters: benzophenone-3 (BP3), butyl methoxydibenzoylmethane (BM), bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT), and methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT), in embryo-larval stages of zebrafish Danio rerio. Fish eggs were exposed to single UV filters by contact with spiked sediment during 96 h at a concentration of 10 μg g-1. Among the four UV filters tested, BP3 was the more toxic, reducing cardiac frequency and increasing standard metabolic rate of larvae.
Collapse
Affiliation(s)
- Julie Lucas
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France.
| | - Valentin Logeux
- Sorbonne Université, CNRS, Fédération de Recherche, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| | - Alice M S Rodrigues
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| | - Didier Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| | - Philippe Lebaron
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| |
Collapse
|
58
|
Mycosporine-Like Amino Acids from Red Macroalgae: UV-Photoprotectors with Potential Cosmeceutical Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115112] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macroalgae belong to a diverse group of organisms that could be exploited for biomolecule application. Among the biocompounds found in this group, mycosporine-like amino acids (MAAs) are highlighted mainly due to their photoprotection, antioxidant properties, and high photo and thermo-stability, which are attractive characteristics for the development of cosmeceutical products. Therefore, here we revise published data about MAAs, including their biosynthesis, biomass production, extraction, characterization, identification, purification, and bioactivities. MAAs can be found in many algae species, but the highest concentrations are found in red macroalgae, mainly in the order Bangiales, as Porphyra spp. In addition to the species, the content of MAAs can vary depending on environmental factors, of which solar radiation and nitrogen availability are the most influential. MAAs can confer photoprotection due to their capacity to absorb ultraviolet radiation or reduce the impact of free radicals on cells, among other properties. To extract these compounds, different approaches can be used. The efficiency of these methods can be evaluated with characterization and identification using high performance liquid chromatography (HPLC), associated with other apparatus such as mass spectrometry (MS) and nuclear magnetic resonance (NMR). Therefore, the data presented in this review allow a broad comprehension of MAAs and show perspectives for their inclusion in cosmeceutical products.
Collapse
|
59
|
Jung JW, Kang JS, Choi J, Park JW. A Novel Approach to Derive the Predicted No-Effect Concentration (PNEC) of Benzophenone-3 (BP-3) Using the Species Sensitivity Distribution (SSD) Method: Suggestion of a New PNEC Value for BP-3. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073650. [PMID: 33807469 PMCID: PMC8037607 DOI: 10.3390/ijerph18073650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022]
Abstract
The necessity for the aquatic ecological risk assessment for benzophenone-3 (BP-3) is increasing due to its high toxic potential and high detection frequency in freshwater. The initial step in the ecological risk assessment is to determine predicted no-effect concentration (PNEC). This study derived PNEC of BP-3 in freshwater using a species sensitivity distribution (SSD) approach, whilst existing PNECs are derived using assessment factor (AF) approaches. A total of eight chronic toxicity values, obtained by toxicity testing and a literature survey, covering four taxonomic classes (fish, crustaceans, algae, and cyanobacteria) were used for PNEC derivation. Therefore, the quantity and quality of the toxicity data met the minimum requirements for PNEC derivation using an SSD approach. The PNEC derived in this study (73.3 μg/L) was far higher than the environmental concentration detected in freshwater (up to 10.4 μg/L) as well as existing PNECs (0.67~1.8 μg/L), mainly due to the difference in the PNEC derivation methodology (i.e., AF vs. SSD approach). Since the SSD approach is regarded as more reliable than the AF approach, we recommend applying the PNEC value derived in this study for the aquatic ecological risk assessment of BP-3, as the use of the existing PNEC values seems to unnecessarily overestimate the potential ecological risk of BP-3 in freshwater.
Collapse
Affiliation(s)
- Jae-Woong Jung
- Center for Defense Acquisition and Requirements Analysis, Korea Institute for Defense Analyses, Seoul 02455, Korea;
| | - Jae Soon Kang
- Department of Anatomy and Convergence Medical Science, Institute of Health Science, Bio Anti-Aging Medical Research Center, Gyeongsang National University Medical School, Jinju 52727, Korea;
| | - Jinsoo Choi
- Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jinju 52834, Korea;
| | - June-Woo Park
- Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jinju 52834, Korea;
- Human and Environmental Toxicology Program, Korea University of Science and Technology (UST), Daejeon 34113, Korea
- Correspondence: ; Tel.: +82-55-750-3833
| |
Collapse
|
60
|
Piccinino D, Capecchi E, Tomaino E, Gabellone S, Gigli V, Avitabile D, Saladino R. Nano-Structured Lignin as Green Antioxidant and UV Shielding Ingredient for Sunscreen Applications. Antioxidants (Basel) 2021; 10:274. [PMID: 33578879 PMCID: PMC7916605 DOI: 10.3390/antiox10020274] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Green, biocompatible, and biodegradable antioxidants represent a milestone in cosmetic and cosmeceutical applications. Lignin is the most abundant polyphenol in nature, recovered as a low-cost waste from the pulp and paper industry and biorefinery. This polymer is characterized by beneficial physical and chemical properties which are improved at the nanoscale level due to the emergence of antioxidant and UV shielding activities. Here we review the use of lignin nanoparticles in cosmetic and cosmeceutical applications, focusing on sunscreen and antiaging formulations. Advances in the technology for the preparation of lignin nanoparticles are described highlighting structure activity relationships.
Collapse
Affiliation(s)
- Davide Piccinino
- Department of Ecology and Biology, University of Tuscia, San Camillo De Lellis, 01100 Viterbo, Italy; (E.C.); (E.T.); (S.G.); (V.G.)
| | - Eliana Capecchi
- Department of Ecology and Biology, University of Tuscia, San Camillo De Lellis, 01100 Viterbo, Italy; (E.C.); (E.T.); (S.G.); (V.G.)
| | - Elisabetta Tomaino
- Department of Ecology and Biology, University of Tuscia, San Camillo De Lellis, 01100 Viterbo, Italy; (E.C.); (E.T.); (S.G.); (V.G.)
| | - Sofia Gabellone
- Department of Ecology and Biology, University of Tuscia, San Camillo De Lellis, 01100 Viterbo, Italy; (E.C.); (E.T.); (S.G.); (V.G.)
| | - Valeria Gigli
- Department of Ecology and Biology, University of Tuscia, San Camillo De Lellis, 01100 Viterbo, Italy; (E.C.); (E.T.); (S.G.); (V.G.)
| | - Daniele Avitabile
- IDI Farmaceutici, Via dei Castelli Romani 73/75, 00071 Pomezia, Italy;
| | - Raffaele Saladino
- Department of Ecology and Biology, University of Tuscia, San Camillo De Lellis, 01100 Viterbo, Italy; (E.C.); (E.T.); (S.G.); (V.G.)
| |
Collapse
|
61
|
Carvalhais A, Pereira B, Sabato M, Seixas R, Dolbeth M, Marques A, Guilherme S, Pereira P, Pacheco M, Mieiro C. Mild Effects of Sunscreen Agents on a Marine Flatfish: Oxidative Stress, Energetic Profiles, Neurotoxicity and Behaviour in Response to Titanium Dioxide Nanoparticles and Oxybenzone. Int J Mol Sci 2021; 22:1567. [PMID: 33557180 PMCID: PMC7913899 DOI: 10.3390/ijms22041567] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/18/2022] Open
Abstract
UV filters are potentially harmful to marine organisms. Given their worldwide dissemination and the scarcity of studies on marine fish, we evaluated the toxicity of an organic (oxybenzone) and an inorganic (titanium dioxide nanoparticles) UV filter, individually and in a binary mixture, in the turbot (Scophthalmus maximus). Fish were intraperitoneally injected and a multi-level assessment was carried out 3 and 7 days later. Oxybenzone and titanium dioxide nanoparticles induced mild effects on turbot, both isolated and in mixture. Neither oxidative stress (intestine, liver and kidney) nor neurotoxicity (brain) was found. However, liver metabolic function was altered after 7 days, suggesting the impairment of the aerobic metabolism. An increased motility rate in oxybenzone treatment was the only behavioural alteration (day 7). The intestine and liver were preferentially targeted, while kidney and brain were unaffected. Both infra- and supra-additive interactions were perceived, with a toxicodynamic nature, resulting either in favourable or unfavourable toxicological outcomes, which were markedly dependent on the organ, parameter and post-injection time. The combined exposure to the UV filters did not show a consistent increment in toxicity in comparison with the isolated exposures, which is an ecologically relevant finding providing key information towards the formulation of environmentally safe sunscreen products.
Collapse
Affiliation(s)
- Ana Carvalhais
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.); (B.P.); (R.S.); (A.M.); (S.G.); (P.P.); (M.P.)
| | - Bárbara Pereira
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.); (B.P.); (R.S.); (A.M.); (S.G.); (P.P.); (M.P.)
| | - Mariangela Sabato
- Department of Biological and Environmental Sciences, Università degli Studi di Messina, 98166 Messina, Italy;
| | - Rafaela Seixas
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.); (B.P.); (R.S.); (A.M.); (S.G.); (P.P.); (M.P.)
| | - Marina Dolbeth
- CIIMAR, University of Porto, 4450-208 Matosinhos, Portugal; or
| | - Ana Marques
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.); (B.P.); (R.S.); (A.M.); (S.G.); (P.P.); (M.P.)
| | - Sofia Guilherme
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.); (B.P.); (R.S.); (A.M.); (S.G.); (P.P.); (M.P.)
| | - Patrícia Pereira
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.); (B.P.); (R.S.); (A.M.); (S.G.); (P.P.); (M.P.)
| | - Mário Pacheco
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.); (B.P.); (R.S.); (A.M.); (S.G.); (P.P.); (M.P.)
| | - Cláudia Mieiro
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.); (B.P.); (R.S.); (A.M.); (S.G.); (P.P.); (M.P.)
| |
Collapse
|
62
|
Prakash V, Anbumani S. A Systematic Review on Occurrence and Ecotoxicity of Organic UV Filters in Aquatic Organisms. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 257:121-161. [PMID: 34554327 DOI: 10.1007/398_2021_68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The growing production of cosmetic products such as organic UV filters (OUVFs) in recent years has raised concern regarding their safety to human and environmental health. The inability of wastewater treatment plants in removing these chemical entities and their high octanol-water partition coefficient values tend to result in the persistence of OUVFs in several environmental matrices, leading these to be categorized as "emerging environmental contaminants" because of their unknown risk. Besides aquatic ecosystem contamination, the application of sludge disposal equally threatens terrestrial biota. Besides, the available reviews focusing on levels of OUVFs in aqueous systems (freshwater and marine), instrumental analysis from various samples, and specific toxicity effects, compiled information on the ecotoxicity of OUVFs is currently lacking. Hence, the present manuscript systematically reviews the ecotoxicity of OUVFs in freshwater and marine organisms occupying lower to higher trophic levels, including the underlying mechanisms of action and current knowledge gaps. The available scientific evidence suggests that OUVFs are a prime candidate for environmental concern due to their potential toxic effects. To the best of our knowledge, this is the first document detailing the toxicological effects of OUVFs in aquatic organisms.
