51
|
Novel application of survival models for predicting microbial community transitions with variable selection for eDNA. Appl Environ Microbiol 2022; 88:e0214621. [PMID: 35138931 DOI: 10.1128/aem.02146-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Survival analysis is a prolific statistical tool in medicine for inferring risk and time to disease-related events. However, it is under-utilized in microbiome research to predict microbial community mediated events, partly due to the sparsity and high dimensional nature of the data. We advance the application of Cox proportional hazards (Cox PH) survival models to environmental DNA (eDNA) data with feature selection suitable for filtering irrelevant and redundant taxonomic variables. Selection methods are compared in terms of false positives, sensitivity, and survival estimation accuracy in simulation and in a real data setting to forecast harmful cyanobacterial blooms. A novel extension of a method for selecting microbial biomarkers with survival data (SuRFCox) reliably outperforms other methods. We determine Cox PH models with SuRFCox selected predictors are more robust to varied signal, noise, and data correlation structure. SuRFCox also yields the most accurate and consistent prediction of blooms according to cross-validated testing by year over eight different bloom seasons. Identification of common biomarkers among validated survival forecasts over changing conditions has clear biological significance. Survival models with such biomarkers inform risk assessment and provide insight into the causes of critical community transitions. Importance In this paper, we report on a novel approach of selecting microorganisms for model-based prediction of the time to critical microbially-modulated events (e.g., harmful algal blooms, clinical outcomes, community shifts, etc.). Our novel method for identifying biomarkers from large, dynamic communities of microbes has broad utility to environmental and ecological impact risk assessment and public health. Results will also promote theoretical and practical advancements relevant to the biology of specific organisms. To address the unique challenge posed by diverse environmental conditions and sparse microbes, we developed a novel method of selecting predictors for modelling time-to-event data. Competing methods for selecting predictors are rigorously compared to determine which is the most accurate and generalizable. Model forecasts are applied to show suitable predictors can precisely quantify the risk over time of biological events like harmful cyanobacterial blooms.
Collapse
|
52
|
Sun J, Liu K, Alvarez PJJ, Fu H, Zheng S, Yin D, Qu X. Rapid detoxification of Microcystin-LR by selective catalytic hydrogenation of the Adda moiety using TiO 2-supported Pd catalysts. CHEMOSPHERE 2022; 288:132641. [PMID: 34687684 DOI: 10.1016/j.chemosphere.2021.132641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/02/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
The hepatotoxicity of Microcystin-LR (MC-LR) is mainly caused by its Adda moiety. In this study, we used TiO2-supported Pd catalysts to selectively hydrogenate the CC bonds in the Adda moiety, achieving rapid detoxification of MC-LR in water under ambient conditions. MC-LR was removed within 5 min by catalytic hydrogenation on Pd(1.0)/TiO2 with a catalyst dosage normalized rate constant of 1.3 × 10-2 L mgcat-1 min-1, significantly more efficient than other catalytic treatment methods. The reactions proceeded in a highly selective manner towards catalytic hydrogenation at the CC bond of the Mdha moiety and subsequently the conjugated double bond of the Adda moiety, yielding two intermediates and one final product. Upon catalytic hydrogenation for 30 min on Pd(0.07)/TiO2, the toxicity of MC-LR (assessed by protein phosphatase 2A activity assay) drastically decreased by 90.8%, demonstrating effective detoxification. The influence of catalyst support, Pd content, initial MC-LR concentration, reaction pH, and catalytic stability were examined. Surface adsorption and the cationic Pd played a crucial role in the reaction kinetics. Our results suggest that catalytic hydrogenation is a highly effective and safe strategy for detoxifying MC-LR by selective reactions.
Collapse
Affiliation(s)
- Jingya Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, China
| | - Kun Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, United States
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, China
| | - Shourong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, China
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, 210023, China.
| |
Collapse
|
53
|
Zhang H, Zong R, He H, Huang T. Effects of hydrogen peroxide on Scenedesmus obliquus: Cell growth, antioxidant enzyme activity and intracellular protein fingerprinting. CHEMOSPHERE 2022; 287:132185. [PMID: 34500328 DOI: 10.1016/j.chemosphere.2021.132185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen peroxide (H2O2) is an environmental-friendly algicide and it is widely used to control algal blooms in aquatic ecosystems. However, the response of algal cell metabolic characteristics and intracellular protein profile under H2O2 stress is still not well understood. In the present study, the green alga Scenedesmus obliquus was exposed to different concentrations of H2O2 (0, 2, 6, 8 and 10 mg L-1) to evaluate the changes in algal morphological, physiological, and proteomic features to H2O2 exposure. The results showed that 8 mg L-1 of H2O2 could effectively inhibit the cell growth and photosynthetic activity of S. obliquus including chlorophyll-a content and chlorophyll fluorescence parameters. The increased activities of superoxide dismutase (SOD) and catalase (CAT) observed in this study indicate that cells exposure to H2O2 caused oxidative stress. The metabolic activity of S. obliquus was significantly decreased by H2O2 treatment. In terms of proteomic analysis, 251 differentially expressed proteins (DEPs) were successfully identified. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed significant protein enrichment in the metabolic pathways, photosynthesis, ascorbic acid, and alginate metabolism and phenylpropane biosynthesis of S. obliquus. The analysis of protein-protein interaction system shows that the pathways of photosynthesis and metabolic pathways of S. obliquus were essential to resist oxidative stress. Taking together, these results shed new lights on exploring the cell physiological metabolism and intracellular protein mechanisms of H2O2 inhibition on algal blooms.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Rongrong Zong
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Huiyan He
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
54
|
Zhao S, He W, He P, Li K. Comparison of planktonic bacterial communities indoor and outdoor of aquaculture greenhouses. J Appl Microbiol 2021; 132:2605-2612. [PMID: 34919750 DOI: 10.1111/jam.15414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/13/2021] [Indexed: 01/28/2023]
Abstract
AIMS Greenhouses are widely used in agriculture systems to shield crops from unfavourable weather to achieve a year-round food supply. In recent years, aquaculture ponds have been placed in greenhouses in many regions. The impacts of the greenhouses on planktonic bacterial communities should be uncovered. METHODS AND RESULTS In this study, two polyolefin film greenhouses accommodating aquaculture ponds were established and planktonic bacterial communities were compared from samples taken in aquaculture ponds inside and outside the greenhouses, using Illumina 16S rRNA sequencing. CONCLUSIONS The results showed there were significant variations in bacterial community structure between indoor and outdoor samples. Obvious differences were also found between two greenhouses, whereas the differences in indoor samples were weaker than outdoor samples. Significantly higher temperature (in summer), pH and permanganate index were found in the outdoor pond samples. Results of redundancy analysis showed that Proteobacteria and Bacteroidota were positively related to the dissolved oxygen, total nitrogen and total phosphorus, and Actinobacteriota were positively related to pH, temperature and permanganate index, whereas Cyanobacteria were positively related to the salinity, conductivity, total dissolved solids and ammonia nitrogen. SIGNIFICANCE AND IMPACT OF THE STUDY The results of this study revealed that greenhouses significantly influenced planktonic bacterial communities in aquaculture ponds. This study is expected to provide a scientific basis for aquaculture in greenhouses.
Collapse
Affiliation(s)
- Shuang Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Wenhui He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Peimin He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Kejun Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
55
|
Pivokonsky M, Kopecka I, Cermakova L, Fialova K, Novotna K, Cajthaml T, Henderson RK, Pivokonska L. Current knowledge in the field of algal organic matter adsorption onto activated carbon in drinking water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149455. [PMID: 34364285 DOI: 10.1016/j.scitotenv.2021.149455] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
The increasing occurrence of algal and cyanobacterial blooms and the related formation of algal organic matter (AOM) is a worldwide issue that endangers the quality of freshwater sources and affects water treatment processes. The associated problems involve the production of toxins or taste and odor compounds, increasing coagulant demand, inhibition of removal of other polluting compounds, and in many cases, AOM acts as a precursor of disinfection by-products. Previous research has shown that for sufficient AOM removal, the conventional drinking water treatment based on coagulation/flocculation must be often accompanied by additional polishing technologies such as adsorption onto activated carbon (AC). This state-of-the-art review is intended to serve as a summary of the most current research on the adsorption of AOM onto AC concerning drinking water treatment. It summarizes emerging trends in this field with an emphasis on the type of AOM compounds removed and on the adsorption mechanisms and influencing factors involved. Additionally, also the principles of competitive adsorption of AOM and other organic pollutants are elaborated. Further, this paper also synthesizes previous knowledge on combining AC adsorption with other treatment techniques for enhanced AOM removal in order to provide a practical resource for researchers, water treatment plant operators and engineers. Finally, research gaps regarding the AOM adsorption onto AC are identified, including, e.g., adsorption of AOM residuals recalcitrant to coagulation/flocculation, suitability of pre-oxidation of AOM prior to the AC adsorption, relationships between the solution properties and AOM adsorption behaviour, or AOM as a cause of competitive adsorption. Also, focus should be laid on continuous flow column experiments using water with multi-component composition, because these would greatly contribute to transferring the theoretical knowledge to practice.
Collapse
Affiliation(s)
- Martin Pivokonsky
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 166 12 Prague 6, Czech Republic.
| | - Ivana Kopecka
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 166 12 Prague 6, Czech Republic
| | - Lenka Cermakova
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 166 12 Prague 6, Czech Republic
| | - Katerina Fialova
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 166 12 Prague 6, Czech Republic
| | - Katerina Novotna
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 166 12 Prague 6, Czech Republic
| | - Tomas Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Rita K Henderson
- School of Chemical Engineering, The University of New South Wales, Sydney 2052, Australia
| | - Lenka Pivokonska
- Institute of Hydrodynamics of the Czech Academy of Sciences, Pod Patankou 30/5, 166 12 Prague 6, Czech Republic
| |
Collapse
|
56
|
García Y, Vera M, Giraldo JD, Garrido-Miranda K, Jiménez VA, Urbano BF, Pereira ED. Microcystins Detection Methods: A Focus on Recent Advances Using Molecularly Imprinted Polymers. Anal Chem 2021; 94:464-478. [PMID: 34874146 DOI: 10.1021/acs.analchem.1c04090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yadiris García
- Departamento de Química Analítica e Inorgánica Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| | - Myleidi Vera
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| | - Juan D Giraldo
- Instituto de Acuicultura, Universidad Austral de Chile, Sede Puerto Montt, Los Pinos s/n Balneario Pelluco, 5480000 Puerto Montt, Chile
| | - Karla Garrido-Miranda
- Center of Waste Management and Bioenergy, Scientific and Technological Bioresource Nucleus, BIOREN-UFRO, Universidad de La Frontera, P.O. Box 54-D, 4811230 Temuco, Chile
| | - Verónica A Jiménez
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Sede Concepción, Autopista Concepción-Talcahuano, 4260000 Talcahuano, Chile
| | - Bruno F Urbano
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| | - Eduardo D Pereira
- Departamento de Química Analítica e Inorgánica Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, 4030000 Concepción, Chile
| |
Collapse
|
57
|
Li J, Feng M, Yu X. Rapid detection of mcyG gene of microcystins producing cyanobacteria in water samples by recombinase polymerase amplification combined with lateral flow strips. JOURNAL OF WATER AND HEALTH 2021; 19:907-917. [PMID: 34874899 DOI: 10.2166/wh.2021.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nowadays, cyanobacteria blooms and microcystins (MCs) pollution are threatening water safety and public health. In this study, a rapid detection method was established for detecting MCs producing cyanobacteria. The MC synthesis gene mcyG was measured through recombinase polymerase amplification combined with lateral flow strips (LF-RPA) technology. The target gene mcyG was amplified at a temperature range of 37-45 °C, and the amplification time to detect mcyG was only 15 min at 37 °C. The optimal reaction conditions were confirmed using single dependent variable experiments, suggesting that the best probe dosage for 50 μL of the reaction mixture was 0.2 μL, the best dilution ratio of products was 1/100, and the best loading volume was 10 μL. The specificity test proved that the LF-RPA assay could distinguish MCs producing cyanobacteria from nontoxic algae well. Within 35 min of amplification time, the detection limit of the LF-RPA assay was 103 copies/mL mcyG and 104 cells/mL Microcystis aeruginosa FACHB-905. Overall, the LF-RPA assay could detect MCs producing cyanobacteria in water samples quickly and accurately, and it has a great promise to be applied for monitoring the MCs producing cyanobacteria blooms in natural waters.
Collapse
Affiliation(s)
- Jingjing Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361005, China E-mail:
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361005, China E-mail:
| |
Collapse
|
58
|
Li K, Zhao S, Guan W, Li KJ. Planktonic bacteria in white shrimp (Litopenaeus vannamei) and channel catfish (Letalurus punetaus) aquaculture ponds in a salt-alkaline region. Lett Appl Microbiol 2021; 74:212-219. [PMID: 34778977 DOI: 10.1111/lam.13600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/01/2021] [Accepted: 10/26/2021] [Indexed: 01/01/2023]
Abstract
Aquaculture in salt-alkaline regions is encouraged in China, and culture of many aquatic species has been introduced into these areas. In this study, we cultured two species, white shrimp (Litopenaeus vannamei) and channel catfish (Letalurus punetaus) separately in aquaculture ponds in a salt-alkaline region in northwest China and assessed the impacts of the aquaculture operations on the planktonic bacterial community in the culture ponds. Culture of both species decreased the planktonic bacterial diversity and altered the bacterial community structure in the aquaculture ponds compared with the source water. Among the 10 dominant bacterial phyla, 8 were significantly correlated with environmental parameters; the exception was Actinobacteriota, the most dominant phylum, and Firmicutes. Proteobacteria and Bacteroidota abundances showed significant positive correlations with alkalinity, whereas Patescibacteria, Cyanobacteria, Planctomycetota, and Verrucomicrobiota abundance were positively correlated with salinity. Linear regression analysis showed that alkalinity was positively correlated with bacterial beta diversity and salinity was negatively correlated with that. In addition, white shrimp aquaculture significantly lowered the alkalinity, which suggests that culture of this species in inland salt-alkaline regions is a potential dealkalization solution.