Collapse
Affiliation(s)
- Ved Prakash
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
63
|
Carve M, Nugegoda D, Allinson G, Shimeta J. A systematic review and ecological risk assessment for organic ultraviolet filters in aquatic environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115894. [PMID: 33120145 DOI: 10.1016/j.envpol.2020.115894] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/22/2020] [Accepted: 10/15/2020] [Indexed: 05/21/2023]
Abstract
Organic ultraviolet filters (OUVFs) are used in a wide range of manufactured products including personal care (e.g. sunscreens) and plastic items. This review summarizes the available data regarding the toxic effects of OUVFs on marine and freshwater organisms and generates the predicted no-effect concentration (PNEC) values necessary for assessing ecological risk. Through a systematic search of the literature, 89 studies were identified and ecotoxicological data extracted. Collectively, these studies described toxicity testing with 39 OUVF from 10 structural classes, with derivatives of benzophenones (49%) and camphors (16%) most studied. There was a bias towards selecting freshwater species (61%), and evaluating single OUVF effects (87%) rather than OUVF mixtures. Short-term (acute) experimentation (58%) was marginally more common than long-term (chronic) testing (42%). Reproductive, developmental, genetic, and neurological toxicity were the most commonly identified effects in aquatic organism, and were associated with molecular interactions with steroid receptors, DNA, or the production of reactive oxygen species. Species sensitivity distribution and/or assessment factors were used to calculate PNECs for 22 OUVFs and the risk quotients for 12 OUVFs. When using maximum concentrations, high risk was observed for six OUVFs in marine environments (4-methylbenzylidene-camphor, octocrylene, padimate-O, benzophenone-1, and oxybenzone, ethylhexyl-4-methoxycinnamate), and for four OUVFs in freshwater environments (ethylhexyl-4-methoxycinnamate, octocrylene, avobenzone and oxybenzone). When using median concentrations, a risk to marine environments was observed for oxybenzone. The results of this review underline that there is limited knowledge of the pathological effects of OUVFs and their metabolites in aquatic environments, and this inhibits the development of informed water-quality guidelines.
Collapse
Affiliation(s)
- Megan Carve
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Dayanthi Nugegoda
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Graeme Allinson
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Jeff Shimeta
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
64
|
Nano-TiO2 Phototoxicity in Fresh and Seawater: Daphnia magna and Artemia sp. as Proxies. WATER 2020. [DOI: 10.3390/w13010055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nowadays, the industry is quite commonly using nanoparticles of titanium dioxide (nTiO2) especially in sunscreens, due to its higher reflective index in comparison to micron size TiO2. Its high demand causes its widespread environmental occurrence, thus damaging the environment. The aquatic ecosystems are the most vulnerable to contamination by nTiO2. Like other engineered nanoparticles, nTiO2 has demonstrated generation of reactive oxygen species (ROS) and reactive halogen species (RHS) in the aquatic environment under UV radiation. This study investigated the toxicity of nTiO2 towards two aquatic indicator organisms, one from freshwater (Daphnia magna) and the other from seawater (Artemia sp.), under simulated solar radiation (SSR). Daphnia magna and Artemia sp. were co-exposed in 16 h SSR and 8 h darkness cycles to different concentrations of nTiO2. The estimated EC50 at 48 h for D. magna was 3.16 mg nTiO2/L, whereas for A. sp. no toxic effects were observed. When we exposed these two organisms simultaneously to 48 h of prolonged SSR using higher nTiO2 concentrations, EC50 values of 7.60 mg/L and 5.59 mg/L nTiO2 for D. magna and A. sp., respectively, were obtained. A complementary bioassay was carried out with A. sp., by exposing this organism to a mixture of nTiO2 and organic UV filters (benzophenone 3 (oxybenzone, BP3), octocrylene (OC), and ethyl 4-aminobenzoate (EtPABA)), and then exposed to SSR. The results suggested that nTiO2 could potentially have negative impacts on these organisms, also this work outlines the different characteristics and interactions that may contribute to the mechanisms of environmental (in salted and freshwater) phototoxicity of nTiO2 and UV radiation, besides their interaction with organic compounds.
Collapse
|
65
|
Cyanobacteria and Red Macroalgae as Potential Sources of Antioxidants and UV Radiation-Absorbing Compounds for Cosmeceutical Applications. Mar Drugs 2020; 18:md18120659. [PMID: 33371308 PMCID: PMC7767163 DOI: 10.3390/md18120659] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/07/2023] Open
Abstract
In recent years, research on natural products has gained considerable attention, particularly in the cosmetic industry, which is looking for new bio-active and biodegradable molecules. In this study, cosmetic properties of cyanobacteria and red macroalgae were analyzed. The extractions were conducted in different solvents (water, ethanol and two combinations of water:ethanol). The main molecules with antioxidant and photoprotective capacity were mycosporine-like amino acids (MAAs), scytonemin and phenolic compounds. The highest contents of scytonemin (only present in cyanobacteria) were observed in Scytonema sp. (BEA 1603B) and Lyngbya sp. (BEA 1328B). The highest concentrations of MAAs were found in the red macroalgae Porphyra umbilicalis, Gelidium corneum and Osmundea pinnatifida and in the cyanobacterium Lyngbya sp. Scytonema sp. was the unique species that presented an MAA with maximum absorption in the UV-B band, being identified as mycosporine-glutaminol for the first time in this species. The highest content of polyphenols was observed in Scytonema sp. and P. umbilicalis. Water was the best extraction solvent for MAAs and phenols, whereas scytonemin was better extracted in a less polar solvent such as ethanol:dH2O (4:1). Cyanobacterium extracts presented higher antioxidant activity than those of red macroalgae. Positive correlations of antioxidant activity with different molecules, especially polyphenols, biliproteins and MAAs, were observed. Hydroethanolic extracts of some species incorporated in creams showed an increase in the photoprotection capacity in comparison with the base cream. Extracts of these organisms could be used as natural photoprotectors improving the diversity of sunscreens. The combination of different extracts enriched in scytonemin and MAAs could be useful to design broad-band natural UV-screen cosmeceutical products.
Collapse
|
66
|
Tovar-Sánchez A, Sparaventi E, Gaudron A, Rodríguez-Romero A. A new approach for the determination of sunscreen levels in seawater by ultraviolet absorption spectrophotometry. PLoS One 2020; 15:e0243591. [PMID: 33326482 PMCID: PMC7743976 DOI: 10.1371/journal.pone.0243591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Sunscreen is released into the marine environment and is considered toxic for marine life. The current analytical methods for the quantification of sunscreen are mostly specific to individual chemical ingredients and based on complex analytical and instrumental techniques. A simple, selective, rapid, reproducible and low-cost spectrophotometric procedure for the quantification of commercial sunscreen in seawater is described here. The method is based on the inherent properties of these cosmetics to absorb in the wavelength of 300–400 nm. The absorption at 303 nm wavelength correlates with the concentration of most commercial sunscreens. This method allows the determination of sunscreens in the range of 2.5–1500 mg L-1, it requires no sample pretreatment and offers a precision of up to 0.2%. The spectrophotometric method was applied to quantify sunscreen concentrations at an Atlantic Beach with values ranging from 10 to 96.7 mg L-1 in the unfiltered fraction and from the undetectable value to 75.7 mg L-1 in the dissolved fraction. This method is suggested as a tool for sunscreen quantifications in environmental investigations and monitoring programs.
Collapse
Affiliation(s)
- Antonio Tovar-Sánchez
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia, ICMAN (CSIC), Cádiz, Spain
- * E-mail:
| | - Erica Sparaventi
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia, ICMAN (CSIC), Cádiz, Spain
| | - Amandine Gaudron
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia, ICMAN (CSIC), Cádiz, Spain
| | - Araceli Rodríguez-Romero
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia, ICMAN (CSIC), Cádiz, Spain
- Department of Analytical Chemistry, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
| |
Collapse
|
67
|
Sotão Neto BMT, Combi T, Taniguchi S, Albergaria-Barbosa ACR, Ramos RB, Figueira RCL, Montone RC. Persistent organic pollutants (POPs) and personal care products (PCPs) in the surface sediments of a large tropical bay (Todos os Santos Bay, Brazil). MARINE POLLUTION BULLETIN 2020; 161:111818. [PMID: 33160119 DOI: 10.1016/j.marpolbul.2020.111818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
The occurrence and spatial distribution of persistent organic pollutants (POPs) and personal care products (PCPs) were investigated in surface sediments of Todos os Santos Bay. Samples were Soxhlet-extracted and analyzed by gas chromatography coupled with tandem mass spectrometry. Quantification limits (QL) ranged from 0.0025 ng g-1 for POPs to 0.25 ng g-1 for PCPs. Of the POPs studied, only PCBs and DDTs were detectable, with concentrations ranging from <QL to 4.66 ng g-1, with increased concentrations near urban and industrial areas. PCPs ranged from <QL to 27.5 ng g-1 and presented a homogeneous spatial distribution, probably related to the continuous inputs of these compounds from diffuse sources. Mean contaminant inventories ranged from 0.33 ± 0.23 ng cm-2 for DDTs to 8.3 ± 8.4 ng cm-2 for fragrances. To the best of our knowledge, this is the first study on the occurrence of UV filters in sediments from Brazilian coastal environments.
Collapse
Affiliation(s)
- Basílio M T Sotão Neto
- Instituto Oceanográfico, Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191 São Paulo, SP, Brazil
| | - Tatiane Combi
- Universidade Federal da Bahia, Instituto de Geociências, Departamento de Oceanografia, Rua Barão de Jeremoabo, 40170-020 Salvador, Bahia, Brazil.
| | - Satie Taniguchi
- Instituto Oceanográfico, Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191 São Paulo, SP, Brazil
| | - Ana C R Albergaria-Barbosa
- Universidade Federal da Bahia, Instituto de Geociências, Departamento de Oceanografia, Rua Barão de Jeremoabo, 40170-020 Salvador, Bahia, Brazil
| | - Raissa B Ramos
- Instituto Oceanográfico, Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191 São Paulo, SP, Brazil
| | - Rubens Cesar Lopes Figueira
- Instituto Oceanográfico, Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191 São Paulo, SP, Brazil
| | - Rosalinda C Montone
- Instituto Oceanográfico, Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191 São Paulo, SP, Brazil
| |
Collapse
|
68
|
Occurrence and Distribution of UV Filters in Beach Sediments of the Southern Baltic Sea Coast. WATER 2020. [DOI: 10.3390/w12113024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The interest in UV filters’ occurrence in the environment has increased since they were recognized as “emerging contaminants” having potentially adverse impacts on many ecosystems and organisms. Increased worldwide demand for sunscreens is associated with temperature anomalies, high irradiance, and changes in the tourist market. Recently, it has been demonstrated that personal care products, including sunscreens, appear in various ecosystems and geographic locations causing an ecotoxicological threat. Our goal was to determine for the first time the presence of selected organic UV filters at four beaches in the central Pomeranian region in northern Poland and to assess their horizontal and vertical distribution as well as temporal variation at different locations according to the touristic pressure. In this pioneering study, the concentration of five UV filters was measured in core sediments dredged from four exposed beaches (Darłowo, Ustka, Rowy, and Czołpino). UV filters were detected in 89.6% of collected cores at detection frequencies of 0–22.2%, 75–100%, 0–16.7%, and 2.8–25% for benzophenone-1 (BP-1), benzophenone-2 (BP-2), benzophenone-3 (BP-3), and enzacamene (4-MBC), respectively. In terms of seasonality, the concentration of UV filters generally increased in the following order: summer > autumn > spring. No detectable levels of 3-BC (also known as 3-benzylidene camphor) were recorded. No differences were found in the concentration of UV filters according to the depth of the sediment core. During the summer and autumn seasons, all UV filters were detected in higher concentrations in the bathing area or close to the waterline than halfway or further up the beach. Results presented in this study demonstrate that the Baltic Sea coast is not free from UV filters. Even if actual concentrations can be quantified as ng·kg−1 causing limited environmental threat, much higher future levels are expected due to the Earth’s principal climatic zones shifting northward.
Collapse
|
69
|
Thia E, Chou PH, Chen PJ. In vitro and in vivo screening for environmentally friendly benzophenone-type UV filters with beneficial tyrosinase inhibition activity. WATER RESEARCH 2020; 185:116208. [PMID: 32726716 DOI: 10.1016/j.watres.2020.116208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/07/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Benzophenones (BPs) are a group of chemically similar organic compounds commonly used in formulations of sunscreen and other personal care products as UV filters to protect our skin against sunlight overexposure. Studies have shown that the occurrence of certain BPs (e.g., BP-3 and its metabolite BP-1) in multiple environmental matrices may increase the incidence of coral planulae bleaching and estrogenic effects on aquatic life. Currently, most BPs are not yet comprehensively screened in vitro and in vivo for their ecotoxicity under environmentally relevant concentrations. This study systematically assessed the in vitro and in vivo toxicity and activity of the 7 most commonly used BPs (BP-1, BP-2, BP-3, BP-4, BP-6, BP-7 and BP-8) to select BP alternatives with lower ecotoxicity and extra beneficial functions. BP-2 (LC50 = 18.43 µM) was least toxic and BP-3 (LC50 = 4.10 µM) and BP-8 (LC50 =1.62 µM) were less and most toxic, respectively, in terms of 96-hr acute mortality of medaka larvae. BP-2 at environmentally relevant concentrations (5-50 nM) did not significantly alter locomotion and oxidative stress responses of medaka larvae from 24-hr to 7-day exposure, whereas BP-3 and BP-8 at 5 nM induced hypoactivity or changed fish swimming angles. Only BP-2 was able to inhibit in vitro mushroom tyrosinase activity, with EC50 value 19.7 µM. Also, BP-2 could effectively suppress melanin formation and tyrosinase activity in zebrafish embryos. Among the 7 tested BPs, BP-2 was the least toxic and the most environmentally friendly UV filter with extra benefit for tyrosinase inhibition and could be a promising alternative to the use of toxic BPs.
Collapse
Affiliation(s)
- Eveline Thia
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Pei-Hsin Chou
- Department of Environmental Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Jen Chen
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
70
|
Haynes VN, Ward JE. The interactive effects of titanium dioxide nanoparticles and light on heterotrophic bacteria and microalgae associated with marine aggregates in nearshore waters. MARINE ENVIRONMENTAL RESEARCH 2020; 161:105146. [PMID: 32942211 DOI: 10.1016/j.marenvres.2020.105146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/28/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Titanium dioxide nanoparticles (n-TiO2) are emerging contaminants and the ecological impact of these materials to the nearshore environment is largely unknown. The reactivity of n-TiO2 increases with light exposure, and the photocatalytic effects have been shown on cultures of bacteria and microalgae in the laboratory. The purpose of this study was to assess the response of natural bacterial and microalgal communities associated with marine aggregates to n-TiO2 under conditions similar to those found in the photic zone of nearshore waters. Nano and bulk TiO2 particles were incorporated into marine aggregates over 4 days under two light conditions: 6:18 and 0:24 (hours light:dark). The abundance and metabolic response of heterotrophic bacteria and viability of microalgae associated with aggregates were assessed. Although the proportion of living microalgae was unchanged, the abundance, total metabolic activity and functional diversity of heterotrophic bacteria were significantly altered by irradiated n-TiO2.
Collapse
Affiliation(s)
- Vena N Haynes
- University of Connecticut, Department of Marine Sciences, 1080 Shennecossett Road, Groton, CT, 06340, USA.
| | - J Evan Ward
- University of Connecticut, Department of Marine Sciences, 1080 Shennecossett Road, Groton, CT, 06340, USA.
| |
Collapse
|
71
|
Araújo CVM, Rodríguez-Romero A, Fernández M, Sparaventi E, Medina MM, Tovar-Sánchez A. Repellency and mortality effects of sunscreens on the shrimp Palaemon varians: Toxicity dependent on exposure method. CHEMOSPHERE 2020; 257:127190. [PMID: 32480091 DOI: 10.1016/j.chemosphere.2020.127190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 05/20/2023]
Abstract
Contamination by sunscreens has become a serious environmental problem due to the increasing use of these products in coastal regions. Their complex chemical composition supposes an input of different chemical compounds capable of producing toxic effects and repelling organisms. The aim of the current study was to experimentally check the repellency of three commercial sunscreens [A (lotion), B (gel) and C (milk spray)] by assessing the escape (displacement towards areas with lower sunscreen levels) of the estuarine shrimp Palaemon varians exposed (4 h) to a gradient (0-300 mg/L) of the sunscreens in a heterogeneous non-forced exposure scenario. Additionally, mortality and immobility (72 h) were checked in a traditional forced exposure scenario. Considering that the toxicity of sunscreens is a little controversial regarding their chemical availability in the medium, two different methods of sunscreen solubilisation were tested: complete homogenization and direct immersion. Very low mortality was observed in the highest concentration of sunscreens A and C applied by direct immersion; however, for sunscreen B, the main effect was the loss of motility when homogenization was applied. Repellency was evidenced for two sunscreens (A and B) applied by direct immersion. The homogenization in the medium seemed to lower the degree of repellency of the sunscreens, probably linked to the higher viscosity in the medium, preventing the motility of shrimps. By integrating both short-term responses (avoidance and mortality/immobility), the PID (population immediate decline) calculated showed that avoidance might be the main factor responsible for the reduction of the population at the local scale.
Collapse
Affiliation(s)
- Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain.
| | - Araceli Rodríguez-Romero
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain; Faculty of Marine and Environmental Sciences, University of Cádiz, Av. República Saharaui, Puerto Real, 11510 Cádiz, Spain
| | - Marco Fernández
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| | - Erica Sparaventi
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| | - Marina Márquez Medina
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| | - Antonio Tovar-Sánchez
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| |
Collapse
|
72
|
Mao F, He Y, Gin KYH. Antioxidant responses in cyanobacterium Microcystis aeruginosa caused by two commonly used UV filters, benzophenone-1 and benzophenone-3, at environmentally relevant concentrations. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122587. [PMID: 32335379 DOI: 10.1016/j.jhazmat.2020.122587] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Benzophenone-type ultraviolet filters (BPs) have recently been recognized as emerging organic contaminants. In the present study, the cyanobacterium Microcystis aeruginosa was exposed to environmentally relevant levels (0.01-1000 μg L-1) of benzophenone-1 (BP-1) and benzophenone-3 (BP-3) for seven days. A battery of tested endpoints associated with photosynthetic pigments and oxidative stress was employed for a better understanding of the mode of action. The tested cyanobacterium could uptake the two BPs (27.4-54.9%) from culture media. The two BPs were able to inhibit the production of chlorophyll a (chl-a) and promote the accumulation of carotenoids, leading to unaffected chl-a autofluorescence. Slightly increased malondialdehyde (MDA) contents suggested that BP-1 and BP-3 caused moderate oxidative stress. BP-1 stimulated the activities of superoxide dismutase (SOD), glutathione reductase (GR) and glutathione S-transferase (GST) in M. aeruginosa while BP-3 increased the activities of SOD, GST, and glutathione (GSH), showing a concentration- and time-dependent relationship. The activities of other biomarkers, such as catalase (CAT) and glutathione peroxidase (GPx) fluctuated depending on exposure time and concentration. The overall results suggested that the two BPs can trigger moderate oxidative stress in M. aeruginosa and the tested cyanobacterium was capable of alleviating stress by different mechanisms.
Collapse
Affiliation(s)
- Feijian Mao
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore 117411, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore 117411, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, E1A 07-03, Singapore 117576, Singapore.
| |
Collapse
|
73
|
Lai WWP, Chen KL, Lin AYC. Solar photodegradation of the UV filter 4-methylbenzylidene camphor in the presence of free chlorine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137860. [PMID: 32197163 DOI: 10.1016/j.scitotenv.2020.137860] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/24/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
UV filters are essential ingredients in sunscreens and many personal care products. The coexposure of UV filters to solar photolysis and free chlorine (solar/free chlorine) is inevitable in outdoor swimming pools and many other aquatic matrices, and this study aims to investigate the degradation mechanism of one specific UV filter, 4-methylbenzylidene camphor (4MBC), under solar/free chlorine system. Under solar irradiation alone, 4MBC only undergoes isomerization from (E)- to (Z)-4MBC; however, in the solar/free chlorine system, 4MBC was significantly degraded, with a pseudo-first-order rate constant of 0.0137 s-1 (pH = 7). The effects of the initial free chlorine concentration, solution pH and water matrix (presence of dissolved organic matter, HCO3- and Cl-) were studied. The results revealed that reactive chlorine species (RCS) are the dominant species influencing 4MBC degradation via solar/free chlorine, while OH and O3 played minor roles. These species would likely react with the 4-methylstyrene moiety of 4MBC and subsequently lead to 4MBC degradation through hydroxylation, chlorine substitution, oxidation and demethylation. Nevertheless, the dramatic increase in acute toxicity (Microtox®) during solar/free chlorine degradation of 4MBC highlights the need to further explore the transformation byproducts as well as their associated risks to humans and the environment.