Collapse
Affiliation(s)
- K Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - S Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - W Guan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - K J Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
59
|
Abdallah MF, Van Hassel WHR, Andjelkovic M, Wilmotte A, Rajkovic A. Cyanotoxins and Food Contamination in Developing Countries: Review of Their Types, Toxicity, Analysis, Occurrence and Mitigation Strategies. Toxins (Basel) 2021; 13:786. [PMID: 34822570 PMCID: PMC8619289 DOI: 10.3390/toxins13110786] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/27/2022] Open
Abstract
Cyanotoxins have gained global public interest due to their potential to bioaccumulate in food, which threatens human health. Bloom formation is usually enhanced under Mediterranean, subtropical and tropical climates which are the dominant climate types in developing countries. In this context, we present an up-to-date overview of cyanotoxins (types, toxic effects, analysis, occurrence, and mitigation) with a special focus on their contamination in (sea)food from all the developing countries in Africa, Asia, and Latin America as this has received less attention. A total of 65 publications have been found (from 2000 until October 2021) reporting the contamination by one or more cyanotoxins in seafood and edible plants (five papers). Only Brazil and China conducted more research on cyanotoxin contamination in food in comparison to other countries. The majority of research focused on the detection of microcystins using different analytical methods. The detected levels mostly surpassed the provisional tolerable daily intake limit set by the World Health Organization, indicating a real risk to the exposed population. Assessment of cyanotoxin contamination in foods from developing countries still requires further investigations by conducting more survey studies, especially the simultaneous detection of multiple categories of cyanotoxins in food.
Collapse
Affiliation(s)
- Mohamed F. Abdallah
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Wannes H. R. Van Hassel
- Sciensano, Chemical and Physical Health Risks, Organic Contaminants and Additives, Leuvensesteenweg 17, 3080 Tervuren, Belgium;
| | - Mirjana Andjelkovic
- Sciensano Research Institute, Chemical and Physical Health Risks, Risk and Health Impact Assessment, Ju-liette Wytsmanstreet 14, 1050 Brussels, Belgium;
| | - Annick Wilmotte
- BCCM/ULC Cyanobacteria Collection, InBios-Centre for Protein Engineering, Université de Liège, 4000 Liège, Belgium;
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
60
|
Li X, Zeng J, Yu X. Different response pattern of cyanobacteria at development and maintenance stage to potassium permanganate oxidation. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126492. [PMID: 34323717 DOI: 10.1016/j.jhazmat.2021.126492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Occurrence of successive cyanobacterial blooms in source waters can continuously impair drinking water quality. Previous studies have separately investigated potassium permanganate (KMnO4) to treat high-viability cyanobacteria at just one stage of either development or maintenance. However, maintenance stage exhibited significantly higher cell-density and extracellular organic matters (EOMs) than development stage, which may result in a different KMnO4 oxidation pattern. In this study, kinetics of oxidant decay, membrane integrity loss, and toxin degradation of high-viability cyanobacteria at both stages were compared. Results showed that cyanobacteria at maintenance stage became more resistant to KMnO4 oxidation than that at development stage, since elevated cell-density and more proteins involved in EOMs resulted in lower oxidant exposure at this stage. Meanwhile, elevated cyanobacterial biomass became the main competitors to decrease toxin degradation efficiency at maintenance stage, leading to incapacity to degrade extracellular toxin to below safety guideline of 1 μg L-1. Consequently, comparing with the best strategy for development stage (6 mg min L-1, no membrane damage), a higher oxidant exposure (12 mg min L-1) was recommended to treat cyanobacteria at maintenance stage even with slight membrane damage (19%), since it degraded extracellular toxin to below safety guideline and achieved the highest removal ratio of EOMs. Overall, this study demonstrated that stage of cyanobacteria can strongly affect KMnO4 oxidation pattern, and it is necessary for water supplies to optimize KMnO4 treatments depending on bloom stage.
Collapse
Affiliation(s)
- Xi Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Jie Zeng
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8540, Japan.
| | - Xin Yu
- College of The Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
61
|
Akyol Ç, Ozbayram EG, Accoroni S, Radini S, Eusebi AL, Gorbi S, Vignaroli C, Bacchiocchi S, Campacci D, Gigli F, Farina G, Albay M, Fatone F. Monitoring of cyanobacterial blooms and assessing polymer-enhanced microfiltration and ultrafiltration for microcystin removal in an Italian drinking water treatment plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117535. [PMID: 34119863 DOI: 10.1016/j.envpol.2021.117535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/22/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
The water intake of a drinking water treatment plant (DWTP) in Central Italy was monitored over six bloom seasons for cyanotoxin severity, which supplies drinking water from an oligo-mesotrophic lake with microcystin levels up to 10.3 μg/L. The historical data showed that the water temperature did not show extreme/large seasonal variation and it was not correlated either with cyanobacterial growth or microcystin concentration. Among all parameters, the cyanobacteria growth was negatively correlated with humidity and manganese and positively correlated with atmospheric temperature. No significant correlation was found between microcystin concentration and the climatic parameters. Polymer(chitosan)-enhanced microfiltration (PEMF) and ultrafiltration (PEUF) were further tested as an alternative microcystin removal approach from dense cyanobacteria-rich flows. The dominant cyanobacteria in the water intake, Planktothrix rubescens, was isolated and enriched to simulate cyanobacterial blooms in the lake. The PEMF and PEUF were separately applied to enriched P. rubescens culture (PC) (microcystin = 1.236 μg/L) as well as to the sand filter backwash water (SFBW) of the DWTP where microcystin concentration was higher than 12 μg/L. The overall microcystin removal rates from the final effluent of PC (always <0.15 μg/L) were between 90.1-94.7% and 89.5-95.4% using 4 and 20 mg chitosan/L, respectively. Meanwhile, after the PEMF and PEUF of SFBW, the final effluent contained only 0.099 and 0.057 μg microcystin/L with an overall removal >99%. The presented results are the first from the application of chitosan to remove P. rubescens as well as the implementation of PEMF and PEUF on SFBW to remove cyanobacterial cells and associated toxins.
Collapse
Affiliation(s)
- Çağrı Akyol
- Department of Science and Engineering of Materials, Environment and Urban Planning-SIMAU, Marche Polytechnic University, 60131, Ancona, Italy
| | - E Gozde Ozbayram
- Department of Marine and Freshwater Resources Management, Faculty of Aquatic Sciences, Istanbul University, Fatih, 34134, Istanbul, Turkey.
| | - Stefano Accoroni
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy; Istituto Zooprofilattico Umbria e Marche, Via Cupa di Posatora, 3, 60100, Ancona, Italy
| | - Serena Radini
- Department of Science and Engineering of Materials, Environment and Urban Planning-SIMAU, Marche Polytechnic University, 60131, Ancona, Italy
| | - Anna Laura Eusebi
- Department of Science and Engineering of Materials, Environment and Urban Planning-SIMAU, Marche Polytechnic University, 60131, Ancona, Italy
| | - Stefania Gorbi
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Carla Vignaroli
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Simone Bacchiocchi
- Istituto Zooprofilattico Umbria e Marche, Via Cupa di Posatora, 3, 60100, Ancona, Italy
| | - Debora Campacci
- Istituto Zooprofilattico Umbria e Marche, Via Cupa di Posatora, 3, 60100, Ancona, Italy
| | - Fabiola Gigli
- Acquambiente Marche S.r.l., Via Recanatese 27/I, 60022, Castelfidardo, Italy
| | - Giuseppe Farina
- Acquambiente Marche S.r.l., Via Recanatese 27/I, 60022, Castelfidardo, Italy
| | - Meric Albay
- Department of Marine and Freshwater Resources Management, Faculty of Aquatic Sciences, Istanbul University, Fatih, 34134, Istanbul, Turkey
| | - Francesco Fatone
- Department of Science and Engineering of Materials, Environment and Urban Planning-SIMAU, Marche Polytechnic University, 60131, Ancona, Italy
| |
Collapse
|
62
|
Li X, Zeng J, Yu X. Potassium permanganate as a promising pre-oxidant to treat low-viability cyanobacteria and associated removal of cyanotoxins and extracellular organic matters. WATER RESEARCH 2021; 202:117353. [PMID: 34246989 DOI: 10.1016/j.watres.2021.117353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/25/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
Cell-viability of cyanobacteria declines from development to decay stage during a successive bloom. Potassium permanganate (KMnO4) has demonstrated to be a superior pre-oxidant to treat high-viability cyanobacteria compared to other common oxidants (e.g., chlorine), but whether it is feasible to treat low-viability cyanobacteria is unknown. Here, effects of KMnO4 on membrane integrity, cyanotoxin fate and extracellular organic matters (EOMs) removal of high- and low-viability cyanobacteria were compared. Results showed that cell-viability of cyanobacteria could affect oxidant decay (kdecay), membrane damage (kloss), and cyanotoxins release (ki) and degradation (ke) during KMnO4 oxidation, similar to chlorination. However, unlike chlorination, initial low dosages of KMnO4 (0.5 and 1 mg L-1) minimized membrane damage for low-viability cyanobacteria (< 27%), and continuously decrease extracellular cyanotoxins, extracellular organic matters (EOMs), and aromatic compounds to some degrees (P<0.05). High dosages of KMnO4 (> 2 mg L-1) caused severe membrane destruction (> 89%) for low-viability cyanobacteria, leading to a fast increase of extracellular cyanotoxins within 1 h. However, total/extracellular cyanotoxins were oxidized to below the safety guideline of 1 μg L-1 after being dosed with sufficient oxidant exposure. EOMs and aromatic compounds were also reduced by 5-18% (P<0.05). Additionally, KMnO4-assisted coagulation significantly improved the removal of low-viability cyanobacteria (2-5 fold). Consequently, KMnO4 could be a promising pre-oxidant to treat low-viability cyanobacteria at decay stage of a successive bloom.
Collapse
Affiliation(s)
- Xi Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Jie Zeng
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8540, Japan.
| | - Xin Yu
- College of The Environment & Ecology, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
63
|
Kim MS, Kim KH, Hwang SJ, Lee TK. Role of Algal Community Stability in Harmful Algal Blooms in River-Connected Lakes. MICROBIAL ECOLOGY 2021; 82:309-318. [PMID: 33469721 DOI: 10.1007/s00248-020-01676-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Harmful algal blooms (HABs) in freshwater produce toxins that pose a threat to public health and aquatic ecosystems. Although algal communities have been studied globally to understand the characteristics of HABs, the occurrence of toxic cyanobacteria in freshwater ecosystems is rarely understood. Unlike abiotic factors, the effects of biotic factors (e.g., interaction, dominance, and variability) on the occurrence of toxic cyanobacteria were overlooked due to the intricate interaction of microorganisms under different environmental conditions. To address this problem, a comprehensive ecological concept stability, which encompasses variations in species or communities due to changing biological interactions or environmental fluctuations, was applied in this study. The algal communities in six river-connected lakes in the North Han River, South Korea, were classified into high and low stability groups. The algal species belonging to diatoms and green algae groups played a major role in the interaction within the algal community in highly stable lakes, but the frequency of Microcystis led the interaction within the algal community at the center of the network in low-stability lakes. These results indicate that the interaction within the cluster is easily changed by Microcystis, where the abundance explosively increases in lakes with low algal community stability. Water quality is more strongly associated with the occurrence of toxic cyanobacteria (Microcystis and Dolichospermum). In low-stability lakes, more diverse water quality indicators are correlated with the development of toxic algae than in high-stability lakes. This paper is the first report on the importance of algal community stability in freshwater in the occurrence of toxic cyanobacteria and offers a new perspective on Microcystis monitoring and management.
Collapse
Affiliation(s)
- Min Sung Kim
- Department of Environmental Engineering, College of Health Science, Yonsei University, Gangwon, 26493, South Korea
- Bio-Chemical Analysis Group, Center for Research Equipment, Korea Basic Science Institute, Cheongju, 28119, South Korea
| | - Keon Hee Kim
- Department of Environmental Health Science, College of Life Science, Konkuk University, Seoul, 05029, South Korea
| | - Soon Jin Hwang
- Department of Environmental Health Science, College of Life Science, Konkuk University, Seoul, 05029, South Korea
| | - Tae Kwon Lee
- Department of Environmental Engineering, College of Health Science, Yonsei University, Gangwon, 26493, South Korea.
| |
Collapse
|
64
|
Chaffin JD, Bratton JF, Verhamme EM, Bair HB, Beecher AA, Binding CE, Birbeck JA, Bridgeman TB, Chang X, Crossman J, Currie WJS, Davis TW, Dick GJ, Drouillard KG, Errera RM, Frenken T, MacIsaac HJ, McClure A, McKay RM, Reitz LA, Domingo JWS, Stanislawczyk K, Stumpf RP, Swan ZD, Snyder BK, Westrick JA, Xue P, Yancey CE, Zastepa A, Zhou X. The Lake Erie HABs Grab: A binational collaboration to characterize the western basin cyanobacterial harmful algal blooms at an unprecedented high-resolution spatial scale. HARMFUL ALGAE 2021; 108:102080. [PMID: 34588116 PMCID: PMC8682807 DOI: 10.1016/j.hal.2021.102080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 05/12/2023]
Abstract
Monitoring of cyanobacterial bloom biomass in large lakes at high resolution is made possible by remote sensing. However, monitoring cyanobacterial toxins is only feasible with grab samples, which, with only sporadic sampling, results in uncertainties in the spatial distribution of toxins. To address this issue, we conducted two intensive "HABs Grabs" of microcystin (MC)-producing Microcystis blooms in the western basin of Lake Erie. These were one-day sampling events during August of 2018 and 2019 in which 100 and 172 grab samples were collected, respectively, within a six-hour window covering up to 2,270 km2 and analyzed using consistent methods to estimate the total mass of MC. The samples were analyzed for 57 parameters, including toxins, nutrients, chlorophyll, and genomics. There were an estimated 11,513 kg and 30,691 kg of MCs in the western basin during the 2018 and 2019 HABs Grabs, respectively. The bloom boundary poses substantial issues for spatial assessments because MC concentration varied by nearly two orders of magnitude over very short distances. The MC to chlorophyll ratio (MC:chl) varied by a factor up to 5.3 throughout the basin, which creates challenges for using MC:chl to predict MC concentrations. Many of the biomass metrics strongly correlated (r > 0.70) with each other except chlorophyll fluorescence and phycocyanin concentration. While MC and chlorophyll correlated well with total phosphorus and nitrogen concentrations, MC:chl correlated with dissolved inorganic nitrogen. More frequent MC data collection can overcome these issues, and models need to account for the MC:chl spatial heterogeneity when forecasting MCs.