Collapse
Affiliation(s)
- Webber Wei-Po Lai
- Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 106, Taiwan
| | - Kuen-Lin Chen
- Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 106, Taiwan
| | - Angela Yu-Chen Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 106, Taiwan; International Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei 106, Taiwan.
| |
Collapse
|
74
|
Grau J, Benedé JL, Chisvert A. Use of Nanomaterial-Based (Micro)Extraction Techniques for the Determination of Cosmetic-Related Compounds. Molecules 2020; 25:molecules25112586. [PMID: 32498443 PMCID: PMC7321223 DOI: 10.3390/molecules25112586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 11/16/2022] Open
Abstract
The high consumer demand for cosmetic products has caused the authorities and the industry to require rigorous analytical controls to assure their safety and efficacy. Thus, the determination of prohibited compounds that could be present at trace level due to unintended causes is increasingly important. Furthermore, some cosmetic ingredients can be percutaneously absorbed, further metabolized and eventually excreted or bioaccumulated. Either the parent compound and/or their metabolites can cause adverse health effects even at trace level. Moreover, due to the increasing use of cosmetics, some of their ingredients have reached the environment, where they are accumulated causing harmful effects in the flora and fauna at trace levels. To this regard, the development of sensitive analytical methods to determine these cosmetic-related compounds either for cosmetic control, for percutaneous absorption studies or for environmental surveillance monitoring is of high interest. In this sense, (micro)extraction techniques based on nanomaterials as extraction phase have attracted attention during the last years, since they allow to reach the desired selectivity. The aim of this review is to provide a compilation of those nanomaterial-based (micro)extraction techniques for the determination of cosmetic-related compounds in cosmetic, biological and/or environmental samples spanning from the first attempt in 2010 to the present.
Collapse
|
75
|
Lee SH, Xiong JQ, Ru S, Patil SM, Kurade MB, Govindwar SP, Oh SE, Jeon BH. Toxicity of benzophenone-3 and its biodegradation in a freshwater microalga Scenedesmus obliquus. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122149. [PMID: 32004845 DOI: 10.1016/j.jhazmat.2020.122149] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/30/2019] [Accepted: 01/19/2020] [Indexed: 06/10/2023]
Abstract
Environmental contamination by benzophenone-3 has gained attention because of its frequent occurrence and adverse environmental impact. Studies investigating the toxicity and removal mechanisms, along with its degradation pathway in microalgae are still rare. In this study, the ecotoxicity of benzophenone-3 on Scenedesmus obliquus was assessed through dose-response test, risk quotient evaluation, and changes of microalgal biochemical characteristics and gene expression. The calculated risk quotients of benzophenone-3 were >1, implying its high environmental risk. Expression of the ATPF0C and Tas genes encoding ATP-synthase and oxidoreductase was significantly increased in S. obliquus after exposure to benzophenone-3, while that of Lhcb1 and HydA genes was reduced. When exposed to 0.1-3 mg L-1 benzophenone-3, 23-29 % removal was achieved by S. obliquus, which was induced by abiotic removal, bioadsorption, bioaccumulation and biodegradation. Metabolic fate analyses showed that biodegradation of benzophenone-3 was induced by hydroxylation, and methylation, forming less toxic intermediates according to the toxicity assessment of the identified products. This study provides a better understanding of the toxicity and metabolic mechanisms of benzophenone-3 in microalgae, demonstrating the potential application of microalgae in the remediation of benzophenone-3 contaminated wastewater.
Collapse
Affiliation(s)
- Sang-Hun Lee
- Department of Environmental Science, Keimyung University, 42601 Daegu, South Korea
| | - Jiu-Qiang Xiong
- Department of Environmental Science, Keimyung University, 42601 Daegu, South Korea; College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Swapnil M Patil
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Mayur B Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Sanjay P Govindwar
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Sang-Eun Oh
- Department of Biological Environment, Kangwon National University, 192-1 Hyoja-2-dong, Gangwondo, Chuncheon 200-701, South Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
76
|
Claverie M, McReynolds C, Petitpas A, Thomas M, Fernandes SCM. Marine-Derived Polymeric Materials and Biomimetics: An Overview. Polymers (Basel) 2020; 12:E1002. [PMID: 32357448 PMCID: PMC7285066 DOI: 10.3390/polym12051002] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 02/01/2023] Open
Abstract
The review covers recent literature on the ocean as both a source of biotechnological tools and as a source of bio-inspired materials. The emphasis is on marine biomacromolecules namely hyaluronic acid, chitin and chitosan, peptides, collagen, enzymes, polysaccharides from algae, and secondary metabolites like mycosporines. Their specific biological, physicochemical and structural properties together with relevant applications in biocomposite materials have been included. Additionally, it refers to the marine organisms as source of inspiration for the design and development of sustainable and functional (bio)materials. Marine biological functions that mimic reef fish mucus, marine adhesives and structural colouration are explained.
Collapse
Affiliation(s)
- Marion Claverie
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
| | - Colin McReynolds
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
| | - Arnaud Petitpas
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
| | - Martin Thomas
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
| | - Susana C. M. Fernandes
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
- Department of Chemistry—Angstrom Laboratory, Polymer Chemistry, Uppsala University, Lagerhyddsvagen 1, 75120 Uppsala, Sweden
| |
Collapse
|
77
|
Martínez A, Eckert EM, Artois T, Careddu G, Casu M, Curini-Galletti M, Gazale V, Gobert S, Ivanenko VN, Jondelius U, Marzano M, Pesole G, Zanello A, Todaro MA, Fontaneto D. Human access impacts biodiversity of microscopic animals in sandy beaches. Commun Biol 2020; 3:175. [PMID: 32313088 PMCID: PMC7170908 DOI: 10.1038/s42003-020-0912-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/23/2020] [Indexed: 01/25/2023] Open
Abstract
Whereas most work to understand impacts of humans on biodiversity on coastal areas has focused on large, conspicuous organisms, we highlight effects of tourist access on the diversity of microscopic marine animals (meiofauna). We used a DNA metabarcoding approach with an iterative and phylogeny-based approach for the taxonomic assignment of meiofauna and relate diversity patterns to the numbers of tourists accessing sandy beaches on an otherwise un-impacted island National Park. Tourist frequentation, independently of differences in sediment granulometry, beach length, and other potential confounding factors, affected meiofaunal diversity in the shallow “swash” zone right at the mean water mark; the impacts declined with water depth (up to 2 m). The indicated negative effect on meiofauna may have a consequence on all the biota including the higher trophic levels. Thus, we claim that it is important to consider restricting access to beaches in touristic areas, in order to preserve biodiversity. Martínez et al. use DNA metabarcoding and a phylogeny-based approach to demonstrate the effects of tourist access on meiofauna diversity of beaches in Asinara National Park. Their results show that tourist frequentation decreases meiofaunal diversity at the shallow “swash” zone, and can be used to inform tourist access and management of beaches.
Collapse
Affiliation(s)
- Alejandro Martínez
- Molecular Ecology Group (MEG), Water Research Institute (IRSA), National Research Council of Italy (CNR), Verbania, Italy
| | - Ester M Eckert
- Molecular Ecology Group (MEG), Water Research Institute (IRSA), National Research Council of Italy (CNR), Verbania, Italy
| | - Tom Artois
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Giovanni Careddu
- Parco Nazionale dell'Asinara, Area Marina Protetta, Porto Torres, Italy
| | - Marco Casu
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | | | - Vittorio Gazale
- Parco Nazionale dell'Asinara, Area Marina Protetta, Porto Torres, Italy
| | - Stefan Gobert
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Viatcheslav N Ivanenko
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Ulf Jondelius
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Marinella Marzano
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council of Italy (CNR), Bari, Italy
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council of Italy (CNR), Bari, Italy.,Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "A. Moro", Bari, Italy
| | - Aldo Zanello
- Parco Nazionale dell'Asinara, Area Marina Protetta, Porto Torres, Italy
| | - M Antonio Todaro
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Modena, Italy
| | - Diego Fontaneto
- Molecular Ecology Group (MEG), Water Research Institute (IRSA), National Research Council of Italy (CNR), Verbania, Italy.
| |
Collapse
|
78
|
Effect of 10 UV Filters on the Brine Shrimp Artemia salina and the Marine Microalga Tetraselmis sp. TOXICS 2020; 8:toxics8020029. [PMID: 32290111 PMCID: PMC7357026 DOI: 10.3390/toxics8020029] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 11/17/2022]
Abstract
The presence of pharmaceutical and personal care product (PPCP) residues in the aquatic environment is an emerging issue due to their uncontrolled release through gray water, and accumulation in the environment that may affect living organisms, ecosystems and public health. The aim of this study is to assess the toxicity of benzophenone-3 (BP-3), bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT), butyl methoxydibenzoylmethane (BM), methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT), 2-ethylhexyl salicylate (ES), diethylaminohydroxybenzoyl hexyl benzoate (DHHB), diethylhexyl butamido triazone (DBT), ethylhexyl triazone (ET), homosalate (HS) and octocrylene (OC) on marine organisms from two major trophic levels, including autotrophs (Tetraselmis sp.) and heterotrophs (Artemia salina). In general, results showed that both HS and OC were the most toxic UV filters for our tested species, followed by a significant effect of BM on Artemia salina due to BM—but only at high concentrations (1 mg/L). ES, BP3 and DHHB affected the metabolic activity of the microalgae at 100 µg/L. BEMT, DBT, ET, MBBT had no effect on the tested organisms, even at high concentrations (2 mg/L). OC toxicity represents a risk for those species, since concentrations used in this study are 15–90 times greater than those reported in occurrence studies for aquatic environments. For the first time in the literature, we report HS toxicity on a microalgae species at concentrations complementing those found in aquatic environments. These preliminary results could represent a risk in the future if concentrations of OC and HS continue to increase.
Collapse
|
79
|
Egambaram OP, Kesavan Pillai S, Ray SS. Materials Science Challenges in Skin UV Protection: A Review. Photochem Photobiol 2020; 96:779-797. [PMID: 31886889 DOI: 10.1111/php.13208] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 12/11/2019] [Indexed: 11/29/2022]
Abstract
UV radiation is one of the critical environmental stress factors for human skin, which can trigger various problems such as pruritus, burning, erythema, premature skin aging and skin cancer. Hence, UV protection has become an indispensable daily routine and the use of topical sunscreen products is rapidly increasing. However, there are emerging concerns over the efficiency and safety of existing chemical and physical UV filters used in consumer products. Furthermore, there is no universally approved method for assessing sun protection efficiency regardless of the immediate end user need to develop safer sunscreen products that afford broad-spectrum photoprotection. It is evident that the current organic and inorganic UV filters have significant unfavorable impacts on human, environmental, and marine safety. Therefore, effective alternative UV filters should be established. This article comprehensively reviews the properties, safety, health and ecological concerns of various UV filters including TiO2 and ZnO nanoparticles as well as the limitations of the testing protocols and guidelines provided by major regulatory bodies. The photoreactivity of UV filters used in sunscreen remains a major challenge, and it is crucial to develop new sunscreen ingredients, which not only protect the consumer, but also the environment.
Collapse
Affiliation(s)
- Orielia Pria Egambaram
- Centre for Nanostructures and Advanced Materials, DSI/CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria, South Africa.,Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg, South Africa
| | - Sreejarani Kesavan Pillai
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg, South Africa
| | - Suprakas Sinha Ray
- Centre for Nanostructures and Advanced Materials, DSI/CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria, South Africa.,Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg, South Africa
| |
Collapse
|
80
|
Abstract
Cosmetic products are used in large quantities across the world. An increasing number of chemical compounds are being added to the formulation of cosmetic products as additives, fragrances, preservatives, stabilizers, surfactants, dye and shine to potentiate their quality, property and shelf life. Owing to their widespread use, active residues of cosmetic products are continuously introduced into the environment in several ways. Many of these chemicals are bioactive and are characterized by potential bioaccumulation ability and environmental persistence, thus exerting a major risk to humans and the health of ecosystems. Hence, the indiscriminate consumption of cosmetics may present a looming issue with significant adverse impacts on public health. This review intends to spotlight a current overview of toxic ingredients used in formulating cosmetics such as parabens, triclosan, benzalkonium chloride, 1,4-dioxane, plastic microbeads, formaldehyde, diazolidinyl urea, imidazolidinyl urea, sunscreen elements (organic and inorganic UV filters) and trace metals. Specific focus is given to illustrate the biological risks of these substances on human health and aquatic system in terms of genotoxicity, cytotoxicity, neurotoxicity mutagenicity, and estrogenicity. In addition to conclusive remarks, future directions are also suggested.
Collapse
|
81
|
Khan AO, Di Maio A, Guggenheim EJ, Chetwynd AJ, Pencross D, Tang S, Belinga-Desaunay MFA, Thomas SG, Rappoport JZ, Lynch I. Surface Chemistry-Dependent Evolution of the Nanomaterial Corona on TiO 2 Nanomaterials Following Uptake and Sub-Cellular Localization. NANOMATERIALS 2020; 10:nano10030401. [PMID: 32106393 PMCID: PMC7152854 DOI: 10.3390/nano10030401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022]
Abstract
Nanomaterial (NM) surface chemistry has an established and significant effect on interactions at the nano-bio interface, with important toxicological consequences for manufactured NMs, as well as potent effects on the pharmacokinetics and efficacy of nano-therapies. In this work, the effects of different surface modifications (PVP, Dispex AA4040, and Pluronic F127) on the uptake, cellular distribution, and degradation of titanium dioxide NMs (TiO2 NMs, ~10 nm core size) are assessed and correlated with the localization of fluorescently-labeled serum proteins forming their coronas. Imaging approaches with an increasing spatial resolution, including automated high throughput live cell imaging, correlative confocal fluorescence and reflectance microscopy, and dSTORM super-resolution microscopy, are used to explore the cellular fate of these NMs and their associated serum proteins. Uncoated TiO2 NMs demonstrate a rapid loss of corona proteins, while surface coating results in the retention of the corona signal after internalization for at least 24 h (varying with coating composition). Imaging with two-color super-resolution dSTORM revealed that the apparent TiO2 NM single agglomerates observed in diffraction-limited confocal microscopy are actually adjacent smaller agglomerates, and provides novel insights into the spatial arrangement of the initial and exchanged coronas adsorbed at the NM surfaces.
Collapse
Affiliation(s)
- Abdullah O. Khan
- Institute of Cardiovascular Science, College of Medical Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.O.K.); (D.P.); (S.G.T.)
| | - Alessandro Di Maio
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Emily J. Guggenheim
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (E.J.G.); (A.J.C.); (M.-F.A.B.-D.)
| | - Andrew J. Chetwynd
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (E.J.G.); (A.J.C.); (M.-F.A.B.-D.)
| | - Dan Pencross
- Institute of Cardiovascular Science, College of Medical Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.O.K.); (D.P.); (S.G.T.)
| | - Selina Tang
- Promethean Particles Ltd., 1-3 Genesis Park, Midland Way, Nottingham NG7 3EF, UK;
| | - Marie-France A. Belinga-Desaunay
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (E.J.G.); (A.J.C.); (M.-F.A.B.-D.)
| | - Steven G. Thomas
- Institute of Cardiovascular Science, College of Medical Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.O.K.); (D.P.); (S.G.T.)
| | - Joshua Z. Rappoport
- Boston College, Higgins 644A, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (E.J.G.); (A.J.C.); (M.-F.A.B.-D.)
- Correspondence:
| |
Collapse
|
82
|
Estimation of the Discharge of Sunscreens in Aquatic Environments of the Mexican Caribbean. ENVIRONMENTS 2020. [DOI: 10.3390/environments7020015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tourist growth in Quintana Roo, Mexico has brought with it an increase of pollution by sunscreens to aquatic ecosystems, which represents an environmental risk because of the chemical components of sunscreens that can negatively affect human health and aquatic ecosystems. However, the magnitude of pollution in aquatic environments is unknown. Consequently, we sought to estimate the contamination by sunscreens based on usage and tourism statistics. Our estimate indicates that the water in Quintana Roo will receive nearly 4367.25 tons of chemicals from sunscreens used by residents and tourists over a period of 18 years (2007 to 2025). On average, each tourist stays in Quintana Roo for 3.45 days, and 89.9% of these visitors apply sunscreen, although only the 83.7% engage in water activities. Additionally, 30.4% of residents engage in water activities for an average of 1.5 days/year. We considered direct sunscreen contaminant contamination, which occurs from the application of sunscreen and subsequent water activities, as well as indirect contamination, which occurs when people wash their skin with drinking water that then enters the drainage system. Our analysis indicated that the greatest contribution of sunscreen to the karst aquifer of Quintana Roo, is direct. Chemicals dissolved in water are a danger to aquatic life and human health.
Collapse
|
83
|
Sustainability Calculator: A Tool to Assess Sustainability in Cosmetic Products. SUSTAINABILITY 2020. [DOI: 10.3390/su12041437] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Assessing sustainability is extremely necessary and appears as an industrial need and requirement in order to facilitate decision making and to evaluate the impacts of existing strategies, products and technologies. Thus, the main goal of this research was to develop a sustainability calculator based on the opinion of experts that work in the different branches of the cosmetic industry, in order to cover the entire life cycle of a cosmetic product. A detailed survey in which all the steps of a cosmetic product life cycle were addressed, was designed and applied to cosmetic professionals. The data obtained with the survey was statistically analysed for the positive and negative impacts of each parameter on sustainability. The analysed data allowed the creation of a Microsoft Excel tool that mirrors the experts’ opinion. A proof of concept was also designed in order to prove the usefulness of the tool. The results show that there are no raw materials and/or packaging materials and practices, that can be considered 100% sustainable. However, with the appropriate strategies, it is possible to drastically decrease the impacts of any type of cosmetic product on sustainability. This is a promising tool that includes the three dimensions of sustainability in a simple, fast, objective and interactive way for the user. Its application will facilitate the work of the formulators and reduce the time of analysis and decision.
Collapse
|
84
|
Fastelli P, Renzi M. Exposure of key marine species to sunscreens: Changing ecotoxicity as a possible indirect effect of global warming. MARINE POLLUTION BULLETIN 2019; 149:110517. [PMID: 31421561 DOI: 10.1016/j.marpolbul.2019.110517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 07/29/2019] [Accepted: 08/11/2019] [Indexed: 05/20/2023]
Abstract
Sunscreens can induce ecotoxicological effects and may cause significant impacts in the aquatic ecosystem. In spite of that, ecotoxicological responses of key marine species to sunscreens are scarcely studied in Mediterranean ecosystems, and literature data are lacking. Furthermore, changes in water salinity induced by global warming could significantly affect the ecotoxicological responses of marine species exposed to sunscreens. This research focuses on the evaluation of ecotoxicological responses of Phaeodactylum tricornutum (algae), Corophium orientalis (macroinvertebrate), and Paracentrotus lividus (echinoderms) exposed to sunscreens, which include both chemical- and physical-based. This study, also, analyzes the changes in ecotoxicological responses of the tested species linked to increase in salinity. Results showed that salinity stress significantly increases the toxicity of sunscreens on the tested marine species. Physical-based sunscreens resulted in more toxicity at higher salinity than chemical-based ones toward C. orientalis and P. tricornutum. This study evidenced that risk classifications of sunscreens recorded under standard salinity conditions could be significantly different from that recorded in the natural environment under salinity stress. The collection of a complete dataset on the ecotoxicological effects of sunscreens on marine species tested under salinity stress could be useful to correctly weigh risks for the marine environment under possible future ecological changing scenarios following the global changing driver.