Collapse
Affiliation(s)
- Justin D Chaffin
- F.T. Stone Laboratory and Ohio Sea Grant, The Ohio State University, 878 Bayview Ave. P.O. Box 119, Put-In-Bay, OH 43456, USA.
| | | | | | - Halli B Bair
- F.T. Stone Laboratory and Ohio Sea Grant, The Ohio State University, 878 Bayview Ave. P.O. Box 119, Put-In-Bay, OH 43456, USA
| | - Amber A Beecher
- Lake Erie Center, University of Toledo, 6200 Bayshore Rd., Oregon, OH 43616, USA
| | - Caren E Binding
- Environment and Climate Change Canada, Canada Centre for Inland Waters, 867 Lakeshore Road, Burlington, Ontario L7S1A1, Canada
| | - Johnna A Birbeck
- Lumigen Instrument Center, Wayne State University, 5101Cass Ave., Detroit, MI 48202, USA
| | - Thomas B Bridgeman
- Lake Erie Center, University of Toledo, 6200 Bayshore Rd., Oregon, OH 43616, USA
| | - Xuexiu Chang
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave., Windsor, Ontario N9B 3P4, Canada; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, PR China
| | - Jill Crossman
- School of the Environment, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| | - Warren J S Currie
- Fisheries and Oceans Canada, Canada Centre for Inland Waters, 867 Lakeshore Rd., Burlington, Ontario L7S 1A1, Canada
| | - Timothy W Davis
- Biological Sciences, Bowling Green State University, Life Sciences Building, Bowling Green, OH 43402, United States
| | - Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, 2534 North University Building, 1100 North University Avenue, Ann Arbor, MI 48109-1005, USA
| | - Kenneth G Drouillard
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave., Windsor, Ontario N9B 3P4, Canada
| | - Reagan M Errera
- Great Lakes Environmental Research Laboratory, National Oceanic and Atmospheric Administration, Ann Arbor, MI 48108, USA
| | - Thijs Frenken
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave., Windsor, Ontario N9B 3P4, Canada
| | - Hugh J MacIsaac
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave., Windsor, Ontario N9B 3P4, Canada
| | - Andrew McClure
- Division of Water Treatment, City of Toledo, Toledo, OH 43605, USA
| | - R Michael McKay
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave., Windsor, Ontario N9B 3P4, Canada
| | - Laura A Reitz
- Biological Sciences, Bowling Green State University, Life Sciences Building, Bowling Green, OH 43402, United States
| | | | - Keara Stanislawczyk
- F.T. Stone Laboratory and Ohio Sea Grant, The Ohio State University, 878 Bayview Ave. P.O. Box 119, Put-In-Bay, OH 43456, USA
| | - Richard P Stumpf
- National Ocean Service, National Oceanic and Atmospheric Administration, 1305 East West Highway, Silver Spring, MD 20910, USA
| | - Zachary D Swan
- Lake Erie Center, University of Toledo, 6200 Bayshore Rd., Oregon, OH 43616, USA
| | - Brenda K Snyder
- Lake Erie Center, University of Toledo, 6200 Bayshore Rd., Oregon, OH 43616, USA
| | - Judy A Westrick
- Lumigen Instrument Center, Wayne State University, 5101Cass Ave., Detroit, MI 48202, USA
| | - Pengfei Xue
- Civil and Environmental Engineering, Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931, USA
| | - Colleen E Yancey
- Department of Earth and Environmental Sciences, University of Michigan, 2534 North University Building, 1100 North University Avenue, Ann Arbor, MI 48109-1005, USA
| | - Arthur Zastepa
- Environment and Climate Change Canada, Canada Centre for Inland Waters, 867 Lakeshore Road, Burlington, Ontario L7S1A1, Canada
| | - Xing Zhou
- Civil and Environmental Engineering, Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931, USA
| |
Collapse
|
65
|
Coffer MM, Schaeffer BA, Foreman K, Porteous A, Loftin KA, Stumpf RP, Werdell PJ, Urquhart E, Albert RJ, Darling JA. Assessing cyanobacterial frequency and abundance at surface waters near drinking water intakes across the United States. WATER RESEARCH 2021; 201:117377. [PMID: 34218089 PMCID: PMC8908444 DOI: 10.1016/j.watres.2021.117377] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 05/05/2023]
Abstract
This study presents the first large-scale assessment of cyanobacterial frequency and abundance of surface water near drinking water intakes across the United States. Public water systems serve drinking water to nearly 90% of the United States population. Cyanobacteria and their toxins may degrade the quality of finished drinking water and can lead to negative health consequences. Satellite imagery can serve as a cost-effective and consistent monitoring technique for surface cyanobacterial blooms in source waters and can provide drinking water treatment operators information for managing their systems. This study uses satellite imagery from the European Space Agency's Ocean and Land Colour Instrument (OLCI) spanning June 2016 through April 2020. At 300-m spatial resolution, OLCI imagery can be used to monitor cyanobacteria in 685 drinking water sources across 285 lakes in 44 states, referred to here as resolvable drinking water sources. First, a subset of satellite data was compared to a subset of responses (n = 84) submitted as part of the U.S. Environmental Protection Agency's fourth Unregulated Contaminant Monitoring Rule (UCMR 4). These UCMR 4 qualitative responses included visual observations of algal bloom presence and absence near drinking water intakes from March 2018 through November 2019. Overall agreement between satellite imagery and UCMR 4 qualitative responses was 94% with a Kappa coefficient of 0.70. Next, temporal frequency of cyanobacterial blooms at all resolvable drinking water sources was assessed. In 2019, bloom frequency averaged 2% and peaked at 100%, where 100% indicated a bloom was always present at the source waters when satellite imagery was available. Monthly cyanobacterial abundances were used to assess short-term trends across all resolvable drinking water sources and effect size was computed to provide insight on the number of years of data that must be obtained to increase confidence in an observed change. Generally, 2016 through 2020 was an insufficient time period for confidently observing changes at these source waters; on average, a decade of satellite imagery would be required for observed environmental trends to outweigh variability in the data. However, five source waters did demonstrate a sustained short-term trend, with one increasing in cyanobacterial abundance from June 2016 to April 2020 and four decreasing.
Collapse
Affiliation(s)
- Megan M Coffer
- ORISE Fellow, U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, USA; Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, USA.
| | - Blake A Schaeffer
- U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, USA
| | - Katherine Foreman
- U.S. Environmental Protection Agency, Office of Water, Washington, DC, USA
| | - Alex Porteous
- U.S. Environmental Protection Agency, Office of Water, Washington, DC, USA
| | - Keith A Loftin
- U.S. Geological Survey, Kansas Water Science Center, Lawrence, KS, USA
| | - Richard P Stumpf
- National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, Silver Spring, MD, USA
| | - P Jeremy Werdell
- Ocean Ecology Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Erin Urquhart
- Science Systems and Applications, Inc., Ocean Ecology Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Ryan J Albert
- U.S. Environmental Protection Agency, Office of Water, Washington, DC, USA
| | - John A Darling
- U.S. Environmental Protection Agency, Office of Research and Development, Durham, NC, USA
| |
Collapse
|
66
|
Sha H, Nie J, Lian L, Yan S, Song W. Phototransformation of an emerging cyanotoxin (Aerucyclamide A) in simulated natural waters. WATER RESEARCH 2021; 201:117339. [PMID: 34157574 DOI: 10.1016/j.watres.2021.117339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/01/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
Aerucyclamide A (ACA) is an emerging cyanopeptide toxin produced by cyanobacteria, and its transformation pathway has rarely been reported. In the present study, ACA was purified from cyanobacterial extracts, and photodegradation processes were investigated in dissolved organic matter (DOM) solutions. Under simulated solar irradiation, the photodegradation of ACA was dominated by •OH oxidation, accounting for ~72% of the indirect photodegradation. The bimolecular reaction rate constant of ACA with •OH was (6.4 ± 0.2) × 109M - 1s - 1. Our results indicated that the major reactive sites of ACA toward •OH are thiazoline and thiazole moieties. Product analysis via high-resolution mass spectrometry suggested that hydrogen abstraction and gradual hydroxylation are the main photodegradation pathways. The acute toxicity assessment indicate that the products generated in photolysis process did not show any measurable toxicity to Thamnocephalus platyurus. Photodegradation experiments with various DOM-phycocyanin mixtures demonstrated that the half-life of ACA is much longer than that of microcystin-LR.
Collapse
Affiliation(s)
- Haitao Sha
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, PR China
| | - Jianxin Nie
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, PR China
| | - Lushi Lian
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Shuwen Yan
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Weihua Song
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
67
|
Wu J, Hilborn ED, Schaeffer BA, Urquhart E, Coffer MM, Lin CJ, Egorov AI. Acute health effects associated with satellite-determined cyanobacterial blooms in a drinking water source in Massachusetts. Environ Health 2021; 20:83. [PMID: 34271918 PMCID: PMC8285816 DOI: 10.1186/s12940-021-00755-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/02/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND The occurrence of cyanobacterial blooms in freshwater presents a threat to human health. However, epidemiological studies on the association between cyanobacterial blooms in drinking water sources and human health outcomes are scarce. The objective of this study was to evaluate if cyanobacterial blooms were associated with increased emergency room visits for gastrointestinal (GI), respiratory and dermal illnesses. METHODS Satellite-derived cyanobacteria cell concentrations were estimated in the source of drinking water for the Greater Boston area, during 2008-2011. Daily counts of hospital emergency room visits for GI, respiratory and dermal illnesses among drinking water recipients were obtained from an administrative record database. A two-stage model was used to analyze time-series data for an association between cyanobacterial blooms and the occurrence of illnesses. At the first stage, predictive autoregressive generalized additive models for Poisson-distributed outcomes were fitted to daily illness count data and daily predictive variables. At the second stage, residuals from the first stage models were regressed against lagged categorized cyanobacteria concentration estimates. RESULTS The highest cyanobacteria concentration (above the 75th percentile) was associated with an additional 4.3 cases of respiratory illness (95% confidence interval: 0.7, 8.0, p = 0.02, n = 268) compared to cyanobacteria concentrations below the 50th percentile in a two-day lag. There were no significant associations between satellite derived cyanobacterial concentrations and lagged data on GI or dermal illnesses. CONCLUSION The study demonstrated a significant positive association between satellite-derived cyanobacteria concentrations in source water and respiratory illness occurring 2 days later. Future studies will require direct measures of cyanotoxins and health effects associated with exposure to cyanobacteria-impacted drinking water sources.
Collapse
Affiliation(s)
- Jianyong Wu
- Oak Ridge Institute for Science and Education participant at US EPA, Office of Research and Development, Research Triangle Park, Durham, NC 27711 USA
| | - Elizabeth D. Hilborn
- US Environmental Protection Agency, Office of Research and Development, Research Triangle Park, Durham, NC 27711 USA
| | - Blake A. Schaeffer
- US Environmental Protection Agency, Office of Research and Development, Research Triangle Park, Durham, NC 27711 USA
| | - Erin Urquhart
- Science Systems and Applications, Inc., NASA Goddard Space Flight Center, Greenbelt, MD USA
| | - Megan M. Coffer
- Oak Ridge Institute for Science and Education participant at US EPA, Office of Research and Development, Research Triangle Park, Durham, NC 27711 USA
- Center for Geospatial Analytics, North Carolina State University, Raleigh, NC USA
| | - Cynthia J. Lin
- Oak Ridge Institute for Science and Education participant at US EPA, Office of Research and Development, Research Triangle Park, Durham, NC 27711 USA
- ICF International, Durham, NC 27713 USA
| | - Andrey I. Egorov
- US Environmental Protection Agency, Office of Research and Development, Research Triangle Park, Durham, NC 27711 USA
| |
Collapse
|
68
|
Sukenik A, Kaplan A. Cyanobacterial Harmful Algal Blooms in Aquatic Ecosystems: A Comprehensive Outlook on Current and Emerging Mitigation and Control Approaches. Microorganisms 2021; 9:1472. [PMID: 34361909 PMCID: PMC8306311 DOI: 10.3390/microorganisms9071472] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/31/2022] Open
Abstract
An intensification of toxic cyanobacteria blooms has occurred over the last three decades, severely affecting coastal and lake water quality in many parts of the world. Extensive research is being conducted in an attempt to gain a better understanding of the driving forces that alter the ecological balance in water bodies and of the biological role of the secondary metabolites, toxins included, produced by the cyanobacteria. In the long-term, such knowledge may help to develop the needed procedures to restore the phytoplankton community to the pre-toxic blooms era. In the short-term, the mission of the scientific community is to develop novel approaches to mitigate the blooms and thereby restore the ability of affected communities to enjoy coastal and lake waters. Here, we critically review some of the recently proposed, currently leading, and potentially emerging mitigation approaches in-lake novel methodologies and applications relevant to drinking-water treatment.
Collapse
Affiliation(s)
- Assaf Sukenik
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, P.O. Box 447, Migdal 14950, Israel
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel;
| |
Collapse
|
69
|
Wu X, Viner-Mozzini Y, Jia Y, Song L, Sukenik A. Alkyltrimethylammonium (ATMA) surfactants as cyanocides - Effects on photosynthesis and growth of cyanobacteria. CHEMOSPHERE 2021; 274:129778. [PMID: 33548640 DOI: 10.1016/j.chemosphere.2021.129778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/15/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Cyanobacteria and their toxins present potential hazard to consumers of water from lakes, reservoirs and rivers, thus their removal via water treatment or at the source, is essential. Here, we report that alkyltrimethylammonium (ATMA) surfactants, such as octadecyltrimethylammonium (ODTMA) bromide, act as cyanocides that efficiently inhibit photosynthesis and growth of cyanobacteria. Green algae were found less sensitive than cyanobacteria to ATMA compounds. Fluorescence measurements and microscopic observations demonstrated that cyanobacteria cells (Aphanizomenon or Microcystis) disintegrate and lose their metabolic activity (photosynthesis) upon exposure to ATMA bromides (estimated ED50(1hr) ranged between 1.5 and 7 μM for ODTMA-Br or hexadecyltrimethylammonium (HDTMA) bromide). Other ATMA compounds, such as tetradecyltrimethylammonium (TDTMA) or dodecyltrimethylammonium (DDTMA) bromides had similar inhibitory effect but their toxicity to cyanobacteria (measured as ED50(1hr) for photosynthetic efficiency) decreased, as the length of the alkyl chain decreased. All ATMA compounds used in this study showed lower toxicity to green algae than to cyanobacteria. A toxicity mechanism for ATMA cations is proposed, based on real time fluorescence signals and on alteration of cell ultra-structure revealed by electron microscopy. The present study sheds light on the toxic effect of ATMA surfactants on cyanobacteria and its potential application for controlling the occurrence of cyanobacterial bloom in lakes, reservoirs or rivers to secure the safety of drinking water and to mitigate and manage bloom events.