Collapse
Affiliation(s)
- Paolo Fastelli
- Bioscience Research Center, via Aurelia Vecchia, 32, 58015 Orbetello, Italy
| | - Monia Renzi
- Bioscience Research Center, via Aurelia Vecchia, 32, 58015 Orbetello, Italy.
| |
Collapse
|
85
|
Portrais KB, Stevens MA, Trask CN, Mundy SN, Szetela JM, Bleakley BH, Dzieweczynski TL. Exposure to the ultraviolet filter benzophenone-3 (BP3) interferes with social behaviour in male Siamese fighting fish. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
86
|
Pacheco-Juárez J, Montesdeoca-Esponda S, Torres-Padrón ME, Sosa-Ferrera Z, Santana-Rodríguez JJ. Analysis and occurrence of benzotriazole ultraviolet stabilisers in different species of seaweed. CHEMOSPHERE 2019; 236:124344. [PMID: 31310969 DOI: 10.1016/j.chemosphere.2019.124344] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/01/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
Benzotriazole ultraviolet stabilisers (BUVSs) are emerging compounds used in personal care products and in other products, such as plastics, to absorb UV light. BUVSs have been described as bioaccumulative, persistent and toxic, so it is of great interest to understand their presence in the environment. Some marine organisms, such as seaweeds, have been used as bioindicators of contamination in the environment because they are able to accumulate metals and organic compounds. We have selected seaweeds to develop a novel method to extract, identify and determine six BUVSs (UV P, UV 326, UV 327, UV 328, UV 329, UV 360) based on microwave assisted extraction (MAE) and ultra-high-performance liquid chromatography with diode array (UHPLC-DAD) and mass spectrometry confirmation (UHPLC-MS/MS). Under optimum conditions, recoveries ranging from 49.8 to 92.3% were obtained, while intra-day and inter-day precision values were lower than 10% for most of the compounds. Limits of detection in the ranges 1.79-4.58 and 0.89-1.76 ng g-1 dry weight (dw) were obtained for UHPLC-DAD and UHPLC-MS/MS, respectively. The optimised method was applied for the analysis of twelve species of seaweed sampled during four months in 2018 from Las Canteras beach (Gran Canaria, Spain), with the results confirmed by UHPLC-MS/MS. UV 360 was found in concentrations between 42.5 and 115 ng g-1 (dw) in five of the twelve species. Although the highest concentrations were found in Asparagopsis taxiformis, the presence of UV 360 in other species could suggest that seaweeds can act as potential bioindicators of the occurrence of these compounds in the coastal environment.
Collapse
Affiliation(s)
- Javier Pacheco-Juárez
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - Sarah Montesdeoca-Esponda
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain.
| | - María Esther Torres-Padrón
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - Zoraida Sosa-Ferrera
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - José Juan Santana-Rodríguez
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
87
|
Tsui MMP, Chen L, He T, Wang Q, Hu C, Lam JCW, Lam PKS. Organic ultraviolet (UV) filters in the South China sea coastal region: Environmental occurrence, toxicological effects and risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:26-33. [PMID: 31154117 DOI: 10.1016/j.ecoenv.2019.05.075] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/21/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
Organic ultraviolet (UV) filters are common ingredients of personal care products and occur ubiquitously in the aquatic environment; however, little is known about their distribution in and potential effects to the marine environment. This study reports the occurrence, toxicological effects and risk assessment of eleven commonly consumed UV filters in marine surface water collected from the South China Sea (SCS) coastal region. The concentrations of UV filters ranged from <MDL to 145 ng/L in the SCS, in which benzophenone-3, octocrylene and butyl methoxydibenzoylmethane were the most dominant compounds with their detection frequencies over 97%. Relatively higher levels of total UV filters were found near the highly industrialized and urbanized Pearl River Estuary (PRE) and the concentrations gradually decreased towards the SCS. In general, the environmental levels of UV filters were higher at the western marine waters in Hong Kong than the eastern marine waters. Significant negative correlations were observed between benzophenone-4 and water temperature, as well as ethylhexyl methoxycinnamate and salinity (P < 0.001; r < -0.5). Immobilization test of barnacle nauplius larvae (Balanus amphitrite) was conducted to assess the acute toxicity of organic UV filters to marine organisms. Benzophenone-8 and 4-methylbenzylidene camphor showed relatively higher toxicity with the 50% effect concentrations (EC50) of 2.2 and 3.9 mg/L, respectively. A preliminary risk assessment was conducted by the results obtained from our field and laboratory studies. Results showed that the risk to cause immobilization in barnacle nauplius larvae in associated with exposure to current levels of organic UV filters in the SCS was minimal.
Collapse
Affiliation(s)
- Mirabelle M P Tsui
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong SAR, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Tangtian He
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong SAR, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong SAR, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - James C W Lam
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong SAR, China; Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong SAR, China; Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
88
|
Rodríguez-Romero A, Ruiz-Gutiérrez G, Viguri JR, Tovar-Sánchez A. Sunscreens as a New Source of Metals and Nutrients to Coastal Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10177-10187. [PMID: 31411031 DOI: 10.1021/acs.est.9b02739] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Studies detailing the environmental impact of sunscreen products on coastal ecosystems are considered a high priority. In the present study, we have determined the release rate of dissolved trace metals (Al, Cd, Cu, Co, Mn, Mo, Ni, Pb, and Ti) and inorganic nutrients (SiO2, P-PO43-, and N-NO3-) from a commercial sunscreen in seawater, and the role of UV radiation in the mobilization of these compounds. Our results indicate that release rates are higher under UV light conditions for all compounds and trace metals except Pb. We have developed a kinetic model to establish the release pattern and the contribution to marine coastal waters of dissolved trace metals and inorganic nutrients from sunscreen products. We conservatively estimate that sunscreen from bathers is responsible for an increase of dissolved metals and nutrients ranging from 7.54 × 10-4 % for Ni up to 19.8% for Ti. Our results demonstrate that sunscreen products are a significant source of metals and inorganic nutrients to coastal waters. The normally low environmental concentrations of some elements (e.g., P) and the toxicity of others (e.g., Pb) could be having a serious adverse effect on marine ecology in the Mediterranean Sea. This risk must not be ignored.
Collapse
Affiliation(s)
- Araceli Rodríguez-Romero
- Green Engineering and Resources Group (GER), Department of Chemistry and Process & Resource Engineering, ETSIIT , University of Cantabria , Av. Castros s/n , 39005 Santander , Cantabria , Spain
| | - Gema Ruiz-Gutiérrez
- Green Engineering and Resources Group (GER), Department of Chemistry and Process & Resource Engineering, ETSIIT , University of Cantabria , Av. Castros s/n , 39005 Santander , Cantabria , Spain
| | - Javier R Viguri
- Green Engineering and Resources Group (GER), Department of Chemistry and Process & Resource Engineering, ETSIIT , University of Cantabria , Av. Castros s/n , 39005 Santander , Cantabria , Spain
| | - Antonio Tovar-Sánchez
- Department of Ecology and Coastal Management , Institute of Marine Sciences of Andalusia, ICMAN (CSIC) , Campus Río San Pedro , 11510 Puerto Real, Cádiz , Spain
| |
Collapse
|
89
|
Seo C, Shin J, Lee M, Lee W, Yoom H, Son H, Jang S, Lee Y. Elimination efficiency of organic UV filters during ozonation and UV/H 2O 2 treatment of drinking water and wastewater effluent. CHEMOSPHERE 2019; 230:248-257. [PMID: 31103871 DOI: 10.1016/j.chemosphere.2019.05.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
The efficiency of elimination of organic UV filters by ozonation and UV254nm/H2O2 processes was assessed and predicted in simulated treatments of sewage-impaired drinking water and wastewater effluent in bench-scale experiments. Second-order rate constants (k) for the reactions of the eight UV filters with ozone and OH were determined by quantum chemical calculations and competition kinetics methods, respectively. The UV filters containing phenolic (ethylhexyl-salicylate, homosalate, and benzophenone-3) and olefinic moieties (4-methylbenzylidene-camphor, benzyl-cinnamate, and 2-ethylhexyl-4-methoxycinnamate) showed high ozone reactivity (k ≥ 8 × 104 M-1s-1 at pH 7), while those without such electron-rich moieties (isoamyl-benzoate and benzophenone) were ozone-refractory. All the UV filters showed high OH reactivity (k ≥ 6.2 × 109 M-1s-1). In concordance with the rate constant information, the phenolic and olefinic UV filters were efficiently eliminated by ozone treatment, requiring specific ozone doses of <0.5 mgO3/mgDOC for ∼100% elimination. The UV filters were eliminated by ≤ 38% at a UV fluence of 1500 mJ/cm2 in the UV254nm-only treatment. Rapid photoisomerisation between the E and Z geometric isomers was observed for the olefinic UV filter, benzyl-cinnamate. The addition of H2O2 (10 mg/L) greatly enhanced the elimination of all UV filters, indicating that OH was the main contributor to their elimination in the UV254nm/H2O2 treatment. A chemical kinetics approach developed previously for ozonation and UV/H2O2 processes was shown to predict the elimination of the UV filters in the tested water matrices reasonably well, demonstrating that the chemical kinetics method can be used for a priori prediction of micropollutant elimination in oxidative treatment processes for potable reuse of municipal wastewater effluents.
Collapse
Affiliation(s)
- Changdong Seo
- Busan Water Quality Institute, Busan, Republic of Korea; Department of Bioenvironmental Energy, Pusan National University, Pusan, Republic of Korea
| | - Jaedon Shin
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Minju Lee
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Woongbae Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hoonsik Yoom
- Busan Water Quality Institute, Busan, Republic of Korea
| | - Heejong Son
- Busan Water Quality Institute, Busan, Republic of Korea
| | - Seongho Jang
- Department of Bioenvironmental Energy, Pusan National University, Pusan, Republic of Korea
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
| |
Collapse
|
90
|
Rodil R, Villaverde-de-Sáa E, Cobas J, Quintana JB, Cela R, Carro N. Legacy and emerging pollutants in marine bivalves from the Galician coast (NW Spain). ENVIRONMENT INTERNATIONAL 2019; 129:364-375. [PMID: 31150978 DOI: 10.1016/j.envint.2019.05.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
The presence of pollutants in estuary and oceanic systems is a global problem and a serious concern to human and environmental health. Usually, environmental monitoring studies consider classical persistent organic pollutants (POPs). However, the lists of POPs keep continuously growing and new POPs and other emerging pollutants should be considered in new monitoring programs. So, this study aimed to investigate the distribution and profile of classical POPs (polychlorinated biphenyl (PCBs), organochlorine pesticides (OCPs), and polycyclic aromatic hydrocarbons (PAHs)), new POPs and emerging pollutants (polybrominated diphenyl ethers (PBDEs), perfluorinated compounds (PFCs), novel halogenated flame retardants (NFRs) and UV filters) in bivalve mollusc samples (both raft-cultivated and wild mussel, Mytilus galloprovincialis; cockle, Cerestoderma edule; and clam, Ruditapes descussatus) collected in nine Galician Rias during the period February 2012 to February 2013. A predominance of PAHs (6.8-317 ng/g dry weight (dw)) followed by PCBs (0.47-261 ng/g dw), UV filters (1.4-157 ng/g dw), PFCs (0.53-62 ng/g dw), OCPs (0.07-29 ng/g dw), PBDEs (0.31-6.6 ng/g dw) and NFRs (0.07-3.2 ng/g dw) was found in the studied bivalves, being the UV filter octocrylene the compound found at the highest concentration (141 ng/g dw in a cockle sample), while the PAHs chrysene and benzo(b)fluoranthene were the compounds with the highest average concentration (20 and 14 ng/g dw, respectively). Inter-species, temporal and geographical variations on pollutants concentration were assessed by multifactorial analysis of variance. Statistically significant differences among the type of mollusc were observed for levels of organochlorinated and organobrominated pollutants considered (PCBs, OCPs and PBDEs), which were detected at higher concentrations in wild mussel. On the other hand, the main PFCs and UV filters showed a higher detection frequency in cockle samples. Location played significant role for PAHs, PCBs and the main PBDEs, being the most polluted rias those more industrialized and populated, i.e. A Coruña, Ferrol and/or Vigo. Finally, sampling timepoint was also a significant factor for most of the families considered but with different profiles. Thus, PAHs and PCBs showed higher concentrations in both February 2012 and 2013 and lower in August 2012, while the main PBDEs were measured at higher concentrations in November 2012 and lower in February 2012; and the main NFRs, PFCs and UV filters were present at lower levels in February 2013.