Collapse
Affiliation(s)
- Xingqiang Wu
- Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, P.O.Box 447, Migdal, 14950, Israel; Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yehudit Viner-Mozzini
- Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, P.O.Box 447, Migdal, 14950, Israel
| | - Yunlu Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Assaf Sukenik
- Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, P.O.Box 447, Migdal, 14950, Israel.
| |
Collapse
|
70
|
Heil CA, Muni-Morgan AL. Florida’s Harmful Algal Bloom (HAB) Problem: Escalating Risks to Human, Environmental and Economic Health With Climate Change. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.646080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Harmful Algal Blooms (HABs) pose unique risks to the citizens, stakeholders, visitors, environment and economy of the state of Florida. Florida has been historically subjected to reoccurring blooms of the toxic marine dinoflagellate Karenia brevis (C. C. Davis) G. Hansen & Moestrup since at least first contact with explorers in the 1500’s. However, ongoing immigration of more than 100,000 people year–1 into the state, elevated population densities in coastal areas with attendant rapid, often unregulated development, coastal eutrophication, and climate change impacts (e.g., increasing hurricane severity, increases in water temperature, ocean acidification and sea level rise) has likely increased the occurrence of other HABs, both freshwater and marine, within the state as well as the number of people impacted by these blooms. Currently, over 75 freshwater, estuarine, coastal and marine HAB species are routinely monitored by state agencies. While only blooms of K. brevis, the dinoflagellate Pyrodinium bahamense (Böhm) Steidinger, Tester, and Taylor and the diatom Pseudo-nitzschia spp. have resulted in closure of commercial shellfish beds, other HAB species, including freshwater and marine cyanobacteria, pose either imminent or unknown risks to human, environmental and economic health. HAB related human health risks can be classified into those related to consumption of contaminated shellfish and finfish, consumption of or contact with bloom or toxin contaminated water or exposure to aerosolized HAB toxins. While acute human illnesses resulting from consumption of brevetoxin-, saxitoxin-, and domoic acid-contaminated commercial shellfish have been minimized by effective monitoring and regulation, illnesses due to unregulated toxin exposures, e.g., ciguatoxins and cyanotoxins, are not well documented or understood. Aerosolized HAB toxins potentially impact the largest number of people within Florida. While short-term (days to weeks) impacts of aerosolized brevetoxin exposure are well documented (e.g., decreased respiratory function for at-risk subgroups such as asthmatics), little is known of longer term (>1 month) impacts of exposure or the risks posed by aerosolized cyanotoxin [e.g., microcystin, β-N-methylamino-L-alanine (BMAA)] exposure. Environmental risks of K. brevis blooms are the best studied of Florida HABs and include acute exposure impacts such as significant dies-offs of fish, marine mammals, seabirds and turtles, as well as negative impacts on larval and juvenile stages of many biota. When K. brevis blooms are present, brevetoxins can be found throughout the water column and are widespread in both pelagic and benthic biota. The presence of brevetoxins in living tissue of both fish and marine mammals suggests that food web transfer of these toxins is occurring, resulting in toxin transport beyond the spatial and temporal range of the bloom such that impacts of these toxins may occur in areas not regularly subjected to blooms. Climate change impacts, including temperature effects on cell metabolism, shifting ocean circulation patterns and changes in HAB species range and bloom duration, may exacerbate these dynamics. Secondary HAB related environmental impacts are also possible due to hypoxia and anoxia resulting from elevated bloom biomass and/or the decomposition of HAB related mortalities. Economic risks related to HABs in Florida are diverse and impact multiple stakeholder groups. Direct costs related to human health impacts (e.g., increased hospital visits) as well as recreational and commercial fisheries can be significant, especially with wide-spread sustained HABs. Recreational and tourism-based industries which sustain a significant portion of Florida’s economy are especially vulnerable to both direct (e.g., declines in coastal hotel occupancy rates and restaurant and recreational users) and indirect (e.g., negative publicity impacts, associated job losses) impacts from HABs. While risks related to K. brevis blooms are established, Florida also remains susceptible to future HABs due to large scale freshwater management practices, degrading water quality, potential transport of HABs between freshwater and marine systems and the state’s vulnerability to climate change impacts.
Collapse
|
71
|
Torres MDA, Micheletto J, de Liz MV, Pagioro TA, Rocha Martins LR, Martins de Freitas A. Microcystis aeruginosa inactivation and microcystin-LR degradation by the photo-Fenton process at the initial near-neutral pH. Photochem Photobiol Sci 2021; 19:1470-1477. [PMID: 32857084 DOI: 10.1039/d0pp00177e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Of all cyanobacteria, Microcystis aeruginosa is the most commonly found species in bloom episodes all over the world. This species is known to produce cyanopeptides with hepatotoxic effects, namely microcystins (MCs). In this regard, Advanced Oxidation Processes (AOPs) have been widely studied for cyanotoxin degradation, but very few studies focused on cyanobacteria inactivation combined with toxin removal. To our knowledge, this is the first report of the photo-Fenton process application focusing on M. aeruginosa inactivation and microcystin-LR (MC-LR) degradation. This research work aimed to evaluate the photo-Fenton process under three different conditions with regard to Fe2+/H2O2 ratios (0.6/10, 5/50, and 20/100 mg L-1) at the initial near-neutral pH. Process efficiency was measured by immediate cell density reduction, growth inhibition, effect on MC-LR concentrations, and scanning electron microscopy (SEM) to analyze any alterations in cell morphology. Growth inhibition test (GIT) results pointed to cell inactivation under all conditions tested, and MC-LR concentrations were reduced below WHO's maximum limit at medium and higher concentrations of reagents. The possible mechanisms of cell inactivation by oxidative species are discussed.
Collapse
Affiliation(s)
- Mariana de Almeida Torres
- Postgraduate Program in Pathophysiology and Toxicology - School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Joicy Micheletto
- Geology Department, Federal University of Paraná, Curitiba, Brazil
| | - Marcus Vinicius de Liz
- Department of Chemistry and Biology, Federal University of Technology - Parana, Curitiba, Brazil
| | - Thomaz Aurélio Pagioro
- Department of Chemistry and Biology, Federal University of Technology - Parana, Curitiba, Brazil
| | | | | |
Collapse
|
72
|
Habtemariam H, Kifle D, Leta S, Mucci M, Lürling M. Removal of cyanobacteria from a water supply reservoir by sedimentation using flocculants and suspended solids as ballast: Case of Legedadi Reservoir (Ethiopia). PLoS One 2021; 16:e0249720. [PMID: 33844703 PMCID: PMC8041171 DOI: 10.1371/journal.pone.0249720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/23/2021] [Indexed: 11/18/2022] Open
Abstract
The massive growth of potentially toxic cyanobacteria in water supply reservoirs, such as Legedadi Reservoir (Ethiopia), poses a huge burden to water purification units and represents a serious threat to public health. In this study, we evaluated the efficiency of the flocculants/coagulants chitosan, Moringa oleifera seed (MOS), and poly-aluminium chloride (PAC) in settling cyanobacterial species present in the Legedadi Reservoir. We also tested whether coagulant-treated reservoir water promotes cyanobacteria growth. Our data showed that suspended solids in the turbid reservoir acted as ballast, thereby enhancing settling and hence the removal of cyanobacterial species coagulated with chitosan, Moringa oleifera seed, or their combination. Compared to other coagulants, MOS of 30 mg/L concentration, with the removal efficiency of 93.6%, was the most effective in removing cyanobacterial species without causing cell lysis. Contrary to our expectation, PAC was the least effective coagulant. Moreover, reservoir water treated with MOS alone or MOS combined with chitosan did not support any growth of cyanobacteria during the first two weeks of the experiment. Our data indicate that the efficacy of a flocculant/coagulant in the removal of cyanobacteria is influenced by the uniqueness of individual lakes/reservoirs, implying that mitigation methods should consider the unique characteristic of the lake/reservoir.
Collapse
Affiliation(s)
- Hanna Habtemariam
- Center for Environmental Science, Addis Ababa University, Addis Ababa, Ethiopia
- * E-mail:
| | - Demeke Kifle
- Department of Zoological Science, Addis Ababa University, Addis Ababa, Ethiopia
| | - Seyoum Leta
- Center for Environmental Science, Addis Ababa University, Addis Ababa, Ethiopia
| | - Maíra Mucci
- Department of Environmental Sciences, Aquatic Ecology & Water Quality Management Group, Wageningen University, Wageningen, The Netherlands
| | - Miquel Lürling
- Department of Environmental Sciences, Aquatic Ecology & Water Quality Management Group, Wageningen University, Wageningen, The Netherlands
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| |
Collapse
|
73
|
Chen L, Giesy JP, Adamovsky O, Svirčev Z, Meriluoto J, Codd GA, Mijovic B, Shi T, Tuo X, Li SC, Pan BZ, Chen J, Xie P. Challenges of using blooms of Microcystis spp. in animal feeds: A comprehensive review of nutritional, toxicological and microbial health evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142319. [PMID: 33069479 DOI: 10.1016/j.scitotenv.2020.142319] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Microcystis spp., are Gram-negative, oxygenic, photosynthetic prokaryotes which use solar energy to convert carbon dioxide (CO2) and minerals into organic compounds and biomass. Eutrophication, rising CO2 concentrations and global warming are increasing Microcystis blooms globally. Due to its high availability and protein content, Microcystis biomass has been suggested as a protein source for animal feeds. This would reduce dependency on soybean and other agricultural crops and could make use of "waste" biomass when Microcystis scums and blooms are harvested. Besides proteins, Microcystis contain further nutrients including lipids, carbohydrates, vitamins and minerals. However, Microcystis produce cyanobacterial toxins, including microcystins (MCs) and other bioactive metabolites, which present health hazards. In this review, challenges of using Microcystis blooms in feeds are identified. First, nutritional and toxicological (nutri-toxicogical) data, including toxicity of Microcystis to mollusks, crustaceans, fish, amphibians, mammals and birds, is reviewed. Inclusion of Microcystis in diets caused greater mortality, lesser growth, cachexia, histopathological changes and oxidative stress in liver, kidney, gill, intestine and spleen of several fish species. Estimated daily intake (EDI) of MCs in muscle of fish fed Microcystis might exceed the provisional tolerable daily intake (TDI) for humans, 0.04 μg/kg body mass (bm)/day, as established by the World Health Organization (WHO), and is thus not safe. Muscle of fish fed M. aeruginosa is of low nutritional value and exhibits poor palatability/taste. Microcystis also causes hepatotoxicity, reproductive toxicity, cardiotoxicity, neurotoxicity and immunotoxicity to mollusks, crustaceans, amphibians, mammals and birds. Microbial pathogens can also occur in blooms of Microcystis. Thus, cyanotoxins/xenobiotics/pathogens in Microcystis biomass should be removed/degraded/inactivated sufficiently to assure safety for use of the biomass as a primary/main/supplemental ingredient in animal feed. As an ameliorative measure, antidotes/detoxicants can be used to avoid/reduce the toxic effects. Before using Microcystis in feed ingredients/supplements, further screening for health protection and cost control is required.
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China.
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N5B3, Canada; Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Ondrej Adamovsky
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, CZ-625 00 Brno, Czech Republic
| | - Zorica Svirčev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia; Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Jussi Meriluoto
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia; Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Geoffrey A Codd
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK; Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Biljana Mijovic
- Faculty of Medicine, University of East Sarajevo, Studentska 5, 73 300 Foča, Republika Srpska, Bosnia and Herzegovina
| | - Ting Shi
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Xun Tuo
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Shang-Chun Li
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Bao-Zhu Pan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China.
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan 430072, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| |
Collapse
|
74
|
Munoz M, Cirés S, de Pedro ZM, Colina JÁ, Velásquez-Figueroa Y, Carmona-Jiménez J, Caro-Borrero A, Salazar A, Santa María Fuster MC, Contreras D, Perona E, Quesada A, Casas JA. Overview of toxic cyanobacteria and cyanotoxins in Ibero-American freshwaters: Challenges for risk management and opportunities for removal by advanced technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143197. [PMID: 33160675 DOI: 10.1016/j.scitotenv.2020.143197] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/04/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
The increasing occurrence of cyanobacterial blooms worldwide represents an important threat for both the environment and public health. In this context, the development of risk analysis and management tools as well as sustainable and cost-effective treatment processes is essential. The research project TALGENTOX, funded by the Ibero-American Science and Technology Program for Development (CYTED-2019), aims to address this ambitious challenge in countries with different environmental and social conditions within the Ibero-American context. It is based on a multidisciplinary approach that combines ecology, water management and technology fields, and includes research groups from Chile, Colombia, Mexico, Peru and Spain. In this review, the occurrence of toxic cyanobacteria and cyanotoxins in freshwaters from these countries are summarized. The presence of cyanotoxins has been confirmed in all countries but the information is still scarce and further monitoring is required. In this regard, remote sensing or metagenomics are good alternatives at reasonable cost. The risk management of freshwaters from those countries considering the most frequent uses (consumption and recreation) has been also evaluated. Only Spain and Peru include cyanotoxins in its drinking water legislation (only MC-LR) and thus, there is a need for regulatory improvements. The development of preventive strategies like diminishing nutrient loads to aquatic systems is also required. In the same line, corrective measures are urgently needed especially in drinking waters. Advanced Oxidation Processes (AOPs) have the potential to play a major role in this scenario as they are effective for the elimination of most cyanotoxins classes. The research on the field of AOPs is herein summarized considering the cost-effectiveness, environmental character and technical applicability of such technologies. Fenton-based processes and photocatalysis using solar irradiation or LED light represent very promising alternatives given their high cost-efficiency. Further research should focus on developing stable long-term operation systems, addressing their scale-up.