Collapse
Affiliation(s)
- Rosario Rodil
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA - Institute for Food Analysis and Research, Universidade de Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain.
| | - Eugenia Villaverde-de-Sáa
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA - Institute for Food Analysis and Research, Universidade de Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - Julio Cobas
- INTECMAR (Technological Institute for the Monitoring of the Marine Environment in Galicia), Peirao de Vilaxoán S/N, 36611 Vilagarcía de Arousa, Spain
| | - José Benito Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA - Institute for Food Analysis and Research, Universidade de Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - Rafael Cela
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA - Institute for Food Analysis and Research, Universidade de Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - Nieves Carro
- INTECMAR (Technological Institute for the Monitoring of the Marine Environment in Galicia), Peirao de Vilaxoán S/N, 36611 Vilagarcía de Arousa, Spain.
| |
Collapse
|
91
|
Tovar-Sánchez A, Sánchez-Quiles D, Rodríguez-Romero A. Massive coastal tourism influx to the Mediterranean Sea: The environmental risk of sunscreens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:316-321. [PMID: 30504030 DOI: 10.1016/j.scitotenv.2018.11.399] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 05/20/2023]
Abstract
The Mediterranean region is, by far, the leading tourism destination in the world, receiving more than 330 million tourists in 2016. This tourism is undertaken mostly for seaside holidays, and during the summer season concentrates between 46% and 69% of the total international arrivals; this is equivalent to a density of 2.9 tourists per meter of Mediterranean coast, or double this number taking into account the local/permanent population in addition. Previous studies have reported not only the presence of sunscreen in the various environmental compartments (water, sediments and biota) of the Mediterranean Sea (MS) and other regions, but also show that sunscreen products are toxic for marine biota and are accumulated and biomagnificated. Here, we highlight that the environmental risk of these chemicals is likely to be exacerbated in the MS due to the massive influx of tourists and its densely populated coasts, the basin's limited exchanges with the ocean, the high residence time of surface waters, and its oligotrophic waters.
Collapse
Affiliation(s)
- Antonio Tovar-Sánchez
- Department of Ecology and Coastal Management, Andalusian Institute for Marine Science, ICMAN (CSIC), Campus Universitario Río San Pedro, 11510 Puerto Real, Cádiz, Spain.
| | - David Sánchez-Quiles
- Department of Ecology and Coastal Management, Andalusian Institute for Marine Science, ICMAN (CSIC), Campus Universitario Río San Pedro, 11510 Puerto Real, Cádiz, Spain
| | - Araceli Rodríguez-Romero
- Green Engineering & Resources Research Group (GER), Department of Chemistry and Process & Resource, E.T.S.I.I.T. University of Cantabria, Avda. de los Castros, s/n., 39005 Santander, Spain
| |
Collapse
|
92
|
Montesdeoca-Esponda S, Álvarez-Raya C, Torres-Padrón ME, Sosa-Ferrera Z, Santana-Rodríguez JJ. Monitoring and environmental risk assessment of benzotriazole UV stabilizers in the sewage and coastal environment of Gran Canaria (Canary Islands, Spain). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:567-575. [PMID: 30597350 DOI: 10.1016/j.jenvman.2018.12.079] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/19/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Benzotriazole UV stabilizers (BUVSs) are emerging contaminants that are widely used in personal care products, such as cosmetics and sunscreens, to absorb ultraviolet light. These compounds have been described as bioaccumulative, pseudo-persistent and toxic; therefore, it is of great importance to investigate them and determine their presence and distribution in the environment. In this research, we performed a two-year monitoring study to identify six BUVS compounds (UV-P, UV-326, UV-327, UV-328, UV-329 and UV-360) in different environmental compartments from Gran Canaria (Canary Islands, Spain): influent and effluent from five wastewater treatment plants (WWTPs) and seawater and sediment samples from three marine areas influenced by sewage outfalls discharges from WWTPs. Two methods based on on-line solid-phase extraction and microwave-assisted extraction coupled with ultra-high-performance liquid chromatography with mass spectrometry detection were applied to quantify the analytes in liquid and solid samples, respectively. The target BUVSs were measured in sewage, coastal seawater and sediment samples in concentrations in the ranges of 13.12-1933 ng L-1, 67.01-2419 ng L-1 and 4.42-2162 ng kg-1 dry weight, respectively. The studied compounds exhibited different trends of occurrence in aqueous and solid samples due to their different coefficients of hydrophobicity. The majority of the positive samples belonged to the most touristic sampling location of the island. The estimated hazard quotient, HQ, revealed no risk from the target compounds at the measured concentrations levels.
Collapse
Affiliation(s)
- Sarah Montesdeoca-Esponda
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - Cristina Álvarez-Raya
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - María Esther Torres-Padrón
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - Zoraida Sosa-Ferrera
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - José Juan Santana-Rodríguez
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
93
|
Lindo-Atichati D, Montero P, Rodil R, Quintana JB, Miró M. Modeling Dispersal of UV Filters in Estuaries. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1353-1363. [PMID: 30632364 DOI: 10.1021/acs.est.8b03725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lagrangian ocean analysis, where virtual parcels of water are tracked through hydrodynamic fields, provides an increasingly popular framework to predict the dispersal of water parcels carrying particles and chemicals. We conduct the first direct test of Lagrangian predictions for emerging contaminants using (1) the latitude, longitude, depth, sampling date, and concentrations of UV filters in raft cultured mussel ( Mytilus galloprovincialis) of the estuary Ria de Arousa, Spain (42.5°N, 8.9°W); (2) a hydrodynamic numerical model at 300 m spatial resolution; and (3) a Lagrangian dispersion scheme to trace polluted water parcels back to pollution sources. The expected dispersal distances (mean ± SD) are 2 ± 1 km and the expected dispersal times (mean ± SD) are 6 ± 2 h. Remarkably, the probability of dispersal of UV filters from potential sources to rafts decreases 5-fold over 5 km. In addition to predicting dispersal pathways and times, this study also provides a framework for quantitative investigations of concentrations of emerging contaminants and source apportionment using turbulent diffusion. In the coastline, the ranges of predicted concentrations of the UV-filters 4-methylbenzylidene-camphor, octocrylene, and benzophenone-4 are 3.2 × 10-4 to 0.023 ng/mL, 2.3 × 10-5 to 0.009 ng/mL, and 5.6 × 10-4 to 0.013 ng/mL, respectively. At the outfalls of urban wastewater treatment plants these respective ranges increase to 8.9 × 10-4 to 0.07 ng/mL, 6.2 × 10-5 to 0.027 ng/mL, and 1.6 × 10-3 to 0.040 ng/mL.
Collapse
Affiliation(s)
- David Lindo-Atichati
- Department of Engineering and Environmental Science , The City University of New York , Staten Island , New York 10314 , United States
- Department of Earth and Planetary Sciences , American Museum of Natural History , New York , New York 10024 , United States
- Department of Applied Ocean Physics and Engineering , Woods Hole Oceanographic Institution , Woods Hole , Massachusetts 02543 , United States
| | - Pedro Montero
- INTECMAR , Xunta de Galicia , Vilagarcía de Arousa s/n, 36611 , Spain
| | - Rosario Rodil
- Department of Analytical Chemistry , University of Santiago de Compostela , Santiago de Compostela 15782 , Spain
| | - José Benito Quintana
- Department of Analytical Chemistry , University of Santiago de Compostela , Santiago de Compostela 15782 , Spain
| | - Manuel Miró
- FI-TRACE group, Department of Chemistry , University of the Balearic Islands , Carretera de Valldemossa km 7.5 , E-07122 Palma de Mallorca , Spain
| |
Collapse
|
94
|
Williamson CE, Neale PJ, Hylander S, Rose KC, Figueroa FL, Robinson SA, Häder DP, Wängberg SÅ, Worrest RC. The interactive effects of stratospheric ozone depletion, UV radiation, and climate change on aquatic ecosystems. Photochem Photobiol Sci 2019; 18:717-746. [DOI: 10.1039/c8pp90062k] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Summary of current knowledge about effects of UV radiation in inland and oceanic waters related to stratospheric ozone depletion and climate change.