Collapse
Affiliation(s)
- Macarena Munoz
- Departamento de Ingeniería Química, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Samuel Cirés
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Zahara M de Pedro
- Departamento de Ingeniería Química, Universidad Autónoma de Madrid, Madrid, Spain
| | - José Ángel Colina
- Departamento de Ingeniería Química, Universidad de Cartagena, Cartagena de Indias, Colombia
| | | | - Javier Carmona-Jiménez
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Angela Caro-Borrero
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Anthony Salazar
- Centro de Investigación y Tecnología de Agua - CITA, Universidad de Ingeniería y Tecnología - UTEC, Lima, Peru
| | | | - David Contreras
- Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Elvira Perona
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio Quesada
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jose A Casas
- Departamento de Ingeniería Química, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
75
|
Kurtz T, Zeng T, Rosario-Ortiz FL. Photodegradation of cyanotoxins in surface waters. WATER RESEARCH 2021; 192:116804. [PMID: 33494040 DOI: 10.1016/j.watres.2021.116804] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/15/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Cyanotoxin-producing harmful algal blooms (HABs) are a global occurrence and pose ecotoxicological threats to humans and animals alike. The presence of cyanotoxins can seriously harm or kill nearby wildlife and restrict a body of water's use as a drinking water supply and recreational site, making it imperative to fully understand their fate and transport in natural waters. Photodegradation contributes to the overall degradation of cyanotoxins in environmental systems, especially for those present in the photic zone of surface waters. This makes photochemical transformation mechanisms important factors to account for when assessing the persistence of cyanotoxins in environmental systems. This paper reviews current knowledge on the photodegradation rates and pathways of cyanotoxins that can occur over the course of HABs. Sensitized, or indirect, photolysis contributes to the degradation of all cyanotoxins addressed in this paper (anatoxins, cylindrospermopsins, domoic acids, microcystins, and nodularins), with hydroxyl radicals (•OH), excited triplet states formed from the absorption of light by dissolved organic matter (3DOM*), and photosynthetic pigment sensitized pathways being of primary interest. Direct photolysis pathways play a less significant role, but are still relevant for most of the cyanotoxins discussed in this paper.
Collapse
Affiliation(s)
- Tyler Kurtz
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Colorado 80309, United States; Environmental Engineering Program, University of Colorado Boulder, Colorado 80309, United States
| | - Teng Zeng
- Department of Civil and Environmental Engineering, 151 Link Hall, Syracuse University, Syracuse, NY 13244, United States
| | - Fernando L Rosario-Ortiz
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Colorado 80309, United States; Environmental Engineering Program, University of Colorado Boulder, Colorado 80309, United States.
| |
Collapse
|
76
|
Habtemariam H, Kifle D, Leta S, Beekman W, Lürling M. Cyanotoxins in drinking water supply reservoir (Legedadi, Central Ethiopia): implications for public health safety. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04313-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AbstractCyanobacterial blooms in drinking water supply affect its quality, which ultimately impacts ecosystem and public health. Thus, this cross-sectional study was conducted to perform a preliminary study on cyanotoxins via analysis of samples collected only once from two sites during the month of peak algal bloom and to subsequently prompt a comprehensive risk assessment in a major drinking water source, Legedadi Reservoir, of Addis Ababa, the capital city of Ethiopia. Samples were collected during peak algal bloom month (January 2018) from two sampling sites, near the dam (S1) and at the center of the reservoir (S2). Identification and enumeration of phytoplankton taxa were done and the measurement of common hepatotoxin (MCs and NOD) concentrations was conducted using liquid chromatography-tandem mass spectrometry. In the reservoir, cyanobacteria made up to 98% of total phytoplankton abundance, with Dolichospermum and Microcystis spp, dominating the phytoplankton community. In these first cyanotoxin analyses conducted for a drinking water supply source in Ethiopia, six major MC variants, namely MC-dmRR, MC-RR, MC-YR, MC-dmLR, MC-LR, and MC-LA, were detected in both algal seston and water samples. MC-LR was the most dominant MCs variant, while nodularin was not detected for both sampling sites. Extracellular total MC concentrations (μg L−1) of 453.89 and 61.63 and intracellular total MC concentrations (μg L−1) of 189.29 and 112.34 were recorded for samples from S1 and S2, respectively. The high concentrations of extracellular MCs, with MC-LR constituting the greatest proportion, indicate the extremely high potential public health risk for end-users.
Collapse
|
77
|
Li J, Persson KM. Quick detection method for paralytic shellfish toxins (PSTs) monitoring in freshwater - A review. CHEMOSPHERE 2021; 265:128591. [PMID: 33189391 DOI: 10.1016/j.chemosphere.2020.128591] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
The objective of this critical review was to provide a comprehensive summary of paralytic shellfish toxins (PSTs) producing species and knowledge gaps in detecting PSTs in drinking water resources, with a focus on recent development of PSTs monitoring methods and tools for drinking water monitoring. PSTs, which are also called Saxitoxins (STXs), are a group of neurotoxins not only produced by marine dinoflagellates but also freshwater cyanobacteria. The presence of PSTs in freshwater has been reported from all continents except Antarctica. PSTs in poisoned sea food such as shellfish, molluscs and crustaceans may attack the nerve system after consumption. The high incidences of PSTs occurring in drinking water sources showed another route of potential human exposure. A development of simple and fast screening tools for drinking water surveillance of PSTs is needed. Neurotoxins produced by freshwater cyanobacteria are understudied relative to microcystin and little study is done around PSTs in drinking water monitoring. Some fast screening methods exist. The critical issues for using them in water surveillance, particularly matrix effect and cross-reactivity are summarized, and future research directions are high-lighted. We conclude that monitoring routines at drinking water resources should start from species level, followed by a profound screening of toxin profile. For practical monitoring routine, fast screening methods should be combined with highly sensitive and accurate analytical methods such as liquid chromatography/liquid chromatography-mass spectrometry (LC/LC-MS). A thorough understanding of toxin profile in source water is necessary for screening tool selection.
Collapse
Affiliation(s)
- Jing Li
- Division of Water Resources Engineering, Faculty of Engineering LTH, Lund University, P.O. Box 118, SE-221 00, Lund, Sweden.
| | - Kenneth M Persson
- Division of Water Resources Engineering, Faculty of Engineering LTH, Lund University, P.O. Box 118, SE-221 00, Lund, Sweden
| |
Collapse
|
78
|
Potential Impacts on Treated Water Quality of Recycling Dewatered Sludge Supernatant during Harmful Cyanobacterial Blooms. Toxins (Basel) 2021; 13:toxins13020099. [PMID: 33572944 PMCID: PMC7912369 DOI: 10.3390/toxins13020099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/24/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022] Open
Abstract
Cyanobacterial blooms and the associated release of cyanotoxins pose problems for many conventional water treatment plants due to their limited removal by typical unit operations. In this study, a conventional water treatment process consisting of coagulation, flocculation, sedimentation, filtration, and sludge dewatering was assessed in lab-scale experiments to measure the removal of microcystin-LR and Microcystis aeruginosa cells using liquid chromatography with mass spectrometer (LC-MS) and a hemacytometer, respectively. The overall goal was to determine the effect of recycling cyanotoxin-laden dewatered sludge supernatant on treated water quality. The lab-scale experimental system was able to maintain the effluent water quality below relevant the United States Environmental Protection Agency (US EPA) and World Health Organisation (WHO) standards for every parameter analyzed at influent concentrations of M. aeruginosa above 106 cells/mL. However, substantial increases of 0.171 NTU (Nephelometric Turbidity Unit), 7 × 104 cells/L, and 0.26 µg/L in turbidity, cyanobacteria cell counts, and microcystin-LR concentration were observed at the time of dewatered supernatant injection. Microcystin-LR concentrations of 1.55 µg/L and 0.25 µg/L were still observed in the dewatering process over 24 and 48 h, respectively, after the initial addition of M.aeruginosa cells, suggesting the possibility that a single cyanobacterial bloom may affect the filtered water quality long after the bloom has dissipated when sludge supernatant recycling is practiced.
Collapse
|
79
|
Adsorption/Coagulation/Ceramic Microfiltration for Treating Challenging Waters for Drinking Water Production. MEMBRANES 2021; 11:membranes11020091. [PMID: 33514022 PMCID: PMC7911376 DOI: 10.3390/membranes11020091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 12/17/2022]
Abstract
Pressurized powdered activated carbon/coagulation/ceramic microfiltration (PAC/Alum/MF) was investigated at pilot scale for treating low turbidity and low natural organic matter (NOM) surface waters spiked with organic microcontaminants. A total of 11 trials with clarified or non-clarified waters spiked with pesticides, pharmaceutical compounds, or microcystins were conducted to assess the removal of microcontaminants, NOM (as 254 nm absorbance, A254, and dissolved organic carbon, DOC), trihalomethane formation potential (THMFP), aerobic endospores as protozoan (oo)cysts indicators, bacteriophages as viruses indicators, and regular drinking water quality parameters. PAC/(Alum)/MF achieved 75% to complete removal of total microcontaminants with 4-18 mg/L of a mesoporous PAC and 2 h contact time, with a reliable particle separation (turbidity < 0.03 NTU) and low aluminium residuals. Microcontaminants showed different amenabilities to PAC adsorption, depending on their charge, hydrophobicity (Log Kow), polar surface area and aromatic rings count. Compounds less amenable to adsorption showed higher vulnerability to NOM competition (higher A254 waters), greatly benefiting from DOC-normalized PAC dose increase. PAC/Alum/MF also attained 29-47% NOM median removal, decreasing THMFP by 26%. PAC complemented NOM removal by coagulation (+15-19%), though with no substantial improvement towards THMFP and membrane fouling. Furthermore, PAC/Alum/MF was a full barrier against aerobic endospores, and PAC dosing was crucial for ≥1.1-log reduction in bacteriophages.
Collapse
|
80
|
Loser D, Schaefer J, Danker T, Möller C, Brüll M, Suciu I, Ückert AK, Klima S, Leist M, Kraushaar U. Human neuronal signaling and communication assays to assess functional neurotoxicity. Arch Toxicol 2021; 95:229-252. [PMID: 33269408 PMCID: PMC7811517 DOI: 10.1007/s00204-020-02956-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/16/2020] [Indexed: 01/08/2023]
Abstract
Prediction of drug toxicity on the human nervous system still relies mainly on animal experiments. Here, we developed an alternative system allowing assessment of complex signaling in both individual human neurons and on the network level. The LUHMES cultures used for our approach can be cultured in 384-well plates with high reproducibility. We established here high-throughput quantification of free intracellular Ca2+ concentrations [Ca2+]i as broadly applicable surrogate of neuronal activity and verified the main processes by patch clamp recordings. Initially, we characterized the expression pattern of many neuronal signaling components and selected the purinergic receptors to demonstrate the applicability of the [Ca2+]i signals for quantitative characterization of agonist and antagonist responses on classical ionotropic neurotransmitter receptors. This included receptor sub-typing and the characterization of the anti-parasitic drug suramin as modulator of the cellular response to ATP. To exemplify potential studies on ion channels, we characterized voltage-gated sodium channels and their inhibition by tetrodotoxin, saxitoxin and lidocaine, as well as their opening by the plant alkaloid veratridine and the food-relevant marine biotoxin ciguatoxin. Even broader applicability of [Ca2+]i quantification as an end point was demonstrated by measurements of dopamine transporter activity based on the membrane potential-changing activity of this neurotransmitter carrier. The substrates dopamine or amphetamine triggered [Ca2+]i oscillations that were synchronized over the entire culture dish. We identified compounds that modified these oscillations by interfering with various ion channels. Thus, this new test system allows multiple types of neuronal signaling, within and between cells, to be assessed, quantified and characterized for their potential disturbance.
Collapse
Affiliation(s)
- Dominik Loser
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770, Reutlingen, Germany
- NMI TT GmbH, 72770, Reutlingen, Germany
- Life Sciences Faculty, Albstadt-Sigmaringen University, 72488, Sigmaringen, Germany
| | - Jasmin Schaefer
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770, Reutlingen, Germany
- NMI TT GmbH, 72770, Reutlingen, Germany
| | | | - Clemens Möller
- Life Sciences Faculty, Albstadt-Sigmaringen University, 72488, Sigmaringen, Germany
| | - Markus Brüll
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Constance, Germany
| | - Ilinca Suciu
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Constance, Germany
| | - Anna-Katharina Ückert
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Constance, Germany
| | - Stefanie Klima
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Constance, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Constance, Germany.
| | - Udo Kraushaar
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770, Reutlingen, Germany
| |
Collapse
|
81
|
Abstract
Eutrophication and global climate change gather advantageous conditions for cyanobacteria proliferation leading to bloom formation and cyanotoxin production. In the Azores, eutrophication is a major concern, mainly in lakes where fertilizers and organic matter discharges have increased nutrient concentration. In this study, we focused on understanding the influence of environmental factors and lake characteristics on (i) cyanobacteria diversity and biomass and (ii) the presence of toxic strains and microcystin, saxitoxin, anatoxin-a, and cylindrospermopsin cyanotoxin-producing genes. Fifteen lakes from the Azores Archipelago were sampled seasonally, environmental variables were recorded in situ, cyanobacteria were analyzed with microscopic techniques, and cyanotoxin-producing genes were targeted through conventional PCR. Statistical analysis (DistLM) showed that lake typology-associated variables (lake’s depth, area, and altitude) were the most explanatory variables of cyanobacteria biomass and cyanotoxin-producing genes presence, although trophic variables (chlorophyll a and total phosphorus) influence species distribution in each lake type. Our main results revealed higher cyanobacteria biomass/diversity, and higher toxicity risk in lakes located at lower altitudes, associated with deep anthropogenic pressures and eutrophication scenarios. These results emphasize the need for cyanobacteria blooms control measures, mainly by decreasing anthropogenic pressures surrounding these lakes, thus decreasing eutrophication. We also highlight the potential for microcystin, saxitoxin, and anatoxin-a production in these lakes, hence the necessity to implement continuous mitigation protocols to avoid environmental and public health toxicity events.
Collapse
|
82
|
Catalytic Wet Peroxide Oxidation of Cylindrospermopsin over Magnetite in a Continuous Fixed-Bed Reactor. Catalysts 2020. [DOI: 10.3390/catal10111250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The development of cost-efficient and environmentally friendly technologies for the removal of cyanotoxins from water is crucial, given the increasingly frequent appearance of toxic cyanobacterial blooms. In this work, the application of catalytic wet peroxide oxidation (CWPO) promoted by natural magnetite for the removal of the highly toxic cyanotoxin cylindrospermopsin (CYN) has been investigated. A fixed-bed reactor packed with magnetite powder and granules was used to treat a continuous flow of CYN-bearing water. Experiments were carried out under ambient conditions and circumneutral pH (pH0 = 5). The effect of the main variables of the process, viz. magnetite load (8–14 g), feed flow rate (0.1–0.25 mL min−1), H2O2 dose (0.5–8 mg L−1) and initial CYN concentration (25–100 μg L−1), were systematically analyzed. CYN conversion values and kinetic constants were calculated to evaluate the feasibility of the catalytic system. The process was highly effective in the removal of the cyanotoxin, achieving up to 80% CYN conversion under optimized conditions (flow rate = 0.2 mL min−1, [H2O2]0 = 5 mg L−1, WFe3O4 = 14 g, pH0 = 5, T = 25 °C). It also showed reasonable activity (~55% CYN conversion) in two real samples (pond and river water). The decay on CYN conversion in these cases was mainly due to the scavenging of hydroxyl radicals by the co-existing species present in the matrices. Remarkably, the catalytic system showed high stability with limited iron leaching (the iron leached at the end of the experiments represented less than 0.2 wt.% of the catalyst’s initial iron content) in all cases. Its stability was further confirmed in a long-term continuous experiment (60 h time on stream). Furthermore, the magnetite granules at the top layer of the packed bed avoided the loss of magnetite powder from the reactor, confirming the suitability of the system for continuous long-term application.
Collapse
|
83
|
Clemente A, Wilson A, Oliveira S, Menezes I, Gois A, Capelo-Neto J. The role of hydraulic conditions of coagulation and flocculation on the damage of cyanobacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:139737. [PMID: 32927561 DOI: 10.1016/j.scitotenv.2020.139737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/04/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Limited information exists on the damage of harmful cyanobacteria cells, such as Raphidiopsis raciborskii and Dolichospermum circinale, caused by the hydraulic conditions at water treatment plants especially when it comes to the mechanical stresses imposed by coagulation and flocculation. To close this gap, this study evaluated the impacts of rapid and slow-mixing on R. raciborskii and D. circinale cells and trichomes. The hydraulic conditions used during the experiment were selected based on AWWA, which are widely applied in the absence of specific treatability tests. Cellular integrity was evaluated by the Erythrosine B staining method and logistic regression was used to study the association between organism integrity and hydraulic conditions (i.e., velocity gradient and mixing time). Wilcoxon rank-sum test was used to verify if there was a significant reduction of the trichome length and cell integrity. Rapid-mixing (velocity gradient of 750 s-1 for 60 s) reduced the odds of finding intact D. circinale to <50%, whereas the odds of finding intact R. raciborskii cells did not significantly decrease. The odds of finding intact cells of R. raciborskii were 124 times greater than D. circinale. Rapid-mixing also reduced the length of D. circinale trichomes by approximately 50% but did not significantly decrease R. raciborskii trichomes. Slow-mixing did not significantly affect organisms or trichomes of either species. The results indicate that AWWA recommendations for coagulation may cause damage to D. circinale but not to R. raciborskii, suggesting that the operation of water treatment plants could be adjusted according to the dominant cyanobacterium present in the reservoir to avoid cell rupture and metabolite release.
Collapse
Affiliation(s)
- Allan Clemente
- Federal University of Ceara, Department of Hydraulic and Environmental Engineering, Block 713, Campus Pici, Fortaleza, Ceará, Brazil.
| | - Alan Wilson
- Auburn University, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn, AL 36849, USA.
| | - Samylla Oliveira
- Federal University of Ceara, Department of Hydraulic and Environmental Engineering, Block 713, Campus Pici, Fortaleza, Ceará, Brazil
| | - Indira Menezes
- Federal University of Ceara, Department of Hydraulic and Environmental Engineering, Block 713, Campus Pici, Fortaleza, Ceará, Brazil
| | - Amanda Gois
- Federal University of Ceara, Department of Hydraulic and Environmental Engineering, Block 713, Campus Pici, Fortaleza, Ceará, Brazil
| | - Jose Capelo-Neto
- Federal University of Ceara, Department of Hydraulic and Environmental Engineering, Block 713, Campus Pici, Fortaleza, Ceará, Brazil.
| |
Collapse
|
84
|
Cho K, An BM, So S, Chae A, Song KG. Simultaneous control of algal micropollutants based on ball-milled powdered activated carbon in combination with permanganate oxidation and coagulation. WATER RESEARCH 2020; 185:116263. [PMID: 32798891 DOI: 10.1016/j.watres.2020.116263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/12/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
This study reports application of KMnO4 pre-oxidation and engineered powdered activated carbon (PAC) adsorption to simultaneously control geosmin, 2-methylisoborneol (2-MIB), and microcystin-LR (MC-LR) in conventional drinking water treatment plants (DWTPs). Pulverization of commercial wood-based PAC (1 mm ZrO2 ball, 12 h) reduced the median size to ~6 μm and resulted in overall enhanced kinetics for adsorption of the algal micropollutants. A series of parametric experiments were performed to estimate minimal contact for KMnO4 (1 mg L-1, 10 minutes) and PAC (20 mg L-1, 40 minutes) prior to coagulation, with the aim to meet guidelines (0.02, 0.02, and 1 μg L-1 for geosmin, 2-MIB, and MC-LR, respectively) at specific influent concentrations (0.1, 0.1, and 100 μg L-1) in surface water matrix. Ball-milling of parent PAC with a low oxygen content (~2.5 w/w%) could avoid interferences from/to the KMnO4 pre-oxidation and subsequent coagulation. Pilot-scale experiments confirmed the compatibility of the combined KMnO4 and PAC at existing DWTPs.
Collapse
Affiliation(s)
- Kangwoo Cho
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University International Campus, Incheon 21983, Republic of Korea
| | - Byung Min An
- Water Cycle Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Soohyun So
- Water Cycle Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Ana Chae
- Water Cycle Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Kyung Guen Song
- Water Cycle Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
85
|
Tran NH, Li Y, Reinhard M, He Y, Gin KYH. A sensitive and accurate method for simultaneous analysis of algal toxins in freshwater using UPLC-MS/MS and 15N-microcystins as isotopically labelled internal standards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139727. [PMID: 32535285 DOI: 10.1016/j.scitotenv.2020.139727] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/06/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
The development of analytical methods for the detection and accurate quantification of algal toxins is of importance to assess the health risk of exposure to algal toxins in freshwater sources. This study established a sensitive and accurate analytical method for the quantification of 13 algal toxins (microcystins and nodularin) based on solid phase extraction (SPE) coupled with UPLC-MS/MS, in which 15N-microcystins were used as surrogate/internal standards. SPE method was optimized to extract the target algal toxins in freshwater samples. Good SPE efficiencies (84-96%) were achieved for the overwhelming majority of the investigated algal toxins when SPE was performed using HLB (500 mg, 6 mL) under alkaline conditions (pH 11). An accurate quantitative analysis of the algal toxins in real freshwater samples was performed by using 15N-labelled microcystins as isotopically labelled internal standards (ILISs), which compensated for the loss of target toxins during the whole analytical process. In addition, ILISs also helped to correct the effects of environmental matrices and instrument fluctuation in UPLC-MS/MS analysis. The limit of method quantification (MQL) for the algal toxins was <2.0 ng/L that is sensitive enough to quantify extremely low levels of target toxins in freshwater samples.
Collapse
Affiliation(s)
- Ngoc Han Tran
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Yiwen Li
- Department of Environmental Science and Engineering, Sichuan University, China
| | - Martin Reinhard
- Department of Civil and Environmental Engineering, Stanford University, CA 94305, USA
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower, #15-02, Singapore 138602, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore.
| |
Collapse
|
86
|
Recent Advancements in the Removal of Cyanotoxins from Water Using Conventional and Modified Adsorbents—A Contemporary Review. WATER 2020. [DOI: 10.3390/w12102756] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The prevalence of cyanobacteria is increasing in freshwaters due to climate change, eutrophication, and their ability to adapt and thrive in changing environmental conditions. In response to various environmental pressures, they produce toxins known as cyanotoxins, which impair water quality significantly. Prolonged human exposure to cyanotoxins, such as microcystins, cylindrospermopsin, saxitoxins, and anatoxin through drinking water can cause severe health effects. Conventional water treatment processes are not effective in removing these cyanotoxins in water and advanced water treatment processes are often used instead. Among the advanced water treatment methods, adsorption is advantageous compared to other methods because of its affordability and design simplicity for cyanotoxins removal. This article provides a current review of recent developments in cyanotoxin removal using both conventional and modified adsorbents. Given the different cyanotoxins removal capacities and cost of conventional and modified adsorbents, a future outlook, as well as suggestions are provided to achieve optimal cyanotoxin removal through adsorption.
Collapse
|
87
|
Morón-López J, Nieto-Reyes L, Molina S, Lezcano MÁ. Exploring microcystin-degrading bacteria thriving on recycled membranes during a cyanobacterial bloom. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139672. [PMID: 32502787 DOI: 10.1016/j.scitotenv.2020.139672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Microcystins (MC) are highly toxic secondary metabolites produced by cyanobacterial blooms in many freshwater ecosystems used for recreational and drinking water purposes. So far, biological processes remain to be optimized for an efficient cyanotoxin removal, and new approaches are necessary to compete with physical-chemical treatments. In previous studies we provided a new concept of membrane biofilm reactor made of recycled material, in which a single MC-degrading bacterial strain was inoculated. The present study evaluates the capacity of bacterial consortia associated with freshwater cyanobacterial blooms to form biofilms on recycled membranes and remove MC. Three different discarded reverse osmosis (RO) membranes, previously used in desalination plants after treating brackish water (BWd), seawater (SWd) and brackish water but transformed into nanofiltration (BWt-NF), were exposed to a cyanobacterial bloom in San Juan reservoir (central Spain). Results showed that the three recycled membranes developed a bacterial community with MC removal capacity. Little differences in bacterial coverage and MC removal efficiency between membranes were observed after their exposure in the reservoir. High-throughput sequencing of 16S rRNA gene analysis showed similar bacterial community composition at the phylum level but dissimilar at the order level between the three membranes. This suggests possible surface selectivity on the attached bacterial community. The mlr- candidates such as Burkholderiales and Methylophilales were highly abundant in BWt-NF and BWd, respectively, while mlr+ candidates (e.g. Sphingomonadales) were low abundant in all membranes. Analysis of mlrA and mlrB genes used as markers for MC degradation following mlr-pathway confirmed the presence of this pathway in all membranes. These results suggest the co-existence of both genotypes in membrane-attached native biofilms. Therefore, this study confirms that recycled membranes are suitable support for many MC-degrading bacteria, thus giving value to discarded membranes for eco-friendly and low-cost biological filters.
Collapse
Affiliation(s)
- Jesús Morón-López
- IMDEA Water Institute, Punto Com. n° 2, 28805 Alcalá de Henares, Madrid, Spain.; Chemical Engineering Department, University of Alcalá, Ctra. Madrid-Barcelona Km 33,600, 28871 Alcalá de Henares, Madrid, Spain..
| | - Lucía Nieto-Reyes
- IMDEA Water Institute, Punto Com. n° 2, 28805 Alcalá de Henares, Madrid, Spain
| | - Serena Molina
- IMDEA Water Institute, Punto Com. n° 2, 28805 Alcalá de Henares, Madrid, Spain..
| | - María Ángeles Lezcano
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), 28850 Torrejón de Ardoz, Madrid, Spain
| |
Collapse
|
88
|
Pollard M, Hunsicker E, Platt M. A Tunable Three-Dimensional Printed Microfluidic Resistive Pulse Sensor for the Characterization of Algae and Microplastics. ACS Sens 2020; 5:2578-2586. [PMID: 32638589 DOI: 10.1021/acssensors.0c00987] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Technologies that can detect and characterize particulates in liquids have applications in health, food, and environmental monitoring. Simply counting the numbers of cells or particles is not sufficient for most applications; other physical properties must also be measured. Typically, it is necessary to compromise between the speed of a sensor and its chemical and biological specificity. Here, we present a low-cost and high-throughput multiuse counter that classifies a particle's size, concentration, and shape. We also report how the porosity/conductivity or the particle can influence the signal. Using an additive manufacturing process, we have assembled a reusable flow resistive pulse sensor capable of being tuned in real time to measure particles from 2 to 30 μm across a range of salt concentrations, i.e., 2.5 × 10-4 to 0.1 M. The device remains stable for several days with repeat measurements. We demonstrate its use for characterizing algae with spherical and rod structures as well as microplastics shed from tea bags. We present a methodology that results in a specific signal for microplastics, namely, a conductive pulse, in contrast to particles with smooth surfaces such as calibration particles or algae, allowing the presence of microplastics to be easily confirmed and quantified. In addition, the shapes of the signal and of the particle are correlated, giving an extra physical property to characterize suspended particulates. The technology can rapidly screen volumes of liquid, 1 mL/min, for the presence of microplastics and algae.