Collapse
Affiliation(s)
| | | | - Samuel Hylander
- Centre for Ecology and Evolution in Microbial model Systems
- Linnaeus Univ
- Kalmar
- Sweden
| | - Kevin C. Rose
- Department of Biological Sciences
- Rensselaer Polytechnic Institute
- Troy
- USA
| | | | - Sharon A. Robinson
- Centre for Sustainable Ecosystem Solutions
- School of Earth
- Atmosphere and Life Sciences and Global Challenges Program
- University of Wollongong
- Australia
| | - Donat-P. Häder
- Department of Biology
- Friedrich-Alexander Universität
- Möhrendorf
- Germany
| | | | | |
Collapse
|
95
|
Xu F. Review of analytical studies on TiO 2 nanoparticles and particle aggregation, coagulation, flocculation, sedimentation, stabilization. CHEMOSPHERE 2018; 212:662-677. [PMID: 30173113 DOI: 10.1016/j.chemosphere.2018.08.108] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in industrial and consumer products. Comprehensive and accurate detection, characterization, and quantification of TiO2 NPs are important for understanding the specific property, behavior, fate, and potential risk of TiO2 NPs in natural and engineered environments. This review provides a summary of recent analytical studies of TiO2 NPs and their aggregation, coagulation, flocculation, sedimentation, stabilization under a wide range of conditions and processes. Much attention is paid on sample preparation prior to an analytical procedure, analysis of particle size, morphology, structure, state, chemical composition, surface properties, etc., via measurements of light scattering and zeta potential, microscopy, spectroscopy, and related techniques. Recently, some advanced techniques have also been explored to characterize TiO2 NPs and their behaviors in the environment. Many issues must be considered including distinction between engineered TiO2 NPs and their naturally occurring counterparts, lack of reference materials, interlaboratory comparison, when analyzing low concentrations of TiO2 NPs and their behaviors in complex matrices. No "ideal" technique has emerged as each technique has its own merits, biases, and limitations. Multi-method approach is highlighted to provide in-depth information. Improvements of analytical method for determination of TiO2 NPs have been recommended to be together with exposure modelers and ecotoxicologists for maximum individual and mutual benefit. Future work should focus on developing analytical technology with the advantages of being reliable, sensitive, selective, reproducible, and capable of in situ detection in complicated sample system.
Collapse
Affiliation(s)
- Fang Xu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, North Carolina, 27599-7431, USA.
| |
Collapse
|
96
|
Moldovan Z, Marincas O, Povar I, Lupascu T, Longree P, Rota JS, Singer H, Alder AC. Environmental exposure of anthropogenic micropollutants in the Prut River at the Romanian-Moldavian border: a snapshot in the lower Danube river basin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31040-31050. [PMID: 30187404 DOI: 10.1007/s11356-018-3025-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
The Prut River, the second longest tributary of the Danube river, was investigated for a wide range of anthropogenic organic pollutants to fill the data gap on environmental contamination in eastern European surface waters. In this study, the occurrence of a wide range of organic pollutants was measured along the transboundary Prut River, between Sculeni and Branza in 2010-2012. Using two different analytical methods, gas chromatography coupled to mass spectrometry and liquid chromatography coupled to high-resolution mass spectrometry, over 300 compounds were screened for and 88 compounds were determined in the Prut River. In general, the chemicals occurred at low levels. At the last sampling site upstream of the confluence with the Danube river at Branza, the highest average concentrations (≥ 100 ng L-1) were determined for the artificial sweetener acesulfame, the pharmaceuticals metformin, 4-acetamidoantipyrene, and 4,4,5,8-tetramethylchroman-2-ol, the antioxidants 2,4-di-tert-butylphenol, 3-tert-butyl-4-hydroxyanisol, and 3,5-di-tert-butyl-4-hydroxy-toluene, the personal care products HHCB (galaxolide), 4-phenyl-benzophenone, and octyl dimethyl-p-aminobenzoic acid, the industrial chemical diphenylsulfone, and the sterol cholesterol. Low concentrations of agricultural pesticides occurred in the catchment. At Branza, the total accumulated load of all measured compounds was calculated to be almost 19 kg day-1. In comparison to the Rhine River, the loads in the Prut, determined with same LC-HRMS method for the same set of analytes, were two orders of magnitude lower. Discharge of wastewater without proper treatment from the city of Iasi in the Jijia catchment (Romania) as well as from the city of Cahul (Moldova) revealed a distinct increase in concentrations and loads in the Prut at Frasinesti and Branza. Thus, an implementation of wastewater treatment capacities in the Prut River basin would considerably reduce the loads of micropollutants from urban point sources.
Collapse
Affiliation(s)
- Zaharie Moldovan
- National Institute for Research and Development of Isotopic and Molecular Technology, RO-3400, Cluj-Napoca, Romania
| | - Olivian Marincas
- National Institute for Research and Development of Isotopic and Molecular Technology, RO-3400, Cluj-Napoca, Romania
| | - Igor Povar
- Academy of Sciences of Moldova, Institute of Chemistry, MD-2028, Chisinau, Republic of Moldova
| | - Tudor Lupascu
- Academy of Sciences of Moldova, Institute of Chemistry, MD-2028, Chisinau, Republic of Moldova
| | - Philipp Longree
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland
| | - Jelena Simovic Rota
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland
| | - Heinz Singer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland
| | - Alfredo C Alder
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland.
| |
Collapse
|
97
|
Grant C. Climate Justice and Cultural Sustainability: The Case of Etëtung (Vanuatu Women’s Water Music). THE ASIA PACIFIC JOURNAL OF ANTHROPOLOGY 2018. [DOI: 10.1080/14442213.2018.1529194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
98
|
Li AJ, Law JCF, Chow CH, Huang Y, Li K, Leung KSY. Joint Effects of Multiple UV Filters on Zebrafish Embryo Development. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9460-9467. [PMID: 30066570 DOI: 10.1021/acs.est.8b02418] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The widespread use of UV filters has resulted in significant amounts of these chemicals appearing not only in the environment but also in organisms. This study first assessed the levels of nine UV filters in waters along the coast of Shenzhen, China, in tapwater, and in a nearby reservoir. UV filters were found to be high, in both winter and summer at most locations. Then, using zebrafish as a model, the influence of a UV filter mixture after dietary and aqueous exposure was assessed. After exposing artemia to three dominant UV filters at two levels and then feeding these artemia to zebrafish adults, concentrations in both were up to 4 times higher when exposed to the mixtures than when exposed to only a single UV filter. A short-term 25-day dietary exposure to the zebrafish adults did not appear to significantly influence early life stage development of the second generation; however, relatively long exposure over 47 days had significant adverse effects on embryo development. Aqueous exposure of fish embryos to mixtures of the three UV filters demonstrated a general trend of decreased heart/hatching rate as doses increased, coupled with significant changes in activities of catalase and malate dehydrogenase.
Collapse
Affiliation(s)
- Adela Jing Li
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong Special Administrative Region
- Key Laboratory of Tropical Agro-environment, Ministry of Agriculture of China , South China Agricultural University , Guangzhou , Guangdong 510642 , China
| | - Japhet Cheuk-Fung Law
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong Special Administrative Region
| | - Chi-Hang Chow
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong Special Administrative Region
| | - Yanran Huang
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong Special Administrative Region
| | - Kaibin Li
- Key Laboratory of Tropical and Subtropical Fish Breeding and Cultivation, Pearl River Fisheries Research Institute , Chinese Academy of Fishery Sciences , Guangzhou , Guangdong 510380 , China
| | - Kelvin Sze-Yin Leung
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong Special Administrative Region
- HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park , Shenzhen , Guangdong 518057 , China
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou , Guangdong 510632 , China
| |
Collapse
|
99
|
Castro M, Fernandes JO, Pena A, Cunha SC. Occurrence, profile and spatial distribution of UV-filters and musk fragrances in mussels from Portuguese coastline. MARINE ENVIRONMENTAL RESEARCH 2018; 138:110-118. [PMID: 29709294 DOI: 10.1016/j.marenvres.2018.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
The increasing production and consumption of Personal Care Products (PCPs), containing UV-filters and musk fragrances, has led to its widespread presence in the aquatic environment which can cause harmful effects to the aquatic organisms due to its intrinsic toxicity. This study aims to evaluate the degree of contamination of wild mussels along the entire Portuguese coastline, continually exposed in their habitat to different contaminants. For this purpose, approximately 1000 mussel specimens were sampled during one year in seven different locations, along the Portuguese coastline. Simultaneous quantification of five UV-filters and seven musks in mussels was achieved by a Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) extraction procedure combined with dispersive liquid-liquid microextraction (DLLME) followed by gas chromatography with mass spectrometry (GC-MS) analysis. Ten out of the twelve target analytes were found in the analysed samples, highlighting the presence of AHTN (tonalide), EHS (2-ethylhexylsalicylate) and EHMC (2-ethylhexyl 4-methoxycinnamate) in all positive samples (93%). Overall, the results obtained indicate a widespread contamination of wild mussels along Portuguese coastline, all over the year. UV-filters were more frequently detected (90%) than musk fragrances (70%) and also quantified at higher levels, with average total concentrations reaching 1155.8 ng/g (dw) against 397.7 ng/g (dw) respectively. A high correlation was observed between the most densely populated and industrialized locations and the higher levels of musks and UV-filters found. In other hand, lower levels of PCPs were found in protected areas. As expected, an increase in UV-filters levels was observed after the summer, likely due to the intense period of recreational activities.
Collapse
Affiliation(s)
- M Castro
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Departamento de Biologia Molecular, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - J O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - A Pena
- LAQV-REQUIMTE, Group of Bromatology, Pharmacognosy and Analytical Sciences, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal
| | - S C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
100
|
Knežević NŽ, Ilić N, D Okić V, Petrović R, Janaćković DOE. Mesoporous Silica and Organosilica Nanomaterials as UV-Blocking Agents. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20231-20236. [PMID: 29863843 DOI: 10.1021/acsami.8b04635] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Mesoporous silica nanoparticles (MSN) and periodic mesoporous organosilica nanoparticles containing bridging benzene (PMOBTB) and ethane (PMOBTE) moieties are synthesized, characterized, and evaluated for application in skin protection from UVA/UVB sun irradiation. Furthermore, the influence of surface functionalization with chelating 3-(2-aminoethylamino)propylsilane and Zn2+ ions on the UV-blocking ability of MSN is evaluated, along with the photostability and capability of the synthesized nanomaterials to carry avobenzone, a known UV-absorbing agent. The obtained results reveal promising characteristics of MSN and PMO materials with regard to their potential for sunscreen applications, which could be beneficial in terms of alleviating concerns about health and environmental hazards of sunscreen ingredients.
Collapse
Affiliation(s)
- Nikola Ž Knežević
- BioSense Institute , University of Novi Sad , Dr Zorana D̵ind̵ića 1 , Novi Sad 21000 , Serbia
| | - Nebojša Ilić
- Faculty of Technology and Metallurgy , University of Belgrade , Karnegijeva 4 , 11000 Belgrade , Serbia
| | - Veljko D Okić
- Faculty of Technology and Metallurgy , University of Belgrade , Karnegijeva 4 , 11000 Belgrade , Serbia
| | - Rada Petrović
- Faculty of Technology and Metallurgy , University of Belgrade , Karnegijeva 4 , 11000 Belgrade , Serbia
| | - D Ord E Janaćković
- Faculty of Technology and Metallurgy , University of Belgrade , Karnegijeva 4 , 11000 Belgrade , Serbia
| |
Collapse
|