Collapse
Affiliation(s)
- Marcus Pollard
- School of Science, Loughborough University, Epinal Way, Loughborough LE11 3TU, United Kingdom of Great Britain and Northern Ireland
| | - Eugenie Hunsicker
- School of Science, Loughborough University, Epinal Way, Loughborough LE11 3TU, United Kingdom of Great Britain and Northern Ireland
| | - Mark Platt
- School of Science, Loughborough University, Epinal Way, Loughborough LE11 3TU, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
89
|
Removal of Perfluorooctanoic Acid and Microcystins from Drinking Water by Electrocoagulation. J CHEM-NY 2020. [DOI: 10.1155/2020/1836264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Perfluorooctanoic acid (PFOA) and microcystins are some of the well-known chemical contaminants in drinking water in the USA. Despite the availability of filtration technologies like ion-exchange resins, activated-carbon, and high-pressure membrane filters, these contaminants still remain widespread in the environment. In the present study, two innovative aspects of electrocoagulation techniques were tested, (a) cheap and easy-to-operate field-unit instead of hi-tech electrocoagulation and (b) reverse-polarity instead of conventional polarity, and applied to remove PFOA and microcystins from drinking water sources. The method presented here outperformed commercial activated-carbon filtration by nearly 40%. When the efficiency of electrocoagulation was examined in terms of voltage discharge, pH, and reverse-polarity, the results averaged 80% decontamination for individual treatment, while their combined effects produced 100% detoxification in 10–40 minutes, exceeding recently published results. The method shows great economic promise for water and wastewater treatment and chemical recycling.
Collapse
|
90
|
Zerrifi SEA, Mugani R, Redouane EM, El Khalloufi F, Campos A, Vasconcelos V, Oudra B. Harmful Cyanobacterial Blooms (HCBs): innovative green bioremediation process based on anti-cyanobacteria bioactive natural products. Arch Microbiol 2020; 203:31-44. [PMID: 32803344 DOI: 10.1007/s00203-020-02015-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/07/2020] [Accepted: 08/05/2020] [Indexed: 01/22/2023]
Abstract
Over the last decades, Harmful Cyanobacterial Blooms (HCBs) represent one of the most conspicuous hazards to human health in freshwater ecosystems, due to the uses of the water for drinking, recreation and aquaculture. Cyanobacteria are one of the main biological components in freshwater ecosystems and they may proliferate in nutrients rich ecosystems causing severe impacts at different levels. Therefore, several methods have been applied to control cyanobacterial proliferation, including physical, chemical and biological strategies. However, the application of those methods is generally not very efficient. Research on an eco-friendly alternative leading to the isolation of new bioactive compounds with strong impacts against harmful cyanobacteria is a need in the field of water environment protection. Thus, this paper aims to give an overview of harmful cyanobacterial blooms and reviews the state of the art of studying the activities of biological compounds obtained from plants, seaweeds and microorganisms in the cyanobacterial bloom control.
Collapse
Affiliation(s)
- Soukaina El Amrani Zerrifi
- Water, Biodiversity and Climate Change Laboratory, Phycology, Biotechnology and Environmental Toxicology Research Unit, Faculty of Sciences Semlalia Marrakech, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, 40000, Marrakech, Morocco
| | - Richard Mugani
- Water, Biodiversity and Climate Change Laboratory, Phycology, Biotechnology and Environmental Toxicology Research Unit, Faculty of Sciences Semlalia Marrakech, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, 40000, Marrakech, Morocco
| | - El Mahdi Redouane
- Water, Biodiversity and Climate Change Laboratory, Phycology, Biotechnology and Environmental Toxicology Research Unit, Faculty of Sciences Semlalia Marrakech, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, 40000, Marrakech, Morocco
| | - Fatima El Khalloufi
- Laboratory of Chemistry, Modeling and Environmental Polydisciplinary Faculty of Khouribga (FPK), Sultan Moulay Slimane University, P.B. 145, 25000, Khouribga, Morocco
| | - Alexandre Campos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal. .,Departament of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal.
| | - Brahim Oudra
- Water, Biodiversity and Climate Change Laboratory, Phycology, Biotechnology and Environmental Toxicology Research Unit, Faculty of Sciences Semlalia Marrakech, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, 40000, Marrakech, Morocco
| |
Collapse
|
91
|
Argyri K, Doulgeraki AI, Manthou E, Grounta A, Argyri AA, Nychas GJE, Tassou CC. Microbial Diversity of Fermented Greek Table Olives of Halkidiki and Konservolia Varieties from Different Regions as Revealed by Metagenomic Analysis. Microorganisms 2020; 8:microorganisms8081241. [PMID: 32824085 PMCID: PMC7464643 DOI: 10.3390/microorganisms8081241] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022] Open
Abstract
Current information from conventional microbiological methods on the microbial diversity of table olives is insufficient. Next-generation sequencing (NGS) technologies allow comprehensive analysis of their microbial community, providing microbial identity of table olive varieties and their designation of origin. The purpose of this study was to evaluate the bacterial and yeast diversity of fermented olives of two main Greek varieties collected from different regions-green olives, cv. Halkidiki, from Kavala and Halkidiki and black olives, cv. Konservolia, from Magnesia and Fthiotida-via conventional microbiological methods and NGS. Total viable counts (TVC), lactic acid bacteria (LAB), yeast and molds, and Enterobacteriaceae were enumerated. Microbial genomic DNA was directly extracted from the olives' surface and subjected to NGS for the identification of bacteria and yeast communities. Lactobacillaceae was the most abundant family in all samples. In relation to yeast diversity, Phaffomycetaceae was the most abundant yeast family in Konservolia olives from the Magnesia region, while Pichiaceae dominated the yeast microbiota in Konservolia olives from Fthiotida and in Halkidiki olives from both regions. Further analysis of the data employing multivariate analysis allowed for the first time the discrimination of cv. Konservolia and cv. Halkidiki table olives according to their geographical origin.
Collapse
Affiliation(s)
- Konstantina Argyri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organisation DEMETER, Sofokli Venizelou 1, Lycovrissi, 14123 Athens, Greece; (K.A.); (A.G.); (A.A.A.)
| | - Agapi I. Doulgeraki
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organisation DEMETER, Sofokli Venizelou 1, Lycovrissi, 14123 Athens, Greece; (K.A.); (A.G.); (A.A.A.)
- Correspondence: (A.I.D.); (C.C.T.); Tel.: +30-2102845940 (A.I.D. & C.C.T.)
| | - Evanthia Manthou
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.M.); (G.-J.E.N.)
| | - Athena Grounta
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organisation DEMETER, Sofokli Venizelou 1, Lycovrissi, 14123 Athens, Greece; (K.A.); (A.G.); (A.A.A.)
| | - Anthoula A. Argyri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organisation DEMETER, Sofokli Venizelou 1, Lycovrissi, 14123 Athens, Greece; (K.A.); (A.G.); (A.A.A.)
| | - George-John E. Nychas
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.M.); (G.-J.E.N.)
| | - Chrysoula C. Tassou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organisation DEMETER, Sofokli Venizelou 1, Lycovrissi, 14123 Athens, Greece; (K.A.); (A.G.); (A.A.A.)
- Correspondence: (A.I.D.); (C.C.T.); Tel.: +30-2102845940 (A.I.D. & C.C.T.)
| |
Collapse
|
92
|
Guimarães Neto JOA, Aguiar TR. Evaluation of the efficiency of three different mineral adsorbents in the removal of pollutants in samples from a tropical spring in Northeastern Brazil. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1195-1207. [PMID: 32090402 DOI: 10.1002/wer.1314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/12/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Human water sources are increasingly threatened around the world due to various sources of pollution such as agriculture and industry. The objective of this study was to evaluate three new adsorbents as pollutant remedies for subsequent application in the Joanes River located in the State of Bahia in Brazil. The specific pollutants were nitrogen, phosphorus (P), aluminum (Al), iron (Fe), cyanobacteria, and saxitoxins. Initially, studies (pH 7 and 22°C) were performed with samples contaminated in the laboratory with phosphorus (P), nitrate ( NO 3 - ), and ammonia (NH3 ), to select the most efficient adsorbent and to determine the equilibrium time. Pumice bituminous coal was found to have the best efficiencies (≥70%) at 360 min (equilibration time). The experimental data did not fit the Langmuir and Freundlich model. The bituminous coal with pumice stone was then applied to water samples from a designated capture point of the Joanes springs, a river system that is responsible for supplying the city of Salvador and the metropolitan region, located on the northern coast of Bahia. The removal efficiency analyses were performed on a DR6000 UV/VIS SPECTROPHOTOMETER, using the methodology defined in the Standard Methods 2017, after which this adsorbent was subjected to scanning electron microscopy. As a result, removal efficiencies (≥98%) were obtained for all contaminants (nitrogen, phosphorus (P), aluminum (Al), iron (Fe), cyanobacteria, and saxitoxins) as well as a highly heterogeneous layer pointed by SEM images, further demonstrating the adsorbent potential as a efficient alternative in environmental control after additional studies. PRACTITIONER POINTS: Pumice bituminous coal has proven to be an excellent adsorbent for a wide range of pollutants such as phosphorus, nitrogen, ammonia, toxins, cyanobacteria, and metals. The adsorbent promoted a high reduction in phosphorus concentrations (3.40 mg/L to 0.01 mg/L), about 98% and 81% for cyanobacteria (12,850 Cel/ml to 2,560 Cel/ml). The adsorbent promoted a high reduction in concentrations of 98% saxitoxins (4.32 µg/L to 0.2 µg/L).
Collapse
Affiliation(s)
| | - Terencio Rebello Aguiar
- Department of Environmental Engineering, Polytechnic School, Federal University of Bahia (UFBA), Salvador, Brazil
| |
Collapse
|
93
|
Chaffin JD, Kane DD, Johnson A. Effectiveness of a fixed-depth sensor deployed from a buoy to estimate water-column cyanobacterial biomass depends on wind speed. J Environ Sci (China) 2020; 93:23-29. [PMID: 32446456 DOI: 10.1016/j.jes.2020.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
Water quality sondes have the advantage of containing multiple sensors, extended deployment times, high temporal resolution, and telecommunication with stakeholder accessible data portals. However, sondes that are part of buoy deployments often suffer from typically being fixed at one depth. Because water treatment plants are interested in water quality at a depth of the water intake and other stakeholders (ex. boaters and swimmers) are interested in the surface, we examined whether a fixed depth of approximately 1 m could cause over- or under-estimation of cyanobacterial biomass. We sampled the vertical distribution of cyanobacteria adjacent to a water quality sonde buoy in the western basin of Lake Erie during the summers of 2015-2017. A comparison of buoy cyanobacteria RFU (Relative Fluorescence Unit) at 1 m to cyanobacteria chlorophyll a (chla) measured throughout the water column showed occurrences when the buoy both under and overestimated the cyanobacteria chla at specific depths. Largest differences between buoy measurements and at-depth grab samples occurred during low wind speeds (< 4.5 m/sec) because low winds allowed cyanobacteria to accumulate at the surface above the buoy's sonde. Higher wind speeds (> 4.5 m/sec) resulted in better agreement between the buoy and at-depth measurements. Averaging wind speeds 12 hr before sample collection decreased the difference between the buoy and at-depth samples for high wind speeds but not low speeds. We suggest that sondes should be placed at a depth of interest for the appropriate stakeholder group or deploy sondes with the ability to sample at various depths.
Collapse
Affiliation(s)
- Justin D Chaffin
- F.T Stone Laboratory and Ohio Sea Grant, the Ohio State University, OH 43456, USA.
| | - Douglas D Kane
- F.T Stone Laboratory and Ohio Sea Grant, the Ohio State University, OH 43456, USA; Division of Natural Science, Applied Science, and Mathematics, Defiance College, Defiance OH, F.T Stone Laboratory, The Ohio State University and Ohio Sea Grant, OH 43456, USA
| | - Alex Johnson
- F.T Stone Laboratory and Ohio Sea Grant, the Ohio State University, OH 43456, USA
| |
Collapse
|
94
|
De Bock MFS, Moraes GSDO, Almeida RGDS, Vieira KDDS, Santoro KR, Bicudo ÁJDA, Molica RJR. Exposure of Nile Tilapia (Oreochromis niloticus) Fingerlings to a Saxitoxin-Producing Strain of Raphidiopsis (Cylindrospermopsis) raciborskii (Cyanobacterium) Reduces Growth Performance and Increases Mortality Rate. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1409-1420. [PMID: 32323358 DOI: 10.1002/etc.4728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/04/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Blooms of toxin-producing cyanobacteria have been more frequent and lasting because of the eutrophication of freshwater ecosystems, including those used for aquaculture. The aim of the present study was to investigate the effects of chronic exposure to a saxitoxin-producing strain of Raphidiopsis (Cylindrospermopsis) raciborskii on the performance of Nile tilapia (Oreochromis niloticus) fingerlings over a 60-d period. The fingerlings were cultivated under the following conditions: 1) water without cyanobacterium (WATER), 2) R. raciborskii in ASM-1 culture medium (CYANO), and 3) ASM-1 culture medium without cyanobacterium (ASM). Exposure to the CYANO treatment led to a significant increase in the mortality rate (p < 0.05) and a significant reduction in growth (p < 0.05) compared to fingerlings submitted to the ASM and WATER treatments, in which similar survival and growth were found (p > 0.05). Saxitoxin toxicity was dependent on the weight of the fingerling (p < 0.05), with maximum mortality caused by the ingestion of 13.66 μg saxitoxin equivalent L-1 g-1 . The present results clearly show the harm caused by saxitoxins to the production of Nile tilapia fingerlings in the early growth phase. These findings underscore the importance of maintaining adequate water quality in aquaculture activities to minimize the risk of saxitoxin-producing cyanobacterial blooms and avoid economic losses among producers. Environ Toxicol Chem 2020;39:1409-1420. © 2020 SETAC.
Collapse
Affiliation(s)
| | | | | | | | - Kleber Régis Santoro
- Garanhuns Academic Unit, Rural Federal University of Pernambuco, Garanhuns, Pernambuco, Brazil
- Graduate Program in Biometrics and Applied Statistics, Rural Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | - Renato José Reis Molica
- Garanhuns Academic Unit, Rural Federal University of Pernambuco, Garanhuns, Pernambuco, Brazil
| |
Collapse
|
95
|
Li X, Chen S, Zeng J, Song W, Yu X. Comparing the effects of chlorination on membrane integrity and toxin fate of high- and low-viability cyanobacteria. WATER RESEARCH 2020; 177:115769. [PMID: 32278164 DOI: 10.1016/j.watres.2020.115769] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
Occurrence of toxic cyanobacterial blooms in natural freshwaters could impair drinking water quality. Chlorine was often employed as an oxidant to treat algal-laden source waters in drinking water treatment plants. However, previous studies only focused on high-viability cyanobacteria at exponential phase. Whether the change of cell-viability of cyanobacteria could affect chlorination was unknown. Here, high- and low-viability Microcystis were collected from a whole life cycle of cyanobacteria in lab-scale, and effects of chlorination on membrane integrity and toxin fate of high- and low-viability Microcystis were subsequently investigated. Results showed chlorine exposure was lower for low-viability cells than high-viability cells with the same initial chlorine dosage, but low-viability cells were less resistant to chlorination, leading to higher rate of membrane damage (kloss) and intracellular toxin release (ki). For high-viability cells, there was no increase of extracellular toxin with sufficient chlorine exposure whereas it showed a continuous increase for low-viability cells mainly due to its lower rate of extracellular toxin degradation (ke, 26 ± 8 M-1 s-1) than intracellular toxin release (ki, 110 ± 16 M-1 s-1) (ke < ki). Besides, total toxin could be completely oxidized for high-viability cells with sufficient chlorine exposure (>30 mg min L-1) whereas chlorination could not work well for low-viability cells even with chlorine exposure of as high as 36 mg min L-1. These findings indicated chlorination may not be a feasible option to treat low-viability cyanobacteria during decline stage of cyanobacterial blooms.
Collapse
Affiliation(s)
- Xi Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Zeng
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weijun Song
- College of Ecological and Resources Engineering, Wuyi University, Wuyishan, 354300, China
| | - Xin Yu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; College of The Environment & Ecology, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
96
|
Churro C, Semedo-Aguiar AP, Silva AD, Pereira-Leal JB, Leite RB. A novel cyanobacterial geosmin producer, revising GeoA distribution and dispersion patterns in Bacteria. Sci Rep 2020; 10:8679. [PMID: 32457360 PMCID: PMC7251104 DOI: 10.1038/s41598-020-64774-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 04/21/2020] [Indexed: 11/08/2022] Open
Abstract
Cyanobacteria are ubiquitous organisms with a relevant contribution to primary production in all range of habitats. Cyanobacteria are well known for their part in worldwide occurrence of aquatic blooms while producing a myriad of natural compounds, some with toxic potential, but others of high economical impact, as geosmin. We performed an environmental survey of cyanobacterial soil colonies to identify interesting metabolic pathways and adaptation strategies used by these microorganisms and isolated, sequenced and assembled the genome of a cyanobacterium that displayed a distinctive earthy/musty smell, typical of geosmin, confirmed by GC-MS analysis of the culture's volatile extract. Morphological studies pointed to a new Oscillatoriales soil ecotype confirmed by phylogenetic analysis, which we named Microcoleus asticus sp. nov. Our studies of geosmin gene presence in Bacteria, revealed a scattered distribution among Cyanobacteria, Actinobacteria, Delta and Gammaproteobacteria, covering different niches. Careful analysis of the bacterial geosmin gene and gene tree suggests an ancient bacterial origin of the gene, that was probably successively lost in different time frames. The high sequence similarities in the cyanobacterial geosmin gene amidst freshwater and soil strains, reinforce the idea of an evolutionary history of geosmin, that is intimately connected to niche adaptation.
Collapse
Affiliation(s)
- Catarina Churro
- Laboratório de Fitoplâncton, Departamento do Mar e Recursos Marinhos, Instituto Português do Mar e da Atmosfera, Rua Alfredo Magalhães Ramalho, 6, 1449-006, Lisboa, Portugal.
- Blue Biotechnology and Ecotoxicology (BBE), CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208, Matosinhos, Portugal.
| | - Ana P Semedo-Aguiar
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande n°6, 2780-156, Oeiras, Portugal
- Programa de Pós-Graduação Ciência para o Desenvolvimento, Rua da Quinta Grande n°6, 2780-156, Oeiras, Portugal
- Universidade Jean Piaget de Cabo Verde, Campus da Praia, Caixa Postal 775, Palmarejo Grande, Praia, Cabo Verde
| | - Alexandra D Silva
- Laboratório de Fitoplâncton, Departamento do Mar e Recursos Marinhos, Instituto Português do Mar e da Atmosfera, Rua Alfredo Magalhães Ramalho, 6, 1449-006, Lisboa, Portugal
| | - Jose B Pereira-Leal
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande n°6, 2780-156, Oeiras, Portugal
- Ophiomics-Precision Medicine, Pólo Tecnológico de Lisboa, Rua Cupertino de Miranda, 9, Lote 8, 1600-513, Lisbon, Portugal
| | - Ricardo B Leite
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande n°6, 2780-156, Oeiras, Portugal
| |
Collapse
|
97
|
Moura DS, Lima Neto IE, Clemente A, Oliveira S, Pestana CJ, Aparecida de Melo M, Capelo-Neto J. Modeling phosphorus exchange between bottom sediment and water in tropical semiarid reservoirs. CHEMOSPHERE 2020; 246:125686. [PMID: 31918079 DOI: 10.1016/j.chemosphere.2019.125686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
This study investigated phosphorus (P) dynamics in the sediment-water interface of three distinct reservoirs located in a tropical semiarid region. Sequential chemical fractioning of the P content in the sediment and controlled experiments of the sediment-water interface were performed to understand and model the effect of the different P fractions on the exchange dynamics under anoxic and oxic scenarios. The results revealed that the older the reservoir, the higher the amount of iron and aluminum-bound P in the sediment, and that this fraction was responsible for a 10-fold increase in P concentration in the water during anoxic conditions. After aeration, P in water decreased but did not return to its initial concentration. The most recently constructed reservoir showed the lowest P concentration in the sediment and dominance of the unavailable P fraction, resulting in no potential impact on water quality. Phosphorus release and precipitation rates were well described by zero- and first-order models, respectively. Reservoirs with high P availability in the sediment, not only released more phosphorus but also presented a lower precipitation rate, resulting in higher potential damage to water quality and making some in-lake treatment techniques potentially ineffective.
Collapse
Affiliation(s)
- Diana S Moura
- School of Civil and Environmental Engineering, Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Brazil; School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - Iran E Lima Neto
- School of Civil and Environmental Engineering, Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Brazil
| | - Allan Clemente
- School of Civil and Environmental Engineering, Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Brazil
| | - Samylla Oliveira
- School of Civil and Environmental Engineering, Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Brazil
| | - Carlos J Pestana
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - Maria Aparecida de Melo
- School of Civil and Environmental Engineering, Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Brazil
| | - José Capelo-Neto
- School of Civil and Environmental Engineering, Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Brazil.
| |
Collapse
|
98
|
Sopezki MS, Josende ME, Cruz LC, Yunes JS, Lima JV, Zanette J. The effects of Microcystis aeruginosa cells lysate containing microcystins on physiological and molecular responses in the nematode Caenorhabditis elegans. ENVIRONMENTAL TOXICOLOGY 2020; 35:591-598. [PMID: 31916382 DOI: 10.1002/tox.22894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Microcystins (MCs) are potent toxins produced by environmental cyanobacterial blooms. The present study evaluated the effects of a Microcystis aeruginosa cyanobacterial lysate containing 0.1, 1, and 10 μg L-1 MC-LR equivalent in the C. elegans Bristol N2 wild-type and the effects caused by equivalent concentrations of a MC-LR standard. The lysate was prepared from a culture of toxic strain (RST9501) originated from the Patos Lagoon Estuary (RS, Brazil). The minimal concentration necessary to cause significant effects in C. elegans under exposure to M. aeruginosa lysate or to MC-LR standard were, respectively, 10 and 0.1 μg L-1 MC-LR equivalent for growth and 10 and 1 μg L-1 MC-LR equivalent for fertility. Reproduction (ie, brood size) was only affected by the exposure to 10 μg L-1 MC-LR standard and was not affected by the lysate. The nematodes that were exposed to lysate containing 1 μg L-1 MC-LR equivalent or MC-LR were also analyzed for pharyngeal pumping and gene expression using RT-qPCR. The worms' rhythmic contractions of the pharynx were similarly affected by the lysate containing 1 μg L-1 of MC-LR equivalent and the MC-LR standard. The MC-LR standard caused down-regulation of genes related to growth (daf-16), fertility (spe-10), and biotransformation (gst-2). This is the first study to evaluate the effects of a toxic cyanobacterial lysate using the C. elegans model. This study suggests the organism as a potential biotest to evaluate toxicity of natural waters containing M. aeruginosa cells and to environmental risk assessment associated to cyanobacterial bloom events.
Collapse
Affiliation(s)
- Mauricio S Sopezki
- Programa de Pós-Graduação em Ciências Fisiológicas: Fisiologia Animal Comparada, Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Marcelo E Josende
- Programa de Pós-Graduação em Ciências Fisiológicas: Fisiologia Animal Comparada, Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Litiele C Cruz
- Programa de Pós-Graduação em Ciências Fisiológicas: Fisiologia Animal Comparada, Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - João S Yunes
- Laboratório de Cianobactérias e Ficotoxinas, Instituto de Oceanografia (IO), Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Juliane V Lima
- Programa de Pós-Graduação em Ciências Fisiológicas: Fisiologia Animal Comparada, Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Juliano Zanette
- Programa de Pós-Graduação em Ciências Fisiológicas: Fisiologia Animal Comparada, Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| |
Collapse
|
99
|
Park JA, Kang JK, Jung SM, Choi JW, Lee SH, Yargeau V, Kim SB. Investigating Microcystin-LR adsorption mechanisms on mesoporous carbon, mesoporous silica, and their amino-functionalized form: Surface chemistry, pore structures, and molecular characteristics. CHEMOSPHERE 2020; 247:125811. [PMID: 31945720 DOI: 10.1016/j.chemosphere.2020.125811] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/20/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
Microcystin-LR (MC-LR) is the most common cyanotoxin released from algal-blooms. The study investigated the MC-LR adsorption mechanisms by comparing adsorption performance of protonated mesoporous carbon/silica (MC-H, MS-H) and their amino-functionalized forms (MC-NH2 and MS-NH2) considering surface chemistry and pore characteristics. The maximum MC-LR adsorption capacity (Langmuir model) of MC-H (37.87 mg/g) was the highest followed by MC-NH2 (29.25 mg/g) and MS-NH2 (23.03 mg/g), because pore structure is partly damaged during amino-functionalization. However, MC-NH2 (k2 = 0.042 g/mg/min) reacted faster with MC-LR than MC-H during early-stage adsorption due to enhancing electrostatic interactions. Intra-particle diffusion model fit indicated Kp,1 of MC-H (2.11 mg/g/min1/2) was greater than MC-NH2 due to its greater surface area and pore volume. Also, large mesopore diameters are favorable to MC-LR adsorption by pore diffusion. The effect of adsorbate molecular size on adsorption trend against MC-H, MC-NH2 and MS-NH2 was determined by kinetic experiments using two dyes, reactive blue and acid orange: MS-NH2 achieved the highest adsorption for both dyes due to the large number of amino groups on its surface (41.2 NH2/nm2). Overall, it was demonstrated that adsorption of MC-LR on mesoporous materials is governed by (meso-)pore diffusion and π - π (and hydrophobic) interactions induced by carbon materials; in addition, positively-charged grafted amino groups enhance initial MC-LR adsorption rate.
Collapse
Affiliation(s)
- Jeong-Ann Park
- Department of Chemical Engineering, McGill University, 3610 University St., Montréal, H3A 0C5, Québec, Canada; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Kyu Kang
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Environmental Functional Materials and Water Treatment Laboratory, Department of Rural Systems Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung-Mok Jung
- Korea Water and Wastewater Works Association, Seoul, 07379, Republic of Korea
| | - Jae-Woo Choi
- Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Sang-Hyup Lee
- Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; KU-KIST Green School, Graduate School of Energy and Environment, Korea University, Seoul, 02841, Republic of Korea
| | - Viviane Yargeau
- Department of Chemical Engineering, McGill University, 3610 University St., Montréal, H3A 0C5, Québec, Canada
| | - Song-Bae Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Environmental Functional Materials and Water Treatment Laboratory, Department of Rural Systems Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
100
|
Czyżewska W, Piontek M, Łuszczyńska K. The Occurrence of Potential Harmful Cyanobacteria and Cyanotoxins in the Obrzyca River (Poland), a Source of Drinking Water. Toxins (Basel) 2020; 12:E284. [PMID: 32354080 PMCID: PMC7290984 DOI: 10.3390/toxins12050284] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 11/16/2022] Open
Abstract
Harmful cyanobacteria and their cyanotoxins may contaminate drinking water resources and their effective control remains challenging. The present study reports on cyanobacterial blooms and associated cyanotoxins in the Obrzyca River, a source of drinking water in Poland. The river was examined from July to October 2019 and concentrations of microcystins, anatoxin-a, and cylindrospermopsin were monitored. The toxicity of water samples was also tested using an ecotoxicological assay. All studied cyanotoxins were detected with microcystins revealing the highest levels. Maximal microcystin concentrations (3.97 μg/L) were determined in September at Uście point, exceeding the provisional guideline. Extracts from Uście point, where the dominant species were Dolichospermum flos-aquae (August), Microcystis aeruginosa (September), and Planktothrix agardhii (October), were toxic for Dugesia tigrina Girard. Microcystin concentrations (MC-LR and MC-RR) were positively correlated with cyanobacteria biovolume. Analysis of the chemical indicators of water quality has shown relationships between them and microcystins as well as cyanobacteria abundance.
Collapse
Affiliation(s)
- Wanda Czyżewska
- Water and Sewage Laboratory, Water and Wastewater Treatment Plant in Zielona Góra, Zjednoczenia 110 A, 65-120 Zielona Góra, Poland;
| | - Marlena Piontek
- Institute of Environmental Engineering, University of Zielona Góra, Licealna 9, 65-417 Zielona Góra, Poland;
| | - Katarzyna Łuszczyńska
- Institute of Environmental Engineering, University of Zielona Góra, Licealna 9, 65-417 Zielona Góra, Poland;
| |
Collapse
|